WO2023047961A1 - Road surface condition detection system and road surface condition detection method - Google Patents

Road surface condition detection system and road surface condition detection method Download PDF

Info

Publication number
WO2023047961A1
WO2023047961A1 PCT/JP2022/033607 JP2022033607W WO2023047961A1 WO 2023047961 A1 WO2023047961 A1 WO 2023047961A1 JP 2022033607 W JP2022033607 W JP 2022033607W WO 2023047961 A1 WO2023047961 A1 WO 2023047961A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle body
road surface
information
analysis unit
sensor
Prior art date
Application number
PCT/JP2022/033607
Other languages
French (fr)
Japanese (ja)
Inventor
圭太 金森
仁 吉澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023047961A1 publication Critical patent/WO2023047961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof

Definitions

  • the present disclosure relates to a road surface condition detection system and a road surface condition detection method for estimating the condition of a road surface on which a vehicle body travels.
  • Patent Literature 1 discloses a road surface condition estimation device that estimates the condition of a road surface by attaching an acceleration sensor to the tires of the vehicle and calculating the vibration level of the running vehicle from the output of the acceleration sensor.
  • an object of the present disclosure is to provide a road surface condition detection system and a road surface condition detection method capable of estimating the condition of the road surface on which the vehicle body travels using existing sensors.
  • a road surface condition detection system includes a sensor that acquires vehicle body running information that is information related to running of a vehicle body; an analysis unit that analyzes vehicle body running information; and a control unit. and controlling the traveling of the vehicle body according to the estimated condition of the road surface.
  • a sensor acquires vehicle body running information, which is information related to running of a vehicle body, the vehicle body running information is acquired from the sensor, and the acquired vehicle body running information is analyzed. section analyzes the vehicle body running information, and the analysis section analyzes the vehicle body running information, thereby estimating the state of the road surface related to the running of the vehicle body, and according to the estimated state of the road surface, the running of the vehicle body is controlled by the control unit.
  • the road surface condition detection system and road surface condition detection method it is possible to estimate the condition of the road surface on which the vehicle body travels using existing sensors.
  • FIG. 1 is a schematic diagram showing a road surface condition detection system according to an embodiment.
  • FIG. 2 is a block diagram showing the road surface condition detection system according to the embodiment.
  • FIG. 3 is a flow chart showing the processing operation of the road surface condition detection system according to the embodiment.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like do not necessarily match in each drawing. Moreover, in each figure, the same code
  • a road surface condition detection system and a road surface condition detection method according to the present embodiment will be described below.
  • FIG. 1 is a schematic diagram showing a road surface condition detection system 20 according to an embodiment.
  • the road surface condition detection system 20 can estimate the condition of the road surface on which the vehicle body 10 travels when the vehicle body 10 travels on the road.
  • the road surface condition detection system 20 can store the estimated road surface condition in the storage device or transmit it to the external device 3 so that the storage device and/or the external device 3 store the estimated road surface condition.
  • the external device 3 is an operation unit having a display unit, a cycle computer, a personal computer, a smart phone, a tablet terminal, or the like.
  • the electric bicycle is a power-assisted bicycle in which a user's pedaling force is assisted by driving force from an electric motor.
  • the electric bicycle may be a bicycle in which the human-powered driving force for applying power to the wheels by pedaling force and the auxiliary driving force for applying power to the wheels by an electric motor are independent of each other, or may be a bicycle capable of autonomous travel only with the electric motor.
  • the electric bicycle has an assist mode, a push-walking mode, and a self-propelled mode.
  • the assist mode is a mode for assisting the forward movement of the electric bicycle based on the user's force on the pedals.
  • the push-walking mode is a mode in which the forward movement of the electric bicycle is assisted based on the user's force pushing the electric bicycle forward when the user walks by pushing the electric bicycle.
  • the self-propelled mode is a mode in which the forward movement of the electric bicycle is assisted when the user walks while supporting the electric bicycle.
  • vehicle body 10 is not limited to an electric bicycle.
  • vehicle body 10 is a vehicle capable of traveling on a road surface by rotating its wheels, and may be, for example, an automobile, a motorcycle, a bicycle, or the like.
  • FIG. 2 is a block diagram showing the road surface condition detection system 20 according to the embodiment.
  • the state of the running road surface includes a flat surface that is a flat road surface, an uneven surface that is a road surface with steps or depressions, a gravel road (a road surface with gravel such as sand and stones scattered on the road), and a frozen road surface. and a slope (sloping road surface).
  • slope is a general term for uphill and downhill.
  • the road surface condition detection system 20 can update the condition of the road surface on the map by reflecting flat surfaces, uneven surfaces, gravel roads, frozen road surfaces, and slopes on the map. can.
  • the road surface condition detection system 20 includes a sensor 21, an analysis section 22, a notification section 23, and a control section 24.
  • the sensor 21 acquires vehicle body running information.
  • the sensor 21 outputs the acquired vehicle body running information to the analysis unit 22 .
  • the vehicle body running information is information about running of the vehicle body 10 .
  • the vehicle body running information is information indicating the state of the vehicle body 10 when the vehicle body 10 is running.
  • the vehicle body traveling information is information indicating at least one of the acceleration of the vehicle body 10, vibration of the vehicle body 10, steering angle of the steering wheel, and human power driving force based on the force applied to the pedal.
  • the sensor 21 includes, for example, at least one or more of an acceleration sensor, a vibration sensor, a steering angle sensor, an angular velocity sensor, a torque sensor, and the like.
  • an acceleration sensor for example, at least one or more of an acceleration sensor, a vibration sensor, a steering angle sensor, an angular velocity sensor, a torque sensor, and the like.
  • a plurality of sensors 21 are provided on vehicle body 10 is illustrated.
  • the vehicle body 10 of the present embodiment is provided with two or more sensors 21 selected from an acceleration sensor, a vibration sensor, a steering angle sensor, an angular velocity sensor, a torque sensor, and the like. Therefore, the vehicle body 10 may be provided with all sensors 21 such as an acceleration sensor, a vibration sensor, a steering angle sensor, an angular velocity sensor, and a torque sensor.
  • the acceleration sensor detects the acceleration of the vehicle body 10 while the vehicle is running, and acquires the detected acceleration as vehicle body running information.
  • the acceleration sensor detects acceleration based on vibrations generated in the vehicle body 10 due to road surface conditions while the vehicle body 10 is running.
  • the acceleration sensor detects the acceleration, and outputs acceleration information indicating the detected acceleration to the analysis unit 22 as an example of vehicle travel information.
  • the acceleration sensor may be a vibration sensor.
  • sensor 21 may include a vibration sensor.
  • the vibration sensor may detect the amount of vibration that occurs while the vehicle body 10 is running.
  • the vibration sensor may detect the vibration generated in the vehicle body 10 while the vehicle body 10 is running, and the vibration sensor may detect the acceleration based on the detected vibration generated in the vehicle body 10 .
  • the vibration sensor may output vibration information, which is information indicating the detected vibration amount, to the analysis unit 22 as an example of the vehicle body running information.
  • the steering angle sensor detects the steering angle of the steering wheel of the vehicle body 10 and acquires the detected steering angle as vehicle body travel information.
  • the steering angle sensor detects the angle (rudder angle) of the vehicle body 10 with respect to the traveling direction when the user operates the steering wheel, and the analysis unit 22 uses the steering angle information, which is information indicating the detected steering angle, as an example of the vehicle body traveling information. output to
  • the angular velocity sensor detects the amount of change in the tilt of the vehicle body 10 (angular velocity) and acquires the detected angular velocity as vehicle body travel information.
  • the angular velocity sensor detects an angular velocity of the vehicle body 10 generated while the vehicle body 10 is traveling, and outputs angular velocity information indicating the detected angular velocity to the analysis unit 22 as an example of vehicle traveling information.
  • the torque sensor detects the human power driving force based on the force applied to the pedal of the vehicle body 10 given by the state of the running road surface.
  • the driving force is acquired as vehicle body running information.
  • the torque sensor detects torque, which is human power driving force generated by the rotation of the crankshaft.
  • the torque sensor detects torque based on the force applied to the pedal, and outputs torque information, which is information indicating the detected torque, to the analysis unit 22 as an example of vehicle body running information. .
  • the senor 21 is provided on the vehicle body 10, and is provided, for example, on at least one or more of the frame, saddle, steering wheel, crank, transmission, electric motor 31, etc. of the vehicle body 10.
  • the analysis unit 22 acquires vehicle body running information from the sensor 21 . That is, the analysis unit 22 acquires vehicle body running information, which is at least one of acceleration information, vibration information, steering angle information, angular velocity information, torque information, and the like, from the sensor 21 .
  • the analysis unit 22 analyzes the acquired vehicle body running information. For example, the analysis unit 22 analyzes the acceleration indicated by the acceleration information, the vibration amount indicated by the vibration information, the amount of change in the steering angle indicated by the steering angle information, the angular velocity indicated by the angular velocity information, the torque indicated by the torque information, and the like. Analyze at least one information of
  • the analysis unit 22 estimates the state of the road surface on which the vehicle body 10 travels by analyzing the vehicle body travel information. That is, by analyzing the vehicle body running information, the analysis unit 22 determines, based on the vehicle body running information, the state of the road surface on which the vehicle body 10 is running, such as a flat surface, an uneven surface, a gravel road, a frozen road surface, an uphill road, and a Estimate any of the downhills.
  • the analysis unit 22 estimates that the road surface is uneven based on the acceleration information. For example, when the vehicle body 10 runs on an uneven surface, the acceleration of the vehicle body 10 is considered to be lower than when the vehicle body 10 runs on a flat surface. Therefore, the analysis unit 22 estimates that the road surface is uneven when the acceleration indicated by the acceleration information is less than a predetermined threshold.
  • the analysis unit 22 can also estimate that the road surface is uneven based on the vibration information. For example, when the vehicle body 10 runs on an uneven surface, it is considered that the amount of vibration of the vehicle body 10 increases compared to when the vehicle body 10 runs on a flat surface. Therefore, if the amount of vibration indicated by the vibration information is equal to or greater than a predetermined threshold value, the analysis unit 22 estimates that uneven surfaces such as steps and depressions are formed on the road surface.
  • the analysis unit 22 estimates that the road surface is a frozen road surface when the vehicle body 10 travels on a slope. For example, when the vehicle body 10 travels on a frozen road surface, the wheels of the vehicle body 10 slip on the frozen road surface, so that the grip force of the wheels decreases compared to the case of traveling on an uneven surface, and it is considered that acceleration is difficult to increase. . That is, when the vehicle body 10 travels on the frozen road surface, it is considered that the torque indicated by the torque information becomes less than the threshold. On the other hand, when the vehicle body 10 runs on an uneven surface, it is considered that the torque indicated by the torque information becomes equal to or greater than the threshold. Therefore, the analysis unit 22 can estimate whether the road surface is a frozen road surface or an uneven surface from the torque indicated by the torque information.
  • the analysis unit 22 may estimate that the road surface is a frozen road surface based on the steering angle information. For example, if the surface of a road is icy, the user is expected to bypass only the icy surface. Therefore, the analysis unit 22 estimates that the user has unexpectedly detoured the travel route from the amount of change in the steering angle indicated by the steering angle information, and estimates that the road surface is a frozen road surface. good too.
  • the analysis unit 22 estimates that the road is a slope based on the angular velocity information. For example, when the vehicle body 10 travels on a slope, the angular velocity of the vehicle body 10 is considered to be greater than when the vehicle body 10 travels on a flat surface. That is, the analysis unit 22 estimates that the road is a slope when the integral value of the angular velocities indicated by the angular velocity information is equal to or greater than a predetermined threshold. When the integrated value is equal to or greater than the predetermined threshold, the analysis unit 22 determines that the slope is steeper as the integrated value is greater than the predetermined threshold, and the slope is gentler as the integrated value is closer to the predetermined threshold. It may be assumed that
  • the analysis unit 22 estimates that the vehicle is traveling uphill or downhill as the condition of the road surface. For example, the analysis unit 22 can estimate whether the vehicle body 10 is traveling uphill or downhill based on the angular velocity information and the acceleration information. For example, when the vehicle body 10 climbs a slope, it is conceivable that the integral value of the angular velocity indicated by the angular velocity information becomes equal to or greater than the threshold and the acceleration indicated by the acceleration information becomes less than the threshold. Also, when the vehicle body 10 descends a slope, it is considered that the integral value of the angular velocity indicated by the angular velocity information becomes equal to or greater than the threshold and the acceleration indicated by the acceleration information becomes equal to or greater than the threshold. Therefore, the analysis unit 22 estimates whether the slope on which the vehicle body 10 is traveling is uphill or downhill from the integral value of the angular velocity indicated by the angular velocity information and the acceleration indicated by the acceleration information.
  • the analysis unit 22 can also estimate whether the vehicle body 10 is traveling uphill or downhill based on the torque information and the acceleration information. For example, when the vehicle body 10 climbs a slope, it is conceivable that the torque (pedal force) indicated by the torque information becomes equal to or greater than the threshold and the acceleration indicated by the acceleration information becomes less than the threshold. Also, when the vehicle body 10 descends a slope, it is considered that the torque indicated by the torque information is less than the threshold and the acceleration indicated by the acceleration information is equal to or greater than the threshold. Therefore, the analysis unit 22 can also estimate whether the slope is uphill or downhill from the torque indicated by the torque information and the acceleration indicated by the acceleration information.
  • the analysis unit 22 estimates that the road is a gravel road based on the torque information and the vibration information. For example, when the vehicle body 10 travels on a gravel road, the wheels of the vehicle body 10 slip due to the gravel, so it is considered that the grip force of the wheels decreases compared to when the vehicle travels on an uneven surface. That is, when the vehicle body 10 travels on a gravel road, it is considered that the torque indicated by the torque information becomes equal to or greater than the threshold, and the amount of vibration indicated by the vibration information becomes equal to or greater than the threshold. On the other hand, when the vehicle body 10 runs on an uneven surface, it is considered that the torque indicated by the torque information becomes equal to or greater than the threshold, and the amount of vibration indicated by the vibration information becomes equal to or greater than the threshold. Therefore, the analysis unit 22 can estimate whether the road is a gravel road or an uneven surface from the torque indicated by the torque information and the vibration indicated by the vibration information.
  • the analysis unit 22 can use at least one of a rule base and machine learning to analyze vehicle travel information and estimate the state of the travel road surface.
  • the rule base and the learning model constructed by machine learning are stored in a storage unit or the like mounted on the vehicle body 10 .
  • the analysis unit 22 outputs to the notification unit 23 the condition of the road surface, which is the result of the estimation as described above.
  • the notification unit 23 notifies the external device 3 of traveling road surface condition information, which is information indicating the condition of the traveling road surface estimated by the analysis unit 22 .
  • the notification unit 23 is a communication module capable of wireless communication or wired communication with the external device 3 .
  • the notification unit 23 may notify the external device 3 of the vehicle body running information detected by the sensor 21 .
  • Control unit 24 controls traveling of the vehicle body 10 according to the estimated condition of the road surface. Specifically, the control unit 24 controls the electric motor 31 according to the state of the road surface estimated by the analysis unit 22 . More specifically, when the vehicle body 10 is an electric bicycle, the controller 24 controls the electric motor 31 to allow the vehicle body 10 to travel in any of the assist mode, push-walking mode, and self-propelled mode. to control the driving force that assists the
  • the electric motor 31 is controlled by the control unit 24 to provide the chain of the vehicle body 10 with driving force (auxiliary driving force) that assists the running of the vehicle body 10 . Further, the electric motor 31 is driven by power supplied from a battery 32 mounted on the vehicle body 10 under the control of the control unit 24 .
  • the control unit 24 controls the electric motor 31 so that the driving force that assists the traveling of the vehicle body 10 becomes normal.
