WO2023047939A1 - Measurement device, measurement method, measurement program, and assessment system - Google Patents

Measurement device, measurement method, measurement program, and assessment system Download PDF

Info

Publication number
WO2023047939A1
WO2023047939A1 PCT/JP2022/033383 JP2022033383W WO2023047939A1 WO 2023047939 A1 WO2023047939 A1 WO 2023047939A1 JP 2022033383 W JP2022033383 W JP 2022033383W WO 2023047939 A1 WO2023047939 A1 WO 2023047939A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
value
environment
carbon dioxide
data
Prior art date
Application number
PCT/JP2022/033383
Other languages
French (fr)
Japanese (ja)
Inventor
孝浩 山崎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023516549A priority Critical patent/JPWO2023047939A1/ja
Publication of WO2023047939A1 publication Critical patent/WO2023047939A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/22Status alarms responsive to presence or absence of persons

Definitions

  • the present disclosure relates to a measuring device, measuring method, measuring program, and determination system for measuring carbon dioxide concentration.
  • Patent Document 1 discloses an estimation device that estimates the number of people in a room based on the temporal change in the carbon dioxide concentration in the indoor space and the respiratory rate per person in the room. do.
  • the number of people in the room can be estimated by determining the carbon dioxide concentration in the indoor space.
  • carbon dioxide may be emitted into the atmosphere not only by humans but also by non-human carbon dioxide emission sources. Carbon dioxide emitted from Therefore, it is difficult for the estimation device disclosed in Patent Document 1 to accurately determine the concentration of carbon dioxide derived from people, and there is a risk that the density of people cannot be determined accurately.
  • the present disclosure has been made to solve such problems, and its object is to provide a technology for accurately determining the density of people in an environment where there are carbon dioxide emission sources other than humans. That is.
  • a measuring device is a storage device that stores first time-series data of carbon dioxide concentration in a first environment where there are no carbon dioxide emission sources other than humans as emission sources that emit carbon dioxide into the atmosphere. , a data acquisition device for acquiring second time-series data of carbon dioxide concentration in a second environment in which carbon dioxide emission sources other than humans are present; and a control device.
  • the control device calculates a reference value for determining the carbon dioxide concentration in the second environment based on the difference between the first time series data and the second time series data.
  • a measurement method includes: (a) storing first time-series data of carbon dioxide concentration in a first environment where there are no carbon dioxide emission sources other than humans as emission sources that emit carbon dioxide into the atmosphere; (b) obtaining second time-series data of carbon dioxide concentration in a second environment in which non-human carbon dioxide emission sources are present; (c) first time-series data and second time-series data and calculating a reference value for determining the carbon dioxide concentration in the second environment based on the difference between.
  • a measurement program provides a computer with: (a) a first time series of carbon dioxide concentration in a first environment where there are no carbon dioxide emission sources other than humans as emission sources that emit carbon dioxide into the atmosphere; (b) obtaining a second time series of carbon dioxide concentration in a second environment in which non-human carbon dioxide sources are present; (c) the first time series and the second and calculating a reference value for determining the carbon dioxide concentration in the second environment based on the difference from the time-series data.
  • first time-series data of carbon dioxide concentration in a first environment where there are no non-human carbon dioxide emission sources and second time series data of carbon dioxide concentration in a second environment where non-human carbon dioxide emission sources are present A reference value for determining the carbon dioxide concentration in the second environment is generated based on the difference between the two time-series data.
  • FIG. 2 is a diagram for explaining an application example of the determination system according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing an example of a standard value of human density with respect to carbon dioxide concentration discharged in each of the first environment and the second environment.
  • 1 is a diagram showing the configuration of a determination system according to Embodiment 1;
  • FIG. It is a figure which shows an example of the change of time-series data.
  • FIG. 4 is a diagram for explaining timings of processing of the measuring device and the determination device according to the first embodiment; It is a figure which shows the display mode of a display. 4 is a diagram showing an example of calculation of a difference between first time-series data and second time-series data by the measuring device according to Embodiment 1;
  • FIG. 4 is a flowchart relating to reference value calculation processing executed by the measuring device according to Embodiment 1.
  • FIG. FIG. 4 is a diagram for explaining generation of first feature data based on time-series data in a first environment;
  • FIG. 4 is a diagram for explaining an example of calculation of feature values;
  • FIG. 10 is a diagram for explaining generation of first feature data based on time-series data in a second environment;
  • FIG. 9 is a diagram showing an example of calculation of a difference between first feature data and second feature data by the measuring device according to Embodiment 2;
  • 10 is a flowchart relating to reference value calculation processing executed by the measuring device according to Embodiment 2;
  • 10 is a flowchart related to difference calculation processing executed by the measuring device according to Embodiment 2;
  • FIG. 11 is a diagram showing an example of calculation of a difference between first feature data and second feature data by the measuring device according to Embodiment 3;
  • FIG. 11 is a diagram showing an example of calculation of a difference between first feature data and second feature data by the measuring device according to Embodiment 3;
  • FIG. 11 is a diagram showing an example of calculation of a difference between first feature data and second feature data by the measuring device according to Embodiment 3;
  • FIG. 11 is a flow chart relating to difference calculation processing executed by the measuring device according to Embodiment 3.
  • FIG. FIG. 12 is a diagram showing an example of calculation of a difference between first feature data and second feature data by the measuring device according to Embodiment 4;
  • FIG. 13 is a flow chart relating to difference calculation processing executed by the measuring device according to the fourth embodiment;
  • FIG. 13 is a diagram showing the configuration of a determination system according to Embodiment 5;
  • FIG. 14 is a flowchart relating to determination processing executed by the measuring device according to Embodiment 6.
  • Embodiment 1 A measuring device 1 according to Embodiment 1 and a determination system 100 including the measuring device 1 will be described with reference to FIGS. 1 to 8.
  • FIG. 1 A measuring device 1 according to Embodiment 1 and a determination system 100 including the measuring device 1 will be described with reference to FIGS. 1 to 8.
  • FIG. 1 A measuring device 1 according to Embodiment 1 and a determination system 100 including the measuring device 1 will be described with reference to FIGS. 1 to 8. FIG.
  • FIG. 1 is a diagram for explaining an application example of the determination system 100 according to the first embodiment.
  • restaurants can become crowded as the number of customers or clerks increases. It has been advocated to avoid crowding in crowded environments.
  • the sensor 25 of the sensor module 2 measures the concentration of carbon dioxide (hereinafter also referred to as "CO2" (carbon dioxide)) in the indoor space, which changes over time.
  • CO2 carbon dioxide
  • the determination system 100 analyzes the time-series data of the CO2 concentration acquired from the sensor module 2 to predict changes in the CO2 concentration in the future.
  • the determination system 100 compares the predicted value of CO2 concentration with a reference value for determining the density of people, and if the predicted value of CO2 concentration exceeds the reference value, or if the predicted value of CO2 concentration is likely to exceed the standard value, it is determined that the density of people is increasing, and in order to prevent the spread of virus infection, the ozonizer 26 is driven, the display 31 included in the notification device 3 or the speaker 32 is used to urge the user to ventilate, or to notify a warning to suppress further increase in the number of people.
  • the environment in which CO2 is emitted includes an environment in which there are no CO2 emission sources other than humans as emission sources for emitting CO2 into the atmosphere, such as a conference room (hereinafter also referred to as a "first environment”); There is an environment (hereinafter also referred to as “second environment”) in which CO2 emission sources other than humans exist, such as restaurants and factories.
  • CO2 emission sources other than humans such as restaurants and factories.
  • a restaurant CO2 is emitted by the breathing of customers and clerks, the cooking of ingredients such as grilling, the operation of cooking utensils, and the like.
  • CO2 is emitted by the breathing of people such as workers and the operation of manufacturing equipment.
  • the CO2 concentration tends to be higher than in the first environment due to CO2 emissions from non-humans. Therefore, in the second environment, it is necessary to determine the CO2 concentration in consideration of CO2 emitted from CO2 emission sources other than humans.
  • FIG. 2 is a diagram showing an example of the reference value of the density of people with respect to the concentration of carbon dioxide emitted in each of the first environment and the second environment. As shown in FIG. 2, in the first environment, CO2 emitted by humans is added to CO2 originally contained in the atmosphere.
