WO2023048354A1 - System and method for charging redox flow battery for charging electric automobiles by using eco-friendly power generation or late-night idle power - Google Patents

System and method for charging redox flow battery for charging electric automobiles by using eco-friendly power generation or late-night idle power Download PDF

Info

Publication number
WO2023048354A1
WO2023048354A1 PCT/KR2022/008013 KR2022008013W WO2023048354A1 WO 2023048354 A1 WO2023048354 A1 WO 2023048354A1 KR 2022008013 W KR2022008013 W KR 2022008013W WO 2023048354 A1 WO2023048354 A1 WO 2023048354A1
Authority
WO
WIPO (PCT)
Prior art keywords
redox flow
charging
flow battery
power
battery
Prior art date
Application number
PCT/KR2022/008013
Other languages
French (fr)
Korean (ko)
Inventor
김장욱
정용신
Original Assignee
남도금형(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 남도금형(주) filed Critical 남도금형(주)
Publication of WO2023048354A1 publication Critical patent/WO2023048354A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to a redox flow battery charging system and method for charging an electric vehicle using eco-friendly power generation or late-night idle power, and more particularly, a redox flow battery that is easy to install and maintain for eco-friendly power generation and late-night electricity. It relates to a redox flow battery charging system and method for charging an electric vehicle that utilizes eco-friendly power generation or late-night idle power to be used for charging electric vehicles or for various electric power required in small buildings or homes.
  • electric vehicles are configured to drive the power system using electricity stored in batteries, so they are equipped with a battery that can supply electricity necessary for vehicle operation, and the charge of the battery mounted on the vehicle is the driving distance of the vehicle.
  • renewable energy such as solar energy or wind energy is in the limelight as a method for suppressing greenhouse gas emissions, which is a major cause of global warming, and many studies are being conducted to commercialize and spread these.
  • renewable energy is greatly influenced by location environment and natural conditions.
  • renewable energy has a disadvantage in that energy cannot be continuously and evenly supplied because output fluctuations are severe.
  • lead-acid batteries are widely used commercially compared to other batteries, but have disadvantages such as low efficiency, maintenance costs due to periodic replacement, and problems in handling industrial waste generated during battery replacement.
  • NaS battery in the case of NaS battery, it has the advantage of high energy efficiency, but has the disadvantage of operating at a high temperature of 300 ° C. or more.
  • redox flow batteries have low maintenance costs, can be operated at room temperature, and have characteristics such that capacity and output can be designed independently, so a lot of research has recently been conducted as a mass storage device.
  • the problem to be solved by the present invention is to solve the above-mentioned problems, and the redox flow battery, which is easy to install and maintain, is charged using eco-friendly power generation or late-night electricity, and various electric power required for electric vehicle charging or small buildings or homes.
  • the problem to be solved by the present invention is to solve the above-mentioned problems, calculating the average amount of electricity used per day for electric vehicle charging or various power required in small buildings or homes, and redox flow based on the daily charge amount.
  • An object of the present invention is to provide a redox flow battery charging system and method for charging an electric vehicle using eco-friendly power generation or late-night idle power that efficiently controls battery charging.
  • a redox flow battery charging method for charging an electric vehicle using eco-friendly power generation or late-night idle power is,
  • a distribution board through which commercial AC power is introduced into the building from the power system;
  • An eco-friendly power generation module connected to the distribution board;
  • a bidirectional power conversion module connected to the distribution board connected to the distribution board;
  • a redox flow battery installed in a building;
  • the step of charging the redox flow battery using late-night electricity In the late-night time zone, the step of charging the redox flow battery using late-night electricity,
  • the energy management module confirming the daily average usage of the building including electric vehicle charging;
  • the energy management module further comprising changing a value obtained by subtracting 50% of the daily solar charge amount charged using the sunlight from the target charge amount of the battery unit to the target charge amount do.
  • the redox flow battery charging system for charging an electric vehicle utilizing eco-friendly power generation or late-night idle power is,
  • a distribution board through which commercial AC power is introduced into the building from the power system
  • An eco-friendly power generation module connected to the distribution board
  • a bidirectional power conversion module connected to the distribution board connected to the distribution board;
  • a battery unit including a redox flow battery installed in a predetermined building and charged by receiving DC power output from the eco-friendly power generation module or power conversion module;
  • a battery management module for monitoring state information of the redox flow battery
  • an energy management module for receiving state information of the battery unit, diagnosing a state of the battery unit based on the received state information, and controlling operations of the power conversion module and the battery management module, respectively.
  • the energy management module charges the redox flow battery with electricity generated by the eco-friendly power generation module during non-night time.
  • the energy management module charges the redox flow battery using late-night electricity during the late-night time zone.
  • a stack unit connected to the power conversion module and including at least one or more battery cells in which charging and discharging are performed by a redox reaction between a first electrolyte and a second electrolyte;
  • a first circulation pump and a second circulation pump respectively supplying a first electrolyte solution and a second electrolyte solution to the stack unit are included.
  • the redox flow battery which is easy to install and maintain, is charged using eco-friendly power generation or late-night electricity, and used for electric vehicle charging or various power required in small buildings or homes. It is possible to provide a redox flow battery charging system and method for charging an electric vehicle using idle power.
  • the average amount of electricity used per day for electric vehicle charging or various power required in a small building or home is calculated, and the charging of the redox flow battery is efficiently controlled based on the daily charge amount. It is possible to provide a redox flow battery charging system and method for charging an electric vehicle that utilizes power generation or idle power at night.
  • FIG. 1 is a configuration diagram of a redox flow battery charging system for charging an electric vehicle utilizing sunlight or idle power at night according to an embodiment of the present invention.
  • FIGS. 2 and 3 are views showing the configuration of a redox flow battery used in a redox flow battery charging system for charging an electric vehicle utilizing sunlight or idle power at night according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a redox flow battery charging method for charging an electric vehicle using sunlight or idle power at night according to an embodiment of the present invention.
  • eco-friendly power generation may be solar power, wind power, or other environmentally friendly power generation technologies.
  • FIGS. 2 and 3 are solar light according to an embodiment of the present invention. Or, it is a diagram showing the configuration of a redox flow battery used in a redox flow battery charging system for charging an electric vehicle that utilizes idle power at night.
  • the redox flow battery charging system for charging an electric vehicle utilizing eco-friendly power generation or late-night idle power according to an embodiment of the present invention
  • a distribution board 10 a power conversion module 20, a battery unit 30, a battery management module 50, and an energy management module 60 are provided.
  • eco-friendly power generation of the present invention well-known eco-friendly power generation may be applied, and sunlight may be applied as a specific example.
  • eco-friendly power generation is exemplified by solar light, but the eco-friendly power generation of the present invention is not limited to photovoltaic power generation.
  • the distribution panel 10 is a part where commercial AC power is introduced into the home from the power system 7, and is connected to a distribution box, a meter 11 installed in the distribution box, a main circuit breaker connected to the meter 11, and a main circuit breaker. It is composed of a main bus bar, a plurality of sub-bus bars connected to the main bus bar, and a plurality of sub-wire breakers connected to the sub-bus bar on one side and connected to the charger 70 and the load L on the other side. .
  • the size of the redox battery is larger than that of the existing battery, and may occupy a lot of space, but it is also advantageous for long life utilization in connection with maintenance work of the house, such as water pipe management, so in the case of an apartment, a balcony In the case of a house on one side, it is appropriate to install it adjacent to the garage. Since this embodiment of the present invention has no risk of fire or explosion compared to existing lithium ion-based batteries that have a risk of fire or explosion, and is safe in any case, safe use is guaranteed when installed in a house.
  • conventional lithium-ion batteries can only be used for about 2 years (up to 5 years), but if the applicant's technology (nitrogen gas bubble cleaning drain of membrane) applied to the embodiment of the present invention is used, it can be used for more than 20 years can
  • the solar module 80 is connected to the distribution board 20 and generates and outputs power using sunlight. Since these solar modules are well known in the art, a detailed description thereof will be omitted.
  • the power conversion module 20 is connected to the sub-circuit breaker of the distribution panel 10 and converts AC power supplied from commercial power into DC power and outputs it to the battery unit 30 or direct current supplied from the solar module 8 Power is output to the battery unit (30).
  • the power conversion module 20 converts the DC power supplied from the battery unit 30 into AC power and outputs it to the load L or the commercial power system.
  • the power conversion module 20 may include an AC/DC converter, a DC/AC inverter, and a DC/DC converter.
  • the battery unit 30 includes a redox flow battery 40, is installed in a certain space within a building, and is charged by receiving DC power output from the power conversion module 20, or converts the charged DC power into power. discharged into the module 20.
  • the battery unit 30 may include a vanadium redox flow battery 40 in which charging and discharging are performed by exchanging charges while two electrolytes containing vanadium ions flow between membranes.
  • the redox flow battery 40 includes a first electrolysis tank 41 and a second electrolysis tank 42, a first supply line and a second supply line, a first circulation pump 43 and a second circulation pump 44 , a stack unit 45, and a first recovery line and a second recovery line.
  • the first electrolytic bath 41 and the second electrolytic bath 42 are preferably manufactured in a much smaller size than the electrolyte tank of the redox flow battery 40 used for industrial purposes.
  • the first electrolytic tank 41 and the second electrolytic tank 42 are preferably installed and moved freely by manufacturing them in a size corresponding to that of a hot water tank of an electric hot water facility using late-night power in a building.
  • the first supply line has one end connected to the first electrolytic bath 41 and the other end connected to the stack unit 45 to supply the first electrolyte stored in the first electrolytic bath 41 to the stack unit 45 .
  • a first circulation pump 43 for pumping and supplying the first electrolyte to the stack unit 45 is installed in the first supply line.
  • the second supply line has one end connected to the second electrolytic bath 42 and the other end connected to the stack unit 45 to supply the second electrolyte stored in the second electrolytic bath 42 to the stack unit 45 .
  • a second circulation pump 44 for pumping and supplying the second electrolyte to the stack unit 45 is installed in the second supply line.
  • the stack unit 45 is connected to the power conversion module 20 and includes at least one or more battery cells in which charging and discharging are performed by a redox reaction between the first electrolyte and the second electrolyte.
  • the stack unit 45 includes an ion exchange membrane 45A, a first electrode plate 46, a second electrode plate 47, and a first electrode plate 46 disposed on opposite sides of the ion exchange membrane 45A, respectively.
  • a first separator and a second separator disposed outside the second electrode plate 47, respectively, and a flow path disposed outside the first separator and the second separator and through which the first electrolyte and the second electrolyte could flow
  • the first and second euro frames are respectively formed, the first and second collector plates are disposed outside the first and second euro frames, and the first and second collector plates are disposed outside the first and second collector plates, respectively.
  • the first end plate 48 and the second end plate 49 may be included.
  • each of the first separator and the second separator may include a main layer, a first cover layer, a second cover layer, and a plurality of supports.
  • the main layer replaces the existing graphite bulk electrode plate, and is formed of carbon felt with internal voids, has a certain thickness, and is formed in a rectangular shape.
  • the first cover layer is bonded by heat compression or heat to one side of the opposite sides of the main layer, and is formed of a conductive resin.
  • the first cover layer may be formed of conductive polyethylene (PE).
  • the second cover layer is formed of a thermoplastic resin by being compressed or bonded by heat to the other surface of the main layer on which the first cover layer is pressed or pressed, among opposite sides of the main layer.
  • the second cover layer may be formed of thermoplastic polyethylene (PE).
  • the support is buried inside the main layer between the first cover layer and the second cover layer, and a plurality of supports are buried at positions spaced apart from each other by a predetermined interval.
  • Supports are arranged and buried in an Nx matrix pattern or zigzag pattern inside the main layer.
  • the support is made of polyethylene (PE) and may be formed in a polygonal column or column shape, but in this embodiment, a column shape was applied.
  • a coating layer coated with polyether ether ketone (PEEK) is further provided on the surface of the support.
  • Polyether ether ketone which forms the coating layer formed on the surface of the support, has excellent electrical properties such as dielectric permittivity and volume resistivity at high temperatures, can be used without changing physical properties under high temperature and high pressure conditions, and can be used without general thermoplastic resin processing equipment. It is an easily processable, semi-crystalline resin that guarantees excellent stability in a wide range of inorganic and organic chemicals.
  • the support is fixed by heat-sealing, heat-compressing, or heat-sealing the coating layers at both ends in the longitudinal direction toward both sides in the thickness direction of the main layer and at both ends of the main layer by being drawn into the first cover layer and the second cover layer at a predetermined depth, respectively.
  • both ends of the support in the longitudinal direction may be fixed to the surfaces of the first cover layer and the second cover layer by thermal fusion, thermal compression, or thermal bonding.
  • a hollow part may be formed inside the support body along the longitudinal direction, and a core part may be formed by filling the inside of the hollow part with a filler made of PEEK constituting the coating layer described above.
  • the support body is filled in the hollow part. Durability and strength can be further improved by the core part.
  • Such a stack unit 45 has a power withdrawal function by forming a connection portion capable of connecting a cable for power withdrawal to the separator plate, and the current collector can be omitted from the stack structure of the existing redox flow battery, and the cable
  • a DLC-coated protective layer may be formed on the surface of the connecting portion to be connected to improve wear resistance and friction characteristics of the connecting portion.
  • the resin sheet and the carbon felt are thermally compressed, and then the separator is deformed or the strength is weakened or the strength is weakened during cooling. It is easy to handle and has no deformation even during manufacturing due to its size.
  • first and second separators withstand heat generated when the first and second cover layers are thermally compressed or thermally bonded to the main layer through a support having a PEEK coating layer resistant to heat, so that the main layer has a certain thickness.
  • the battery management module 50 is for monitoring state information of the battery unit 30 and ensuring safe operation and performance, and protects the battery unit 30 from overheating or overcharging by monitoring the voltage, current, temperature, etc. of the battery unit 30 .
  • the energy management module 60 is responsible for the overall control of the system, and in detail, receives state information of the battery unit 30, diagnoses the state of the battery unit 30 based on the received state information, and converts power. The operation of the module 20 and the battery management module 50 are respectively controlled.
  • the energy management module 60 may set the maximum charge amount and maximum discharge amount of the battery unit 30 , charge time zone and discharge time zone setting, and set the operation of the power conversion module 20 .
  • the energy management module 60 charges the redox flow battery 40 using commercial power in the late-night time zone when the late-night electricity rate is applied, and in the non-night time zone, the redox flow battery is generated by the solar module. charge with electricity
  • the energy management module 60 may control the redox flow battery 40 to be discharged in non-night time zones. If necessary, the energy management module 60 may control the redox flow battery 40 to be discharged even in the middle of the night.
  • the late-night time zone can be changed according to the season or policy, and may be from 23:00 pm to 9:00 am the next day.
  • the hot water tank of the electric hot water facility for late night power which stores and uses idle power at night in the form of thermal energy in the hot water tank, is replaced with an electrolytic cell of a redox flow battery of a similar size to supply hot water in a small building or home, It can be used immediately for various power demand sources such as lighting, air conditioning, transportation, and disaster prevention.
  • the electrolytic cell of the redox flow battery system is manufactured in a size that can be easily moved and installed without using separate mechanical equipment, so that it can be installed and moved freely, and can be distributed at home without the risk of explosion or fire.
  • ESS can be utilized and built.
  • the operation of the redox flow battery charging system for charging an electric vehicle utilizing eco-friendly power generation or late-night idle power is as follows.
  • FIG. 4 is a diagram illustrating a redox flow battery charging method for charging an electric vehicle using eco-friendly power generation or late-night idle power according to an embodiment of the present invention.
  • the energy management module 60 determines whether the current time is a late-night time zone to which late-night electricity rates apply (S400).
  • the energy management module 60 charges the redox flow battery with electricity generated by the solar module 80 (S410). That is, the energy management module 60 controls the power conversion module 20 to charge the redox flow battery 40 of the battery unit 30 with electricity generated by the solar module 80 .
  • the energy management module 60 charges the redox flow battery using late-night electricity (S420). That is, the energy management module 60 controls the power conversion module 20 to charge the redox flow battery 40 of the battery unit 30 with midnight electricity input from the system through the meter 11 .
  • the energy management module 60 checks the daily average usage of the building including electric vehicle charging (S421). This can be pre-calculated and stored, or calculated directly.
  • the energy management module 60 determines whether the daily average electricity consumption of the building is a charge amount of 80% or more of the total capacity of the redox flow battery 40 (S422). That is, when the battery unit 30 is charged to about 80%, it is determined whether it can be used all day.
  • the battery unit When the daily average usage of the building is 80% or more of the charged amount of the redox flow battery, the battery unit is controlled to be fully charged (S423). That is, even if the battery unit 30 is charged to about 80%, if it is not usable throughout the day, it is fully charged and used, and commercial power is used for the insufficient part.
  • the target state of charge of the battery unit is controlled to be charged by adding 10% to the daily average usage (S424) . That is, since the battery unit 30 can be used throughout the day even when it is charged to about 80%, it is used throughout the day after additionally charging 10% of the daily average electricity consumption with ample late-night electricity.
  • the energy management module determines whether the next day's weather information is sunny (S425).
  • the energy management module changes a value obtained by subtracting 50% of the daily solar charge amount charged using the sunlight from the target charge amount of the battery unit to the target charge amount (S426).
  • a value obtained by subtracting 50% of the daily solar charge amount from the original target charge amount is changed to a new target charge amount.
  • it may be reduced by 50 to 100% instead of 50%, but 50% is applied for safe power supply to the battery unit.
  • the energy management module 60 of the battery unit 30 Electricity is supplied from the redox flow battery 40 (S427). In some cases, when the battery unit is being charged, the energy management module 60 may supply electricity from the redox flow battery 40 of the battery unit 30 after stopping charging.
  • the energy management module 60 may supply commercial power to the electric vehicle charger 70 or other loads L.
  • the energy management module 60 charges the redox flow battery 40 of the battery unit 30 in the same manner as described above.
  • the energy management module 60 may simultaneously charge the redox flow battery 40 of the battery unit 30 and simultaneously charge the electric vehicle.
  • the energy management module 60 may charge the electric vehicle by discharging the redox flow battery 40 of the battery unit 30 .
  • the size of the redox battery is larger than that of the conventional battery and may occupy a lot of space, but it is also advantageous for longevity utilization in connection with house maintenance work such as water pipe management, so in the case of an apartment, a balcony is limited. In the case of a house on the side, it is appropriate to install it adjacent to the garage. Since this embodiment of the present invention has no risk of fire or explosion compared to existing lithium ion-based batteries, which have a risk of fire or explosion, and is safe in any case, safe use is guaranteed when installed in a house.
  • conventional lithium-ion batteries can only be used for about 2 years (up to 5 years), but if the applicant's technology (nitrogen gas bubble cleaning drain of membrane) applied to the embodiment of the present invention is used, it can be used for more than 20 years can
  • the redox flow battery which is easy to install and maintain, can be charged using sunlight and late-night electricity, and can be used for electric vehicle charging or various powers required in small buildings or homes.
  • the daily average amount of electricity used for charging electric vehicles or various powers required in small buildings or homes is calculated, and the charging of the redox flow battery can be efficiently controlled based on the daily charge amount.
  • the redox flow battery which is easy to install and maintain, is charged using eco-friendly power generation or late-night electricity, and used for electric vehicle charging or various power required in small buildings or homes. It is possible to provide a redox flow battery charging system and method for charging an electric vehicle using idle power.
  • the average amount of electricity used per day for electric vehicle charging or various power required in a small building or home is calculated, and the charging of the redox flow battery is efficiently controlled based on the daily charge amount. It is possible to provide a redox flow battery charging system and method for charging an electric vehicle that utilizes power generation or idle power at night.

