WO2023048230A1 - Therapy device kit - Google Patents

Therapy device kit Download PDF

Info

Publication number
WO2023048230A1
WO2023048230A1 PCT/JP2022/035371 JP2022035371W WO2023048230A1 WO 2023048230 A1 WO2023048230 A1 WO 2023048230A1 JP 2022035371 W JP2022035371 W JP 2022035371W WO 2023048230 A1 WO2023048230 A1 WO 2023048230A1
Authority
WO
WIPO (PCT)
Prior art keywords
administration
cells
injection needle
tumor
cancer
Prior art date
Application number
PCT/JP2022/035371
Other languages
French (fr)
Japanese (ja)
Inventor
大貴 有馬
滋典 野沢
真樹 平光
恵子 大津
善紀 米田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2023048230A1 publication Critical patent/WO2023048230A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/158Needles for infusions; Accessories therefor, e.g. for inserting infusion needles, or for holding them on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes

Definitions

  • the present invention relates to therapeutic device kits.
  • Intravenous administration is the standard administration method for anticancer drugs used in chemotherapy in cancer treatment.
  • intravenous administration of anticancer agents has the problem that only a small amount of the drug can reach the tumor, which may reduce the therapeutic effect and cause systemic side effects.
  • cancer immunotherapy which applies the immune system to treat diseases, is attracting attention.
  • the functions of the immune system are generally expressed through two mechanisms, humoral and cellular immunity. Since cell-mediated immunity has the ability to kill and eliminate cancer cells, it has been found to play an important role in cancer immunotherapy.
  • cytotoxic T cells hereinafter also simply referred to as CTLs
  • CTLs cytotoxic T cells
  • CTL induction is usually expressed as follows. That is, endogenous antigens such as proteins produced in virus-infected cells and cancer cells are ubiquitinated and then degraded into peptides by the proteasome. The cleaved peptides bind to major histocompatibility complex (MHC) class I molecules, and the resulting complexes are presented to CD8-positive T cells on the surface of antigen-presenting cells to activate CD8-positive T cells. be done. The activated CD8-positive T cells then differentiate into CTLs. Induction of CTLs has become a necessary factor for highly effective cancer immunotherapy.
  • MHC major histocompatibility complex
  • Japanese Patent Publication No. 2001-510806 discloses MHC class II ligands or MHC class II-like ligands as vaccine adjuvants for enhancing antigen-specific immune responses.
  • an immunotoxin comprising a single-chain variable region antibody fused to PE38 truncated Pseudomonas exotoxin and an immune checkpoint inhibitor are combined to treat tumors.
  • a medicament is disclosed for
  • the object of the present invention is to provide a method with a higher antitumor effect.
  • the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the anticancer agent is an administration device is a therapeutic device kit that induces activation of anti-tumor immunity when administered using
  • FIG. 1 is a graph showing the tumor volume of each group in mouse drug efficacy evaluation.
  • FIG. 2 is a diagram showing survival curves of each group in mouse drug efficacy evaluation.
  • FIG. 4 shows a gating flow chart in flow cytometry; Total. of each group in CTL activation evaluation (mice) using flow cytometry. It is a graph which shows the number of CTLs.
  • Fig. 10 is a graph showing the number of AH-1 specific CTLs in each group in CTL activation evaluation (mice) using flow cytometry.
  • FIG. 10 is a graph showing the number of CD69+ CTLs in each group in CTL activation evaluation (mice) using flow cytometry.
  • FIG. 4 is a diagram showing the tip of an injection needle;
  • FIG. 4 is a diagram showing the tip of an injection needle;
  • FIG. 4 is a diagram showing the configuration of an outer cylinder that constitutes the administration device;
  • FIG. 4 is a diagram showing the configuration of an outer cylinder that constitutes the administration device;
  • FIG. 4 is a diagram showing an auxiliary tool that constitutes a therapeutic device kit;
  • FIG. 4 is a diagram showing an auxiliary tool that constitutes a therapeutic device kit;
  • FIG. 4 is a schematic diagram showing an endoscope, an administration device, etc.
  • FIG. 15 is a view showing the distal end portion of the endoscope shown in FIG. 14;
  • FIG. 15 is a diagram showing how an anticancer drug is administered to an affected area using the endoscope shown in FIG. 14;
  • the range "X to Y” includes X and Y and means "X or more and Y or less”.
  • operations and measurements of physical properties are performed under the conditions of room temperature (20° C. or higher and 25° C. or lower)/relative humidity of 40% RH or higher and 50% RH or lower.
  • One aspect of the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the anticancer agent is , is a therapeutic device kit that induces activation of anti-tumor immunity when administered using an administration device. According to this aspect, it is possible to provide a therapeutic device kit with a higher antitumor effect.
  • Immunogenic cell death usually refers to cell death that is easily recognized as non-self by immune cells, accompanied by expression or release of DAMPs typified by calreticulin, ATP, and HMGB1.
  • Anticancer agents that cause immunogenic cell death are selected from the group consisting of doxorubicin, epirubicin, oxaliplatin, paclitaxel and pharmaceutically acceptable salts thereof It is preferably at least one, more preferably doxorubicin and/or a pharmaceutically acceptable salt thereof. That is, a preferred aspect of the present invention comprises doxorubicin and/or a pharmaceutically acceptable salt thereof, and an administration device capable of directly administering doxorubicin and/or a pharmaceutically acceptable salt thereof to tumor tissue.
  • a therapeutic device kit comprising: Doxorubicin salts include, for example, doxorubicin hydrochloride.
  • Examples of the pharmaceutically acceptable salts include salts at basic groups such as amino groups, and acidic groups such as hydroxyl groups and carboxyl groups.
  • Salts in basic groups include, for example, salts with inorganic acids such as hydrochloric, hydrobromic, phosphoric, boric, nitric and sulfuric acids; formic, acetic, lactic, citric, oxalic, fumaric, maleic, acids, salts with organic carboxylic acids such as succinic, malic, tartaric, aspartic, trichloroacetic and trifluoroacetic acids; and methanesulfonic, benzenesulfonic, p-toluenesulfonic, mesitylenesulfonic and naphthalenesulfonic acids. and salts with sulfonic acids such as
  • Salts in acidic groups include, for example, salts with alkali metals such as sodium and potassium; salts with alkaline earth metals such as calcium and magnesium; ammonium salts; and trimethylamine, triethylamine, tributylamine, pyridine, N,N- Nitrogen-containing organic bases such as dimethylaniline, N-methylpiperidine, N-methylmorpholine, diethylamine, dicyclohexylamine, procaine, dibenzylamine, N-benzyl- ⁇ -phenethylamine, 1-ephenamine and N,N'-dibenzylethylenediamine and salt with.
  • alkali metals such as sodium and potassium
  • alkaline earth metals such as calcium and magnesium
  • ammonium salts and trimethylamine, triethylamine, tributylamine, pyridine, N,N- Nitrogen-containing organic bases such as dimethylaniline, N-methylpiperidine, N-methylmorpholine, diethylamine
  • Anticancer agents induce activation of antitumor immunity, for example, by being administered using the administration device described later.
  • the activation of anti-tumor immunity is regulated by, for example, the dose of anti-cancer drugs.
  • activation of anti-tumor immunity specifically means that the number of cytotoxic T cells (CTL) is 150% or more, preferably 170% or more, compared to a control to which no anticancer agent is administered. , more preferably 200% or more.
  • CTL cytotoxic T cells
  • was measured using Total It can be measured by a method for measuring the number of CTLs.
  • the dosage of the anticancer drug is appropriately determined on a case-by-case basis, taking into consideration the patient's symptoms, age, sex, and the like.
  • an anticancer agent that induces immunogenic cell death can induce activation of antitumor immunity. Therefore, it is expected that the dosage can be reduced compared to the dosage of ordinary anticancer drugs.
  • the dose of the anticancer drug in humans is, for example, 0.1 mg/Kg/Day or less, may be 0.01 to 0.1 mg/Kg/Day, and may be 0.020 to 0.070 mg/Kg. /Day.
  • an anticancer drug such as doxorubicin hydrochloride usually requires administration at 0.20 mg/Kg or more.
  • the dose of the anticancer drug per tumor volume is, for example, 6 ⁇ g or more, may be 60 ⁇ g or less, or may be 20 ⁇ g or less per 100 mm 3 of tumor tissue.
  • the number of administrations of the anticancer drug per course is also not particularly limited, and it may be administered in a single dose or in multiple doses, for example, it can be administered once to three times per course.
  • the anticancer drug can be administered repeatedly at intervals of about 1 to 4 weeks.
  • the anticancer drug may be administered to multiple tumors.
  • the anticancer drug may constitute a composition together with pharmaceutically acceptable additives according to the desired product form.
  • “Pharmaceutically acceptable” means, within sound medical judgment, commensurate with a reasonable benefit/risk ratio, and without problems or complications such as excessive toxicity, irritation, or allergic reactions, in humans and animals. Used to refer to compounds, materials, compositions and/or dosage forms suitable for use in contact with tissue.
  • Pharmaceutically acceptable additives include solvents (e.g., physiological saline, water for injection, buffers, etc.), membrane stabilizers (e.g., cholesterol), tonicity agents (e.g., sodium chloride, glucose, glycerin, etc.), Oxidizing agents (eg, tocopherol, ascorbic acid, glutathione, etc.), preservatives (eg, chlorbutanol, parabens, etc.), and the like may be included.
  • Physiological saline means an inorganic salt solution adjusted to be isotonic with the human body, and may further have a buffering function. Saline solutions include saline containing 0.9 w/v % (weight/volume percent) sodium chloride, PBS and Tris-buffered saline, and the like.
  • administration device The specific configuration of the administration device is not particularly limited as long as the anticancer drug can be directly administered to the tumor tissue, but two administration devices will be exemplified below.
  • FIG. 7 is a schematic diagram showing a therapeutic device kit 1 including an administration device 100.
  • the treatment device kit 1 includes a medical device 200, an administration device 100, an instrument 300, and an auxiliary tool 400, as outlined with reference to FIG. Details will be described below.
  • the medical device 200 includes a tubular portion 210, a pressing portion 220, a sealing member 230, and a connecting member 240, as shown in FIG.
  • the cylinder part 210 has a semi-closed space for containing an anticancer drug.
  • the tubular portion 210 is configured in a tubular shape such as a cylinder, and has openings at both ends in the axial direction of the tubular shape.
  • a pressing portion 220 can be movably arranged in one of the openings (also referred to as a proximal opening).
  • a connecting member 240 can be attached to the other opening (also referred to as the distal opening).
  • the pressing part 220 includes a presser that can increase or decrease the size of the semi-closed space of the cylindrical part 210 .
  • the pusher of the pressing portion 220 is configured such that the distal end side is accommodated in the semi-closed space of the tubular portion 210 and the proximal end side is arranged outside the tubular portion 210 .
  • the pusher of the pressing portion 220 moves relative to the cylindrical portion 210 in the axial direction of the cylindrical portion 210 to form a semi-closed space in which a drug (anticancer drug, hereinafter also referred to as a drug) is contained. It is configured to change the size of a drug (anticancer drug, hereinafter also referred to as a drug) is contained. It is configured to change the size of
  • the pusher of the pressing part 220 As the size of the semi-closed space of the cylinder part 210 is reduced by the pusher of the pressing part 220, the amount of the drug contained in the semi-closed space is reduced, and flows through the lumen of the injection needle 120 to be administered to the patient.
  • the pusher of the pressing portion 220 may be manually operated by the operator by gripping it with fingers or the like, or may be operated by appropriately combining mechanical elements such as a motor and gears.
  • the sealing member 230 is configured to be attached to the distal end portion of the pusher of the pressing portion 220 in the axial direction.
  • the sealing member 230 prevents the medicine accommodated in the semi-closed space of the tubular portion 210 from flowing through other than the injection needle 120 by slidably fitting with the inner wall of the tubular portion 210 .
  • connection member 240 is attached to the opening on the distal end side of the tubular portion 210 .
  • the connecting member 240 is hollow so that the medicine can flow inside.
  • the connecting member 240 is attached to the distal end of the cylindrical portion 210 , and the inner cavity of the connecting member 240 is configured to communicate with the semi-closed space of the cylindrical portion 210 .
  • the administration device 100 includes an inner cylinder 110, an injection needle 120, an outer cylinder 130, a detection section 140, a notification section 150, and a control section (not shown), as shown in FIG. 7 and the like.
  • the inner cylinder 110 is connected to the medical device 200 and has a liquid feeding path for the anticancer drug flowing from the medical device 200 together with the injection needle 120 inside.
  • the inner cylinder 110 is provided with a connection portion 111 with the medical device 200 radially outward on the cylindrical side surface.
  • a detection unit 140 which will be described later, is provided in the liquid feeding path provided inside the inner cylinder 110. As shown in FIG.
  • the injection needle 120 is configured so that the anticancer drug can be directly administered to the tumor tissue of the living body.
  • the injection needle 120 includes a hollow member with a small diameter, and is configured to provide a liquid-feeding channel communicating with the liquid-feeding channel of the inner cylinder 110 inside the hollow member, and to provide a tip opening communicating with the liquid-feeding channel at the tip. are doing.
  • the dimensions of the injection needle 120 are appropriately selected depending on the administration target and the tumor position so that the injection needle 120 can be punctured from the body surface to the tumor existing in the body.
  • the longitudinal dimension can be configured to be 150 mm or more so that a tumor existing in the body can be punctured from the body surface.
  • the dimensions of the injection needle 120 may be, for example, 50-300 mm.
  • FIG. 8 is a view showing an opening for ejecting medicine in injection needle 120
  • FIG. 9 is a view showing an opening for ejecting medicine in injection needle 120a according to a modification of injection needle 120.
  • the injection needle 120 has an opening for discharging the anticancer drug in the present embodiment so as to face the distal end side in the longitudinal direction, as shown in FIG.
  • the opening of the injection needle is not limited to this, and in addition to the above, as shown in injection needle 120a in FIG.
  • An opening for ejecting medicine may be provided outward in the direction, and a plurality of such openings may be provided in the circumferential direction. In radially open configurations, the tip may be sharp.
  • the administration device has a drug solution discharge hole on the tip or side of the injection needle.
  • the injection needle 120 can perform an operation (priming) to circulate the anticancer drug to the tip of the liquid feeding channel of the injection needle 120 while using the auxiliary tool 400 described later.
  • the auxiliary tool 400 will be described later.
  • the administration device comprises a mechanism for safely loading the anticancer drug into the infusion needle.
  • the outer cylinder 130 includes a base portion 131 capable of storing at least part of the inner cylinder 110 and a distal end portion 132 capable of storing the distal end portion of the injection needle 120 .
  • 10 and 11 are diagrams showing the base portion 131 and the tip portion 132 of the outer cylinder 130.
  • FIG. The base portion 131 and the tip portion 132 are formed so as to be continuous in the longitudinal direction of the injection needle 120 in this embodiment.
  • the base portion 131 and the tip portion 132 are distinguished by a chain double-dashed line L1 shown in FIG. 10, and the base portion 131 and the tip portion 132 can each be called an "outer cylinder".
  • the detection unit 140 is configured to be provided in a liquid feed path provided inside the inner cylinder 110 .
  • the detection unit 140 includes a sensor capable of measuring the injection pressure when the injection needle 120 is used to administer the anticancer drug to the affected area.
  • the sensor of the detection unit 140 is not particularly limited as long as it can measure the pressure of the anticancer drug flowing through the liquid feeding channel, but a diaphragm type sensor can be given as an example.
  • the notification unit 150 is configured to be able to notify the pressure during injection of the anticancer drug measured by the sensor of the detection unit 140 .
  • the notification unit 150 is configured to be electrically connectable to the detection unit 140 by a wire or the like led from the sensor of the detection unit 140 to the outside of the inner cylinder 110 through the base end side of the inner cylinder 110 .
  • the specific configuration of the notification unit 150 is not particularly limited as long as it can notify the user of the pressure value obtained by the sensor associated with the detection unit 140.
  • the notification unit 150 may be a liquid crystal display or an organic EL display that displays the pressure value as an image using numerical values or graphs. etc.
  • the control unit is provided to control electrically connected components such as the detection unit 140 and the notification unit 150 in the administration device 100 .
  • the control unit is configured to include processors such as CPU and GPU, main memory such as RAM, auxiliary memory such as ROM, HDD and SSD.
  • the control unit can be housed inside the housing of the notification unit 150 or the like.
  • the device 300 is configured to make the first semi-closed space 413 of the tubular portion 410 of the auxiliary tool 400 negative pressure by the user's operation while connected to the auxiliary tool 400 (FIGS. 12 and 13).
  • the instrument 300 includes a tubular portion 310, a pressing member 320, a sealing member 330, and a connecting member 340, as shown in FIG.
  • the tubular portion 310 is the same as the tubular portion 210 of the medical device 200, the pressing member 320 is the same as the pressing portion 220, and the sealing member 330 is the same as the sealing member 230, so detailed description thereof will be omitted.
  • connection member 340 is configured to include a hollow member such as a tube through which fluid such as gas can flow.
  • the operator attaches one of the connection members 340 to the tube portion 310 and attaches the other to the connection portion 440 of the auxiliary tool 400, and moves the pressing member 320 so as to increase the semi-closed space of the tube portion 310. .
  • the pressure in the first semi-closed space 413 of the cylindrical portion 410 of the assisting device 400 can be made negative.
  • the instrument 300 is configured to include members similar to those of the medical device 200. is not limited to the same configuration as
  • auxiliary tool 12 and 13 are diagrams for explaining the auxiliary tool 400.
  • FIG. 1 the anticancer agent leaks out from the tip of the injection needle 120 during priming for circulating the anticancer agent in the liquid delivery path of the injection needle 120, so that the anticancer agent is released to the medical staff and others. Prevent splashing on the patient.
  • the assisting tool 400 includes a cylindrical portion 410 as shown in FIG. 12 and the like.
  • the tubular portion 410 of the auxiliary tool 400 includes a stopper 420 , a valve member 430 and a connecting portion 440 .
  • the cylindrical part 410 has a first semi-closed space 413 and a second semi-closed space 414 that form internal spaces so as to surround the tip of the hollow injection needle 120 through which the anticancer drug can flow.
  • the tubular portion 410 is configured in a tubular shape such as a cylinder provided with a first semi-closed space 413 and a second semi-closed space 414 .
  • the specific shape of the cylindrical portion 410 is not limited to a cylinder, and may be configured by a rectangular cylinder (polygonal column) other than a cylinder, as long as the medicine can be prevented from leaking to the outside during priming.
  • the cylindrical portion 410 has openings on both the distal end side and the proximal end side in the axial direction of the cylindrical shape to allow the first semi-closed space 413 or the second semi-closed space 414 to communicate with the outside.
  • the opening on the distal side that communicates the first semi-closed space 413 with the outside is the first opening 411
  • the opening on the proximal side that communicates the second semi-closed space 414 with the outside is the second opening 412. call.
  • the dimension of the first semi-closed space 413 in the direction of insertion of the injection needle 120 (dimension d1 in the vertical direction) in FIG.
  • the cylindrical portion 410 is made of a transparent material, it is possible to visually confirm that the anticancer drug is scattered from the injection needle 120 in the first semi-closed space 413 during priming, and to confirm the completion of priming. sell.
  • the stopper 420 is provided in the second semi-closed space 414, which is the internal space of the cylindrical portion 410 in this embodiment.
  • the stopper 420 is configured to allow the injection needle 120 of the administration device 100 to pass therethrough and to provide a third opening 421 that prevents the insertion of needle tubes other than the injection needle 120 .
  • the third opening 421 is configured such that the area of the cross section intersecting the axial direction becomes smaller as it advances in the axial direction from the direction of entering the first semi-closed space 413 of the tubular portion 410 . With such a configuration, the injection needle 120 can be easily inserted into the third opening 421 .
  • the third opening 421 is configured to have a stepped shape in which the radial dimension changes stepwise.
  • the third opening may be configured to have a tapered shape instead of or in addition to the stepped shape.
  • the valve member 430 is provided adjacent to the second opening 412 in the axial direction of the internal space of the tubular portion 410 .
  • the internal space of the cylindrical portion 410 can be divided by the valve member 430 into a first semi-closed space 413 on the first opening 411 side and a second semi-closed space 414 on the second opening 412 side.
  • the valve member 430 can be configured by a member similar to the elastically deformable elastic member that configures the sealing member 230 of the medical device 200 .
  • the valve member 430 has a substantially circular cross-sectional shape similar to the cross-sectional shape of the cylindrical portion 410 intersecting with the axial direction.
  • a valve member 430 is provided adjacent to the stopper 420 in this embodiment.
  • valve member 430 is configured such that a notch 431 is provided substantially in the central portion as shown in FIG. 12 and the like.
  • the distal end portion of the injection needle 120 is inserted through the valve member 430 from the notch 431 by elastically deforming the valve member 430 from the second opening 412 of the tubular portion 410 as shown in FIG. can enter (insert) into the first semi-closed space 413 of .
  • the valve member 430 holds the injection needle 120 while the tip of the injection needle 120 is inserted into the first semi-closed space 413 .
  • the valve member 430 prevents the anticancer drug from leaking from the second opening 412 side in the internal space in a state in which the injection needle 120 is inserted.
  • the notch 431 of the valve member 430 is formed in a cross shape in this embodiment.
  • the specific shape of the incision is not limited to a cross as long as the injection needle 120 can be inserted through the valve member and the anticancer drug does not flow out from the inserted portion in the inserted state.
  • the tip of the injection needle 120 can be inserted into the first semi-closed space 413 while the injection needle 120 is in close contact with the valve member, the valve member does not need to be provided with a notch.
  • the connecting portion 440 is provided on the side of the first opening 411 in the axial direction of the tubular portion 410 .
  • the connecting portion 440 is configured to be connectable to the device 300 that makes the first semi-closed space 413 (internal space) of the cylindrical portion 410 negative pressure, as will be described later.
  • connection part 440 is provided with a first opening 411 , and the first opening 411 is configured to communicate with the first semi-closed space 413 of the cylindrical part 410 . Accordingly, by operating the instrument 300 with the connecting member 340 and the like of the instrument 300 attached to the connecting portion 440, the pressure in the first semi-closed space 413 of the cylindrical portion 410 can be made negative.
  • connection part 440 has a hollow cylindrical shape with an axis parallel to the insertion direction of the injection needle 120 in the same manner as the cylinder part 410 in this embodiment.
  • the specific shape of the connection portion is not limited to the above. It may be configured with other tubular shapes such as prisms.
  • the assisting tool 400 is not limited to the method of making the semi-closed space 413 negative pressure. A method in which the drug is pushed out into the
  • materials constituting the treatment device kit 1 are not particularly limited.
  • the inner cylinder 110, the outer cylinder 130, the cylinder part 210, the cylinder part 410, the pressing part 220, the pressing member 320, the connecting member 240, the connecting member 340, etc. can be made of plastic such as polypropylene or polyethylene.
  • Seal member 230 and seal member 330 can be made of butyl rubber, silicon rubber, elastomer, or the like.
  • the injection needle 120 can be made of stainless steel or the like.
  • connection member 240 of the medical device 200 connects the connection member 240 of the medical device 200 to the connection portion 111 of the administration device 100 and connects the connection member 340 of the instrument 300 to the connection portion 440 of the auxiliary tool 400 .
  • the operator inserts the tip of the injection needle 120 of the administration device 100 into the notch 431 of the valve member 430 of the auxiliary tool 400 with the injection needle 120 exposed from the tip 132 of the outer cylinder 130, The tip of the injection needle 120 is placed in the first semi-closed space 413 of the cylindrical portion 410 .
  • the operator performs an operation to axially move the pressing member 320 so that the internal space of the cylindrical portion 310 of the instrument 300 is widened. As a result, the pressure in the first semi-closed space 413 of the assisting device 400 becomes negative.
  • the anticancer drug contained in the inner space of the tubular portion 210 of the medical device 200 moves from the inner space of the tubular portion 210 to the lumen of the injection needle 120 .
  • the operator moves the anticancer drug placed in the tube part 210 into the lumen of the injection needle 120 while the tip of the injection needle 120 is placed in the first semi-closed space 413 of the tube part 410 . , it is possible to visually confirm that the anticancer drug has come out from the tip of the injection needle 120 into the first semi-closed space 413 (priming).
  • the operator withdraws the tip of the injection needle 120 from the first semi-closed space 413 of the tubular portion 410 and accommodates the injection needle 120 in the tip 132 of the outer tube 130 .
  • injection needle 120 is passed through valve member 430 while coming out of first semi-closed space 413 of cylindrical portion 410 .
  • the anticancer drug attached to the outer surface of the injection needle 120 can be attached to the valve member 430 and retained in the first semi-closed space 413 of the cylindrical portion 410 .
  • the operator forms a small incision around the patient's abdomen. Then, the operator percutaneously punctures the injection needle 120 and the distal end portion 132 of the outer tube 130 accommodating the injection needle 120 under echo to gain access to the front of the tumor. Then, the operator pierces only the injection needle 120 into the inside of the tumor, moves the pressing portion 220 relative to the cylinder portion 210 in the axial direction so that the internal space of the cylinder portion 210 is reduced, and injects the anticancer agent. is administered to the affected area (see Figure 10). After completing the administration of the anticancer drug, the operator accommodates the tip of the injection needle 120 in the tip 132 of the outer cylinder 130 (see FIG. 11), and removes the administration device 100 from the body.
  • the treatment device kit 1 has been described above as including the instrument 300 and the auxiliary tool 400 .
  • the anticancer agent described in this specification can exhibit a high antitumor effect
  • the treatment device kit that does not include the instrument 300 and the auxiliary tool 400 is also included in one embodiment of the present invention.
  • the longitudinal dimension of the injection needle 120 of the administration device 100 is set to 50 mm or more. Therefore, the injection needle 120 approached by puncturing from the body surface can puncture the tumor and administer the anticancer drug to the affected area. That is, in one aspect of the present invention, the administration device includes an injection needle having a length that allows it to penetrate from outside the body to the tumor.
  • the administration device 100 is configured such that the distal end portion 132 of the outer cylinder 130 can store the distal end portion of the injection needle 120 .
  • the administration needle 120 that has come into contact with the tumor after administration of the anticancer drug to the affected area can be prevented from coming into contact with the living body on the route from the affected area to the body surface. Therefore, tumor dissemination and anticancer drug leakage can be prevented.
  • the administration device further comprises a barrel housing the injection needle.
  • the administration device 100 has a sensor related to the detection unit 140 arranged in the liquid feed path of the injection needle 120, and the detection unit 140 is electrically connected to the notification unit 150 that notifies the pressure measured by the detection unit 140. It consists of As a result, the administration device 100 can administer the anticancer drug to the affected area and at the same time inform the user of the injection pressure during the injection of the anticancer drug. That is, in one aspect of the present invention, the administration device measures and reports the injection pressure at the same time as administering the anticancer drug.
  • One aspect of the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the anticancer agent is , using an administration device having an injection needle with a length that can be pierced from outside the body to the tumor.
  • One aspect of the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the administration device is an anticancer agent.
  • the injection pressure is measured and reported at the same time as the drug is administered.
  • One aspect of the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the administration device is an injection needle has a chemical discharge hole on the tip or side of the
  • One aspect of the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the administration device is an injection needle Equipped with a mechanism for safely filling anticancer drugs inside.
  • FIGS. 14 to 16 are diagrams explaining another form of anticancer drug administration using the administration device 100 described above.
  • the administration method of the anticancer drug can be configured as follows other than the first embodiment.
  • the anticancer drug is administered to the affected area by puncturing the affected area using the above-described treatment device kit 1 and an endoscope.
  • the endoscope includes a video system body 10 and a videoscope 20 as shown in FIG. Since a known endoscope can be used in this embodiment, a portion of the endoscope related to injection needle 120 of administration device 100 will be mainly described below.
  • the video system main body 10 performs processing for recording information captured by the video scope 20 and displaying it on a monitor (display).
  • the videoscope 20 includes an operation section 30 and an insertion section 40 .
  • the insertion portion 40 includes an elongated member and is configured to provide a plurality of lumens therein.
  • the insertion section 40 includes an imaging lumen 41, an irradiation lumen 42, a fluid circulation lumen 43, and a treatment instrument insertion lumen 44, as shown in FIG.
  • the imaging lumen 41 is provided as a lumen for installing a device for acquiring images of the inside of the body, such as a CCD camera.
  • the irradiation lumen 42 is provided as a lumen in which a lighting device such as a light is installed so as to enable a clear image to be taken of the imaging location inside the body.
  • the fluid circulation lumen 43 is provided as a lumen for circulating fluid such as water and air as needed.
  • the treatment instrument insertion lumen 44 is configured as a lumen in which a treatment instrument such as forceps is inserted from the base end side and exposed from the distal end side of the elongated member to install the treatment instrument for various treatments.
  • the injection needle 120 of the administration device 100 constituting the treatment device kit 1 can be passed through the treatment instrument insertion lumen 44 .
  • the operator When administering an anticancer drug using an endoscope, the operator removes the tip of the injection needle 120 from the auxiliary tool 400 after priming as in the first embodiment. Then, the operator carries the distal end of the insertion section 40 of the endoscope to the affected area using the operation section 30 . After that, the operator inserts the injection needle 120 into the treatment instrument insertion lumen 44, and administers the anticancer agent from the distal end of the injection needle 120 to the affected area as shown in FIG.
  • the anticancer drug is administered to the affected area by the injection needle 120 inserted through the treatment instrument insertion lumen 44 of the endoscope as shown in FIG. be able to.
  • Tumor tissue to which an anticancer agent is directly administered includes cancer tissue. That is, the therapeutic device kit of this embodiment can be a therapeutic device kit for cancer therapy or prevention.
  • the tumor is a solid tumor because the administration device can easily access the tumor directly and administer the anticancer drug.
  • Solid tumors include hepatocellular carcinoma, colorectal cancer, rectal cancer, colon cancer, breast cancer, esophageal cancer, gastric cancer, bile duct cancer, pancreatic cancer, malignant melanoma, non-small cell lung cancer, and small cell cancer.
  • Lung cancer, head and neck cancer eg oral cavity cancer, nasopharyngeal cancer, oropharyngeal cancer, hypopharyngeal cancer, laryngeal cancer, salivary gland cancer and tongue cancer
  • renal cell carcinoma eg clear renal cell carcinoma
  • ovarian cancer e.g., serous ovarian cancer and ovarian clear cell adenocarcinoma
  • nasopharyngeal cancer uterine cancer (e.g., cervical cancer and endometrial cancer)
  • Anal cancer eg, anal canal cancer
  • urothelial cancer eg, bladder cancer, upper urinary tract cancer, ureter cancer, renal pelvic cancer, and urethral cancer
  • prostate cancer fallopian tube cancer
  • primary peritoneal cancer malignant pleural mesothelioma
  • gallbladder cancer biliary tract cancer
  • biliary tract cancer eg, uveal melanoma and Merkel cell carcinoma
  • testi
  • a preferred embodiment of the present invention is used such that an anticancer drug is administered in combination with an immune checkpoint inhibitor.
  • an anticancer drug is administered in combination with an immune checkpoint inhibitor.
  • Immune checkpoint receptors exist on T cells and interact with ligands expressed on antigen-presenting cells. T cells recognize and activate antigens presented on MHC molecules and initiate immune responses, but T cell activation is regulated by immune checkpoint receptor-ligand interactions occurring in parallel. Immune checkpoint receptors are co-stimulatory and inhibitory, and the balance between the two regulates T cell activation and immune responses.
  • Cancer cells express ligands for inhibitory immune checkpoint receptors and use these receptors to escape destruction by cytotoxic T cells.
  • Immune checkpoint inhibitors inhibit the function of immune checkpoints of receptors or ligands, and include, for example, inhibitory receptor antagonists and co-stimulatory immune checkpoint receptor agonists.
  • antagonist includes various substances that interfere with the activation of receptors by the binding of receptors and ligands. Examples include substances that bind to receptors and interfere with receptor-ligand binding, and substances that bind to ligands and interfere with receptor-ligand binding.
  • Antagonists against inhibitory immune checkpoints include antagonistic antibodies that bind to inhibitory immune checkpoint molecules (inhibitory receptors or ligands for the receptors), inhibitory immune checkpoint ligands designed based on Also included are soluble polypeptides that do not activate receptors, vectors capable of expressing the polypeptides, and the like.
  • antagonists against inhibitory immune checkpoint receptors include anti-PD-1 antibodies, anti-CTLA-4 antibodies, anti-LAG-3 antibodies, anti-TIM-3 antibodies, anti-BTLA antibodies, and the like.
  • Antagonists against ligands for inhibitory immune checkpoint receptors include anti-PD-L1 antibodies, anti-PD-L2 antibodies, anti-CD80 antibodies, anti-CD86 antibodies, anti-GAL9 antibodies, and anti-HVEM antibodies.
  • immune checkpoint inhibitors consist of anti-PD-1 antibody, anti-PD-L1 antibody, anti-PD-L2 antibody and anti-CTLA-4 antibody because of their high anti-tumor effect when used in combination with anti-cancer agents. It is preferably at least one selected from the group, more preferably an anti-PD-1 antibody and/or an anti-PD-L1 antibody, and even more preferably an anti-PD-1 antibody.
  • antibodies such as anti-PD-1 antibody, anti-PD-L1 antibody, and anti-PD-L2 include monoclonal antibodies, polyclonal antibodies, single-chain antibodies, and modified antibodies (for example, "humanized antibodies” in which only the antigen recognition site is humanized). ), chimeric antibodies, bifunctional antibodies capable of recognizing two epitopes simultaneously, fragment antibodies (eg, F(ab′) 2 , Fab′, Fab or Fv fragments), and the like.
  • Antibodies can be of any class, such as IgA, IgD, IgE, IgG, IgM. From the viewpoint of specific binding to antigens, it is more preferable to use monoclonal antibodies.
  • Monoclonal antibodies and polyclonal antibodies can be produced in consideration of conventionally known methods.
  • the administration method of the immune checkpoint inhibitor may be the same route as the anticancer drug or a different route.
  • the administration method of the immune checkpoint inhibitor is not particularly limited, and oral administration, intravenous injection, intraarterial injection, subcutaneous injection, intradermal injection, intraperitoneal injection, intramuscular injection, intrathecal injection, transdermal administration. Alternatively, parenteral administration such as percutaneous absorption may be used.
  • the administration method of the immune checkpoint inhibitor is preferably intraperitoneal injection or intravenous injection, and systemic injection. More preferably, it is an intravenous injection that works.
  • the order of administration of the anticancer drug and immune checkpoint inhibitor is not particularly limited, and the anticancer drug and immune checkpoint inhibitor may be administered simultaneously or at different times. Moreover, when administering with a time lag, the immune checkpoint inhibitor may be administered after administration of the anticancer agent, or the anticancer agent may be administered after administration of the immune checkpoint inhibitor.
  • Immune checkpoint inhibitors act on immune checkpoint receptors-ligands on T cells to obtain their effects. By administering an immune checkpoint inhibitor after inducing T cells, it is believed that an increase in the antitumor effect is exhibited more, so an immune checkpoint inhibitor is administered after administering an anticancer drug. is preferred. Therefore, the anticancer drug is preferably administered before the immune checkpoint inhibitor is administered. In addition, in the mode of administration with a time lag, administration routes may be the same or different as long as they are administered with a time lag.
  • compositions containing anticancer agents and immune checkpoint inhibitors are exemplified.
  • a preferred form is a combination of separately formulated anticancer agents and immune checkpoint inhibitors. That is, in this aspect, it is preferable that the therapeutic device kit is a combination of an anticancer drug, an administration device, and an immune checkpoint inhibitor.
  • the order of administration of the anticancer drug and the immune checkpoint inhibitor is not particularly limited, and the anticancer drug and the immune checkpoint inhibitor may be administered at the same time, or may be administered at different times. may be administered at any time.
  • the immune checkpoint inhibitor when administering with a time lag, may be administered after administration of the anticancer agent, or the anticancer agent may be administered after administration of the immune checkpoint inhibitor. It is preferable to administer the anticancer drug and then administer the immune checkpoint inhibitor, since the antitumor effect is more enhanced. A remarkable antitumor effect can be obtained by such an embodiment.
  • the administration routes In the mode of administration with a time lag, the administration routes may be the same or different as long as they are administered with a time lag.
  • the therapeutic device kit is preferably a therapeutic device kit for cancer therapy or prevention.
  • the dosage form when an anticancer agent and an immune checkpoint inhibitor are administered in combination is not particularly limited as long as an administration route, administration frequency and dosage suitable for each are adopted.
  • a composition containing a cancer drug and an immune checkpoint inhibitor that is, administration as a single formulation, (2) two formulations obtained by separately formulating an anticancer drug and an immune checkpoint inhibitor Simultaneous administration by the same administration route, (3) administration of two formulations obtained by separately formulating an anticancer agent and an immune checkpoint inhibitor with a time lag by the same administration route, (4) anti-cancer Simultaneous administration of two formulations obtained by separately formulating a cancer drug and an immune checkpoint inhibitor through different administration routes; Examples include administration of two formulations with a time lag through different administration routes.
  • the drugs to be administered are not limited to these two drugs, and other drugs may be added.
  • a preferred mode of administration for combined administration is to administer the immune checkpoint inhibitor after administering the anticancer drug.
  • Another aspect of the present invention includes administering an effective amount of an anticancer agent that causes immunogenic cell death to a subject in need of treatment or prevention directly into tumor tissue using an administration device, It is a method of treating or preventing disease.
  • a subject in need of treatment or prevention is administered an effective amount of an anticancer drug that causes immunogenic cell death using an administration device directly to tumor tissue, and an immune check is performed.
  • a method of treating or preventing a disease comprising administering an effective amount of a point inhibitor. It is particularly preferred that the disease is cancer.
  • the above subjects are preferably mammals, particularly preferably humans.
  • the anticancer drug and the immune checkpoint inhibitor are administered with a time lag, it is necessary to administer the drug at intervals sufficient to enhance the antitumor effect.
  • Specific dosing intervals are appropriately determined on a case-by-case basis, taking into consideration the patient's symptoms, age, sex, and the like.
  • anticancer drugs and immune checkpoint inhibitors may be administered in a fixed cycle.
  • the administration cycle it is preferable to adjust the administration cycle appropriately so as to suit the combined use.
  • Specific administration frequency, dosage, drip administration time, administration cycle, and the like are appropriately determined according to individual cases, taking into account the patient's symptoms, age, sex, and the like.
  • immune checkpoint inhibitors are conventionally known, and is administered, for example, once to several times a day in the range of 2-3 mg/kg/day.
  • the dosage is the same as when administered alone or lower than the usual administration route (e.g., when administered alone 0.10 to 0.99 times the maximum dose of ).
  • the dosage weight (mg/kg/Day) ratio of immune checkpoint inhibitors and anticancer drugs is also determined appropriately on an individual basis, taking into account the patient's symptoms, age, gender, etc.
  • ⁇ Preparation of test substance administration solution > ⁇ Anti-mouse PD-1 antibody ( ⁇ PD-1) administration solution preparation (100 ⁇ g/200 ⁇ L/head) 0.88 mL of ⁇ PD-1 (7.24 mg/mL) solution was taken and mixed with 11.8 mL of PBS to give 0.5 mg/mL.
  • Doxorubicin hereinafter also simply referred to as Dox
  • Dox 10 mg / mL solution Adriacin Injection 10 (contains 10 mg (potency) of doxorubicin hydrochloride of the Japanese Pharmacopoeia in 1 vial) 1 physiological saline (Saline) 0 mL was injected to dissolve the powder.
  • FBS Fluorescence-Activated fetal bovine serum
  • RPMI-1640 model number; A10491-01
  • Trypsin-EDTA model number; 25200-056
  • Penicillin-Streptomycin model number; 15140-122
  • PBS model number; 14190-144
  • isoflurane inhalation anesthetic was purchased from Mylan Pharmaceutical Co., Ltd. and used.
  • Cell culture Frozen cells (CT26.WT, ATCC, CRL-2638) were thawed in a hot bath at about 37°C and added to the culture medium (10% FBS, RPMI-1640 with Penicillin-Streptomycin added) heated to 37°C. I put it in. Then, it was centrifuged (1000 rpm, 3 min, room temperature) using a KUBOTA table top cooling centrifuge 2810 (SN Sharp J90124-A000). The supernatant was discarded, the culture medium was added, and the cells were well suspended by pipetting. Transferred to a culture flask and cultured under environmental conditions of 37° C. and 5% CO 2 concentration. Passaging was performed when the cells reached 70-90% confluence.
  • the cells After removing the culture medium from the culture flask and washing with PBS, the cells were detached with a 0.25% Trypsin-EDTA solution. A culture medium was added, the supernatant was discarded by centrifugation, and the cells were appropriately diluted with the culture medium and cultured. The cells were adjusted to reach the required number of cells, subcultured, and used for transplantation after reaching the required number of cells.
  • a WT cell suspension (5 ⁇ 10 5 cells/50 ⁇ L/head) was injected with a 1 mL syringe for tuberculin (Terumo Syringe, SS-01T) equipped with a 23G ⁇ 1′′ injection needle (Terumo injection needle, NN-2325R). It was implanted subcutaneously on the right back.
  • Grouping The day of transplantation is Day 0, animals with a tumor volume of about 41 mm 3 to about 145 mm 3 on Day 8 are selected, and the average tumor volume of each group is uniform according to the group composition described in "B.1.”
  • the groups were divided as follows. At the time of grouping, animals with tumors that were too small or too large, those with tumors that were divided into two, or those with flattened tumors were excluded from grouping.
  • Tumor volume ( mm3 ) 1/2 x L x W x W L: long diameter of tumor (mm), W: short diameter of tumor (mm).
  • PBS or ⁇ PD-1 was intraperitoneally administered at 200 ⁇ L/head, and the remaining solution after administration was discarded.
  • a 1 mL syringe for tuberculin (Terumo Syringe, SS-01T) fitted with a 26G ⁇ 1/2′′ injection needle (Terumo injection needle, NN-2613S) was used.
  • Saline or Dox was administered via tail vein or intratumor. In the tail vein administration, administration was performed at 5 mL/kg based on the most recent body weight value, and in the intratumoral administration, administration was performed at 20 ⁇ L/site assuming a body weight of 20 g.
  • a needle-implanted syringe (27G ⁇ 1/2′′, FN syringe, SS-010F2713) was used for tail vein administration, and a needle-implanted syringe (29G ⁇ 1/2′′, FN syringe) was used for intratumoral administration. , SS-010F2913) was used.
  • Administration was carried out three times on Days 8, 11 and 14 with any vehicle or test substance. In Groups 3, 5, 8, 10 and 12, ⁇ PD-1 was administered after an interval of 1 hour or more after Dox administration.
  • the group in which doxorubicin was directly administered to the tumor tissue has a high antitumor effect.
  • a higher antitumor effect can be obtained by using an immune checkpoint inhibitor in combination.
  • the antitumor effect is particularly high, and the immune checkpoint inhibitor administration at a dose at which the antitumor effect is not seen alone, the anticancer drug Since the antitumor effect was enhanced compared to intratumoral administration alone, it is a synergistic effect of the anticancer drug and the immune checkpoint inhibitor alone.
  • the antitumor effect is not necessarily enhanced. Considering these circumstances, it can be said that the synergistic effect of the combination is a surprising result.
  • Rat PK test A. Experimental method 1 . Animal Species Used: Rat, Strain: Crl: CD (SD), Gender: Female, Age: 5 Weeks, Microbial Control: SPF 2. Reagent used
  • Group composition The group composition consisted of two groups, an intratumoral administration group and an intravenous administration group.
  • the cells were collected from the T75 flask together with the medium into a 50 mL tube, and about 10 mL of DMEM medium was used to collect the remaining cells into a 50 mL tube. After centrifugation using the aforementioned centrifuge (1000 rpm, 5 minutes, room temperature), the supernatant was removed. The cells were resuspended by adding 10 mL of DMEM medium and counted using a hemocytometer, resulting in a cell suspension of about 2.3 ⁇ 10 6 cells/mL. The cell count was obtained by adding 1 mL to one T75 flask containing 10 mL DMEM medium and placing it in a CO 2 incubator. The following day, the T75 flask was harvested along with the medium. Of the total volume of about 35 mL, 2 mL was taken and transferred to one T75 flask containing 10 mL of DMEM medium.
  • the cells were harvested together with the medium from one T75 flask. Further, about 5 mL of DMEM medium was added to the T75 flask to collect the remaining cells (twice). After centrifugation using the aforementioned centrifuge (1000 rpm, 5 minutes, room temperature), the supernatant was removed and 10 mL of DMEM medium was added for resuspension to obtain a cell suspension of about 3.7 ⁇ 10 6 cells/mL. Approximately 1 mL of this was added to two T75 flasks (containing 10 mL of DMEM medium) and placed in a CO 2 incubator.
  • the cells were harvested together with the medium from two T75 flasks. Additional approximately 5 mL of DMEM medium was added to each T75 flask to collect the remaining cells (twice). After centrifugation using the aforementioned centrifuge (1000 rpm, 5 minutes, room temperature), the supernatant was removed and 20 mL of DMEM medium was added for resuspension to obtain a cell suspension of approximately 3.3 ⁇ 10 6 cells/mL. Approximately 0.6 mL of this was added to 15 T75 flasks (containing 10 mL of DMEM medium) and placed in a CO 2 incubator.
  • the cells were collected together with the medium from 15 T75 flasks. Additional approximately 5 mL of DMEM medium was added to each T75 flask to collect the remaining cells (twice). After centrifugation using the aforementioned centrifuge (1000 rpm, 5 minutes, room temperature), the supernatant was removed and 10 mL of DMEM medium was added for resuspension to obtain a cell suspension of about 3.1 ⁇ 10 7 cells/mL. 8 mL of this cell suspension was taken and centrifuged using the aforementioned centrifuge (1000 rpm, 5 minutes, room temperature). got
  • flank skin was pinched and 13762-MAT-BIII cells were implanted subcutaneously at one site per animal, at about 4 ⁇ 10 6 cells/100 ⁇ L per site.
  • Tumor diameter measurement and grouping On the 4th, 7th, and 9th days after cell transplantation, under the same anesthesia as during cell transplantation, the size of tumors formed in the flanks was measured using a vernier caliper, and the major and minor diameters were measured once per animal. measured times. The tumor size was calculated by the formula of major axis ⁇ (shorter axis) 2 ⁇ 2. Based on the tumor size on the 9th day, 2 mice and 3 mice were selected for the intravenous administration group and the intratumor administration group, respectively, in descending order of size.
  • Drug administration Drug preparation 1 mL of physiological saline was added to each of 2 vials of Adriacin Injection 10 and dissolved together to prepare about 2 mL of doxorubicin hydrochloride 10 mg/mL solution. To 1.6 mL of the 10 mg/mL solution of doxorubicin hydrochloride was added 6.4 mL of physiological saline to prepare a 2 mg/mL solution of doxorubicin hydrochloride. Assuming a body weight of 200 g, 0.2 mg of doxorubicin hydrochloride (drug volume: 0.1 mL) was administered to all individuals so that the dose would be 1 mg/kg.
  • Drug administration Administration was performed under the same anesthesia as during cell transplantation.
  • ⁇ Intratumor administration> (1) A syringe filled with doxorubicin hydrochloride (2 mg/mL) was set on a syringe pump (TE-361, Terumo Corporation) and an extension tube was connected. A 3-way stopcock was connected to the distal end and a manometer and an extension tube were connected. (2) A syringe needle for administration was connected to the distal end of the extension tube. The line was filled with the drug solution before administration. (3) After confirming the position of the tumor by applying an ultrasonic probe to the periphery of the tumor, an injection needle (22G) was inserted to confirm that the tip of the needle was near the center of the tumor.
  • a syringe filled with doxorubicin hydrochloride (2 mg/mL) was set on a syringe pump (TE-361, Terumo Corporation) and an extension tube was connected. A 3-way stopcock was connected to the distal end and a manometer and an extension tube were connected.
  • Plasma collection, euthanasia, and sample processing were performed in the same manner as (5), (6), and (7) during intratumoral administration.
  • Doxorubicin hydrochloride concentration measurement ⁇ Reagent> Doxorubicin hydrochloride (product number: D1515, Sigma-Aldrich Corp.) was used as a standard substance. Daunorubicin hydrochloride (product number: 30450, Sigma-Aldrich Corp.) was used as an internal standard.
  • the standard stock solution is Doxorubicin hydrochloride 1.07 mg (1.00 mg as doxorubicin, correction factor: 1.07) is accurately weighed and dissolved in methanol to 100 ⁇ g/mL, and the internal standard stock solution is Daunorubicin hydrochloride 1.0 mg. Weighed and dissolved in methanol to 100 ⁇ g/mL.
  • the standard solution was prepared by appropriately diluting the standard stock solution with methanol to 10.0 to 10000 ng/mL before use.
  • the internal standard solution was appropriately diluted with methanol and prepared to 200 ng/mL just before use.
  • ⁇ Pretreatment> Measurement of Doxorubicin Concentration in Plasma The measurement sample was thawed at room temperature, stirred, centrifuged (2000 ⁇ g, 4° C., 5 minutes), and 20 ⁇ L of the supernatant was collected in a microtest tube and used for the experiment. Deproteinization was performed with methanol, and after centrifugation, the supernatant was transferred to a glass test tube and concentrated to dryness under a nitrogen stream. The residue was redissolved by adding 0.1% formic acid-acetonitrile (70:30, v/v) to prepare an actual measurement sample.
  • a homogenate was prepared by adding 5 times the amount of methanol to the total weight of the rat tissue and crushing it. At the time of use, the tissue homogenate was centrifuged (2000 ⁇ g, 4° C., 5 minutes), and 20 ⁇ L of the supernatant was collected in a microtest tube and used for pretreatment. Deproteinization was performed with methanol, and after centrifugation, the supernatant was transferred to a glass test tube and concentrated to dryness under a nitrogen stream. The residue was redissolved by adding 0.1% formic acid-acetonitrile (70:30, v/v) to prepare an actual measurement sample.
  • 0.1% formic acid-acetonitrile 70:30, v/v
  • the plasma doxorubicin concentration is low due to the direct administration of the device into the tumor, despite the high intratumoral doxorubicin concentration. Therefore, direct administration into the tumor using the device is expected to reduce systemic side effects as well as a high antitumor effect.
  • a cell suspension was prepared so that Ninety animals were under isoflurane anesthesia (induction anesthesia: 2.0-3.0%, maintenance anesthesia: 2.0%), the graft site (lower right abdomen) was shaved, and prepared CT26. WT cells were implanted subcutaneously in the right flank (between the forelimb and hindlimb) using a 29G FN syringe (5 ⁇ 10 5 cells/100 ⁇ L/mouse). The day of transplantation was defined as Day0.
  • Tumor minor diameter and major diameter were measured on the day of grouping (Day 8), and tumor volume was obtained from the following formula.
  • Tumor volume ( mm3 ) 1/2 x L x W x W L: long diameter of tumor (mm), W: short diameter of tumor (mm) 1.4.
  • Grouping Grouping was performed based on the tumor volume on Day 8. At this time, 42 animals with the smallest tumor volume were excluded after excluding "individuals with distorted tumors". Forty-eight of the 90 cancer-bearing mice were divided into the following groups so that the average tumor volume was uniform.
  • Preparation of test substance administration solution ⁇ Preparation of Dox administration solution> Dox 10 mg/mL: Inject 1.0 mL of Saline into a 10 vial for adriacin injection to dissolve the powder and obtain a stock solution.
  • ⁇ i. v. (Intra-tail vein administration) administration solution The above 10 mg/mL stock solution was diluted 100-fold according to Table 14 below, and Dox 1 mg/kg i.v. v. It was used as an administration solution.
  • ⁇ PD-1 antibody Anti-mouse PD-1 antibody
  • 0.50 mL of ⁇ PD-1 stock solution (7.24 mg/mL) was added to 6.74 mL of PBS and mixed to give a concentration of 100 ⁇ g/200 ⁇ L/head, and ⁇ PD-1 antibody administration solution (0.5 mg/mL) and bottom.
  • Groups 1, 2, 3, and 6 were administered Saline or Dox under isoflurane anesthesia (induction anesthesia: 2.0-3.0%, maintenance anesthesia: 2.0%). was administered intratumorally (it) at 20 ⁇ L/head using a 29G FN syringe.
  • Dox was administered in the tail vein (i.v.) with a 27G injection needle and a 1 mL thermosyringe after calculating the dosage of Dox at 10 mL/kg based on the body weight of each individual under wakefulness.
  • PBS or ⁇ PD-1 antibody was intraperitoneally administered at 200 ⁇ L/head using a two-stage top needle and a 1 mL thermosyringe under awake conditions.
  • a hemolytic agent (ACK Lysing Buffer) was added to samples in which contamination with blood was observed, and after suspension, the samples were allowed to stand at room temperature for 1 to 2 minutes. rice field).
  • RPMI1640+10% FBS (9 mL) was added, and after centrifugation at 400 ⁇ g, 4° C., 5 min, the supernatant was decanted and the cells were loosened by tapping. After confirming that there was no residual hemolysis, 15 mL of PBE buffer (Rinsing Solution: BSA Solution 20:1) was added and mixed.
  • Lymph node isolated cell staining (dead cell staining, blocking, tetramer staining, antibody staining) ⁇ Dead cell staining> 1 mL of PEB buffer was added to the round tube containing the cells and mixed. After centrifugation at 400 ⁇ g, 4° C., 5 min, the supernatant was decanted, the cells were gently loosened by vortexing, and 1 mL of PBS was added.
  • ⁇ Tetramer staining> A cocktail for AH-1 tetramer staining (APC-AH-1 tetramer; 5 ⁇ L, Stain Buffer; 20 ⁇ L per tube) was prepared, and 25 ⁇ L was added to the round tube after the blocking reaction.
  • APC-AH-1 tetramer staining cocktail APC- ⁇ -galactosidase tetramer; 5 ⁇ L, Stain Buffer; 20 ⁇ L per bottle
  • 25 ⁇ L was added to a round tube. After addition of the tetramer, the mixture was lightly vortexed and allowed to stand at 4°C, shielded from light, for 40 minutes.
  • Antibody staining cocktail per CP-CD45 antibody; 2.5 ⁇ L, PE-Cy7-CD3 antibody; 2.5 ⁇ L, APC-Cy7-CD4 antibody; 2.5 ⁇ L, FITC-CD8 antibody; 10 ⁇ L, PE-CD69 antibody ; 2.5 ⁇ L, Stain Buffer; 5 ⁇ L) were prepared, and 25 ⁇ L were added to the round tube after tetramer staining.
  • Isotype Control contains Isotype tetramer staining cocktail (per bottle PerCP-Isotype antibody; 2.5 ⁇ L, PE-Cy7-Isotype antibody; 2.5 ⁇ L, APC-Cy7-Isotype antibody; 2.5 ⁇ L, FITC -Isotype antibody; 10 ⁇ L, PE-Isotype antibody; 2.5 ⁇ L, Stain Buffer; 5 ⁇ L) is added, and Isotype Control (AH-1 tetramer, CD69) is an Isotype tetramer staining cocktail (PerCP-CD45 antibody per bottle; 2.5 ⁇ L, PE-Cy7-CD3 antibody; 2.5 ⁇ L, APC-Cy7-CD4 antibody; 2.5 ⁇ L, FITC-CD8 antibody; 10 ⁇ L, PE-Isotype antibody; 2.5 ⁇ L, Stain Buffer; 5 ⁇ L) was added . After addition of the antibody staining cocktail, the mixture was lightly vortetramer sta
  • Fig. 3 The FSC-A/SSC-A plot was developed from All Events to select cell populations.
  • a Zombie Aqua/FSC-A plot was developed from the cell population, and living cells from which the dead cell population (Zombie Aqua-positive cells) had been removed were selected.
  • CD45/SSC-A was expanded from living cells and the CD45+ population was selected.
  • CD3/SSC-A was expanded from the CD45+ population to select the CD3+ population.
  • FSC-H/FSC-A was expanded from the CD3+ cell population, doublets were removed, and the Single cell 1 population was selected.
  • SSC-H/SSC-A was developed from the single cell 1 population, doublets were removed, and the single cell 2 population was selected.
  • Expand CD8/CD4 from the Single cell 2 population, CD8+ cells to Total. CTL and CD4+ cells were used as helper T cells.
  • Total. CTLs were expanded with CD8/CD69, and CD69+ cells were defined as CD69+ CTLs (activated CTLs).
  • Total. CTL was expanded with CD8/AH-1 Tetramer, and AH-1 Tetramer+ cells were designated as AH-1 specific CTL (cancer antigen-specific CTL).
  • Results Figures 4 to 6 show the average value and standard error of each group for the number of cells in each group.
  • Figure 4 shows Total.
  • Figure 5 shows the AH-1 specific CTL number and
  • Figure 6 shows the CD69+ CTL number.
  • the number of CTLs means the total number of CTLs
  • the number of AH-1 specific CTLs means CTLs that specifically recognize tumors
  • the number of CD69+ CTLs means CTLs in an activated state.
  • Table 15 shows the rate of increase in CTL, AH-1 specific CTL, and CD69+ CTL relative to controls.
  • each administration device described in the administration device section can be used as the administration device.
  • 1 therapeutic device kit 100 dosing device, 120, 120a injection needle, 130 outer cylinder, 140 detection unit, 150 annunciation unit;