  • the CO2 emitted by humans is added to the CO2 originally contained in the atmosphere, and the CO2 emitted by non-humans is also added. That is, in the second environment, the CO2 concentration emitted from CO2 emission sources other than humans is added, so the addition result is larger than the CO2 concentration in the first environment. Therefore, in the second environment, the reference value used in the first environment cannot be used as it is, and it is necessary to determine the CO2 concentration in consideration of CO2 emitted from CO2 emission sources other than humans. .
  • the determination system 100 is configured to determine the CO2 concentration in consideration of CO2 emitted from CO2 emission sources other than humans, as described below.
  • FIG. 3 is a diagram showing the configuration of the determination system 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 3 , the determination system 100 includes a measurement device 1 and a determination device 4 .
  • the measurement device 1 is a device that calculates a reference value for determining the CO2 concentration in the environment in which the sensor module 2 is installed, based on the time-series data of the CO2 concentration acquired from the sensor module 2.
  • the control device 11; A storage device 12 and a data acquisition device 13 are provided.
  • the control device 11 is an example of a computer such as a processor, and is a computing entity that executes various processes according to various programs.
  • the processor is composed of, for example, a microcontroller, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or an MPU (Multi Processing Unit).
  • the processor has the function of executing various processes by executing programs. It may be implemented using a dedicated hardware circuit.
  • a "processor" is not limited to processors in a narrow sense that execute processing in a stored program format, such as CPUs or MPUs, but may include hardwired circuits such as ASICs or FPGAs. As such, processor may also be referred to as processing circuitry having processes pre-defined by computer readable code and/or hardwired circuitry.
  • control device 11 may be composed of one chip, or may be composed of a plurality of chips. Furthermore, the control device 11 includes volatile memory such as DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory), and non-volatile memory such as ROM (Read Only Memory) and flash memory.
  • volatile memory such as DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory)
  • non-volatile memory such as ROM (Read Only Memory) and flash memory.
  • the storage device 12 includes nonvolatile memories such as HDDs (Hard Disk Drives) and SSDs (Solid State Drives).
  • the storage device 12 stores various programs and data such as a measurement program 121 executed by the control device 11 , calculation data 122 referred to by the control device 11 , and time-series data 123 acquired from the sensor module 2 .
  • the measurement program 121 includes a program that defines the processing procedure of the control device 11 (processing flows shown in FIGS. 8, 13, 14, 18, 20, and 22).
  • the calculation data 122 is data used when executing processing according to the measurement program 121, and includes data for calculating a reference value for determining the CO2 concentration.
  • the measuring device 1 may store the measuring program 121 and the computing data 122 in advance in the storage device 12, or may acquire the measuring program 121 and the computing data 122 from an external device (not shown) through communication. good. Furthermore, the measurement apparatus 1 may further include a media reader (not shown), and the measurement program 121 and the calculation data 122 may be obtained from a removable disk, which is a storage medium, by the medium reader.
  • the data acquisition device 13 receives data from the sensor module 2 by performing wired communication or wireless communication with the sensor module 2 via the network 50 .
  • the data acquisition device 13 acquires time-series data of CO2 concentration from the sensor module 2 by communicating with the sensor module 2 .
  • the sensor module 2 is a device that acquires time-series data of CO2 concentration in the environment in which the sensor module 2 is installed, and includes a control device 21, a communication device 23, and a sensor 25.
  • the control device 21 is an example of a computer such as a processor, and is a computing entity that executes various processes according to various programs.
  • a processor is configured by, for example, a microcontroller, a CPU, a GPU, or an MPU. Note that the processor has the function of executing various processes by executing programs, but some or all of these functions may be implemented using a dedicated hardware circuit such as ASIC or FPGA. .
  • a "processor" is not limited to processors in a narrow sense that execute processing in a stored program format, such as CPUs or MPUs, but may include hardwired circuits such as ASICs or FPGAs. As such, processor may also be referred to as processing circuitry having processes pre-defined by computer readable code and/or hardwired circuitry.
  • the control device 11 may be composed of one chip, or may be composed of a plurality of chips. Further, the control device 21 includes volatile memory such as DRAM and SRAM, and nonvolatile memory such as ROM and flash memory.
  • the communication device 23 transmits and receives data to and from the measuring device 1 by performing wired communication or wireless communication with the measuring device 1 via the network 50 .
  • the communication device 23 transmits time-series data of the CO2 concentration to the measuring device 1 by communicating with the measuring device 1 .
  • the sensor 25 periodically (for example, every minute) measures the CO2 concentration in the environment in which the sensor module 2 is installed.
  • the time-series data of the CO2 concentration obtained by the measurement of the sensor 25 is transmitted to the measurement device 1 by the communication device 23 .
  • the determination device 4 determines the CO2 concentration in the environment in which the sensor module 2 is installed based on the CO2 concentration reference value calculated by the measurement device 1 from the CO2 concentration time-series data acquired by the sensor module 2.
  • a device comprising a control device 41 , a storage device 42 , a data acquisition device 43 and a data output device 44 .
  • the control device 41 is an example of a computer such as a processor, and is a computing entity that executes various processes according to various programs.
  • the processor is composed of, for example, a microcontroller, CPU, FPGA, GPU, or MPU. Note that the processor has the function of executing various processes by executing programs, but some or all of these functions may be implemented using a dedicated hardware circuit such as ASIC or FPGA. .
  • a "processor" is not limited to processors in a narrow sense that execute processing in a stored program format, such as CPUs or MPUs, but may include hardwired circuits such as ASICs or FPGAs. As such, processor may also be referred to as processing circuitry having processes pre-defined by computer readable code and/or hardwired circuitry.
  • the control device 41 may be composed of one chip, or may be composed of a plurality of chips. Further, the control device 41 includes volatile memory such as DRAM and SRAM, and nonvolatile memory such as ROM and flash memory.
  • the storage device 42 includes nonvolatile memories such as HDDs and SSDs.
  • the storage device 42 stores various programs and data such as a determination program 421 executed by the control device 41 and reference value data 422 referred to by the control device 41 .
  • the determination program 421 includes a program in which the processing procedures of the control device 41 are defined. Specifically, the determination program 421 defines a processing procedure for determining the CO2 concentration in the environment in which the sensor module 2 is installed.
  • the reference value data 422 is data indicating a reference value for determining the CO2 concentration in the environment in which the sensor module 2 is installed, and is acquired from the measuring device 1 .
  • the determination device 4 may store the determination program 421 in the storage device 42 in advance, or may acquire the determination program 421 from an external device (not shown) through communication. Furthermore, the determination device 4 may further include a media reader (not shown), and the determination program 421 may be acquired from a removable disk, which is a storage medium, by the media reader.
  • the data acquisition device 43 receives data from the measuring device 1 by performing wired communication or wireless communication with the measuring device 1 via the network 50 .
  • the data acquisition device 43 acquires the reference value data 422 indicating the reference value for judging the CO2 concentration from the measuring device 1 .
  • the data output device 44 transmits data to each of the notification device 3 and the ozonizer 26 by performing wired or wireless communication with each of the notification device 3 (not shown) and the ozonizer 26 (not shown) via the network 50. .
  • data output device 44 transmits control signals for controlling notification device 3 and ozonizer 26 to each of notification device 3 and ozonizer 26 .
  • the measuring device 1 calculates a reference value of the CO2 concentration for determining the density of people in the environment where the sensor module 2 is installed.
  • the determination device 4 analyzes the time-series data of the CO2 concentration acquired by the sensor module 2, and uses the reference value calculated by the measurement device 1 to determine the CO2 concentration in the environment in which the sensor module 2 is installed. , determine the density of people in the environment where the sensor module 2 is installed. In addition to determining the human density from the obtained CO2 concentration, the determination device 4 can also determine the human density from the CO2 concentration that will be reached when the current state continues.
  • a prediction model is used to predict changes in time-series data in the future. Using a prediction model makes it possible to predict changes in time-series data, and to determine the CO2 concentration by comparing the predicted value of the CO2 concentration with a reference value.
  • a prediction model is defined by a function (formula) that expresses the relationship between elapsed time and data that changes over time.
  • the prediction model is defined by a function (formula) represented by the following formula (1).
  • Equation (1) C ⁇ is represented by Equation (2) below.
  • Equation (1) t represents a certain timing (time).
  • C is a parameter representing the CO2 concentration ([ppm]) generated in a closed environment (indoor space) at timing t.