Abstract

The present invention pertains to a system and method for charging a redox flow battery for charging electric automobiles by using eco-friendly power generation or late-night idle power, the system comprising: a power distribution board through which a commercial alternating current power is led into a building from a power system; an eco-friendly power generation module connected to the power distribution board; a bidirectional power conversion module connected to the power distribution board; a battery unit which is installed in a predetermined building and comprises a redox flow battery that is charged by receiving a direct current power output from the eco-friendly power generation module or the power conversion module; a battery management module that monitors state information of the redox flow battery; and an energy management module that receives state information of the battery unit, diagnoses a state of the battery unit on the basis of the received state information, and controls each of operations of the power conversion module and the battery management module. In an embodiment of the present invention, the redox flow battery, which is convenient to install and maintain, is charged by using sunlight and late-night electricity and may be used for charging electric automobiles or for various power necessary in small buildings or homes.

Description

친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템 및 방법Redox flow battery charging system and method for charging electric vehicles utilizing eco-friendly power generation or late-night idle power
본 발명은 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템 및 방법에 관한 것으로, 더욱 상세하게는 설치 및 유지보수가 편리한 레독스 흐름전지를 친환경 발전 및 심야전기를 이용하여 충전하고, 전기차 충전 또는 소형 건물이나 가정에서 필요한 다양한 전력에 사용하도록 하는, 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템 및 방법에 관한 것이다.The present invention relates to a redox flow battery charging system and method for charging an electric vehicle using eco-friendly power generation or late-night idle power, and more particularly, a redox flow battery that is easy to install and maintain for eco-friendly power generation and late-night electricity. It relates to a redox flow battery charging system and method for charging an electric vehicle that utilizes eco-friendly power generation or late-night idle power to be used for charging electric vehicles or for various electric power required in small buildings or homes.
이하에 기술되는 내용은 단순히 본 발명과 관련되는 배경 정보만을 제공할 뿐 종래기술을 구성하는 것이 아니다.The information described below merely provides background information related to the present invention and does not constitute prior art.
일반적으로 화석연료의 과다 사용과 자동차 및 인구의 증가, 산업시설의 확대 등으로 지구의 환경오염이 심각한 수준이 이르면서 대체 에너지 사용에 대한 중요성이 부각되고 있다.In general, as the environmental pollution of the earth has reached a serious level due to the excessive use of fossil fuels, the increase in automobiles and population, and the expansion of industrial facilities, the importance of using alternative energy has been highlighted.
특히, 인간의 삶의 질을 좌우하는 교통수단인 자동차와 전기를 생산하는 발전소 대부분이 화석연료를 바탕으로 동력을 발생하여 차량이 운행되거나 전기를 생산하고 있다.In particular, most of the power plants that produce automobiles and electricity, which are means of transportation that determine the quality of human life, generate power based on fossil fuels to operate vehicles or produce electricity.
따라서, 화석연료의 사용을 줄이고 자동차 및 발전소에서 사용하는 화석연료를 대체할 수단으로 친환경적인 신재생에너지의 활용에 많은 연구가 이루어지고 있고, 근래에는 상용화 단계에 접어들면서 종래의 화석연료 사용을 대체하고 있는 실정이다.Therefore, many studies have been conducted on the use of eco-friendly new and renewable energy as a means to reduce the use of fossil fuels and replace fossil fuels used in automobiles and power plants. is currently doing.
전기차는 일반 자동차와 달리 배터리에 저장된 전기를 이용하여 동력시스템을 구동하도록 구성되어 있기 때문에, 차량 운행에 필요한 전기를 공급할 수 있는 배터리를 탑재하고 있으며, 차량에 탑재된 배터리의 충전량이 차량의 주행거리를 좌우하게 된다.Unlike general cars, electric vehicles are configured to drive the power system using electricity stored in batteries, so they are equipped with a battery that can supply electricity necessary for vehicle operation, and the charge of the battery mounted on the vehicle is the driving distance of the vehicle. will influence
하지만, 배터리의 기술적인 한계와 차량의 배터리 탑재능력의 한계로 전기차는 일반 자동차에 비해 주행거리가 짧기 때문에 수시로 배터리의 소모된 전기를 충전해야 하는 불편함이 있다.However, due to the technical limitations of the battery and the limitation of the battery loading capacity of the vehicle, electric cars have a shorter driving range than general cars, so there is an inconvenience in that the consumed electricity of the battery must be recharged from time to time.
또한, 전기차의 배터리에 전기를 충전하는 시간이 종래의 일반 자동차에 비해 많이 소요되기 때문에 전기를 충전하는 기술이 매우 중요하다.In addition, since it takes a lot of time to charge the battery of an electric vehicle with electricity compared to conventional automobiles, technology for charging electricity is very important.
현재 전기차 운행에 필요한 전기차 충전스테이션은 일반 상용전력을 이용하여 충전이 이루어지고 있어서 전기차의 증가에 따라 상용전력의 사용이 증가하게 되고, 전기차 증가에 따른 상용전력의 사용 증대는 화력발전소에서 더 많은 전력생산을 해야 하기 때문에 화력발전소의 가동 증가에 따라 대기환경을 오염시키는 배출가스가 오히려 증가되는 모순이 발생되고, 실시간으로 전기차 충전에 따른 전력사용으로 전력수요 피크타임 때 산업용 또는 가정용으로 사용되는 전력이 부족하게 되어 전력공급에 차질이 발생될 수 있는 문제점이 발생된다.Currently, electric vehicle charging stations necessary for driving electric vehicles are charged using general commercial power, so the use of commercial power increases as the number of electric vehicles increases. As the operation of thermal power plants increases because of the need to produce, a contradiction arises in that emissions that pollute the atmospheric environment rather increase, and electric power used for electric vehicles charging in real time increases the power used for industrial or household purposes during peak power demand times. There is a problem that a disruption in power supply may occur due to a shortage.
따라서, 전기차의 증가에 따라 전기차를 운행하는 운전자들이 어디서나 쉽게 충전이 가능하도록 전기차 충전스테이션 설치가 필수적인데, 전기차 충전스테이션은 종래의 주유소에 비해 공간이나 설치지역의 제약성이 적기 때문에 그 설치의 편의성은 있지만, 전기차 충전스테이션의 증가에 따른 상용전력 사용이 증가하기 때문에 전체적인 상용전력의 효율적인 이용이 필요하다.Therefore, with the increase in electric vehicles, it is essential to install an electric vehicle charging station so that drivers who drive electric vehicles can easily charge anywhere. However, since the use of commercial power increases with the increase in the number of charging stations for electric vehicles, it is necessary to efficiently use the overall commercial power.
그리고, 상용전력의 피크부하가 발생될 때 상용전력 사용을 줄이면서 전기차의 안전한 충전이 가능한 수단이 필요함을 인식하여 신재생에너지를 이용한 전기차 충전전력 확보가 그 대안으로 제시되고 있다.And, recognizing the need for a means capable of safely charging electric vehicles while reducing the use of commercial power when a peak load of commercial power occurs, securing electric vehicle charging power using renewable energy is proposed as an alternative.
한편, 테슬라에서 리튬이온계 기술로 '파워월'을 출시 했으나 리튬이온계 배터리는 아무리 잘 관리하더라도 화재, 폭발의 우려가 있다.On the other hand, Tesla has released 'Power Wall' with lithium-ion technology, but lithium-ion batteries have concerns of fire and explosion no matter how well they are managed.
따라서 미래에는 어느 경우에도 안전한 레독스흐름전지를 '파워월'의 리튬이온 배터리와 대체하는 것이 바람직하다.Therefore, in any case in the future, it is desirable to replace the safe redox flow battery with the lithium ion battery of 'Powerwall'.
한편, 지구 온난화의 주요 원인인 온실가스 배출을 억제하기 위한 방법으로 태양광에너지나 풍력에너지 같은 재생에너지가 각광을 받고 있으며 이들의 실용화 보급을 위해 많은 연구가 진행되고 있다. 그러나 이와 같은 재생에너지는 입지환경이나 자연조건에 의해 크게 영향을 받는다. 더욱이, 재생에너지는 출력 변동이 심하기 때문에 에너지를 연속적으로 고르게 공급할 수 없다는 단점이 있다.On the other hand, renewable energy such as solar energy or wind energy is in the limelight as a method for suppressing greenhouse gas emissions, which is a major cause of global warming, and many studies are being conducted to commercialize and spread these. However, such renewable energy is greatly influenced by location environment and natural conditions. Moreover, renewable energy has a disadvantage in that energy cannot be continuously and evenly supplied because output fluctuations are severe.
따라서, 에너지의 출력을 고르게 하기 위해서 출력이 높을 때는 에너지를 저장하고 출력이 낮을 때는 저장된 에너지를 사용할 수 있는 저장장치의 개발이 중요시 되고 있으며, 이와 같은 대표적인 대용량 저장장치로는 납축전지, NaS 전지, 레독스 흐름전지(Redox Flow Battery) 등이 있다. Therefore, in order to even out the energy output, it is important to develop a storage device that can store energy when the output is high and use the stored energy when the output is low. There is a redox flow battery and the like.
이들 중 납축전지는 다른 전지에 비해 상업적으로 널리 사용되고 있으나 낮은 효율 및 주기적인 교체로 인한 유지보수의 비용과 전지 교체시 발생하는 산업폐기물의 처리문제 등의 단점이 있다.Among them, lead-acid batteries are widely used commercially compared to other batteries, but have disadvantages such as low efficiency, maintenance costs due to periodic replacement, and problems in handling industrial waste generated during battery replacement.
그리고, NaS 전지의 경우 에너지효율이 높은 것이 장점이나 300℃이상의 고온에서 작동하는 단점이 있다.And, in the case of NaS battery, it has the advantage of high energy efficiency, but has the disadvantage of operating at a high temperature of 300 ° C. or more.
반면, 레독스 흐름전지는 유지 보수비용이 적고 상온에서 작동 가능하며 용량과 출력을 각기 독립적으로 설계할 수 있는 특징이 있기 때문에 최근 대용량 저장장치로의 많은 연구가 진행되고 있다.On the other hand, redox flow batteries have low maintenance costs, can be operated at room temperature, and have characteristics such that capacity and output can be designed independently, so a lot of research has recently been conducted as a mass storage device.
본 발명이 해결하고자 하는 과제는 전술한 문제점을 해결하기 위한 것으로, 설치 및 유지보수가 편리한 레독스 흐름전지를 친환경 발전 또는 심야전기를 이용하여 충전하고, 전기차 충전 또는 소형 건물이나 가정에서 필요한 다양한 전력에 사용하도록 하는, 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템 및 방법을 제공하는 것이다.The problem to be solved by the present invention is to solve the above-mentioned problems, and the redox flow battery, which is easy to install and maintain, is charged using eco-friendly power generation or late-night electricity, and various electric power required for electric vehicle charging or small buildings or homes. To provide a redox flow battery charging system and method for charging an electric vehicle that utilizes eco-friendly power generation or idle power at night.