Abstract

The purpose of the present invention is to provide a method having a superior anti-tumor effect. [Solution] A therapy device kit having an anti-cancer drug for inducing immunogenic cell death and an administration device capable of administering the anti-cancer drug to tumor tissue, the anti-cancer drug inducing activation of anti-tumor immunity due to being administered using the administration device.

Description

治療デバイスキットtherapeutic device kit
 本発明は、治療デバイスキットに関する。 The present invention relates to therapeutic device kits.
 がん治療における化学療法で用いられる抗がん剤の投与方法として静脈投与は標準的な投与方法である。しかしながら、抗がん剤の静脈投与は、腫瘍内に到達できる薬剤量が少なく、治療効果が低減する場合があり、また、全身性の副作用が表れるといった問題点がある。 Intravenous administration is the standard administration method for anticancer drugs used in chemotherapy in cancer treatment. However, intravenous administration of anticancer agents has the problem that only a small amount of the drug can reach the tumor, which may reduce the therapeutic effect and cause systemic side effects.
 一方、免疫系を疾患の治療に応用する、がん免疫療法が注目を集めている。免疫系の機能は、一般に、液性免疫および細胞性免疫という2種の機構を介して発現する。細胞性免疫は、がん細胞の殺傷・排除を行う能力を有しているため、がん免疫療法において重要な働きとなることが判明している。細胞性免疫を構成する細胞の中でも、細胞傷害性T細胞(以下、単にCTLとも称する)は、がん細胞を殺傷する主な働きを担っている。 On the other hand, cancer immunotherapy, which applies the immune system to treat diseases, is attracting attention. The functions of the immune system are generally expressed through two mechanisms, humoral and cellular immunity. Since cell-mediated immunity has the ability to kill and eliminate cancer cells, it has been found to play an important role in cancer immunotherapy. Among the cells that constitute cell-mediated immunity, cytotoxic T cells (hereinafter also simply referred to as CTLs) play a major role in killing cancer cells.
 CTLの誘導は、通常、以下のように発現する。すなわち、ウイルス感染細胞やがん細胞で産生されるタンパク質等の内因性抗原が、ユビキチン化された後、プロテアソームによってペプチドにまで分解される。分解されたペプチドは、主要組織適合遺伝子複合体(MHC)クラスI分子と結合し、得られた複合体が抗原提示細胞の表面でCD8陽性T細胞に提示されて、CD8陽性T細胞が活性化される。そして、活性化されたCD8陽性T細胞が、CTLへと分化する。CTLの誘導は、効果の高いがん免疫療法に必要な要因となっている。 CTL induction is usually expressed as follows. That is, endogenous antigens such as proteins produced in virus-infected cells and cancer cells are ubiquitinated and then degraded into peptides by the proteasome. The cleaved peptides bind to major histocompatibility complex (MHC) class I molecules, and the resulting complexes are presented to CD8-positive T cells on the surface of antigen-presenting cells to activate CD8-positive T cells. be done. The activated CD8-positive T cells then differentiate into CTLs. Induction of CTLs has become a necessary factor for highly effective cancer immunotherapy.
 例えば、特表2001-510806号公報では、抗原特異的免疫応答を高めるためのワクチン用アジュバントとしてのMHCクラスIIリガンドまたはMHCクラスII様リガンドが開示されている。 For example, Japanese Patent Publication No. 2001-510806 discloses MHC class II ligands or MHC class II-like ligands as vaccine adjuvants for enhancing antigen-specific immune responses.
 一方、異なる免疫システムを利用することで、薬剤の組み合わせによる抗腫瘍効果の増大を期待して、2つの薬剤を組み合わせるがん免疫療法についても検討がなされている。例えば、特表2018-533626号公報では、PE38短縮型シュードモナス(Pseudomonas)外毒素に融合された単鎖可変領域抗体を含む免疫毒素と、免疫チェックポイント阻害剤と、を組み合わせてなる、腫瘍を治療するための医薬が開示されている。 On the other hand, by using different immune systems, cancer immunotherapy combining two drugs is also being investigated in the hope of increasing the anti-tumor effect of drug combination. For example, in Japanese National Publication of International Patent Application No. 2018-533626, an immunotoxin comprising a single-chain variable region antibody fused to PE38 truncated Pseudomonas exotoxin and an immune checkpoint inhibitor are combined to treat tumors. A medicament is disclosed for
 上記の通り、効率よく抗腫瘍免疫を誘導/活性化し、より抗腫瘍効果の高い手法が求められている。 As described above, there is a demand for a method that efficiently induces/activates antitumor immunity and has a higher antitumor effect.
 したがって、本発明は、より抗腫瘍効果の高い手法を提供することを目的とする。 Therefore, the object of the present invention is to provide a method with a higher antitumor effect.
 本発明は、免疫原性細胞死を引き起こす抗がん剤と、抗がん剤を直接腫瘍組織に投与可能な投与デバイスと、を有する治療デバイスキットであって、抗がん剤は、投与デバイスを用いて投与されることで抗腫瘍免疫の活性化を誘導する、治療デバイスキットである。 The present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the anticancer agent is an administration device is a therapeutic device kit that induces activation of anti-tumor immunity when administered using
マウス薬効評価における各群の腫瘍体積を示すグラフである。1 is a graph showing the tumor volume of each group in mouse drug efficacy evaluation. マウス薬効評価における各群の生存曲線を示す図である。FIG. 2 is a diagram showing survival curves of each group in mouse drug efficacy evaluation. フローサイトメトリーにおけるゲーティングフローチャートを示す図である。FIG. 4 shows a gating flow chart in flow cytometry; フローサイトメトリーを用いたCTL活性化評価(マウス)における各群のTotal.CTL数を示すグラフである。Total. of each group in CTL activation evaluation (mice) using flow cytometry. It is a graph which shows the number of CTLs. フローサイトメトリーを用いたCTL活性化評価(マウス)における各群のAH-1 specific CTL数を示すグラフである。Fig. 10 is a graph showing the number of AH-1 specific CTLs in each group in CTL activation evaluation (mice) using flow cytometry. フローサイトメトリーを用いたCTL活性化評価(マウス)における各群のCD69+CTL数を示すグラフである。FIG. 10 is a graph showing the number of CD69+ CTLs in each group in CTL activation evaluation (mice) using flow cytometry. FIG. 抗がん剤の投与方法の第1実施形態に使用される投与デバイスを含む治療デバイスキットを示す図である。FIG. 2 shows a treatment device kit containing an administration device used in the first embodiment of the anticancer drug administration method. 注入針の先端部を示す図である。FIG. 4 is a diagram showing the tip of an injection needle; 注入針の先端部を示す図である。FIG. 4 is a diagram showing the tip of an injection needle; 投与デバイスを構成する外筒の構成について示す図である。FIG. 4 is a diagram showing the configuration of an outer cylinder that constitutes the administration device; 投与デバイスを構成する外筒の構成について示す図である。FIG. 4 is a diagram showing the configuration of an outer cylinder that constitutes the administration device; 治療デバイスキットを構成する補助具について示す図である。FIG. 4 is a diagram showing an auxiliary tool that constitutes a therapeutic device kit; 治療デバイスキットを構成する補助具について示す図である。FIG. 4 is a diagram showing an auxiliary tool that constitutes a therapeutic device kit; 抗がん剤の投与方法の第2実施形態に使用される内視鏡および投与デバイス等を示す概略図である。FIG. 4 is a schematic diagram showing an endoscope, an administration device, etc. used in a second embodiment of an anticancer drug administration method; 図14に示す内視鏡の先端部を示す図である。15 is a view showing the distal end portion of the endoscope shown in FIG. 14; FIG. 図14に示す内視鏡を用いて患部に抗がん剤を投与する様子を示す図である。FIG. 15 is a diagram showing how an anticancer drug is administered to an affected area using the endoscope shown in FIG. 14;
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。 Embodiments of the present invention will be described below. In addition, the present invention is not limited only to the following embodiments.
 本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、本明細書において、特記しない限り、操作および物性等の測定は室温(20℃以上25℃以下)/相対湿度40%RH以上50%RH以下の条件で行う。 In this specification, the range "X to Y" includes X and Y and means "X or more and Y or less". In this specification, unless otherwise specified, operations and measurements of physical properties are performed under the conditions of room temperature (20° C. or higher and 25° C. or lower)/relative humidity of 40% RH or higher and 50% RH or lower.
 本発明の一態様は、免疫原性細胞死を引き起こす抗がん剤と、抗がん剤を直接腫瘍組織に投与可能な投与デバイスと、を有する治療デバイスキットであって、抗がん剤は、投与デバイスを用いて投与されることで抗腫瘍免疫の活性化を誘導する、治療デバイスキットである。本態様によれば、より抗腫瘍効果の高い治療デバイスキットを提供することが可能となる。 One aspect of the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the anticancer agent is , is a therapeutic device kit that induces activation of anti-tumor immunity when administered using an administration device. According to this aspect, it is possible to provide a therapeutic device kit with a higher antitumor effect.
 以下、各構成要素を説明する。 Each component will be explained below.
 [免疫原性細胞死を引き起こす抗がん剤]
 「免疫原性細胞死」とは、通常、カルレティキュリン、ATP、HMGB1に代表されるDAMPsの表出または放出を伴う、免疫細胞に非自己として認識されやすい形での細胞死を指す。
[Anticancer agents that induce immunogenic cell death]
“Immunogenic cell death” usually refers to cell death that is easily recognized as non-self by immune cells, accompanied by expression or release of DAMPs typified by calreticulin, ATP, and HMGB1.
 免疫原性細胞死を引き起こす抗がん剤(以下、単に抗がん剤とも称する)としては、ドキソルビシン、エピルビシン、オキサリプラチン、パクリタキセルおよびこれらの薬学的に許容される塩からなる群から選択される少なくとも1種であることが好ましく、ドキソルビシンおよび/またはその薬学的に許容される塩であることがより好ましい。すなわち、本発明の好適な一態様は、ドキソルビシンおよび/またはその薬学的に許容される塩と、ドキソルビシンおよび/またはその薬学的に許容される塩を直接腫瘍組織に投与可能な投与デバイスと、を有する治療デバイスキットである。ドキソルビシン塩としては、例えば、ドキソルビシン塩酸塩が挙げられる。 Anticancer agents that cause immunogenic cell death (hereinafter also simply referred to as anticancer agents) are selected from the group consisting of doxorubicin, epirubicin, oxaliplatin, paclitaxel and pharmaceutically acceptable salts thereof It is preferably at least one, more preferably doxorubicin and/or a pharmaceutically acceptable salt thereof. That is, a preferred aspect of the present invention comprises doxorubicin and/or a pharmaceutically acceptable salt thereof, and an administration device capable of directly administering doxorubicin and/or a pharmaceutically acceptable salt thereof to tumor tissue. A therapeutic device kit comprising: Doxorubicin salts include, for example, doxorubicin hydrochloride.
 上記薬学的に許容される塩としては、アミノ基などの塩基性基、ヒドロキシル基およびカルボキシル基などの酸性基における塩を挙げることができる。 Examples of the pharmaceutically acceptable salts include salts at basic groups such as amino groups, and acidic groups such as hydroxyl groups and carboxyl groups.
 塩基性基における塩としては、例えば、塩酸、臭化水素酸、リン酸、ホウ酸、硝酸および硫酸などの無機酸との塩;ギ酸、酢酸、乳酸、クエン酸、シュウ酸、フマル酸、マレイン酸、コハク酸、リンゴ酸、酒石酸、アスパラギン酸、トリクロロ酢酸およびトリフルオロ酢酸などの有機カルボン酸との塩;ならびにメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メシチレンスルホン酸およびナフタレンスルホン酸などのスルホン酸との塩が挙げられる。 Salts in basic groups include, for example, salts with inorganic acids such as hydrochloric, hydrobromic, phosphoric, boric, nitric and sulfuric acids; formic, acetic, lactic, citric, oxalic, fumaric, maleic, acids, salts with organic carboxylic acids such as succinic, malic, tartaric, aspartic, trichloroacetic and trifluoroacetic acids; and methanesulfonic, benzenesulfonic, p-toluenesulfonic, mesitylenesulfonic and naphthalenesulfonic acids. and salts with sulfonic acids such as
 酸性基における塩としては、例えば、ナトリウムおよびカリウムなどのアルカリ金属との塩;カルシウムおよびマグネシウムなどのアルカリ土類金属との塩;アンモニウム塩;ならびにトリメチルアミン、トリエチルアミン、トリブチルアミン、ピリジン、N,N-ジメチルアニリン、N-メチルピペリジン、N-メチルモルホリン、ジエチルアミン、ジシクロヘキシルアミン、プロカイン、ジベンジルアミン、N-ベンジル-β-フェネチルアミン、1-エフェナミンおよびN,N’-ジベンジルエチレンジアミンなどの含窒素有機塩基との塩などが挙げられる。 Salts in acidic groups include, for example, salts with alkali metals such as sodium and potassium; salts with alkaline earth metals such as calcium and magnesium; ammonium salts; and trimethylamine, triethylamine, tributylamine, pyridine, N,N- Nitrogen-containing organic bases such as dimethylaniline, N-methylpiperidine, N-methylmorpholine, diethylamine, dicyclohexylamine, procaine, dibenzylamine, N-benzyl-β-phenethylamine, 1-ephenamine and N,N'-dibenzylethylenediamine and salt with.
 抗がん剤は、例えば、後述する投与デバイスを用いて投与されることで、抗腫瘍免疫の活性化を誘導する。抗腫瘍免疫の活性化は、例えば、抗がん剤の投与量によっても誘導が制御される。ここで、「抗腫瘍免疫の活性化」とは、具体的には、抗がん剤を投与しないコントロールと比較して細胞傷害性T細胞(CTL)数が150%以上、好ましくは170%以上、より好ましくは200%以上増加していることを指す。また、細胞傷害性T細胞(CTL)数は、後述の実施例に記載のTotal.CTL数の測定方法により測定することができる。 Anticancer agents induce activation of antitumor immunity, for example, by being administered using the administration device described later. The activation of anti-tumor immunity is regulated by, for example, the dose of anti-cancer drugs. Here, "activation of anti-tumor immunity" specifically means that the number of cytotoxic T cells (CTL) is 150% or more, preferably 170% or more, compared to a control to which no anticancer agent is administered. , more preferably 200% or more. In addition, the number of cytotoxic T cells (CTL) was measured using Total. It can be measured by a method for measuring the number of CTLs.
 抗がん剤の投与量は、患者の症状、年令、性別等を考慮して個々の場合に応じて適宜決定される。本実施態様の治療デバイスキットによれば、免疫原性細胞死を引き起こす抗がん剤によって、抗腫瘍免疫の活性化を引き起こすことができる。ゆえに、通常の抗がん剤の投与量よりも投与量を低減できることが見込まれる。ヒトにおいて抗がん剤の投与量は、例えば、0.1mg/Kg/Day以下であり、0.01~0.1mg/Kg/Dayであってもよく、0.020~0.070mg/Kg/Dayであってもよい。なお、全身投与の場合、抗がん剤、例えば、ドキソルビシン塩酸塩は通常、0.20mg/Kg以上の投与を要する。また、抗がん剤の腫瘍体積あたりの投与量は、例えば、腫瘍組織100mmあたり6μg以上であり、60μg以下であってもよく、20μg以下であってもよい。 The dosage of the anticancer drug is appropriately determined on a case-by-case basis, taking into consideration the patient's symptoms, age, sex, and the like. According to the therapeutic device kit of this embodiment, an anticancer agent that induces immunogenic cell death can induce activation of antitumor immunity. Therefore, it is expected that the dosage can be reduced compared to the dosage of ordinary anticancer drugs. The dose of the anticancer drug in humans is, for example, 0.1 mg/Kg/Day or less, may be 0.01 to 0.1 mg/Kg/Day, and may be 0.020 to 0.070 mg/Kg. /Day. In the case of systemic administration, an anticancer drug such as doxorubicin hydrochloride usually requires administration at 0.20 mg/Kg or more. The dose of the anticancer drug per tumor volume is, for example, 6 μg or more, may be 60 μg or less, or may be 20 μg or less per 100 mm 3 of tumor tissue.
 1クールあたりの抗がん剤の投与回数も特に制限されず、単回投与であっても、複数回投与であってもよく、例えば1クールあたり1回~3回投与することができる。また、抗がん剤は、1~4週間程度の間隔で反復投与が可能である。さらに、腫瘍が複数ある場合、抗がん剤を複数の腫瘍に投与してもよい。 The number of administrations of the anticancer drug per course is also not particularly limited, and it may be administered in a single dose or in multiple doses, for example, it can be administered once to three times per course. In addition, the anticancer drug can be administered repeatedly at intervals of about 1 to 4 weeks. Furthermore, if there are multiple tumors, the anticancer drug may be administered to multiple tumors.
 抗がん剤は、所望の製品形態に応じた製薬上許容されうる添加剤などとともに組成物を構成してもよい。 The anticancer drug may constitute a composition together with pharmaceutically acceptable additives according to the desired product form.
 「製薬上許容されうる」とは、正しい医学的判断の範囲内で、妥当な便益/リスク比に見合って、過剰な毒性、刺激、アレルギー反応等の問題や合併症なしに、ヒトおよび動物の組織に接触しての使用に好適な、化合物、材料、組成物、および/または投薬形態を指すために使用される。 “Pharmaceutically acceptable” means, within sound medical judgment, commensurate with a reasonable benefit/risk ratio, and without problems or complications such as excessive toxicity, irritation, or allergic reactions, in humans and animals. Used to refer to compounds, materials, compositions and/or dosage forms suitable for use in contact with tissue.
 製薬上許容されうる添加剤としては、溶媒(例えば生理食塩水、注射用水、緩衝液など)、膜安定剤(例えばコレステロールなど)、等張化剤(例えば塩化ナトリウム、グルコース、グリセリンなど)、抗酸化剤(例えばトコフェロール、アスコルビン酸、グルタチオンなど)、防腐剤(例えばクロルブタノール、パラベンなど)などを含みうる。生理食塩水とは、人体と等張になるように調整された無機塩溶液を意味し、さらに緩衝機能を持っていてもよい。生理食塩水としては、塩化ナトリウムを0.9w/v%(重量/体積パーセント)含有する食塩水、PBSおよびトリス緩衝生理食塩水等が挙げられる。 Pharmaceutically acceptable additives include solvents (e.g., physiological saline, water for injection, buffers, etc.), membrane stabilizers (e.g., cholesterol), tonicity agents (e.g., sodium chloride, glucose, glycerin, etc.), Oxidizing agents (eg, tocopherol, ascorbic acid, glutathione, etc.), preservatives (eg, chlorbutanol, parabens, etc.), and the like may be included. Physiological saline means an inorganic salt solution adjusted to be isotonic with the human body, and may further have a buffering function. Saline solutions include saline containing 0.9 w/v % (weight/volume percent) sodium chloride, PBS and Tris-buffered saline, and the like.
 [投与デバイス]
 投与デバイスは、抗がん剤を腫瘍組織に直接投与できれば、具体的な構成は特に限定されないが、以下に2つの投与デバイスについて例示的に説明する。
[Administration device]
The specific configuration of the administration device is not particularly limited as long as the anticancer drug can be directly administered to the tumor tissue, but two administration devices will be exemplified below.
 (抗がん剤投与デバイスの第1実施形態)
 図7は投与デバイス100を含む治療デバイスキット1を示す概略図である。治療デバイスキット1は、図7を参照して概説すれば、医療デバイス200と、投与デバイス100と、器具300と、補助具400と、を含む。以下、詳述する。
(First embodiment of anticancer drug administration device)
FIG. 7 is a schematic diagram showing a therapeutic device kit 1 including an administration device 100. FIG. The treatment device kit 1 includes a medical device 200, an administration device 100, an instrument 300, and an auxiliary tool 400, as outlined with reference to FIG. Details will be described below.
 (医療デバイス)
 医療デバイス200は、図7に示すように筒部210と、押圧部220と、シール部材230と、接続部材240と、を備える。
(medical device)
The medical device 200 includes a tubular portion 210, a pressing portion 220, a sealing member 230, and a connecting member 240, as shown in FIG.
 筒部210は、抗がん剤を収容する半閉空間を設けている。筒部210は、円筒等の筒形状に構成しており、筒形状の軸方向における両端に開口部を設けている。一方の開口部(基端側開口部とも呼ぶ)には押圧部220を移動可能に配置することができる。他方の開口部(先端側開口部とも呼ぶ)には、接続部材240を取り付けることができる。 The cylinder part 210 has a semi-closed space for containing an anticancer drug. The tubular portion 210 is configured in a tubular shape such as a cylinder, and has openings at both ends in the axial direction of the tubular shape. A pressing portion 220 can be movably arranged in one of the openings (also referred to as a proximal opening). A connecting member 240 can be attached to the other opening (also referred to as the distal opening).
 押圧部220は、筒部210の半閉空間の大きさを増減可能な押し子を含む。押圧部220の押し子は、先端側を筒部210の半閉空間に収容し、基端側を筒部210の外部に配置するように構成している。押圧部220の押し子は、筒部210の軸方向において筒部210に対して相対的に移動することによって薬剤(抗がん剤、以下、薬剤とも称される)が収容される半閉空間の大きさを変えるように構成している。 The pressing part 220 includes a presser that can increase or decrease the size of the semi-closed space of the cylindrical part 210 . The pusher of the pressing portion 220 is configured such that the distal end side is accommodated in the semi-closed space of the tubular portion 210 and the proximal end side is arranged outside the tubular portion 210 . The pusher of the pressing portion 220 moves relative to the cylindrical portion 210 in the axial direction of the cylindrical portion 210 to form a semi-closed space in which a drug (anticancer drug, hereinafter also referred to as a drug) is contained. It is configured to change the size of
 押圧部220の押し子によって筒部210の半閉空間の大きさが減少することによって、半閉空間に収容されていた薬剤は減少した分、注入針120の内腔に流通し、患者に投与され得る。なお、押圧部220の押し子は、術者が手指等で把持することによって手動で動作させてもよいし、モータとギヤ等の機械要素を適宜組み合わせることによって押し子を動作させてもよい。 As the size of the semi-closed space of the cylinder part 210 is reduced by the pusher of the pressing part 220, the amount of the drug contained in the semi-closed space is reduced, and flows through the lumen of the injection needle 120 to be administered to the patient. can be The pusher of the pressing portion 220 may be manually operated by the operator by gripping it with fingers or the like, or may be operated by appropriately combining mechanical elements such as a motor and gears.
 シール部材230は、押圧部220の押し子の軸方向における先端部に取り付けるように構成している。シール部材230は、筒部210の内壁と摺動可能に篏合することによって筒部210の半閉空間に収容された薬剤が注入針120以外から流通することを防止する。 The sealing member 230 is configured to be attached to the distal end portion of the pusher of the pressing portion 220 in the axial direction. The sealing member 230 prevents the medicine accommodated in the semi-closed space of the tubular portion 210 from flowing through other than the injection needle 120 by slidably fitting with the inner wall of the tubular portion 210 .
 接続部材240は、筒部210の先端側における開口部に取り付けられる。接続部材240は、内部に薬剤を流通できるように中空に構成している。接続部材240は、筒部210の先端部に取り付けられ、接続部材240の内腔は筒部210の半閉空間と連通するように構成している。 The connection member 240 is attached to the opening on the distal end side of the tubular portion 210 . The connecting member 240 is hollow so that the medicine can flow inside. The connecting member 240 is attached to the distal end of the cylindrical portion 210 , and the inner cavity of the connecting member 240 is configured to communicate with the semi-closed space of the cylindrical portion 210 .
 (投与デバイス)
 投与デバイス100は、図7等に示すように内筒110と、注入針120と、外筒130と、検出部140と、報知部150と、制御部(図示省略)と、を備える。
(administration device)
The administration device 100 includes an inner cylinder 110, an injection needle 120, an outer cylinder 130, a detection section 140, a notification section 150, and a control section (not shown), as shown in FIG. 7 and the like.
 内筒110は、医療デバイス200と接続され、注入針120とともに医療デバイス200から流通する抗がん剤の送液路を内部に設けている。内筒110は、本実施形態において円筒形状の側面において径方向外方に医療デバイス200との接続部111を設けている。また、内筒110の内部に設けた送液路の経路には後述する検出部140を設けている。 The inner cylinder 110 is connected to the medical device 200 and has a liquid feeding path for the anticancer drug flowing from the medical device 200 together with the injection needle 120 inside. In this embodiment, the inner cylinder 110 is provided with a connection portion 111 with the medical device 200 radially outward on the cylindrical side surface. In addition, a detection unit 140, which will be described later, is provided in the liquid feeding path provided inside the inner cylinder 110. As shown in FIG.
 注入針120は、生体の腫瘍組織に抗がん剤を直接投与できるように構成している。注入針120は、細径の中空部材を含み、中空部材の内部に内筒110の送液路と連通する送液路を設け、先端に送液路と連通する先端開口部を設けるように構成している。注入針120の寸法は、体表から体内に存在する腫瘍に穿刺できるように、投与対象および腫瘍位置によって適宜選択される。対象がヒトである場合、体表から体内に存在する腫瘍に穿刺できるように長手方向の寸法を150mm以上に構成することができる。注入針120の寸法は、例えば50~300mmであってもよい。 The injection needle 120 is configured so that the anticancer drug can be directly administered to the tumor tissue of the living body. The injection needle 120 includes a hollow member with a small diameter, and is configured to provide a liquid-feeding channel communicating with the liquid-feeding channel of the inner cylinder 110 inside the hollow member, and to provide a tip opening communicating with the liquid-feeding channel at the tip. are doing. The dimensions of the injection needle 120 are appropriately selected depending on the administration target and the tumor position so that the injection needle 120 can be punctured from the body surface to the tumor existing in the body. When the subject is a human, the longitudinal dimension can be configured to be 150 mm or more so that a tumor existing in the body can be punctured from the body surface. The dimensions of the injection needle 120 may be, for example, 50-300 mm.
 図8は注入針120において薬剤を吐出する開口部を示す図、図9は注入針120の変形例に係る注入針120aにおいて薬剤を吐出する開口部を示す図である。注入針120は、本実施形態において抗がん剤を吐出する開口部を図8に示すように長手方向において先端側を向くように設けている。ただし、注入針の開口部はこれに限定されず、上記以外にも図9の注入針120aに示すように長手方向の先端部付近において先端側を向く部位を中実にし、先端部付近から径方向外方に薬剤を吐出する開口部を設け、当該開口部を周方向に複数設けてもよい。径方向に開口部がある形態において、先端は鋭利であってもよい。本発明の一態様は、投与デバイスが注入針の先端あるいは側面に薬液排出孔を持つ。 FIG. 8 is a view showing an opening for ejecting medicine in injection needle 120, and FIG. 9 is a view showing an opening for ejecting medicine in injection needle 120a according to a modification of injection needle 120. FIG. The injection needle 120 has an opening for discharging the anticancer drug in the present embodiment so as to face the distal end side in the longitudinal direction, as shown in FIG. However, the opening of the injection needle is not limited to this, and in addition to the above, as shown in injection needle 120a in FIG. An opening for ejecting medicine may be provided outward in the direction, and a plurality of such openings may be provided in the circumferential direction. In radially open configurations, the tip may be sharp. In one aspect of the present invention, the administration device has a drug solution discharge hole on the tip or side of the injection needle.
 また、注入針120は、後述する補助具400を用いた状態で注入針120の送液路の先端まで抗がん剤を流通させる操作(プライミング)を行うことができる。補助具400については後述する。本発明の他の一態様は、投与デバイスが、注入針内に抗がん剤を安全に充填するための機構を備える。 In addition, the injection needle 120 can perform an operation (priming) to circulate the anticancer drug to the tip of the liquid feeding channel of the injection needle 120 while using the auxiliary tool 400 described later. The auxiliary tool 400 will be described later. Another aspect of the invention is that the administration device comprises a mechanism for safely loading the anticancer drug into the infusion needle.
