WO2023048102A1 - Method for separating substrate - Google Patents

Method for separating substrate Download PDF

Info

Publication number
WO2023048102A1
WO2023048102A1 PCT/JP2022/034849 JP2022034849W WO2023048102A1 WO 2023048102 A1 WO2023048102 A1 WO 2023048102A1 JP 2022034849 W JP2022034849 W JP 2022034849W WO 2023048102 A1 WO2023048102 A1 WO 2023048102A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
intermediate layer
water
separating
Prior art date
Application number
PCT/JP2022/034849
Other languages
French (fr)
Japanese (ja)
Inventor
知巳 深谷
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2023513546A priority Critical patent/JP7422944B2/en
Publication of WO2023048102A1 publication Critical patent/WO2023048102A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a laminate having at least a substrate and an intermediate layer, and a method for separating the substrate from the laminate.
  • functional sheets such as release sheets have a laminated structure in which a functional layer for performing the function of the functional sheet is provided on a base material.
  • Various plastic substrates are used.
  • various methods are being studied for separating base materials with a high resin content from used functional sheets and recovering and reusing the resin. .
  • Patent Document 1 discloses a release film in which a release layer is formed on at least one side of a base film via an easily soluble resin layer, and the release film after use is formed of an easily soluble resin is immersed in a solvent in which the easily soluble resin is dissolved in the solvent, thereby separating and removing the release layer on the surface of the film, and recovering only the base film. is disclosed. Further, in Patent Document 2, after using a laminated film formed by laminating a readily soluble resin layer and a surface functional layer in this order on at least one side of a base film, the resin constituting the readily soluble resin layer is soluble.
  • the base film or its pulverized material is separated and recovered from the laminated film, and the separated and recovered material is remelted to form the base film.
  • a method for recycling a laminated film is disclosed, which is characterized by regenerating the resin composition that has been used.
  • a method of dissolving a readily soluble resin in a solvent is used to separate the base material.
  • the solvent used to separate the base material contains a readily soluble resin dissolved therein, and there is a risk that the dissolved resin may re-deposit on the separated base material.
  • COD Chemical Oxygen Demand
  • Various types of waste liquid treatment are required. Also, in the waste liquid treatment process, it leads to an increase in the amount of CO 2 emissions, etc., depending on the degree of the load of the waste liquid treatment. Therefore, there is a demand for a method that is more effective in reducing the environmental load.
  • the present invention has been made in view of the above circumstances, and in a method for separating a substrate from a laminate, the substrate can be easily separated by using water, and contamination of the water used for separating the substrate can be suppressed. , to provide a method for separating substrates.
  • the present inventors have found that in a laminate having a substrate and a hydrophilic and water-insoluble intermediate layer on at least one surface side of the substrate, by bringing the intermediate layer into contact with water, the above The inventors have found that the problem can be solved and completed the present invention. That is, the present invention provides the following [1] to [10].
  • [1] A laminate having a substrate and a hydrophilic and water-insoluble intermediate layer on at least one surface side of the substrate, wherein the intermediate layer is brought into contact with water to A method for separating a substrate, characterized in that the substrate is separated from.
  • [3] The method for separating a substrate according to [1] or [2], wherein the substrate and the intermediate layer are directly laminated.
  • [4] The method for separating a substrate according to any one of [1] to [3], wherein the intermediate layer is a layer having a siloxane bond.
  • the layer having a siloxane bond is a layer formed from a silane-based compound exhibiting polycondensation properties by hydrolysis.
  • the silane-based compound contains at least one selected from tetrafunctional silane-based compounds represented by the following general formula (a) and oligomers thereof as a main component.
  • Si(OR) p (X) 4-p (a) [In general formula (a), R represents an alkyl group, and X represents a halogen atom. When a plurality of R and X are present, the plurality of R and X may be the same or different. p represents an integer of 0 to 4; ] [7] The method for separating a substrate according to [6] above, wherein the tetrafunctional silane compound is a tetraalkoxysilane represented by the following general formula (a1).
  • Si(OR) 4 (a1) [In general formula (a1), R represents an alkyl group. When there are multiple R's, the multiple R's may be the same or different.
  • [8] The method for separating a substrate according to any one of [1] to [7], wherein the substrate is a resin film. [9] The method for separating a substrate according to any one of [1] to [8], further comprising a functional layer on the side of the intermediate layer opposite to the substrate. [10] The method for separating a substrate according to [9] above, wherein the functional layer is a release agent layer, a printed layer, a hard coat layer, an easily adhesive layer, or an adhesive layer.
  • the substrate in the method for separating the substrate from the laminate, the substrate can be easily separated by using water, and the contamination of the water used for separating the substrate can be suppressed.
  • solid content refers to components contained in the target composition, excluding diluent solvents such as water and organic solvents.
  • diluent solvents such as water and organic solvents.
  • preferably 10 to 90, more preferably 30 to 60 combining “preferred lower limit (10)” and “more preferred upper limit (60)” to “10 to 60” can also Similarly, from the description of "preferably 10 or more, more preferably 30 or more” and “preferably 90 or less, more preferably 60 or less” for the same matter, “preferable lower limit (10)” and “more preferred upper limit Value (60)” can also be combined with “10 or more and 60 or less”.
  • energy ray is a term that means known energy rays such as ⁇ -rays, electron beams, ultraviolet rays, and visible light.
  • the method for separating a substrate of the present invention comprises a laminate having a substrate and a hydrophilic and water-insoluble intermediate layer on at least one surface side of the substrate, wherein the intermediate layer is brought into contact with water.
  • the substrate is separated from the layered product by causing the substrate to be separated.
  • the use of a hydrophilic and water-insoluble intermediate layer produces the above-mentioned excellent effects, and the reason for this is considered as follows. That is, before the substrate is separated from the laminate, the intermediate layer is in close contact with the substrate or other layers on the substrate side mainly through hydrogen bonding and anchoring effects.
  • the intermediate layer is hydrophilic
  • the intermediate layer when the intermediate layer is brought into contact with water, the interface between the substrate and the intermediate layer or the interface between the intermediate layer and another layer present on the substrate side water can easily enter. It is believed that the water entering the interface inhibits the hydrogen bonding, causing peeling at the interface, and as a result, the substrate can be easily separated from the laminate.
  • the intermediate layer since the intermediate layer is both hydrophilic and water-insoluble, the above-mentioned water (hereinafter also referred to as "washing water”) used when separating the substrate from the laminate is used. It does not leach into the wash water when it comes into contact with Therefore, contamination of washing water can be prevented.
  • the contact angle is preferably 50 degrees or less, more preferably 45 degrees or less.
  • the lower limit of the contact angle of water on the substrate-side surface of the intermediate layer is not particularly limited, but is, for example, 0 degree.
  • the contact angle of water on the substrate-side surface of the intermediate layer is preferably 0 to 55 degrees, more preferably 0 to 50 degrees, and even more preferably 0 to 45 degrees. degree.
  • the contact angle is a value measured using the method described in Examples below.
  • the intermediate layer is determined by the contact angle of water on the surface of the release agent layer, which is measured using the method described in Examples below, and the If the difference from the contact angle of water on the substrate-side surface is 30 degrees or more, the intermediate layer is determined to be water-insoluble.
  • the contact angle difference is preferably 40 degrees or more, more preferably 50 degrees or more. When the value of this difference is small, it means that the component constituting the intermediate layer is eluted into water and the partly exposed release agent layer is measured.
  • the upper limit of the contact angle difference is not particularly limited, but is preferably 150 degrees, more preferably 140 degrees, and still more preferably 130 degrees. As described above, these stepwise lower and upper limits can be independently combined.
  • the contact angle difference is preferably 30 to 150 degrees, more preferably 40 to 140 degrees, and even more preferably 50 to 130 degrees.
  • the contact angle of water on the release agent layer surface is not particularly limited, but is usually 80 degrees or more, preferably 85 degrees or more, and more preferably 90 degrees or more.
  • the upper limit of the contact angle of water on the release agent layer surface is usually 150 degrees, preferably 140 degrees, and more preferably 130 degrees. As described above, these stepwise lower and upper limits can be independently combined.
  • the contact angle of water on the release agent layer surface is preferably 80 to 150 degrees, more preferably 85 to 140 degrees, and even more preferably 90 to 130 degrees.
  • the contact angle of water on the surface of the release agent layer is also a value measured using the method described in Examples below.
  • the method for bringing the intermediate layer into contact with water is not particularly limited, but it is preferable to immerse the laminate in water.
  • the laminated body may be immersed in the water tank as it is in the roll form.
  • the laminate roll may be left still in a water tank, or the water tank may be agitated.
  • the sheet fed out from the roll-shaped laminate in the middle of the process of continuously performing processing (roll-to-roll processing) until the sheet of the laminate is fed out from the feeding roll and wound up with the take-up roll. may be passed through a water tank, or the sheet may be rubbed with water with a brush or the like.
  • the cut laminate may be immersed in a water tank.
  • the cut laminate may be left still in a water tank, or the water tank may be agitated.
  • a treatment such as rubbing water with a brush or the like may be performed on the cut laminate.
  • the water to be brought into contact with the intermediate layer may be room temperature, but is preferably warm water.
  • 40° C. or higher is preferable, and 60° C. or higher is more preferable.
  • it is preferably less than 100°C, and more preferably 98°C or less.
  • these stepwise lower and upper limits can be independently combined.
  • the temperature of water to be brought into contact with the intermediate layer is preferably 40° C. or higher and lower than 100° C., more preferably 60° C. or higher and 98° C. or lower.
  • the water being at "room temperature” means the same temperature as the temperature of the room environment, and refers to the temperature of the water in the state of not being heated by a heat source or the like under the room temperature environment.
  • An example of the room temperature is not particularly limited, but may be, for example, 23°C.
  • the laminate is not particularly limited as long as it has a base material and a hydrophilic and water-insoluble intermediate layer on at least one surface side of the base material. From the viewpoint of facilitating the recovery and reuse of resins and the like that constitute the substrate, it is preferable that the substrate and the intermediate layer are directly laminated.
  • directly lamination refers to, for example, a configuration in which each layer is in direct contact with each other without another layer between the substrate and the intermediate layer.
  • the laminate further includes a functional layer on the side of the intermediate layer opposite to the substrate.
  • the substrate for example, a paper substrate, a resin film, or the like can be used, and a resin film is preferable from the viewpoint of easier separation. Moreover, when the resin film is separated, the recovered component is the resin. On the other hand, when the paper substrate is separated, the recovered component becomes pulp fibers.
  • the resin film examples include polyester films such as polyethylene terephthalate film, polybutylene terephthalate film and polyethylene naphthalate film; polyolefin films such as polyethylene film and polypropylene film; polyimide film; polyamide film; polycarbonate film; vinyl copolymer (EVA) film; ethylene-(meth)acrylic acid copolymer film; ethylene-(meth)acrylic acid ester copolymer film; cycloolefin polymer film; polyurethane film; can be used.
  • a polyester film is preferable from the viewpoint of heat resistance and strength.
  • polyester film a polyester film containing polyethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate as a main component is preferable from the viewpoint of easy recovery and recycling of the resin.
  • the "main component" refers to the component with the highest content among the components constituting the film.
  • a polyethylene terephthalate film, a polybutylene terephthalate film, and a polyethylene naphthalate film are more preferable, and a polyethylene terephthalate film is even more preferable.
  • the base material may be a resin film containing only one type of the above-mentioned resins, or may contain two or more types thereof.
  • the substrate may be a single-layer film made of one resin film, or a multi-layer film in which a plurality of resin films are laminated. From the viewpoint of facilitating recovery of the resin, the substrate is preferably a single-layer film made of one resin film or a multi-layer film made by laminating one resin film.
  • the resin film may contain known fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and the like.
  • the resin film may be transparent or colored as desired.
  • the substrate may be previously subjected to surface treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, etching treatment such as oxidation, etc., if necessary.
  • surface treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, etching treatment such as oxidation, etc.
  • the substrate is also preferably water-insoluble, and more preferably both hydrophobic (non-hydrophilic) and water-insoluble.
  • the thickness of the substrate is not particularly limited, but is preferably 10 to 500 ⁇ m, more preferably 15 to 300 ⁇ m, still more preferably 20 to 200 ⁇ m from the viewpoint of strength, rigidity and the like.
  • the "thickness of the base material” means the thickness of the entire base material. means the total thickness of all layers
  • the intermediate layer is preferably a layer having a siloxane bond (--Si--O--Si--) from the viewpoint of facilitating the effects of the present invention.
  • the layer having a siloxane bond is preferably, for example, a layer formed from a silane-based compound that exhibits polycondensation properties due to hydrolysis.
  • the silane-based compound exhibiting polycondensability by hydrolysis is a compound in which a hydrolyzed compound can undergo polycondensation.
  • the silane-based compound exhibiting polycondensability by hydrolysis may be an alkoxysilane exhibiting polycondensation by hydrolysis.
  • the silane-based compound exhibiting polycondensability by hydrolysis preferably contains, as a main component, at least one selected from tetrafunctional silane-based compounds represented by the following general formula (a) and oligomers thereof.
  • Si(OR) p (X) 4-p (a) [In general formula (a), R represents an alkyl group, and X represents a halogen atom. When a plurality of R and X are present, the plurality of R and X may be the same or different.
  • p represents an integer of 0 to 4; ]
  • alkyl groups that can be selected as R include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, n -hexyl group, neopentyl group, methylpentyl group and the like.
  • a methyl group, an ethyl group, an n-propyl group, or an n-butyl group is preferable, and a methyl group or an ethyl group is more preferable, from the viewpoint of further improving the reactivity of the silane compound.
  • the alkyl group that can be selected as R may be either straight-chain or branched-chain, preferably straight-chain.
  • a halogen atom that can be selected as X is preferably a chlorine atom, a bromine atom, or an iodine atom, and more preferably a chlorine atom.
  • the silane compound represented by the general formula (a) may be used alone or in combination of two or more.
  • the silane-based compound represented by the general formula (a) includes a silane-based compound in which p is 4 in the general formula (a). That is, the tetrafunctional silane compound is preferably a tetraalkoxysilane represented by the following general formula (a1).
  • Si(OR) 4 (a1) [In general formula (a1), R represents an alkyl group. When there are multiple R's, the multiple R's may be the same or different. ]
  • Examples of the alkyl group that can be selected as R in general formula (a1) are the same as those for R in general formula (a) described above, and preferred embodiments thereof are also the same.
  • More preferred specific examples of the tetraalkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and the like. Among these, at least one of tetramethoxysilane and tetraethoxysilane, or a mixture of tetramethoxysilane and tetraethoxysilane is preferable from the viewpoint of availability and reactivity of the hydrolysis reaction.
  • the "main component" in the silane compound exhibiting polycondensation property by hydrolysis is the silane compound that is the most contained in the total amount of 100% by mass of the silane compound exhibiting polycondensation property by hydrolysis. refers to In the silane compound exhibiting polycondensation property by hydrolysis, the content of the silane compound represented by the general formula (a) and its oligomer contained as a main component is higher than the content of other silane compounds. Although there is no particular limitation as long as it is large, for example, it is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass in 100% by mass of the total amount of the silane-based compound that exhibits polycondensation properties due to hydrolysis.
  • the content of the silane-based compound represented by the general formula (a) and its oligomer contained as a main component in the silane-based compound exhibiting polycondensability by hydrolysis is , preferably 50 to 100% by mass, more preferably 70 to 100% by mass, still more preferably 80 to 100% by mass, still more preferably 90% by mass of the total amount of 100% by mass of the silane compound that exhibits polycondensation by hydrolysis. ⁇ 100% by mass.
  • the average degree of polymerization of the oligomer of the tetrafunctional silane compound represented by the general formula (a) or the oligomer of the tetraalkoxysilane represented by the general formula (a1) is not particularly limited, but Each independently may be, for example, 2 to 20 or 2 to 15. That is, it may be an average 2- to 20-mer of each silane-based compound, or an average 2- to 15-mer of each of the silane-based compounds.
  • both the "oligomer of the tetrafunctional silane compound represented by the general formula (a)” and the “oligomer of the tetraalkoxysilane represented by the general formula (a1)” are simply the respective silane-based It is not limited to those obtained using the monomer of the compound as a starting material, and as a result of synthesis using another compound as a starting material, the structure of the compound obtained is a tetrafunctional silane represented by the general formula (a).
  • silane-based compound exhibiting polycondensation properties by hydrolysis can also be used as the silane-based compound exhibiting polycondensation properties by hydrolysis, and preferred examples of such commercial products include “Colcoat (registered trademark) N-103X” and “Colcoat (registered trademark) PX”. , "methyl silicate 51” which is an average tetrameric oligomer of tetramethoxysilane, "methyl silicate 53A” which is an average heptamer oligomer of tetramethoxysilane, "ethyl silicate 40” which is an average pentamer oligomer of tetraethoxysilane.
  • Ethylsilicate 48 which is an average decamer oligomer of tetraethoxysilane
  • EMS-485" which is a mixture of an average decamer oligomer of tetramethoxysilane and an average decamer oligomer of tetraethoxysilane ( All of them are manufactured by Colcoat Co., Ltd.) and the like.
  • silane-based compounds that the silane-based compound may contain include mono- to tri-functional silane-based compounds.
  • a tetrafunctional silane-based compound as a main component.
  • a catalyst such as an acid catalyst or a metal catalyst may be used.
  • the thickness of the intermediate layer is preferably 0.01 to 1 ⁇ m, more preferably 0.03 to 0.5 ⁇ m, still more preferably 0, from the viewpoint of facilitating water infiltration when the intermediate layer comes into contact with water. 0.05 to 0.3 ⁇ m.
  • the laminate preferably further has a functional layer on the side of the intermediate layer opposite to the substrate. That is, it is preferable that the laminate has a substrate, and the intermediate layer and the functional layer in this order on at least one surface side of the substrate. Further, as one aspect of the laminate, the base material, the intermediate layer, and the functional layer may be directly laminated in this order, and at least the base material and the intermediate layer may be laminated in this order. Direct lamination is more preferred.
  • direct lamination refers to, for example, a structure in which each layer is in direct contact with each other without any other layer between the substrate, the intermediate layer, and the functional layer.
  • the functional layer can be appropriately selected depending on the use of the laminate, and examples thereof include a release agent layer, a print layer, a hard coat layer, an easy adhesion layer, an adhesive layer, and the like.
  • the functional layer is a release agent layer
  • the contact angle of water on the surface of the release agent layer increases, and the contact angle of water on the surface of the release agent layer and the contact angle of water on the substrate-side surface of the intermediate layer The larger the difference from the corners, the easier the separation of the substrates.
  • the laminate having a functional layer is preferably a laminate having a release agent layer, more preferably a release sheet, from the viewpoint of its use and usage amount.
  • a release sheet is generally used for the purpose of protecting the surfaces of other functional sheets and various parts used for specific purposes during the production, transport, storage, etc. of these sheets and parts. After actually fulfilling the role of protecting these parts, etc., they are often peeled off from the surface and discarded. Therefore, the use of the method for separating the substrate from the release sheet as a method for separating the substrate from the release sheet is a highly contributory application from the viewpoint of resource conservation and environmental protection.
  • the functional layer of the laminate is preferably a release agent layer
  • a preferred aspect of the laminate is a release sheet. That is, as a preferred embodiment of the method for separating the substrate, a substrate, a water-insoluble and hydrophilic intermediate layer on at least one surface side of the substrate, and the substrate of the intermediate layer In a release sheet having a release agent layer on the opposite side, the intermediate layer is brought into contact with water to separate the intermediate layer from the substrate surface, thereby separating the substrate from the release sheet
  • a method for separating a substrate characterized by:
  • the release agent layer is preferably a layer formed from a release agent composition.
  • the release agent composition used to form the release agent layer is not particularly limited as long as it has release properties. Examples include silicone compounds; fluorine compounds; long-chain alkyl group-containing compounds; A release agent composition containing a thermoplastic resin material such as a base resin as a main component can be used. Moreover, it is preferable to use a release agent composition containing an energy ray-curable or thermosetting resin as a main component. These release agent compositions may be used singly or in combination of two or more.
  • the "main component" in the release agent composition refers to the component contained most in the total solid content of 100% by mass of the release agent composition.
  • the release agent layer may contain other additives in addition to the main components described above.
  • Other additives include, for example, antioxidants, light stabilizers, flame retardants, conductive agents, antistatic agents, plasticizers, and the like.
  • the functional layer is preferably water-insoluble, and more preferably both hydrophobic (non-hydrophilic) and water-insoluble.
  • the thickness of the functional layer can be appropriately selected depending on the application of the laminate, and is not particularly limited, but is preferably 0.02 to 200 ⁇ m, for example.
  • the functional layer for example, when the functional layer is a release agent layer, it is preferably 0.02 to 5 ⁇ m, more preferably 0.03 to 2 ⁇ m, and still more preferably 0.05 to 1.5 ⁇ m. be.
  • the method for producing the laminate that can be used in the present invention is not particularly limited as long as a laminate having a substrate and an intermediate layer on at least one surface side of the substrate can be produced. , can be produced by a known method.
  • an intermediate layer may be formed by applying an intermediate layer-forming composition or a solution thereof to one surface of a substrate, followed by heating and drying, or curing by energy ray irradiation. can be done.
  • the method for forming the functional layer can be appropriately selected depending on the type of the functional layer.
  • the functional layer-forming composition or its solution is applied, and then heated and dried or cured by energy ray irradiation. It can be produced by forming a functional layer.
  • the composition for forming a functional layer or a solution thereof is applied to the release-treated surface of another release material, and then heated and dried or cured by irradiation with an energy beam.
  • a functional layer may be formed by forming a functional layer and bonding this functional layer to the surface of the intermediate layer opposite to the substrate.
  • the release material may be peeled off before laminating the functional layer on the intermediate layer, or after lamination and before use of the laminate having the functional layer formed thereon. Moreover, when forming a functional layer by the former method, you may bond a peeling material further on the surface of the formed functional layer.
  • the method for applying the composition for forming the intermediate layer, the composition for forming the functional layer, or the solution thereof is not particularly limited, and known methods can be used. Examples thereof include spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
  • the drying method and drying temperature for drying the intermediate layer or functional layer are not particularly limited, and can be appropriately selected according to the characteristics of the material forming the intermediate layer or functional layer.
  • irradiation conditions such as the type of energy ray, illuminance, and light amount should be appropriately selected according to the characteristics of the material forming the intermediate layer or functional layer. can be done.
  • the substrate can be easily separated from the laminate by using the method for separating the substrate.
  • the intermediate layer in the laminate that contributes to the separation of the base material can reduce the contamination of the washing water used when separating the base material, and furthermore, the contamination of the washing water is suppressed.
  • the resin recovered from the separated substrate is less likely to be contaminated.
  • suppression of contamination of the wash water leads to reuse of the wash water and simplification of waste treatment. Therefore, it can be suitably used when the resin recovered from the base material is reused as it is, or when even the monomer, which is the raw material constituting the resin, is decomposed and recycled.
  • the washing water can be easily separated from the separated base material by simply filtering the washing water, and the resin can be recovered and recycled. It also simplifies the whole process. Therefore, as one aspect of the present invention, for example, at least, using the method for separating the substrate, from the laminate having the substrate and the intermediate layer on at least one surface side of the substrate, the separating the substrate from the laminate by bringing the intermediate layer into contact with water to separate the intermediate layer from the surface of the substrate or the surface of the layer on the substrate side; and a step of recovering the resin; and a method for recycling the resin.
  • the step of recovering the resin from the base material is not particularly limited, and a known recovery method can be appropriately used depending on the type of each resin and the raw material of the resin.
  • the thickness of the substrate in the release sheet used in each example and each comparative example was measured using a constant pressure thickness measuring instrument manufactured by Teclock Co., Ltd. (model number: "PG-02J", standard specifications: JIS K6783: 1994, JIS Z1702: 1994, JIS Z1709: 1995).
  • the thicknesses of the intermediate layers of Examples 1 to 4 and Comparative Example 2 were measured using a spectroscopic ellipsometer (manufactured by JA Woollam, product name "M-2000").
  • the thickness of the release agent layer of each example and each comparative example was measured using a reflective film thickness meter (manufactured by Filmetrics, product name: "F20").
  • test piece was separated into a laminate in which the release agent layer and the intermediate layer were integrally supported on the adhesive tape and the base material, and the adhesive carrying the release agent layer and the intermediate layer was separated.
  • the tape was taken out of the hot water and dried at room temperature (23° C.) for 24 hours. After that, the contact angle was measured for the surface of the intermediate layer carried on the adhesive tape (the surface of the intermediate layer that was in contact with the substrate surface). The contact angle was measured according to JIS R3257:1999 by the sessile drop method using a contact angle meter (Kyowa Interface Science Co., Ltd., product name: "DM-701"). For droplets, distilled water was used.
  • Comparative Example 2 was affected by the partially exposed release agent layer eluted in warm water in the measurement of the contact angle of water on the material side surface. Therefore, in Table 1 below, the evaluation of the hydrophilicity of the intermediate layer is shown only when the intermediate layer is water-insoluble.
  • Comparative Example 2 a laminate sample was prepared in which only an intermediate layer was formed on a base material without forming a release agent layer, and the surface of the intermediate layer was subjected to the above "(1) Release agent layer surface The contact angle measured according to "Measurement of contact angle of water” was 35.2 degrees. From this point as well, it was confirmed that the intermediate layer of Comparative Example 2 was eluted into the hot water by the treatment in "(2) Measurement of the water contact angle of the substrate-side surface of the intermediate layer".
  • a release sheet was produced by the method shown below.
  • Example 1 A biaxially oriented polyethylene terephthalate film (thickness: 31 ⁇ m) was prepared as a substrate.
  • a composition for forming an intermediate layer a silane compound exhibiting polycondensation properties by hydrolysis (manufactured by Colcoat Co., Ltd., product name “Colcoat (registered trademark) N-103X”) was prepared and mixed with isopropyl alcohol. to adjust the solid content concentration to 1.5% by mass.
  • the resulting composition for forming an intermediate layer was uniformly coated on one side of the substrate with a bar coater so that the thickness of the intermediate layer after drying was 0.1 ⁇ m to form a coating layer.
  • the coating layer was cured by heating for 1 minute to form an intermediate layer.
  • thermosetting addition-reactive silicone manufactured by Shin-Etsu Chemical Co., Ltd., "KS-847H
  • a platinum catalyst manufactured by Shin-Etsu Chemical Co., Ltd., "CAT-PL- 50T”
  • the prepared coating liquid is applied with a bar coater onto the intermediate layer formed on the base material to form a coating layer, and the coating layer is cured by heating at 120 ° C.
  • methylated melamine resin manufactured by Nippon Carbide Industry Co., Ltd., product name "MW-30”
  • polyorganosiloxane both terminal carbinol-modified polydimethylsiloxane Shin-E
  • a release sheet having a configuration in which a release agent layer of 1 ⁇ m was formed and a substrate/intermediate layer/release agent layer were laminated in this order was produced. Using the obtained release sheet, the separability evaluation of the substrate, which will be described later, was performed.
  • Example 3 An intermediate layer was provided on one side of the substrate in the same manner as in Example 1. Next, a mixture of polyfunctional acrylates dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (manufactured by Toagosei Co., Ltd., product name "Aronix (registered trademark) M-400", solid content 100% by mass) 94 parts by mass And, acrylic-modified polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "X-22-164A”, solid content 100% by mass) 1 part by mass, and a photopolymerization initiator (IGM Resins B.V., Trade name “Omnirad (registered trademark) 907” (2-methyl-1[4-(methylthio)phenyl]-2-morifolinopropan-1-one, solid content 100% by mass)) 5 parts by mass, isopropyl alcohol and methyl
  • a coating liquid of the agent composition was obtained.
  • the prepared coating solution was applied onto the intermediate layer formed on the substrate using a bar coater and dried at 80° C. for 1 minute to obtain a coating layer.
  • the coating layer is irradiated with ultraviolet light (accumulated light amount: 250 mJ/cm 2 ) to form a release agent layer (thickness: 1 ⁇ m), and a structure in which the base material/intermediate layer/release agent layer are laminated in this order.
  • a release sheet was produced. Using the obtained release sheet, the separability evaluation of the substrate, which will be described later, was performed.
  • Example 4 In Example 1, the substrate/intermediate layer/releasing agent layer were laminated in this order in the same manner as in Example 1, except that the composition for forming the intermediate layer was changed as follows to form the intermediate layer.
  • a release sheet having the structure was prepared.
  • As a composition for forming an intermediate layer 100 parts by mass of a silane-based compound (manufactured by Colcoat Co., Ltd., product name "Methyl Silicate 53A") exhibiting polycondensation properties by hydrolysis, 35 parts by mass of distilled water, and an acid catalyst.
  • a silane-based compound manufactured by Colcoat Co., Ltd., product name "Methyl Silicate 53A"
  • Example 1 A release sheet having a structure in which a base material and a release agent layer were laminated in this order was prepared in the same manner as in Example 1, except that no intermediate layer was provided. Using the obtained release sheet, the separability evaluation of the substrate, which will be described later, was performed.
  • Example 2 A biaxially oriented polyethylene terephthalate film (thickness: 31 ⁇ m) was prepared as a substrate. Next, a 2% by mass aqueous solution of partially saponified polyvinyl alcohol resin (manufactured by Mitsubishi Chemical Corporation, "Gosenol (registered trademark) GL-05") is applied to the substrate so that the thickness after drying is 0.1 ⁇ m. An intermediate layer was formed by uniformly coating one side and heating at 120° C. for 1 minute. A release agent layer was formed in the same manner as in Example 1, and a release sheet having a configuration in which substrate/intermediate layer/release agent layer were laminated in this order was produced. Using the obtained release sheet, the separability evaluation of the substrate, which will be described later, was performed.
  • partially saponified polyvinyl alcohol resin manufactured by Mitsubishi Chemical Corporation, "Gosenol (registered trademark) GL-05
  • a test piece was obtained by cutting the release sheet obtained by the method described in Examples and Comparative Examples into a size of 50 mm ⁇ 50 mm. Next, a glass beaker with a capacity of 500 mL was filled with 300 mL of hot water at 90°C, and the test piece was entirely immersed in the warm water and allowed to stand at 90°C for 1 hour. After that, the test piece taken out from the warm water was immersed in distilled water at room temperature (23° C.) and washed to obtain a sample for evaluation of separability.
  • N nitrogen (N), which is a specific element derived from the chemical composition of the release agent layer measured by X-ray photoelectron spectroscopy (XPS), was applied to the substrate surface on the side where the release agent layer was provided. , the separability of the substrate was evaluated based on the amount of silicon (Si) detected. The ratio of each element was calculated by the following formula, and it was determined that the release agent layer was separated and removed from the substrate surface when the specific element derived from the chemical composition of the release agent layer was less than 0.05 atom %. The results are shown in Table 2 below. In addition, in Table 2, the case of less than 0.05 Atom % was described as not detected (N.D.).
  • N represents the amount of nitrogen element
  • Si represents the amount of silicon element
  • C represents the amount of carbon element
  • O represents the amount of oxygen element.
  • Nitrogen (N) element ratio (Atom%) [N / (C + O + N + Si)] ⁇ 100
  • Silicon (Si) element ratio (Atom%) [Si / (C + O + N + Si)] ⁇ 100
  • the base material separated from the test piece was taken out from the water, and the release agent layer with the intermediate layer floating on the surface of the water was filtered to obtain the eluted water.
  • Heat drying and vacuum drying were repeated to obtain components eluted in water from the release sheet, and the weight thereof was measured.
  • Table 2 below as elution amounts. Since the substrate and the release agent layer constituting the release sheets obtained in Example 1 and Comparative Example 2 are water-insoluble, the components eluted by this method are the components of the intermediate layer. Therefore, this method can also be used as an evaluation method for determining whether or not the intermediate layer in the release sheet is water-insoluble.
  • the value of the eluted amount in Table 2 below indicates the value (unit: ⁇ g/m 2 ) of (dry weight of eluted portion)/(area of immersed release sheet).
  • the substrate As shown in Table 2, from the evaluation results of the separability of the substrate using the release sheets of Examples 1 to 4, it was formed from a substrate and a silane-based compound exhibiting polycondensation by hydrolysis on the substrate.
  • the substrate In a release sheet having a laminate provided with an intermediate layer, the substrate may be separated from the release sheet by bringing the intermediate layer into contact with water to separate the intermediate layer from the surface of the substrate. confirmed to be possible.
  • the intermediate layer is water-insoluble, the COD in the washing water used for separating the substrate It was confirmed that the value is low and it is excellent as a separation method for substrates with little environmental load.
  • the release sheet of Comparative Example 1 when the release sheet of Comparative Example 1 was used, the Si element was detected on the release agent layer side of the substrate even after the separability evaluation of the substrate, and the release agent layer was removed from the substrate. Therefore, it was confirmed that it is not suitable as a method for separating the base material.
  • the release sheet of Comparative Example 2 when the release sheet of Comparative Example 2 was used, the base layer was separated by bringing the intermediate layer into contact with water. However, since the intermediate layer is water-soluble, it was confirmed that the COD value in the washing water used for separating the substrate was increased.
  • the substrate separation method of the present invention since the intermediate layer is insoluble in the washing water used, contamination of the washing water can be suppressed as compared with conventional products. Therefore, for example, in the process of separating the substrate, it is possible to treat the used wash water by a simple method such as filtration, thereby reducing the burden of waste liquid treatment. In addition, there is also the advantage of facilitating reuse of the washing water. Therefore, from the viewpoint of simplifying or omitting the step of treating the waste liquid of washing water, and from the viewpoint of enabling reuse of washing water, etc., the substrate separation method of the present invention can reduce the environmental load more than before. It is an effective substrate separation method. Furthermore, it is an industrially very effective method from the viewpoint of cost reduction in the separation of the substrate due to the simplification of the waste liquid treatment process and the like.