  • V is a parameter representing the volume ([m 3 ]) of the closed environment (indoor space).
  • Q is a parameter representing the ventilation rate ([m 3 /h]) in a closed environment (indoor space).
  • G is a parameter representing the CO2 concentration emission amount ([ppm*m 3 /h]) emitted from a closed environment (indoor space).
  • C out is a parameter representing the CO2 concentration ([ppm]) of outside air (CO2 concentration originally contained in the atmosphere), and is approximately 400 ppm.
  • FIG. 4 is a diagram showing an example of changes in time-series data.
  • FIG. 4 shows a graph of time-series data with the CO2 concentration on the vertical axis and the time on the horizontal axis.
  • Line A represents the measured CO2 concentration actually obtained by the sensor 25 after t0 .
  • changes in time-series data at time t0 are predicted using the prediction model represented by the above formulas (1) and (2).
  • the result is represented by line G.
  • the predicted value line G approximates and roughly matches the measured value line A. That is, by using the prediction model represented by the above-described formulas (1) and (2), changes in the time-series data can be predicted so as to roughly match the CO2 concentration actually measured by the sensor 25. It becomes possible to
  • FIG. 5 is a diagram for explaining processing timings of the measuring device 1 and the determination device 4 according to the first embodiment.
  • the timing of processing performed by the sensor module 2, the timing of processing performed by the measuring device 1, and the timing of processing performed by the determination device 4 are shown.
  • the measuring device 1 collects the time-series data (from t10 to t11) after t11 . (time-series data)) to calculate the reference value for judging the CO2 concentration.
  • the determination device 4 uses the reference value calculated by the measurement device 1 to determine the CO2 concentration after t12 .
  • the period at which the sensor module 2 acquires the time-series data (for example, the data acquisition period in the period of t 10 to t 11 or t 11 to t 12 ) is, for example, 1-minute intervals, 5-minute intervals, or 10-minute intervals. be.
  • a period (for example, a period from t 11 to t 15 ) in which the measuring device 1 calculates the reference value is, for example, one week or ten days.
  • the sensor module 2 acquires time-series data during the period (for example, the period from t 12 to t 13 or from t 13 to t 14 ) in which the determination device 4 determines the CO2 concentration using the reference value calculated by the measurement device 1. For example, 1 minute, 5 minute, or 10 minute intervals.
  • the time-series data used for reference value calculation and the time-series data used for CO2 determination are separated, but both may be shared.
  • the measuring device 1 periodically calculates the reference value based on the time-series data acquired by the sensor module 2 for each predetermined time interval (for example, one week or ten days).
  • FIG. 6 is a diagram showing a display mode of the display 31.
  • the screen displayed on the display 31 includes an icon 311 indicating the current CO2 concentration in the environment (e.g., restaurant) where the sensor module 2 is installed, and a graph 312 indicating changes in the CO2 concentration. , an icon 313 indicating the remaining time (predicted arrival time) until ventilation is required, and an icon 314 for enabling voice notification of the determination result by the speaker 32 .
  • the user may enable or disable the voice notification by performing a touch operation on the icon 314, or enable or disable the voice notification by operating the icon 314 using a tool such as a mouse (not shown). You can set it to disabled.
  • the change in CO2 concentration is predicted using a prediction model, and the remaining time until ventilation is required is calculated by comparing the predicted value with the reference value.
  • the display 31 notifies the user of the calculated remaining time with an icon 313 .
  • FIG. 7 and 8 an example in which the measuring device 1 calculates the reference value of the CO2 concentration in the second environment such as the restaurant shown in FIG. 1 will be described.
  • FIG. 7 is a diagram showing an example of calculation of the difference between the first time-series data and the second time-series data by the measuring device 1 according to Embodiment 1.
  • the measuring device 1 acquires time-series data (hereinafter also referred to as "first time-series data") of the CO2 concentration in the first environment such as a conference room in advance. .
  • FIG. 7(A) shows a graph of the first time-series data with CO2 concentration on the vertical axis and time on the horizontal axis.
  • the measuring device 1 obtains first time-series data of CO2 concentration measured periodically (for example, every minute) in the first environment.
  • a meeting is being held in a conference room, for example, in a portion where the amount of change in CO2 concentration is large.
  • CO2 is generated due to people present in the first environment.
  • the measuring device 1 stores the first time-series data in the first environment as shown in FIG. Data (hereinafter also referred to as “second time-series data”) is acquired.
  • FIG. 7(B) shows a graph of the second time-series data with the CO2 concentration on the vertical axis and the time on the horizontal axis.
  • the measuring device 1 obtains second time-series data of the CO2 concentration measured periodically (for example, every minute) in the second environment.
  • the portion where the amount of change in the CO2 concentration is large indicates, for example, that the number of customers in a restaurant has increased, or that foodstuffs such as grilling are being cooked.
  • CO2 is also being generated by causes other than people present in the second environment.
  • the measuring device 1 calculates the difference between the first time-series data and the second time-series data. Specifically, the measuring device 1 calculates a first calculated value based on the first time-series data, calculates a second calculated value based on the second time-series data, and calculates the first calculated value from the second calculated value. Calculate the difference by subtracting.
  • the measuring device 1 calculates, as the first calculated value, an average value (for example, 636.08) of multiple CO2 concentrations acquired in time series in the first environment included in the first time series data.
  • the measuring device 1 calculates, as a second calculated value, an average value (for example, 942.48) of a plurality of CO2 concentrations acquired in time series in the second environment included in the second time series data.
  • the measuring device 1 calculates the difference (eg, 306.4) by subtracting the first calculated value (eg, 636.08) from the second calculated value (eg, 942.48).
  • the difference described above arises from the environmental difference between the first environment and the second environment. That is, the difference described above is a value resulting from CO2 emitted from CO2 emission sources other than humans in the second environment. Therefore, the measuring device 1 calculates a reference value for determining the CO2 concentration in the second environment, taking into consideration the calculated difference, using the reference value of the CO2 concentration used in the first environment as a reference.
  • the measuring device 1 adds the difference to the reference value of the CO2 concentration in the first environment (hereinafter also referred to as the “first reference value”) to obtain the reference value of the CO2 concentration in the second environment ( hereinafter also referred to as a “second reference value”).
  • first reference value the reference value of the CO2 concentration in the first environment
  • second reference value the reference value of the CO2 concentration in the second environment
  • the first reference value of the CO2 concentration in the first environment is 1000 ppm
  • the measuring device 1 adds 306.4 ppm (difference) to 1000 ppm to calculate 1306.4 as the second reference value. That is, the fact that the CO2 concentration exceeds the second reference value of 1306.4 ppm in the second environment means that the density of people is increasing in the second environment, and caution is required.
  • the determination device 4 may remove in advance the CO2 concentration emitted from CO2 emission sources other than humans from the second time-series data of the CO2 concentration in the second environment by subtracting the difference from the second time-series data. good. That is, the measuring device 1 converts the second time-series data of the CO2 concentration in the second environment to the time-series data of the CO2 concentration in the first environment without changing the reference value of the CO2 concentration for determining the density of people. It can be converted accordingly. In this way, the determination device 4 can compare the converted time-series data with the first reference value in the first environment in the second environment.
  • FIG. 8 is a flowchart regarding processing executed by the measuring device 1 according to the first embodiment.
  • the control device 11 of the measurement device 1 executes the measurement program 121 stored in the storage device 12 to periodically execute the process of the flowchart shown in FIG.
  • “S” is used as an abbreviation for "STEP".
  • the control device 11 determines whether or not second time-series data for a predetermined period of time (for example, one day's worth) has been acquired (S1). If the control device 11 has not acquired the second time-series data for the predetermined time (NO in S1), the process ends.
  • a predetermined period of time for example, one day's worth
  • the control device 11 when the control device 11 acquires the second time-series data for a predetermined time (YES in S1), it calculates the first calculated value based on the first time-series data (S2). For example, as shown in FIG. 7A, the control device 11 calculates the average value of the first time-series data as the first calculated value based on the first time-series data in the first environment. Furthermore, the control device 11 calculates a second calculated value based on the second time-series data (S3). For example, as shown in FIG. 7B, the control device 11 calculates the average value of the second time-series data as the second calculated value based on the second time-series data in the second environment. Then, the control device 11 calculates the difference by subtracting the first calculated value from the second calculated value (S4).