또한, 본 발명이 해결하고자 하는 과제는 전술한 문제점을 해결하기 위한 것으로, 전기차 충전 또는 소형 건물이나 가정에서 필요한 다양한 전력에 사용되는 전기의 하루 평균 사용량을 계산하고, 하루 충전량을 바탕으로 레독스 흐름전지의 충전을 효율적으로 제어하는, 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템 및 방법을 제공하는 것이다.In addition, the problem to be solved by the present invention is to solve the above-mentioned problems, calculating the average amount of electricity used per day for electric vehicle charging or various power required in small buildings or homes, and redox flow based on the daily charge amount. An object of the present invention is to provide a redox flow battery charging system and method for charging an electric vehicle using eco-friendly power generation or late-night idle power that efficiently controls battery charging.
이러한 과제를 해결하기 위한 본 발명의 특징에 따른 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 방법은,A redox flow battery charging method for charging an electric vehicle using eco-friendly power generation or late-night idle power according to the features of the present invention to solve these problems is,
전력계통으로부터 건물로 상용 교류전력이 인입되는 분전반과; 상기 분전반에 접속된 친환경 발전 모듈; 상기 분전반에 접속된 상기 분전반에 접속되는 양방향 전력변환모듈과; 건물 내에 설치되는 레독스 흐름전지와; 상기 레독스 흐름전지의 상태정보를 모니터링하는 배터리관리모듈을 구비하는 전기차 충전용 레독스 흐름전지 충전시스템의 레독스 흐름전지 충전방법으로서,a distribution board through which commercial AC power is introduced into the building from the power system; An eco-friendly power generation module connected to the distribution board; a bidirectional power conversion module connected to the distribution board connected to the distribution board; A redox flow battery installed in a building; As a redox flow battery charging method of a redox flow battery charging system for charging an electric vehicle having a battery management module for monitoring state information of the redox flow battery,
에너지 관리모듈이 심야전력 요금이 적용되는 심야시간대인지 판단하는 단계;determining, by an energy management module, whether it is a late-night time zone to which a late-night electricity rate is applied;
비심야시간대에는 상기 레독스 흐름전지를 상기 친환경 발전 모듈에서 생성되는 전기로 충전하는 단계;charging the redox flow battery with electricity generated from the eco-friendly power generation module in non-night time zones;
심야시간대에는 심야전기를 이용하여 상기 레독스 흐름전지를 충전시키는 단계를 포함한다.and charging the redox flow battery using late-night electricity in the late-night time zone.
상기 심야시간대에는 심야전기를 이용하여 레독스 흐름전지를 충전시키는 단계는,In the late-night time zone, the step of charging the redox flow battery using late-night electricity,
심야시간대이면, 상기 에너지 관리모듈이 전기차 충전을 포함한 건물의 하루 평균 사용량을 확인하는 단계;If it is a late-night time zone, the energy management module confirming the daily average usage of the building including electric vehicle charging;
상기 에너지 관리모듈이 상기 건물의 하루 평균 사용량이 상기 레독스 흐름전지의 전체용량의 80%이상 충전량인지 판단하는 단계;Determining, by the energy management module, whether the daily average usage of the building is 80% or more of the total capacity of the redox flow battery;
상기 건물의 하루 평균 사용량이 상기 레독스 흐름전지의 80% 이상 충전량인 경우, 상기 배터리 유닛의 목표 충전 상태가 만충전이 되도록 제어하는 단계;controlling the target state of charge of the battery unit to be fully charged when the daily average usage of the building is 80% or more of the charge of the redox flow battery;
상기 소형 건물의 하루 평균 사용량이 상기 레독스 흐름전지의 80% 미만 충전량인 경우, 상기 배터리 유닛의 목표 충전 상태가 상기 하루 평균 사용량에 10%를 더한 값으로 충전이 되도록 제어하는 단계를 포함한다.When the average daily usage of the small building is less than 80% of the charge of the redox flow battery, controlling the target state of charge of the battery unit to be charged by adding 10% to the average daily usage.
상기 방법은,The method,
상기 에너지 관리 모듈이 다음날 날씨 정보가 맑음인지 판단하는 단계;determining whether the next day's weather information is sunny by the energy management module;
상기 다음날 날씨 정보가 맑음인 경우, 상기 에너지 관리 모듈이 상기 배터리 유닛의 목표 충전량에서 상기 태양광을 이용하여 충전되는 하루 태양광 충전량의 50%를 감한 값을 상기 목표 충전량으로 변경하는 단계를 더 포함한다.When the weather information for the next day is clear, the energy management module further comprising changing a value obtained by subtracting 50% of the daily solar charge amount charged using the sunlight from the target charge amount of the battery unit to the target charge amount do.
이러한 과제를 해결하기 위한 본 발명의 특징에 따른 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템은,The redox flow battery charging system for charging an electric vehicle utilizing eco-friendly power generation or late-night idle power according to the features of the present invention to solve these problems is,
전력계통으로부터 건물로 상용 교류전력이 인입되는 분전반; A distribution board through which commercial AC power is introduced into the building from the power system;
상기 분전반에 접속된 친환경 발전 모듈; An eco-friendly power generation module connected to the distribution board;
상기 분전반에 접속된 상기 분전반에 접속되는 양방향 전력변환모듈과; a bidirectional power conversion module connected to the distribution board connected to the distribution board;
소정 건물 내에 설치되며, 상기 친환경 발전 모듈 또는 전력변환 모듈로부터 출력되는 직류전력을 공급받아 충전되는 레독스 흐름전지를 포함한 배터리유닛과; A battery unit including a redox flow battery installed in a predetermined building and charged by receiving DC power output from the eco-friendly power generation module or power conversion module;
상기 레독스 흐름전지의 상태정보를 모니터링하는 배터리관리모듈;a battery management module for monitoring state information of the redox flow battery;
상기 배터리유닛의 상태정보를 수신하고, 수신된 상태정보를 기반으로 상기 배터리유닛의 상태를 진단하며, 상기 전력변환모듈 및 상기 배터리관리모듈의 동작을 각각 제어하는 에너지관리모듈을 포함한다.and an energy management module for receiving state information of the battery unit, diagnosing a state of the battery unit based on the received state information, and controlling operations of the power conversion module and the battery management module, respectively.
상기 에너지 관리모듈은 비심야시간대에는 상기 레독스 흐름전지를 상기 친환경 발전 모듈에서 생성되는 전기로 충전한다.The energy management module charges the redox flow battery with electricity generated by the eco-friendly power generation module during non-night time.
상기 에너지 관리 모듈은 심야시간대에는 심야전기를 이용하여 상기 레독스 흐름전지를 충전한다.The energy management module charges the redox flow battery using late-night electricity during the late-night time zone.
상기 레독스 흐름전지는,The redox flow battery,
제1전해액과 제2전해액이 각각 저장되는 제1전해조 및 제2전해조와,A first electrolytic bath and a second electrolytic bath in which a first electrolyte and a second electrolyte are stored, respectively;
상기 전력변환모듈에 접속되고 제1전해액과 제2전해액의 산화 환원 반응에 의해 충전 및 방전이 이루어지는 적어도 하나 이상의 전지셀을 포함하는 스택부와, A stack unit connected to the power conversion module and including at least one or more battery cells in which charging and discharging are performed by a redox reaction between a first electrolyte and a second electrolyte;
상기 스택부로 제1전해액과 제2전해액을 각각 공급하는 제1순환펌프 및 제2순환펌프를 포함한다.A first circulation pump and a second circulation pump respectively supplying a first electrolyte solution and a second electrolyte solution to the stack unit are included.
본 발명의 실시예에서는, 설치 및 유지보수가 편리한 레독스 흐름전지를 친환경 발전 또는 심야전기를 이용하여 충전하고, 전기차 충전 또는 소형 건물이나 가정에서 필요한 다양한 전력에 사용하도록 하는, 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템 및 방법을 제공할 수 있다.In an embodiment of the present invention, the redox flow battery, which is easy to install and maintain, is charged using eco-friendly power generation or late-night electricity, and used for electric vehicle charging or various power required in small buildings or homes. It is possible to provide a redox flow battery charging system and method for charging an electric vehicle using idle power.
또한, 본 발명의 실시예에서는, 전기차 충전 또는 소형 건물이나 가정에서 필요한 다양한 전력에 사용되는 전기의 하루 평균 사용량을 계산하고, 하루 충전량을 바탕으로 레독스 흐름전지의 충전을 효율적으로 제어하는, 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템 및 방법을 제공할 수 있다.In addition, in an embodiment of the present invention, the average amount of electricity used per day for electric vehicle charging or various power required in a small building or home is calculated, and the charging of the redox flow battery is efficiently controlled based on the daily charge amount. It is possible to provide a redox flow battery charging system and method for charging an electric vehicle that utilizes power generation or idle power at night.
도 1은 본 발명의 실시예에 따른 태양광 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템의 구성도이다. 1 is a configuration diagram of a redox flow battery charging system for charging an electric vehicle utilizing sunlight or idle power at night according to an embodiment of the present invention.
도 2 및 도 3은 본 발명의 실시예에 따른 태양광 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템에 사용되는 레독스 흐름전지의 구성을 나타낸 도면이다. 2 and 3 are views showing the configuration of a redox flow battery used in a redox flow battery charging system for charging an electric vehicle utilizing sunlight or idle power at night according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른 태양광 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 방법을 나타낸 도면이다.4 is a diagram illustrating a redox flow battery charging method for charging an electric vehicle using sunlight or idle power at night according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.
하기에서 친환경 발전은 태양광 또는 풍력 또는 기타 친환경 발전 기술이 적용될 수 있다. In the following, eco-friendly power generation may be solar power, wind power, or other environmentally friendly power generation technologies.
도 1은 본 발명의 실시예에 따른 태양광 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템의 구성도이고, 도 2 및 도 3은 본 발명의 실시예에 따른 태양광 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템에 사용되는 레독스 흐름전지의 구성을 나타낸 도면이다. 1 is a block diagram of a redox flow battery charging system for charging an electric vehicle utilizing sunlight or idle power at night according to an embodiment of the present invention, and FIGS. 2 and 3 are solar light according to an embodiment of the present invention. Or, it is a diagram showing the configuration of a redox flow battery used in a redox flow battery charging system for charging an electric vehicle that utilizes idle power at night.