Abstract

The present invention relates to a method for separating a substrate, the method being characterized in that from a laminate having a substrate and a hydrophilic and water-insoluble intermediate layer on at least one surface side of the substrate, the substrate is separated by bringing the intermediate layer into contact with water.

Description

基材の分離方法Substrate separation method
 本発明は、少なくとも基材と中間層とを有する積層体において、前記積層体から前記基材を分離する方法に関する。 The present invention relates to a laminate having at least a substrate and an intermediate layer, and a method for separating the substrate from the laminate.
 一般的に、剥離シート等の機能性シートは、基材上に当該機能性シートの機能を奏するための機能層を設けた積層構造を有するものであり、前記基材としては、紙基材や各種のプラスチック基材が用いられている。
 近年、地球資源保護や環境保護等の観点から、各種分野で、廃棄物の発生抑制、再使用、再生利用等の取組みを通じて、循環型社会の構築を目指す動きが活発化している。
 前述の機能性シート分野も同様であり、例えば、使用済みの機能性シートから樹脂の含有率が大きい基材等を分離し、樹脂を回収して再利用するための各種方法が検討されている。
 例えば、特許文献1には、基材フィルムの少なくとも片面に易溶解性樹脂層を介して離型層が形成されてなる離型フィルムで、かつ、使用後の離型フィルムを、易溶解性樹脂が溶解可能な溶媒中に浸漬して、易溶解性樹脂を溶媒中に溶解させることにより、フィルム表面の離型層を分離除去し、基材フィルムのみを回収することを特徴とする離型フィルムの回収方法が開示されている。
 また、特許文献2には、基材フィルムの少なくとも片面に易溶解性樹脂層と表面機能層とをこの順に積層してなる積層フィルムを使用後に、易溶解性樹脂層を構成する樹脂は溶解可能であり基材フィルムを構成する樹脂は溶解しない溶媒で洗浄することにより、積層フィルムから基材フィルムまたはその粉砕物を分離回収し、この分離回収したものを再溶融して、基材フィルムを構成していた樹脂組成物を再生することを特徴とする積層フィルムのリサイクル方法が開示されている。
In general, functional sheets such as release sheets have a laminated structure in which a functional layer for performing the function of the functional sheet is provided on a base material. Various plastic substrates are used.
In recent years, from the viewpoint of global resource protection, environmental protection, etc., there has been an active movement in various fields to aim at building a recycling-oriented society through initiatives such as waste generation control, reuse, and recycling.
The same applies to the field of functional sheets described above. For example, various methods are being studied for separating base materials with a high resin content from used functional sheets and recovering and reusing the resin. .
For example, Patent Document 1 discloses a release film in which a release layer is formed on at least one side of a base film via an easily soluble resin layer, and the release film after use is formed of an easily soluble resin is immersed in a solvent in which the easily soluble resin is dissolved in the solvent, thereby separating and removing the release layer on the surface of the film, and recovering only the base film. is disclosed.
Further, in Patent Document 2, after using a laminated film formed by laminating a readily soluble resin layer and a surface functional layer in this order on at least one side of a base film, the resin constituting the readily soluble resin layer is soluble. By washing with a solvent that does not dissolve the resin constituting the base film, the base film or its pulverized material is separated and recovered from the laminated film, and the separated and recovered material is remelted to form the base film. A method for recycling a laminated film is disclosed, which is characterized by regenerating the resin composition that has been used.
特開2002-265665号公報JP-A-2002-265665 特開2004-169005号公報Japanese Patent Application Laid-Open No. 2004-169005
 前述の各方法においては、いずれも、基材を分離するために、易溶解性樹脂を溶媒中に溶解させる方法が用いられている。
 しかしながら、基材を分離するために使用された溶媒中には、易溶解性樹脂が溶解しており、溶解した樹脂分が、分離した基材上に再付着する虞もある。
 また、環境保護の観点から、例えば、上記溶媒として水を用いた場合にも、易溶解性樹脂が溶解した溶液となることから、COD(Chemical Oxygen Demand)の値を低減させる必要がある等、各種の廃液処理が必要となる。また、廃液処理工程においても、廃液処理の負荷の程度に応じて、CO排出量の増加等に繋がる。
 したがって、より環境負荷の低減に有効な方法が求められている。
In each of the methods described above, a method of dissolving a readily soluble resin in a solvent is used to separate the base material.
However, the solvent used to separate the base material contains a readily soluble resin dissolved therein, and there is a risk that the dissolved resin may re-deposit on the separated base material.
In addition, from the viewpoint of environmental protection, for example, even when water is used as the solvent, it becomes a solution in which the easily soluble resin is dissolved, so it is necessary to reduce the COD (Chemical Oxygen Demand) value. Various types of waste liquid treatment are required. Also, in the waste liquid treatment process, it leads to an increase in the amount of CO 2 emissions, etc., depending on the degree of the load of the waste liquid treatment.
Therefore, there is a demand for a method that is more effective in reducing the environmental load.
 本発明は前記事情に鑑みなされたもので、積層体から基材を分離する方法において、水の使用により基材を容易に分離でき、かつ、基材の分離に使用した水の汚染を抑制できる、基材の分離方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in a method for separating a substrate from a laminate, the substrate can be easily separated by using water, and contamination of the water used for separating the substrate can be suppressed. , to provide a method for separating substrates.
 本発明者は、基材と、該基材の少なくとも一方の表面側に、親水性かつ非水溶性である中間層とを有する積層体において、前記中間層と水とを接触させることによって、前記課題を解決し得ることを見出し、本発明を完成させた。
 すなわち、本発明は、下記[1]~[10]を提供する。
[1] 基材と、該基材の少なくとも一方の表面側に、親水性かつ非水溶性である中間層とを有する積層体において、前記中間層と水とを接触させることによって、前記積層体から前記基材を分離することを特徴とする、基材の分離方法。
[2] 前記中間層と水との接触は、前記積層体を水中に浸漬することによって行う、前記[1]に記載の基材の分離方法。
[3] 前記基材と前記中間層とが、直接積層している、前記[1]又は[2]に記載の基材の分離方法。
[4] 前記中間層が、シロキサン結合を有する層である、前記[1]~[3]のいずれか1つに記載の基材の分離方法。
[5] 前記シロキサン結合を有する層が、加水分解による重縮合性を示すシラン系化合物から形成された層である、前記[4]に記載の基材の分離方法。
[6] 前記シラン系化合物が、下記一般式(a)で表される4官能シラン系化合物及びそのオリゴマーから選ばれる少なくとも1種を主成分として含む、前記[5]に記載の基材の分離方法。
 Si(OR)(X)4-p   (a)
〔一般式(a)中、Rはアルキル基を表し、Xはハロゲン原子を表す。R及びXが複数存在する場合、複数のR及びXは、互いに同一でも、異なっていてもよい。pは0~4の整数を表す。〕
[7] 前記4官能シラン系化合物が、下記一般式(a1)で表されるテトラアルコキシシランである、前記[6]に記載の基材の分離方法。
 Si(OR)   (a1)
〔一般式(a1)中、Rはアルキル基を表す。Rが複数存在する場合、複数のRは、互いに同一でも、異なっていてもよい。〕
[8] 前記基材が、樹脂フィルムである、前記[1]~[7]のいずれか1つに記載の基材の分離方法。
[9] 前記中間層の前記基材とは反対側に、更に、機能層を有する、前記[1]~[8]のいずれか1つに記載の基材の分離方法。
[10] 前記機能層が、剥離剤層、印刷層、ハードコート層、易接着層又は粘着剤層である、前記[9]に記載の基材の分離方法。
The present inventors have found that in a laminate having a substrate and a hydrophilic and water-insoluble intermediate layer on at least one surface side of the substrate, by bringing the intermediate layer into contact with water, the above The inventors have found that the problem can be solved and completed the present invention.
That is, the present invention provides the following [1] to [10].
[1] A laminate having a substrate and a hydrophilic and water-insoluble intermediate layer on at least one surface side of the substrate, wherein the intermediate layer is brought into contact with water to A method for separating a substrate, characterized in that the substrate is separated from.
[2] The method for separating a substrate according to [1] above, wherein the contact between the intermediate layer and water is performed by immersing the laminate in water.
[3] The method for separating a substrate according to [1] or [2], wherein the substrate and the intermediate layer are directly laminated.
[4] The method for separating a substrate according to any one of [1] to [3], wherein the intermediate layer is a layer having a siloxane bond.
[5] The method for separating a substrate according to [4] above, wherein the layer having a siloxane bond is a layer formed from a silane-based compound exhibiting polycondensation properties by hydrolysis.
[6] Separation of the substrate according to [5] above, wherein the silane-based compound contains at least one selected from tetrafunctional silane-based compounds represented by the following general formula (a) and oligomers thereof as a main component. Method.
Si(OR) p (X) 4-p (a)
[In general formula (a), R represents an alkyl group, and X represents a halogen atom. When a plurality of R and X are present, the plurality of R and X may be the same or different. p represents an integer of 0 to 4; ]
[7] The method for separating a substrate according to [6] above, wherein the tetrafunctional silane compound is a tetraalkoxysilane represented by the following general formula (a1).
Si(OR) 4 (a1)
[In general formula (a1), R represents an alkyl group. When there are multiple R's, the multiple R's may be the same or different. ]
[8] The method for separating a substrate according to any one of [1] to [7], wherein the substrate is a resin film.
[9] The method for separating a substrate according to any one of [1] to [8], further comprising a functional layer on the side of the intermediate layer opposite to the substrate.
[10] The method for separating a substrate according to [9] above, wherein the functional layer is a release agent layer, a printed layer, a hard coat layer, an easily adhesive layer, or an adhesive layer.
 本発明によれば、積層体から基材を分離する方法において、水の使用により基材を容易に分離でき、かつ、基材の分離に使用した水の汚染を抑制できる、基材の分離方法を提供できる。 According to the present invention, in the method for separating the substrate from the laminate, the substrate can be easily separated by using water, and the contamination of the water used for separating the substrate can be suppressed. can provide
 以下、本発明について実施形態を用いて詳細に説明する。
 本明細書において、「固形分」とは、対象となる組成物に含まれる成分のうち、水や有機溶媒等の希釈溶媒を除いた成分を指す。
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。同様に、同一事項に対する「好ましくは10以上、より好ましくは30以上」の記載と「好ましくは90以下、より好ましくは60以下」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10以上60以下」とすることもできる。
 また、本明細書中の記載において、例えば、「エネルギー線」とは、公知のγ線、電子線、紫外線、可視光等のエネルギー線を意味する用語である。
Hereinafter, the present invention will be described in detail using embodiments.
As used herein, the term “solid content” refers to components contained in the target composition, excluding diluent solvents such as water and organic solvents.
In this specification, for preferred numerical ranges (for example, ranges of content etc.), the lower and upper limits described stepwise can be independently combined. For example, from the statement "preferably 10 to 90, more preferably 30 to 60", combining "preferred lower limit (10)" and "more preferred upper limit (60)" to "10 to 60" can also Similarly, from the description of "preferably 10 or more, more preferably 30 or more" and "preferably 90 or less, more preferably 60 or less" for the same matter, "preferable lower limit (10)" and "more preferred upper limit Value (60)" can also be combined with "10 or more and 60 or less".
Moreover, in the description in this specification, for example, "energy ray" is a term that means known energy rays such as γ-rays, electron beams, ultraviolet rays, and visible light.
[基材の分離方法]
 本発明の基材の分離方法は、基材と、該基材の少なくとも一方の表面側に、親水性かつ非水溶性である中間層とを有する積層体において、前記中間層と水とを接触させることによって、前記積層体から前記基材を分離することを特徴とする。
 前記分離方法では、親水性かつ非水溶性である中間層を用いることにより、上記の優れた効果が奏され、その理由は、次のとおりと考えられる。
 すなわち、積層体から基材を分離する前、中間層は、主に、水素結合とアンカー効果とによって、基材又は基材側の他の層と密着している。特に、中間層が親水性であることで、前記中間層と水とを接触させた際、前記基材と中間層との界面又は前記基材側に存在する他の層と中間層との界面に水が浸入し易い。そして、界面に侵入した水が、前記水素結合を阻害することで、前記界面での剥離が生じる結果、前記積層体から基材を容易に分離することが可能になると考えられる。
 また、前記中間層は、親水性であると同時に、非水溶性であることから、前記積層体から基材を分離する際に使用される上記の水(以下、「洗浄水」ともいう。)と接触した際に、洗浄水中に溶出することがない。したがって、洗浄水の汚染を防止することができる。
[Separation method of base material]
The method for separating a substrate of the present invention comprises a laminate having a substrate and a hydrophilic and water-insoluble intermediate layer on at least one surface side of the substrate, wherein the intermediate layer is brought into contact with water. The substrate is separated from the layered product by causing the substrate to be separated.
In the separation method, the use of a hydrophilic and water-insoluble intermediate layer produces the above-mentioned excellent effects, and the reason for this is considered as follows.
That is, before the substrate is separated from the laminate, the intermediate layer is in close contact with the substrate or other layers on the substrate side mainly through hydrogen bonding and anchoring effects. In particular, because the intermediate layer is hydrophilic, when the intermediate layer is brought into contact with water, the interface between the substrate and the intermediate layer or the interface between the intermediate layer and another layer present on the substrate side water can easily enter. It is believed that the water entering the interface inhibits the hydrogen bonding, causing peeling at the interface, and as a result, the substrate can be easily separated from the laminate.
In addition, since the intermediate layer is both hydrophilic and water-insoluble, the above-mentioned water (hereinafter also referred to as "washing water") used when separating the substrate from the laminate is used. It does not leach into the wash water when it comes into contact with Therefore, contamination of washing water can be prevented.
 本明細書において、中間層が「親水性」であるか否かは、中間層の前記基材側表面の水の接触角が55度以下である場合、当該中間層は親水性であると判断する。また、基材の分離性の促進の観点から、当該接触角は、好ましくは50度以下、より好ましくは45度以下である。また、前記中間層の前記基材側表面の水の接触角の下限値は特に制限はないが、例えば、0度である。換言すれば、本発明の一態様において、前記中間層の前記基材側表面の水の接触角は、好ましくは0~55度であり、より好ましくは0~50度、更に好ましくは0~45度である。前記接触角は、後述する実施例に記載の方法を用いて測定される値である。
 本明細書において、中間層が「非水溶性」であるか否かは、後述する実施例に記載の方法を用いて測定される剥離剤層表面の水の接触角と、前記中間層の前記基材側表面の水の接触角との差が30度以上である場合、当該中間層は非水溶性であると判断する。当該接触角の差は、好ましくは40度以上、より好ましくは50度以上である。この差の値が小さい場合は、中間層を構成する成分が水に溶出して、部分的に表出した剥離剤層を測定したことを意味する。また、前記接触角の差の上限値は、特に制限はないが、好ましくは150度、より好ましくは140度、更に好ましくは130度である。前述のとおり、これら段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、本発明の一態様において、前記接触角の差は、好ましくは30~150度、より好ましくは40~140度、更に好ましくは50~130度である。
 また、剥離剤層表面の水の接触角は特に制限はないが、通常80度以上を示し、好ましくは85度以上、より好ましくは90度以上である。また、剥離剤層表面の水の接触角の上限値は通常150度であり、好ましくは140度であり、より好ましくは130度である。前述のとおり、これら段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、本発明の一態様において、前記剥離剤層表面の水の接触角は、好ましくは80~150度、より好ましくは85~140度、更に好ましくは90~130度である。当該剥離剤層表面の水の接触角も、後述する実施例に記載の方法を用いて測定される値である。
In this specification, whether or not the intermediate layer is “hydrophilic” is determined to be hydrophilic when the contact angle of water on the substrate-side surface of the intermediate layer is 55 degrees or less. do. In addition, from the viewpoint of promoting separation of the substrate, the contact angle is preferably 50 degrees or less, more preferably 45 degrees or less. Also, the lower limit of the contact angle of water on the substrate-side surface of the intermediate layer is not particularly limited, but is, for example, 0 degree. In other words, in one aspect of the present invention, the contact angle of water on the substrate-side surface of the intermediate layer is preferably 0 to 55 degrees, more preferably 0 to 50 degrees, and even more preferably 0 to 45 degrees. degree. The contact angle is a value measured using the method described in Examples below.