  • the control unit 24 controls the driving force with which the electric motor 31 assists the running of the vehicle body 10 according to the user's pedaling force. This allows the user to drive the vehicle body 10 comfortably.
  • the control unit 24 does not apply the driving force to assist the traveling of the vehicle body 10, or when the vehicle body 10 travels on a flat surface.
  • the electric motor 31 is controlled so as to reduce the driving force that assists the running. As a result, overturning or rapid acceleration of the vehicle body 10 can be suppressed, so that the safety of the user can be ensured.
  • control unit 24 controls the electric motor 31 so as to reduce the driving force that assists the traveling compared to when the vehicle body 10 travels on a flat surface. do. As a result, overturning or rapid acceleration of the vehicle body 10 can be suppressed, so that the safety of the user can be ensured.
  • control unit 24 increases the driving force for assisting the traveling of the vehicle body 10 compared to when the vehicle body 10 travels on a flat surface. to control the electric motor 31. As a result, the user can comfortably drive the vehicle body 10 by suppressing the vehicle body 10 from decelerating.
  • FIG. 3 is a flow chart showing the processing operation of the road surface condition detection system 20 according to the embodiment.
  • the plurality of sensors 21 acquire vehicle body travel information from the vehicle body 10 (S11).
  • the multiple sensors 21 include, for example, acceleration sensors, vibration sensors, steering angle sensors, angular velocity sensors, torque sensors, and the like.
  • the vehicle body 10 is provided with a plurality of sensors 21 . Therefore, in the present embodiment, the plurality of sensors 21 can acquire vehicle body running information including at least two pieces of information among acceleration information, vibration information, steering angle information, angular velocity information, torque information, and the like.
  • the multiple sensors 21 output the acquired vehicle body running information to the analysis unit 22 .
  • the analysis unit 22 analyzes the vehicle body travel information acquired from the sensor 21 (S12).
  • the analysis unit 22 estimates the state of the road surface on which the vehicle body 10 travels based on the analysis result of the vehicle body travel information (S13).
  • the analysis unit 22 estimates that the road surface is uneven when the acceleration indicated by the acceleration information is less than a predetermined threshold. Further, by analyzing the steering angle information, the analysis unit 22 estimates that the road surface is a frozen road surface from the amount of change in the steering angle indicated by the steering angle information. Further, the analysis unit 22 analyzes the angular velocity information, and estimates that the road is a slope when the integral value of the angular velocity indicated by the angular velocity information is equal to or greater than a predetermined threshold. Further, the analysis unit 22 analyzes the angular velocity information and the acceleration information, and when the integrated value is equal to or greater than the threshold and the acceleration is less than the threshold, it is estimated that the vehicle body 10 is climbing a slope.
  • the analysis unit 22 analyzes the angular velocity information and the acceleration information, and estimates that the vehicle body 10 is descending a slope when the integrated value is equal to or greater than the threshold and the acceleration is equal to or greater than the threshold. Further, the analysis unit 22 analyzes the torque information and the acceleration information, and when the torque (pedal force) indicated by the torque information is equal to or greater than the threshold and the acceleration is less than the threshold, the vehicle body 10 is running up the slope. We assume that Further, by analyzing the torque information and the acceleration information, the analysis unit 22 estimates that the vehicle body 10 is descending a slope when the torque is less than the threshold and the acceleration is greater than or equal to the threshold. Moreover, the analysis unit 22 analyzes the torque information and the vibration information, and estimates that the road is a gravel road when the torque is equal to or greater than the threshold and the amount of vibration is equal to or greater than the threshold.
  • the analysis unit 22 can use at least one of a rule base and machine learning to analyze vehicle travel information and estimate the state of the travel road surface.
  • the analysis unit 22 can estimate the state of the vehicle body 10 by analyzing vehicle travel information based on preset conditions by using a rule base.
  • the preset condition is a set condition such as a threshold value.
  • a rule base indicating the state of the road surface derived from at least one or more information (vehicle running information) among acceleration information, vibration information, steering angle information, angular velocity information, torque information, etc. must be created in advance.
  • the analysis unit 22 determines whether the road surface is flat or uneven, based on at least one of acceleration information, vibration information, steering angle information, angular velocity information, torque information, and the like. It can be estimated that the vehicle is in at least one of a surface, gravel road, frozen road, uphill, and downhill.
  • the analysis unit 22 can analyze the vehicle travel information and estimate the state of the vehicle body 10 by using machine learning and deep learning included in the machine learning.
  • machine learning the condition of the road surface is estimated from at least one information (vehicle traveling information) among acceleration information, vibration information, steering angle information, angular velocity information, torque information, etc. using teacher data. It is necessary to create in advance a learning model that has learned the
  • the training data includes acceleration information, vibration information, steering angle information, angular velocity information and This is vehicle body running information including torque information and the like.
  • the analysis unit 22 uses at least one or more information among acceleration information, vibration information, rudder angle information, angular velocity information, torque information, etc. to determine whether the state of the traveling road surface is a flat surface, an uneven surface, an uneven surface, It can be estimated that one or more of gravel road, icy road, uphill and downhill conditions.
  • the analysis unit 22 when estimating the state of the road surface on the basis of the rule base and the learning model of machine learning, even if the sensor 21 for actually measuring the state of the road surface is not mounted on the vehicle body 10, the analysis unit 22 , it is possible to estimate from the vehicle travel information that the state of the travel road surface is one or more of a flat surface, an uneven surface, a gravel road, a frozen road surface, an uphill slope, and a downhill slope.
  • the external device 3 may update the rule base and machine-learned learning model by acquiring and learning the vehicle body traveling information from other vehicle bodies 10 .
  • the external device 3 may update the rule base and machine-learned learning model of the vehicle body 10 by transmitting the updated rule base and machine-learned learning model to the vehicle body 10 .
  • the analysis unit 22 outputs the state of the road surface, which is the estimated result, to the notification unit 23 .
  • the notification unit 23 notifies the external device 3 of the state of the road surface estimated by the analysis unit 22 (S14).
  • the external device 3 can collect the conditions of the road surface on which the vehicle body 10 has traveled.
  • the external device 3 can update the state of the road surface on the map by reflecting the state of the road surface on which the vehicle body 10 has traveled on the map.
  • control unit 24 controls the driving force that assists the traveling of the vehicle body 10 by controlling the electric motor 31 according to the state of the traveling road surface estimated by the analysis unit 22 (S15). For example, when the vehicle body 10 is an electric bicycle, the control unit 24 controls the electric motor 31 in any of the assist mode, the push-walking mode, and the self-propelled mode to assist the traveling of the vehicle body 10. control power.
  • the external device 3 can grasp the state of the road surface on which the vehicle body 10 has traveled. For example, if a road surface that is originally a flat surface is estimated to be an uneven surface, there is a possibility that the road surface is cracked or a fallen object is left unattended. If the user can know in advance such a problem spot on the road surface, the user can change the travel route and take a detour. In addition, if the road administrator is notified of the occurrence of such a problem on the road surface, the road administrator can immediately take action to resolve the problem that has occurred on the road surface.
  • the road surface condition detection system 20 includes the sensor 21 that acquires the vehicle body running information that is the information regarding the running of the vehicle body 10, the vehicle body running information that is acquired from the sensor 21, and the acquired vehicle body running.
  • An analysis unit 22 for analyzing information and a control unit 24 are provided. Further, the analysis unit 22 estimates the state of the road surface on which the vehicle body 10 travels by analyzing the vehicle body travel information. Then, the control unit 24 controls traveling of the vehicle body 10 according to the estimated condition of the road surface.
  • the sensors that acquire the vehicle body running information are pre-installed in the vehicle body. Therefore, in the road surface condition detection system 20 of the present embodiment, existing sensors provided on the vehicle body 10 can be used without mounting a new sensor for detecting the condition of the road surface on the vehicle body 10. , the condition of the road surface on which the vehicle body 10 has traveled can be estimated. As a result, in the road surface condition detection system 20 of the present embodiment, it is not necessary to mount a new sensor for detecting the condition of the road surface on the vehicle body 10, thereby suppressing an increase in the manufacturing cost of the vehicle body 10. be able to.
  • the running of the vehicle body 10 can be controlled according to the condition of the road surface, the user can drive the vehicle body 10 stably. Therefore, the user can drive the vehicle body 10 comfortably.
  • the sensor 21 acquires vehicle body running information, which is information related to running of the vehicle body 10, the vehicle body running information is acquired from the sensor 21, and the acquired vehicle body running information is sent to the analysis unit.
  • 22 analyzes and the analysis unit 22 analyzes the vehicle body traveling information to estimate the road surface condition related to the traveling of the vehicle body 10, and control the traveling of the vehicle body 10 according to the estimated traveling road surface condition. It includes that the unit 24 controls.
  • This road surface condition detection method also has the same effects as those described above.
  • the analysis unit 22 detects at least one of a flat surface, an uneven surface, a gravel road, and an icy road surface as the condition of the road surface on which the vehicle body 10 is traveling. It is estimated that the state of
  • the vehicle body 10 can control the driving force of the electric motor 31 mounted on the vehicle body 10 according to flat surfaces, uneven surfaces, gravel roads, and frozen road surfaces. Also, the user, the road administrator, etc. can grasp the condition of the road surface on which they are traveling.
  • the analysis unit 22 estimates that the road surface on which the vehicle body 10 is running is running uphill or downhill.
  • the vehicle body 10 can control the driving force of the electric motor 31 mounted on the vehicle body 10 depending on whether the vehicle is traveling uphill or downhill.
  • the road surface condition detection system 20 further includes a notification unit 23 that notifies the external device 3 of traveling road surface condition information, which is information indicating the condition of the traveling road surface estimated by the analysis unit 22 .
  • the external device 3 can acquire the traveling road surface condition information, and therefore can grasp the condition of the traveling road surface. For example, the external device 3 can notify the user and the road administrator of the condition of the road surface that hinders the traveling of the vehicle body 10 .
  • the sensor 21 detects the human power driving force based on the force applied to the pedal given by the state of the road surface on which the vehicle travels. Get it as information.
  • a sensor for detecting the human-powered driving force is pre-installed on the vehicle body 10, so if the human-powered driving force is detected using an existing sensor, the condition of the road surface can be determined based on the detected human-powered driving force. can be estimated. Therefore, in the road surface condition detection system 20 of the present embodiment, it is not necessary to mount a new sensor for detecting the condition of the road surface on the vehicle body 10, thereby suppressing an increase in the manufacturing cost of the vehicle body 10. be able to.
  • the sensor 21 detects acceleration based on vibration generated in the vehicle body 10 traveling due to the condition of the road surface, and acquires the detected acceleration as vehicle body traveling information. do.
  • the sensor 21 for detecting the acceleration of the vehicle body 10 is mounted on the vehicle body 10, so if the acceleration of the vehicle body 10 is detected using an existing sensor, the traveling road surface can be detected based on the detected acceleration of the vehicle body 10. state can be estimated. Therefore, in the road surface condition detection system 20 of the present embodiment, it is not necessary to mount a new sensor for detecting the condition of the road surface on the vehicle body 10, thereby suppressing an increase in the manufacturing cost of the vehicle body 10. be able to.
  • the analysis unit 22 uses at least one of a rule base and machine learning to analyze the vehicle traveling information and estimate the condition of the traveling road surface. do.
  • condition of the road surface can be accurately estimated by using rule base and machine learning.
  • the sensor may include a speed sensor.
  • the speed sensor detects the traveling speed of the vehicle body by detecting, for example, the number of revolutions of the wheels.
  • the speed sensor may detect the traveling speed of the vehicle body when the vehicle body moves forward based on the user's pedaling force, and output speed information indicating the detected speed to the control unit.
  • the control unit may control the driving force with which the electric motor assists the running of the vehicle body based on the speed indicated by the speed information.
  • the control unit may control the brake according to the condition of the road surface estimated by the analysis unit.
  • the control unit may control the running of the vehicle body by controlling the brakes in any of the assist mode, push-walking mode, and self-propelled mode.
  • the road surface condition detection system may have an antilock braking system.
  • Antilock braking systems may allow the controller to determine whether the wheels are locked from rotation during braking. Specifically, when the sensor detects the rotation speed of the wheel, the control unit may determine that a strong brake is applied based on the rotation speed of the wheel detected by the sensor.
  • control unit may perform control to weaken the brake that has been applied with a strong brake.
  • the control unit may perform such control individually for each wheel. As a result, it is possible to prevent the gripping force of the wheels from deteriorating on a frozen road surface, etc., so that slipping of the wheels can be suppressed.
  • vehicle body may have a pressure valve, a hydraulic pump, and the like, and the control section may be capable of controlling the pressure valve, the hydraulic pump, and the like.
  • the sensor may include a crank rotation sensor.
  • the crank rotation sensor detects the rotation speed and rotation angle of the crank of the vehicle body.
  • the crank rotation sensor detects the number of rotations and/or the rotation angle of the crank when the crankshaft rotates, and outputs crank information indicating the detected number of rotations and/or the rotation angle of the crank to the control unit.
  • the control unit may control the driving force with which the electric motor assists the running of the vehicle body based on the number of rotations and/or the rotation angle of the crank indicated by the crank information.
  • the sensor may include a motor torque sensor.
  • the motor torque sensor detects the motor torque of the electric motor of the vehicle body.
  • the motor torque sensor may detect the motor torque of the electric motor and output motor torque information indicating the detected motor torque to the control unit.
  • the control unit may control the driving force with which the electric motor assists the running of the vehicle body based on the motor torque indicated by the motor torque information.
  • one sensor may detect the amount of vibration generated in the vehicle body due to the condition of the road surface and the acceleration based on the amount of vibration.
  • the sensor can detect the vibration generated in the vehicle body, and can detect the acceleration based on the vibration generated in the vehicle body. That is, the sensor can achieve both detection of vibration and detection of acceleration. Further, the sensor can detect the road surface condition by detecting vibration and acceleration. Therefore, in the road surface condition detection system of the present embodiment, there is no need to install a new sensor for detecting the condition of the road surface on the vehicle body, so it is possible to suppress an increase in the manufacturing cost of the vehicle body. .
  • the external device when the external device acquires the result of estimating the condition of the road surface on which the vehicle is traveling, the external device estimates the condition of the road surface on a vehicle-by-vehicle basis.
  • the results obtained may be stored as history information.
  • the external device can estimate that an abnormality has occurred or may occur in the vehicle body if the vehicle body has traveled over a predetermined distance on uneven surfaces and gravel roads.
  • the user and the servicer who lends the vehicle to the user can take measures such as replacing or repairing the vehicle.
  • the analysis unit, control unit, external devices, and the like used in the road surface condition detection system and road surface condition detection method according to each of the above embodiments are typically implemented as LSIs, which are integrated circuits. These may be made into one chip individually, or may be made into one chip so as to include part or all of them.
  • circuit integration is not limited to LSIs, and may be realized with dedicated circuits or general-purpose processors.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
  • each component may be implemented by dedicated hardware or by executing a software program suitable for each component.
  • Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
  • the division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be moved to other functional blocks.
  • single hardware or software may process the functions of a plurality of functional blocks having similar functions in parallel or in a time-sharing manner.
  • each step in the flowchart is executed is for illustrative purposes in order to specifically describe the present disclosure, and orders other than the above may be used. Also, some of the above steps may be executed concurrently (in parallel) with other steps.