도 1 내지 도 3을 참조하면, 본 발명의 실시예에 따른 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템은,1 to 3, the redox flow battery charging system for charging an electric vehicle utilizing eco-friendly power generation or late-night idle power according to an embodiment of the present invention,
분전반(10)과, 전력변환모듈(20)과, 배터리유닛(30)과, 배터리관리모듈(50)과, 에너지관리모듈(60)을 구비한다.A distribution board 10, a power conversion module 20, a battery unit 30, a battery management module 50, and an energy management module 60 are provided.
본 발명의 친환경 발전은 공지의 친환경 발전이 적용될 수 있으며, 구체적인 예로 태양광이 적용될 수 있다. 이하에서는 친환경 발전을 태양광으로 예시하여 설명하나, 본 발명의 친환경 발전이 태양광 발전에 한정되는 것은 아니다.For the eco-friendly power generation of the present invention, well-known eco-friendly power generation may be applied, and sunlight may be applied as a specific example. Hereinafter, eco-friendly power generation is exemplified by solar light, but the eco-friendly power generation of the present invention is not limited to photovoltaic power generation.
분전반(10)은 전력계통(7)으로부터 가정으로 상용 교류전력이 인입되는 부분으로 분전함과, 분전함에 설치되는 계량기(11) 및 계량기(11)에 접속되는 메인배선차단기와, 메인배선차단기에 접속되는 메인부스바, 메인부스바에 접속되는 복수의 서브부스바, 서브부스바에 일 측이 접속되고 타 측은 전깇 충전기(70) 및 부하(L) 측에 접속되는 복수의 서브배선차단기를 포함하여 구성된다.The distribution panel 10 is a part where commercial AC power is introduced into the home from the power system 7, and is connected to a distribution box, a meter 11 installed in the distribution box, a main circuit breaker connected to the meter 11, and a main circuit breaker. It is composed of a main bus bar, a plurality of sub-bus bars connected to the main bus bar, and a plurality of sub-wire breakers connected to the sub-bus bar on one side and connected to the charger 70 and the load L on the other side. .
또한, 본 발명의 실시예에서 크기는 레독스 배터리가 기존 배터리에 비해 더 커서 자리를 많이 차지할 수도 있지만, 수도 배관의 관리처럼 주택의 유지 보수 작업과 연계되어 장수명 활용에 유리하기도 하므로 아파트의 경우 발코니 한 쪽에 주택의 경우에는 차고에 인접하여 설치하면 적절하다. 이러한 본 발명의 실시예는 화재 폭발의 우려가 있는 기존 리튬이온계 배터리에 비해 화재, 폭발의 우려가 없고 어떠한 경우에도 안전하므로 주택에 설치하면 안전한 사용이 보장된다.In addition, in the embodiment of the present invention, the size of the redox battery is larger than that of the existing battery, and may occupy a lot of space, but it is also advantageous for long life utilization in connection with maintenance work of the house, such as water pipe management, so in the case of an apartment, a balcony In the case of a house on one side, it is appropriate to install it adjacent to the garage. Since this embodiment of the present invention has no risk of fire or explosion compared to existing lithium ion-based batteries that have a risk of fire or explosion, and is safe in any case, safe use is guaranteed when installed in a house.
또한, 종래의 리튬이온 배터리는 2년 정도(최대 5년) 밖에 사용하지 못하지만 본 발명의 실시예에 적용되는 본 출원인이 기보유한 기술(멤브레인의 질소가스 버블세척 드레인)을 사용하면 20년 이상 사용할 수 있다.In addition, conventional lithium-ion batteries can only be used for about 2 years (up to 5 years), but if the applicant's technology (nitrogen gas bubble cleaning drain of membrane) applied to the embodiment of the present invention is used, it can be used for more than 20 years can
태양광 모듈(80)은 상기 분전반(20)에 접속되며, 태양광을 이용하여 전원을 생성하여 출력한다. 이러한 태양광 모듈은 이 분야에서 잘 알려져 있으므로 상세 설명은 생략한다.The solar module 80 is connected to the distribution board 20 and generates and outputs power using sunlight. Since these solar modules are well known in the art, a detailed description thereof will be omitted.
전력변환모듈(20)은 분전반(10)의 서브배선차단기에 접속되어 상용전력으로부터 공급되는 교류전력을 직류전력으로 변환하여 배터리유닛(30)으로 출력하거나, 태양광 모듈(8)로부터 공급되는 직류전력을 배터리유닛(30)으로 출력한다. The power conversion module 20 is connected to the sub-circuit breaker of the distribution panel 10 and converts AC power supplied from commercial power into DC power and outputs it to the battery unit 30 or direct current supplied from the solar module 8 Power is output to the battery unit (30).
또한, 전력변환모듈(20)은 배터리유닛(30)으로부터 공급되는 직류전력을 교류전력으로 변환하여 부하(L) 또는 상용전력계통으로 출력한다. 전력변환모듈(20)은 AC/DC 컨버터, DC/AC 인버터 및 DC/DC 컨버터를 포함할 수 있다.In addition, the power conversion module 20 converts the DC power supplied from the battery unit 30 into AC power and outputs it to the load L or the commercial power system. The power conversion module 20 may include an AC/DC converter, a DC/AC inverter, and a DC/DC converter.
배터리유닛(30)은 레독스 흐름전지(40)를 포함하고, 건물내의 일정 공간부에 설치되고, 전력변환모듈(20)에서 출력되는 직류전력을 공급받아 충전되거나, 충전된 직류전력이 전력변환모듈(20)로 방전된다. 배터리유닛(30)은 바나듐(Vanadium) 이온을 함유하고 있는 두 개의 전해액이 멤브레인 사이를 흐르면서 전하 교환이 이루어지는 방식으로 충전과 방전이 이루어지는 바나듐 레독스 흐름전지(40)를 포함하여 구성할 수 있다.The battery unit 30 includes a redox flow battery 40, is installed in a certain space within a building, and is charged by receiving DC power output from the power conversion module 20, or converts the charged DC power into power. discharged into the module 20. The battery unit 30 may include a vanadium redox flow battery 40 in which charging and discharging are performed by exchanging charges while two electrolytes containing vanadium ions flow between membranes.
레독스 흐름전지(40)는 제1전해조(41) 및 제2전해조(42)와, 제1공급라인 및 제2공급라인과, 제1순환펌프(43) 및 제2순환펌프(44)와, 스택부(45)와, 제1회수라인 및 제2회수라인을 포함하여 구성된다.The redox flow battery 40 includes a first electrolysis tank 41 and a second electrolysis tank 42, a first supply line and a second supply line, a first circulation pump 43 and a second circulation pump 44 , a stack unit 45, and a first recovery line and a second recovery line.
제1전해조(41) 및 제2전해조(42)는 산업용으로 쓰이는 레독스 흐름전지(40)의 전해액탱크보다 월등히 작은 크기로 제작하는 것이 바람직하다.The first electrolytic bath 41 and the second electrolytic bath 42 are preferably manufactured in a much smaller size than the electrolyte tank of the redox flow battery 40 used for industrial purposes.
일예로, 제1전해조(41) 및 제2전해조(42)는 건물에서 심야전력을 이용한 전기온수설비의 온수탱크와 대응되는 크기로 제작함으로써 설치 및 이동이 자유롭게 하는 것이 바람직하다.For example, the first electrolytic tank 41 and the second electrolytic tank 42 are preferably installed and moved freely by manufacturing them in a size corresponding to that of a hot water tank of an electric hot water facility using late-night power in a building.
제1공급라인은 일단이 제1전해조(41)에 연결되고 타단이 스택부(45)에 연결되어 제1전해조(41)에 저장된 제1전해액을 스택부(45)에 공급한다. 제1공급라인에는 제1전해액을 펌핑하여 스택부(45)로 공급하는 제1순환펌프(43)가 설치된다. The first supply line has one end connected to the first electrolytic bath 41 and the other end connected to the stack unit 45 to supply the first electrolyte stored in the first electrolytic bath 41 to the stack unit 45 . A first circulation pump 43 for pumping and supplying the first electrolyte to the stack unit 45 is installed in the first supply line.
제2공급라인은 일단이 제2전해조(42)에 연결되고 타단이 스택부(45)에 연결되어 제2전해조(42)에 저장된 제2전해액을 스택부(45)에 공급한다. The second supply line has one end connected to the second electrolytic bath 42 and the other end connected to the stack unit 45 to supply the second electrolyte stored in the second electrolytic bath 42 to the stack unit 45 .
제2공급라인에는 제2전해액을 펌핑하여 스택부(45)로 공급하는 제2순환펌프(44)가 설치된다.A second circulation pump 44 for pumping and supplying the second electrolyte to the stack unit 45 is installed in the second supply line.
스택부(45)는 전력변환모듈(20)에 접속되며, 제1전해액과 제2전해액의 산화 환원 반응에 의해 충전 및 방전이 이루어지는 적어도 하나 이상의 전지셀을 포함하여 구성된다.The stack unit 45 is connected to the power conversion module 20 and includes at least one or more battery cells in which charging and discharging are performed by a redox reaction between the first electrolyte and the second electrolyte.
스택부(45)는 이온교환막(45A), 이온교환막(45A)의 서로 대향되는 양면에 각각 배치되는 제1전극판(46) 및 제2전극판(47), 제1전극판(46)과 제2전극판(47) 외측에 각각 배치되는 제1분리판 및 제2분리판과, 제1분리판과 제2분리판 외측에 각각 배치되며 제1전해액과 제2전해액이 흐를 수 있는 유로가 각각 형성된 제1유로프레임 및 제2유로프레임과, 제1유로프레임과 제2유로프레임 외측에 각각 배치되는 제1집전판 및 제2집전판, 제1집전판과 제2집전판 외측에 각각 배치되는 제1엔드플레이트(48) 및 제2엔드플레이트(49)를 포함하여 구성할 수 있다.The stack unit 45 includes an ion exchange membrane 45A, a first electrode plate 46, a second electrode plate 47, and a first electrode plate 46 disposed on opposite sides of the ion exchange membrane 45A, respectively. A first separator and a second separator disposed outside the second electrode plate 47, respectively, and a flow path disposed outside the first separator and the second separator and through which the first electrolyte and the second electrolyte could flow The first and second euro frames are respectively formed, the first and second collector plates are disposed outside the first and second euro frames, and the first and second collector plates are disposed outside the first and second collector plates, respectively. The first end plate 48 and the second end plate 49 may be included.
도면에 도시되어 있지 않지만, 제1분리판 및 제2분리판 각각은 메인레이어와, 제1커버레이어와, 제2커버레이어와, 복수의 지지체를 구비할 수 있다. Although not shown in the drawing, each of the first separator and the second separator may include a main layer, a first cover layer, a second cover layer, and a plurality of supports.
메인레이어는 기존 그라파이트 벌크 형태의 전극판을 대체하는 것으로서, 내부 공극이 형성된 카본 펠트로 형성되며, 일정 두께를 가지며 사각형으로 형성된다.The main layer replaces the existing graphite bulk electrode plate, and is formed of carbon felt with internal voids, has a certain thickness, and is formed in a rectangular shape.
제1커버레이어는 메인레이어의 서로 대향되는 양면 중에서 일면에 열에 의해 압착 또는 열에 의해 접합되는 것으로, 전도성 수지로 형성된다. The first cover layer is bonded by heat compression or heat to one side of the opposite sides of the main layer, and is formed of a conductive resin.
제1커버레이어는 전도성 폴리에틸렌(PE)으로 형성될 수 있다. 제2커버레이어는 메인레이어의 서로 대향되는 양면 중에서 제1커버레이어가 압착 또는 압착된 메인레이어의 타 면에 열에 의해 압착 또는 열에 의해 접합되고, 열가소성 수지로 형성된다. 제2커버레이어는 열가소성 폴리에틸렌(PE)으로 형성될 수 있다.The first cover layer may be formed of conductive polyethylene (PE). The second cover layer is formed of a thermoplastic resin by being compressed or bonded by heat to the other surface of the main layer on which the first cover layer is pressed or pressed, among opposite sides of the main layer. The second cover layer may be formed of thermoplastic polyethylene (PE).