In this specification, whether or not the intermediate layer is "water-insoluble" is determined by the contact angle of water on the surface of the release agent layer, which is measured using the method described in Examples below, and the If the difference from the contact angle of water on the substrate-side surface is 30 degrees or more, the intermediate layer is determined to be water-insoluble. The contact angle difference is preferably 40 degrees or more, more preferably 50 degrees or more. When the value of this difference is small, it means that the component constituting the intermediate layer is eluted into water and the partly exposed release agent layer is measured. The upper limit of the contact angle difference is not particularly limited, but is preferably 150 degrees, more preferably 140 degrees, and still more preferably 130 degrees. As described above, these stepwise lower and upper limits can be independently combined. For example, in one aspect of the present invention, the contact angle difference is preferably 30 to 150 degrees, more preferably 40 to 140 degrees, and even more preferably 50 to 130 degrees.
The contact angle of water on the release agent layer surface is not particularly limited, but is usually 80 degrees or more, preferably 85 degrees or more, and more preferably 90 degrees or more. The upper limit of the contact angle of water on the release agent layer surface is usually 150 degrees, preferably 140 degrees, and more preferably 130 degrees. As described above, these stepwise lower and upper limits can be independently combined. For example, in one aspect of the present invention, the contact angle of water on the release agent layer surface is preferably 80 to 150 degrees, more preferably 85 to 140 degrees, and even more preferably 90 to 130 degrees. The contact angle of water on the surface of the release agent layer is also a value measured using the method described in Examples below.
 前記中間層と水とを接触させる方法は、特に制限はないが、前記積層体を水中に浸漬することによって行うことが好ましい。
 例えば、積層体が巻回されたロール形態であれば、ロール形態のまま、水槽内に浸漬してもよい。この場合、積層体のロールを水槽内に静置してもよく、水槽を攪拌してもよい。
 または、繰出ロールから積層体のシートを繰り出して、巻取ロールで巻き取るまでの間で連続して加工(Roll to Rollによる加工)を行う過程の途中で、ロール形態の積層体から繰り出したシートを水槽内に通過させる、又は、当該シートにブラシ等で水を擦り付ける等の処理を行ってもよい。
 または、積層体を裁断処理した後、裁断した積層体を、水槽に浸漬してもよい。この場合、裁断した積層体を水槽中に静置してもよく、水槽を攪拌してもよい。または、裁断した積層体にブラシ等で水を擦り付ける等の処理を行ってもよい。
The method for bringing the intermediate layer into contact with water is not particularly limited, but it is preferable to immerse the laminate in water.
For example, if the laminated body is wound in a roll form, it may be immersed in the water tank as it is in the roll form. In this case, the laminate roll may be left still in a water tank, or the water tank may be agitated.
Alternatively, the sheet fed out from the roll-shaped laminate in the middle of the process of continuously performing processing (roll-to-roll processing) until the sheet of the laminate is fed out from the feeding roll and wound up with the take-up roll. may be passed through a water tank, or the sheet may be rubbed with water with a brush or the like.
Alternatively, after cutting the laminate, the cut laminate may be immersed in a water tank. In this case, the cut laminate may be left still in a water tank, or the water tank may be agitated. Alternatively, a treatment such as rubbing water with a brush or the like may be performed on the cut laminate.
 前記中間層と接触させる水は、室温でもよいが、加温した温水が好ましい。例えば、40℃以上が好ましく、60℃以上がより好ましい。また、100℃未満が好ましく、98℃以下がより好ましい。前述のとおり、これら段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、本発明の一態様において、前記中間層と接触させる水の温度は、好ましくは40℃以上100℃未満、より好ましくは60℃以上98℃以下である。
 本明細書において、前記水が「室温」であるとは、室内環境の温度と同様の温度であり、当該室温環境下で、熱源等により加温していない状態の水の温度を言う。当該室温の一例としては、特に制限はないが、例えば、23℃であってもよい。
The water to be brought into contact with the intermediate layer may be room temperature, but is preferably warm water. For example, 40° C. or higher is preferable, and 60° C. or higher is more preferable. Also, it is preferably less than 100°C, and more preferably 98°C or less. As described above, these stepwise lower and upper limits can be independently combined. For example, in one aspect of the present invention, the temperature of water to be brought into contact with the intermediate layer is preferably 40° C. or higher and lower than 100° C., more preferably 60° C. or higher and 98° C. or lower.
In this specification, the water being at "room temperature" means the same temperature as the temperature of the room environment, and refers to the temperature of the water in the state of not being heated by a heat source or the like under the room temperature environment. An example of the room temperature is not particularly limited, but may be, for example, 23°C.
<積層体>
 前記積層体は、基材と、該基材の少なくとも一方の表面側に、親水性かつ非水溶性である中間層とを有するものであれば、特に限定されないが、分離した基材から基材を構成する樹脂等を回収し、再利用し易くする観点からは、前記基材と前記中間層とが、直接積層している構成であることが好ましい。ここで、「直接積層」とは、例えば、基材と、中間層との間に、他の層を有さずに、各層が互いに直接接触している構成を指す。
 また、前記積層体は、前記中間層の前記基材とは反対側に、更に、機能層を有することが好ましい。
 以下、前記積層体を構成する各層についてより詳細に説明する。
<Laminate>
The laminate is not particularly limited as long as it has a base material and a hydrophilic and water-insoluble intermediate layer on at least one surface side of the base material. From the viewpoint of facilitating the recovery and reuse of resins and the like that constitute the substrate, it is preferable that the substrate and the intermediate layer are directly laminated. Here, "direct lamination" refers to, for example, a configuration in which each layer is in direct contact with each other without another layer between the substrate and the intermediate layer.
Moreover, it is preferable that the laminate further includes a functional layer on the side of the intermediate layer opposite to the substrate.
Each layer constituting the laminate will be described in more detail below.
(基材)
 前記基材としては、例えば、紙基材、樹脂フィルム等を用いることができ、分離がより容易となる観点から、樹脂フィルムが好ましい。また、樹脂フィルムを分離した場合には、回収される成分は樹脂である。一方、紙基材を分離した場合は、回収される成分はパルプ繊維となる。
 前記樹脂フィルムとしては、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム等のポリエステルフィルム;ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィンフィルム;ポリイミドフィルム;ポリアミドフィルム;ポリカーボネートフィルム;ポリアセテートフィルム;エチレン-酢酸ビニル共重合体(EVA)フィルム;エチレン-(メタ)アクリル酸共重合体フィルム;エチレン-(メタ)アクリル酸エステル共重合体フィルム;シクロオレフィンポリマーフィルム;ポリウレタンフィルム;ポリフェニレンスルフィドフィルム;セロハン;等を用いることができる。これらの中でも、耐熱性、強度の観点から、ポリエステルフィルムが好ましい。ポリエステルフィルムとしては、樹脂の回収、再生がし易い観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートを主たる構成成分とするポリエステルフィルムが好ましい。ここで、「主たる構成成分」とは、当該フィルムを構成する成分中、最も含有量が多い成分を指す。前記ポリエステルフィルムとしては、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムがより好ましく、ポリエチレンテレフタレートフィルムが更に好ましい。
(Base material)
As the substrate, for example, a paper substrate, a resin film, or the like can be used, and a resin film is preferable from the viewpoint of easier separation. Moreover, when the resin film is separated, the recovered component is the resin. On the other hand, when the paper substrate is separated, the recovered component becomes pulp fibers.
Examples of the resin film include polyester films such as polyethylene terephthalate film, polybutylene terephthalate film and polyethylene naphthalate film; polyolefin films such as polyethylene film and polypropylene film; polyimide film; polyamide film; polycarbonate film; vinyl copolymer (EVA) film; ethylene-(meth)acrylic acid copolymer film; ethylene-(meth)acrylic acid ester copolymer film; cycloolefin polymer film; polyurethane film; can be used. Among these, a polyester film is preferable from the viewpoint of heat resistance and strength. As the polyester film, a polyester film containing polyethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate as a main component is preferable from the viewpoint of easy recovery and recycling of the resin. Here, the "main component" refers to the component with the highest content among the components constituting the film. As the polyester film, a polyethylene terephthalate film, a polybutylene terephthalate film, and a polyethylene naphthalate film are more preferable, and a polyethylene terephthalate film is even more preferable.
 また、基材は、前述の樹脂を1種のみ含有する樹脂フィルムであってもよいし、2種以上含有するものであってもよい。例えば、前記基材は1つの樹脂フィルムからなる単層フィルムでもよく、複数の樹脂フィルムが積層した複層フィルムであってもよい。樹脂の回収がし易くなる観点からは、前記基材は1つの樹脂フィルムからなる単層フィルム又は1つの樹脂フィルムを積層した複層フィルムであることが好ましい。
 また、樹脂フィルムは、公知のフィラー、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒等を含有してもよい。また、樹脂フィルムは、透明なものであっても、所望により着色等されていてもよい。また、基材の少なくとも1つの表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、酸化等のエッチング処理等の表面処理を必要に応じて施してもよい。
 また、洗浄水の汚染性をより低減する観点から、基材も非水溶性であることが好ましく、疎水性(非親水性)かつ非水溶性であることがより好ましい。
Moreover, the base material may be a resin film containing only one type of the above-mentioned resins, or may contain two or more types thereof. For example, the substrate may be a single-layer film made of one resin film, or a multi-layer film in which a plurality of resin films are laminated. From the viewpoint of facilitating recovery of the resin, the substrate is preferably a single-layer film made of one resin film or a multi-layer film made by laminating one resin film.
Moreover, the resin film may contain known fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and the like. Moreover, the resin film may be transparent or colored as desired. In addition, at least one surface of the substrate may be previously subjected to surface treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, etching treatment such as oxidation, etc., if necessary.
In addition, from the viewpoint of further reducing the contamination of washing water, the substrate is also preferably water-insoluble, and more preferably both hydrophobic (non-hydrophilic) and water-insoluble.
 基材の厚さは、特に制限はないが、強度、剛性等の観点から、好ましくは10~500μm、より好ましくは15~300μm、更に好ましくは20~200μmである。
 ここで、「基材の厚さ」とは、基材全体の厚さを意味し、例えば、前述した2層以上積層した複層フィルムを用いる場合、基材の厚さとは、基材を構成するすべての層の合計の厚さを意味する。
The thickness of the substrate is not particularly limited, but is preferably 10 to 500 μm, more preferably 15 to 300 μm, still more preferably 20 to 200 μm from the viewpoint of strength, rigidity and the like.
Here, the "thickness of the base material" means the thickness of the entire base material. means the total thickness of all layers
(中間層)
 前記中間層としては、本発明の効果がより奏され易くする観点から、シロキサン結合(-Si-O-Si-)を有する層であることが好ましい。
 シロキサン結合を有する層としては、例えば、加水分解による重縮合性を示すシラン系化合物から形成された層であることが好ましい。前記加水分解による重縮合性を示すシラン系化合物は、加水分解された化合物が重縮合可能な化合物である。例えば、前記加水分解による重縮合性を示すシラン系化合物は、加水分解による重縮合性を示すアルコキシシランであってもよい。
(middle layer)
The intermediate layer is preferably a layer having a siloxane bond (--Si--O--Si--) from the viewpoint of facilitating the effects of the present invention.
The layer having a siloxane bond is preferably, for example, a layer formed from a silane-based compound that exhibits polycondensation properties due to hydrolysis. The silane-based compound exhibiting polycondensability by hydrolysis is a compound in which a hydrolyzed compound can undergo polycondensation. For example, the silane-based compound exhibiting polycondensability by hydrolysis may be an alkoxysilane exhibiting polycondensation by hydrolysis.
 前記加水分解による重縮合性を示すシラン系化合物としては、下記一般式(a)で表される4官能シラン系化合物及びそのオリゴマーから選ばれる少なくとも1種を主成分として含むことが好ましい。
 Si(OR)(X)4-p   (a)
〔一般式(a)中、Rはアルキル基を表し、Xはハロゲン原子を表す。R及びXが複数存在する場合、複数のR及びXは、互いに同一でも、異なっていてもよい。pは0~4の整数を表す。〕
The silane-based compound exhibiting polycondensability by hydrolysis preferably contains, as a main component, at least one selected from tetrafunctional silane-based compounds represented by the following general formula (a) and oligomers thereof.
Si(OR) p (X) 4-p (a)
[In general formula (a), R represents an alkyl group, and X represents a halogen atom. When a plurality of R and X are present, the plurality of R and X may be the same or different. p represents an integer of 0 to 4; ]
 Rとして選択し得るアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、ネオペンチル基、メチルペンチル基等が挙げられる。これらの中でも、シラン系化合物の反応性をより向上させる観点から、メチル基、エチル基、n-プロピル基、又はn-ブチル基が好ましく、メチル基又はエチル基がより好ましい。Rとして選択し得るアルキル基は、直鎖及び分岐鎖のいずれであってもよいが、直鎖であることが好ましい。
 Xとして選択し得るハロゲン原子としては、塩素原子、臭素原子、又はヨウ素原子が好ましく、塩素原子がより好ましい。
 なお、前記一般式(a)で表されるシラン系化合物は、単独で又は2種以上を組み合わせて用いてもよい。
Examples of alkyl groups that can be selected as R include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, n -hexyl group, neopentyl group, methylpentyl group and the like. Among these, a methyl group, an ethyl group, an n-propyl group, or an n-butyl group is preferable, and a methyl group or an ethyl group is more preferable, from the viewpoint of further improving the reactivity of the silane compound. The alkyl group that can be selected as R may be either straight-chain or branched-chain, preferably straight-chain.
A halogen atom that can be selected as X is preferably a chlorine atom, a bromine atom, or an iodine atom, and more preferably a chlorine atom.
The silane compound represented by the general formula (a) may be used alone or in combination of two or more.
 また、前記一般式(a)で表されるシラン系化合物としては、前記一般式(a)中のpが4であるシラン系化合物を含むことが好ましい。
 すなわち、前記4官能シラン系化合物は、下記一般式(a1)で表されるテトラアルコキシシランであることが好ましい。
 Si(OR)   (a1)
〔一般式(a1)中、Rはアルキル基を表す。Rが複数存在する場合、複数のRは、互いに同一でも、異なっていてもよい。〕
Moreover, it is preferable that the silane-based compound represented by the general formula (a) includes a silane-based compound in which p is 4 in the general formula (a).
That is, the tetrafunctional silane compound is preferably a tetraalkoxysilane represented by the following general formula (a1).
Si(OR) 4 (a1)
[In general formula (a1), R represents an alkyl group. When there are multiple R's, the multiple R's may be the same or different. ]
 一般式(a1)中、Rとして選択し得るアルキル基としては、前述した一般式(a)中のRと同様のものが例示され、その好適な態様も同様である。
 前記テトラアルコキシシランのより好ましい具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。これらの中でも、入手の容易性及び加水分解反応の反応性の観点から、テトラメトキシシラン及びテトラエトキシシランの少なくとも一方、又は、テトラメトキシシラン及びテトラエトキシシランの混合物であることが好ましい。
Examples of the alkyl group that can be selected as R in general formula (a1) are the same as those for R in general formula (a) described above, and preferred embodiments thereof are also the same.
More preferred specific examples of the tetraalkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and the like. Among these, at least one of tetramethoxysilane and tetraethoxysilane, or a mixture of tetramethoxysilane and tetraethoxysilane is preferable from the viewpoint of availability and reactivity of the hydrolysis reaction.
 ここで、前記加水分解による重縮合性を示すシラン系化合物中における「主成分」とは、前記加水分解による重縮合性を示すシラン系化合物の全量100質量%中、最も多く含まれるシラン系化合物のことを指す。
 前記加水分解による重縮合性を示すシラン系化合物中、主成分として含まれる前記一般式(a)で表されるシラン系化合物及びそのオリゴマーの含有量は、その他のシラン系化合物の含有量よりも多ければ特に制限はないが、例えば、前記加水分解による重縮合性を示すシラン系化合物の全量100質量%中、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、より更に好ましくは90質量%以上であり、そして、100質量%以下である。換言すれば、本発明の一態様において、前記加水分解による重縮合性を示すシラン系化合物中、主成分として含まれる前記一般式(a)で表されるシラン系化合物及びそのオリゴマーの含有量は、加水分解による重縮合性を示すシラン系化合物の全量100質量%中、好ましくは50~100質量%、より好ましくは70~100質量%、更に好ましくは80~100質量%、より更に好ましくは90~100質量%である。
Here, the "main component" in the silane compound exhibiting polycondensation property by hydrolysis is the silane compound that is the most contained in the total amount of 100% by mass of the silane compound exhibiting polycondensation property by hydrolysis. refers to