Abstract

A road surface condition detection system (20) comprises: a sensor (21) that acquires vehicle body travel information which is information related to travel of a vehicle body (10); an analysis unit (22) that acquires the vehicle body travel information from the sensor (21) and analyzes the acquired vehicle body travel information; and a control unit (24). The analysis unit (22) also estimates a condition of a traveling road surface related to the travel of the vehicle body (10) by analyzing the vehicle body travel information. The control unit (24) then controls the travel of the vehicle body (10) according to the estimated condition of the traveling road surface.

Description

路面状態検知システム及び路面状態検知方法ROAD CONDITION DETECTION SYSTEM AND ROAD CONDITION DETECTION METHOD
 本開示は、車体が走行する走行路面の状態を推定する路面状態検知システム及び路面状態検知方法に関する。 The present disclosure relates to a road surface condition detection system and a road surface condition detection method for estimating the condition of a road surface on which a vehicle body travels.
 例えば、特許文献1には、車両のタイヤに加速度センサを装着し、この加速度センサの出力から走行する車両の振動レベルを算出することで、路面の状態を推定する路面状態推定装置が開示されている。 For example, Patent Literature 1 discloses a road surface condition estimation device that estimates the condition of a road surface by attaching an acceleration sensor to the tires of the vehicle and calculating the vibration level of the running vehicle from the output of the acceleration sensor. there is
特開2007-55284号公報JP 2007-55284 A
 しかしながら、従来の路面状態推定装置では、路面の状態を推定するために、車両のタイヤに対して別途、加速度センサを装着する必要がある。 However, in the conventional road surface condition estimation device, it is necessary to attach acceleration sensors separately to the vehicle tires in order to estimate the condition of the road surface.
 そこで、本開示は、既存のセンサを用いて、車体が走行する走行路面の状態を推定することができる路面状態検知システム及び路面状態検知方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a road surface condition detection system and a road surface condition detection method capable of estimating the condition of the road surface on which the vehicle body travels using existing sensors.
 上記目的を達成するため、本開示の一態様に係る路面状態検知システムは、車体の走行に関する情報である車体走行情報を取得するセンサと、前記センサから前記車体走行情報を取得し、取得した前記車体走行情報を解析する解析部と、制御部とを備え、前記解析部は、前記車体走行情報を解析することで、前記車体の走行に関連する走行路面の状態を推定し、前記制御部は、推定された前記走行路面の状態に応じて、前記車体の走行を制御する。 In order to achieve the above object, a road surface condition detection system according to an aspect of the present disclosure includes a sensor that acquires vehicle body running information that is information related to running of a vehicle body; an analysis unit that analyzes vehicle body running information; and a control unit. and controlling the traveling of the vehicle body according to the estimated condition of the road surface.
 また、本開示の一態様に係る路面状態検知方法は、車体の走行に関する情報である車体走行情報をセンサが取得し、前記センサから前記車体走行情報を取得し、取得した前記車体走行情報を解析部が解析し、前記解析部が前記車体走行情報を解析することで、前記車体の走行に関連する走行路面の状態を推定し、推定された前記走行路面の状態に応じて、前記車体の走行を制御部が制御することを含む。 Further, in a road surface state detection method according to an aspect of the present disclosure, a sensor acquires vehicle body running information, which is information related to running of a vehicle body, the vehicle body running information is acquired from the sensor, and the acquired vehicle body running information is analyzed. section analyzes the vehicle body running information, and the analysis section analyzes the vehicle body running information, thereby estimating the state of the road surface related to the running of the vehicle body, and according to the estimated state of the road surface, the running of the vehicle body is controlled by the control unit.
 本開示に係る路面状態検知システム及び路面状態検知方法によれば、既存のセンサを用いて、車体が走行する走行路面の状態を推定することができる。 According to the road surface condition detection system and road surface condition detection method according to the present disclosure, it is possible to estimate the condition of the road surface on which the vehicle body travels using existing sensors.
図1は、実施の形態に係る路面状態検知システムを示す模式図である。FIG. 1 is a schematic diagram showing a road surface condition detection system according to an embodiment. 図2は、実施の形態に係る路面状態検知システムを示すブロック図である。FIG. 2 is a block diagram showing the road surface condition detection system according to the embodiment. 図3は、実施の形態に係る路面状態検知システムの処理動作を示すフローチャートである。FIG. 3 is a flow chart showing the processing operation of the road surface condition detection system according to the embodiment.
 以下では、本開示の実施の形態について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序等は、一例であり、本開示を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Below, embodiments of the present disclosure will be described in detail with reference to the drawings. It should be noted that each of the embodiments described below is a specific example of the present disclosure. Therefore, the numerical values, shapes, materials, components, arrangement and connection of components, steps, order of steps, etc. shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements not described in independent claims will be described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺等は必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 In addition, each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like do not necessarily match in each drawing. Moreover, in each figure, the same code|symbol is attached|subjected about the substantially same structure, and the overlapping description is abbreviate|omitted or simplified.
 以下、本実施の形態に係る路面状態検知システム及び路面状態検知方法について説明する。 A road surface condition detection system and a road surface condition detection method according to the present embodiment will be described below.
 (実施の形態)
 <構成>
 ここでは、本実施の形態に係る路面状態検知システム20の構成について説明する。
(Embodiment)
<Configuration>
Here, the configuration of the road surface state detection system 20 according to this embodiment will be described.
 図1は、実施の形態に係る路面状態検知システム20を示す模式図である。 FIG. 1 is a schematic diagram showing a road surface condition detection system 20 according to an embodiment.
 図1に示すように、路面状態検知システム20では、車体10が道路を走行した際に、車体10が走行した道路の路面の状態である走行路面の状態を推定することができる。路面状態検知システム20は、この推定した走行路面の状態を記憶装置に蓄積したり、外部装置3に送信したりすることで、記憶装置及び/又は外部装置3に蓄積させたりすることができる。ここで、外部装置3は、表示部を備えた操作部、サイクルコンピュータ、パーソナルコンピュータ、スマートフォン、タブレット端末等である。 As shown in FIG. 1, the road surface condition detection system 20 can estimate the condition of the road surface on which the vehicle body 10 travels when the vehicle body 10 travels on the road. The road surface condition detection system 20 can store the estimated road surface condition in the storage device or transmit it to the external device 3 so that the storage device and/or the external device 3 store the estimated road surface condition. Here, the external device 3 is an operation unit having a display unit, a cycle computer, a personal computer, a smart phone, a tablet terminal, or the like.
 ここで、本実施の形態では、路面状態検知システム20が車体10に搭載されている場合を例示している。また、本実施の形態では、車体10が電動自転車である場合を例示している。本実施の形態の電動自転車は、ユーザの踏力を電動モータからの駆動力によって補助する電動アシスト自転車である。また、電動自転車は、踏力により車輪に動力を与える人力駆動力と、電動モータにより車輪に動力を与える補助駆動力とが独立した自転車でもよく、電動モータのみで自律走行可能な自転車でもよい。つまり、電動自転車は、アシストモード、押し歩きモード及び自走モードを有する。アシストモードは、ペダルへのユーザの踏力に基づく電動自転車の前進を補助するモードである。押し歩きモードは、ユーザが電動自転車を押して歩くときに、ユーザによる電動自転車を前へ押す力に基づいて、電動自転車の前進を補助するモードである。自走モードは、ユーザが電動自転車を支えながら歩くときに、電動自転車の前進を補助するモードである。 Here, in the present embodiment, a case where the road surface condition detection system 20 is mounted on the vehicle body 10 is exemplified. Moreover, in this embodiment, the case where the vehicle body 10 is an electric bicycle is illustrated. The electric bicycle according to the present embodiment is a power-assisted bicycle in which a user's pedaling force is assisted by driving force from an electric motor. Also, the electric bicycle may be a bicycle in which the human-powered driving force for applying power to the wheels by pedaling force and the auxiliary driving force for applying power to the wheels by an electric motor are independent of each other, or may be a bicycle capable of autonomous travel only with the electric motor. In other words, the electric bicycle has an assist mode, a push-walking mode, and a self-propelled mode. The assist mode is a mode for assisting the forward movement of the electric bicycle based on the user's force on the pedals. The push-walking mode is a mode in which the forward movement of the electric bicycle is assisted based on the user's force pushing the electric bicycle forward when the user walks by pushing the electric bicycle. The self-propelled mode is a mode in which the forward movement of the electric bicycle is assisted when the user walks while supporting the electric bicycle.
 なお、車体10は、電動自転車に限定されない。車体10は、車輪の回転によって路面を走行することが可能な車両であり、例えば、自動車、自動二輪車、自転車等であってもよい。 It should be noted that the vehicle body 10 is not limited to an electric bicycle. The vehicle body 10 is a vehicle capable of traveling on a road surface by rotating its wheels, and may be, for example, an automobile, a motorcycle, a bicycle, or the like.
 ここで、車体10が電動自転車である場合、図1及び図2に示すように、例えば車体10は、フレーム、前輪、後輪、サドル、ハンドル、ペダル、クランク、チェーン、変速機、電動モータ31、操作部、手動スイッチ及びバッテリ32等を有している。ここで、図2は、実施の形態に係る路面状態検知システム20を示すブロック図である。 Here, when the vehicle body 10 is an electric bicycle, as shown in FIGS. , an operation unit, a manual switch, a battery 32, and the like. Here, FIG. 2 is a block diagram showing the road surface condition detection system 20 according to the embodiment.
 また、走行路面の状態とは、平坦な路面である平坦面、段差又は窪みが形成された路面である凹凸面、砂利道(砂及び石等の砂利が道路に散らばった路面)、凍結した路面である凍結路面、及び、坂道(傾斜した路面)のうちの少なくとも1以上の状態である。ここで、坂道とは、上り坂及び下り坂の総称である。 In addition, the state of the running road surface includes a flat surface that is a flat road surface, an uneven surface that is a road surface with steps or depressions, a gravel road (a road surface with gravel such as sand and stones scattered on the road), and a frozen road surface. and a slope (sloping road surface). Here, slope is a general term for uphill and downhill.
 また、路面状態検知システム20は、走行路面の状態として、平坦面、凹凸面、砂利道、凍結路面、及び、坂道を地図に反映することで、地図上の走行路面の状態を更新することができる。 In addition, the road surface condition detection system 20 can update the condition of the road surface on the map by reflecting flat surfaces, uneven surfaces, gravel roads, frozen road surfaces, and slopes on the map. can.
 図2に示すように、路面状態検知システム20は、センサ21と、解析部22と、通知部23と、制御部24とを備えている。 As shown in FIG. 2, the road surface condition detection system 20 includes a sensor 21, an analysis section 22, a notification section 23, and a control section 24.
 [センサ21]
 センサ21は、車体走行情報を取得する。センサ21は、取得した車体走行情報を解析部22に出力する。車体走行情報は、車体10の走行に関する情報である。具体的には、車体走行情報は、車体10の走行時における車体10の状態を示す情報である。例えば、車体走行情報は、車体10の加速度、車体10の振動、ハンドルの舵角、及び、ペダルへの踏力に基づく人力駆動力等のうちの少なくとも1以上を示す情報である。
[Sensor 21]
The sensor 21 acquires vehicle body running information. The sensor 21 outputs the acquired vehicle body running information to the analysis unit 22 . The vehicle body running information is information about running of the vehicle body 10 . Specifically, the vehicle body running information is information indicating the state of the vehicle body 10 when the vehicle body 10 is running. For example, the vehicle body traveling information is information indicating at least one of the acceleration of the vehicle body 10, vibration of the vehicle body 10, steering angle of the steering wheel, and human power driving force based on the force applied to the pedal.
 具体的には、センサ21は、例えば、加速度センサ、振動センサ、舵角センサ、角速度センサ、及び、トルクセンサ等のうちの少なくとも1以上を含んでいる。本実施の形態では、車体10に複数のセンサ21が設けられている場合を例示している。本実施の形態の車体10には、加速度センサ、振動センサ、舵角センサ、角速度センサ、及び、トルクセンサ等のうちの2以上のセンサ21が設けられている。このため、車体10には、加速度センサ、振動センサ、舵角センサ、角速度センサ、及び、トルクセンサ等の全てのセンサ21が設けられていてもよい。 Specifically, the sensor 21 includes, for example, at least one or more of an acceleration sensor, a vibration sensor, a steering angle sensor, an angular velocity sensor, a torque sensor, and the like. In the present embodiment, a case in which a plurality of sensors 21 are provided on vehicle body 10 is illustrated. The vehicle body 10 of the present embodiment is provided with two or more sensors 21 selected from an acceleration sensor, a vibration sensor, a steering angle sensor, an angular velocity sensor, a torque sensor, and the like. Therefore, the vehicle body 10 may be provided with all sensors 21 such as an acceleration sensor, a vibration sensor, a steering angle sensor, an angular velocity sensor, and a torque sensor.
 複数のセンサ21のうちの1つが加速度センサを含む場合、加速度センサは、車体10の走行中の加速度を検知することで、検知した加速度を車体走行情報として取得する。例えば、加速度センサは、車体10の走行中に走行路面の状態によって車体10に生じた振動に基づく加速度を検知する。加速度センサは、車体10が加速又は減速した場合、その加速度を検知し、検知した加速度を示す情報である加速度情報を車体走行情報の一例として解析部22に出力する。 When one of the sensors 21 includes an acceleration sensor, the acceleration sensor detects the acceleration of the vehicle body 10 while the vehicle is running, and acquires the detected acceleration as vehicle body running information. For example, the acceleration sensor detects acceleration based on vibrations generated in the vehicle body 10 due to road surface conditions while the vehicle body 10 is running. When the vehicle body 10 accelerates or decelerates, the acceleration sensor detects the acceleration, and outputs acceleration information indicating the detected acceleration to the analysis unit 22 as an example of vehicle travel information.
 なお、加速度センサは、振動センサであってもよい。この場合、センサ21は振動センサを含んでいてもよい。振動センサは、車体10の走行中に生じる振動量を検知してもよい。つまり、振動センサが車体10の走行中に生じる振動を検知することで、振動センサは、検知した車体10に生じる振動に基づく加速度を検知してもよい。また、振動センサは、検知した振動量を示す情報である振動情報を車体走行情報の一例として解析部22に出力してもよい。 Note that the acceleration sensor may be a vibration sensor. In this case, sensor 21 may include a vibration sensor. The vibration sensor may detect the amount of vibration that occurs while the vehicle body 10 is running. In other words, the vibration sensor may detect the vibration generated in the vehicle body 10 while the vehicle body 10 is running, and the vibration sensor may detect the acceleration based on the detected vibration generated in the vehicle body 10 . Further, the vibration sensor may output vibration information, which is information indicating the detected vibration amount, to the analysis unit 22 as an example of the vehicle body running information.
 また、複数のセンサ21のうちの1つが舵角センサを含む場合、舵角センサは、車体10のハンドルの舵角を検知することで、検知した舵角を車体走行情報として取得する。舵角センサは、ユーザがハンドルを操作した場合、車体10の進行方向に対する角度(舵角)を検知し、検知した舵角を示す情報である舵角情報を車体走行情報の一例として解析部22に出力する。 Also, if one of the sensors 21 includes a steering angle sensor, the steering angle sensor detects the steering angle of the steering wheel of the vehicle body 10 and acquires the detected steering angle as vehicle body travel information. The steering angle sensor detects the angle (rudder angle) of the vehicle body 10 with respect to the traveling direction when the user operates the steering wheel, and the analysis unit 22 uses the steering angle information, which is information indicating the detected steering angle, as an example of the vehicle body traveling information. output to
 また、複数のセンサ21のうちの1つが角速度センサを含む場合、角速度センサは、車体10の傾きの変化量(角速度)を検知することで、検知した角速度を車体走行情報として取得する。角速度センサは、車体10の走行中に生じた車体10の角速度を検知し、検知した角速度を示す情報である角速度情報を車体走行情報の一例として解析部22に出力する。 Also, when one of the plurality of sensors 21 includes an angular velocity sensor, the angular velocity sensor detects the amount of change in the tilt of the vehicle body 10 (angular velocity) and acquires the detected angular velocity as vehicle body travel information. The angular velocity sensor detects an angular velocity of the vehicle body 10 generated while the vehicle body 10 is traveling, and outputs angular velocity information indicating the detected angular velocity to the analysis unit 22 as an example of vehicle traveling information.