  • S4 the difference by subtracting the first calculated value from the second calculated value
  • the control device 11 calculates the second reference value of the CO2 concentration in the second environment based on the difference (S5). For example, the control device 11 calculates the second reference value of the CO2 concentration in the second environment by adding the difference to the predetermined first reference value of the CO2 concentration in the first environment. After that, the control device 11 terminates this process.
  • the measuring device 1 provides the first time-series data of the CO2 concentration in the first environment in which there are no non-human CO2 emission sources, and the second time-series data in which there are non-human CO2 emission sources. Calculate the difference between the CO2 concentration in the environment and the second time-series data, and calculate a reference value (second reference value in this example) for determining the CO2 concentration in the second environment based on the calculated difference .
  • the determination device 4 can determine the CO2 concentration in the second environment by using the reference value calculated by the measurement device 1, taking into account CO2 emitted from CO2 emission sources other than humans. Even in the second environment where there are CO2 emission sources other than humans, the CO2 concentration can be accurately determined. That is, using the reference value calculated by the measuring device 1, the determination device 4 can accurately determine the density of people in the second environment where there are CO2 emission sources other than people.
  • the step (S2) of obtaining the first calculated value from the first time-series data in the flow of FIG. 8 may be a step of reading the first calculated value from the storage device 12. That is, the control device 11 calculates in advance the first time-series data or the first calculated value regarding the first environment and stores it in the storage device 12, and when calculating the second reference value from the second time-series data, can also calculate the difference from the second calculated value by reading out the stored first calculated value.
  • the second time-series data in the second environment acquired by the sensor module 2 differs according to the second environment in which the sensor module 2 is installed.
  • the concentration of CO2 emitted from non-human CO2 emission sources depends on whether the ingredients are cooked such as grilling, the cooking time, the number of cooking utensils, and the size of the restaurant. is different.
  • the concentration of CO2 emitted from non-human CO2 emission sources varies depending on the number of manufacturing apparatuses, the operating time of the manufacturing apparatuses, the size of the factory, and the like. Therefore, it is preferable that the reference value for determining the CO2 concentration is also set according to the second environment in which the sensor module 2 is installed.
  • the measuring device 1 acquires second time-series data of the CO2 concentration for each second environment in which the sensor module 2 is installed, and calculates the difference between the acquired second time-series data and the first time-series data.
  • the reference value can be set according to the second environment in which the sensor module 2 is installed.
  • the determination device 4 can appropriately determine the CO2 concentration using the reference value calculated by the measurement device 1 according to the second environment in which the sensor module 2 is installed.
  • the measuring device 1 can set the reference value for measuring the CO2 concentration while the actual business is being carried out, so that the influence on the business and manufacturing can be minimized, and the actual cooking can be performed. It is possible to use the concentration of CO2 emitted by people other than people in the state of operation.
  • FIG. 9 to 14 A measuring device according to a second embodiment will be described with reference to FIGS. 9 to 14. FIG. Only parts of the measuring device according to the second embodiment that are different from the measuring device 1 according to the first embodiment will be described below.
  • FIG. 9 is a diagram for explaining generation of first feature data based on time-series data in the first environment.
  • FIG. 9A shows a graph of the first time-series data in which the vertical axis represents CO2 concentration and the horizontal axis represents time.
  • the measuring device 1 acquires first time-series data of CO2 concentration measured periodically (for example, every minute) in the first environment.
  • the measuring device 1 generates first feature data based on the first time-series data in the first environment, and stores the generated first feature data in the storage device 12 as calculation data 122 .
  • the measuring device 1 generates a histogram from the first time-series data as the first feature data.
  • FIGS. 9B and 9C show histograms with the number on the vertical axis and G/Q on the horizontal axis.
  • the measuring device 1 obtains the first feature data representing the feature of the first time-series data by representing the number for each value of G/Q in a histogram. Generate. Note that the measuring device 1 may use Q/V or G/V as the horizontal axis in the histogram corresponding to the first feature data, instead of G/Q.
  • G/Q is a parameter that represents the CO2 concentration per unit ventilation.
  • Q/V is a parameter representing the ventilation volume per unit volume.
  • G/V is a parameter representing the CO2 concentration emission amount per unit volume.
  • the measuring device 1 may calculate any of G/Q, Q/V, and G/V feature values instead of C (CO2 concentration) itself.
  • FIG. 10 is a diagram for explaining an example of calculation of feature values.
  • FIG. 10 shows a graph of time-series data of the CO2 concentration, with the vertical axis representing the CO2 concentration and the horizontal axis representing time.
  • the measuring device 1 calculates the characteristic value from the equations (1) and (2) by using simultaneous equations.
  • the measuring device 1 extracts a specific number of pieces of data from the first time-series data. For example, the measuring device 1 extracts the CO2 concentration C(t 0 ) at t 0 , the CO2 concentration C(t 1 ) at t 1 , and the CO2 concentration C(t 2 ) at t 2 .
  • the measuring device 1 calculates the following simultaneous equations (3) from the equation (1) and the extracted C(t 0 ), C(t 1 ), and C(t 2 ).
  • the measuring device 1 calculates the following formula (4) from the simultaneous equations (3).
  • the measuring device 1 calculates the following formula (5) from the formula (4).
  • the measuring device 1 can calculate the following equation (6) from equations (2) and (5).
  • the measuring device 1 can calculate the following formula (7) from the formulas (3) and (5).
  • the measuring device 1 can calculate G/Q (equation (6)) and Q/V (equation (7)) from the first time-series data. Furthermore, the measuring device 1 can calculate G/V from G/Q (equation (6)) and Q/V (equation (7)).
  • the measuring device 1 calculates the feature value using the CO2 concentration (C(t)) at three extraction timings of t 0 , t 1 and t 2 , but these extraction timings can be changed.
  • a plurality of feature values can be calculated by
  • the CO2 concentration is acquired every minute, so if t0 is 15:00, the measuring device 1 can set t0 to 15:01, t1 to 15:01, t2 to should be set to 15:02.
  • the measuring device 1 updates t for one minute, and if t0 is set to 15:01, t1 is set to 15:02 and t2 is set to 15:03.
  • the measuring device 1 generates a histogram based on multiple feature values calculated from the first time-series data.
  • the measuring device 1 may calculate the characteristic value (G/Q in this example) using all the data included in the first time-series data shown in FIG.
  • a feature value (G/Q in this example) may be calculated using data selected according to a predetermined rule from all data included in the first time-series data shown in (A).
  • the measuring device 1 may calculate the feature value using the CO2 concentration during the period in which the amount of change in the CO2 concentration in the first time-series data exceeds the threshold (for example, 200 ppm).
  • the threshold for example, 200 ppm.
  • the measuring device 1 detects the difference between the minimum value and the maximum value (that is, the CO2 concentration A period in which the amount of change) exceeds the threshold value (200 ppm) may be specified, and the feature value may be calculated using the CO2 concentration acquired within the period.
  • the measuring device 1 calculates the feature value using the CO2 concentration acquired during the period from timing t21 to timing t22 .
  • the measuring device 1 calculates a plurality of feature values using all the data included in the first time-series data shown in FIG. 9(A)
  • the histogram corresponding to the calculated feature values is shown in FIG. 9(B).
  • the measuring device 1 calculates a plurality of feature values using data selected according to the above-described predetermined rule among all the data included in the first time-series data shown in FIG.
  • a histogram corresponding to the obtained feature values is shown in FIG. 9(C).
  • the feature values are calculated using all the data included in the first time-series data shown in FIG. 9A.
  • the frequency is low, the features of the histogram regarding the event are difficult to appear.
  • the histogram of FIG. 9C among all the data included in the first time-series data shown in FIG. Since the feature values are calculated using the In the first time-series data, if the frequency of occurrence of events is high, that is, if many peaks appear that are selected according to the above-described predetermined rule, the data is used as it is without extracting specific data. do it.
  • FIG. 11 is a diagram for explaining generation of second feature data based on time-series data in the second environment.
  • the measuring device 1 stores the first feature data of the first time series data in the first environment as shown in FIG. 9B or 9C in the storage device 12, and then stores the first feature data in the second environment. 2. Generate second feature data of time-series data.
  • FIG. 11(A) shows a graph of the second time-series data with the CO2 concentration on the vertical axis and the time on the horizontal axis.