In the silane compound exhibiting polycondensation property by hydrolysis, the content of the silane compound represented by the general formula (a) and its oligomer contained as a main component is higher than the content of other silane compounds. Although there is no particular limitation as long as it is large, for example, it is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass in 100% by mass of the total amount of the silane-based compound that exhibits polycondensation properties due to hydrolysis. More preferably, it is 90% by mass or more and 100% by mass or less. In other words, in one aspect of the present invention, the content of the silane-based compound represented by the general formula (a) and its oligomer contained as a main component in the silane-based compound exhibiting polycondensability by hydrolysis is , preferably 50 to 100% by mass, more preferably 70 to 100% by mass, still more preferably 80 to 100% by mass, still more preferably 90% by mass of the total amount of 100% by mass of the silane compound that exhibits polycondensation by hydrolysis. ~100% by mass.
 また、前記一般式(a)で表される4官能シラン系化合物のオリゴマー、又は、前記一般式(a1)で表されるテトラアルコキシシランのオリゴマーの平均重合度は、それぞれ、特に限定されないが、それぞれ独立に、例えば、2~20であってもよく、2~15であってもよい。すなわち、前記各シラン系化合物の平均2~20量体であってもよく、前記各シラン系化合物の平均2~15量体であってもよい。
 また、前記「一般式(a)で表される4官能シラン系化合物のオリゴマー」及び「前記一般式(a1)で表されるテトラアルコキシシランのオリゴマー」は、いずれも、単に、前記各シラン系化合物の単量体を出発原料として得られたものに限定されず、他の化合物を出発原料とする合成の結果、得られる化合物の構造が、前記一般式(a)で表される4官能シラン系化合物、又は、前記一般式(a1)で表されるテトラアルコキシシランが2つ以上縮合した構造を有する化合物も含む。後述する「1~3官能のシラン系化合物のオリゴマー」についても同様である。
Further, the average degree of polymerization of the oligomer of the tetrafunctional silane compound represented by the general formula (a) or the oligomer of the tetraalkoxysilane represented by the general formula (a1) is not particularly limited, but Each independently may be, for example, 2 to 20 or 2 to 15. That is, it may be an average 2- to 20-mer of each silane-based compound, or an average 2- to 15-mer of each of the silane-based compounds.
Further, both the "oligomer of the tetrafunctional silane compound represented by the general formula (a)" and the "oligomer of the tetraalkoxysilane represented by the general formula (a1)" are simply the respective silane-based It is not limited to those obtained using the monomer of the compound as a starting material, and as a result of synthesis using another compound as a starting material, the structure of the compound obtained is a tetrafunctional silane represented by the general formula (a). A compound having a structure in which two or more tetraalkoxysilanes represented by general formula (a1) are condensed. The same applies to the "oligomers of monofunctional to trifunctional silane compounds" described later.
 前記加水分解による重縮合性を示すシラン系化合物としては市販品を用いることもでき、当該市販品の好適例としては、「コルコート(登録商標)N-103X」、「コルコート(登録商標)PX」、テトラメトキシシランの平均4量体オリゴマーである「メチルシリケート51」、テトラメトキシシランの平均7量体オリゴマーである「メチルシリケート53A」、テトラエトキシシランの平均5量体オリゴマーである「エチルシリケート40」、テトラエトキシシランの平均10量体オリゴマーである「エチルシリケート48」、テトラメトキシシランの平均10量体オリゴマーと、テトラエトキシシランの平均10量体オリゴマーとの混合物である「EMS-485」(いずれも、コルコート株式会社製)等が挙げられる。 Commercially available products can also be used as the silane-based compound exhibiting polycondensation properties by hydrolysis, and preferred examples of such commercial products include “Colcoat (registered trademark) N-103X” and “Colcoat (registered trademark) PX”. , "methyl silicate 51" which is an average tetrameric oligomer of tetramethoxysilane, "methyl silicate 53A" which is an average heptamer oligomer of tetramethoxysilane, "ethyl silicate 40" which is an average pentamer oligomer of tetraethoxysilane. "Ethylsilicate 48" which is an average decamer oligomer of tetraethoxysilane, "EMS-485" which is a mixture of an average decamer oligomer of tetramethoxysilane and an average decamer oligomer of tetraethoxysilane ( All of them are manufactured by Colcoat Co., Ltd.) and the like.
 前記シラン系化合物が含んでもよいその他のシラン系化合物としては、1~3官能のシラン系化合物が挙げられる。ただし、中間層の親水性を向上させる観点からは、前述のとおり、4官能シラン系化合物を主成分として含むことが好ましい。
 また、前記加水分解による重縮合性を示すシラン系化合物の加水分解反応又は縮合反応を促進する観点から、例えば、酸触媒、金属触媒等の触媒を用いてもよい。
Other silane-based compounds that the silane-based compound may contain include mono- to tri-functional silane-based compounds. However, from the viewpoint of improving the hydrophilicity of the intermediate layer, as described above, it is preferable to contain a tetrafunctional silane-based compound as a main component.
In addition, from the viewpoint of promoting the hydrolysis reaction or condensation reaction of the silane-based compound exhibiting polycondensation properties due to hydrolysis, for example, a catalyst such as an acid catalyst or a metal catalyst may be used.
 前記中間層の厚さは、中間層が水と接した際に、水が浸潤し易くなる観点から、好ましくは0.01~1μm、より好ましくは0.03~0.5μm、更に好ましくは0.05~0.3μmである。 The thickness of the intermediate layer is preferably 0.01 to 1 μm, more preferably 0.03 to 0.5 μm, still more preferably 0, from the viewpoint of facilitating water infiltration when the intermediate layer comes into contact with water. 0.05 to 0.3 μm.
(機能層)
 前記積層体は、前記中間層の前記基材とは反対側に、更に、機能層を有することが好ましい。すなわち、前記積層体は、基材と、該基材の少なくとも一方の表面側に、前記中間層と、機能層とをこの順で有することが好ましい。
 また、前記積層体の一態様としては、前記基材と、前記中間層と、機能層とがこの順で直接積層していてもよく、少なくとも、前記基材と前記中間層とがこの順で直接積層していることがより好ましい。
 ここで、前述の「直接積層」とは、例えば、基材と、中間層と、機能層との間に、他の層を有さずに、各層が互いに直接接触している構成を指す。
 前記機能層は、積層体の用途により、適宜、選択することが可能であるが、例えば、剥離剤層、印刷層、ハードコート層、易接着層又は粘着剤層等が挙げられる。
 特に前記機能層が剥離剤層であれば、剥離剤層表面の水の接触角が大きくなり、さらに剥離剤層表面の水の接触角と、前記中間層の前記基材側表面の水の接触角との差が大きくなることにより、基材の分離がより容易となる。
(functional layer)
The laminate preferably further has a functional layer on the side of the intermediate layer opposite to the substrate. That is, it is preferable that the laminate has a substrate, and the intermediate layer and the functional layer in this order on at least one surface side of the substrate.
Further, as one aspect of the laminate, the base material, the intermediate layer, and the functional layer may be directly laminated in this order, and at least the base material and the intermediate layer may be laminated in this order. Direct lamination is more preferred.
Here, the above-mentioned "direct lamination" refers to, for example, a structure in which each layer is in direct contact with each other without any other layer between the substrate, the intermediate layer, and the functional layer.
The functional layer can be appropriately selected depending on the use of the laminate, and examples thereof include a release agent layer, a print layer, a hard coat layer, an easy adhesion layer, an adhesive layer, and the like.
In particular, when the functional layer is a release agent layer, the contact angle of water on the surface of the release agent layer increases, and the contact angle of water on the surface of the release agent layer and the contact angle of water on the substrate-side surface of the intermediate layer The larger the difference from the corners, the easier the separation of the substrates.
 また、前記機能層を有する積層体としては、その用途及び使用量の観点等から、剥離剤層を有する積層体であることが好ましく、剥離シートであることがより好ましい。
 剥離シートは、一般に、特定の用途に用いられる他の機能性シートや各種部品の製造、運搬、保管時等に、これらシートや部品の表面を保護する目的等で用いられる。実際にこれらの部品等の保護の役目を果たした後は、表面から剥離され、廃棄されることも多い。そのため、前記基材の分離方法を、剥離シートから基材を分離する方法に用いることは、資源保護、環境保護の観点からも、貢献度の高い用途である。
 したがって、本発明の一態様として、前記積層体が有する機能層としては、剥離剤層であることが好ましく、前記積層体の好適な一態様としては、剥離シートが挙げられる。すなわち、前記基材の分離方法の好適な一態様としては、基材と、該基材の少なくとも一方の表面側に、非水溶性かつ親水性である中間層と、該中間層の前記基材とは反対側に、更に剥離剤層を有する剥離シートにおいて、前記中間層と水とを接触させて、前記中間層を前記基材表面から剥離させることによって、前記剥離シートから前記基材を分離することを特徴とする、基材の分離方法;が例示される。
Moreover, the laminate having a functional layer is preferably a laminate having a release agent layer, more preferably a release sheet, from the viewpoint of its use and usage amount.
A release sheet is generally used for the purpose of protecting the surfaces of other functional sheets and various parts used for specific purposes during the production, transport, storage, etc. of these sheets and parts. After actually fulfilling the role of protecting these parts, etc., they are often peeled off from the surface and discarded. Therefore, the use of the method for separating the substrate from the release sheet as a method for separating the substrate from the release sheet is a highly contributory application from the viewpoint of resource conservation and environmental protection.
Therefore, as one aspect of the present invention, the functional layer of the laminate is preferably a release agent layer, and a preferred aspect of the laminate is a release sheet. That is, as a preferred embodiment of the method for separating the substrate, a substrate, a water-insoluble and hydrophilic intermediate layer on at least one surface side of the substrate, and the substrate of the intermediate layer In a release sheet having a release agent layer on the opposite side, the intermediate layer is brought into contact with water to separate the intermediate layer from the substrate surface, thereby separating the substrate from the release sheet A method for separating a substrate, characterized by:
〔剥離剤層〕
 前記剥離剤層は、剥離剤組成物から形成された層であることが好ましい。
 前記剥離剤層の形成に用いられる剥離剤組成物としては、剥離性を有するものであれば特に制限はなく、例えば、シリコーン系化合物;フッ素化合物;長鎖アルキル基含有化合物;オレフィン系樹脂、ジエン系樹脂などの熱可塑性樹脂材料;などを主成分とする剥離剤組成物を用いることができる。また、エネルギー線硬化型又は熱硬化型樹脂を主成分とする剥離剤組成物を使用することが好ましい。これらの剥離剤組成物は、1種を単独で用いてもよく、又は、2種以上を組み合わせて用いてもよい。
 ここで、前記剥離剤組成物中における「主成分」とは、前記剥離剤組成物の固形分全量100質量%中、最も多く含まれる成分のことを指す。
[Release agent layer]
The release agent layer is preferably a layer formed from a release agent composition.
The release agent composition used to form the release agent layer is not particularly limited as long as it has release properties. Examples include silicone compounds; fluorine compounds; long-chain alkyl group-containing compounds; A release agent composition containing a thermoplastic resin material such as a base resin as a main component can be used. Moreover, it is preferable to use a release agent composition containing an energy ray-curable or thermosetting resin as a main component. These release agent compositions may be used singly or in combination of two or more.
Here, the "main component" in the release agent composition refers to the component contained most in the total solid content of 100% by mass of the release agent composition.
 また、前記剥離剤層には、前述の主成分以外に、その他の添加剤を含有していてもよい。その他の添加剤としては、例えば、老化防止剤、光安定剤、難燃剤、導電剤、帯電防止剤、可塑剤等が挙げられる。 In addition, the release agent layer may contain other additives in addition to the main components described above. Other additives include, for example, antioxidants, light stabilizers, flame retardants, conductive agents, antistatic agents, plasticizers, and the like.
 また、洗浄水の汚染性をより低減する観点から、機能層も非水溶性であることが好ましく、疎水性(非親水性)かつ非水溶性であることがより好ましい。
 機能層の厚さは、積層体の用途により、適宜、選択することが可能であり、特に制限はないが、例えば、好ましくは0.02~200μmである。また、前記機能層の一態様として、例えば、機能層が剥離剤層である場合、好ましくは0.02~5μm、より好ましくは0.03~2μm、更に好ましくは0.05~1.5μmである。
In addition, from the viewpoint of further reducing the contamination of washing water, the functional layer is preferably water-insoluble, and more preferably both hydrophobic (non-hydrophilic) and water-insoluble.
The thickness of the functional layer can be appropriately selected depending on the application of the laminate, and is not particularly limited, but is preferably 0.02 to 200 μm, for example. Further, as one aspect of the functional layer, for example, when the functional layer is a release agent layer, it is preferably 0.02 to 5 μm, more preferably 0.03 to 2 μm, and still more preferably 0.05 to 1.5 μm. be.
<積層体の製造方法>
 本発明で用いることができる前記積層体の製造方法としては、基材、及び、該基材の少なくとも一方の表面側に、中間層を有する積層体を製造することができる限り、特に制限はなく、公知の方法により製造することができる。
 例えば、基材の一方の面に、中間層形成用組成物又はその溶液を塗布し、その後加熱し乾燥すること又はエネルギー線照射により硬化すること等の方法により中間層を形成して作製することができる。
 また、前記積層体が、前記中間層の前記基材とは反対側に、更に、機能層を有する場合、当該機能層の形成方法も、当該機能層の種類により、適宜、選択することが可能であり、機能層を有する積層体を製造することができる限り、特に制限はなく、公知の方法により製造することができる。
 例えば、前述した方法等で基材上に形成された中間層上に、機能層形成用組成物又はその溶液を塗布し、その後加熱し乾燥すること又はエネルギー線照射により硬化すること等の方法により機能層を形成して作製することができる。或いは、別の剥離材の剥離処理面に、機能層形成用組成物又はその溶液を塗布し、その後加熱し乾燥すること又はエネルギー線照射により硬化すること等の方法を用いて、剥離材上に機能層を形成し、この機能層を中間層の基材とは反対側の面上に貼り合わせて、機能層を形成してもよい。なお、剥離材は、中間層の上に機能層を積層する前に剥離してもよく、積層後、機能層を形成した積層体の使用前までに剥離してもよい。また、前者の方法で機能層を形成する場合、形成された機能層の表面上に、剥離材を更に貼り合わせてもよい。
<Method for manufacturing laminate>
The method for producing the laminate that can be used in the present invention is not particularly limited as long as a laminate having a substrate and an intermediate layer on at least one surface side of the substrate can be produced. , can be produced by a known method.
For example, an intermediate layer may be formed by applying an intermediate layer-forming composition or a solution thereof to one surface of a substrate, followed by heating and drying, or curing by energy ray irradiation. can be done.
In addition, when the laminate further has a functional layer on the side of the intermediate layer opposite to the base material, the method for forming the functional layer can be appropriately selected depending on the type of the functional layer. and is not particularly limited as long as a laminate having a functional layer can be produced, and can be produced by a known method.
For example, on the intermediate layer formed on the base material by the method described above, the functional layer-forming composition or its solution is applied, and then heated and dried or cured by energy ray irradiation. It can be produced by forming a functional layer. Alternatively, the composition for forming a functional layer or a solution thereof is applied to the release-treated surface of another release material, and then heated and dried or cured by irradiation with an energy beam. A functional layer may be formed by forming a functional layer and bonding this functional layer to the surface of the intermediate layer opposite to the substrate. The release material may be peeled off before laminating the functional layer on the intermediate layer, or after lamination and before use of the laminate having the functional layer formed thereon. Moreover, when forming a functional layer by the former method, you may bond a peeling material further on the surface of the formed functional layer.
 中間層形成用組成物、機能層形成用組成物、又はこれらの溶液を塗布する方法としては、特に制限はなく、公知の方法を用いることができる。例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
 また、中間層又は機能層を乾燥する場合の乾燥方法や乾燥温度も特に制限はなく、中間層又は機能層を形成する材料の特性等によって、適宜、選択することができる。同様に、エネルギー線照射により中間層又は機能層を形成する場合も、中間層又は機能層を形成する材料の特性等によって、エネルギー線の種類、照度、光量といった照射条件は、適宜、選択することができる。
The method for applying the composition for forming the intermediate layer, the composition for forming the functional layer, or the solution thereof is not particularly limited, and known methods can be used. Examples thereof include spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
Moreover, the drying method and drying temperature for drying the intermediate layer or functional layer are not particularly limited, and can be appropriately selected according to the characteristics of the material forming the intermediate layer or functional layer. Similarly, when an intermediate layer or functional layer is formed by energy ray irradiation, irradiation conditions such as the type of energy ray, illuminance, and light amount should be appropriately selected according to the characteristics of the material forming the intermediate layer or functional layer. can be done.
<基材の分離方法に関する用途等>