 外筒130は、内筒110の少なくとも一部を格納可能な基部131と、注入針120の先端部を格納可能な先端部132と、を備える。図10、図11は外筒130の基部131および先端部132について示す図である。基部131と先端部132は、本実施形態において注入針120の長手方向において連なるように形成している。基部131と先端部132は図10に示す二点鎖線L1によって区別され、基部131および先端部132は、各々「外筒」と呼ばれ得る。 The outer cylinder 130 includes a base portion 131 capable of storing at least part of the inner cylinder 110 and a distal end portion 132 capable of storing the distal end portion of the injection needle 120 . 10 and 11 are diagrams showing the base portion 131 and the tip portion 132 of the outer cylinder 130. FIG. The base portion 131 and the tip portion 132 are formed so as to be continuous in the longitudinal direction of the injection needle 120 in this embodiment. The base portion 131 and the tip portion 132 are distinguished by a chain double-dashed line L1 shown in FIG. 10, and the base portion 131 and the tip portion 132 can each be called an "outer cylinder".
 検出部140は、内筒110の内部に設けた送液路に設けるように構成している。検出部140は、注入針120によって患部に抗がん剤を投与する際の注入圧力を測定可能なセンサを含む。検出部140のセンサは送液路を流通する抗がん剤の圧力を測定できれば特に限定されないが、一例としてダイヤフラム式のセンサを挙げることができる。 The detection unit 140 is configured to be provided in a liquid feed path provided inside the inner cylinder 110 . The detection unit 140 includes a sensor capable of measuring the injection pressure when the injection needle 120 is used to administer the anticancer drug to the affected area. The sensor of the detection unit 140 is not particularly limited as long as it can measure the pressure of the anticancer drug flowing through the liquid feeding channel, but a diaphragm type sensor can be given as an example.
 報知部150は、検出部140のセンサによって測定された抗がん剤の注入時の圧力を報知可能に構成している。報知部150は、検出部140のセンサから内筒110の基端側を通じて内筒110の外部に導出される配線等によって検出部140と電気的に接続可能に構成している。 The notification unit 150 is configured to be able to notify the pressure during injection of the anticancer drug measured by the sensor of the detection unit 140 . The notification unit 150 is configured to be electrically connectable to the detection unit 140 by a wire or the like led from the sensor of the detection unit 140 to the outside of the inner cylinder 110 through the base end side of the inner cylinder 110 .
 報知部150は、検出部140に係るセンサによる圧力値を使用者に報知できれば具体的な構成は特に限定されないが、一例として数値やグラフなどによって圧力値を映像により表示する液晶ディスプレイや有機ELディスプレイ等を含むようにできる。 The specific configuration of the notification unit 150 is not particularly limited as long as it can notify the user of the pressure value obtained by the sensor associated with the detection unit 140. As an example, the notification unit 150 may be a liquid crystal display or an organic EL display that displays the pressure value as an image using numerical values or graphs. etc.
 制御部は、投与デバイス100において検出部140や報知部150のような電気的に接続された構成を制御するために設けられる。制御部は、CPU、GPUなどのプロセッサ、RAM等の主記憶、ROM、HDDやSSD等の補助記憶を含むように構成している。制御部は報知部150の筐体の内部等に収容できる。 The control unit is provided to control electrically connected components such as the detection unit 140 and the notification unit 150 in the administration device 100 . The control unit is configured to include processors such as CPU and GPU, main memory such as RAM, auxiliary memory such as ROM, HDD and SSD. The control unit can be housed inside the housing of the notification unit 150 or the like.
 (器具)
 器具300は、補助具400と接続した状態で使用者の操作により補助具400の筒部410の第1半閉空間413を負圧にするように構成している(図12、13)。器具300は、図7に示すように筒部310と、押圧部材320と、シール部材330と、接続部材340と、を備える。
(instrument)
The device 300 is configured to make the first semi-closed space 413 of the tubular portion 410 of the auxiliary tool 400 negative pressure by the user's operation while connected to the auxiliary tool 400 (FIGS. 12 and 13). The instrument 300 includes a tubular portion 310, a pressing member 320, a sealing member 330, and a connecting member 340, as shown in FIG.
 筒部310は、医療デバイス200の筒部210と同様であり、押圧部材320は押圧部220と同様であり、シール部材330はシール部材230と同様であるため、詳細な説明を省略する。 The tubular portion 310 is the same as the tubular portion 210 of the medical device 200, the pressing member 320 is the same as the pressing portion 220, and the sealing member 330 is the same as the sealing member 230, so detailed description thereof will be omitted.
 接続部材340は、気体等の流体を流通可能なチューブ等の中空部材を備えるように構成している。術者は接続部材340の一方を筒部310に取り付け、他方を補助具400の接続部440に取り付けた状態で筒部310の半閉空間が増加するように押圧部材320を移動させる操作を行う。これにより、補助具400における筒部410の第1半閉空間413を負圧にすることができる。 The connection member 340 is configured to include a hollow member such as a tube through which fluid such as gas can flow. The operator attaches one of the connection members 340 to the tube portion 310 and attaches the other to the connection portion 440 of the auxiliary tool 400, and moves the pressing member 320 so as to increase the semi-closed space of the tube portion 310. . As a result, the pressure in the first semi-closed space 413 of the cylindrical portion 410 of the assisting device 400 can be made negative.
 なお、器具300は本実施形態において医療デバイス200と同様の部材を備えるように構成しているが、補助具400の第1半閉空間413を負圧にできれば、具体的な構成は医療デバイス200と同様の構成に限定されない。 In this embodiment, the instrument 300 is configured to include members similar to those of the medical device 200. is not limited to the same configuration as
 (補助具)
 図12、図13は補助具400の説明に供する図である。補助具400は、注入針120の送液路に抗がん剤を流通させるプライミングの際に注入針120の先端から抗がん剤が外部に漏出することで抗がん剤が医療従事者や患者に飛散することなどを防止する。補助具400は、図12等に示すように筒部410を備える。補助具400の筒部410は、ストッパー420と、弁部材430と、接続部440と、を備える。
(auxiliary tool)
12 and 13 are diagrams for explaining the auxiliary tool 400. FIG. In the auxiliary tool 400, the anticancer agent leaks out from the tip of the injection needle 120 during priming for circulating the anticancer agent in the liquid delivery path of the injection needle 120, so that the anticancer agent is released to the medical staff and others. Prevent splashing on the patient. The assisting tool 400 includes a cylindrical portion 410 as shown in FIG. 12 and the like. The tubular portion 410 of the auxiliary tool 400 includes a stopper 420 , a valve member 430 and a connecting portion 440 .
 筒部410は、抗がん剤が流通可能な中空の注入針120の先端部を包囲できるように内部空間を構成する第1半閉空間413と第2半閉空間414とを設けている。筒部410は、第1半閉空間413および第2半閉空間414を設けた円筒等の筒形状に構成している。ただし、筒部410は、プライミング時に薬剤が外部に漏出することを防止できれば、具体的な形状は円筒に限定されず、円筒以外の他の角筒(多角柱)等によって構成してもよい。 The cylindrical part 410 has a first semi-closed space 413 and a second semi-closed space 414 that form internal spaces so as to surround the tip of the hollow injection needle 120 through which the anticancer drug can flow. The tubular portion 410 is configured in a tubular shape such as a cylinder provided with a first semi-closed space 413 and a second semi-closed space 414 . However, the specific shape of the cylindrical portion 410 is not limited to a cylinder, and may be configured by a rectangular cylinder (polygonal column) other than a cylinder, as long as the medicine can be prevented from leaking to the outside during priming.
 筒部410は、筒形状の軸方向において先端側と基端側の両方に第1半閉空間413または第2半閉空間414を外部と連通させる開口部を設けている。本明細書では第1半閉空間413を外部と連通させる先端側の開口部を第1開口部411、第2半閉空間414を外部と連通させる基端側の開口部を第2開口部412と呼ぶ。第1半閉空間413の図12における注入針120の挿入方向の寸法(縦方向の寸法d1)は注入針120が挿入時に注入針120と対向する壁部415に接触しない、または到達しにくい程度に構成できる。また、筒部410は透明な材料から構成することによってプライミングの際に第1半閉空間413で注入針120から抗がん剤が飛散することを目視にて確認し、プライミングの完了を確認しうる。 The cylindrical portion 410 has openings on both the distal end side and the proximal end side in the axial direction of the cylindrical shape to allow the first semi-closed space 413 or the second semi-closed space 414 to communicate with the outside. In this specification, the opening on the distal side that communicates the first semi-closed space 413 with the outside is the first opening 411, and the opening on the proximal side that communicates the second semi-closed space 414 with the outside is the second opening 412. call. The dimension of the first semi-closed space 413 in the direction of insertion of the injection needle 120 (dimension d1 in the vertical direction) in FIG. can be configured to In addition, since the cylindrical portion 410 is made of a transparent material, it is possible to visually confirm that the anticancer drug is scattered from the injection needle 120 in the first semi-closed space 413 during priming, and to confirm the completion of priming. sell.
 ストッパー420は、本実施形態において筒部410の内部空間である第2半閉空間414に設けられる。ストッパー420には投与デバイス100の注入針120を挿通させ、注入針120以外の針管の挿通を妨げる第3開口部421を設けるように構成している。 The stopper 420 is provided in the second semi-closed space 414, which is the internal space of the cylindrical portion 410 in this embodiment. The stopper 420 is configured to allow the injection needle 120 of the administration device 100 to pass therethrough and to provide a third opening 421 that prevents the insertion of needle tubes other than the injection needle 120 .
 第3開口部421は、筒部410の第1半閉空間413に進入する方向から軸方向に進むにつれて軸方向に交差する断面の面積が小さくなるように構成している。そのように構成することによって、注入針120を第3開口部421に挿入しやすくすることができる。第3開口部421は、本実施形態において径方向の寸法が段階的に変化する段付き形状を備えるように構成している。ただし、第3開口部は段付き形状に代えて、または段付き形状に加えてテーパー形状を備えるように構成してもよい。 The third opening 421 is configured such that the area of the cross section intersecting the axial direction becomes smaller as it advances in the axial direction from the direction of entering the first semi-closed space 413 of the tubular portion 410 . With such a configuration, the injection needle 120 can be easily inserted into the third opening 421 . In this embodiment, the third opening 421 is configured to have a stepped shape in which the radial dimension changes stepwise. However, the third opening may be configured to have a tapered shape instead of or in addition to the stepped shape.
 弁部材430は、筒部410の内部空間の軸方向において第2開口部412に隣接して設けている。筒部410の内部空間は、弁部材430によって第1開口部411側の第1半閉空間413と第2開口部412側の第2半閉空間414とに分割できる。 The valve member 430 is provided adjacent to the second opening 412 in the axial direction of the internal space of the tubular portion 410 . The internal space of the cylindrical portion 410 can be divided by the valve member 430 into a first semi-closed space 413 on the first opening 411 side and a second semi-closed space 414 on the second opening 412 side.
 弁部材430は、医療デバイス200のシール部材230を構成する弾性変形可能な弾性部材と同様の部材によって構成できる。弁部材430は、筒部410の軸方向に交差する断面形状と同様に断面形状を略円形状に構成している。弁部材430は、本実施形態においてストッパー420に隣接して設けている。 The valve member 430 can be configured by a member similar to the elastically deformable elastic member that configures the sealing member 230 of the medical device 200 . The valve member 430 has a substantially circular cross-sectional shape similar to the cross-sectional shape of the cylindrical portion 410 intersecting with the axial direction. A valve member 430 is provided adjacent to the stopper 420 in this embodiment.
 弁部材430は、本実施形態において図12等に示すように略中央部において切り込み431を設けるように構成している。これにより、注入針120の先端部は、図13に示すように筒部410の第2開口部412から弁部材430を弾性変形させることによって、切り込み431から弁部材430を挿通して筒部410の第1半閉空間413に進入させる(挿入する)ことができる。 In this embodiment, the valve member 430 is configured such that a notch 431 is provided substantially in the central portion as shown in FIG. 12 and the like. As a result, the distal end portion of the injection needle 120 is inserted through the valve member 430 from the notch 431 by elastically deforming the valve member 430 from the second opening 412 of the tubular portion 410 as shown in FIG. can enter (insert) into the first semi-closed space 413 of .
 弁部材430は、注入針120の先端部を第1半閉空間413に挿入した状態において注入針120を保持する。弁部材430は、注入針120を挿通させた状態において内部空間における第2開口部412の側から抗がん剤の漏出を防止する。 The valve member 430 holds the injection needle 120 while the tip of the injection needle 120 is inserted into the first semi-closed space 413 . The valve member 430 prevents the anticancer drug from leaking from the second opening 412 side in the internal space in a state in which the injection needle 120 is inserted.
 弁部材430の切り込み431は、本実施形態において十字に形成している。ただし、注入針120が弁部材を挿通でき、挿通した状態で挿通箇所から抗がん剤が流出しなければ、切り込みの具体的な形状は十字に限定されない。また、注入針120を弁部材と密着した状態で注入針120の先端部を第1半閉空間413に挿入できれば、弁部材には切り込みを設けなくてもよい。 The notch 431 of the valve member 430 is formed in a cross shape in this embodiment. However, the specific shape of the incision is not limited to a cross as long as the injection needle 120 can be inserted through the valve member and the anticancer drug does not flow out from the inserted portion in the inserted state. Moreover, if the tip of the injection needle 120 can be inserted into the first semi-closed space 413 while the injection needle 120 is in close contact with the valve member, the valve member does not need to be provided with a notch.
 接続部440は、筒部410の軸方向において第1開口部411の側に設けている。接続部440は、後述するように筒部410の第1半閉空間413(内部空間)を負圧にする器具300との接続を可能に構成している。 The connecting portion 440 is provided on the side of the first opening 411 in the axial direction of the tubular portion 410 . The connecting portion 440 is configured to be connectable to the device 300 that makes the first semi-closed space 413 (internal space) of the cylindrical portion 410 negative pressure, as will be described later.
 接続部440は、第1開口部411を設け、第1開口部411は筒部410の第1半閉空間413と連通するように構成している。これにより、接続部440に器具300の接続部材340等を取り付けた状態で器具300を操作することによって、筒部410の第1半閉空間413を負圧にすることができる。 The connection part 440 is provided with a first opening 411 , and the first opening 411 is configured to communicate with the first semi-closed space 413 of the cylindrical part 410 . Accordingly, by operating the instrument 300 with the connecting member 340 and the like of the instrument 300 attached to the connecting portion 440, the pressure in the first semi-closed space 413 of the cylindrical portion 410 can be made negative.
 接続部440は、本実施形態において筒部410と同様に軸線が注入針120の挿入方向と平行な中空の円筒形状に構成している。ただし、器具300と接続した状態で器具300を操作することによって筒部の第1半閉空間を負圧にできれば、接続部の具体的な形状は上記に限定されず、筒部と同様に多角柱等の他の筒形状によって構成してもよい。補助具400については、半閉空間413を陰圧にする方式に限らず、器具300を持たず、医療デバイス200の押し子を動作させ210内を陽圧にすることで、半閉空間413内に薬剤を押し出す方式でもよい。 The connection part 440 has a hollow cylindrical shape with an axis parallel to the insertion direction of the injection needle 120 in the same manner as the cylinder part 410 in this embodiment. However, if the pressure in the first semi-closed space of the cylindrical portion can be reduced to negative pressure by operating the device 300 while connected to the device 300, the specific shape of the connection portion is not limited to the above. It may be configured with other tubular shapes such as prisms. The assisting tool 400 is not limited to the method of making the semi-closed space 413 negative pressure. A method in which the drug is pushed out into the
 なお、治療デバイスキット1を構成する材料は特に限定されない。ただし、材料について例示すれば、内筒110、外筒130、筒部210、筒部410、押圧部220、押圧部材320、接続部材240、接続部材340等をポリプロピレンやポリエチレンなどのプラスチックによって構成できる。シール部材230およびシール部材330はブチルゴム、シリコンゴムまたはエラストマー等によって構成できる。注入針120はステンレス鋼等によって構成できる。 In addition, materials constituting the treatment device kit 1 are not particularly limited. However, as an example of materials, the inner cylinder 110, the outer cylinder 130, the cylinder part 210, the cylinder part 410, the pressing part 220, the pressing member 320, the connecting member 240, the connecting member 340, etc. can be made of plastic such as polypropylene or polyethylene. . Seal member 230 and seal member 330 can be made of butyl rubber, silicon rubber, elastomer, or the like. The injection needle 120 can be made of stainless steel or the like.
 (使用例)
 次に本実施形態に係る治療デバイスキット1の使用例について説明する。まず、医師などの術者は、医療デバイス200の接続部材240を投与デバイス100の接続部111に接続し、器具300の接続部材340を補助具400の接続部440に接続する。
(Example of use)
Next, a usage example of the treatment device kit 1 according to this embodiment will be described. First, an operator such as a doctor connects the connection member 240 of the medical device 200 to the connection portion 111 of the administration device 100 and connects the connection member 340 of the instrument 300 to the connection portion 440 of the auxiliary tool 400 .
 次に、術者は、外筒130の先端部132から注入針120を外部に露出させた状態で投与デバイス100の注入針120の先端部を補助具400の弁部材430の切り込み431に差し込み、注入針120の先端部を筒部410の第1半閉空間413に配置する。次に、術者は器具300の筒部310の内部空間が広がるように押圧部材320を軸方向に移動させる操作を行う。これにより、補助具400の第1半閉空間413が負圧になる。 Next, the operator inserts the tip of the injection needle 120 of the administration device 100 into the notch 431 of the valve member 430 of the auxiliary tool 400 with the injection needle 120 exposed from the tip 132 of the outer cylinder 130, The tip of the injection needle 120 is placed in the first semi-closed space 413 of the cylindrical portion 410 . Next, the operator performs an operation to axially move the pressing member 320 so that the internal space of the cylindrical portion 310 of the instrument 300 is widened. As a result, the pressure in the first semi-closed space 413 of the assisting device 400 becomes negative.
 その結果、医療デバイス200の筒部210の内部空間に収容された抗がん剤の少なくとも一部が筒部210の内部空間から注入針120の内腔に移動する。術者は、注入針120の先端部が筒部410の第1半閉空間413に配置された状態で筒部210内に配置された抗がん剤を注入針120の内腔に移動させる操作によって抗がん剤が注入針120の先端部から第1半閉空間413に出たことを目視にて確認できる(プライミング)。 As a result, at least part of the anticancer drug contained in the inner space of the tubular portion 210 of the medical device 200 moves from the inner space of the tubular portion 210 to the lumen of the injection needle 120 . The operator moves the anticancer drug placed in the tube part 210 into the lumen of the injection needle 120 while the tip of the injection needle 120 is placed in the first semi-closed space 413 of the tube part 410 . , it is possible to visually confirm that the anticancer drug has come out from the tip of the injection needle 120 into the first semi-closed space 413 (priming).
 次に、術者は、注入針120の先端部を筒部410の第1半閉空間413から抜去し、注入針120を外筒130の先端部132に収容する。注入針120の外表面に抗がん剤が付着した場合、注入針120が筒部410の第1半閉空間413から出る際に注入針120を弁部材430に接触させながら通過させる。これにより、注入針120の外表面に付着した抗がん剤を弁部材430に付着させて筒部410の第1半閉空間413に留めることができる。 Next, the operator withdraws the tip of the injection needle 120 from the first semi-closed space 413 of the tubular portion 410 and accommodates the injection needle 120 in the tip 132 of the outer tube 130 . When the anticancer drug adheres to the outer surface of injection needle 120 , injection needle 120 is passed through valve member 430 while coming out of first semi-closed space 413 of cylindrical portion 410 . As a result, the anticancer drug attached to the outer surface of the injection needle 120 can be attached to the valve member 430 and retained in the first semi-closed space 413 of the cylindrical portion 410 .
 次に、術者は患者の腹部周辺に小切開部を形成する。そして、術者はエコー下で注入針120およびそれを収容している外筒130の先端部132を経皮的に穿刺し、腫瘍手前までアクセスする。そして、術者は注入針120のみを腫瘍内部に穿刺し、筒部210の内部空間が減少するように押圧部220を筒部210に対して軸方向に相対的に移動させて抗がん剤を患部に投与する(図10参照)。抗がん剤の投与が終了したら、術者は注入針120の先端部を外筒130の先端部132に収容し(図11参照)、投与デバイス100を体内から抜去する。なお、治療デバイスキット1は上記において器具300と補助具400を含むと説明した。ただし、本明細書において説明する抗がん剤によって高い抗腫瘍効果を発揮できれば、治療デバイスキットには器具300と補助具400を含まないものも本発明の一実施形態に含まれる。 Next, the operator forms a small incision around the patient's abdomen. Then, the operator percutaneously punctures the injection needle 120 and the distal end portion 132 of the outer tube 130 accommodating the injection needle 120 under echo to gain access to the front of the tumor. Then, the operator pierces only the injection needle 120 into the inside of the tumor, moves the pressing portion 220 relative to the cylinder portion 210 in the axial direction so that the internal space of the cylinder portion 210 is reduced, and injects the anticancer agent. is administered to the affected area (see Figure 10). After completing the administration of the anticancer drug, the operator accommodates the tip of the injection needle 120 in the tip 132 of the outer cylinder 130 (see FIG. 11), and removes the administration device 100 from the body. It should be noted that the treatment device kit 1 has been described above as including the instrument 300 and the auxiliary tool 400 . However, if the anticancer agent described in this specification can exhibit a high antitumor effect, the treatment device kit that does not include the instrument 300 and the auxiliary tool 400 is also included in one embodiment of the present invention.
 以上説明したように本実施形態では投与デバイス100の注入針120の長手方向の寸法を50mm以上に構成している。そのため、体表から穿刺してアプローチした注入針120によって腫瘍に穿刺して抗がん剤を患部に投与することができる。すなわち、本発明の一態様は、投与デバイスが、体外から腫瘍まで穿刺可能な長さの注入針を備える。 As described above, in this embodiment, the longitudinal dimension of the injection needle 120 of the administration device 100 is set to 50 mm or more. Therefore, the injection needle 120 approached by puncturing from the body surface can puncture the tumor and administer the anticancer drug to the affected area. That is, in one aspect of the present invention, the administration device includes an injection needle having a length that allows it to penetrate from outside the body to the tumor.
 また、投与デバイス100は、外筒130の先端部132が注入針120の先端部を格納可能に構成している。このように構成することによって、抗がん剤の患部への投与後に腫瘍に触れた注入針120が患部から体表までの経路で生体に触れないようにすることができる。そのため、腫瘍播種や抗がん剤の漏れを防止することができる。すなわち、本発明の一態様は、投与デバイスが、さらに注入針を格納する外筒を備える。 In addition, the administration device 100 is configured such that the distal end portion 132 of the outer cylinder 130 can store the distal end portion of the injection needle 120 . By configuring in this way, the injection needle 120 that has come into contact with the tumor after administration of the anticancer drug to the affected area can be prevented from coming into contact with the living body on the route from the affected area to the body surface. Therefore, tumor dissemination and anticancer drug leakage can be prevented. That is, in one aspect of the invention, the administration device further comprises a barrel housing the injection needle.
 また、投与デバイス100は、注入針120の送液路に検出部140に係るセンサを配置し、検出部140は検出部140によって測定された圧力を報知する報知部150と電気的に接続するように構成している。これにより、投与デバイス100によって患部に抗がん剤を投与すると同時に抗がん剤注入時の注入圧力を使用者に報知することができる。すなわち、本発明の一態様は、投与デバイスが抗がん剤を投与すると同時に注入圧力を測定および報知する。 In addition, the administration device 100 has a sensor related to the detection unit 140 arranged in the liquid feed path of the injection needle 120, and the detection unit 140 is electrically connected to the notification unit 150 that notifies the pressure measured by the detection unit 140. It consists of As a result, the administration device 100 can administer the anticancer drug to the affected area and at the same time inform the user of the injection pressure during the injection of the anticancer drug. That is, in one aspect of the present invention, the administration device measures and reports the injection pressure at the same time as administering the anticancer drug.
 本発明の一態様は、免疫原性細胞死を引き起こす抗がん剤と、抗がん剤を直接腫瘍組織に投与可能な投与デバイスと、を有する治療デバイスキットであって、抗がん剤は、体外から腫瘍まで穿刺可能な長さの注入針を備える投与デバイスを用いて投与される。 One aspect of the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the anticancer agent is , using an administration device having an injection needle with a length that can be pierced from outside the body to the tumor.
 本発明の一態様は、免疫原性細胞死を引き起こす抗がん剤と、抗がん剤を直接腫瘍組織に投与可能な投与デバイスと、を有する治療デバイスキットであって、投与デバイスが抗がん剤を投与すると同時に注入圧力を測定および報知する。 One aspect of the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the administration device is an anticancer agent. The injection pressure is measured and reported at the same time as the drug is administered.
 本発明の一態様は、免疫原性細胞死を引き起こす抗がん剤と、抗がん剤を直接腫瘍組織に投与可能な投与デバイスと、を有する治療デバイスキットであって、投与デバイスが注入針の先端あるいは側面に薬液排出孔を持つ。 One aspect of the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the administration device is an injection needle has a chemical discharge hole on the tip or side of the
 本発明の一態様は、免疫原性細胞死を引き起こす抗がん剤と、抗がん剤を直接腫瘍組織に投与可能な投与デバイスと、を有する治療デバイスキットであって、投与デバイスが注入針内に抗がん剤を安全に充填するための機構を備える。 One aspect of the present invention is a therapeutic device kit comprising an anticancer agent that induces immunogenic cell death and an administration device capable of directly administering the anticancer agent to tumor tissue, wherein the administration device is an injection needle Equipped with a mechanism for safely filling anticancer drugs inside.
 (抗がん剤投与方法の第2実施形態)
 図14から図16は上述した投与デバイス100を用いた抗がん剤投与の別の形態について説明する図である。抗がん剤の投与方法は第1実施形態以外に以下のように構成することも可能である。
(Second embodiment of anticancer drug administration method)
FIGS. 14 to 16 are diagrams explaining another form of anticancer drug administration using the administration device 100 described above. The administration method of the anticancer drug can be configured as follows other than the first embodiment.