  • the measuring device 1 acquires second time-series data of the CO2 concentration measured periodically (for example, every minute) in the second environment.
  • the measuring device 1 generates second feature data based on the second time-series data in the second environment, and stores the generated second feature data in the storage device 12 as calculation data 122 .
  • the measuring device 1 generates a histogram from the second time-series data as the second feature data.
  • FIGS. 11B and 11C show histograms with the number on the vertical axis and G/Q on the horizontal axis.
  • the measuring device 1 obtains the second feature data representing the feature of the second time-series data by representing the number for each value of G/Q in a histogram. Generate.
  • the measuring apparatus 1 may use Q/V or G/V as the horizontal axis in the histogram corresponding to the second feature data, instead of G/Q.
  • the measuring device 1 uses the same type of feature value (for example, G/Q) for the first feature data and the second feature data.
  • the method of calculating these feature values is the same as the method of calculating the first feature data in the first environment described with reference to FIGS. 9 and 10.
  • FIG. 9 the same type of feature value (for example, G/Q) for the first feature data and the second feature data.
  • the method of calculating these feature values is the same as the method of calculating the first feature data in the first environment described with reference to FIGS. 9 and 10.
  • the measuring device 1 may calculate the characteristic value (G/Q in this example) using all the data included in the time-series data shown in FIG. ), data selected according to a predetermined rule may be used to calculate the characteristic value (G/Q in this example).
  • the measuring device 1 may calculate the characteristic value using the CO2 concentration during the period in which the amount of change in the CO2 concentration in the second time-series data exceeds the threshold (for example, 200 ppm).
  • the threshold for example, 200 ppm.
  • the measuring device 1 detects the difference between the minimum value and the maximum value (that is, the CO2 concentration A period in which the amount of change) exceeds the threshold value (200 ppm) may be specified, and the feature value may be calculated using the CO2 concentration acquired within the period.
  • the measuring device 1 calculates the feature value using the CO2 concentration acquired during the period from timing t31 to timing t32 .
  • the measuring device 1 calculates a plurality of feature values using all data included in the second time-series data shown in FIG. 11(A)
  • the histogram corresponding to the calculated feature values is shown in FIG. 11(B).
  • the measurement device 1 calculates a plurality of feature values using data selected according to the above-described predetermined rule among all the data included in the second time-series data shown in FIG.
  • a histogram corresponding to the obtained feature values is shown in FIG. 11(C).
  • the feature values are calculated using all the data included in the second time-series data shown in FIG. 11A.
  • the frequency is low, the features of the histogram regarding the event are difficult to appear.
  • the histogram of FIG. 11(C) among all the data included in the second time-series data shown in FIG. Since the feature values are calculated using the In the second time-series data, if the frequency of occurrence of events is high, that is, if many peaks appear that are selected according to the predetermined rule described above, the data is used as it is without extracting specific data. do it. Whether the specific data is extracted or the data is used as it is, it is preferable to perform the same processing on the data measured in each of the first environment and the second environment.
  • FIG. 12 is a diagram showing an example of calculation of the difference between the first feature data and the second feature data by the measuring device 1 according to the second embodiment.
  • FIG. 12A shows a histogram of the first feature data in the first environment. That is, the histogram of FIG. 12(A) corresponds to the histogram of the first feature data shown in FIG. 9(C).
  • FIG. 12B shows a histogram of the second feature data in the second environment. That is, the histogram of FIG. 12(B) corresponds to the histogram of the second feature data shown in FIG. 11(C).
  • the measuring device 1 calculates the difference between the first feature data stored in advance in the storage device 12 and the generated second feature data. . Specifically, the measuring device 1 calculates a first calculated value from the first characteristic data, calculates a second calculated value from the second characteristic data, and subtracts the first calculated value from the second calculated value. , to calculate the difference.
  • the measuring device 1 calculates the average value of the feature values (G/Q in this example) as the first calculated value based on the histogram in the first environment. Further, as shown in FIG. 12B, the measuring device 1 calculates the average value of the characteristic values (G/Q in this example) as the second calculated value based on the histogram in the second environment. Then, the measuring device 1 calculates the difference by subtracting the first calculated value from the second calculated value.
  • the difference described above arises from the environmental difference between the first environment and the second environment. That is, the difference described above is a value resulting from CO2 emitted from CO2 emission sources other than humans in the second environment. Therefore, the measuring device 1 calculates data for determining the CO2 concentration in the second environment, taking into consideration the calculated difference, using the reference value of the CO2 concentration used in the first environment as a reference.
  • the determination device 4 calculates the second reference value of the CO2 concentration in the second environment by adding the difference to the first reference value of the CO2 concentration in the first environment. For example, if the first reference value of the CO2 concentration in the first environment is 1000 ppm, the measuring device 1 calculates 1306.4 as the second reference value by adding a difference (for example, 306.4 ppm) to 1000 ppm. do. That is, the fact that the CO2 concentration exceeds the second reference value of 1306.4 ppm in the second environment means that the density of people is increasing in the second environment, and caution is required.
  • the determination device 4 may add the difference from the second time-series data of the CO2 concentration in the second environment to remove in advance the CO2 concentration emitted from the CO2 emission sources other than humans from the second time-series data. good. That is, the measuring device 1 converts the second time-series data of the CO2 concentration in the second environment to the time-series data of the CO2 concentration in the first environment without changing the reference value of the CO2 concentration for determining the density of people. It can be converted accordingly. In this way, the determination device 4 can compare the converted time-series data with the first reference value in the first environment in the second environment.
  • the measuring device 1 calculates the average value of the characteristic values as the calculated value, but may calculate the variance of the characteristic values as the calculated value. That is, the measuring device 1 may calculate the variance value of the feature value (G/Q in this example) as the first calculated value based on the histogram in the first environment. Further, the measuring device 1 may calculate the variance of the characteristic value (G/Q in this example) as the second calculated value based on the histogram in the second environment. Furthermore, the measuring device 1 may calculate both the average value and the variance value of the feature values as the calculated values. That is, the measuring device 1 may calculate at least one of the average value and the variance value of the feature values as the calculated value.
  • the measuring device 1 calculates the first calculated value using the histogram of the first feature data shown in FIG. 9(C) as shown in FIG. 12(A).
  • the first calculated value may be calculated using the histogram of the first feature data shown.
  • the measuring apparatus 1 calculates the second calculated value using the histogram of the second feature data shown in FIG. 11(C).
  • the second calculated value may be calculated using a histogram of two feature data.
  • FIG. 13 is a flowchart relating to reference value calculation processing executed by the measuring device 1 according to the second embodiment.
  • FIG. 14 is a flowchart of difference calculation processing executed by the measuring device according to the second embodiment.
  • the control device 11 of the measurement device 1 executes the measurement program 121 stored in the storage device 12 to periodically execute the processes of the flowcharts shown in FIGS. 13 and 14 .
  • S is used as an abbreviation for "STEP".
  • the control device 11 determines whether or not the second time-series data for a predetermined period of time (for example, one day's worth) has been acquired (S11). If the control device 11 has not acquired the second time-series data for the predetermined time (NO in S11), the process ends.
  • a predetermined period of time for example, one day's worth
  • the control device 11 when the control device 11 acquires the second time-series data for a predetermined period of time (YES in S11), the control device 11 controls the second time-series data for the period in which the amount of change in the CO2 concentration exceeds the threshold value (for example, 200 ppm). CO2 concentration is extracted (S12). The control device 11 may skip the process of S12 and proceed to the process of S13 when handling time-series data from which it is not necessary to extract the CO2 concentration. The control device 11 generates a histogram (first feature data) as shown in FIG. 9C from the first time-series data (S13). Further, the control device 11 generates a histogram (second feature data) as shown in FIG. 11C from the extracted second time-series data of the CO2 concentration (S14).
  • first feature data as shown in FIG. 9C
  • the control device 11 generates a histogram (second feature data) as shown in FIG. 11C from the extracted second time-series data of the CO2 concentration (S14).
  • control device 11 executes difference calculation processing for calculating the difference between the first feature data and the second feature data (S15).
  • the control device 11 calculates a first calculated value from the first feature data (S111). For example, as shown in FIG. 12A, the control device 11 uses the histogram (first feature data) in the first environment to calculate the statistic of the feature value (G/Q in this example) as the first calculated value. calculate. Statistics include mean, variance, minimum, median, first quartile, third quartile, skewness, and kurtosis.