지지체는 제1커버레이어와 제2커버레이어 사이의 메인레이어 내부에 매설되며, 복수가 일정 간격 이격된 위치에 각각 매설된다. The support is buried inside the main layer between the first cover layer and the second cover layer, and a plurality of supports are buried at positions spaced apart from each other by a predetermined interval.
지지체는 메인레이어 내부에 N×행렬 패턴 또는 지그재그 패턴으로 배열 및 매설된다.Supports are arranged and buried in an Nx matrix pattern or zigzag pattern inside the main layer.
지지체는 폴리에틸렌(PE)으로 형성되고, 다각기둥 또는 원기둥 형태로 형성될 수 있으나, 본 실시 예에서는 원기둥 형태로 형성된 것을 적용하였다. 그리고, 지지체는 표면에는 폴리에텔에텔 케톤(PEEK)으로 코팅된 코팅층이 더 구비된다.The support is made of polyethylene (PE) and may be formed in a polygonal column or column shape, but in this embodiment, a column shape was applied. In addition, a coating layer coated with polyether ether ketone (PEEK) is further provided on the surface of the support.
지지체의 표면에 형성된 코팅층을 이루는 폴리에텔에텔 케톤(PEEK)은 고온에서 전기절연성 유전율 및 체적고유저항 등 전기적 특성이 우수하고, 고온 및 고압 조건에서 물성 변화없이 사용 가능하며, 일반적 열가소성 수지 가공 장비를 사용하여 쉽게 가공 가능하고, 준결정성 수지로 매우 광범위한 무기 및 유기 화학물질에서 탁월한 안정성을 보장한다. Polyether ether ketone (PEEK), which forms the coating layer formed on the surface of the support, has excellent electrical properties such as dielectric permittivity and volume resistivity at high temperatures, can be used without changing physical properties under high temperature and high pressure conditions, and can be used without general thermoplastic resin processing equipment. It is an easily processable, semi-crystalline resin that guarantees excellent stability in a wide range of inorganic and organic chemicals.
또한, 광범위한 조건 아래서 윤활성이 매우 뛰어나며 오일 및 그리스의 공급이 없는 상태에서도 자기윤활성이 우수하고, 내마모성 탁월한 장점이 있다. 또한, 사출성형, 압출성형 및 파우터 코팅이 가능하며 대량제품은 물론 다품종 소량 제품생산에도 매우 유리하다.In addition, it has excellent lubricity under a wide range of conditions, excellent self-lubrication even in the absence of oil and grease supply, and excellent wear resistance. In addition, injection molding, extrusion molding, and powder coating are possible, and it is very advantageous for mass production as well as various small-volume products.
지지체는 메인레이어의 두께방향 양측을 향하는 길이방향 양측 단부 및 양측 단부의 코팅층이 각각 제1커버레이어와 제2커버레이어 내측으로 일정 깊이 인입되어 열 융착 또는 열 압착 또는 열 접합되어 고정된다.The support is fixed by heat-sealing, heat-compressing, or heat-sealing the coating layers at both ends in the longitudinal direction toward both sides in the thickness direction of the main layer and at both ends of the main layer by being drawn into the first cover layer and the second cover layer at a predetermined depth, respectively.
이와 다르게 지지체의 길이방향 양측 단부가 각각 제1커버레이어와 제2커버레이어의 표면에 열 융착 또는 열 압착 또는 열 접합되어 고정될 수도 있다.Alternatively, both ends of the support in the longitudinal direction may be fixed to the surfaces of the first cover layer and the second cover layer by thermal fusion, thermal compression, or thermal bonding.
한편, 지지체의 내부에는 길이방향을 따라 중공부가 형성될 수 있고, 이 중공부 내부에는 앞서 설명한 코팅층을 이루는 PEEK로 이루어진 충전재를 충전하여 코어부를 형성할 수 있으며, 이 경우, 지지체는 중공부에 충전되는 코어부에 의해 내구성 및 강도가 한층 더 향상될 수 있다.On the other hand, a hollow part may be formed inside the support body along the longitudinal direction, and a core part may be formed by filling the inside of the hollow part with a filler made of PEEK constituting the coating layer described above. In this case, the support body is filled in the hollow part. Durability and strength can be further improved by the core part.
이와 같은 스택부(45)는 분리판에 전력 인출을 위한 케이블의 연결이 가능한 접속부를 형성함으로써 전력 인출 기능을 가지며, 기존의 레독스 흐름전지의 스택 구조에서 집전체를 생략할 수 있으며, 케이블이 연결되는 접속부 표면에 DLC 코팅된 보호레이어를 형성하여 접속부의 내마모성 및 마찰 특성을 향상시킬 수 있다.Such a stack unit 45 has a power withdrawal function by forming a connection portion capable of connecting a cable for power withdrawal to the separator plate, and the current collector can be omitted from the stack structure of the existing redox flow battery, and the cable A DLC-coated protective layer may be formed on the surface of the connecting portion to be connected to improve wear resistance and friction characteristics of the connecting portion.
또한, 분리판의 카본 펠트 내부에 보강을 위한 지지체를 삽입 및 매설하여 수지 시트와 카본 펠트를 열 압착한 후 냉각 시에 분리판이 변형되거나 강도가 약해지거나 강도가 취약한 부분을 보강할 수 있고, 대면적으로 제조시에도 취급이 용이하고 변형이 없다.In addition, by inserting and embedding a support for reinforcement inside the carbon felt of the separator, the resin sheet and the carbon felt are thermally compressed, and then the separator is deformed or the strength is weakened or the strength is weakened during cooling. It is easy to handle and has no deformation even during manufacturing due to its size.
또한, 제1분리판 및 제2분리판이 열에 강한 PEEK 코팅층을 구비하는 지지체를 통해 메인레이어에 제1커버레이어 및 제2커버레이어를 열압착 또는 열접합시 발생하는 열을 견뎌 메인레이어가 일정 두께를 갖도록 메인레이어를 보강함으로써 지지체의 길이에 따라 다양한 두께 및 면적을 갖는 분리판을 제조할 수 있는 장점이 있다. 즉, 서로 다른 길이의 지지체를 이용하여 서로 다른 두께의 분리판을 제조할 수 있고, 메인레이어를 카본 펠트로 형성하더라도 메인레이어 내부에 지지체가 삽입 매설되므로 메인레이어가 지지체에 의해 보강되어 그 형태를 지속적으로 유지할 수 있으며, 이를 통해 분리판을 대면적으로 제조할 수 있다.In addition, the first and second separators withstand heat generated when the first and second cover layers are thermally compressed or thermally bonded to the main layer through a support having a PEEK coating layer resistant to heat, so that the main layer has a certain thickness. By reinforcing the main layer to have an advantage of manufacturing a separator having various thicknesses and areas along the length of the support. That is, separators having different thicknesses can be manufactured using supports of different lengths, and even if the main layer is formed of carbon felt, since the support is inserted and buried inside the main layer, the main layer is reinforced by the support and maintains its shape continuously. It can be maintained as, through which the separator can be manufactured in a large area.
배터리관리모듈(50)은 배터리유닛(30)의 상태정보를 모니터링 및 안전한 작동, 성능을 보장하기 위한 것으로서, 배터리유닛(30)의 전압, 전류, 온도 등을 모니터링하여 과열이나 과충전으로부터 보호한다.The battery management module 50 is for monitoring state information of the battery unit 30 and ensuring safe operation and performance, and protects the battery unit 30 from overheating or overcharging by monitoring the voltage, current, temperature, etc. of the battery unit 30 .
에너지관리모듈(60)은 시스템의 전반적인 제어를 담당하며, 세부적으로는 배터리유닛(30)의 상태정보를 수신하고, 수신된 상태정보를 기반으로 배터리유닛(30)의 상태를 진단하며, 전력변환모듈(20) 및 배터리관리모듈(50)의 동작을 각각 제어한다.The energy management module 60 is responsible for the overall control of the system, and in detail, receives state information of the battery unit 30, diagnoses the state of the battery unit 30 based on the received state information, and converts power. The operation of the module 20 and the battery management module 50 are respectively controlled.
에너지관리모듈(60)은 배터리유닛(30)의 최대충전량 및 최대방전량 설정, 충전시간대 및 방전시간대 설정, 전력변환모듈(20)의 동작을 설정할 수 있다.The energy management module 60 may set the maximum charge amount and maximum discharge amount of the battery unit 30 , charge time zone and discharge time zone setting, and set the operation of the power conversion module 20 .
에너지관리모듈(60)은 심야전력 요금이 적용되는 심야시간대가 되면 상용전력을 이용하여 레독스 흐름전지(40)를 충전시키고, 비심야시간대에는 상기 레독스 흐름전지를 상기 태양광 모듈에서 생성되는 전기로 충전한다.The energy management module 60 charges the redox flow battery 40 using commercial power in the late-night time zone when the late-night electricity rate is applied, and in the non-night time zone, the redox flow battery is generated by the solar module. charge with electricity
또한, 에너지관리모듈(60)은 비심야시간대에는 레독스 흐름전지(40)를 방전시키도록 제어할 수 있다. 필요에 따라 심야시간대에도 에너지관리모듈(60)은 레독스 흐름전지(40)를 방전시키도록 제어할 수 있다. 여기서, 심야시간대는 계절이나 정책에 따라 변경 가능하며, 오후 23시부터 익일 오전 9시까지가 될 수도 있다.In addition, the energy management module 60 may control the redox flow battery 40 to be discharged in non-night time zones. If necessary, the energy management module 60 may control the redox flow battery 40 to be discharged even in the middle of the night. Here, the late-night time zone can be changed according to the season or policy, and may be from 23:00 pm to 9:00 am the next day.
본 발명의 실시예에서는 심야의 유휴 전력을 온수탱크에 열에너지 형태로 저장하여 사용하는 심야전력용 전기온수설비의 온수탱크를 비슷한 크기의 레독스 흐름전지의 전해조로 대체하여 소형 건물이나 가정 등에서 급탕, 조명, 공조, 수송, 방재 등과 같은 다양한 전력 수요처에 곧바로 활용할 수 있다.In an embodiment of the present invention, the hot water tank of the electric hot water facility for late night power, which stores and uses idle power at night in the form of thermal energy in the hot water tank, is replaced with an electrolytic cell of a redox flow battery of a similar size to supply hot water in a small building or home, It can be used immediately for various power demand sources such as lighting, air conditioning, transportation, and disaster prevention.
또한, 본 발명의 실시예에서는 레독스 흐름전지 시스템의 전해조를 별도의 기계장비를 이용하지 않고서도 쉽게 이동 및 설치 가능한 사이즈로 제작하여 설치 및 이동이 자유롭고 폭발이나 화재의 위험이 없이 가정 등에서 분산형 ESS를 활용 및 구축할 수 있다.In addition, in the embodiment of the present invention, the electrolytic cell of the redox flow battery system is manufactured in a size that can be easily moved and installed without using separate mechanical equipment, so that it can be installed and moved freely, and can be distributed at home without the risk of explosion or fire. ESS can be utilized and built.
또한, 본 발명의 실시예에서는 출력을 높이는 방식에 있어서 기존 스택부의 조합을 통해 비교적 손쉽게 가능하다.In addition, in the embodiment of the present invention, it is relatively easy to increase output through a combination of existing stack units.
이러한 구성을 가진 본 발명의 실시예에 따른 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템의 동작은 다음과 같다.The operation of the redox flow battery charging system for charging an electric vehicle utilizing eco-friendly power generation or late-night idle power according to an embodiment of the present invention having such a configuration is as follows.
도 4는 본 발명의 실시예에 따른 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 방법을 나타낸 도면이다. 4 is a diagram illustrating a redox flow battery charging method for charging an electric vehicle using eco-friendly power generation or late-night idle power according to an embodiment of the present invention.