 図14において抗がん剤は、上述した治療デバイスキット1を使用し、内視鏡を併用して患部に穿刺を行い、抗がん剤を患部に投与する。内視鏡は、図14に示すようにビデオシステム本体10と、ビデオスコープ20と、を備える。本実施形態にて使用する内視鏡は公知のものを使用できるため、以下では内視鏡の中でも投与デバイス100の注入針120に関連する部分を中心に説明する。 In FIG. 14, the anticancer drug is administered to the affected area by puncturing the affected area using the above-described treatment device kit 1 and an endoscope. The endoscope includes a video system body 10 and a videoscope 20 as shown in FIG. Since a known endoscope can be used in this embodiment, a portion of the endoscope related to injection needle 120 of administration device 100 will be mainly described below.
 ビデオシステム本体10は、ビデオスコープ20によって撮像された情報を記録やモニター(ディスプレイ)に表示する処理を行う。 The video system main body 10 performs processing for recording information captured by the video scope 20 and displaying it on a monitor (display).
 ビデオスコープ20は、操作部30と、挿入部40と、を備える。挿入部40は長尺部材を含み、内部に複数のルーメンを設けるように構成している。挿入部40は、図15に示すように撮像ルーメン41、照射ルーメン42、流体流通ルーメン43および処置具挿通ルーメン44を含む。 The videoscope 20 includes an operation section 30 and an insertion section 40 . The insertion portion 40 includes an elongated member and is configured to provide a plurality of lumens therein. The insertion section 40 includes an imaging lumen 41, an irradiation lumen 42, a fluid circulation lumen 43, and a treatment instrument insertion lumen 44, as shown in FIG.
 撮像ルーメン41はCCDカメラ等の体内の画像を取得するデバイスを設置するルーメンとして設けている。照射ルーメン42は、体内の撮像箇所を鮮明に撮像できるようにライト等の照明器具を設置するルーメンとして設けている。流体流通ルーメン43は、必要に応じて水や空気などの流体を流通させるルーメンとして設けている。処置具挿通ルーメン44は、鉗子等の処置具を基端側から挿入し、長尺部材の先端側から露出させて種々の処置を行うために処置具を設置するルーメンとして構成している。 The imaging lumen 41 is provided as a lumen for installing a device for acquiring images of the inside of the body, such as a CCD camera. The irradiation lumen 42 is provided as a lumen in which a lighting device such as a light is installed so as to enable a clear image to be taken of the imaging location inside the body. The fluid circulation lumen 43 is provided as a lumen for circulating fluid such as water and air as needed. The treatment instrument insertion lumen 44 is configured as a lumen in which a treatment instrument such as forceps is inserted from the base end side and exposed from the distal end side of the elongated member to install the treatment instrument for various treatments.
 本実施形態において処置具挿通ルーメン44には、治療デバイスキット1を構成する投与デバイス100の注入針120を挿通させることができる。 In this embodiment, the injection needle 120 of the administration device 100 constituting the treatment device kit 1 can be passed through the treatment instrument insertion lumen 44 .
 内視鏡を用いた抗がん剤の投与では、術者は第1実施形態と同様にプライミングを実施後、注入針120の先端部を補助具400から抜去する。そして、術者は内視鏡の挿入部40の先端を操作部30によって患部まで運ぶ操作を行う。その後、術者は処置具挿通ルーメン44に注入針120を挿通させて、図16に示すように注入針120の先端部から患部に抗がん剤を投与する。 When administering an anticancer drug using an endoscope, the operator removes the tip of the injection needle 120 from the auxiliary tool 400 after priming as in the first embodiment. Then, the operator carries the distal end of the insertion section 40 of the endoscope to the affected area using the operation section 30 . After that, the operator inserts the injection needle 120 into the treatment instrument insertion lumen 44, and administers the anticancer agent from the distal end of the injection needle 120 to the affected area as shown in FIG.
 これにより、腫瘍周辺の患部の様子を内視鏡によって確認した状態で図16に示すように内視鏡の処置具挿通ルーメン44に挿通させた注入針120によって患部に抗がん剤を投与することができる。 As a result, the anticancer drug is administered to the affected area by the injection needle 120 inserted through the treatment instrument insertion lumen 44 of the endoscope as shown in FIG. be able to.
 [腫瘍組織]
 抗がん剤が直接投与される腫瘍組織としては、がん組織が挙げられる。すなわち、本態様の治療デバイスキットは、がん治療または予防のための治療デバイスキットでありうる。投与デバイスが腫瘍に直接アクセスしやすく、抗がん剤を投与しやすいことから、腫瘍は固形がんであることが好ましい。固形がんとしては、肝細胞がん、大腸がん、直腸がん、結腸がん、乳がん、食道がん、胃がん、胆管がん、膵臓がん、悪性黒色腫、非小細胞肺がん、小細胞肺がん、頭頸部がん(例えば、口腔がん、上咽頭がん、中咽頭がん、下咽頭がん、喉頭がん、唾液腺がんおよび舌がん)、腎細胞がん(例えば、淡明細胞型腎細胞がん)、卵巣がん(例えば、漿液性卵巣がんおよび卵巣明細胞腺がん)、鼻咽頭がん、子宮がん(例えば、子宮頸がんおよび子宮体がん)、肛門がん(例えば、肛門管がん)、食道胃接合部がん、尿路上皮がん(例えば、膀胱がん、上部尿路がん、尿管がん、腎盂がんおよび尿道がん)、前立腺がん、卵管がん、原発性腹膜がん、悪性胸膜中皮腫、胆嚢がん、胆道がん、皮膚がん(例えば、ブドウ膜悪性黒色腫およびメルケル細胞がん)、精巣がん(胚細胞腫瘍)、膣がん、外陰部がん、陰茎がん、小腸がん、内分泌系がん、甲状腺がん、副甲状腺がん、副腎がん、脊椎腫瘍、神経芽細胞腫、髄芽腫、眼網膜芽細胞腫、神経内分泌腫瘍、脳腫瘍(例えば、神経膠腫(例えば、神経膠芽腫および神経膠肉腫)および髄膜腫)および扁平上皮がんなどが挙げられる。一態様として、腫瘍は、乳がん、肝細胞がん、また肝転移した大腸がんなども含む。
[Tumor tissue]
Tumor tissue to which an anticancer agent is directly administered includes cancer tissue. That is, the therapeutic device kit of this embodiment can be a therapeutic device kit for cancer therapy or prevention. Preferably, the tumor is a solid tumor because the administration device can easily access the tumor directly and administer the anticancer drug. Solid tumors include hepatocellular carcinoma, colorectal cancer, rectal cancer, colon cancer, breast cancer, esophageal cancer, gastric cancer, bile duct cancer, pancreatic cancer, malignant melanoma, non-small cell lung cancer, and small cell cancer. Lung cancer, head and neck cancer (eg oral cavity cancer, nasopharyngeal cancer, oropharyngeal cancer, hypopharyngeal cancer, laryngeal cancer, salivary gland cancer and tongue cancer), renal cell carcinoma (eg clear renal cell carcinoma), ovarian cancer (e.g., serous ovarian cancer and ovarian clear cell adenocarcinoma), nasopharyngeal cancer, uterine cancer (e.g., cervical cancer and endometrial cancer), Anal cancer (eg, anal canal cancer), esophagogastric junction cancer, urothelial cancer (eg, bladder cancer, upper urinary tract cancer, ureter cancer, renal pelvic cancer, and urethral cancer) , prostate cancer, fallopian tube cancer, primary peritoneal cancer, malignant pleural mesothelioma, gallbladder cancer, biliary tract cancer, skin cancer (eg, uveal melanoma and Merkel cell carcinoma), testicular cancer cancer (germ cell tumor), vaginal cancer, vulvar cancer, penile cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer, spine tumor, neuroblastoma, Medulloblastoma, ocular retinoblastoma, neuroendocrine tumors, brain tumors (eg, gliomas (eg, glioblastoma and gliosarcoma) and meningioma), squamous cell carcinoma, and the like. In one embodiment, tumors include breast cancer, hepatocellular carcinoma, colorectal cancer that has metastasized to the liver, and the like.
 [免疫チェックポイント阻害剤]
 本発明の好適な一態様は、抗がん剤が免疫チェックポイント阻害剤と、組み合わせて投与されるように用いられる。抗がん剤が免疫チェックポイント阻害剤と、組み合わせて投与されることで、抗腫瘍効果が一層高いものとなる。
[Immune checkpoint inhibitor]
A preferred embodiment of the present invention is used such that an anticancer drug is administered in combination with an immune checkpoint inhibitor. By administering an anticancer drug in combination with an immune checkpoint inhibitor, the antitumor effect is further enhanced.
 T細胞上には免疫チェックポイント受容体が存在し、抗原提示細胞上に発現しているリガンドと相互作用する。T細胞はMHC分子上に提示された抗原を認識して活性化し、免疫反応を起こすが、並行して生じる免疫チェックポイント受容体-リガンドの相互作用によりT細胞の活性化が調節を受ける。免疫チェックポイント受容体には共刺激性のものと抑制性のものがあり、両者のバランスによってT細胞の活性化及び免疫反応が調節を受けている。 Immune checkpoint receptors exist on T cells and interact with ligands expressed on antigen-presenting cells. T cells recognize and activate antigens presented on MHC molecules and initiate immune responses, but T cell activation is regulated by immune checkpoint receptor-ligand interactions occurring in parallel. Immune checkpoint receptors are co-stimulatory and inhibitory, and the balance between the two regulates T cell activation and immune responses.
 がん細胞は、抑制性の免疫チェックポイント受容体に対するリガンドを発現し、該受容体を利用して細胞傷害性T細胞による破壊から逃避している。 Cancer cells express ligands for inhibitory immune checkpoint receptors and use these receptors to escape destruction by cytotoxic T cells.
 免疫チェックポイント阻害剤は、受容体またはリガンドの免疫チェックポイントの働きを阻害するものであり、例えば、抑制性の受容体に対するアンタゴニストや、共刺激性の免疫チェックポイント受容体に対するアゴニストが挙げられる。 Immune checkpoint inhibitors inhibit the function of immune checkpoints of receptors or ligands, and include, for example, inhibitory receptor antagonists and co-stimulatory immune checkpoint receptor agonists.
 「アンタゴニスト」という語には、受容体とリガンドとの結合による受容体の活性化を妨害する各種の物質が包含される。例えば、受容体に結合して受容体-リガンド間の結合を妨害する物質、及びリガンドに結合して受容体-リガンド間の結合を妨害する物質を挙げることができる。 The term "antagonist" includes various substances that interfere with the activation of receptors by the binding of receptors and ligands. Examples include substances that bind to receptors and interfere with receptor-ligand binding, and substances that bind to ligands and interfere with receptor-ligand binding.
 抑制性の免疫チェックポイントに対するアンタゴニストとしては、抑制性の免疫チェックポイント分子(抑制性の受容体又は該受容体のリガンド)と結合するアンタゴニスト性抗体、抑制性の免疫チェックポイントリガンドに基づいて設計された、受容体を活性化しない可溶性のポリペプチド、又は該ポリペプチドを発現可能なベクター等が挙げられる。 Antagonists against inhibitory immune checkpoints include antagonistic antibodies that bind to inhibitory immune checkpoint molecules (inhibitory receptors or ligands for the receptors), inhibitory immune checkpoint ligands designed based on Also included are soluble polypeptides that do not activate receptors, vectors capable of expressing the polypeptides, and the like.
 抑制性の免疫チェックポイント受容体に対するアンタゴニストとしては、具体的には、抗PD-1抗体、抗CTLA-4抗体、抗LAG-3抗体、抗TIM-3抗体、抗BTLA抗体などが挙げられる。 Specific examples of antagonists against inhibitory immune checkpoint receptors include anti-PD-1 antibodies, anti-CTLA-4 antibodies, anti-LAG-3 antibodies, anti-TIM-3 antibodies, anti-BTLA antibodies, and the like.
 抑制性の免疫チェックポイント受容体に対するリガンドに対するアンタゴニストとしては、抗PD-L1抗体、抗PD-L2抗体、抗CD80抗体、抗CD86抗体、抗GAL9抗体、抗HVEM抗体などが挙げられる。 Antagonists against ligands for inhibitory immune checkpoint receptors include anti-PD-L1 antibodies, anti-PD-L2 antibodies, anti-CD80 antibodies, anti-CD86 antibodies, anti-GAL9 antibodies, and anti-HVEM antibodies.
 中でも、抗がん剤との併用による抗腫瘍効果が高いことから、免疫チェックポイント阻害剤が、抗PD-1抗体、抗PD-L1抗体、抗PD-L2抗体および抗CTLA-4抗体からなる群から選択される少なくとも1種であることが好ましく、抗PD-1抗体および/または抗PD-L1抗体であることがより好ましく、抗PD-1抗体であることがさらに好ましい。 Among them, immune checkpoint inhibitors consist of anti-PD-1 antibody, anti-PD-L1 antibody, anti-PD-L2 antibody and anti-CTLA-4 antibody because of their high anti-tumor effect when used in combination with anti-cancer agents. It is preferably at least one selected from the group, more preferably an anti-PD-1 antibody and/or an anti-PD-L1 antibody, and even more preferably an anti-PD-1 antibody.
 抗PD-1抗体、抗PD-L1抗体、抗PD-L2などの抗体としては、モノクローナル抗体、ポリクローナル抗体、一本鎖抗体、改変抗体(例えば抗原認識部位のみヒト化した「ヒト化抗体」など)、キメラ抗体、2つのエピトープを同時に認識することができる二機能性抗体、断片抗体(例えば、F(ab’)、Fab’、FabまたはFv断片)などが挙げられる。抗体は、IgA、IgD、IgE、IgG、IgMなど、いずれのクラスのものであってもよい。抗原への特異的結合性の観点からはモノクローナル抗体を用いることがより好ましい。 Examples of antibodies such as anti-PD-1 antibody, anti-PD-L1 antibody, and anti-PD-L2 include monoclonal antibodies, polyclonal antibodies, single-chain antibodies, and modified antibodies (for example, "humanized antibodies" in which only the antigen recognition site is humanized). ), chimeric antibodies, bifunctional antibodies capable of recognizing two epitopes simultaneously, fragment antibodies (eg, F(ab′) 2 , Fab′, Fab or Fv fragments), and the like. Antibodies can be of any class, such as IgA, IgD, IgE, IgG, IgM. From the viewpoint of specific binding to antigens, it is more preferable to use monoclonal antibodies.
 モノクローナル抗体やポリクローナル抗体は従来公知の方法を参酌して作製することができる。 Monoclonal antibodies and polyclonal antibodies can be produced in consideration of conventionally known methods.
 抗体は市販品を用いてもよい。 Commercially available antibodies may be used.
 免疫チェックポイント阻害剤の投与方法は、抗がん剤と同一経路であっても異なる経路であってもよい。免疫チェックポイント阻害剤の投与方法としては、特に制限はなく、経口投与、静脈内注射、動脈内注射、皮下注射、皮内注射、腹腔内注射、筋肉内注射、髄腔内注射、経皮投与または経皮的吸収等の非経口的投与等が挙げられる。中でも、腫瘍組織内だけでなく腫瘍所属リンパ節内での作用も期待されることから、免疫チェックポイント阻害剤の投与方法としては、腹腔内注射、または静脈内注射であることが好ましく、全身へ作用する静脈内注射であることがより好ましい。 The administration method of the immune checkpoint inhibitor may be the same route as the anticancer drug or a different route. The administration method of the immune checkpoint inhibitor is not particularly limited, and oral administration, intravenous injection, intraarterial injection, subcutaneous injection, intradermal injection, intraperitoneal injection, intramuscular injection, intrathecal injection, transdermal administration. Alternatively, parenteral administration such as percutaneous absorption may be used. In particular, since it is expected to act not only in the tumor tissue but also in the lymph nodes draining the tumor, the administration method of the immune checkpoint inhibitor is preferably intraperitoneal injection or intravenous injection, and systemic injection. More preferably, it is an intravenous injection that works.
 抗がん剤および免疫チェックポイント阻害剤の投与順序は特に制限がなく、抗がん剤および免疫チェックポイント阻害剤を同時に投与してもよいし、時間差をおいて投与してもよい。また、時間差をおいて投与する場合には、抗がん剤を投与後に免疫チェックポイント阻害剤を投与してもよいし、免疫チェックポイント阻害剤投与後に抗がん剤を投与してもよい。 The order of administration of the anticancer drug and immune checkpoint inhibitor is not particularly limited, and the anticancer drug and immune checkpoint inhibitor may be administered simultaneously or at different times. Moreover, when administering with a time lag, the immune checkpoint inhibitor may be administered after administration of the anticancer agent, or the anticancer agent may be administered after administration of the immune checkpoint inhibitor.
 免疫チェックポイント阻害剤は、T細胞上の免疫チェックポイント受容体-リガンドに作用し、効果を得るものである。T細胞を誘導した後に免疫チェックポイント阻害剤を投与することで、抗腫瘍効果の増大がより発揮されると考えられることから、抗がん剤を投与した後に、免疫チェックポイント阻害剤を投与することが好ましい。このため、抗がん剤は、免疫チェックポイント阻害剤が投与される前に投与されることが好ましい。なお、時間差をおいての投与態様においては、時間差をおいての投与であれば、投与経路は同一であっても異なるものであってもよい。 Immune checkpoint inhibitors act on immune checkpoint receptors-ligands on T cells to obtain their effects. By administering an immune checkpoint inhibitor after inducing T cells, it is believed that an increase in the antitumor effect is exhibited more, so an immune checkpoint inhibitor is administered after administering an anticancer drug. is preferred. Therefore, the anticancer drug is preferably administered before the immune checkpoint inhibitor is administered. In addition, in the mode of administration with a time lag, administration routes may be the same or different as long as they are administered with a time lag.
 抗がん剤および免疫チェックポイント阻害剤の製剤としては、抗がん剤および免疫チェックポイント阻害剤を含有する組成物(単一の製剤)、抗がん剤および免疫チェックポイント阻害剤を別々に製剤化しての組み合わせ(薬剤キット)などが挙げられる。好適な形態は、抗がん剤および免疫チェックポイント阻害剤を別々に製剤化しての組み合わせである。すなわち、本態様においては、抗がん剤と、投与デバイスと、免疫チェックポイント阻害剤と、を組み合わせた治療デバイスキットであることが好ましい。また、当該薬剤キットにおいては、抗がん剤、および免疫チェックポイント阻害剤の投与順序は特に制限がなく、抗がん剤および免疫チェックポイント阻害剤を同時に投与してもよいし、時間差をおいて投与してもよい。また、時間差をおいて投与する場合には、抗がん剤を投与後に免疫チェックポイント阻害剤を投与してもよいし、免疫チェックポイント阻害剤投与後に抗がん剤を投与してもよい。抗腫瘍効果の増大がより発揮されることから、抗がん剤を投与し、その後免疫チェックポイント阻害剤を投与することが好ましい。かような態様により、顕著な抗腫瘍効果を得ることができる。なお、時間差をおいての投与態様においては、時間差をおいての投与であれば、投与経路は同一であっても異なるものであってもよい。また、当該治療デバイスキットは、がん治療または予防のための治療デバイスキットであることが好ましい。 As formulations of anticancer agents and immune checkpoint inhibitors, compositions containing anticancer agents and immune checkpoint inhibitors (single formulation), anticancer agents and immune checkpoint inhibitors separately Combinations (drug kits) and the like are exemplified. A preferred form is a combination of separately formulated anticancer agents and immune checkpoint inhibitors. That is, in this aspect, it is preferable that the therapeutic device kit is a combination of an anticancer drug, an administration device, and an immune checkpoint inhibitor. In addition, in the drug kit, the order of administration of the anticancer drug and the immune checkpoint inhibitor is not particularly limited, and the anticancer drug and the immune checkpoint inhibitor may be administered at the same time, or may be administered at different times. may be administered at any time. Moreover, when administering with a time lag, the immune checkpoint inhibitor may be administered after administration of the anticancer agent, or the anticancer agent may be administered after administration of the immune checkpoint inhibitor. It is preferable to administer the anticancer drug and then administer the immune checkpoint inhibitor, since the antitumor effect is more enhanced. A remarkable antitumor effect can be obtained by such an embodiment. In the mode of administration with a time lag, the administration routes may be the same or different as long as they are administered with a time lag. Moreover, the therapeutic device kit is preferably a therapeutic device kit for cancer therapy or prevention.
 抗がん剤および免疫チェックポイント阻害剤を併用投与する場合の投与形態としては、それぞれに適した投与経路、投与頻度及び投与量を採用する限りは特に限定されず、例えば、(1)抗がん剤および免疫チェックポイント阻害剤を含有する組成物、即ち、単一の製剤としての投与、(2)抗がん剤および免疫チェックポイント阻害剤を別々に製剤化して得られる2種の製剤の同一投与経路での同時投与、(3)抗がん剤および免疫チェックポイント阻害剤を別々に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、(4)抗がん剤および免疫チェックポイント阻害剤を別々に製剤化して得られる2種の製剤の異なる投与経路での同時投与、(5)抗がん剤および免疫チェックポイント阻害剤を別々に製剤化して得られる2種の製剤の異なる投与経路での時間差をおいての投与等が挙げられる。投与する薬剤はこの2剤のみに限らず、さらにその他の薬剤を加えてもよい。 The dosage form when an anticancer agent and an immune checkpoint inhibitor are administered in combination is not particularly limited as long as an administration route, administration frequency and dosage suitable for each are adopted. A composition containing a cancer drug and an immune checkpoint inhibitor, that is, administration as a single formulation, (2) two formulations obtained by separately formulating an anticancer drug and an immune checkpoint inhibitor Simultaneous administration by the same administration route, (3) administration of two formulations obtained by separately formulating an anticancer agent and an immune checkpoint inhibitor with a time lag by the same administration route, (4) anti-cancer Simultaneous administration of two formulations obtained by separately formulating a cancer drug and an immune checkpoint inhibitor through different administration routes; Examples include administration of two formulations with a time lag through different administration routes. The drugs to be administered are not limited to these two drugs, and other drugs may be added.
 併用投与における好ましい投与形態としては、抗がん剤を投与した後に、免疫チェックポイント阻害剤を投与する方法である。 A preferred mode of administration for combined administration is to administer the immune checkpoint inhibitor after administering the anticancer drug.
 本発明の他の態様は、治療または予防を必要とする対象者に、免疫原性細胞死を引き起こす抗がん剤の有効量を投与デバイスを用いて、直接腫瘍組織に投与することを含む、疾患の治療または予防方法である。また、他の態様は、治療または予防を必要とする対象者に、免疫原性細胞死を引き起こす抗がん剤の有効量を投与デバイスを用いて、直接腫瘍組織に投与すること、および免疫チェックポイント阻害剤の有効量を投与することを含む、疾患の治療または予防方法である。特に疾患ががんであることが好ましい。 Another aspect of the present invention includes administering an effective amount of an anticancer agent that causes immunogenic cell death to a subject in need of treatment or prevention directly into tumor tissue using an administration device, It is a method of treating or preventing disease. In another aspect, a subject in need of treatment or prevention is administered an effective amount of an anticancer drug that causes immunogenic cell death using an administration device directly to tumor tissue, and an immune check is performed. A method of treating or preventing a disease comprising administering an effective amount of a point inhibitor. It is particularly preferred that the disease is cancer.
 上記の対象者は、哺乳動物が好ましく、特に好ましくはヒトである。 The above subjects are preferably mammals, particularly preferably humans.
 また、抗がん剤と、免疫チェックポイント阻害剤と、を時間差をおいて投与する場合、抗腫瘍効果を増強するに足る間隔で薬剤を投与することが必要である。具体的な投与間隔は、患者の症状、年令、性別等を考慮して個々の場合に応じて適宜決定される。 In addition, when the anticancer drug and the immune checkpoint inhibitor are administered with a time lag, it is necessary to administer the drug at intervals sufficient to enhance the antitumor effect. Specific dosing intervals are appropriately determined on a case-by-case basis, taking into consideration the patient's symptoms, age, sex, and the like.
 また、抗がん剤および免疫チェックポイント阻害剤は、一定のサイクルで投与してもよい。投与サイクルとしては、併用に適するように投与サイクルを適宜調整することが好ましい。具体的な、投与頻度、投与量、点滴投与時間、投与サイクル等は、患者の症状、年令、性別等を考慮して個々の場合に応じて適宜決定される。 In addition, anticancer drugs and immune checkpoint inhibitors may be administered in a fixed cycle. As for the administration cycle, it is preferable to adjust the administration cycle appropriately so as to suit the combined use. Specific administration frequency, dosage, drip administration time, administration cycle, and the like are appropriately determined according to individual cases, taking into account the patient's symptoms, age, sex, and the like.
 免疫チェックポイント阻害剤の単独投与については、従来公知であり、例えば、2~3mg/kg/Dayの範囲で、1日1回から数回投与される。 The single administration of immune checkpoint inhibitors is conventionally known, and is administered, for example, once to several times a day in the range of 2-3 mg/kg/day.
 抗がん剤および免疫チェックポイント阻害剤を併用して用いる場合は、通常投与される投与経路により、通常単独で投与される場合と同じ投与量若しくはそれより低用量(例えば、単独で投与した場合の最高投与量の0.10~0.99倍)に設定することができる。 When an anticancer drug and an immune checkpoint inhibitor are used in combination, the dosage is the same as when administered alone or lower than the usual administration route (e.g., when administered alone 0.10 to 0.99 times the maximum dose of ).
 免疫チェックポイント阻害剤および抗がん剤の投与量の重量(mg/kg/Day)比についても、患者の症状、年令、性別等を考慮して個々の場合に応じて適宜決定される。 The dosage weight (mg/kg/Day) ratio of immune checkpoint inhibitors and anticancer drugs is also determined appropriately on an individual basis, taking into account the patient's symptoms, age, gender, etc.
 本発明の効果を、以下の実施例および比較例を用いて説明する。実施例において「部」あるいは「%」の表示を用いる場合があるが、特に断りがない限り、「重量部」あるいは「重量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行われる。 The effects of the present invention will be explained using the following examples and comparative examples. Although "parts" or "%" may be used in the examples, "parts by weight" or "% by weight" are indicated unless otherwise specified. Moreover, unless otherwise specified, each operation is performed at room temperature (25° C.).
 [1.マウス薬効評価]
 A:材料
 1.被験物質
 以下の表1に記載の被験物質および溶媒を用いた。
[1. Mouse efficacy evaluation]
A: Material 1. Test Substances Test substances and solvents described in Table 1 below were used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <被験物質投与液の調製>
・Anti-mouse PD-1 antibody(αPD-1)投与液調製(100μg/200μL/head)
 αPD-1(7.24mg/mL)溶液を0.88mLとり11.8mLのPBSに加え混和し、0.5mg/mLとした。
・Doxorubicin(以下、単にDoxとも称する)投与液調製
 Dox10mg/mL溶液:アドリアシン注用10(1バイアル中に日局ドキソルビシン塩酸塩10mg(力価)を含有)のバイアルに生理食塩水(Saline)1.0mLを注入し粉末を溶解した。
<Preparation of test substance administration solution>
・Anti-mouse PD-1 antibody (αPD-1) administration solution preparation (100 μg/200 μL/head)
0.88 mL of αPD-1 (7.24 mg/mL) solution was taken and mixed with 11.8 mL of PBS to give 0.5 mg/mL.
・ Doxorubicin (hereinafter also simply referred to as Dox) administration solution preparation Dox 10 mg / mL solution: Adriacin Injection 10 (contains 10 mg (potency) of doxorubicin hydrochloride of the Japanese Pharmacopoeia in 1 vial) 1 physiological saline (Saline) 0 mL was injected to dissolve the powder.
 <腫瘍内投与溶液の調製>
 全例の体重を20gと仮定し、前述の10mg/mL溶液を以下の濃度に段階的に希釈した。
・1mg/kg(0.020mg/20μL/site,Dox1.0mg/mL)
 Dox10mg/mL溶液を0.5mLとり4.5mLの生理食塩水に加え混和した。
・0.3mg/kg(0.006mg/20μL/site,Dox0.3mg/mL)
 Dox1.0mg/mL溶液を1.5mLとり3.5mLの生理食塩水に加え混和した。
・0.1mg/kg(0.002mg/20μL/site,Dox0.1mg/mL)
 Dox0.3mg/mL溶液を1.0mLとり2.0mLの生理食塩水に加え混和した。
<Preparation of intratumoral administration solution>
Assuming a body weight of 20 g for all cases, the above 10 mg/mL solution was serially diluted to the following concentrations.
・1 mg/kg (0.020 mg/20 μL/site, Dox 1.0 mg/mL)
0.5 mL of the Dox 10 mg/mL solution was added to 4.5 mL of physiological saline and mixed.
・ 0.3 mg / kg (0.006 mg / 20 μL / site, Dox 0.3 mg / mL)
1.5 mL of Dox 1.0 mg/mL solution was added to 3.5 mL of physiological saline and mixed.
・ 0.1 mg / kg (0.002 mg / 20 μL / site, Dox 0.1 mg / mL)
1.0 mL of Dox 0.3 mg/mL solution was added to 2.0 mL of physiological saline and mixed.
 <静脈内投与溶液の調製>
 前述の10mg/mL溶液を以下の濃度に段階希釈した。
・1mg/kg(1mg/5mL/kg,Dox0.2mg/mL)
 Dox10mg/mL溶液を0.3mLとり14.7mLの生理食塩水に加え混和した。
・0.3mg/kg(0.3mg/5mL/kg,Dox0.06mg/mL)
 Dox0.2mg/mL溶液を3mLとり7mLの生理食塩水に加え混和した。
<Preparation of solution for intravenous administration>
The 10 mg/mL solution described above was serially diluted to the following concentrations.
・1 mg/kg (1 mg/5 mL/kg, Dox 0.2 mg/mL)
0.3 mL of Dox 10 mg/mL solution was added to 14.7 mL of physiological saline and mixed.
・0.3 mg/kg (0.3 mg/5 mL/kg, Dox 0.06 mg/mL)
3 mL of Dox 0.2 mg/mL solution was added to 7 mL of physiological saline and mixed.
 2.使用動物
 雌性BALB/cAnNCrlCrljマウス(導入時:6週齢、日本チャールス・リバー株式会社)216匹を用いた。微生物統御SPFのマウスを使用した。