 前述のとおり、前記基材の分離方法を用いることで、積層体から基材を容易に分離することができる。また、前述のとおり、基材の分離に寄与する積層体中の中間層は、基材を分離する際に用いる洗浄水の汚染を低減でき、更には、洗浄水の汚染が抑制されることから、分離した基材から回収される樹脂等も汚染されにくい。また、洗浄水の汚染が抑制されることで、洗浄水の再利用や廃棄処理の簡略化にも繋がる。
 したがって、基材から回収した樹脂をそのまま再使用する場合、又は、樹脂を構成する原材料であるモノマー等まで分解してリサイクルする場合にも好適に用いることができる。
 また、前記積層体を用いて基材を分離する場合、前記洗浄水をろ過するだけでも洗浄水と分離された基材とを容易に分けることが可能である等、樹脂の回収やリサイクルを行うプロセス全体の簡略化にも繋がる。
 したがって、本発明の一態様としては、例えば、少なくとも、前記基材の分離方法を用いて、基材と、該基材の少なくとも一方の表面側に、前記中間層とを有する積層体から、前記中間層と水とを接触させて、前記中間層を前記基材の表面又は基材側の層の表面から剥離させることによって、前記積層体から前記基材を分離する工程;及び、基材から樹脂を回収する工程;とを含む、樹脂のリサイクル方法が挙げられる。前記基材から樹脂を回収する工程は、特に制限はなく、各樹脂の種類及び樹脂の原料に応じて、適宜、公知の回収方法を用いることができる。
<Uses, etc. for separation method of base material>
As described above, the substrate can be easily separated from the laminate by using the method for separating the substrate. In addition, as described above, the intermediate layer in the laminate that contributes to the separation of the base material can reduce the contamination of the washing water used when separating the base material, and furthermore, the contamination of the washing water is suppressed. Also, the resin recovered from the separated substrate is less likely to be contaminated. In addition, suppression of contamination of the wash water leads to reuse of the wash water and simplification of waste treatment.
Therefore, it can be suitably used when the resin recovered from the base material is reused as it is, or when even the monomer, which is the raw material constituting the resin, is decomposed and recycled.
In addition, when the base material is separated using the laminate, the washing water can be easily separated from the separated base material by simply filtering the washing water, and the resin can be recovered and recycled. It also simplifies the whole process.
Therefore, as one aspect of the present invention, for example, at least, using the method for separating the substrate, from the laminate having the substrate and the intermediate layer on at least one surface side of the substrate, the separating the substrate from the laminate by bringing the intermediate layer into contact with water to separate the intermediate layer from the surface of the substrate or the surface of the layer on the substrate side; and a step of recovering the resin; and a method for recycling the resin. The step of recovering the resin from the base material is not particularly limited, and a known recovery method can be appropriately used depending on the type of each resin and the raw material of the resin.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例における物性値は、以下の方法により測定した値である。 The present invention will be specifically described by the following examples, but the present invention is not limited to the following examples. The physical property values in the following examples are values measured by the following methods.
[基材、中間層、剥離剤層の厚さ]
 各実施例及び各比較例で用いた剥離シートにおける基材の厚さは、株式会社テクロック製の定圧厚さ測定器(型番:「PG-02J」、標準規格:JIS K6783:1994、JIS Z1702:1994、JIS Z1709:1995に準拠)を用いて測定した。
 実施例1~4並びに比較例2の中間層の厚さは、分光エリプソメーター(J.A.Woollam社製、製品名「M-2000」)を用いて測定した。
 各実施例及び各比較例の剥離剤層の厚さは、反射式膜厚計(フィルメトリクス株式会社製、製品名「F20」)を用いて測定した。
[Thicknesses of substrate, intermediate layer, and release agent layer]
The thickness of the substrate in the release sheet used in each example and each comparative example was measured using a constant pressure thickness measuring instrument manufactured by Teclock Co., Ltd. (model number: "PG-02J", standard specifications: JIS K6783: 1994, JIS Z1702: 1994, JIS Z1709: 1995).
The thicknesses of the intermediate layers of Examples 1 to 4 and Comparative Example 2 were measured using a spectroscopic ellipsometer (manufactured by JA Woollam, product name "M-2000").
The thickness of the release agent layer of each example and each comparative example was measured using a reflective film thickness meter (manufactured by Filmetrics, product name: "F20").
[中間層の非水溶性評価]
 以下の方法を用いて、中間層が非水溶性であるかを確認した。
(1)剥離剤層表面の水の接触角の測定
 実施例1~4、並びに、比較例2で得られた剥離シートの剥離剤層表面の水の接触角を測定した。接触角は、接触角計(協和界面科学株式会社製、製品名「DM-701」)を使用し、静滴法によってJIS R3257:1999に準じて測定した。液滴については、蒸留水を使用した。
 測定結果を「接触角(1)」として下記表1に示す。
(2)中間層の基材側表面の水の接触角の測定
 以下の方法で、基材から中間層を分離し中間層の基材側表面の水の接触角を測定して、中間層の親水性を評価した。
 実施例1~4、並びに、比較例2で得られた剥離シートの剥離剤層表面に、幅50mmの粘着テープ(日東電工株式会社製、製品名「ポリエステル粘着テープNo.31B」)を貼付し、その後、50mm×50mmのサイズに裁断して試験片を作製した。
 次いで、容量500mLのガラス製ビーカーに300mLの温水を充填し、試験片全体を90℃の温水中に浸漬して3時間放置した。その後、試験片が、剥離剤層と中間層が一体となって粘着テープに担持された積層体と、基材とに分離されていることを確認し、剥離剤層と中間層を担持した粘着テープを温水中から取り出し、室温(23℃)の環境下で24時間乾燥させた。その後、粘着テープ上に担持されている中間層の表面(基材表面に接触していた中間層の表面)について接触角を測定した。接触角は、接触角計(協和界面科学株式会社製、製品名「DM-701」)を使用し、静滴法によってJIS R3257:1999に準じて測定した。液滴については、蒸留水を使用した。
 測定結果を「接触角(2)」として下記表1に示す。
(3)中間層が非水溶性であるか否かの判断方法
 上記(1)で測定された剥離シートの剥離剤層表面の水の接触角の値と、上記(2)で測定された中間層の基材側表面の水の接触角の値との差が30度以上の場合、当該剥離シート中の中間層が非水溶性であると判断した。評価結果を下記表1に示す。
 この接触角の差の値が小さい場合、上記(2)の操作において、中間層を構成する成分が水に溶出して、部分的に又は全体的に表出した剥離剤層の接触角を測定していることを意味する。
[Evaluation of water insolubility of intermediate layer]
The following method was used to confirm whether the intermediate layer was water-insoluble.
(1) Measurement of contact angle of water on surface of release agent layer The contact angle of water on the surface of the release agent layer of the release sheets obtained in Examples 1 to 4 and Comparative Example 2 was measured. The contact angle was measured according to JIS R3257:1999 by the sessile drop method using a contact angle meter (Kyowa Interface Science Co., Ltd., product name: "DM-701"). For droplets, distilled water was used.
The measurement results are shown in Table 1 below as "contact angle (1)".
(2) Measurement of the contact angle of water on the substrate side surface of the intermediate layer Separate the intermediate layer from the substrate and measure the water contact angle on the substrate side surface of the intermediate layer by the following method. Hydrophilicity was evaluated.
An adhesive tape with a width of 50 mm (manufactured by Nitto Denko Corporation, product name "Polyester Adhesive Tape No. 31B") was attached to the surface of the release agent layer of the release sheets obtained in Examples 1 to 4 and Comparative Example 2. After that, it was cut into a size of 50 mm×50 mm to prepare a test piece.
Then, a glass beaker with a capacity of 500 mL was filled with 300 mL of warm water, and the entire test piece was immersed in warm water of 90° C. and allowed to stand for 3 hours. After that, it was confirmed that the test piece was separated into a laminate in which the release agent layer and the intermediate layer were integrally supported on the adhesive tape and the base material, and the adhesive carrying the release agent layer and the intermediate layer was separated. The tape was taken out of the hot water and dried at room temperature (23° C.) for 24 hours. After that, the contact angle was measured for the surface of the intermediate layer carried on the adhesive tape (the surface of the intermediate layer that was in contact with the substrate surface). The contact angle was measured according to JIS R3257:1999 by the sessile drop method using a contact angle meter (Kyowa Interface Science Co., Ltd., product name: "DM-701"). For droplets, distilled water was used.
The measurement results are shown in Table 1 below as "contact angle (2)".
(3) Method for judging whether or not the intermediate layer is water-insoluble When the difference between the contact angle of water on the substrate-side surface of the layer and the value of the water contact angle was 30 degrees or more, it was judged that the intermediate layer in the release sheet was water-insoluble. The evaluation results are shown in Table 1 below.
If the value of the difference in contact angle is small, the contact angle of the release agent layer that is partially or wholly exposed due to elution of the components constituting the intermediate layer into water in the operation (2) above is measured. means that
[中間層の親水性評価]
 上記「(2)中間層の基材側表面の水の接触角の測定」の結果により、実施例1~4、並びに、比較例2で得られた剥離シートの親水性を評価した。
 上記「(2)中間層の基材側表面の水の接触角の測定」により、中間層の基材側表面の水の接触角の値が55度以下である場合、中間層が親水性であると判断した。結果を下記表1に示す。
 なお、下記表1中、比較例2でポリビニルアルコールから形成された中間層の接触角(2)の値が高くなっているが、これは、前述のとおり、上記「(2)中間層の基材側表面の水の接触角の測定」において、比較例2の中間層が温水中に溶出し、部分的に表出してしまった剥離剤層の影響を受けたためである。
 したがって、下記表1中、中間層の親水性評価は、中間層が非水溶性である場合についてのみ表記した。
 参考として、比較例2において、剥離剤層を形成せず、基材上に中間層のみを形成した積層体サンプルを準備し、当該中間層の表面を、上記「(1)剥離剤層表面の水の接触角の測定」を準用して測定した場合の接触角は、35.2度であった。この点からも、上記「(2)中間層の基材側表面の水の接触角の測定」における処理により、比較例2の中間層が温水中に溶出していたことが確認できた。
[Evaluation of Hydrophilicity of Intermediate Layer]
The hydrophilicity of the release sheets obtained in Examples 1 to 4 and Comparative Example 2 was evaluated based on the results of "(2) Measurement of the contact angle of water on the substrate-side surface of the intermediate layer".
According to the above "(2) Measurement of the water contact angle of the substrate-side surface of the intermediate layer", when the value of the water contact angle of the substrate-side surface of the intermediate layer is 55 degrees or less, the intermediate layer is hydrophilic. I decided there was. The results are shown in Table 1 below.
In Table 1 below, the value of the contact angle (2) of the intermediate layer formed of polyvinyl alcohol in Comparative Example 2 is high. This is because the intermediate layer of Comparative Example 2 was affected by the partially exposed release agent layer eluted in warm water in the measurement of the contact angle of water on the material side surface.
Therefore, in Table 1 below, the evaluation of the hydrophilicity of the intermediate layer is shown only when the intermediate layer is water-insoluble.
As a reference, in Comparative Example 2, a laminate sample was prepared in which only an intermediate layer was formed on a base material without forming a release agent layer, and the surface of the intermediate layer was subjected to the above "(1) Release agent layer surface The contact angle measured according to "Measurement of contact angle of water" was 35.2 degrees. From this point as well, it was confirmed that the intermediate layer of Comparative Example 2 was eluted into the hot water by the treatment in "(2) Measurement of the water contact angle of the substrate-side surface of the intermediate layer".
[剥離シートの製造]
 以下に示す方法によって剥離シートを製造した。
[Production of release sheet]
A release sheet was produced by the method shown below.
[実施例1]
 基材として二軸延伸ポリエチレンテレフタレートフィルム(厚さ31μm)を用意した。次に、中間層形成用組成物として、加水分解による重縮合性を示すシラン系化合物(コルコート株式会社製、製品名「コルコート(登録商標)N-103X」)を用意し、イソプロピルアルコールと混合して、固形分濃度を1.5質量%に調整した。
 次に、得られた中間層形成用組成物を、バーコーターで乾燥後の中間層の厚みが0.1μmとなるように基材の片面に均一に塗布して塗布層を形成し、130℃で1分間加熱することにより塗布層を硬化させ、中間層を形成した。
 次に、熱硬化性付加反応型シリコーン(信越化学工業株式会社製、「KS-847H」)100質量部をトルエンで希釈し、これに白金触媒(信越化学工業株式会社製、「CAT-PL-50T」)2質量部を添加し、固形分濃度が2.0質量%の溶液とし、剥離剤組成物の塗工液を得た。調製した塗工液を、バーコーターで、前記基材上に形成された中間層の上に塗布して塗布層を形成し、120℃で1分間加熱することにより塗布層を硬化させ、厚さ0.1μmの剥離剤層を形成して、基材/中間層/剥離剤層がこの順で積層された構成である剥離シートを作製した。
 得られた剥離シートを用いて、後述する基材の分離性評価を行った。
[Example 1]
A biaxially oriented polyethylene terephthalate film (thickness: 31 µm) was prepared as a substrate. Next, as a composition for forming an intermediate layer, a silane compound exhibiting polycondensation properties by hydrolysis (manufactured by Colcoat Co., Ltd., product name “Colcoat (registered trademark) N-103X”) was prepared and mixed with isopropyl alcohol. to adjust the solid content concentration to 1.5% by mass.
Next, the resulting composition for forming an intermediate layer was uniformly coated on one side of the substrate with a bar coater so that the thickness of the intermediate layer after drying was 0.1 μm to form a coating layer. The coating layer was cured by heating for 1 minute to form an intermediate layer.
Next, 100 parts by mass of thermosetting addition-reactive silicone (manufactured by Shin-Etsu Chemical Co., Ltd., "KS-847H") is diluted with toluene, and a platinum catalyst (manufactured by Shin-Etsu Chemical Co., Ltd., "CAT-PL- 50T") was added to obtain a solution having a solid content concentration of 2.0% by mass to obtain a coating liquid of the release agent composition. The prepared coating liquid is applied with a bar coater onto the intermediate layer formed on the base material to form a coating layer, and the coating layer is cured by heating at 120 ° C. for 1 minute to obtain a thickness of A release sheet having a configuration in which a release agent layer of 0.1 μm was formed and substrate/intermediate layer/release agent layer laminated in this order was produced.
Using the obtained release sheet, the separability evaluation of the substrate, which will be described later, was performed.
[実施例2]
 実施例1と同様の方法で基材の片面に中間層を設けた。
 次に、メチル化メラミン樹脂(日本カーバイド工業株式会社製、製品名「MW-30」)100質量部(固形分換算値、以下同じ)と、ポリオルガノシロキサンの両末端カルビノール変性ポリジメチルシロキサン(信越化学工業株式会社製、製品名「KF-6000」)4質量部とを、イソプロピルアルコールとメチルエチルケトンとの混合溶媒(混合比(質量比)は、イソプロピルアルコール:メチルエチルケトン:シクロヘキサノン=40:20:20)で希釈した。得られた希釈液に対して、酸触媒のp-トルエンスルホン酸(信越化学工業株式会社製、製品名「PS-80」)4.6質量部を添加し、均一に混合することで固形分濃度2.0質量%の溶液とし、熱硬化型樹脂を主成分とする剥離剤組成物の塗工液を得た。
 調製した塗工液を、バーコーターで、基材上に形成された中間層の上に塗布して塗布層を形成し、120℃で1分間加熱することにより塗布層を硬化させ、厚さ0.1μmの剥離剤層を形成して、基材/中間層/剥離剤層がこの順で積層された構成である剥離シートを作製した。
 得られた剥離シートを用いて、後述する基材の分離性評価を行った。
[Example 2]
An intermediate layer was provided on one side of the substrate in the same manner as in Example 1.
Next, methylated melamine resin (manufactured by Nippon Carbide Industry Co., Ltd., product name "MW-30") 100 parts by mass (solid content conversion value, the same applies hereinafter) and polyorganosiloxane both terminal carbinol-modified polydimethylsiloxane ( Shin-Etsu Chemical Co., Ltd., product name "KF-6000") and 4 parts by mass of a mixed solvent of isopropyl alcohol and methyl ethyl ketone (mixing ratio (mass ratio) is isopropyl alcohol: methyl ethyl ketone: cyclohexanone = 40: 20: 20 ). To the obtained diluted solution, 4.6 parts by mass of an acid catalyst p-toluenesulfonic acid (manufactured by Shin-Etsu Chemical Co., Ltd., product name “PS-80”) is added and uniformly mixed to reduce the solid content. A solution having a concentration of 2.0% by mass was obtained, and a coating liquid of a release agent composition containing a thermosetting resin as a main component was obtained.
The prepared coating liquid is applied with a bar coater onto the intermediate layer formed on the base material to form a coating layer, and the coating layer is cured by heating at 120 ° C. for 1 minute to obtain a thickness of 0. A release sheet having a configuration in which a release agent layer of 1 μm was formed and a substrate/intermediate layer/release agent layer were laminated in this order was produced.
Using the obtained release sheet, the separability evaluation of the substrate, which will be described later, was performed.
[実施例3]
 実施例1と同様の方法で基材の片面に中間層を設けた。