 また、複数のセンサ21のうちの1つがトルクセンサを含む場合、トルクセンサは、走行路面の状態によって付与される車体10のペダルへの踏力に基づく人力駆動力を検知することで、検知した人力駆動力を車体走行情報として取得する。具体的には、トルクセンサは、クランク軸が回転することにより発生する人力駆動力であるトルクを検知する。トルクセンサは、ユーザがペダルに対して踏力を付与した場合、ペダルへの踏力に基づくトルクを検知し、検知したトルクを示す情報であるトルク情報を車体走行情報の一例として解析部22に出力する。 Further, when one of the plurality of sensors 21 includes a torque sensor, the torque sensor detects the human power driving force based on the force applied to the pedal of the vehicle body 10 given by the state of the running road surface. The driving force is acquired as vehicle body running information. Specifically, the torque sensor detects torque, which is human power driving force generated by the rotation of the crankshaft. When the user applies a force to the pedal, the torque sensor detects torque based on the force applied to the pedal, and outputs torque information, which is information indicating the detected torque, to the analysis unit 22 as an example of vehicle body running information. .
 また、センサ21は、車体10に設けられているが、例えば、車体10のフレーム、サドル、ハンドル、クランク、変速機及び電動モータ31等のうちの少なくとも1箇所以上に設けられている。 Further, the sensor 21 is provided on the vehicle body 10, and is provided, for example, on at least one or more of the frame, saddle, steering wheel, crank, transmission, electric motor 31, etc. of the vehicle body 10.
 [解析部22]
 解析部22は、センサ21から車体走行情報を取得する。つまり、解析部22は、センサ21から、加速度情報、振動情報、舵角情報、角速度情報及びトルク情報等のうちの少なくとも1つの情報である車体走行情報を取得する。
[Analysis part 22]
The analysis unit 22 acquires vehicle body running information from the sensor 21 . That is, the analysis unit 22 acquires vehicle body running information, which is at least one of acceleration information, vibration information, steering angle information, angular velocity information, torque information, and the like, from the sensor 21 .
 また、解析部22は、取得した車体走行情報を解析する。例えば、解析部22は、加速度情報に示される加速度、振動情報に示される振動量、舵角情報に示される舵角が推移する変化量、角速度情報に示される角速度、トルク情報に示されるトルク等のうちの少なくとも1つの情報を解析する。 Also, the analysis unit 22 analyzes the acquired vehicle body running information. For example, the analysis unit 22 analyzes the acceleration indicated by the acceleration information, the vibration amount indicated by the vibration information, the amount of change in the steering angle indicated by the steering angle information, the angular velocity indicated by the angular velocity information, the torque indicated by the torque information, and the like. Analyze at least one information of
 また、解析部22は、車体走行情報を解析することで、車体10の走行に関連する走行路面の状態を推定する。つまり、解析部22は、車体走行情報を解析することで車体走行情報に基づいて、車体10が走行している走行路面の状態として、平坦面、凹凸面、砂利道、凍結路面、上り坂及び下り坂のうちのいずれかを推定する。 Also, the analysis unit 22 estimates the state of the road surface on which the vehicle body 10 travels by analyzing the vehicle body travel information. That is, by analyzing the vehicle body running information, the analysis unit 22 determines, based on the vehicle body running information, the state of the road surface on which the vehicle body 10 is running, such as a flat surface, an uneven surface, a gravel road, a frozen road surface, an uphill road, and a Estimate any of the downhills.
 ここで、本実施の形態では、解析部22が車体走行情報を解析することで車体10の走行に関連する走行路面の状態を推定する手段の一例を示す。 Here, in the present embodiment, an example of means for estimating the state of the traveling road surface related to traveling of the vehicle body 10 by analyzing the vehicle traveling information by the analysis unit 22 is shown.
 具体的には、解析部22は、加速度情報に基づいて、道路の路面が凹凸面であることを推定する。例えば、車体10が凹凸面を走行する場合、車体10が平坦面を走行する場合に比べて、車体10の加速度が低下すると考えられる。このため、解析部22は、加速度情報に示される加速度が所定の閾値未満である場合に、道路の路面が凹凸面であると推定する。 Specifically, the analysis unit 22 estimates that the road surface is uneven based on the acceleration information. For example, when the vehicle body 10 runs on an uneven surface, the acceleration of the vehicle body 10 is considered to be lower than when the vehicle body 10 runs on a flat surface. Therefore, the analysis unit 22 estimates that the road surface is uneven when the acceleration indicated by the acceleration information is less than a predetermined threshold.
 また、解析部22は、振動情報に基づいて、道路の路面が凹凸面であることを推定することもできる。例えば、車体10が凹凸面を走行する場合、車体10が平坦面を走行する場合に比べて、車体10の振動量が増加すると考えられる。このため、解析部22は、振動情報に示される振動量が所定の閾値以上であれば、路面に段差及び窪みといった凹凸面が形成されていると推定する。 The analysis unit 22 can also estimate that the road surface is uneven based on the vibration information. For example, when the vehicle body 10 runs on an uneven surface, it is considered that the amount of vibration of the vehicle body 10 increases compared to when the vehicle body 10 runs on a flat surface. Therefore, if the amount of vibration indicated by the vibration information is equal to or greater than a predetermined threshold value, the analysis unit 22 estimates that uneven surfaces such as steps and depressions are formed on the road surface.
 また、解析部22は、トルク情報に基づいて、車体10が坂を走行する際に、道路の路面が凍結路面であることを推定する。例えば、車体10が凍結路面を走行する場合、車体10の車輪が凍結路面によって滑るため、凹凸面を走行する場合に比べて車輪のグリップ力が低下してしまい、加速度が上昇し難くなると考えられる。つまり、車体10が凍結路面を走行するとき、トルク情報に示されるトルクが閾値未満になると考えられる。一方、車体10が凹凸面を走行するとき、トルク情報に示されるトルクが閾値以上になると考えられる。このため、解析部22は、トルク情報に示されるトルクから、凍結路面か凹凸面かを推定することができる。 Also, based on the torque information, the analysis unit 22 estimates that the road surface is a frozen road surface when the vehicle body 10 travels on a slope. For example, when the vehicle body 10 travels on a frozen road surface, the wheels of the vehicle body 10 slip on the frozen road surface, so that the grip force of the wheels decreases compared to the case of traveling on an uneven surface, and it is considered that acceleration is difficult to increase. . That is, when the vehicle body 10 travels on the frozen road surface, it is considered that the torque indicated by the torque information becomes less than the threshold. On the other hand, when the vehicle body 10 runs on an uneven surface, it is considered that the torque indicated by the torque information becomes equal to or greater than the threshold. Therefore, the analysis unit 22 can estimate whether the road surface is a frozen road surface or an uneven surface from the torque indicated by the torque information.
 また、解析部22は、舵角情報に基づいて、道路の路面が凍結路面であることを推定してもよい。例えば、道路の路面が凍結していれば、ユーザは、凍結路面だけを迂回すると考えられる。このため、解析部22は、舵角情報に示される舵角が推移する変化量から、ユーザが走行ルートを不意に迂回したことを推定し、道路の路面が凍結路面であることを推定してもよい。 Also, the analysis unit 22 may estimate that the road surface is a frozen road surface based on the steering angle information. For example, if the surface of a road is icy, the user is expected to bypass only the icy surface. Therefore, the analysis unit 22 estimates that the user has unexpectedly detoured the travel route from the amount of change in the steering angle indicated by the steering angle information, and estimates that the road surface is a frozen road surface. good too.
 また、解析部22は、角速度情報に基づいて、道路が坂道であることを推定する。例えば、車体10が坂道を走行する場合、車体10が平坦面を走行する場合に比べて、車体10の角速度が大きくなると考えられる。つまり、解析部22は、角速度情報に示される角速度の積分値が所定の閾値以上である場合、坂道であると推定する。なお、解析部22は、当該積分値が所定の閾値以上である場合、当該積分値がさらに所定の閾値よりも大きくなるほど急な坂道であり、当該積分値が所定の閾値に近いほど緩やかな坂道であると推定してもよい。 Also, the analysis unit 22 estimates that the road is a slope based on the angular velocity information. For example, when the vehicle body 10 travels on a slope, the angular velocity of the vehicle body 10 is considered to be greater than when the vehicle body 10 travels on a flat surface. That is, the analysis unit 22 estimates that the road is a slope when the integral value of the angular velocities indicated by the angular velocity information is equal to or greater than a predetermined threshold. When the integrated value is equal to or greater than the predetermined threshold, the analysis unit 22 determines that the slope is steeper as the integrated value is greater than the predetermined threshold, and the slope is gentler as the integrated value is closer to the predetermined threshold. It may be assumed that
 また、解析部22は、走行路面の状態として、上り坂又は下り坂を走行していることを推定する。例えば、解析部22は、角速度情報と加速度情報とに基づいて、車体10が坂を走行する際に、上り坂か、下り坂かを推定することができる。例えば、車体10が坂を上るとき、角速度情報に示される角速度の積分値が閾値以上となり、かつ、加速度情報に示される加速度が閾値未満になると考えられる。また、車体10が坂を下るとき、角速度情報に示される角速度の積分値が閾値以上となり、かつ、加速度情報に示される加速度が閾値以上になると考えられる。このため、解析部22は、角速度情報に示される角速度の積分値と加速度情報に示される加速度とから、車体10の走行する坂道が上り坂か下り坂かを推定する。 Also, the analysis unit 22 estimates that the vehicle is traveling uphill or downhill as the condition of the road surface. For example, the analysis unit 22 can estimate whether the vehicle body 10 is traveling uphill or downhill based on the angular velocity information and the acceleration information. For example, when the vehicle body 10 climbs a slope, it is conceivable that the integral value of the angular velocity indicated by the angular velocity information becomes equal to or greater than the threshold and the acceleration indicated by the acceleration information becomes less than the threshold. Also, when the vehicle body 10 descends a slope, it is considered that the integral value of the angular velocity indicated by the angular velocity information becomes equal to or greater than the threshold and the acceleration indicated by the acceleration information becomes equal to or greater than the threshold. Therefore, the analysis unit 22 estimates whether the slope on which the vehicle body 10 is traveling is uphill or downhill from the integral value of the angular velocity indicated by the angular velocity information and the acceleration indicated by the acceleration information.
 また、解析部22は、トルク情報と加速度情報とに基づいて、車体10が坂を走行する際に、上り坂か、下り坂かを推定することもできる。例えば、車体10が坂を上るとき、トルク情報に示されるトルク(踏力)が閾値以上となり、かつ、加速度情報に示される加速度が閾値未満になると考えられる。また、車体10が坂を下るとき、トルク情報に示されるトルクが閾値未満となり、かつ、加速度情報に示される加速度が閾値以上になると考えられる。このため、解析部22は、トルク情報に示されるトルクと加速度情報に示される加速度とから、坂道が上り坂か下り坂かを推定することもできる。 The analysis unit 22 can also estimate whether the vehicle body 10 is traveling uphill or downhill based on the torque information and the acceleration information. For example, when the vehicle body 10 climbs a slope, it is conceivable that the torque (pedal force) indicated by the torque information becomes equal to or greater than the threshold and the acceleration indicated by the acceleration information becomes less than the threshold. Also, when the vehicle body 10 descends a slope, it is considered that the torque indicated by the torque information is less than the threshold and the acceleration indicated by the acceleration information is equal to or greater than the threshold. Therefore, the analysis unit 22 can also estimate whether the slope is uphill or downhill from the torque indicated by the torque information and the acceleration indicated by the acceleration information.
 また、解析部22は、トルク情報と振動情報とに基づいて、道路が砂利道であることを推定する。例えば、車体10が砂利道を走行する場合、車体10の車輪が砂利によって滑るため、凹凸面を走行する場合に比べて車輪のグリップ力が低下してしまうと考えられる。つまり、車体10が砂利道を走行するとき、トルク情報に示されるトルクが閾値以上となり、振動情報に示される振動量が閾値以上になると考えられる。一方、車体10が凹凸面を走行するとき、トルク情報に示されるトルクが閾値以上となり、振動情報に示される振動量が閾値以上になると考えられる。このため、解析部22は、トルク情報に示されるトルクと振動情報に示される振動とから、砂利道か凹凸面かを推定することができる。 Also, the analysis unit 22 estimates that the road is a gravel road based on the torque information and the vibration information. For example, when the vehicle body 10 travels on a gravel road, the wheels of the vehicle body 10 slip due to the gravel, so it is considered that the grip force of the wheels decreases compared to when the vehicle travels on an uneven surface. That is, when the vehicle body 10 travels on a gravel road, it is considered that the torque indicated by the torque information becomes equal to or greater than the threshold, and the amount of vibration indicated by the vibration information becomes equal to or greater than the threshold. On the other hand, when the vehicle body 10 runs on an uneven surface, it is considered that the torque indicated by the torque information becomes equal to or greater than the threshold, and the amount of vibration indicated by the vibration information becomes equal to or greater than the threshold. Therefore, the analysis unit 22 can estimate whether the road is a gravel road or an uneven surface from the torque indicated by the torque information and the vibration indicated by the vibration information.
 なお、車体走行情報を用いて解析部22が走行路面の状態を推定する手段について、例示したが、あくまでも一例に過ぎず、本実施の形態には限定されない。 Although the means by which the analysis unit 22 estimates the state of the road surface on which the vehicle is traveling using the vehicle body traveling information has been illustrated, this is merely an example and is not limited to the present embodiment.
 また、解析部22は、ルールベース、及び、機械学習のうちの少なくともいずれかを用いて、車体走行情報を解析して走行路面の状態を推定することができる。また、ルールベース、及び、機械学習で構築された学習モデルは、車体10に搭載される記憶部等に記憶される。 Also, the analysis unit 22 can use at least one of a rule base and machine learning to analyze vehicle travel information and estimate the state of the travel road surface. Also, the rule base and the learning model constructed by machine learning are stored in a storage unit or the like mounted on the vehicle body 10 .
 また、解析部22は、上述のように推定した結果である走行路面の状態を通知部23に出力する。 In addition, the analysis unit 22 outputs to the notification unit 23 the condition of the road surface, which is the result of the estimation as described above.
 [通知部23]
 通知部23は、解析部22が推定した走行路面の状態を示す情報である走行路面状態情報を外部装置3に通知する。この通知部23は、外部装置3と無線通信又は有線通信することが可能な通信モジュールである。なお、また、通知部23は、センサ21が検知した車体走行情報を外部装置3に通知してもよい。
[Notification unit 23]
The notification unit 23 notifies the external device 3 of traveling road surface condition information, which is information indicating the condition of the traveling road surface estimated by the analysis unit 22 . The notification unit 23 is a communication module capable of wireless communication or wired communication with the external device 3 . In addition, the notification unit 23 may notify the external device 3 of the vehicle body running information detected by the sensor 21 .
 [制御部24]
 制御部24は、推定された走行路面の状態に応じて、車体10の走行を制御する。具体的には、制御部24は、解析部22が推定した走行路面の状態に応じて、電動モータ31を制御する。より具体的には、車体10が電動自転車である場合、アシストモード、押し歩きモード及び自走モードのいずれのモードにおいても、制御部24は、電動モータ31を制御することで、車体10の走行を補助する駆動力を制御する。
[Control unit 24]
The control unit 24 controls traveling of the vehicle body 10 according to the estimated condition of the road surface. Specifically, the control unit 24 controls the electric motor 31 according to the state of the road surface estimated by the analysis unit 22 . More specifically, when the vehicle body 10 is an electric bicycle, the controller 24 controls the electric motor 31 to allow the vehicle body 10 to travel in any of the assist mode, push-walking mode, and self-propelled mode. to control the driving force that assists the
 電動モータ31は、制御部24に制御されることで、車体10の走行を補助する駆動力(補助駆動力)を車体10のチェーンに付与する。また、電動モータ31は、制御部24による制御に基づいて、車体10に搭載されたバッテリ32から給電されることで駆動する。 The electric motor 31 is controlled by the control unit 24 to provide the chain of the vehicle body 10 with driving force (auxiliary driving force) that assists the running of the vehicle body 10 . Further, the electric motor 31 is driven by power supplied from a battery 32 mounted on the vehicle body 10 under the control of the control unit 24 .
 例えば走行路面の状態が平坦面であると推定された場合、制御部24は、車体10の走行を補助する駆動力を通常にするように電動モータ31を制御する。この場合、制御部24は、ユーザの踏力に応じて電動モータ31が車体10の走行を補助する駆動力を制御する。これにより、ユーザは快適に車体10を運転することができる。 For example, when it is estimated that the road surface is flat, the control unit 24 controls the electric motor 31 so that the driving force that assists the traveling of the vehicle body 10 becomes normal. In this case, the control unit 24 controls the driving force with which the electric motor 31 assists the running of the vehicle body 10 according to the user's pedaling force. This allows the user to drive the vehicle body 10 comfortably.
 また、走行路面の状態が下り坂又は凍結路面であると推定された場合、制御部24は、車体10の走行を補助する駆動力を付与しない、又は、車体10が平坦面を走行する場合に比べて走行を補助する駆動力を小さくするように電動モータ31を制御する。これにより、車体10の転倒又は急加速を抑制することができるため、ユーザの安全性を確保することができる。 Further, when the state of the road surface is estimated to be a downhill or a frozen road surface, the control unit 24 does not apply the driving force to assist the traveling of the vehicle body 10, or when the vehicle body 10 travels on a flat surface. The electric motor 31 is controlled so as to reduce the driving force that assists the running. As a result, overturning or rapid acceleration of the vehicle body 10 can be suppressed, so that the safety of the user can be ensured.
 また、走行路面の状態が砂利道であると推定された場合、制御部24は、車体10が平坦面を走行する場合に比べて走行を補助する駆動力を小さくするように電動モータ31を制御する。これにより、車体10の転倒又は急加速を抑制することができるため、ユーザの安全性を確保することができる。 Further, when the state of the road surface is estimated to be a gravel road, the control unit 24 controls the electric motor 31 so as to reduce the driving force that assists the traveling compared to when the vehicle body 10 travels on a flat surface. do. As a result, overturning or rapid acceleration of the vehicle body 10 can be suppressed, so that the safety of the user can be ensured.