2. Animals Used 216 female BALB/cAnNCrlCrlj mice (at the time of introduction: 6 weeks old, Charles River Laboratories Japan, Inc.) were used. Microbial-regulated SPF mice were used.
 3.使用薬物及び試薬
 細胞培養に必要な血清はFBS(Gibco,Cat No.26140-079、56℃30min非働化済)を使用した。RPMI-1640(型番;A10491-01)、0.25%Trypsin-EDTA(型番;25200-056)、Penicillin-Streptomycin(型番;15140-122)、PBS(型番;14190-144)はThermo Fisher Scientific社より、イソフルラン吸入麻酔液はマイラン製薬株式会社より購入し、使用した。
3. Drugs and Reagents Used FBS (Gibco, Cat No. 26140-079, inactivated at 56° C. for 30 minutes) was used as serum necessary for cell culture. RPMI-1640 (model number; A10491-01), 0.25% Trypsin-EDTA (model number; 25200-056), Penicillin-Streptomycin (model number; 15140-122), PBS (model number; 14190-144) from Thermo Fisher Scientific Therefore, isoflurane inhalation anesthetic was purchased from Mylan Pharmaceutical Co., Ltd. and used.
 B.実験方法
 1.群構成
 216匹に癌細胞移植を行い、移植日をDay0としてDay8以降、下記の群構成(計130匹)で実施した。PBSあるいはαPD-1を腹腔内投与(i.p.)し、SalineあるいはDoxは静脈内投与(i.v.)あるいは腫瘍内投与(i.t.)した。投与はDay8、11および14の計3回実施した。
B. Experimental method 1 . Group Composition Cancer cell transplantation was performed in 216 animals, and the following group composition (total of 130 animals) was carried out from Day 8 onward, with the date of transplantation being Day 0. PBS or αPD-1 was administered intraperitoneally (ip), and Saline or Dox was administered intravenously (iv) or intratumorally (it). Administration was performed three times on Days 8, 11 and 14.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 2.細胞培養
 凍結細胞(CT26.WT,ATCC,CRL-2638)を約37℃の温浴中で融解し、37℃に加温した培養液(10%FBS、Penicillin-Streptomycinを添加したRPMI-1640)に入れた。その後、KUBOTA テーブルトップ冷却遠心機2810(SNシャープJ90124-A000)を用いて遠心分離(1000rpm、3min、室温)した。上清を捨て、培養液を加えピペッティングでよく細胞を懸濁した。培養フラスコに移し、37℃、5%CO濃度の環境条件下で培養した。継代は70~90%confluentになった時点で行った。培養フラスコから培養液を除去し、PBSで洗浄後、0.25% Trypsin-EDTA溶液で細胞を剥離した。培養液を加え遠心操作にて上清を捨て、細胞を培養液にて適宜希釈を行い培養した。細胞は必要細胞数に達するように調節して継代培養を行い、必要細胞数に達した後に移植に用いた。
2. Cell culture Frozen cells (CT26.WT, ATCC, CRL-2638) were thawed in a hot bath at about 37°C and added to the culture medium (10% FBS, RPMI-1640 with Penicillin-Streptomycin added) heated to 37°C. I put it in. Then, it was centrifuged (1000 rpm, 3 min, room temperature) using a KUBOTA table top cooling centrifuge 2810 (SN Sharp J90124-A000). The supernatant was discarded, the culture medium was added, and the cells were well suspended by pipetting. Transferred to a culture flask and cultured under environmental conditions of 37° C. and 5% CO 2 concentration. Passaging was performed when the cells reached 70-90% confluence. After removing the culture medium from the culture flask and washing with PBS, the cells were detached with a 0.25% Trypsin-EDTA solution. A culture medium was added, the supernatant was discarded by centrifugation, and the cells were appropriately diluted with the culture medium and cultured. The cells were adjusted to reach the required number of cells, subcultured, and used for transplantation after reaching the required number of cells.
 3.癌細胞移植
 培養した細胞を0.25%Trypsin-EDTAで剥離した。前述の遠心機を用いて遠心分離(1000rpm、3min、4℃)し、上清を除去後、PBSで再懸濁した。トリパンブルー色素排除法により懸濁液中の生細胞数を算出した。その値をもとに冷蔵したPBSで希釈し、最終細胞懸濁液(1×10cells/mL)を調製した。調製した最終細胞懸濁液は移植直前まで氷上で保存した。体重を測定した動物(7週齢)216匹にイソフルラン麻酔下(導入時:2.0-2.5%,維持:1.5-2.0%,キャリアガス:室内空気)で、調製したCT26.WT細胞懸濁液(5×10cells/50μL/head)を23G×1’’の注射針(テルモ注射針、NN-2325R)を装着したツベルクリン用1mLシリンジ(テルモシリンジ,SS-01T)で右背部皮下に移植した。
3. Cancer Cell Transplantation Cultured cells were detached with 0.25% Trypsin-EDTA. After centrifugation (1000 rpm, 3 min, 4° C.) using the aforementioned centrifuge, the supernatant was removed and resuspended in PBS. The number of viable cells in suspension was calculated by the trypan blue dye exclusion method. Based on the value, it was diluted with refrigerated PBS to prepare a final cell suspension (1×10 7 cells/mL). The final cell suspension prepared was stored on ice until just prior to transplantation. 216 weighed animals (7 weeks old) were prepared under isoflurane anesthesia (induction: 2.0-2.5%, maintenance: 1.5-2.0%, carrier gas: room air). CT26. A WT cell suspension (5×10 5 cells/50 μL/head) was injected with a 1 mL syringe for tuberculin (Terumo Syringe, SS-01T) equipped with a 23G×1″ injection needle (Terumo injection needle, NN-2325R). It was implanted subcutaneously on the right back.
 4.群分け
 移植日をDay0とし、Day8の腫瘍体積が約41mmから約145mmの動物を選抜し、「B.1.」に記載の群構成に各群の腫瘍体積の平均値が均一になるように群分けを行った。群分け時、腫瘍体積の小さすぎるもの、大きすぎるもの、腫瘍が2つに分かれているもの、あるいは腫瘍の形が扁平な個体は群分け除外動物とした。
4. Grouping The day of transplantation is Day 0, animals with a tumor volume of about 41 mm 3 to about 145 mm 3 on Day 8 are selected, and the average tumor volume of each group is uniform according to the group composition described in "B.1." The groups were divided as follows. At the time of grouping, animals with tumors that were too small or too large, those with tumors that were divided into two, or those with flattened tumors were excluded from grouping.
 5.腫瘍径測定
 Day8(群分け日)よりDay26(薬剤投与開始18日後)まで2日おきに腫瘍の短径および長径を測定し、下記の式から腫瘍体積を求めた。
5. Measurement of Tumor Diameter From Day 8 (grouping day) to Day 26 (18 days after the start of drug administration), the minor axis and major axis of the tumor were measured every two days, and the tumor volume was calculated from the following formula.
 腫瘍体積(mm)=1/2×L×W×W
 L:腫瘍長径(mm),W:腫瘍短径(mm)。
Tumor volume ( mm3 ) = 1/2 x L x W x W
L: long diameter of tumor (mm), W: short diameter of tumor (mm).
 6.被験物質の投与
 PBSあるいはαPD-1は200μL/headにて腹腔内投与し、投与残余液は廃棄した。腹腔内投与には、26G×1/2’’の注射針(テルモ注射針,NN-2613S)を装着したツベルクリン用1mLシリンジ(テルモシリンジ,SS-01T)を使用した。SalineあるいはDoxは尾静脈内投与または腫瘍内投与した。尾静脈内投与では直近の体重値を基に5mL/kgで投与し、腫瘍内投与では、体重を20gと仮定し20μL/siteを投与した。尾静脈内投与には針植え込み式シリンジ(27G×1/2’’、FNシリンジ、SS-010F2713)を使用し、腫瘍内投与には針植え込み式シリンジ(29G×1/2’’、FNシリンジ、SS-010F2913)を使用した。いずれのVehicleあるいは被験物質とも投与はDay8、11及び14の計3回実施した。また、3,5,8,10,12群においては、αPD-1の投与はDox投与後1時間以上空けた後に実施した。
6. Administration of Test Substances PBS or αPD-1 was intraperitoneally administered at 200 μL/head, and the remaining solution after administration was discarded. For intraperitoneal administration, a 1 mL syringe for tuberculin (Terumo Syringe, SS-01T) fitted with a 26G×1/2″ injection needle (Terumo injection needle, NN-2613S) was used. Saline or Dox was administered via tail vein or intratumor. In the tail vein administration, administration was performed at 5 mL/kg based on the most recent body weight value, and in the intratumoral administration, administration was performed at 20 μL/site assuming a body weight of 20 g. A needle-implanted syringe (27G×1/2″, FN syringe, SS-010F2713) was used for tail vein administration, and a needle-implanted syringe (29G×1/2″, FN syringe) was used for intratumoral administration. , SS-010F2913) was used. Administration was carried out three times on Days 8, 11 and 14 with any vehicle or test substance. In Groups 3, 5, 8, 10 and 12, αPD-1 was administered after an interval of 1 hour or more after Dox administration.
 7.一般状態の観察及び腫瘍表面の状態観察
 一般状態は動物導入日から最終腫瘍径測定日まで1日1回、腫瘍表面の状態は移植翌日(Day1)から最終腫瘍径測定日(Day26)まで1日1回観察した。
7. Observation of general condition and tumor surface condition Observation of general condition once a day from the day of animal introduction to the last day of tumor diameter measurement. Observed once.
 8.データ解析
 統計解析ソフトGraphPad Prism 8 (Version8.3.0,GraphPad Software,LLC)およびMicrosoft Office Excel 2016を用いて、グラフ化および統計解析を行った。
8. Data Analysis Graphing and statistical analysis were performed using statistical analysis software GraphPad Prism 8 (Version 8.3.0, GraphPad Software, LLC) and Microsoft Office Excel 2016.
 各群の腫瘍体積の結果はDay20時点の値を採用し、1群「Saline i.v.+PBS i.p.」のNo.3および13群「αPD-1 100 μg/head i.p.」のNo.4の個体はDay17時点で人道的エンドポイントに達したため除外し、各群の平均値および標準誤差(Mean ± Standard error)を示した。結果を下記表2および図1に示す。 For the results of the tumor volume of each group, the value at the time of Day 20 was adopted, and the No. 1 group "Saline iv + PBS ip" was used. No. 3 and 13 groups "αPD-1 100 μg/head i.p." 4 individuals reached the humane endpoint on Day 17 and were excluded, and the mean value and standard error (Mean ± Standard error) of each group are shown. The results are shown in Table 2 below and FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 また、以下の群において、Day20時点でのαPD-1(i.p.)の併用効果の検証、Doxの投与ルートによる薬効差の検証を目的とし、Unpaired t test(v.s. *;P<0.05, **;P<0.01, ***;P<0.001)を用いて有意差検定を実施した。 In addition, in the following groups, an unpaired test (vs. *; P <0.05, **; P<0.01, ***; P<0.001) was used to perform a significant difference test.
 結果は以下の通りであった。 The results were as follows.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 また、人道的エンドポイント(腫瘍体積が体重の10%を超えた時点に達した時点)を死亡と仮定し、1、4、5、6、11、12、13群について生存曲線を前述のGraphPad Prism 8を用いて図示した。結果を図2に示す。 In addition, assuming that the humane endpoint (when the tumor volume reaches 10% of the body weight) is death, the survival curves for groups 1, 4, 5, 6, 11, 12, and 13 are shown in the GraphPad described above. Illustrated using Prism 8. The results are shown in FIG.
 以上の結果より、ドキソルビシンを腫瘍組織に直接投与した群では、高い抗腫瘍効果を有することが理解される。また、免疫チェックポイント阻害剤を併用することで、さらに高い抗腫瘍効果が得られることがわかる。特にドキソルビシン1mg/kgと免疫チェックポイント阻害剤の併用投与においては、特に抗腫瘍効果が高く、単独では抗腫瘍効果が見られない投与量での免疫チェックポイント阻害剤投与で、抗がん剤の腫瘍内投与単独と比較して抗腫瘍効果の増強が見られたことから、抗がん剤および免疫チェックポイント阻害剤、各単独の相乗的効果となっている。免疫療法においては、作用機序の異なる薬剤を併用したとしても必ずしも抗腫瘍効果の増強が得られるとは限らない。このような事情を考慮すると、組み合わせによる相乗効果は驚くべき結果であると言える。 From the above results, it is understood that the group in which doxorubicin was directly administered to the tumor tissue has a high antitumor effect. Moreover, it can be seen that a higher antitumor effect can be obtained by using an immune checkpoint inhibitor in combination. Especially in the combined administration of doxorubicin 1 mg / kg and immune checkpoint inhibitors, the antitumor effect is particularly high, and the immune checkpoint inhibitor administration at a dose at which the antitumor effect is not seen alone, the anticancer drug Since the antitumor effect was enhanced compared to intratumoral administration alone, it is a synergistic effect of the anticancer drug and the immune checkpoint inhibitor alone. In immunotherapy, even if drugs with different mechanisms of action are used in combination, the antitumor effect is not necessarily enhanced. Considering these circumstances, it can be said that the synergistic effect of the combination is a surprising result.
 [2.ラットPK試験]
 A.実験方法
 1.使用動物
動物種:ラット,系統:Crl:CD(SD),性別:雌,週齢:5週齢,微生物統御:SPF
 2.使用試薬
[2. Rat PK test]
A. Experimental method 1 . Animal Species Used: Rat, Strain: Crl: CD (SD), Gender: Female, Age: 5 Weeks, Microbial Control: SPF
2. Reagent used
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 3.群構成
 群構成は腫瘍内投与群及び静脈内投与群の2群とした。
3. Group composition The group composition consisted of two groups, an intratumoral administration group and an intravenous administration group.
 4.移植用細胞調製
 13762-MAT-BIII(ATCC CRL-1666,lot.70003533)ストック細胞を液体窒素タンクから取り出し37℃の温浴にて溶解した。溶解したら直ちに,DMEM培地10mLの入ったチューブに移した。KUBOTAテーブルトップ冷却遠心機5500遠心(1000rpm,5分,室温)により上清を除去しDMEM培地 5mLに再懸濁した。DMEM培地10mL添加済みのT75フラスコに細胞懸濁液を加えCOインキュベータ(37℃,5%CO,以下同)に入れた。
4. Preparation of Cells for Transplantation 13762-MAT-BIII (ATCC CRL-1666, lot.70003533) stock cells were removed from a liquid nitrogen tank and lysed in a 37° C. hot bath. Immediately after dissolution, it was transferred to a tube containing 10 mL of DMEM medium. The supernatant was removed by KUBOTA table top refrigerated centrifuge 5500 (1000 rpm, 5 minutes, room temperature) and resuspended in 5 mL of DMEM medium. The cell suspension was added to a T75 flask to which 10 mL of DMEM medium had been added, and the flask was placed in a CO2 incubator (37°C, 5% CO2 , hereinafter the same).
 3日後、T75フラスコより培地とともに細胞を50mLチューブに回収し、DMEM培地約10mLを用いて残りの細胞を50mLチューブに回収した。前述の遠心機を用いて遠心後(1000rpm,5分,室温)、上清を除去した。DMEM培地10mLを加え再懸濁し血球計算盤を用いて計測した結果、約2.3×10個/mLの細胞懸濁液を得た。細胞数は10mL DMEM培地を入れたT75フラスコ1枚に1mL加えCOインキュベータに入れた。翌日、T75フラスコから培地とともに回収した。全量約35mLのうち2mLをとり、DMEM培地10mLを加えたT75フラスコ1枚に移した。 After 3 days, the cells were collected from the T75 flask together with the medium into a 50 mL tube, and about 10 mL of DMEM medium was used to collect the remaining cells into a 50 mL tube. After centrifugation using the aforementioned centrifuge (1000 rpm, 5 minutes, room temperature), the supernatant was removed. The cells were resuspended by adding 10 mL of DMEM medium and counted using a hemocytometer, resulting in a cell suspension of about 2.3×10 6 cells/mL. The cell count was obtained by adding 1 mL to one T75 flask containing 10 mL DMEM medium and placing it in a CO 2 incubator. The following day, the T75 flask was harvested along with the medium. Of the total volume of about 35 mL, 2 mL was taken and transferred to one T75 flask containing 10 mL of DMEM medium.
 4日後、1枚のT75フラスコより培地とともに細胞を回収した。さらにDMEM培地約5mLをT75フラスコに加え残りの細胞を回収した(2回)。前述の遠心機を用いて遠心後(1000rpm,5分,室温)、上清を除去しDMEM培地10mLを加え再懸濁し約3.7×10個/mLの細胞懸濁液を得た。このうち約1mLずつをT75フラスコ(DMEM培地10mL入り)2枚に加えCOインキュベータに入れた。 After 4 days, the cells were harvested together with the medium from one T75 flask. Further, about 5 mL of DMEM medium was added to the T75 flask to collect the remaining cells (twice). After centrifugation using the aforementioned centrifuge (1000 rpm, 5 minutes, room temperature), the supernatant was removed and 10 mL of DMEM medium was added for resuspension to obtain a cell suspension of about 3.7×10 6 cells/mL. Approximately 1 mL of this was added to two T75 flasks (containing 10 mL of DMEM medium) and placed in a CO 2 incubator.
 3日後、2枚のT75フラスコより培地とともに細胞を回収した。さらにDMEM培地約5mLを各T75フラスコに加え残りの細胞を回収した(2回)。前述の遠心機を用いて遠心後(1000rpm,5分,室温)、上清を除去しDMEM培地20mLを加え再懸濁し約3.3×10個/mLの細胞懸濁液を得た。このうち約0.6mLずつをT75フラスコ(DMEM培地10mL入り)15枚に加えCOインキュベータに入れた。 After 3 days, the cells were harvested together with the medium from two T75 flasks. Additional approximately 5 mL of DMEM medium was added to each T75 flask to collect the remaining cells (twice). After centrifugation using the aforementioned centrifuge (1000 rpm, 5 minutes, room temperature), the supernatant was removed and 20 mL of DMEM medium was added for resuspension to obtain a cell suspension of approximately 3.3×10 6 cells/mL. Approximately 0.6 mL of this was added to 15 T75 flasks (containing 10 mL of DMEM medium) and placed in a CO 2 incubator.
 3日後に15枚のT75フラスコより培地とともに細胞を回収した。さらにDMEM培地約5mLを各T75フラスコに加え残りの細胞を回収した(2回)。前述の遠心機を用いて遠心後(1000rpm,5分,室温)上清を除去しDMEM培地10mLを加え再懸濁し約3.1×10個/mLの細胞懸濁液を得た。この細胞懸濁液8mLをとり前述の遠心機を用いて遠心後(1000rpm,5分,室温)、上清を除去しPBS6mLを加え再懸濁し約4×10個/mLの細胞懸濁液を得た。 After 3 days, the cells were collected together with the medium from 15 T75 flasks. Additional approximately 5 mL of DMEM medium was added to each T75 flask to collect the remaining cells (twice). After centrifugation using the aforementioned centrifuge (1000 rpm, 5 minutes, room temperature), the supernatant was removed and 10 mL of DMEM medium was added for resuspension to obtain a cell suspension of about 3.1×10 7 cells/mL. 8 mL of this cell suspension was taken and centrifuged using the aforementioned centrifuge (1000 rpm, 5 minutes, room temperature). got
 5.細胞移植
 側腹部皮膚をつまみ、13762-MAT-BIII細胞を一匹につき一箇所、一箇所あたり約4×10cells/100μL 皮下移植した。
5. Cell Transplantation The flank skin was pinched and 13762-MAT-BIII cells were implanted subcutaneously at one site per animal, at about 4×10 6 cells/100 μL per site.
 6.腫瘍径計測・群分け
 細胞移植後4、7、9日目に細胞移植時と同様の麻酔下で、側腹部に形成された腫瘍サイズをノギスを用いて、長径および短径を一個体につき一回計測した。腫瘍サイズについては長径×(短径)÷2の式により算出した。9日目の腫瘍サイズをもとに大きい方から順に静脈内投与群及び腫瘍内投与群にそれぞれ2匹および3匹選定した。
6. Tumor diameter measurement and grouping On the 4th, 7th, and 9th days after cell transplantation, under the same anesthesia as during cell transplantation, the size of tumors formed in the flanks was measured using a vernier caliper, and the major and minor diameters were measured once per animal. measured times. The tumor size was calculated by the formula of major axis×(shorter axis) 2 ÷2. Based on the tumor size on the 9th day, 2 mice and 3 mice were selected for the intravenous administration group and the intratumor administration group, respectively, in descending order of size.
 7.薬物投与
 薬物調製:アドリアシン注用10の2バイアルにそれぞれ生理食塩水1mLを加え溶解し合わせて約2mLのドキソルビシン塩酸塩10mg/mL溶液を調製した。ドキソルビシン塩酸塩10mg/mL溶液を1.6mLとり生理食塩水6.4mLを加えドキソルビシン塩酸塩2mg/mL溶液を調製した。体重を200gと仮定して1mg/kgの投与量となるように全個体についてドキソルビシン塩酸塩として0.2mg(薬液量0.1mL)投与した。
7. Drug administration Drug preparation: 1 mL of physiological saline was added to each of 2 vials of Adriacin Injection 10 and dissolved together to prepare about 2 mL of doxorubicin hydrochloride 10 mg/mL solution. To 1.6 mL of the 10 mg/mL solution of doxorubicin hydrochloride was added 6.4 mL of physiological saline to prepare a 2 mg/mL solution of doxorubicin hydrochloride. Assuming a body weight of 200 g, 0.2 mg of doxorubicin hydrochloride (drug volume: 0.1 mL) was administered to all individuals so that the dose would be 1 mg/kg.
 薬物投与:投与は、細胞移植時と同様の麻酔下に実施した。 Drug administration: Administration was performed under the same anesthesia as during cell transplantation.
 <腫瘍内投与>
(1)ドキソルビシン塩酸塩(2mg/mL)を充填したシリンジをシリンジポンプ(TE-361、テルモ株式会社)にセットし延長チューブを接続した。遠位端に三方活栓を接続しマノメータ及び延長チューブを接続した。
(2)延長チューブの遠位端に投与用注射針を接続した。投与前にライン内を薬液で満たした。
(3)腫瘍周辺に超音波プローブを当て、腫瘍の位置を確認後、注射針(22G)を穿刺し腫瘍内中央付近に針先があることを確認した。
(4)投与ライン内の圧力をモニターしながら、薬液をシリンジポンプで0.1mL/分で1分間投与した。投与開始から30分後まで穿刺したままライン内圧力のモニターを行った。投与開始30分後に注射針を抜去した。
(5)採血は薬物投与前、薬物投与開始後5、15、30、60分に頚静脈よりヘパリンナトリウム1μLを添加した1mLシリンジを用いて0.5mLずつ採血した(ヘパリンナトリウム終濃度5単位/mL)。
(6)60分後の採血終了後直ちに腹部大動脈を切開し安楽死処置をとった。
(7)腫瘍を取り出し重量を計測した。また,採取した血液は遠心分離し(1800g,10分,4℃),血漿を約0.2mL採取した。腫瘍組織及び血漿は送付まで超低温フリーザーで凍結保存した。
<Intratumor administration>
(1) A syringe filled with doxorubicin hydrochloride (2 mg/mL) was set on a syringe pump (TE-361, Terumo Corporation) and an extension tube was connected. A 3-way stopcock was connected to the distal end and a manometer and an extension tube were connected.
(2) A syringe needle for administration was connected to the distal end of the extension tube. The line was filled with the drug solution before administration.
(3) After confirming the position of the tumor by applying an ultrasonic probe to the periphery of the tumor, an injection needle (22G) was inserted to confirm that the tip of the needle was near the center of the tumor.
(4) While monitoring the pressure in the administration line, the drug solution was administered with a syringe pump at 0.1 mL/min for 1 minute. The pressure inside the line was monitored while the needle was punctured until 30 minutes after the start of administration. Thirty minutes after the start of administration, the injection needle was removed.
(5) Blood collection was performed before drug administration, and 5, 15, 30, and 60 minutes after the start of drug administration. mL).
(6) Immediately after the end of blood collection after 60 minutes, the abdominal aorta was incised and euthanasia was performed.
(7) The tumor was taken out and weighed. Also, the collected blood was centrifuged (1800 g, 10 minutes, 4° C.) and about 0.2 mL of plasma was collected. Tumor tissue and plasma were cryopreserved in an ultra-low temperature freezer until shipment.
 <静脈内投与>
(1)ドキソルビシン塩酸塩(2mg/mL)を充填したシリンジをシリンジポンプにセットし27G翼状針を接続した。
(2)投与前にライン内を薬液で満たした。
(3)翼状針を尾静脈に穿刺し薬液をシリンジポンプで0.1mL/分で1分間投与した。
<Intravenous administration>
(1) A syringe filled with doxorubicin hydrochloride (2 mg/mL) was set on a syringe pump and connected to a 27G butterfly needle.
(2) The inside of the line was filled with the drug solution before administration.
(3) A butterfly needle was punctured into the tail vein, and the drug solution was administered with a syringe pump at 0.1 mL/min for 1 minute.
 血漿採取、安楽死処置及びサンプル処理は腫瘍内投与時(5)、(6)及び(7)と同様に行った。 Plasma collection, euthanasia, and sample processing were performed in the same manner as (5), (6), and (7) during intratumoral administration.
 8.ドキソルビシン塩酸塩濃度測定
 <試薬>
 標準物質はDoxorubicin hydrochloride(製品番号:D1515,Sigma-Aldrich Corp.)を用いた。内標準物質はDaunorubicin hydrochloride(製品番号:30450,Sigma-Aldrich Corp.)を用いた。
8. Doxorubicin hydrochloride concentration measurement <Reagent>
Doxorubicin hydrochloride (product number: D1515, Sigma-Aldrich Corp.) was used as a standard substance. Daunorubicin hydrochloride (product number: 30450, Sigma-Aldrich Corp.) was used as an internal standard.
 <標準液の調製>
 標準原液はDoxorubicin hydrochloride 1.07mg(ドキソルビシンとして1.00mg,補正係数:1.07)を正確に秤量し、メタノールに溶解して100μg/mLとし、内標準原液はDaunorubicin hydrochloride 1.0mgを正確に秤量し、メタノールに溶解して100μg/mLとした。標準溶液は標準原液をメタノールで適宜希釈して、10.0~10000ng/mLに用時調製した。内標準溶液はメタノールで適宜希釈して200ng/mLに用時調製した。
<Preparation of standard solution>
The standard stock solution is Doxorubicin hydrochloride 1.07 mg (1.00 mg as doxorubicin, correction factor: 1.07) is accurately weighed and dissolved in methanol to 100 µg/mL, and the internal standard stock solution is Daunorubicin hydrochloride 1.0 mg. Weighed and dissolved in methanol to 100 μg/mL. The standard solution was prepared by appropriately diluting the standard stock solution with methanol to 10.0 to 10000 ng/mL before use. The internal standard solution was appropriately diluted with methanol and prepared to 200 ng/mL just before use.
 <前処理>
 血漿中ドキソルビシン濃度測定
 測定試料は室温で融解して撹拌後、遠心分離(2000×g,4℃,5分間)した上清20μLをミクロテストチューブに採取して実験に使用した。メタノールで除タンパク処理を行い、遠心分離後に上清をガラス試験管に移し替え、窒素気流下で濃縮乾固した。残渣に0.1%ギ酸-アセトニトリル(70:30,v/v)を加えて再溶解し、実測試料を作製した。
<Pretreatment>
Measurement of Doxorubicin Concentration in Plasma The measurement sample was thawed at room temperature, stirred, centrifuged (2000×g, 4° C., 5 minutes), and 20 μL of the supernatant was collected in a microtest tube and used for the experiment. Deproteinization was performed with methanol, and after centrifugation, the supernatant was transferred to a glass test tube and concentrated to dryness under a nitrogen stream. The residue was redissolved by adding 0.1% formic acid-acetonitrile (70:30, v/v) to prepare an actual measurement sample.
 組織中ドキソルビシン濃度測定
 ラット組織全重量に対して5倍量のメタノールを加えて破砕し、ホモジネートを調製した。使用時には組織ホモジネートを遠心分離(2000×g,4℃,5分間)した上清20μLをミクロテストチューブに採取して前処理に使用した。メタノールで除タンパク処理を行い、遠心分離後に上清をガラス試験管に移し替え、窒素気流下で濃縮乾固した。残渣に0.1%ギ酸-アセトニトリル(70:30,v/v)を加えて再溶解し、実測試料を作製した。
Measurement of Doxorubicin Concentration in Tissue A homogenate was prepared by adding 5 times the amount of methanol to the total weight of the rat tissue and crushing it. At the time of use, the tissue homogenate was centrifuged (2000×g, 4° C., 5 minutes), and 20 μL of the supernatant was collected in a microtest tube and used for pretreatment. Deproteinization was performed with methanol, and after centrifugation, the supernatant was transferred to a glass test tube and concentrated to dryness under a nitrogen stream. The residue was redissolved by adding 0.1% formic acid-acetonitrile (70:30, v/v) to prepare an actual measurement sample.
 測定
 LC-MS/MS装置にはUPLCシステム(Waters)及びトリプル四重極型質量分析装置API5000(Sciex)を用いた.データ処理ソフトはAnalyst ver.1.5.1を使用した。LC-MS/MS測定は以下の条件設定で実施した。
Measurement A UPLC system (Waters) and a triple quadrupole mass spectrometer API5000 (Sciex) were used as LC-MS/MS devices. The data processing software is Analyst ver. 1.5.1 was used. LC-MS/MS measurement was performed under the following conditions.
 定量下限
 血漿:10.0ng/mL(定量下限未満は「<10.0」とする)
 組織:60.0ng/g(定量下限未満は「<60.0」とする)
Lower limit of quantitation Plasma: 10.0 ng / mL (less than the lower limit of quantification shall be "<10.0")
Tissue: 60.0 ng/g (less than the lower limit of quantitation shall be “<60.0”)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 9.データ処理
 データ処理にはMicrosoft Office Excel 2016を用いた。
9. Data Processing Microsoft Office Excel 2016 was used for data processing.
 10.結果 10. result
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上記結果より、腫瘍内へのデバイスによる直接投与により、腫瘍内ドキソルビシン濃度が高いにもかかわらず、血漿中のドキソルビシン濃度が低いことがわかる。これにより、デバイスによる腫瘍内への直接投与は、高い抗腫瘍効果とともに全身性の副作用を低減できることが期待される。 From the above results, it can be seen that the plasma doxorubicin concentration is low due to the direct administration of the device into the tumor, despite the high intratumoral doxorubicin concentration. Therefore, direct administration into the tumor using the device is expected to reduce systemic side effects as well as a high antitumor effect.