 次に、多官能アクリレートであるジペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレートの混合物(東亞合成株式会社製、製品名「アロニックス(登録商標)M-400」、固形分100質量%)94質量部と、アクリル変性ポリジメチルシロキサン(信越化学工業株式会社製、商品名「X-22-164A」、固形分100質量%)1質量部と、光重合開始剤(IGM Resins B.V.社製、商品名「Omnirad(登録商標)907」(2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン、固形分100質量%))5質量部を、イソプロピルアルコールとメチルエチルケトンとの混合溶剤(混合比(質量比)は、イソプロピルアルコール:メチルエチルケトン=3:1)で希釈して、固形分濃度20質量%の溶液とし、エネルギー線硬化型樹脂を主成分とする剥離剤組成物の塗工液を得た。
 調製した塗工液をバーコーターで、基材上に形成された中間層の上に塗布し、80℃で1分間乾燥させて塗布層を得た。次いで、塗布層に、紫外線を照射(積算光量:250mJ/cm)して剥離剤層(厚さ1μm)を形成して、基材/中間層/剥離剤層がこの順で積層された構成である剥離シートを作製した。
 得られた剥離シートを用いて、後述する基材の分離性評価を行った。
[Example 3]
An intermediate layer was provided on one side of the substrate in the same manner as in Example 1.
Next, a mixture of polyfunctional acrylates dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (manufactured by Toagosei Co., Ltd., product name "Aronix (registered trademark) M-400", solid content 100% by mass) 94 parts by mass And, acrylic-modified polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "X-22-164A", solid content 100% by mass) 1 part by mass, and a photopolymerization initiator (IGM Resins B.V., Trade name “Omnirad (registered trademark) 907” (2-methyl-1[4-(methylthio)phenyl]-2-morifolinopropan-1-one, solid content 100% by mass)) 5 parts by mass, isopropyl alcohol and methyl ethyl ketone (mixing ratio (mass ratio) is isopropyl alcohol: methyl ethyl ketone = 3: 1) to obtain a solution with a solid content concentration of 20% by mass, and energy ray curable resin as the main component. A coating liquid of the agent composition was obtained.
The prepared coating solution was applied onto the intermediate layer formed on the substrate using a bar coater and dried at 80° C. for 1 minute to obtain a coating layer. Next, the coating layer is irradiated with ultraviolet light (accumulated light amount: 250 mJ/cm 2 ) to form a release agent layer (thickness: 1 μm), and a structure in which the base material/intermediate layer/release agent layer are laminated in this order. A release sheet was produced.
Using the obtained release sheet, the separability evaluation of the substrate, which will be described later, was performed.
[実施例4]
 実施例1において、中間層形成用組成物を次のように変更し中間層を形成した以外は、実施例1と同様にして、基材/中間層/剥離剤層がこの順で積層された構成である剥離シートを作製した。
 中間層形成用組成物として、加水分解による重縮合性を示すシラン系化合物(コルコート株式会社製、製品名「メチルシリケート53A」)を固形分換算で100質量部と蒸留水35質量部、酸触媒としてp-トルエンスルホン酸(信越化学工業株式会社製、製品名「PS-80」)を固形分換算で2.0質量部を混合し、イソプロピルアルコールにて、固形分濃度40質量%に調整した後、20分間撹拌した。次いでイソプロピルアルコールで固形分濃度を1.5質量%に調整して中間層形成用組成物を得た。
 次に、得られた中間層形成用組成物を、バーコーターで乾燥後の中間層の厚みが0.1μmとなるように基材の片面に均一に塗布して塗布層を形成し、120℃で1分間加熱することにより塗布層を硬化させ、中間層を形成した。
[Example 4]
In Example 1, the substrate/intermediate layer/releasing agent layer were laminated in this order in the same manner as in Example 1, except that the composition for forming the intermediate layer was changed as follows to form the intermediate layer. A release sheet having the structure was prepared.
As a composition for forming an intermediate layer, 100 parts by mass of a silane-based compound (manufactured by Colcoat Co., Ltd., product name "Methyl Silicate 53A") exhibiting polycondensation properties by hydrolysis, 35 parts by mass of distilled water, and an acid catalyst. As p-toluenesulfonic acid (manufactured by Shin-Etsu Chemical Co., Ltd., product name "PS-80") was mixed with 2.0 parts by mass in terms of solid content, and adjusted to a solid content concentration of 40% by mass with isopropyl alcohol. After that, it was stirred for 20 minutes. Then, the solid content concentration was adjusted to 1.5% by mass with isopropyl alcohol to obtain an intermediate layer-forming composition.
Next, the resulting composition for forming an intermediate layer was uniformly coated on one side of the substrate with a bar coater so that the thickness of the intermediate layer after drying was 0.1 μm to form a coating layer. The coating layer was cured by heating for 1 minute to form an intermediate layer.
[比較例1]
 実施例1において、中間層を設けないこと以外は、実施例1と同様にして、基材/剥離剤層がこの順で積層された構成である剥離シートを作製した。得られた剥離シートを用いて、後述する基材の分離性評価を行った。
[Comparative Example 1]
A release sheet having a structure in which a base material and a release agent layer were laminated in this order was prepared in the same manner as in Example 1, except that no intermediate layer was provided. Using the obtained release sheet, the separability evaluation of the substrate, which will be described later, was performed.
[比較例2]
 基材として二軸延伸ポリエチレンテレフタレートフィルム(厚み31μm)を用意した。
 次に、部分ケン化型ポリビニルアルコール樹脂(三菱ケミカル株式会社製、「ゴーセノール(登録商標)GL-05」)の2質量%水溶液を、乾燥後の厚みが0.1μmとなるように基材の片面に均一に塗布し、120℃で1分間加熱することにより中間層を形成した。その他は実施例1と同様にして、剥離剤層を形成し、基材/中間層/剥離剤層がこの順で積層された構成である剥離シートを作製した。
 得られた剥離シートを用いて、後述する基材の分離性評価を行った。
[Comparative Example 2]
A biaxially oriented polyethylene terephthalate film (thickness: 31 μm) was prepared as a substrate.
Next, a 2% by mass aqueous solution of partially saponified polyvinyl alcohol resin (manufactured by Mitsubishi Chemical Corporation, "Gosenol (registered trademark) GL-05") is applied to the substrate so that the thickness after drying is 0.1 μm. An intermediate layer was formed by uniformly coating one side and heating at 120° C. for 1 minute. A release agent layer was formed in the same manner as in Example 1, and a release sheet having a configuration in which substrate/intermediate layer/release agent layer were laminated in this order was produced.
Using the obtained release sheet, the separability evaluation of the substrate, which will be described later, was performed.
[基材の分離性]
 実施例と比較例に記載の方法で得られた剥離シートを50mm×50mmのサイズに裁断し試験片を得た。次いで、容量500mLのガラス製ビーカーに300mLの90℃の温水を充填し、一片の試験片の全体が温水中に浸るようにして90℃で保温しながら1時間静置した。その後、温水中から取り出した試験片を、室温(23℃)の蒸留水に浸漬して洗浄し、分離性評価用の試料とした。
 当該試料について、剥離剤層が設けられていた側の基材表面に対し、X線光電子分光分析法(XPS)で測定される剥離剤層の化学組成に由来する特定元素である窒素(N)、ケイ素(Si)検出量に基づき、基材の分離性を評価した。下記の式により各元素比率を算出し、剥離剤層の化学組成に由来する特定元素が0.05Atom%未満である場合、剥離剤層が基材表面から分離除去できていると判断した。結果を下記表2に示す。なお、表2中、0.05Atom%未満となる場合を未検出(N.D.)と表記した。
 下記の各計算式中、Nは窒素元素量、Siはケイ素元素量、Cは炭素元素量、Oは酸素元素量を表す。
・窒素(N)元素比率(Atom%)=[N/(C+O+N+Si)]×100
・ケイ素(Si)元素比率(Atom%)=[Si/(C+O+N+Si)]×100
[Separability of substrate]
A test piece was obtained by cutting the release sheet obtained by the method described in Examples and Comparative Examples into a size of 50 mm×50 mm. Next, a glass beaker with a capacity of 500 mL was filled with 300 mL of hot water at 90°C, and the test piece was entirely immersed in the warm water and allowed to stand at 90°C for 1 hour. After that, the test piece taken out from the warm water was immersed in distilled water at room temperature (23° C.) and washed to obtain a sample for evaluation of separability.
For the sample, nitrogen (N), which is a specific element derived from the chemical composition of the release agent layer measured by X-ray photoelectron spectroscopy (XPS), was applied to the substrate surface on the side where the release agent layer was provided. , the separability of the substrate was evaluated based on the amount of silicon (Si) detected. The ratio of each element was calculated by the following formula, and it was determined that the release agent layer was separated and removed from the substrate surface when the specific element derived from the chemical composition of the release agent layer was less than 0.05 atom %. The results are shown in Table 2 below. In addition, in Table 2, the case of less than 0.05 Atom % was described as not detected (N.D.).
In each formula below, N represents the amount of nitrogen element, Si represents the amount of silicon element, C represents the amount of carbon element, and O represents the amount of oxygen element.
・ Nitrogen (N) element ratio (Atom%) = [N / (C + O + N + Si)] × 100
・ Silicon (Si) element ratio (Atom%) = [Si / (C + O + N + Si)] × 100
[洗浄水の汚染性評価]
(i)COD値の測定
 実施例1~4、並びに、比較例2に記載の方法で得られた剥離シートを50mm×50mmのサイズに裁断し試験片を得た。次いで、容量200mLのガラス製ビーカーに洗浄水として蒸留水100mLを充填して90℃まで加熱し、試験片10枚の全体が洗浄水中に浸るようにして浸漬して、90℃に保温しながら1時間静置した。その後、ビーカーから試験片を全て取り出し、保温を止めて室温(23℃)環境下で洗浄水を室温(23℃)まで冷却した。冷却完了後、洗浄水をポリエチレン製メッシュ(#380)にて濾過し、水温を25℃に調節して水質検査器(株式会社共立理化学研究所製、製品名「パックテスト(登録商標) COD」、型式:WAK-COD-2)を用いて洗浄水のCOD値を測定し、以下の基準にて評価した。結果を下記表2に示す。
・A(洗浄水の汚染なし):COD値が10mg/L未満
・F(洗浄水の汚染あり):COD値が10mg/L以上
[Contamination evaluation of washing water]
(i) Measurement of COD Value The release sheets obtained by the methods described in Examples 1 to 4 and Comparative Example 2 were cut into 50 mm×50 mm size test pieces to obtain test pieces. Next, a glass beaker with a capacity of 200 mL is filled with 100 mL of distilled water as washing water and heated to 90 ° C., immersed so that the entire ten test pieces are immersed in the cleaning water, and kept at 90 ° C. Let it stand for a while. After that, all the test pieces were taken out from the beaker, heat retention was stopped, and the washing water was cooled to room temperature (23°C) in an environment of room temperature (23°C). After cooling, the wash water was filtered through a polyethylene mesh (#380), the water temperature was adjusted to 25°C, and a water quality tester (manufactured by Kyoritsu Rikagaku Kenkyusho Co., Ltd., product name “Packtest (registered trademark) COD”) was used. , model: WAK-COD-2) was used to measure the COD value of the wash water, and evaluated according to the following criteria. The results are shown in Table 2 below.
・A (no contamination of wash water): COD value is less than 10 mg/L ・F (contaminated wash water): COD value is 10 mg/L or more
(ii)溶出分の乾燥重量の測定
 また、上記(i)とは異なる方法として、洗浄水中への溶出分の乾燥重量を以下の方法で測定することからも洗浄水の汚染性を評価した。
 実施例1及び比較例2で得られた剥離シートを100mm×100mmのサイズに裁断して試験片を作製した。次に、容量2,000mLのガラス製ビーカーに蒸留水1,500mLを充填し、10枚分の試験片を全体が水中に浸かるように浸漬して、90℃で3時間放置した。その後、試験片から分離した基材を水中から取り出し、更に水面に浮遊した中間層付き剥離剤層をろ過して溶出に供した水分を得た。これを加熱乾燥および真空乾燥を繰り返して、剥離シートから水に溶出した成分を得、その重量を測定した。結果を下記表2に溶出量として示す。
 なお、実施例1及び比較例2で得られた剥離シートを構成する基材及び剥離剤層は非水溶性であることから、当該方法によって、溶出する成分は中間層の成分である。したがって、当該方法は、剥離シート中の中間層が非水溶性であるか否かを判断するための評価方法として用いることも可能である。また、下記表2中の溶出量の値は、(溶出分の乾燥重量)/(浸漬した剥離シートの面積)の値(単位:μg/m)を示したものである。
(ii) Measurement of dry weight of eluted portion In addition to the above method (i), the dry weight of the eluted portion into the wash water was measured by the following method to evaluate the contamination of the wash water.
The release sheets obtained in Example 1 and Comparative Example 2 were cut into a size of 100 mm×100 mm to prepare test pieces. Next, a glass beaker with a capacity of 2,000 mL was filled with 1,500 mL of distilled water, and 10 test pieces were immersed in water so that the entirety was immersed in the water and allowed to stand at 90° C. for 3 hours. After that, the base material separated from the test piece was taken out from the water, and the release agent layer with the intermediate layer floating on the surface of the water was filtered to obtain the eluted water. Heat drying and vacuum drying were repeated to obtain components eluted in water from the release sheet, and the weight thereof was measured. The results are shown in Table 2 below as elution amounts.
Since the substrate and the release agent layer constituting the release sheets obtained in Example 1 and Comparative Example 2 are water-insoluble, the components eluted by this method are the components of the intermediate layer. Therefore, this method can also be used as an evaluation method for determining whether or not the intermediate layer in the release sheet is water-insoluble. In addition, the value of the eluted amount in Table 2 below indicates the value (unit: μg/m 2 ) of (dry weight of eluted portion)/(area of immersed release sheet).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、実施例1~4の剥離シートを用いた基材の分離性評価結果から、基材と、該基材上に加水分解による重縮合性を示すシラン系化合物から形成された中間層を設けた積層体を有する剥離シートにおいて、前記中間層と水とを接触させて、前記中間層を前記基材表面から剥離させることによって、前記剥離シートから前記基材を分離することが可能であることが確認された。更に、実施例1~4の剥離シートを用い、当該剥離シートから基材を分離する方法の場合、中間層が非水溶性であることから、基材を分離する際に用いた洗浄水中のCOD値が低く、環境負荷の少ない基材の分離方法として優れていることが確認された。
 一方、比較例1の剥離シートを用いた場合、基材の分離性評価の実施後も、基材の剥離剤層側にSi元素が検出されており、剥離剤層が基材上から除去されておらず、基材の分離方法として不適であることが確認された。
 また、比較例2の剥離シートを用いた場合、中間層と水とを接触させることで、基材層が分離されている。しかし、中間層が水溶性であることから、基材を分離する際に用いた洗浄水中のCOD値が上昇していることが確認された。
As shown in Table 2, from the evaluation results of the separability of the substrate using the release sheets of Examples 1 to 4, it was formed from a substrate and a silane-based compound exhibiting polycondensation by hydrolysis on the substrate. In a release sheet having a laminate provided with an intermediate layer, the substrate may be separated from the release sheet by bringing the intermediate layer into contact with water to separate the intermediate layer from the surface of the substrate. confirmed to be possible. Furthermore, in the case of using the release sheets of Examples 1 to 4 and separating the substrate from the release sheet, since the intermediate layer is water-insoluble, the COD in the washing water used for separating the substrate It was confirmed that the value is low and it is excellent as a separation method for substrates with little environmental load.
On the other hand, when the release sheet of Comparative Example 1 was used, the Si element was detected on the release agent layer side of the substrate even after the separability evaluation of the substrate, and the release agent layer was removed from the substrate. Therefore, it was confirmed that it is not suitable as a method for separating the base material.
When the release sheet of Comparative Example 2 was used, the base layer was separated by bringing the intermediate layer into contact with water. However, since the intermediate layer is water-soluble, it was confirmed that the COD value in the washing water used for separating the substrate was increased.
 前述のとおり、本発明の基材の分離方法は、使用した洗浄水中に中間層が不溶であることから、従来品と比べて洗浄水の汚染を抑制することができる。そのため、例えば、基材を分離する過程で、ろ過処理等の簡易な方法により使用済みの洗浄水を処理することが可能になる等、廃液処理の負担を低減することが可能となる。また、当該洗浄水の再利用も容易になるといった利点も得られる。
 したがって、洗浄水の廃液処理工程の簡略化又は省略が可能となる観点、洗浄水の再利用が可能となる観点等から、本発明の基材の分離方法は、従来よりも環境負荷の低減に有効な基材の分離方法である。更に、廃液処理工程の簡略化等により、基材の分離におけるコスト低減にも繋がる観点からも、産業上、非常に有効な方法である。
As described above, in the substrate separation method of the present invention, since the intermediate layer is insoluble in the washing water used, contamination of the washing water can be suppressed as compared with conventional products. Therefore, for example, in the process of separating the substrate, it is possible to treat the used wash water by a simple method such as filtration, thereby reducing the burden of waste liquid treatment. In addition, there is also the advantage of facilitating reuse of the washing water.
Therefore, from the viewpoint of simplifying or omitting the step of treating the waste liquid of washing water, and from the viewpoint of enabling reuse of washing water, etc., the substrate separation method of the present invention can reduce the environmental load more than before. It is an effective substrate separation method. Furthermore, it is an industrially very effective method from the viewpoint of cost reduction in the separation of the substrate due to the simplification of the waste liquid treatment process and the like.