  • the control device 11 calculates a second calculated value from the second feature data (S112). For example, as shown in FIG. 12B, the control device 11 uses the histogram (second feature data) in the second environment to calculate the statistic of the feature value (G/Q in this example) as the second calculated value. calculate. Statistics include mean, variance, minimum, median, first quartile, third quartile, skewness, and kurtosis.
  • control device 11 calculates the difference by subtracting the first calculated value calculated from the first feature data from the second calculated value calculated from the second feature data (S113).
  • control device 11 calculates the second reference value of the CO2 concentration in the second environment based on the difference (S16). For example, the control device 11 calculates the second reference value of the CO2 concentration in the second environment by adding the difference to the predetermined first reference value of the CO2 concentration in the first environment. After that, the control device 11 terminates this process.
  • the measuring device 1 provides the first feature data generated based on the first time-series data of the CO2 concentration in the first environment in which there are no CO2 emission sources other than humans, Calculating the difference between the second feature data generated based on the second time-series data of the CO2 concentration in the second environment where the CO2 emission source is present, and calculating the CO2 concentration in the second environment based on the calculated difference
  • a reference value (second reference value in this example) for determination is calculated.
  • the determination device 4 can determine the CO2 concentration in the second environment by using the reference value calculated by the measurement device 1, taking into account CO2 emitted from CO2 emission sources other than humans. Even in the second environment where there are CO2 emission sources other than humans, the CO2 concentration can be accurately determined.
  • the measuring device 1 subtracts the first calculated value calculated from the first feature data from the second calculated value calculated from the second feature data, thereby obtaining the difference between the first feature data and the second feature data. is calculated, the difference can be calculated relatively easily without performing complicated processing such as generating new feature data for calculating the difference.
  • the control device 11 may read the first feature data. That is, the measuring device 1 calculates in advance the first feature data from the first time-series data, stores the first feature data in the storage device 12, and reads out the stored first feature data, thereby shortening the processing time. can be done.
  • the measuring device 1 may read the first calculated value. That is, the measuring device 1 calculates the first calculated value from the first feature data in advance and stores it in the storage device 12, so that the first calculated value can be read out from the storage device 12 at the time of determination. .
  • FIG. 15 to 18 A measuring device 1 according to Embodiment 3 will be described with reference to FIGS. 15 to 18. FIG. Only parts of the measuring device 1 according to the third embodiment that differ from the measuring device 1 according to the second embodiment will be described below.
  • FIG. 15A shows a histogram of the first feature data in the first environment. That is, the histogram of FIG. 15(A) corresponds to the histogram of the first feature data shown in FIG. 9(C).
  • FIG. 15B shows a histogram of the second feature data in the second environment. That is, the histogram of FIG. 15(B) corresponds to the histogram of the second feature data shown in FIG. 11(C).
  • the measuring apparatus 1 compares the first feature data stored in advance in the storage device 12 with the generated second feature data. Calculate the difference between Specifically, the measuring device 1 generates new feature data (hereinafter also referred to as “third feature data”) by subtracting the first feature data from the second feature data.
  • third feature data new feature data
  • the measuring device 1 subtracts the frequency of each class of the histogram of the first feature data shown in FIG. 15(A) from the frequency of each class of the histogram of the second feature data shown in FIG. 15(B). , generates a histogram of the third feature data as shown in FIG. 15(C). Therefore, it is desirable that the histogram of the first environment and the histogram of the second environment are created with the same class width.
  • the measuring apparatus 1 cannot appropriately generate the third feature data.
  • the third feature data is generated.
  • the measuring device 1 generates the third feature data when the acquisition time of the CO2 concentration in the first time-series data is equal to or longer than the acquisition time of the CO2 concentration in the second time-series data.
  • the measuring apparatus 1 determines the third feature data to generate
  • the measuring device 1 multiplies the number of data in the first feature data by a predetermined number to obtain the number of data in the first feature data.
  • a predetermined number may be, for example, a number (eg, D1/D2) obtained by dividing the number of data in the second feature data (eg, D2) by the number of data in the first feature data (eg, D1).
  • the measuring device 1 calculates the average value (for example, 394.63) of the feature values (G/Q in this example) as the difference based on the histogram of the third feature data.
  • the measuring device 1 may calculate the statistic of the feature value as the difference based on the histogram of the third feature data.
  • the statistics include variance, minimum, median, first quartile, third quartile, skewness, and kurtosis.
  • the measuring device 1 may calculate at least one of the statistics described above. For example, the measuring device 1 may calculate the variance of the feature values as the difference based on the histogram of the third feature data.
  • the measuring device 1 may calculate both the mean value and the variance value of the feature values as the difference based on the histogram of the third feature data.
  • the measuring device 1 changes the plurality of feature values included in the histogram of the third feature data so that the lowest value becomes 0.
  • the measuring apparatus 1 sets all of the plurality of feature values included in the third feature data as change targets, and as shown in FIG.
  • the feature values to be changed are arranged in order from 0 so that the lowest value in is 0.
  • the measuring apparatus 1 determines the maximum value of the feature values included in the first feature data among the plurality of feature values included in the third feature data.
  • the feature values to be changed are arranged in order from 0 so that the minimum value of the feature values to be changed is 0, with the portion including the corresponding feature value being the change target.
  • the measuring device 1 can calculate a characteristic value caused by CO2 emitted from CO2 emission sources other than humans in the second environment, and can calculate a difference based on such a characteristic value.
  • the measuring apparatus 1 generates the third feature data using the histogram of the first feature data shown in FIG. 9(C) as shown in FIG. 15(A).
  • the histogram of the first feature data shown may be used to generate the third feature data.
  • the measuring apparatus 1 generates the third feature data using the histogram of the second feature data shown in FIG. 11(C).
  • a histogram of two feature data may be used to generate the third feature data.
  • FIG. 18 is a flowchart relating to the difference calculation process (S15 in FIG. 13) executed by the measuring device 1 according to the third embodiment.
  • the control device 11 of the measurement device 1 according to Embodiment 3 executes the measurement program 121 stored in the storage device 12, thereby periodically executing the processing of the flowchart shown in FIG.
  • the control device 11 generates a histogram (first feature data) as shown in FIG. 9C and a histogram (second feature data) as shown in FIG. data) is generated, the difference calculation process shown in FIG. 18 is executed.
  • control device 11 generates a histogram of the third feature data as shown in FIG. 15(C) by subtracting the first feature data from the second feature data (S121).
  • the control device 11 changes the plurality of feature values so that the lowest value in the histogram of the third feature data is 0, so that the third feature data are rearranged (S122).
  • the control device 11 calculates the difference by calculating the average value of the feature values based on the histogram of the three feature data after rearrangement (S123).
  • control device 11 calculates the second reference value based on the difference through the process of S16.
  • the measuring device 1 As described above, the measuring device 1 according to Embodiment 3 generates the third feature data by subtracting the first feature data from the second feature data, and calculates the difference based on the third feature data. Accordingly, by using the new third feature data to calculate the difference, the difference can be calculated with high accuracy.
  • FIG. 4 Only parts of the measuring device 1 according to the fourth embodiment that are different from the measuring device 1 according to the second embodiment will be described below.
  • FIG. 19 is a diagram showing an example of calculation of the difference between the first feature data and the second feature data by the measuring device 1 according to the fourth embodiment.
  • FIG. 19A shows a histogram of the second feature data in the second environment. That is, the histogram of FIG. 19(A) corresponds to the histogram of the second feature data shown in FIG. 11(C).
  • the measuring apparatus 1 compares the first feature data stored in advance in the storage device 12 with the generated second feature data. Calculate the difference between Specifically, the measuring device 1 generates new feature data (hereinafter referred to as "fourth feature data ”) is generated.
  • the measuring device 1 divides the histogram of the second feature data shown in FIG. 19(A) into the histogram shown in FIG. 19(B) and the histogram shown in FIG. 19(C).
  • the average value of the feature values (G/Q in this example) included in the histogram of FIG. 19B is the feature value (G/Q in this example) included in the histogram in the first environment shown in ). That is, the average value of the feature values included in the histogram of FIG. 19B is the same or substantially the same as the first calculated value of the first feature data.