도 4를 참조하면, 먼저, 에너지 관리모듈(60)은 현재 시간이 심야전력 요금이 적용되는 심야시간대인지 판단한다(S400).Referring to FIG. 4 , first, the energy management module 60 determines whether the current time is a late-night time zone to which late-night electricity rates apply (S400).
비심야시간대라면, 에너지 관리모듈(60)은 상기 레독스 흐름전지를 상기 태양광 모듈(80)에서 생성되는 전기로 충전한다(S410). 즉, 에너지 관리모듈(60)은 전력변환모듈(20)을 제어하여 태양광 모듈(80)에서 생성되는 전기로 배터리유닛(30)의 레독스 흐름전지(40)를 충전한다.If it is a non-midnight time zone, the energy management module 60 charges the redox flow battery with electricity generated by the solar module 80 (S410). That is, the energy management module 60 controls the power conversion module 20 to charge the redox flow battery 40 of the battery unit 30 with electricity generated by the solar module 80 .
심야시간대라면, 에너지 관리모듈(60)은 심야전기를 이용하여 상기 레독스 흐름전지를 충전시킨다(S420). 즉, 에너지 관리모듈(60)은 전력변환모듈(20)을 제어하여 계량기(11)를 통해 계통에서 입력되는 심야 전기로 배터리유닛(30)의 레독스 흐름전지(40)를 충전한다.In the late-night time zone, the energy management module 60 charges the redox flow battery using late-night electricity (S420). That is, the energy management module 60 controls the power conversion module 20 to charge the redox flow battery 40 of the battery unit 30 with midnight electricity input from the system through the meter 11 .
그리고, 심야시간대에 상기 에너지 관리모듈(60)은 전기차 충전을 포함한 건물의 하루 평균 사용량을 확인한다(S421). 이는 미리 계산해서 저장해둘 수도 있고, 바로 계산할 수도 있다.And, in the late-night time zone, the energy management module 60 checks the daily average usage of the building including electric vehicle charging (S421). This can be pre-calculated and stored, or calculated directly.
그리고 상기 에너지 관리모듈(60)이 상기 건물의 하루 평균 전기 사용량이 상기 레독스 흐름전지(40)의 전체용량의 80%이상 충전량인지 판단한다(S422). 즉, 배터리유닛(30)이 80% 정도 충전되면, 하루 종일 사용가능한지를 판단하게 된다.In addition, the energy management module 60 determines whether the daily average electricity consumption of the building is a charge amount of 80% or more of the total capacity of the redox flow battery 40 (S422). That is, when the battery unit 30 is charged to about 80%, it is determined whether it can be used all day.
상기 건물의 하루 평균 사용량이 상기 레독스 흐름전지의 80% 이상 충전량인 경우, 상기 배터리 유닛의 목표 충전 상태가 만충전이 되도록 제어한다(S423). 즉, 배터리유닛(30)이 80% 정도 충전되더라도 하루 종일 사용가능하지 않으면 만충전을 하여 사용하고, 부족한 부분은 상용전원을 사용하게 된다.When the daily average usage of the building is 80% or more of the charged amount of the redox flow battery, the battery unit is controlled to be fully charged (S423). That is, even if the battery unit 30 is charged to about 80%, if it is not usable throughout the day, it is fully charged and used, and commercial power is used for the insufficient part.
한편, 상기 소형 건물의 하루 평균 사용량이 상기 레독스 흐름전지의 80% 미만 충전량인 경우, 상기 배터리 유닛의 목표 충전 상태가 상기 하루 평균 사용량에 10%를 더한 값으로 충전이 되도록 제어한다(S424). 즉, 배터리유닛(30)이 80% 정도 충전되더라도 하루 종일 사용가능하므로, 넉넉하게 심야전기로 하루 평균 전기 사용량에 10%를 추가로 더 충전한 후 하루 종일 사용하게 된다.On the other hand, when the daily average usage of the small building is less than 80% of the charge of the redox flow battery, the target state of charge of the battery unit is controlled to be charged by adding 10% to the daily average usage (S424) . That is, since the battery unit 30 can be used throughout the day even when it is charged to about 80%, it is used throughout the day after additionally charging 10% of the daily average electricity consumption with ample late-night electricity.
또한, 상기 에너지 관리 모듈이 다음날 날씨 정보가 맑음인지 판단한다(S425).In addition, the energy management module determines whether the next day's weather information is sunny (S425).
상기 다음날 날씨 정보가 맑음인 경우, 상기 에너지 관리 모듈이 상기 배터리 유닛의 목표 충전량에서 상기 태양광을 이용하여 충전되는 하루 태양광 충전량의 50%를 감한 값을 상기 목표 충전량으로 변경한다(S426). 여기서, 날씨가 맑은 경우에는 태양광 모듈(80)의 충전이 예상되므로 원래 목표 충전량에서 하루 태양광 충전량의 50%를 감한 값을 새로운 목표 충전량으로 변경한다. 여기서 필요에 따라서는 50%가 아니라 50~100% 감하여도 되지만 배터리 유닛으로 안전한 전원 공급을 위하여 50%를 적용한다.When the weather information for the next day is sunny, the energy management module changes a value obtained by subtracting 50% of the daily solar charge amount charged using the sunlight from the target charge amount of the battery unit to the target charge amount (S426). Here, since charging of the solar module 80 is expected when the weather is clear, a value obtained by subtracting 50% of the daily solar charge amount from the original target charge amount is changed to a new target charge amount. Here, if necessary, it may be reduced by 50 to 100% instead of 50%, but 50% is applied for safe power supply to the battery unit.
이후 충전이 레독스 흐름전지(40)의 충전이 완료되거나, 충전중에 전기차 충전기(70)나 기타 부하(L)에서 전기를 필요로 하는 경우, 에너지 관리 모듈(60)은 배터리 유닛(30)의 레독스 흐름전지(40)로부터 전기를 공급한다(S427). 경우에 따라서 에너지 관리 모듈(60)은 배터리 유닛을 충전중인 경우 충전을 중지한 후 배터리 유닛(30)의 레독스 흐름전지(40)로부터 전기를 공급할 수 있다.Afterwards, when charging of the redox flow battery 40 is completed, or when electricity is required from the electric vehicle charger 70 or other loads L during charging, the energy management module 60 of the battery unit 30 Electricity is supplied from the redox flow battery 40 (S427). In some cases, when the battery unit is being charged, the energy management module 60 may supply electricity from the redox flow battery 40 of the battery unit 30 after stopping charging.
또한, 배터리 잔량이 일정 기준값 이하인 경우에 에너지 관리 모듈(60)은 상용전력을 전기차 충전기(70)나 기타 부하(L)에 공급할 수도 있다. In addition, when the battery remaining amount is less than a certain reference value, the energy management module 60 may supply commercial power to the electric vehicle charger 70 or other loads L.
이때, 심야시간에 전기차가 진입하지 않는 경우에는 에너지 관리모듈(60)이 배터리 유닛(30)의 레독스 흐름전지(40)를 상기 과정과 같이 충전한다.At this time, when an electric vehicle does not enter at night, the energy management module 60 charges the redox flow battery 40 of the battery unit 30 in the same manner as described above.
한편, 심야 시간대에 전기차가 진입하는 경우에는 에너지 관리모듈(60)이 배터리 유닛(30)의 레독스 흐름전지(40)를 충전함과 동시에 전기차 충전을 동시에 진행할 수 있다.Meanwhile, when an electric vehicle enters the late-night time zone, the energy management module 60 may simultaneously charge the redox flow battery 40 of the battery unit 30 and simultaneously charge the electric vehicle.
그리고, 주간 시간에 흐린날의 경우, 에너지 관리모듈(60)은 배터리 유닛(30)의 레독스 흐름전지(40)를 방전시켜 전기차를 충전할 수 있다.Also, on a cloudy day during the daytime, the energy management module 60 may charge the electric vehicle by discharging the redox flow battery 40 of the battery unit 30 .
이상의 본 발명의 실시예에서 크기는 레독스 배터리가 기존 배터리에 비해 더 커서 자리를 많이 차지할 수도 있지만, 수도 배관의 관리처럼 주택의 유지 보수 작업과 연계되어 장수명 활용에 유리하기도 하므로 아파트의 경우 발코니 한 쪽에 주택의 경우에는 차고에 인접하여 설치하면 적절하다. 이러한 본 발명의 실시예는 화재 폭팔의 우려가 있는 기존 리튬이온계 배터리에 비해 화재, 폭발의 우려가 없고 어떠한 경우에도 안전하므로 주택에 설치하면 안전한 사용이 보장된다.In the above embodiment of the present invention, the size of the redox battery is larger than that of the conventional battery and may occupy a lot of space, but it is also advantageous for longevity utilization in connection with house maintenance work such as water pipe management, so in the case of an apartment, a balcony is limited. In the case of a house on the side, it is appropriate to install it adjacent to the garage. Since this embodiment of the present invention has no risk of fire or explosion compared to existing lithium ion-based batteries, which have a risk of fire or explosion, and is safe in any case, safe use is guaranteed when installed in a house.
또한, 종래의 리튬이온 배터리는 2년 정도(최대 5년) 밖에 사용하지 못하지만 본 발명의 실시예에 적용되는 본 출원인이 기보유한 기술(멤브레인의 질소가스 버블세척 드레인)을 사용하면 20년 이상 사용할 수 있다.In addition, conventional lithium-ion batteries can only be used for about 2 years (up to 5 years), but if the applicant's technology (nitrogen gas bubble cleaning drain of membrane) applied to the embodiment of the present invention is used, it can be used for more than 20 years can
또한, 본 발명의 실시예에서는, 설치 및 유지보수가 편리한 레독스 흐름전지를 태양광 및 심야전기를 이용하여 충전하고, 전기차 충전 또는 소형 건물이나 가정에서 필요한 다양한 전력에 사용할 수 있다.In addition, in the embodiment of the present invention, the redox flow battery, which is easy to install and maintain, can be charged using sunlight and late-night electricity, and can be used for electric vehicle charging or various powers required in small buildings or homes.
또한, 본 발명의 실시예에서는, 전기차 충전 또는 소형 건물이나 가정에서 필요한 다양한 전력에 사용되는 전기의 하루 평균 사용량을 계산하고, 하루 충전량을 바탕으로 레독스 흐름전지의 충전을 효율적으로 제어할 수 있다.In addition, in an embodiment of the present invention, the daily average amount of electricity used for charging electric vehicles or various powers required in small buildings or homes is calculated, and the charging of the redox flow battery can be efficiently controlled based on the daily charge amount. .
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements made by those skilled in the art using the basic concept of the present invention defined in the following claims are also included in the scope of the present invention. that fall within the scope of the right.
본 발명의 실시예에서는, 설치 및 유지보수가 편리한 레독스 흐름전지를 친환경 발전 또는 심야전기를 이용하여 충전하고, 전기차 충전 또는 소형 건물이나 가정에서 필요한 다양한 전력에 사용하도록 하는, 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템 및 방법을 제공할 수 있다.In an embodiment of the present invention, the redox flow battery, which is easy to install and maintain, is charged using eco-friendly power generation or late-night electricity, and used for electric vehicle charging or various power required in small buildings or homes. It is possible to provide a redox flow battery charging system and method for charging an electric vehicle using idle power.
또한, 본 발명의 실시예에서는, 전기차 충전 또는 소형 건물이나 가정에서 필요한 다양한 전력에 사용되는 전기의 하루 평균 사용량을 계산하고, 하루 충전량을 바탕으로 레독스 흐름전지의 충전을 효율적으로 제어하는, 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템 및 방법을 제공할 수 있다.In addition, in an embodiment of the present invention, the average amount of electricity used per day for electric vehicle charging or various power required in a small building or home is calculated, and the charging of the redox flow battery is efficiently controlled based on the daily charge amount. It is possible to provide a redox flow battery charging system and method for charging an electric vehicle that utilizes power generation or idle power at night.