 [3.フローサイトメトリーを用いたCTL活性化評価(マウス)]
 A.材料
 1.細胞・動物実験
 <細胞>
・CT26.WT(ATCC):Cat. CRL-2638, Lot. 70016788 / ATCC
 <動物>
・BALB/cAnNCrlCrlj mouse, female, 6 weeks入荷, 90匹:日本チャールス・リバー株式会社(使用開始は7 weeks)。微生物統御SPFのマウスを使用した。
[3. CTL activation evaluation using flow cytometry (mice)]
A. Materials 1. Cell/animal experiments <Cells>
- CT26. WT (ATCC): Cat. CRL-2638, Lot. 70016788 / ATCC
<animal>
· BALB/cAnNCrlCrlj mouse, female, 6 weeks arrival, 90 mice: Japan Charles River Co., Ltd. (began use in 7 weeks). Microbial-controlled SPF mice were used.
 <試薬> <reagent>
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 B.実験方法
 1.細胞・動物実験
 1.1.細胞培養
 10% FBS、1% Penicillin-Streptomycinを添加したRPMIを培地として調製した(以下、培地とする)。凍結CT26.WT細胞(Passage 2)を37℃で融解し、室温に戻した培地に添加し、混合した。その後、フロア型冷却遠心機(S700FR、久保田製作所)を用いて遠心分離(1,000rpm、5min、室温)し、上清を捨てた。そこへ、培地を加えピペッティングでよく細胞を懸濁した。培養フラスコに移し、37℃、5% CO濃度の環境条件下で培養した。細胞培養の開始から、継代は3日後(Passage 3)、5日後(Passage 4)、7日後(Passage 5)に行った。培養フラスコから継代培地を除去し、洗浄後、Trypsinで細胞を剥離し、培地を加えTrypsinの活性を止め、適宜培地で希釈して分散し、細胞を増殖させた。なお、細胞のカウントにはトリパンブルー色素排除法およびCountessIIを使用し、測定結果の生細胞数をもとに適宜希釈した。
B. Experimental method 1 . Cell/animal experiments 1.1. Cell Culture RPMI supplemented with 10% FBS and 1% Penicillin-Streptomycin was prepared as a medium (hereinafter referred to as medium). Frozen CT26. WT cells (Passage 2) were thawed at 37° C., added to room temperature medium and mixed. Then, it was centrifuged (1,000 rpm, 5 min, room temperature) using a floor-type refrigerated centrifuge (S700FR, Kubota Seisakusho), and the supernatant was discarded. A medium was added thereto, and the cells were well suspended by pipetting. Transferred to a culture flask and cultured under environmental conditions of 37° C. and 5% CO 2 concentration. From the start of cell culture, passage was carried out 3 days later (Passage 3), 5 days later (Passage 4), and 7 days later (Passage 5). After removing the subculture medium from the culture flask and washing, the cells were detached with Trypsin, the activity of Trypsin was stopped by adding the medium, and the cells were diluted with the appropriate medium and dispersed to proliferate the cells. The cells were counted using trypan blue dye exclusion method and Countess II, and diluted appropriately based on the number of living cells in the measurement results.
 1.2.細胞移植
 継代培養した細胞(Passage 5)を前述の遠心機を用いて遠心(1,000rpm、5min、室温)し、上清を除去後、培地で再懸濁し、継代の際の細胞カウント同様の方法で懸濁液中の生細胞数を算出した。その値をもとに細胞懸濁液を分取し、前述の遠心機を用いて遠心(1,000rpm、5min、室温)後、PBSに置換し、5×10cells/mLの細胞濃度になるように細胞懸濁液を調製した。90匹の動物にイソフルラン麻酔下(導入麻酔:2.0-3.0%、維持麻酔:2.0%)で、移植部位(右下腹部)を毛刈りし、調製したCT26.WT細胞を29G FNシリンジで右側腹部(前肢と後肢の間)の皮下に移植した(5×10cells/100μL/mouse)。移植日をDay0と定義した。
1.2. Cell Transplantation Subcultured cells (Passage 5) are centrifuged (1,000 rpm, 5 min, room temperature) using the centrifuge described above, the supernatant is removed, resuspended in medium, and the cells are counted during passage. The number of viable cells in suspension was calculated in a similar manner. Based on the value, the cell suspension was fractionated, centrifuged (1,000 rpm, 5 min, room temperature) using the above-mentioned centrifuge, replaced with PBS, and the cell concentration was adjusted to 5 × 10 6 cells / mL. A cell suspension was prepared so that Ninety animals were under isoflurane anesthesia (induction anesthesia: 2.0-3.0%, maintenance anesthesia: 2.0%), the graft site (lower right abdomen) was shaved, and prepared CT26. WT cells were implanted subcutaneously in the right flank (between the forelimb and hindlimb) using a 29G FN syringe (5×10 5 cells/100 μL/mouse). The day of transplantation was defined as Day0.
 1.3.腫瘍径測定
 群分け日(Day8)の腫瘍短径および長径を測定し、下記の式から腫瘍体積を求めた。
1.3. Measurement of Tumor Diameter Tumor minor diameter and major diameter were measured on the day of grouping (Day 8), and tumor volume was obtained from the following formula.
 腫瘍体積(mm)=1/2×L×W×W
 L:腫瘍長径(mm)、W:腫瘍短径(mm)
 1.4.群分け
 Day8の腫瘍体積をもとに群分けを実施した。この際、腫瘍が「いびつな形をしている個体」を除いた上で、腫瘍体積の最も小さいものから42匹除外した。担癌した90匹のうちの48匹を以下の群構成に腫瘍体積の平均値が均一になるように群分けを実施した。
Tumor volume ( mm3 ) = 1/2 x L x W x W
L: long diameter of tumor (mm), W: short diameter of tumor (mm)
1.4. Grouping Grouping was performed based on the tumor volume on Day 8. At this time, 42 animals with the smallest tumor volume were excluded after excluding "individuals with distorted tumors". Forty-eight of the 90 cancer-bearing mice were divided into the following groups so that the average tumor volume was uniform.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 1.5.被験物質投与液の調製
 <Dox投与液調製>
 Dox 10mg/mL:アドリアシン注用10のバイアルにSaline1.0mLを注入し粉末を溶解し、ストック溶液とした。
1.5. Preparation of test substance administration solution <Preparation of Dox administration solution>
Dox 10 mg/mL: Inject 1.0 mL of Saline into a 10 vial for adriacin injection to dissolve the powder and obtain a stock solution.
 <i.t.(腫瘍内投与)投与液>
 群分け時の2群および3群の平均体重(21g)をもとに以下の表13に従って前述の10g/mLストック溶液を9.5倍希釈し、Dox 1mg/kgのi.t.投与液とした。
<i. t. (Intratumoral Administration) Administering Solution>
Based on the average body weight (21 g) of Groups 2 and 3 at the time of grouping, the above 10 g/mL stock solution was diluted 9.5 times according to Table 13 below, and Dox 1 mg/kg i.v. t. It was used as an administration solution.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 <i.v.(尾静脈内投与)投与液>
 以下の表14に従って前述の10mg/mLストック溶液を100倍希釈し、Dox 1mg/kgのi.v.投与液とした。
<i. v. (Intra-tail vein administration) administration solution>
The above 10 mg/mL stock solution was diluted 100-fold according to Table 14 below, and Dox 1 mg/kg i.v. v. It was used as an administration solution.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 <αPD-1抗体(Anti-mouse PD-1 antibody)投与液調製>
 100μg/200μL/headになるようにαPD-1ストック溶液(7.24mg/mL)を0.50mLとり6.74mLのPBSに加え混和し、αPD-1抗体投与液(0.5mg/mL)とした。
<Preparation of solution for administration of αPD-1 antibody (Anti-mouse PD-1 antibody)>
0.50 mL of αPD-1 stock solution (7.24 mg/mL) was added to 6.74 mL of PBS and mixed to give a concentration of 100 μg/200 μL/head, and αPD-1 antibody administration solution (0.5 mg/mL) and bottom.
 1.6.投与
 群分け当日のDay8に前述の群構成に従い、1、2、3、6群はイソフルラン麻酔下(導入麻酔:2.0-3.0%、維持麻酔:2.0%)でSalineまたはDoxを29G FNシリンジを用いて20μL/headで腫瘍内投与(i.t.)した。4、5群は覚醒下でDoxを各個体の体重をもとに10mL/kgで投与量を算出し、27G注射針および1mLテルモシリンジを用いて尾静脈内投与(i.v.)した。
1.6. Administration On Day 8 of the day of grouping, according to the group composition described above, Groups 1, 2, 3, and 6 were administered Saline or Dox under isoflurane anesthesia (induction anesthesia: 2.0-3.0%, maintenance anesthesia: 2.0%). was administered intratumorally (it) at 20 μL/head using a 29G FN syringe. For Groups 4 and 5, Dox was administered in the tail vein (i.v.) with a 27G injection needle and a 1 mL thermosyringe after calculating the dosage of Dox at 10 mL/kg based on the body weight of each individual under wakefulness.
 SalineおよびDox投与後にPBSまたはαPD-1抗体を覚醒下でトップ二段針および1mLテルモシリンジを用いて200μL/headで腹腔内投与した。 After administration of Saline and Dox, PBS or αPD-1 antibody was intraperitoneally administered at 200 μL/head using a two-stage top needle and a 1 mL thermosyringe under awake conditions.
 1.7.腫瘍近傍のリンパ節の採材
 薬剤投与3日後のDay11にイソフルラン麻酔下(導入麻酔:2.0-3.0%、維持麻酔:2.0%)で放血により安楽死させ、皮下腫瘍近傍の鼠経リンパ節および腋窩リンパ節の2カ所を採材した。
1.7. Sampling of lymph nodes near the tumor On Day 11, 3 days after drug administration, the mice were euthanized by exsanguination under isoflurane anesthesia (induction anesthesia: 2.0-3.0%, maintenance anesthesia: 2.0%). Two sites were collected: inguinal and axillary lymph nodes.
 2.フローサイトメトリー
 2.1.リンパ節からの細胞単離
 採材したリンパ節をRPMI1640+10% FBS培地500μLを添加したチューブに入れ、バイオマッシャーIIを用いてすり潰した。すり潰したリンパ節をナイロンメッシュに通し、25mLチューブに回収した。RPMI1640+10% FBS培地1mLで再度バイオマッシャーII内のチューブを共洗し、ナイロンメッシュに通し、25mLチューブに回収した。回収したチューブを400×g,4℃,5minで遠心後、上清をデカントし、タッピングで細胞をほぐした。血液の混入を認めたサンプルは、溶血剤(ACK Lysing Buffer)1mLを添加し、懸濁させた後、1~2min室温で静置した(尚、血液の混入のないサンプルはこの操作は行わなかった)。RPMI1640+10% FBS9mLを添加し、400×g,4℃,5minで遠心後、上清をデカントし、タッピングで細胞をほぐした。溶血残りがないことを確認し、PBE buffer(Rinsing Solution:BSA Solution=20:1)を15mL添加し、混和した。400×g,4℃,5minで遠心後、上清をデカントし、タッピングで細胞をほぐし、Stain buffer 2mL添加した。このサンプルをセルストレーナーに通し、25mLチューブに回収した。回収した細胞液から30μLを1.5mLチューブに分注し、1:1でトリパンブルーと混ぜ合わせ、CountessIIを用いて細胞数をカウントした。カウントした細胞数をもとに、5mLラウンドチューブに3.0×10cellsの細胞懸濁液を分注した(全量で3.0×10cellsに満たないものは全量使用した)。
2. Flow Cytometry 2.1. Cell Isolation from Lymph Nodes The harvested lymph nodes were placed in a tube containing 500 μL of RPMI1640+10% FBS medium and mashed using a Biomasher II. The ground lymph nodes were passed through a nylon mesh and collected in 25 mL tubes. The tube in the Biomasher II was co-washed again with 1 mL of RPMI1640+10% FBS medium, passed through a nylon mesh, and collected in a 25 mL tube. The recovered tube was centrifuged at 400×g, 4° C., 5 min, the supernatant was decanted, and the cells were loosened by tapping. 1 mL of a hemolytic agent (ACK Lysing Buffer) was added to samples in which contamination with blood was observed, and after suspension, the samples were allowed to stand at room temperature for 1 to 2 minutes. rice field). RPMI1640+10% FBS (9 mL) was added, and after centrifugation at 400×g, 4° C., 5 min, the supernatant was decanted and the cells were loosened by tapping. After confirming that there was no residual hemolysis, 15 mL of PBE buffer (Rinsing Solution: BSA Solution=20:1) was added and mixed. After centrifugation at 400×g, 4° C., 5 min, the supernatant was decanted, the cells were loosened by tapping, and 2 mL of Stain buffer was added. This sample was passed through a cell strainer and collected in a 25 mL tube. 30 μL of the recovered cell solution was dispensed into a 1.5 mL tube, mixed with trypan blue at 1:1, and counted using Countess II. Based on the counted number of cells, a cell suspension of 3.0×10 6 cells was dispensed into a 5 mL round tube (the total amount of the suspension was less than 3.0×10 6 cells was used).
 2.2.リンパ節の単離細胞染色(死細胞染色・ブロッキング・テトラマー染色・抗体染色)
 <死細胞染色>
 細胞を添加したラウンドチューブにPEB bufferを1mL添加し、混和した。400×g,4℃,5minで遠心後、上清をデカントし、ボルテックスで軽く細胞をほぐし、PBS 1mL添加した。400×g,4℃,5minで遠心後、上清をデカントし、ボルテックスで軽く細胞をほぐし、希釈した死細胞染色液(100倍希釈したZombie Aqua)を100μL添加し、軽くボルテックスで混和し、室温,遮光,20min静置した。静置後、2mLのPEB bufferを添加し、400×g,4℃,5minで遠心後、上清をデカントし、ボルテックスで軽く細胞をほぐした。
2.2. Lymph node isolated cell staining (dead cell staining, blocking, tetramer staining, antibody staining)
<Dead cell staining>
1 mL of PEB buffer was added to the round tube containing the cells and mixed. After centrifugation at 400×g, 4° C., 5 min, the supernatant was decanted, the cells were gently loosened by vortexing, and 1 mL of PBS was added. After centrifugation at 400×g, 4° C., 5 min, the supernatant was decanted, the cells were gently loosened with a vortex, 100 μL of diluted dead cell staining solution (100-fold diluted Zombie Aqua) was added, and the mixture was gently mixed with a vortex. It was allowed to stand at room temperature, shielded from light, for 20 minutes. After allowing to stand, 2 mL of PEB buffer was added, and after centrifugation at 400×g, 4° C., 5 min, the supernatant was decanted, and the cells were loosened lightly with a vortex.
 <ブロッキング>
 死細胞染色および洗浄後のラウンドチューブにブロッキング液(3倍希釈したClear Back)を25μLずつ添加し、緩やかにボルテックスし、混和した。混和後、4℃,遮光,5min静置した。
<Blocking>
After dead cell staining and washing, 25 μL of blocking solution (3-fold diluted Clear Back) was added to each round tube, gently vortexed, and mixed. After mixing, the mixture was allowed to stand at 4°C, shielded from light, for 5 minutes.
 <テトラマー染色>
 AH-1テトラマー染色用カクテル(1本あたりAPC-AH-1tetramer;5μL,Stain Buffer;20μL)を調製し、ブロッキング反応後のラウンドチューブに25μL添加した。尚、Isotype Control(All)およびIsotype Control(AH-1tetramer,CD69)にはIsotypeテトラマー染色用カクテル(1本あたり APC-β-galactosidase tetramer;5μL,Stain Buffer;20μL)を調製し、ブロッキング反応後のラウンドチューブに25μL添加した。テトラマー添加後に軽くボルテックスし、4℃,遮光,40min静置した。
<Tetramer staining>
A cocktail for AH-1 tetramer staining (APC-AH-1 tetramer; 5 μL, Stain Buffer; 20 μL per tube) was prepared, and 25 μL was added to the round tube after the blocking reaction. For Isotype Control (All) and Isotype Control (AH-1 tetramer, CD69), an Isotype tetramer staining cocktail (APC-β-galactosidase tetramer; 5 μL, Stain Buffer; 20 μL per bottle) was prepared, and after the blocking reaction, 25 μL was added to a round tube. After addition of the tetramer, the mixture was lightly vortexed and allowed to stand at 4°C, shielded from light, for 40 minutes.
 <抗体染色>
 抗体染色用カクテル(1本あたり PerCP-CD45抗体;2.5μL,PE-Cy7-CD3抗体;2.5μL,APC-Cy7-CD4抗体;2.5μL,FITC-CD8抗体;10μL,PE-CD69抗体;2.5μL,Stain Buffer;5μL)を調製し、テトラマー染色後のラウンドチューブに25μL添加した。尚、Isotype Control(All)にはIsotypeテトラマー染色用カクテル(1本あたり PerCP-Isotype抗体;2.5μL,PE-Cy7-Isotype抗体;2.5μL,APC-Cy7-Isotype抗体;2.5μL,FITC-Isotype抗体;10μL,PE-Isotype抗体;2.5μL,Stain Buffer;5μL)を添加し、Isotype Control(AH-1 tetramer,CD69)にはIsotypeテトラマー染色用カクテル(1本あたり PerCP-CD45抗体;2.5μL,PE-Cy7-CD3抗体;2.5μL,APC-Cy7-CD4抗体;2.5μL,FITC-CD8抗体;10μL,PE-Isotype抗体;2.5μL,Stain Buffer;5μL)を添加した。抗体染色用カクテル添加後に軽くボルテックスし、4℃,遮光,20min静置した。
<Antibody staining>
Antibody staining cocktail (per CP-CD45 antibody; 2.5 μL, PE-Cy7-CD3 antibody; 2.5 μL, APC-Cy7-CD4 antibody; 2.5 μL, FITC-CD8 antibody; 10 μL, PE-CD69 antibody ; 2.5 μL, Stain Buffer; 5 μL) were prepared, and 25 μL were added to the round tube after tetramer staining. In addition, Isotype Control (All) contains Isotype tetramer staining cocktail (per bottle PerCP-Isotype antibody; 2.5 μL, PE-Cy7-Isotype antibody; 2.5 μL, APC-Cy7-Isotype antibody; 2.5 μL, FITC -Isotype antibody; 10 μL, PE-Isotype antibody; 2.5 μL, Stain Buffer; 5 μL) is added, and Isotype Control (AH-1 tetramer, CD69) is an Isotype tetramer staining cocktail (PerCP-CD45 antibody per bottle; 2.5 μL, PE-Cy7-CD3 antibody; 2.5 μL, APC-Cy7-CD4 antibody; 2.5 μL, FITC-CD8 antibody; 10 μL, PE-Isotype antibody; 2.5 μL, Stain Buffer; 5 μL) was added . After addition of the antibody staining cocktail, the mixture was lightly vortexed and allowed to stand at 4°C in the dark for 20 minutes.
 抗体染色後のラウンドチューブに2mLのPEB bufferを添加し、400×g,4℃,5minで遠心後、上清をデカントし、ボルテックスで軽く細胞をほぐし、この洗浄操作を2回繰り返した。洗浄後のラウンドチューブに4%のパラホルムアルデヒド溶液を100μLずつ添加し、4℃,遮光,15min静置した。反応後、2mLのPEB bufferを添加し、400×g,4℃,5minで遠心後、上清をデカントし、ボルテックスで軽く細胞をほぐした。そこへ1mLのStain bufferを添加し、400×g,4℃,5minで遠心後、上清をデカントし、ボルテックスで軽く細胞をほぐし、350μLのStain bufferを添加した。このサンプルをセルストレーナー(35μm)付き5mLチューブに通し、測定用サンプルとした。4℃で静置し、翌日、測定に用いた。 After antibody staining, 2 mL of PEB buffer was added to the round tube, and after centrifugation at 400 xg, 4°C, 5 minutes, the supernatant was decanted, the cells were gently loosened with a vortex, and this washing operation was repeated twice. After washing, 100 μL of 4% paraformaldehyde solution was added to each round tube and allowed to stand at 4° C., shielded from light, for 15 minutes. After the reaction, 2 mL of PEB buffer was added, and after centrifugation at 400×g, 4° C., 5 min, the supernatant was decanted, and the cells were gently loosened by vortexing. 1 mL of stain buffer was added thereto, and after centrifugation at 400×g, 4° C., 5 min, the supernatant was decanted, the cells were gently loosened by vortexing, and 350 μL of stain buffer was added. This sample was passed through a 5 mL tube with a cell strainer (35 μm) to obtain a sample for measurement. It was allowed to stand at 4°C and used for measurement the next day.
 2.3.フローサイトメトリーを用いた測定
 フローサイトメトリーCytoFLEX S(ベックマン・コールター社製)にて、測定を実施した。その際の取り込み細胞数はLiving Cells 200,000個(2×10cells)とし、可能な限り取り込んだ。測定および解析にはCytoFLEX S 搭載のCytoExpartソフトウェア Version2.4(ベックマン・コールター社製)を使用した。
2.3. Measurement using flow cytometry Measurement was performed using a flow cytometry CytoFLEX S (manufactured by Beckman Coulter, Inc.). The number of incorporated cells at that time was 200,000 living cells (2×10 5 cells), and as many cells as possible were incorporated. CytoExpart software Version 2.4 (manufactured by Beckman Coulter, Inc.) equipped with CytoFLEX S was used for measurement and analysis.
 ゲーティングは以下の通りで実施した(図3)。
(1)All EventsからFSC-A/SSC-Aプロットを展開し、細胞集団を選択した。
(2)細胞集団からZombie Aqua/FSC-Aプロットを展開し、死細胞集団(Zombie Aqua陽性細胞)を取り除いたLiving cellsを選択した。
(3)Living cellsからCD45/SSC-Aを展開し、CD45+集団を選択した。
(4)CD45+集団からCD3/SSC-Aを展開し、CD3+集団を選択した。
(5)CD3+細胞集団からFSC-H/FSC-Aを展開し、ダブレットを取り除き、Single cell 1集団を選択した。
(6)Single cell 1集団からSSC-H/SSC-Aを展開し、ダブレットを取り除き、Single cell 2集団を選択した。
(7)Single cell 2集団からCD8/CD4を展開し、CD8+細胞をTotal. CTL、CD4+細胞をHelper T細胞とした。
(8)Total. CTLからCD8/CD69で展開し、CD69+細胞をCD69+CTL(活性化CTL)とした。
(9)Total. CTLからCD8/AH-1 Tetramerで展開し、AH-1 Tetramer+細胞をAH-1 specific CTL(癌抗原特異的CTL)とした。
Gating was performed as follows (Fig. 3).
(1) The FSC-A/SSC-A plot was developed from All Events to select cell populations.
(2) A Zombie Aqua/FSC-A plot was developed from the cell population, and living cells from which the dead cell population (Zombie Aqua-positive cells) had been removed were selected.
(3) CD45/SSC-A was expanded from living cells and the CD45+ population was selected.
(4) CD3/SSC-A was expanded from the CD45+ population to select the CD3+ population.
(5) FSC-H/FSC-A was expanded from the CD3+ cell population, doublets were removed, and the Single cell 1 population was selected.
(6) SSC-H/SSC-A was developed from the single cell 1 population, doublets were removed, and the single cell 2 population was selected.
(7) Expand CD8/CD4 from the Single cell 2 population, CD8+ cells to Total. CTL and CD4+ cells were used as helper T cells.
(8) Total. CTLs were expanded with CD8/CD69, and CD69+ cells were defined as CD69+ CTLs (activated CTLs).
(9) Total. CTL was expanded with CD8/AH-1 Tetramer, and AH-1 Tetramer+ cells were designated as AH-1 specific CTL (cancer antigen-specific CTL).
 CD69+細胞とAH-1 specific CTLは細胞数が少ないことからIsotype Control(AH-1 tetramer, CD69)のデータより陰性領域と陽性領域の境界を決定した。 Since the number of CD69+ cells and AH-1 specific CTL is small, the boundary between the negative and positive regions was determined from the Isotype Control (AH-1 tetramer, CD69) data.
 2.4.各細胞群の細胞数の算出
 ゲーティングした以下の各細胞群の割合(%)を個体ごとに以下の計算式で算出した。
Total. CTL(%):CD45CD3CD8cell数(#)/CD45CD3cell数×100
CD69+CTL(%):CD45CD3CD8CD69cell数(#)/CD45CD3CD8cell数×100
AH-1 specific CTL(%):CD45CD3 CD8 AH-1 tetramer cell数(#)/CD45CD3CD8cell数×100
 また、組織中の各細胞群の細胞数を、2.1の細胞単離後のCountessIIを用いて細胞濃度(cells/mL)を算出した値と、フローサイトメトリー測定時の各細胞群の割合(%)から細胞群の細胞数(#)の結果を用いて以下の計算式で算出した。
組織中の全細胞数(#)=細胞濃度(cells/mL)×細胞含むStain buffer全量(mL)
生細胞数(#)=全細胞数(#)×生細胞率(%)/100
CD45細胞数(#)=生細胞数(#)×CD45細胞率(%)/100
CD3細胞(ダブレット除去前)数(#)=CD45細胞数(#)×CD3細胞率(%)/100
CD3細胞(FSCダブレット除去)数(#)=CD3細胞(ダブレット除去前)数(#)×CD3細胞(FSCダブレット除去)率(%)/100
T cell数(#)=CD3細胞(FSCダブレット除去)数(#)×CD3細胞(SSCダブレット除去)率(%)/100
Total.CTL数(#)=Tcell数(#)×CD8細胞率(%)/100
CD69+CTL数(#)=Total.CTL数(#)×CD69細胞率(%)/100
AH-1 specific CTL数(#)=Total.CTL数(#)×AH-1 tetramer細胞率(%)/100
「細胞を含むStain buffer量(mL)」は、細胞数カウント前の遠心・上清デカント後にセルストレーナーに通したStain bufferの添加量として計算した(リンパ節:2mL)。
2.4. Calculation of Number of Cells in Each Cell Group The ratio (%) of each gated cell group below was calculated for each individual by the following formula.
Total. CTL (%): number of CD45 + CD3 + CD8 + cells (#) / number of CD45 + CD3 + cells × 100
CD69 + CTL (%): CD45 + CD3 + CD8 + CD69 + cell count (#)/CD45 + CD3 + CD8 + cell count x 100
AH-1 specific CTL (%): CD45 + CD3 + CD8 + AH-1 tetramer + number of cells (#) / CD45 + CD3 + CD8 + number of cells × 100
In addition, the number of cells in each cell group in the tissue was calculated using Countess II after cell isolation in 2.1, and the ratio of each cell group at the time of flow cytometry measurement. It was calculated by the following formula using the result of the cell number (#) of the cell group from (%).
Total number of cells in tissue (#) = cell concentration (cells/mL) x total amount of stain buffer containing cells (mL) *
Viable cell count (#) = total cell count (#) x viable cell rate (%)/100
Number of CD45 + cells (#) = Number of viable cells (#) x Percentage of CD45 + cells (%)/100
Number of CD3 + cells (before doublet removal) (#) = Number of CD45 + cells (#) x Percent CD3 + cells (%)/100
Number of CD3 + cells (FSC doublet depleted) (#) = Number of CD3 + cells (before doublet depletion) (#) x Percentage of CD3 + cells (FSC doublet depleted) (%)/100
T cell number (#) = number of CD3 + cells (FSC doublet depleted) (#) x percentage of CD3 + cells (SSC doublet depleted) (%)/100
Total. CTL number (#) = Tcell number (#) x CD8 + cell percentage (%)/100
CD69 + CTL count (#) = Total. CTL number (#) × CD69 + cell rate (%)/100
Number of AH-1 specific CTLs (#) = Total. CTL number (#) × AH-1 tetramer + cell rate (%) / 100
* "Amount of stain buffer containing cells (mL)" was calculated as the added amount of stain buffer passed through a cell strainer after centrifugation and decanting the supernatant before counting the number of cells (lymph node: 2 mL).
 2.4.グラフ化および統計解析
 各群の細胞数を解析ソフトGraphPad Prism(Prism8)を用いてグラフ化し、細胞数について各群の平均値および標準誤差(Mean±Standard error)を示した。各細胞群でVehicle群に対して抗腫瘍免疫の活性化が認められるかを検証するため、Vehicle群を対照群とし、すべての群で細胞数の増加率を算出した。結果を表15に示す。
2.4. Graphing and Statistical Analysis The number of cells in each group was graphed using analysis software GraphPad Prism (Prism 8), and the average value and standard error (Mean±Standard error) of each group for the number of cells were shown. In order to verify whether activation of anti-tumor immunity was observed in each cell group against the vehicle group, the vehicle group was used as a control group, and the rate of increase in cell number was calculated for all groups. Table 15 shows the results.
 2.5.結果
 各群の細胞群の細胞数について各群の平均値および標準誤差を図4~図6に示す。図4は、Total.CTL数、図5は、AH-1 specific CTL数、図6は、CD69+CTL数を示す。ここで、Total.CTL数は、CTLの総数を、AH-1 specific CTL数は、腫瘍を特異的に認識するCTLを、CD69+CTL数は、活性化状態にあるCTLを、意味する。
2.5. Results Figures 4 to 6 show the average value and standard error of each group for the number of cells in each group. Figure 4 shows Total. Figure 5 shows the AH-1 specific CTL number and Figure 6 shows the CD69+ CTL number. Here, Total. The number of CTLs means the total number of CTLs, the number of AH-1 specific CTLs means CTLs that specifically recognize tumors, and the number of CD69+ CTLs means CTLs in an activated state.
 また、各群におけるTotal.CTL、AH-1 specific CTL、CD69+ CTLのコントロールに対する増加率を下記表15に示す。 Also, the Total. Table 15 below shows the rate of increase in CTL, AH-1 specific CTL, and CD69+ CTL relative to controls.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 ドキソルビシンを直接腫瘍組織に投与した系では、静脈投与するより強く抗腫瘍免疫が誘導されていることが理解される。さらに、免疫チェックポイント阻害剤を併用した場合に、抗腫瘍免疫誘導の増強が起こることがわかる。静脈投与においては、併用効果が全くみられないことから、このような併用効果は必ずしも予測可能ではない。免疫チェックポイント阻害剤の併用による抗腫瘍免疫誘導の増強は、上記記述したような抗腫瘍効果の相乗効果に寄与しているものと推察される。 It is understood that the system in which doxorubicin is directly administered to the tumor tissue induces stronger anti-tumor immunity than intravenous administration. Furthermore, it can be seen that the induction of anti-tumor immunity is enhanced when an immune checkpoint inhibitor is used in combination. In intravenous administration, such a combination effect is not always predictable, since no combination effect is observed. It is speculated that the enhancement of antitumor immunity induction by combined use of immune checkpoint inhibitors contributes to the synergistic antitumor effect as described above.
 本実施例において投与デバイスは、投与デバイスの欄で記載した各投与デバイスを用いることができる。 In this example, each administration device described in the administration device section can be used as the administration device.
 本出願は、2021年9月27日に出願された日本特許出願番号2021-156771に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2021-156771 filed on September 27, 2021, the disclosure of which is incorporated herein by reference.
1 治療デバイスキット、
100 投与デバイス、
120、120a 注入針、
130 外筒、
140 検出部、
150 報知部。
1 therapeutic device kit,
100 dosing device,
120, 120a injection needle,
130 outer cylinder,
140 detection unit,
150 annunciation unit;