 また、走行路面の状態が上り坂又は凹凸面であると推定された場合、制御部24は、車体10が平坦面を走行する場合に比べて車体10の走行を補助する駆動力を大きくするように電動モータ31を制御する。これにより、車体10が減速してしまうことを抑制することで、ユーザは快適に車体10を運転することができる。 Further, when the state of the road surface is estimated to be an uphill or an uneven surface, the control unit 24 increases the driving force for assisting the traveling of the vehicle body 10 compared to when the vehicle body 10 travels on a flat surface. to control the electric motor 31. As a result, the user can comfortably drive the vehicle body 10 by suppressing the vehicle body 10 from decelerating.
 <処理動作>
 ここでは、本実施の形態に係る路面状態検知システム20及び路面状態検知方法の処理動作について、図3等を用いて説明する。
<Processing operation>
Here, the processing operations of the road surface condition detection system 20 and the road surface condition detection method according to the present embodiment will be described using FIG. 3 and the like.
 図3は、実施の形態に係る路面状態検知システム20の処理動作を示すフローチャートである。 FIG. 3 is a flow chart showing the processing operation of the road surface condition detection system 20 according to the embodiment.
 まず、図2及び図3に示すように、車体10が走行路面を走行する際、複数のセンサ21は、車体10から車体走行情報を取得する(S11)。複数のセンサ21は、例えば、加速度センサ、振動センサ、舵角センサ、角速度センサ、トルクセンサ等を含んでいる。本実施の形態では、車体10に複数のセンサ21が設けられている。このため、本実施の形態では、複数のセンサ21によって、加速度情報、振動情報、舵角情報、角速度情報、トルク情報等のうちの少なくとも2つの情報を含む車体走行情報を取得することができる。複数のセンサ21は、取得した車体走行情報を解析部22に出力する。 First, as shown in FIGS. 2 and 3, when the vehicle body 10 travels on the road surface, the plurality of sensors 21 acquire vehicle body travel information from the vehicle body 10 (S11). The multiple sensors 21 include, for example, acceleration sensors, vibration sensors, steering angle sensors, angular velocity sensors, torque sensors, and the like. In this embodiment, the vehicle body 10 is provided with a plurality of sensors 21 . Therefore, in the present embodiment, the plurality of sensors 21 can acquire vehicle body running information including at least two pieces of information among acceleration information, vibration information, steering angle information, angular velocity information, torque information, and the like. The multiple sensors 21 output the acquired vehicle body running information to the analysis unit 22 .
 次に、解析部22は、センサ21から取得した車体走行情報を解析する(S12)。 Next, the analysis unit 22 analyzes the vehicle body travel information acquired from the sensor 21 (S12).
 次に、解析部22は、車体走行情報の解析結果に基づいて、車体10の走行に関連する走行路面の状態を推定する(S13)。 Next, the analysis unit 22 estimates the state of the road surface on which the vehicle body 10 travels based on the analysis result of the vehicle body travel information (S13).
 具体的には、解析部22は、加速度情報の解析結果に基づいて、加速度情報に示される加速度が所定の閾値未満である場合に、道路の路面が凹凸面であると推定する。また、解析部22は、舵角情報を解析することで、舵角情報に示される舵角が推移する変化量から、道路の路面が凍結路面であることを推定する。また、解析部22は、角速度情報を解析することで、角速度情報に示される角速度の積分値が所定の閾値以上である場合、坂道であると推定する。また、解析部22は、角速度情報と加速度情報とを解析することで、当該積分値が閾値以上となり、かつ、加速度が閾値未満である場合、車体10が坂道を上っていると推定する。また、解析部22は、角速度情報と加速度情報とを解析することで、当該積分値が閾値以上となり、かつ、加速度が閾値以上になる場合、車体10が坂道を下っていると推定する。また、解析部22は、トルク情報と加速度情報とを解析することで、トルク情報に示されるトルク(踏力)が閾値以上となり、かつ、加速度が閾値未満になる場合、車体10が坂道を上っていると推定する。また、解析部22は、トルク情報と加速度情報とを解析することで、トルクが閾値未満となり、かつ、加速度が閾値以上になる場合、車体10が坂道を下っていると推定する。また、解析部22は、トルク情報と振動情報とを解析することで、トルクが閾値以上となり、振動量が閾値以上になる場合、道路が砂利道であることを推定する。 Specifically, based on the analysis result of the acceleration information, the analysis unit 22 estimates that the road surface is uneven when the acceleration indicated by the acceleration information is less than a predetermined threshold. Further, by analyzing the steering angle information, the analysis unit 22 estimates that the road surface is a frozen road surface from the amount of change in the steering angle indicated by the steering angle information. Further, the analysis unit 22 analyzes the angular velocity information, and estimates that the road is a slope when the integral value of the angular velocity indicated by the angular velocity information is equal to or greater than a predetermined threshold. Further, the analysis unit 22 analyzes the angular velocity information and the acceleration information, and when the integrated value is equal to or greater than the threshold and the acceleration is less than the threshold, it is estimated that the vehicle body 10 is climbing a slope. Further, the analysis unit 22 analyzes the angular velocity information and the acceleration information, and estimates that the vehicle body 10 is descending a slope when the integrated value is equal to or greater than the threshold and the acceleration is equal to or greater than the threshold. Further, the analysis unit 22 analyzes the torque information and the acceleration information, and when the torque (pedal force) indicated by the torque information is equal to or greater than the threshold and the acceleration is less than the threshold, the vehicle body 10 is running up the slope. We assume that Further, by analyzing the torque information and the acceleration information, the analysis unit 22 estimates that the vehicle body 10 is descending a slope when the torque is less than the threshold and the acceleration is greater than or equal to the threshold. Moreover, the analysis unit 22 analyzes the torque information and the vibration information, and estimates that the road is a gravel road when the torque is equal to or greater than the threshold and the amount of vibration is equal to or greater than the threshold.
 また、解析部22は、ルールベース、及び、機械学習のうちの少なくともいずれかを用いて、車体走行情報を解析して走行路面の状態を推定することができる。 Also, the analysis unit 22 can use at least one of a rule base and machine learning to analyze vehicle travel information and estimate the state of the travel road surface.
 例えば、解析部22は、ルールベースを用いることで、予め設定した条件に基づいて車体走行情報を解析して車体10の状態を推定することができる。ここで、予め設定した条件とは、閾値等の設定した条件である。ルールベースを用いる場合は、加速度情報、振動情報、舵角情報、角速度情報及びトルク情報等のうちの少なくとも1以上の情報(車体走行情報)から導き出された走行路面の状態を示したルールべースを予め作成しておく必要がある。解析部22は、このルールべースを用いることで、加速度情報、振動情報、舵角情報、角速度情報及びトルク情報等のうちの少なくとも1以上の情報から、走行路面の状態が平坦面、凹凸面、砂利道、凍結路面、上り坂及び下り坂のうちの少なくとも1以上の状態であることを推定することができる。 For example, the analysis unit 22 can estimate the state of the vehicle body 10 by analyzing vehicle travel information based on preset conditions by using a rule base. Here, the preset condition is a set condition such as a threshold value. When using a rule base, a rule base indicating the state of the road surface derived from at least one or more information (vehicle running information) among acceleration information, vibration information, steering angle information, angular velocity information, torque information, etc. must be created in advance. By using this rule base, the analysis unit 22 determines whether the road surface is flat or uneven, based on at least one of acceleration information, vibration information, steering angle information, angular velocity information, torque information, and the like. It can be estimated that the vehicle is in at least one of a surface, gravel road, frozen road, uphill, and downhill.
 例えば、解析部22は、機械学習、及び、機械学習に含まれる深層学習を用いることで、車体走行情報を解析して車体10の状態を推定することができる。機械学習を用いる場合は、教師データを用いて、加速度情報、振動情報、舵角情報、角速度情報及びトルク情報等のうちの少なくとも1以上の情報(車体走行情報)から推定される走行路面の状態を学習した学習モデルを予め作成しておく必要がある。ここで、教師データは、平坦面、凹凸面、砂利道、凍結路面、上り坂及び下り坂のそれぞれの走行路面を車体10が走行したときの加速度情報、振動情報、舵角情報、角速度情報及びトルク情報等を含む車体走行情報である。解析部22は、この機械学習を用いることで、加速度情報、振動情報、舵角情報、角速度情報及びトルク情報等のうちの少なくとも1以上の情報から、走行路面の状態が平坦面、凹凸面、砂利道、凍結路面、上り坂及び下り坂のうちの1以上の状態であることを推定することができる。 For example, the analysis unit 22 can analyze the vehicle travel information and estimate the state of the vehicle body 10 by using machine learning and deep learning included in the machine learning. When machine learning is used, the condition of the road surface is estimated from at least one information (vehicle traveling information) among acceleration information, vibration information, steering angle information, angular velocity information, torque information, etc. using teacher data. It is necessary to create in advance a learning model that has learned the Here, the training data includes acceleration information, vibration information, steering angle information, angular velocity information and This is vehicle body running information including torque information and the like. By using this machine learning, the analysis unit 22 uses at least one or more information among acceleration information, vibration information, rudder angle information, angular velocity information, torque information, etc. to determine whether the state of the traveling road surface is a flat surface, an uneven surface, an uneven surface, It can be estimated that one or more of gravel road, icy road, uphill and downhill conditions.
 このように、ルールベース、及び、機械学習の学習モデルによって、走行路面の状態を推定する場合、実際に走行路面の状態を計測するセンサ21を車体10に搭載しなくても、解析部22は、車体走行情報から走行路面の状態が平坦面、凹凸面、砂利道、凍結路面、上り坂及び下り坂のうちの1以上の状態であることを推定することができる。 Thus, when estimating the state of the road surface on the basis of the rule base and the learning model of machine learning, even if the sensor 21 for actually measuring the state of the road surface is not mounted on the vehicle body 10, the analysis unit 22 , it is possible to estimate from the vehicle travel information that the state of the travel road surface is one or more of a flat surface, an uneven surface, a gravel road, a frozen road surface, an uphill slope, and a downhill slope.
 なお、外部装置3は、他の車体10から車体走行情報を取得して学習することで、ルールベース、及び、機械学習した学習モデルを更新してもよい。この場合、外部装置3は、更新したルールベース、及び、機械学習した学習モデルを車体10に送信することで、車体10のルールベース、及び、機械学習した学習モデルを更新してもよい。 It should be noted that the external device 3 may update the rule base and machine-learned learning model by acquiring and learning the vehicle body traveling information from other vehicle bodies 10 . In this case, the external device 3 may update the rule base and machine-learned learning model of the vehicle body 10 by transmitting the updated rule base and machine-learned learning model to the vehicle body 10 .
 そして、解析部22は、推定した結果である走行路面の状態を通知部23に出力する。 Then, the analysis unit 22 outputs the state of the road surface, which is the estimated result, to the notification unit 23 .
 次に、通知部23は、解析部22が推定した結果である走行路面の状態を外部装置3に通知する(S14)。これにより、外部装置3は、車体10が走行した道路における走行路面の状態を収集することができる。例えば、外部装置3は、車体10が走行した道路における走行路面の状態を地図に反映することで、地図上の走行路面の状態を更新することができるようになる。 Next, the notification unit 23 notifies the external device 3 of the state of the road surface estimated by the analysis unit 22 (S14). As a result, the external device 3 can collect the conditions of the road surface on which the vehicle body 10 has traveled. For example, the external device 3 can update the state of the road surface on the map by reflecting the state of the road surface on which the vehicle body 10 has traveled on the map.
 次に、制御部24は、解析部22が推定した走行路面の状態に応じて、電動モータ31を制御することで、車体10の走行を補助する駆動力を制御する(S15)。例えば、車体10が電動自転車である場合、アシストモード、押し歩きモード及び自走モードのいずれのモードにおいても、制御部24は、電動モータ31を制御することで、車体10の走行を補助する駆動力を制御する。 Next, the control unit 24 controls the driving force that assists the traveling of the vehicle body 10 by controlling the electric motor 31 according to the state of the traveling road surface estimated by the analysis unit 22 (S15). For example, when the vehicle body 10 is an electric bicycle, the control unit 24 controls the electric motor 31 in any of the assist mode, the push-walking mode, and the self-propelled mode to assist the traveling of the vehicle body 10. control power.
 そして、路面状態検知システム20は、図3の処理動作を終了する。 Then, the road surface condition detection system 20 ends the processing operation of FIG.
 このように、解析部22が推定した結果である走行路面の状態を外部装置3に通知することで、外部装置3は、車体10が走行した道路における走行路面の状態を把握することができる。例えば、本来は平坦面である路面が凹凸面であると推定されれば、その路面が割れたり落下物が放置されたりしているという問題が発生している可能性がある。路面にこのような問題のある個所を事前に知ることができれば、ユーザは走行ルートを変更して迂回することができる。また、道路管理者に対して路面にこのような問題が発生していることを通知すれば、道路管理者は路面に発生している問題をすぐに解消するように対応することができる。 In this way, by notifying the external device 3 of the state of the road surface estimated by the analysis unit 22, the external device 3 can grasp the state of the road surface on which the vehicle body 10 has traveled. For example, if a road surface that is originally a flat surface is estimated to be an uneven surface, there is a possibility that the road surface is cracked or a fallen object is left unattended. If the user can know in advance such a problem spot on the road surface, the user can change the travel route and take a detour. In addition, if the road administrator is notified of the occurrence of such a problem on the road surface, the road administrator can immediately take action to resolve the problem that has occurred on the road surface.
 <作用効果>
 次に、本実施の形態における路面状態検知システム20及び路面状態検知方法の作用効果について説明する。
<Effect>
Next, the effects of the road surface condition detection system 20 and the road surface condition detection method according to the present embodiment will be described.
 上述したように、本実施の形態に係る路面状態検知システム20は、車体10の走行に関する情報である車体走行情報を取得するセンサ21と、センサ21から車体走行情報を取得し、取得した車体走行情報を解析する解析部22と、制御部24とを備える。また、解析部22は、車体走行情報を解析することで、車体10の走行に関連する走行路面の状態を推定する。そして、制御部24は、推定された走行路面の状態に応じて、車体10の走行を制御する。 As described above, the road surface condition detection system 20 according to the present embodiment includes the sensor 21 that acquires the vehicle body running information that is the information regarding the running of the vehicle body 10, the vehicle body running information that is acquired from the sensor 21, and the acquired vehicle body running. An analysis unit 22 for analyzing information and a control unit 24 are provided. Further, the analysis unit 22 estimates the state of the road surface on which the vehicle body 10 travels by analyzing the vehicle body travel information. Then, the control unit 24 controls traveling of the vehicle body 10 according to the estimated condition of the road surface.
 通常、車体の車体走行情報を取得するセンサは車体に予め搭載されているものである。このため、本実施の形態の路面状態検知システム20では、走行路面の状態を検知するための新たなセンサを車体10に搭載しなくても、車体10に設けられている既存のセンサを用いて、車体10が走行した道路における走行路面の状態を推定することができる。その結果、本実施の形態の路面状態検知システム20では、走行路面の状態を検知するための新たなセンサを車体10に搭載しなくてもよいため、車体10の製造コストの高騰化を抑制することができる。 Normally, the sensors that acquire the vehicle body running information are pre-installed in the vehicle body. Therefore, in the road surface condition detection system 20 of the present embodiment, existing sensors provided on the vehicle body 10 can be used without mounting a new sensor for detecting the condition of the road surface on the vehicle body 10. , the condition of the road surface on which the vehicle body 10 has traveled can be estimated. As a result, in the road surface condition detection system 20 of the present embodiment, it is not necessary to mount a new sensor for detecting the condition of the road surface on the vehicle body 10, thereby suppressing an increase in the manufacturing cost of the vehicle body 10. be able to.
 また、走行路面の状態に応じて車体10の走行を制御することができるため、ユーザは車体10を安定して運転することができる。このため、ユーザは快適に車体10を運転することができる。 In addition, since the running of the vehicle body 10 can be controlled according to the condition of the road surface, the user can drive the vehicle body 10 stably. Therefore, the user can drive the vehicle body 10 comfortably.
 また、本実施の形態に係る路面状態検知方法は、車体10の走行に関する情報である車体走行情報をセンサ21が取得し、センサ21から車体走行情報を取得し、取得した車体走行情報を解析部22が解析し、解析部22が車体走行情報を解析することで、車体10の走行に関連する走行路面の状態を推定し、推定された走行路面の状態に応じて、車体10の走行を制御部24が制御することを含む。 Further, in the road surface state detection method according to the present embodiment, the sensor 21 acquires vehicle body running information, which is information related to running of the vehicle body 10, the vehicle body running information is acquired from the sensor 21, and the acquired vehicle body running information is sent to the analysis unit. 22 analyzes and the analysis unit 22 analyzes the vehicle body traveling information to estimate the road surface condition related to the traveling of the vehicle body 10, and control the traveling of the vehicle body 10 according to the estimated traveling road surface condition. It includes that the unit 24 controls.