  • the measuring device 1 subtracts data having a feature value corresponding to the average value of the first feature data from the second feature data shown in FIG. A histogram including the feature values obtained is generated as the fourth feature data.
  • the measuring device 1 may calculate a statistic other than the average value of the feature values included in the histogram in the first environment as the first calculated value.
  • Statistics other than mean include variance, minimum, median, first quartile, third quartile, skewness, and kurtosis. Then, the measuring device 1 may generate fourth feature data by subtracting data having a feature value corresponding to the variance value of the first feature data from the second feature data.
  • the measuring device 1 calculates the average value (for example, 464.7) of the feature values (G/Q in this example) based on the histogram of the fourth feature data.
  • the measuring device 1 may calculate the statistic of the feature value as the difference based on the histogram of the fourth feature data.
  • Statistics include mean, variance, minimum, median, first quartile, third quartile, skewness, and kurtosis.
  • the measuring device 1 may calculate at least one of the statistics described above.
  • the measuring device 1 may calculate the variance of the feature values as the difference based on the histogram of the fourth feature data.
  • the measuring device 1 may calculate both the mean value and variance value of the feature values as the difference based on the histogram of the fourth feature data.
  • the measuring device 1 changes the plurality of feature values included in the histogram of the fourth feature data so that the lowest value becomes zero.
  • the measuring device 1 arranges the feature values to be changed in order from 0 so that all of the plurality of feature values included in the fourth feature data are to be changed, and the lowest value among the feature values to be changed is 0. do.
  • the measuring device 1 can calculate a characteristic value caused by CO2 emitted from CO2 emission sources other than humans in the second environment, and can calculate a difference based on such a characteristic value.
  • the measuring apparatus 1 generates the fourth feature data using the histogram of the second feature data shown in FIG. 11(C).
  • the histogram of the second feature data shown may be used to generate the fourth feature data.
  • FIG. 20 is a flowchart regarding processing executed by the measuring device 1 according to the fourth embodiment.
  • the control device 11 of the measurement device 1 according to Embodiment 4 executes the measurement program 121 stored in the storage device 12, thereby periodically executing the processing of the flowchart shown in FIG.
  • the control device 11 generates a histogram (first feature data) as shown in FIG. 9C and a histogram (second feature data) as shown in FIG. data) is generated, the difference calculation process shown in FIG. 20 is executed.
  • the control device 11 calculates the first calculated value from the first feature data (S131). For example, the control device 11 calculates the average value of the feature values (G/Q in this example) as the first calculated value based on the histogram (first feature data) in the first environment.
  • Control device 11 subtracts data having a feature value corresponding to the first calculated value of the first feature data from the second feature data, thereby creating a histogram of fourth feature data as shown in FIG. Generate (S132).
  • the control device 11 rearranges the histogram of the fourth feature data by changing the plurality of feature values so that the lowest value in the histogram of the fourth feature data is 0 (S133).
  • the control device 11 calculates the difference by calculating the average value of the feature values based on the histogram of the rearranged four feature data (S134).
  • the control device 11 calculates the second reference value based on the difference through the process of S16.
  • the control device 11 may calculate the first calculated value in advance from the first characteristic data, store it in the storage device 12, and read the stored first calculated value. That is, the control device 11 may read the first calculated value in S131.
  • the measuring device 1 As described above, the measuring device 1 according to Embodiment 4 generates the fourth feature data by subtracting the data having the feature value corresponding to the first calculated value of the first feature data from the second feature data. and the difference is calculated based on the fourth feature data. Thus, by using the new fourth feature data to calculate the difference, it is possible to calculate the difference with high accuracy. Furthermore, the measuring device 1 does not subtract the first feature data from the second feature data as it is, but subtracts data having a feature value corresponding to the first calculated value of the first feature data from the second feature data. As a result, the fourth feature data is generated, so the difference can be calculated with higher accuracy.
  • Embodiment 5 A determination system 100 according to Embodiment 5 will be described with reference to FIG. Only parts of the determination system 100 according to the fifth embodiment that differ from the determination system 100 according to the first embodiment will be described below.
  • the determination system 100 further includes a notification device 3 in addition to the measurement device 1 and the sensor module 2 .
  • the sensor module 2 further includes an ozonizer 26 .
  • the determination device 4 predicts changes in the CO2 concentration in the future by analyzing the second time-series data of the CO2 concentration acquired from the sensor module 2. Furthermore, the determination device 4 compares the predicted value of the CO2 concentration with the second reference value acquired from the measuring device 1, and if the predicted value of the CO2 concentration exceeds the second reference value, or if the predicted value of the CO2 concentration is likely to exceed the second reference value, the ozonizer 26 is driven, or the display 31 or speaker 32 included in the notification device 3 is used to prompt the user to ventilate in order to prevent the spread of virus infection. do.
  • the data output device 44 of the determination device 4 outputs a control signal for controlling the ozonizer 26 to the sensor module 2 or outputs a control signal for controlling the notification device 3 to the notification device 3 in accordance with a command from the control device 41 . output.
  • the ozonizer 26 of the sensor module 2 generates ozone and discharges the generated ozone to the second environment where the sensor module 2 is installed.
  • the control device 21 causes the ozonizer 26 to generate ozone by controlling the ozonizer 26 according to the control signal from the determination device 4 .
  • the notification device 3 includes a display 31 and a speaker 32.
  • the display 31 displays various images such as an image based on the determination result of the CO2 concentration calculated by the control device 41 according to the control signal from the determination device 4 .
  • the display 31 displays an image for prompting the user to ventilate in accordance with the control signal from the determination device 4 .
  • the speaker 32 outputs various sounds such as sounds based on the determination result of the CO2 concentration calculated by the control device 41 according to the control signal from the determination device 4 .
  • the speaker 32 outputs a sound for prompting the user to ventilate in accordance with the control signal from the determination device 4 .
  • the notification device 3 is not limited to a configuration different from that of the determination device 4 .
  • the determination device 4 may have at least one of the display 31 and the speaker 32 .
  • the notification device 3 may be a mobile terminal or a PC (Personal Computer) owned by the user of the measurement device 1 or the determination device 4 .
  • the determination device 4 outputs a control signal to a mobile terminal or PC owned by the user through short-range wireless communication or the like, and the mobile terminal or PC (informing device 3) outputs a control signal based on the control signal from the determination device 4 to display An image may be displayed on 31 or sound may be output from speaker 32 .
  • the determination device 4 analyzes the time-series data of the CO2 concentration acquired by the sensor module 2 to predict changes in the CO2 concentration in the future. Then, the determination device 4 compares the predicted value of the CO2 concentration with the second reference value acquired from the measuring device 1, and if the predicted value of the CO2 concentration exceeds the second reference value, or if the predicted value of the CO2 concentration is likely to exceed the second reference value, a control signal is output to the sensor module 2 to drive the ozonizer 26, or a control signal is output to the notification device 3 to control the display 31 or the speaker 32. do.
  • Embodiment 6 A measuring device 1 according to Embodiment 6 will be described with reference to FIG. 22 . Only parts of the measuring device 1 according to the sixth embodiment that are different from the measuring devices 1 according to the first to fourth embodiments will be described below.
  • the measuring device 1 according to Embodiments 1 to 4 is configured to calculate the second reference value for determining the CO2 concentration in the second environment, but the measuring device 1 according to Embodiment 6 Furthermore, the CO2 concentration in the second environment may be determined using the calculated second reference value. That is, the measuring device 1 may have the function of the determination device 4 or may be a device integrated with the determination device 4 . Specifically, the measuring device 1 according to Embodiment 6 predicts the target value of the CO2 concentration in the second environment acquired from the sensor module 2 by the data acquisition device 13 using a prediction model, and the predicted target value A CO2 concentration in the second environment may be determined based on the value and the second reference value.
  • FIG. 22 is a flowchart relating to determination processing executed by the measuring device 1 according to the sixth embodiment.
  • the control device 11 of the measurement device 1 executes the measurement program 121 stored in the storage device 12 to periodically execute the processing of the flowchart shown in FIG. 22 .
  • S is used as an abbreviation for "STEP".
  • the control device 11 determines whether or not the second time-series data for a predetermined period of time has been acquired (S51). Note that, in S51, the control device 11 may determine whether or not the second time-series data having the amount of data capable of predicting future changes in the CO2 concentration by the prediction model has been acquired. If the control device 11 has not acquired the second time-series data for the predetermined time (NO in S51), the process ends.