Claims (10)

  1.  基材と、該基材の少なくとも一方の表面側に、親水性かつ非水溶性である中間層とを有する積層体において、前記中間層と水とを接触させることによって、前記積層体から前記基材を分離することを特徴とする、基材の分離方法。 In a laminate having a substrate and a hydrophilic and water-insoluble intermediate layer on at least one surface side of the substrate, the substrate is removed from the laminate by bringing the intermediate layer into contact with water. A method for separating a substrate, characterized by separating a material.
  2.  前記中間層と水との接触は、前記積層体を水中に浸漬することによって行う、請求項1に記載の基材の分離方法。 The method for separating a substrate according to claim 1, wherein the intermediate layer is brought into contact with water by immersing the laminate in water.
  3.  前記基材と前記中間層とが、直接積層している、請求項1又は2に記載の基材の分離方法。 The method for separating a substrate according to claim 1 or 2, wherein the substrate and the intermediate layer are directly laminated.
  4.  前記中間層が、シロキサン結合を有する層である、請求項1~3のいずれか1項に記載の基材の分離方法。 The method for separating a substrate according to any one of claims 1 to 3, wherein the intermediate layer is a layer having a siloxane bond.
  5.  前記シロキサン結合を有する層が、加水分解による重縮合性を示すシラン系化合物から形成された層である、請求項4に記載の基材の分離方法。 The method for separating a substrate according to claim 4, wherein the layer having a siloxane bond is a layer formed from a silane-based compound exhibiting polycondensation properties due to hydrolysis.
  6.  前記シラン系化合物が、下記一般式(a)で表される4官能シラン系化合物及びそのオリゴマーから選ばれる少なくとも1種を主成分として含む、請求項5に記載の基材の分離方法。
     Si(OR)(X)4-p   (a)
    〔一般式(a)中、Rはアルキル基を表し、Xはハロゲン原子を表す。R及びXが複数存在する場合、複数のR及びXは、互いに同一でも、異なっていてもよい。pは0~4の整数を表す。〕
    6. The method for separating a substrate according to claim 5, wherein the silane-based compound contains at least one selected from tetrafunctional silane-based compounds represented by the following general formula (a) and oligomers thereof as a main component.
    Si(OR) p (X) 4-p (a)
    [In general formula (a), R represents an alkyl group, and X represents a halogen atom. When a plurality of R and X are present, the plurality of R and X may be the same or different. p represents an integer of 0 to 4; ]
  7.  前記4官能シラン系化合物が、下記一般式(a1)で表されるテトラアルコキシシランである、請求項6に記載の基材の分離方法。
     Si(OR)   (a1)
    〔一般式(a1)中、Rはアルキル基を表す。Rが複数存在する場合、複数のRは、互いに同一でも、異なっていてもよい。〕
    7. The method for separating a substrate according to claim 6, wherein the tetrafunctional silane compound is a tetraalkoxysilane represented by the following general formula (a1).
    Si(OR) 4 (a1)
    [In general formula (a1), R represents an alkyl group. When there are multiple R's, the multiple R's may be the same or different. ]
  8.  前記基材が、樹脂フィルムである、請求項1~7のいずれか1項に記載の基材の分離方法。 The method for separating a substrate according to any one of claims 1 to 7, wherein the substrate is a resin film.
  9.  前記中間層の前記基材とは反対側に、更に、機能層を有する、請求項1~8のいずれか1項に記載の基材の分離方法。 The method for separating a substrate according to any one of claims 1 to 8, further comprising a functional layer on the side of the intermediate layer opposite to the substrate.
  10.  前記機能層が、剥離剤層、印刷層、ハードコート層、易接着層又は粘着剤層である、請求項9に記載の基材の分離方法。 The method for separating a substrate according to claim 9, wherein the functional layer is a release agent layer, a printed layer, a hard coat layer, an easily adhesive layer, or an adhesive layer.
PCT/JP2022/034849 2021-09-24 2022-09-16 Method for separating substrate WO2023048102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023513546A JP7422944B2 (en) 2021-09-24 2022-09-16 Separation method of base material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021155692 2021-09-24
JP2021-155692 2021-09-24
JP2022056867 2022-03-30
JP2022-056867 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023048102A1 true WO2023048102A1 (en) 2023-03-30