Claims (7)

  1. 전력계통으로부터 건물로 상용 교류전력이 인입되는 분전반과; 상기 분전반에 접속된 친환경 발전 모듈; 상기 분전반에 접속된 상기 분전반에 접속되는 양방향 전력변환모듈과; 건물 내에 설치되는 레독스 흐름전지와; 상기 레독스 흐름전지의 상태정보를 모니터링하는 배터리관리모듈을 구비하는 전기차 충전용 레독스 흐름전지 충전시스템의 레독스 흐름전지 충전방법으로서,a distribution board through which commercial AC power is introduced into the building from the power system; An eco-friendly power generation module connected to the distribution board; a bi-directional power conversion module connected to the distribution board connected to the distribution board; A redox flow battery installed in a building; As a redox flow battery charging method of a redox flow battery charging system for charging an electric vehicle having a battery management module for monitoring state information of the redox flow battery,
    에너지 관리모듈이 심야전력 요금이 적용되는 심야시간대인지 판단하는 단계;determining, by an energy management module, whether it is a late-night time zone to which late-night electricity rates are applied;
    비심야시간대에는 상기 레독스 흐름전지를 상기 친환경 발전 모듈에서 생성되는 전기로 충전하는 단계;charging the redox flow battery with electricity generated from the eco-friendly power generation module in non-night time zones;
    심야시간대에는 심야전기를 이용하여 상기 레독스 흐름전지를 충전시키는 단계를 포함하는 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 방법.A redox flow battery charging method for charging an electric vehicle using eco-friendly power generation or idle power at night, comprising the step of charging the redox flow battery using late-night electricity in the late-night time zone.
  2. 제1항에 있어서, According to claim 1,
    상기 심야시간대에는 심야전기를 이용하여 레독스 흐름전지를 충전시키는 단계는,In the late-night time zone, the step of charging the redox flow battery using late-night electricity,
    심야시간대이면, 상기 에너지 관리모듈이 전기차 충전을 포함한 건물의 하루 평균 사용량을 확인하는 단계;If it is a late-night time zone, the energy management module confirming the daily average usage of the building including electric vehicle charging;
    상기 에너지 관리모듈이 상기 건물의 하루 평균 사용량이 상기 레독스 흐름전지의 전체용량의 80%이상 충전량인지 판단하는 단계;Determining, by the energy management module, whether the daily average usage of the building is 80% or more of the total capacity of the redox flow battery;
    상기 건물의 하루 평균 사용량이 상기 레독스 흐름전지의 80% 이상 충전량인 경우, 상기 배터리 유닛의 목표 충전 상태가 만충전이 되도록 제어하는 단계;controlling the target state of charge of the battery unit to be fully charged when the daily average usage of the building is 80% or more of the charge of the redox flow battery;
    상기 소형 건물의 하루 평균 사용량이 상기 레독스 흐름전지의 80% 미만 충전량인 경우, 상기 배터리 유닛의 목표 충전 상태가 상기 하루 평균 사용량에 10%를 더한 값으로 충전이 되도록 제어하는 단계를 포함하는 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 방법.When the average daily usage of the small building is less than 80% of the charge of the redox flow battery, controlling the target state of charge of the battery unit to be charged by adding 10% to the average daily usage. A redox flow battery charging method for electric vehicle charging using power generation or idle power at night.
  3. 제2항에 있어서, According to claim 2,
    상기 에너지 관리 모듈이 다음날 날씨 정보가 맑음인지 판단하는 단계;determining whether the next day's weather information is sunny by the energy management module;
    상기 다음날 날씨 정보가 맑음인 경우, 상기 에너지 관리 모듈이 상기 배터리 유닛의 목표 충전량에서 상기 태양광을 이용하여 충전되는 하루 태양광 충전량의 50%를 감한 값을 상기 목표 충전량으로 변경하는 단계를 더 포함하는 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 방법.When the weather information for the next day is clear, the energy management module further comprising changing a value obtained by subtracting 50% of the daily solar charge amount charged using the sunlight from the target charge amount of the battery unit to the target charge amount A method for charging a redox flow battery for charging an electric vehicle using eco-friendly power generation or idle power at night.
  4. 전력계통으로부터 건물로 상용 교류전력이 인입되는 분전반; A distribution board through which commercial AC power is introduced into the building from the power system;
    상기 분전반에 접속된 틴환경 발전 모듈; Teen environment power generation module connected to the distribution board;
    상기 분전반에 접속된 상기 분전반에 접속되는 양방향 전력변환모듈과; a bidirectional power conversion module connected to the distribution board connected to the distribution board;
    소정 건물 내에 설치되며, 상기 태양광 모듈 또는 전력변환 모듈로부터 출력되는 직류전력을 공급받아 충전되는 레독스 흐름전지를 포함한 배터리유닛과; a battery unit including a redox flow battery installed in a predetermined building and charged by receiving DC power output from the photovoltaic module or the power conversion module;
    상기 레독스 흐름전지의 상태정보를 모니터링하는 배터리관리모듈;a battery management module for monitoring state information of the redox flow battery;
    상기 배터리유닛의 상태정보를 수신하고, 수신된 상태정보를 기반으로 상기 배터리유닛의 상태를 진단하며, 상기 전력변환모듈 및 상기 배터리관리모듈의 동작을 각각 제어하는 에너지관리모듈을 포함하는 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템.Eco-friendly power generation including an energy management module that receives state information of the battery unit, diagnoses the state of the battery unit based on the received state information, and controls operations of the power conversion module and the battery management module, respectively; A redox flow battery charging system for charging electric vehicles that utilizes idle power at night.
  5. 제4항에 있어서, According to claim 4,
    상기 에너지 관리모듈은 비심야시간대에는 상기 레독스 흐름전지를 상기 친환경 발전 모듈에서 생성되는 전기로 충전하는 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템.The energy management module is an eco-friendly power generation for charging the redox flow battery with electricity generated by the eco-friendly power generation module or a redox flow battery charging system for charging an electric vehicle using idle power at night.
  6. 제5항에 있어서, According to claim 5,
    상기 에너지 관리 모듈은 심야시간대에는 심야전기를 이용하여 상기 레독스 흐름전지를 충전하는 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템.The energy management module is an eco-friendly power generation for charging the redox flow battery using midnight electricity or a redox flow battery charging system for charging an electric vehicle using idle power at night.
  7. 제6항에 있어서, According to claim 6,
    상기 레독스 흐름전지는,The redox flow battery,
    제1전해액과 제2전해액이 각각 저장되는 제1전해조 및 제2전해조와,A first electrolytic bath and a second electrolytic bath in which a first electrolyte and a second electrolyte are stored, respectively;
    상기 전력변환모듈에 접속되고 제1전해액과 제2전해액의 산화 환원 반응에 의해 충전 및 방전이 이루어지는 적어도 하나 이상의 전지셀을 포함하는 스택부와, A stack unit connected to the power conversion module and including at least one or more battery cells in which charging and discharging are performed by a redox reaction between a first electrolyte and a second electrolyte;
    상기 스택부로 제1전해액과 제2전해액을 각각 공급하는 제1순환펌프 및 제2순환펌프를 포함하는 친환경 발전 또는 심야의 유휴 전력을 활용하는 전기자동차 충전용 레독스 흐름전지 충전 시스템.A redox flow battery charging system for charging an electric vehicle that utilizes eco-friendly power generation or late-night idle power including a first circulation pump and a second circulation pump respectively supplying the first electrolyte and the second electrolyte to the stack unit.
PCT/KR2022/008013 2021-09-24 2022-06-07 System and method for charging redox flow battery for charging electric automobiles by using eco-friendly power generation or late-night idle power WO2023048354A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0126703 2021-09-24
KR1020210126703A KR20230044089A (en) 2021-09-24 2021-09-24 Redox flow battery charging system and method for electric vehicle charging using Eco-friendly light or late-night electricity