Claims (10)

  1.  免疫原性細胞死を引き起こす抗がん剤と、
     前記抗がん剤を直接腫瘍組織に投与可能な投与デバイスと、を有する治療デバイスキットであって、
     前記抗がん剤を前記投与デバイスを用いて投与されることで抗腫瘍免疫の活性化を誘導する、治療デバイスキット。
    an anticancer agent that causes immunogenic cell death;
    and an administration device capable of directly administering the anticancer agent to tumor tissue,
    A therapeutic device kit that induces activation of antitumor immunity by administering the anticancer agent using the administration device.
  2.  前記抗がん剤が免疫チェックポイント阻害剤と、組み合わせて投与されるように用いられる、請求項1に記載の治療デバイスキット。 The therapeutic device kit according to claim 1, wherein the anticancer drug is used to be administered in combination with an immune checkpoint inhibitor.
  3.  前記免疫チェックポイント阻害剤が、抗PD-1抗体、抗PD-L1抗体、抗PD-L2抗体および抗CTLA-4抗体からなる群から選択される少なくとも1種である、請求項2に記載の治療デバイスキット。 The immune checkpoint inhibitor is at least one selected from the group consisting of anti-PD-1 antibody, anti-PD-L1 antibody, anti-PD-L2 antibody and anti-CTLA-4 antibody according to claim 2. therapeutic device kit.
  4.  前記腫瘍が固形がんである、請求項1~3のいずれか1項に記載の治療デバイスキット。 The therapeutic device kit according to any one of claims 1 to 3, wherein the tumor is solid cancer.
  5.  前記抗がん剤が、ドキソルビシン、エピルビシン、オキサリプラチン、パクリタキセルおよびこれらの薬学的に許容される塩からなる群から選択される少なくとも1種である、請求項1~4のいずれか1項に記載の治療デバイスキット。 The anticancer drug is at least one selected from the group consisting of doxorubicin, epirubicin, oxaliplatin, paclitaxel and pharmaceutically acceptable salts thereof, according to any one of claims 1 to 4. treatment device kit.
  6.  前記投与デバイスが、体外から腫瘍まで穿刺可能な長さの注入針を備える、請求項1~5のいずれか1項に記載の治療デバイスキット。 The therapeutic device kit according to any one of claims 1 to 5, wherein the administration device comprises an injection needle having a length that can be punctured from outside the body to the tumor.
  7.  前記投与デバイスが、前記注入針を格納する外筒を備える、請求項6に記載の治療デバイスキット。 The therapeutic device kit according to claim 6, wherein said administration device comprises a barrel housing said injection needle.
  8.  前記投与デバイスが前記抗がん剤を投与すると同時に注入圧力を測定および報知する、請求項1~7のいずれか1項に記載の治療デバイスキット。 The therapeutic device kit according to any one of claims 1 to 7, wherein the administration device administers the anticancer drug and simultaneously measures and reports the injection pressure.
  9.  前記投与デバイスが注入針の先端あるいは側面に薬液排出孔を持つ、請求項1~8のいずれか1項に記載のデバイスキット。 The device kit according to any one of claims 1 to 8, wherein the administration device has a drug solution discharge hole on the tip or side of the injection needle.
  10.  前記投与デバイスが、前記注入針内に抗がん剤を安全に充填するための機構を備える、請求項1~9のいずれか1項に記載のデバイスキット。
     