Family

ID=85719466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034849 WO2023048102A1 (en) 2021-09-24 2022-09-16 Method for separating substrate

Country Status (2)

Country Link
JP (1) JP7422944B2 (en)
WO (1) WO2023048102A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108532A (en) * 1993-10-12 1995-04-25 Toyota Motor Corp Recycling treatment for waste material of synthetic resin with coating film
JP2000000874A (en) * 1998-06-18 2000-01-07 Toyobo Co Ltd Resin bottle with label stuck and its recycling method
JP2000509667A (en) * 1996-10-25 2000-08-02 デル・グリューネ・プンクト―デュアレス・システム・ドイチュラント・アクティーンゲゼルシャフト Method of treating waste material containing at least partially reusable components
JP2004042461A (en) * 2002-07-12 2004-02-12 Matsushita Ecotechnology Center:Kk Separation method for waste plastic material, and separating device for waste plastic material
WO2007111385A1 (en) * 2006-03-27 2007-10-04 Nippon Sheet Glass Company, Limited Interlayer-separating liquid and method of interlayer separation
JP2009537686A (en) * 2006-05-22 2009-10-29 ロディア オペレーションズ Method for treating an article comprising a plastic material coated with a silicone material
WO2020059516A1 (en) * 2018-09-19 2020-03-26 Dic株式会社 Method for separating and recovering layered film
WO2020066652A1 (en) * 2018-09-25 2020-04-02 Dic株式会社 Separation/recovery method for laminated film
JP2021160351A (en) * 2020-03-31 2021-10-11 三菱ケミカル株式会社 Polyester recycling system and recycling method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301662B2 (en) * 1993-11-30 2002-07-15 ホーヤ株式会社 Coating layer removing agent, method of recovering substrate, and method of manufacturing article having coating layer
JP2006289224A (en) 2005-04-08 2006-10-26 Nihon Tetra Pak Kk Method and apparatus for treating packaging material
JP2021115862A (en) 2020-01-27 2021-08-10 東レ株式会社 Reclamation method of film and regenerated film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108532A (en) * 1993-10-12 1995-04-25 Toyota Motor Corp Recycling treatment for waste material of synthetic resin with coating film
JP2000509667A (en) * 1996-10-25 2000-08-02 デル・グリューネ・プンクト―デュアレス・システム・ドイチュラント・アクティーンゲゼルシャフト Method of treating waste material containing at least partially reusable components
JP2000000874A (en) * 1998-06-18 2000-01-07 Toyobo Co Ltd Resin bottle with label stuck and its recycling method
JP2004042461A (en) * 2002-07-12 2004-02-12 Matsushita Ecotechnology Center:Kk Separation method for waste plastic material, and separating device for waste plastic material
WO2007111385A1 (en) * 2006-03-27 2007-10-04 Nippon Sheet Glass Company, Limited Interlayer-separating liquid and method of interlayer separation
JP2009537686A (en) * 2006-05-22 2009-10-29 ロディア オペレーションズ Method for treating an article comprising a plastic material coated with a silicone material
WO2020059516A1 (en) * 2018-09-19 2020-03-26 Dic株式会社 Method for separating and recovering layered film
WO2020066652A1 (en) * 2018-09-25 2020-04-02 Dic株式会社 Separation/recovery method for laminated film
JP2021160351A (en) * 2020-03-31 2021-10-11 三菱ケミカル株式会社 Polyester recycling system and recycling method

Also Published As

Publication number Publication date
JP7422944B2 (en) 2024-01-26
JPWO2023048102A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
KR101960557B1 (en) Weather-resistant layered film
JP7343021B2 (en) Release film for ceramic green sheet production
KR102342530B1 (en) Release Film for Ceramic Green Sheet Manufacturing
JP6121204B2 (en) Touch panel laminate and method for manufacturing touch panel laminate
KR20130024965A (en) Method for producing laminated film
JP4842281B2 (en) Surface protection film
US9931879B2 (en) Ink jet recording medium, method for manufacturing same, printed material, method for manufacturing same, ornamental glass, and roll
JP2007331996A (en) Functional glass body
JP4448897B2 (en) Photomask protective adhesive tape
WO2001025362A1 (en) Sheet for transferring photocatalyst
WO2004085562A1 (en) Releasing film for protective film for surface of optical member
WO2023048102A1 (en) Method for separating substrate
JP3095978B2 (en) Release film
JP4505642B2 (en) Attaching sheet
JP2020073336A (en) Mold release film for production of ceramic green sheet
JPWO2016052171A1 (en) Laminated film and method for producing the same
WO2023048103A1 (en) Release sheet
CN117957115A (en) Stripping sheet
WO2023189661A1 (en) Release sheet
JPH10214801A (en) Dicing tape
JP3205283B2 (en) Low contamination release film
JP2008292655A (en) Adhesive tape for photomask protection
WO2007066718A1 (en) Multilayer film, method for producing same, optical sheet using multilayer film, and display
JP2019166656A (en) Release film for ceramic green sheet production
JP7306514B2 (en) Release film for manufacturing ceramic green sheets

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023513546

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401001737

Country of ref document: TH