Publications (1)

Publication Number Publication Date
WO2023048354A1 true WO2023048354A1 (en) 2023-03-30

Family

ID=85719542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008013 WO2023048354A1 (en) 2021-09-24 2022-06-07 System and method for charging redox flow battery for charging electric automobiles by using eco-friendly power generation or late-night idle power

Country Status (2)

Country Link
KR (1) KR20230044089A (en)
WO (1) WO2023048354A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160001086A (en) * 2014-06-26 2016-01-06 (주) 이이시스 Grid connected system for photovoltaic generation using energy storage system
WO2016031065A1 (en) * 2014-08-29 2016-03-03 三菱電機株式会社 Power consumption estimation device, appliance management system, power consumption estimation method, and program
JP2019146358A (en) * 2018-02-20 2019-08-29 Leシステム株式会社 Renewable energy power generation system with battery, and redox flow battery unit used in the same
JP6753469B2 (en) * 2016-09-12 2020-09-09 住友電気工業株式会社 Power storage device and power supply system
JP2021057944A (en) * 2019-09-27 2021-04-08 株式会社大原興商 Power supply method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160001086A (en) * 2014-06-26 2016-01-06 (주) 이이시스 Grid connected system for photovoltaic generation using energy storage system
WO2016031065A1 (en) * 2014-08-29 2016-03-03 三菱電機株式会社 Power consumption estimation device, appliance management system, power consumption estimation method, and program
JP6753469B2 (en) * 2016-09-12 2020-09-09 住友電気工業株式会社 Power storage device and power supply system
JP2019146358A (en) * 2018-02-20 2019-08-29 Leシステム株式会社 Renewable energy power generation system with battery, and redox flow battery unit used in the same
JP2021057944A (en) * 2019-09-27 2021-04-08 株式会社大原興商 Power supply method

Also Published As

Publication number Publication date
KR20230044089A (en) 2023-04-03

Similar Documents

Publication Publication Date Title
WO2017142241A1 (en) Power management method for ess connected with new and renewable energy
CN102104257B (en) Energy storage system of apartment building, integrated power management system, and method of controlling the system
WO2017142218A1 (en) Energy storage system and system operating method
WO2020040350A1 (en) New renewable energy hybrid power-generation system and power-generation method therefor
Guerrero et al. Supercapacitors: Alternative energy storage systems
Guerrero et al. Overview of medium scale energy storage systems
CN218482698U (en) Light stores up integrative industry and commerce energy storage cabinet and energy storage system
CN102195525A (en) Power supply system for photovoltaic (PV) building
KR102601634B1 (en) power supply system
CN104795881A (en) Wind-light complementary power supply controller, microgrid system and microgrid system power supply method
CN206456259U (en) Box energy storage fast charging device for charging electric vehicle
WO2020013614A1 (en) Ess charging and discharging operation method
WO2023048354A1 (en) System and method for charging redox flow battery for charging electric automobiles by using eco-friendly power generation or late-night idle power
TWI692168B (en) Multifunctional electric energy supply system
CN103199594A (en) Wind and light storage type electric vehicle charging and replacing power station
CN216904312U (en) Power supply system for receiving valley electricity in peak clipping and valley filling mode for civil buildings
WO2022045423A1 (en) Mobile house using recycled secondary battery and solar power generation
KR102490047B1 (en) Home energy storage system using small redox flow battery which is convenient for installation and maintenance
CN212098472U (en) Photovoltaic energy storage charging station system
CN204559220U (en) Wind light mutual complementing power-supply controller and micro-grid system
CN212277981U (en) Fixed uninterrupted power source
CN106100095A (en) A kind of photovoltaic inversion energy-storage system avoiding frequent discharge and recharge to switch
CN106100068A (en) A kind of set of cells dismountable moving power supply
WO2024034761A1 (en) Hybrid electric vehicle charging system
CN212743024U (en) Modularization wall body with integrated form energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873061

Country of ref document: EP

Kind code of ref document: A1