 この路面状態検知方法においても、上述と同様の作用効果を奏する。 This road surface condition detection method also has the same effects as those described above.
 また、本実施の形態に係る路面状態検知システム20において、解析部22は、車体10が走行している走行路面の状態として、平坦面、凹凸面、砂利道及び凍結路面のうちの少なくとも1以上の状態であることを推定する。 In the road surface condition detection system 20 according to the present embodiment, the analysis unit 22 detects at least one of a flat surface, an uneven surface, a gravel road, and an icy road surface as the condition of the road surface on which the vehicle body 10 is traveling. It is estimated that the state of
 これによれば、車体走行情報に基づいて、走行路面が平坦面、凹凸面、砂利道及び凍結路面のうちの少なくとも1以上の状態であることを推定することができる。このため、例えば、車体10は、平坦面、凹凸面、砂利道及び凍結路面に応じて車体10に搭載される電動モータ31の駆動力を制御することができる。また、ユーザ及び道路管理者等は、走行路面の状態を把握することができる。 According to this, it is possible to estimate that the road surface on which the vehicle is traveling is in at least one of a flat surface, an uneven surface, a gravel road, and an icy road surface, based on the vehicle body traveling information. Therefore, for example, the vehicle body 10 can control the driving force of the electric motor 31 mounted on the vehicle body 10 according to flat surfaces, uneven surfaces, gravel roads, and frozen road surfaces. Also, the user, the road administrator, etc. can grasp the condition of the road surface on which they are traveling.
 また、本実施の形態に係る路面状態検知システム20において、解析部22は、車体10が走行している走行路面の状態として、上り坂又は下り坂を走行していることを推定する。 In addition, in the road surface state detection system 20 according to the present embodiment, the analysis unit 22 estimates that the road surface on which the vehicle body 10 is running is running uphill or downhill.
 これによれば、車体走行情報に基づいて、走行路面が上り坂か下り坂かを推定することができる。このため、例えば、車体10は、上り坂及び下り坂に応じて車体10に搭載される電動モータ31の駆動力を制御することができる。 According to this, it is possible to estimate whether the road surface is uphill or downhill based on the vehicle travel information. Therefore, for example, the vehicle body 10 can control the driving force of the electric motor 31 mounted on the vehicle body 10 depending on whether the vehicle is traveling uphill or downhill.
 また、本実施の形態に係る路面状態検知システム20は、解析部22が推定した走行路面の状態を示す情報である走行路面状態情報を外部装置3に通知する通知部23をさらに備える。 Further, the road surface condition detection system 20 according to the present embodiment further includes a notification unit 23 that notifies the external device 3 of traveling road surface condition information, which is information indicating the condition of the traveling road surface estimated by the analysis unit 22 .
 これによれば、外部装置3は、走行路面状態情報を取得することができるため、走行路面の状態を把握することができる。例えば、外部装置3は、車体10の走行に対して障害となる走行路面の状態をユーザ及び道路管理者に通知することができる。 According to this, the external device 3 can acquire the traveling road surface condition information, and therefore can grasp the condition of the traveling road surface. For example, the external device 3 can notify the user and the road administrator of the condition of the road surface that hinders the traveling of the vehicle body 10 .
 また、本実施の形態に係る路面状態検知システム20において、センサ21は、走行路面の状態によって付与されるペダルへの踏力に基づく人力駆動力を検知することで、検知した人力駆動力を車体走行情報として取得する。 Further, in the road surface condition detection system 20 according to the present embodiment, the sensor 21 detects the human power driving force based on the force applied to the pedal given by the state of the road surface on which the vehicle travels. Get it as information.
 通常、人力駆動力を検知するセンサは車体10に予め搭載されているものであるため、既存のセンサを用いて人力駆動力を検知すれば、検知した人力駆動力に基づいて走行路面の状態を推定することができる。このため、本実施の形態の路面状態検知システム20では、走行路面の状態を検知するための新たなセンサを車体10に搭載しなくてもよいため、車体10の製造コストの高騰化を抑制することができる。 Normally, a sensor for detecting the human-powered driving force is pre-installed on the vehicle body 10, so if the human-powered driving force is detected using an existing sensor, the condition of the road surface can be determined based on the detected human-powered driving force. can be estimated. Therefore, in the road surface condition detection system 20 of the present embodiment, it is not necessary to mount a new sensor for detecting the condition of the road surface on the vehicle body 10, thereby suppressing an increase in the manufacturing cost of the vehicle body 10. be able to.
 また、本実施の形態に係る路面状態検知システム20において、センサ21は、走行路面の状態によって走行する車体10に生じた振動に基づく加速度を検知することで、検知した加速度を車体走行情報として取得する。 Further, in the road surface condition detection system 20 according to the present embodiment, the sensor 21 detects acceleration based on vibration generated in the vehicle body 10 traveling due to the condition of the road surface, and acquires the detected acceleration as vehicle body traveling information. do.
 通常、車体10の加速度を検知するセンサ21は車体10に搭載されているものであるため、既存のセンサを用いて車体10の加速度を検知すれば、検知した車体10の加速度に基づいて走行路面の状態を推定することができる。このため、本実施の形態の路面状態検知システム20では、走行路面の状態を検知するための新たなセンサを車体10に搭載しなくてもよいため、車体10の製造コストの高騰化を抑制することができる。 Normally, the sensor 21 for detecting the acceleration of the vehicle body 10 is mounted on the vehicle body 10, so if the acceleration of the vehicle body 10 is detected using an existing sensor, the traveling road surface can be detected based on the detected acceleration of the vehicle body 10. state can be estimated. Therefore, in the road surface condition detection system 20 of the present embodiment, it is not necessary to mount a new sensor for detecting the condition of the road surface on the vehicle body 10, thereby suppressing an increase in the manufacturing cost of the vehicle body 10. be able to.
 また、本実施の形態に係る路面状態検知システム20において、解析部22は、ルールベース、及び、機械学習のうちの少なくともいずれかを用いて、車体走行情報を解析して走行路面の状態を推定する。 Further, in the road surface condition detection system 20 according to the present embodiment, the analysis unit 22 uses at least one of a rule base and machine learning to analyze the vehicle traveling information and estimate the condition of the traveling road surface. do.
 これによれば、ルールベース、及び、機械学習を用いることで、走行路面の状態を精度よく推定することができる。 According to this, the condition of the road surface can be accurately estimated by using rule base and machine learning.
 (その他変形例等)
 以上、本開示について、実施の形態に基づいて説明したが、本開示は、これら実施の形態等に限定されるものではない。
(Other modifications, etc.)
Although the present disclosure has been described above based on the embodiments, the present disclosure is not limited to these embodiments and the like.
 例えば、上記の実施の形態に係る路面状態検知システム及び路面状態検知方法において、センサは、速度センサを含んでいてもよい。この場合、速度センサは、例えば車輪の回転数等を検知することによって車体の走行速度を検知する。速度センサは、ユーザの踏力に基づいて車体が前進した場合、車体の走行速度を検知し、検知した速度を示す情報である速度情報を制御部に出力してもよい。これにより、制御部は、速度情報に示される速度に基づいて電動モータが車体の走行を補助する駆動力を制御してもよい。 For example, in the road surface condition detection system and road surface condition detection method according to the above embodiments, the sensor may include a speed sensor. In this case, the speed sensor detects the traveling speed of the vehicle body by detecting, for example, the number of revolutions of the wheels. The speed sensor may detect the traveling speed of the vehicle body when the vehicle body moves forward based on the user's pedaling force, and output speed information indicating the detected speed to the control unit. Thereby, the control unit may control the driving force with which the electric motor assists the running of the vehicle body based on the speed indicated by the speed information.
 また、上記の実施の形態に係る路面状態検知システム及び路面状態検知方法において、制御部は、解析部が推定した走行路面の状態に応じて、ブレーキを制御してもよい。具体的には、車体が電動自転車である場合、アシストモード、押し歩きモード及び自走モードのいずれのモードにおいても、制御部は、ブレーキを制御することで、車体の走行を制御してもよい。つまり、路面状態検知システムは、アンチロックブレーキシステムを有していてもよい。アンチロックブレーキシステムは、制御部が制動時に車輪の回転がロックされるか否かを判定してもよい。具体的には、センサが車輪の回転数を検知する場合、制御部は、センサが検知した車輪の回転数によって、強いブレーキが加えられたことを判定してもよい。この場合、制御部は、強いブレーキが加えられたブレーキを弱めるように制御してもよい。制御部は、このような制御をそれぞれの車輪に対して個別的に実施してもよい。これにより、凍結路面等において、車輪のグリップ力が低下してしまうことを抑制することができるため、車輪のスリップを抑制することができる。また、車体は圧力バルブ及び油圧ポンプ等を有しており、制御部は圧力バルブ及び油圧ポンプ等を制御することができてもよい。 In addition, in the road surface condition detection system and road surface condition detection method according to the above embodiment, the control unit may control the brake according to the condition of the road surface estimated by the analysis unit. Specifically, when the vehicle body is an electric bicycle, the control unit may control the running of the vehicle body by controlling the brakes in any of the assist mode, push-walking mode, and self-propelled mode. . That is, the road surface condition detection system may have an antilock braking system. Antilock braking systems may allow the controller to determine whether the wheels are locked from rotation during braking. Specifically, when the sensor detects the rotation speed of the wheel, the control unit may determine that a strong brake is applied based on the rotation speed of the wheel detected by the sensor. In this case, the control unit may perform control to weaken the brake that has been applied with a strong brake. The control unit may perform such control individually for each wheel. As a result, it is possible to prevent the gripping force of the wheels from deteriorating on a frozen road surface, etc., so that slipping of the wheels can be suppressed. Further, the vehicle body may have a pressure valve, a hydraulic pump, and the like, and the control section may be capable of controlling the pressure valve, the hydraulic pump, and the like.
 また、上記の実施の形態に係る路面状態検知システム及び路面状態検知方法において、センサは、クランク回転センサを含んでいてもよい。この場合、クランク回転センサは、車体のクランクの回転数及び回転角度を検出する。クランク回転センサは、クランク軸が回転した場合、クランクの回転数及び/又は回転角度を検知し、検知したクランクの回転数及び/又は回転角度を示す情報であるクランク情報を制御部に出力してもよい。これにより、制御部は、クランク情報に示されるクランクの回転数及び/又は回転角度に基づいて電動モータが車体の走行を補助する駆動力を制御してもよい。 Further, in the road surface condition detection system and road surface condition detection method according to the above embodiments, the sensor may include a crank rotation sensor. In this case, the crank rotation sensor detects the rotation speed and rotation angle of the crank of the vehicle body. The crank rotation sensor detects the number of rotations and/or the rotation angle of the crank when the crankshaft rotates, and outputs crank information indicating the detected number of rotations and/or the rotation angle of the crank to the control unit. good too. Thereby, the control unit may control the driving force with which the electric motor assists the running of the vehicle body based on the number of rotations and/or the rotation angle of the crank indicated by the crank information.
 また、上記の実施の形態に係る路面状態検知システム及び路面状態検知方法において、センサは、モータトルクセンサを含んでいてもよい。この場合、モータトルクセンサは、車体の電動モータのモータトルクを検出する。モータトルクセンサは、電動モータのモータトルクを検知し、検知したモータトルクを示す情報であるモータトルク情報を制御部に出力してもよい。これにより、制御部は、モータトルク情報に示されるモータトルクに基づいて電動モータが車体の走行を補助する駆動力を制御してもよい。 Further, in the road surface condition detection system and road surface condition detection method according to the above embodiments, the sensor may include a motor torque sensor. In this case, the motor torque sensor detects the motor torque of the electric motor of the vehicle body. The motor torque sensor may detect the motor torque of the electric motor and output motor torque information indicating the detected motor torque to the control unit. Thereby, the control unit may control the driving force with which the electric motor assists the running of the vehicle body based on the motor torque indicated by the motor torque information.
 また、上記の実施の形態に係る路面状態検知システム及び路面状態検知方法において、1つのセンサは、走行路面の状態によって車体に生じる振動量と、振動量に基づく加速度とを検知してもよい。これによれば、センサは車体に生じる振動を検知することができるとともに、車体に生じる振動に基づく加速度を検知することができる。つまり、センサは、振動の検知と加速度の検知との両立を図ることができる。また、センサは、振動の検知及び加速度の検知によって、走行路面の状態を検知することができる。このため、本実施の形態の路面状態検知システムでは、走行路面の状態を検知するための新たなセンサを車体に搭載しなくてもよいため、車体の製造コストの高騰化を抑制することができる。 In addition, in the road surface condition detection system and road surface condition detection method according to the above embodiment, one sensor may detect the amount of vibration generated in the vehicle body due to the condition of the road surface and the acceleration based on the amount of vibration. According to this, the sensor can detect the vibration generated in the vehicle body, and can detect the acceleration based on the vibration generated in the vehicle body. That is, the sensor can achieve both detection of vibration and detection of acceleration. Further, the sensor can detect the road surface condition by detecting vibration and acceleration. Therefore, in the road surface condition detection system of the present embodiment, there is no need to install a new sensor for detecting the condition of the road surface on the vehicle body, so it is possible to suppress an increase in the manufacturing cost of the vehicle body. .
 また、上記の実施の形態に係る路面状態検知システム及び路面状態検知方法において、外部装置は、路面状態検知システムから走行路面の状態を推定した結果を取得すると、車体ごとに走行路面の状態を推定した結果を履歴情報として蓄積してもよい。この場合、外部装置は、車体が凹凸面及び砂利道を所定距離以上走行していれば、車体に異常が発生している又は発生する可能性があることを推定することができる。これにより、ユーザ及びユーザに車体の貸し出し等を行うサービサーは、車体の交換及び修理を行う等の対応をとることができる。 Further, in the road surface condition detection system and road surface condition detection method according to the above-described embodiments, when the external device acquires the result of estimating the condition of the road surface on which the vehicle is traveling, the external device estimates the condition of the road surface on a vehicle-by-vehicle basis. The results obtained may be stored as history information. In this case, the external device can estimate that an abnormality has occurred or may occur in the vehicle body if the vehicle body has traveled over a predetermined distance on uneven surfaces and gravel roads. As a result, the user and the servicer who lends the vehicle to the user can take measures such as replacing or repairing the vehicle.
 また、上記各実施の形態に係る路面状態検知システム及び路面状態検知方法に用いられる解析部、制御部及び外部装置等は、典型的に集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。 In addition, the analysis unit, control unit, external devices, and the like used in the road surface condition detection system and road surface condition detection method according to each of the above embodiments are typically implemented as LSIs, which are integrated circuits. These may be made into one chip individually, or may be made into one chip so as to include part or all of them.
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 In addition, circuit integration is not limited to LSIs, and may be realized with dedicated circuits or general-purpose processors. An FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 It should be noted that in each of the above embodiments, each component may be implemented by dedicated hardware or by executing a software program suitable for each component. Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
 また、上記で用いた数字は、全て本開示を具体的に説明するために例示するものであり、本開示の実施の形態は例示された数字に制限されない。 In addition, the numbers used above are all examples for specifically describing the present disclosure, and the embodiments of the present disclosure are not limited to the illustrated numbers.
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。 Also, the division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be moved to other functional blocks. may Moreover, single hardware or software may process the functions of a plurality of functional blocks having similar functions in parallel or in a time-sharing manner.
 また、フローチャートにおける各ステップが実行される順序は、本開示を具体的に説明するために例示するためであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。 Also, the order in which each step in the flowchart is executed is for illustrative purposes in order to specifically describe the present disclosure, and orders other than the above may be used. Also, some of the above steps may be executed concurrently (in parallel) with other steps.
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態、本開示の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, a form obtained by applying various modifications that a person skilled in the art can think of to the embodiment, and a form realized by arbitrarily combining the constituent elements and functions in the embodiment within the scope of the present disclosure. Included in disclosure.
 3 外部装置
 10 車体
 20 路面状態検知システム
 21 センサ
 22 解析部
 23 通知部
 24 制御部
3 external device 10 vehicle body 20 road surface condition detection system 21 sensor 22 analysis unit 23 notification unit 24 control unit