    The device kit of any one of claims 1-9, wherein the administration device comprises a mechanism for safely loading an anticancer drug into the infusion needle.
PCT/JP2022/035371 2021-09-27 2022-09-22 Therapy device kit WO2023048230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156771 2021-09-27
JP2021156771 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023048230A1 true WO2023048230A1 (en) 2023-03-30

Family

ID=85720798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035371 WO2023048230A1 (en) 2021-09-27 2022-09-22 Therapy device kit

Country Status (1)

Country Link
WO (1) WO2023048230A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128129A1 (en) * 2011-03-22 2012-09-27 オリンパス株式会社 Puncturing needle, medicine administration apparatus, and syringe pump
US9399101B1 (en) * 2012-02-03 2016-07-26 Patrick Jean Le Pivert Needle system for tissue perfusion
WO2022138740A1 (en) * 2020-12-23 2022-06-30 テルモ株式会社 Medical device, and medical device set
WO2022168862A1 (en) * 2021-02-08 2022-08-11 テルモ株式会社 Medical instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128129A1 (en) * 2011-03-22 2012-09-27 オリンパス株式会社 Puncturing needle, medicine administration apparatus, and syringe pump
US9399101B1 (en) * 2012-02-03 2016-07-26 Patrick Jean Le Pivert Needle system for tissue perfusion
WO2022138740A1 (en) * 2020-12-23 2022-06-30 テルモ株式会社 Medical device, and medical device set
WO2022168862A1 (en) * 2021-02-08 2022-08-11 テルモ株式会社 Medical instrument

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI YINGGE, LI DONG, HE CHAOLIANG, CHEN XUESI: "Design of an Injectable Polypeptide Hydrogel Depot Containing the Immune Checkpoint Blocker Anti‐PD‐L1 and Doxorubicin to Enhance Antitumor Combination Therapy", MACROMOLECULAR BIOSCIENCE, WILEY-VCH VERLAG GMBH, DE, vol. 21, no. 6, 1 June 2021 (2021-06-01), DE , pages 2100049, XP093051273, ISSN: 1616-5187, DOI: 10.1002/mabi.202100049 *

Similar Documents

Publication Publication Date Title
ES2899954T3 (en) Methods of treating skin cancer by administering a PD-1 inhibitor
RU2708374C2 (en) Combined therapy for cancer treatment
JP7384949B2 (en) Anti-PD-1 antibodies for the treatment of lung cancer
JP2019031540A (en) GLA monotherapy for use in cancer treatment
JP2014132009A5 (en)
US20180161302A1 (en) Pharmaceutical combination and uses thereof
WO2014142220A1 (en) Anti-tumor agent
US20170106067A1 (en) Combinatorial immunotherapy for pancreatic cancer treatment
US20130006034A1 (en) Methods of enhancing the response to radiation in tumor therapy using anti-dll4 antibodies
CN110831629B (en) Combinations comprising ABX196 for the treatment of cancer
US20160237159A1 (en) Methods and compositions for regulatory t-cell ablation
EP3925973A1 (en) Vaccine compositions and methods for restoring nkg2d pathway function against cancers
WO2023048230A1 (en) Therapy device kit
AU2020308283A1 (en) Small molecule inhibitors for treating cancer in a subject having tumors with high interstitial pressure
Sun et al. Tumor interstitial fluid and gastric cancer metastasis: an experimental study to verify the hypothesis of “tumor-phlegm microenvironment”
CN117043193A (en) Methods of treating cancer by administering novel helper PD-1 inhibitors
Song et al. Blocking transforming growth factor-beta reduces the migration and invasion of the residual tumour after TAE
Coventry et al. Immuno-chemotherapy using repeated vaccine treatment can produce successful clinical responses in advanced metastatic melanoma
WO2020150567A1 (en) Fibroblasts and microvesicles thereof for reduction of toxicity associated with cancer immunotherapy
Kang et al. Effectiveness of antibody-drug conjugate (ADC): Results of in vitro and in vivo studies
RU2771759C2 (en) Antibodies against pd-1 for treatment of lung cancer
US20190170756A1 (en) Tirc7 based diagnostic and therapy of solid cancer
CN108472366A (en) composition and method for immune-mediated cancer therapy
WO2024059833A1 (en) Use of anti-ctla-4 antibodies for treating adenoid cystic carcinoma
Patel et al. The New Era Drug: Dostarlimab Having Effective Clinical Trial & Combination Clinical Therapies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872981

Country of ref document: EP

Kind code of ref document: A1