Claims (8)

  1.  車体の走行に関する情報である車体走行情報を取得するセンサと、
     前記センサから前記車体走行情報を取得し、取得した前記車体走行情報を解析する解析部と、
     制御部とを備え、
     前記解析部は、前記車体走行情報を解析することで、前記車体の走行に関連する走行路面の状態を推定し、
     前記制御部は、推定された前記走行路面の状態に応じて、前記車体の走行を制御する
     路面状態検知システム。
    a sensor for acquiring vehicle body running information, which is information relating to running of the vehicle body;
    an analysis unit that acquires the vehicle body running information from the sensor and analyzes the acquired vehicle body running information;
    and a control unit,
    The analysis unit analyzes the vehicle body running information to estimate a road surface condition related to running of the vehicle body,
    The road surface condition detection system, wherein the control unit controls traveling of the vehicle body according to the estimated condition of the road surface.
  2.  前記解析部は、前記車体が走行している前記走行路面の状態として、平坦面、凹凸面、砂利道及び凍結路面のうちの少なくとも1以上の状態であることを推定する
     請求項1に記載の路面状態検知システム。
    2. The analysis unit according to claim 1, wherein the state of the road surface on which the vehicle body is traveling is estimated to be at least one of a flat surface, an uneven surface, a gravel road, and an icy road surface. Road condition detection system.
  3.  前記解析部は、前記車体が走行している前記走行路面の状態として、上り坂又は下り坂を走行していることを推定する
     請求項1又は2に記載の路面状態検知システム。
    The road surface condition detection system according to claim 1 or 2, wherein the analysis unit estimates that the road surface on which the vehicle body is traveling is traveling uphill or downhill.
  4.  前記解析部が推定した前記走行路面の状態を示す情報である走行路面状態情報を外部装置に通知する通知部をさらに備える
     請求項1~3のいずれか1項に記載の路面状態検知システム。
    The road surface condition detection system according to any one of claims 1 to 3, further comprising a notification unit that notifies an external device of road surface condition information indicating the condition of the road surface estimated by the analysis unit.
  5.  前記センサは、前記走行路面の状態によって付与されるペダルへの踏力に基づく人力駆動力を検知することで、検知した人力駆動力を前記車体走行情報として取得する
     請求項1~4のいずれか1項に記載の路面状態検知システム。
    5. Any one of claims 1 to 4, wherein the sensor acquires the detected human driving force as the vehicle body traveling information by detecting the human driving force based on the pedaling force applied to the pedal according to the state of the running road surface. The road surface condition detection system according to the paragraph.
  6.  前記センサは、前記走行路面の状態によって走行する前記車体に生じた振動に基づく加速度を検知することで、検知した加速度を前記車体走行情報として取得する
     請求項1~5のいずれか1項に記載の路面状態検知システム。
    6. The sensor according to any one of claims 1 to 5, wherein the sensor acquires the detected acceleration as the vehicle body traveling information by detecting acceleration based on vibrations generated in the vehicle body traveling due to the state of the road surface. road condition detection system.
  7.  前記解析部は、ルールベース、及び、機械学習のうちの少なくともいずれかを用いて、前記車体走行情報を解析して前記走行路面の状態を推定する
     請求項1~6のいずれか1項に記載の路面状態検知システム。
    7. The analysis unit according to any one of claims 1 to 6, using at least one of a rule base and machine learning to analyze the vehicle body running information and estimate the condition of the road surface. road condition detection system.
  8.  車体の走行に関する情報である車体走行情報をセンサが取得し、
     前記センサから前記車体走行情報を取得し、取得した前記車体走行情報を解析部が解析し、
     前記解析部が前記車体走行情報を解析することで、前記車体の走行に関連する走行路面の状態を推定し、
     推定された前記走行路面の状態に応じて、前記車体の走行を制御部が制御することを含む
     路面状態検知方法。
    The sensor acquires vehicle body running information, which is information related to the running of the vehicle body,
    Acquiring the vehicle body running information from the sensor, analyzing the acquired vehicle body running information by an analysis unit,
    The analysis unit analyzes the vehicle body traveling information to estimate the state of the road surface on which the vehicle travels,
    A road surface state detection method, comprising: controlling travel of the vehicle body by a control unit according to the estimated state of the road surface.
PCT/JP2022/033607 2021-09-22 2022-09-07 Road surface condition detection system and road surface condition detection method WO2023047961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021153898 2021-09-22
JP2021-153898 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023047961A1 true WO2023047961A1 (en) 2023-03-30

Family

ID=85720554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033607 WO2023047961A1 (en) 2021-09-22 2022-09-07 Road surface condition detection system and road surface condition detection method

Country Status (1)

Country Link
WO (1) WO2023047961A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10194185A (en) * 1997-01-13 1998-07-28 Yamaha Motor Co Ltd Motor-assisted bicycle
JP2002255083A (en) * 2001-02-28 2002-09-11 Honda Motor Co Ltd Control device for power-assisted bicycle
US20160144928A1 (en) * 2014-11-20 2016-05-26 Mando Corporation Eletric bicycle and control method thereof
JP2021094870A (en) * 2019-12-13 2021-06-24 パナソニックIpマネジメント株式会社 Component for bicycle, and bicycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10194185A (en) * 1997-01-13 1998-07-28 Yamaha Motor Co Ltd Motor-assisted bicycle
JP2002255083A (en) * 2001-02-28 2002-09-11 Honda Motor Co Ltd Control device for power-assisted bicycle
US20160144928A1 (en) * 2014-11-20 2016-05-26 Mando Corporation Eletric bicycle and control method thereof
JP2021094870A (en) * 2019-12-13 2021-06-24 パナソニックIpマネジメント株式会社 Component for bicycle, and bicycle

Similar Documents

Publication Publication Date Title
CN104080680B (en) Controller of vehicle
US9573651B2 (en) Method and device for detecting a maintenance situation in a two-wheeled vehicle
US20070288133A1 (en) Obstacle avoidance path computing apparatus, obstacle avoidance path computing method, and obstacle avoidance control system equipped with obstacle avoidance path computing system
CN105517861B (en) Ramp rollback speed control
US10967931B2 (en) Brake controller and brake system
JP5089881B2 (en) Vehicle load estimation method and apparatus, and vehicle load estimation program
KR20160040667A (en) Control of regenerative braking in an electric or hybrid vehicle
JP7369938B2 (en) Control device and map generation method
JP2016141396A (en) Start control device for electric bicycle
JP4443547B2 (en) Understeer suppression device
WO2023047961A1 (en) Road surface condition detection system and road surface condition detection method
US20230034333A1 (en) Shifting control device and electric shifting system
CN113954846B (en) Estimation and system for ramp information in vehicle running
JPWO2022071228A5 (en)
FR3065932B1 (en) BRAKING SYSTEM WITH INDEPENDENT OPERATION AT LEAST TWO WHEELS OF AN AXLE OF A MOTOR VEHICLE
JP6608471B2 (en) Skid judgment device
TW202136077A (en) Method for the determination of a compression speed of a shock absorber, computer program, control device and two-wheeled vehicle
WO2021149039A1 (en) Device and method for automatically controlled steering of a continuous track vehicle
JP2010254286A (en) Vehicle
KR20140139159A (en) Torque sensor apparatus on electric bikes
JP4628024B2 (en) Slip determination device, slip determination method, and vehicle motion control device using the same
JP6027477B2 (en) Vehicle forward / reverse determination device
JP4606623B2 (en) Tire selection apparatus and method, and tire selection program
JP2017226263A (en) Road surface gradient estimation device and road surface gradient estimation method
KR20090103283A (en) Slip prevention steering system and method for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549467

Country of ref document: JP