  • the control device 11 acquires the second time-series data for a predetermined period of time (YES in S51), the control device 11 predicts changes in the second time-series data using the prediction model, thereby calculating the CO2 concentration in the second environment. is calculated (S52).
  • the control device 11 compares the predicted value with the second reference value to determine the CO2 concentration in the second environment (S53), and outputs the determination result (S54). For example, when the predicted value exceeds the second reference value, or when the predicted value is likely to exceed the second reference value, the control device 11 sends a control signal for controlling the ozonizer 26 to the sensor module 2. and outputs a control signal for controlling the notification device 3 to the notification device 3 . After that, the control device 11 terminates this process.
  • the measuring device 1 provides the first time-series data of the CO2 concentration in the first environment in which there are no non-human CO2 emission sources, and the second time-series data in which there are non-human CO2 emission sources.
  • a difference between the CO2 concentration in the environment and the second time-series data is calculated, and the CO2 concentration in the second environment is determined based on the calculated difference and the second time-series data.
  • the measuring device 1 can determine the CO2 concentration in the second environment in consideration of CO2 emitted from non-human CO2 emission sources. Even if there is, the CO2 concentration can be determined with high accuracy.
  • the control device 11 calculates a subtraction value by subtracting the difference from the CO2 concentration in the second environment acquired from the sensor module 2 by the data acquisition device 13, and calculates the subtraction value and the first A CO2 concentration in the second environment may be determined based on the first reference value of CO2 concentration in the environment.
  • control device 11 predicts the target value of the CO2 concentration in the second environment acquired from the sensor module 2 by the data acquisition device 13 using a prediction model, and subtracts the difference from the estimated target value. You may calculate the subtraction value mentioned above.
  • the measuring device 1 may include each component included in the sensor module 2 . That is, the measuring device 1 according to the modification may include the sensor 25 and the ozonizer 26 , and the control device 11 may control the sensor 25 and the ozonizer 26 .
  • the measurement device 1 is not a single device integrally including a communication unit (data acquisition device 13), a control unit (control device 11), and a storage unit (storage device 12), but for example, the data acquisition device 13 It is divided into a device specializing in a communication section having a corresponding function, a device having a control section having a function corresponding to the control device 11, and a device having a storage section having a function corresponding to the storage device 12. It may be composed of a plurality of devices, such as
  • the measuring device 1 may include each component included in the notification device 3. That is, the measuring device 1 according to the modification may include a display 31 and a speaker 32 , and the control device 11 may control the display 31 and the speaker 32 .
  • 1 measuring device 2 sensor module, 3 reporting device, 4 judging device, 11, 21, 41 control device, 12, 42 storage device, 13, 43 data acquisition device, 23 communication device, 25 sensor, 26 ozonizer, 31 display, 32 speaker, 44 data output device, 50 network, 100 judgment system, 121 measurement program, 122 calculation data, 123 time-series data, 311, 313, 314 icons, 421 judgment program, 422 reference value data.

Abstract

A measurement device (1) is provided with: a storage device (12) for storing first time-series data of the CO2 concentration in a first environment in which no CO2 emission source other than humans exists as an emission source for emitting CO2 into the atmosphere; and, a data acquisition device (13) for acquiring second time-series data of the CO2 concentration in a second environment in which a CO2 emission source other than humans exists. A control device (11) calculates a reference value for assessing the CO2 concentration in the second environment on the basis of the difference between the first time-series data and the second time-series data.

Description

計測装置、計測方法、計測プログラム、および判定システムMeasuring device, measuring method, measuring program, and judgment system
 本開示は、二酸化炭素濃度を計測する計測装置、計測方法、計測プログラム、および判定システムに関する。 The present disclosure relates to a measuring device, measuring method, measuring program, and determination system for measuring carbon dioxide concentration.
 近年、ウィルスによる感染の拡大を防止するために、閉じられた環境において人が密集することを避けることが提唱されている。また、人の密集度を評価するために二酸化炭素濃度を判定するといった技術が公知である。たとえば、特開2020-166709号公報(特許文献1)は、室内空間における二酸化炭素濃度の時間変化と、在室者一人当たりの呼吸量とに基づいて、在室人数を推定する推定装置を開示する。 In recent years, in order to prevent the spread of virus infection, it has been advocated to avoid crowding in closed environments. Techniques such as determining the carbon dioxide concentration to evaluate the density of people are also known. For example, Japanese Unexamined Patent Application Publication No. 2020-166709 (Patent Document 1) discloses an estimation device that estimates the number of people in a room based on the temporal change in the carbon dioxide concentration in the indoor space and the respiratory rate per person in the room. do.
特開2020-166709号公報Japanese Patent Application Laid-Open No. 2020-166709
 特許文献1に開示された推定装置によれば、室内空間における二酸化炭素濃度を判定することによって、在室人数を推定することができる。環境によっては、人に限らず、人以外の二酸化炭素排出源からも大気中に二酸化炭素が排出されることがあるが、特許文献1に開示された推定装置では、人以外の二酸化炭素排出源から排出される二酸化炭素については考慮されていない。このため、特許文献1に開示された推定装置は、人に由来する二酸化炭素濃度を精度よく判定することが難しく、人の密集度を精度よく判定することができないおそれがあった。 According to the estimation device disclosed in Patent Document 1, the number of people in the room can be estimated by determining the carbon dioxide concentration in the indoor space. Depending on the environment, carbon dioxide may be emitted into the atmosphere not only by humans but also by non-human carbon dioxide emission sources. Carbon dioxide emitted from Therefore, it is difficult for the estimation device disclosed in Patent Document 1 to accurately determine the concentration of carbon dioxide derived from people, and there is a risk that the density of people cannot be determined accurately.
 本開示は、このような課題を解決するためになされたものであって、その目的は、人以外の二酸化炭素の排出源が存在する環境において人の密集度を精度よく判定する技術を提供することである。 The present disclosure has been made to solve such problems, and its object is to provide a technology for accurately determining the density of people in an environment where there are carbon dioxide emission sources other than humans. That is.
 本開示のある局面に従う計測装置は、大気中に二酸化炭素を排出する排出源として人以外の二酸化炭素排出源が存在しない第1環境における二酸化炭素濃度の第1時系列データを記憶する記憶装置と、人以外の二酸化炭素排出源が存在する第2環境における二酸化炭素濃度の第2時系列データを取得するデータ取得装置と、制御装置とを備える。制御装置は、第1時系列データと第2時系列データとの間の差分に基づき、第2環境における二酸化炭素濃度を判定するための基準値を算出する。 A measuring device according to an aspect of the present disclosure is a storage device that stores first time-series data of carbon dioxide concentration in a first environment where there are no carbon dioxide emission sources other than humans as emission sources that emit carbon dioxide into the atmosphere. , a data acquisition device for acquiring second time-series data of carbon dioxide concentration in a second environment in which carbon dioxide emission sources other than humans are present; and a control device. The control device calculates a reference value for determining the carbon dioxide concentration in the second environment based on the difference between the first time series data and the second time series data.
 本開示の他の局面に従う計測方法は、(a)大気中に二酸化炭素を排出する排出源として人以外の二酸化炭素排出源が存在しない第1環境における二酸化炭素濃度の第1時系列データを記憶するステップと、(b)人以外の二酸化炭素排出源が存在する第2環境における二酸化炭素濃度の第2時系列データを取得するステップと、(c)第1時系列データと第2時系列データとの間の差分に基づき、第2環境における二酸化炭素濃度を判定するための基準値を算出するステップとを含む。 A measurement method according to another aspect of the present disclosure includes: (a) storing first time-series data of carbon dioxide concentration in a first environment where there are no carbon dioxide emission sources other than humans as emission sources that emit carbon dioxide into the atmosphere; (b) obtaining second time-series data of carbon dioxide concentration in a second environment in which non-human carbon dioxide emission sources are present; (c) first time-series data and second time-series data and calculating a reference value for determining the carbon dioxide concentration in the second environment based on the difference between.
 本開示の他の局面に従う計測プログラムは、コンピュータに、(a)大気中に二酸化炭素を排出する排出源として人以外の二酸化炭素排出源が存在しない第1環境における二酸化炭素濃度の第1時系列データを記憶するステップと、(b)人以外の二酸化炭素排出源が存在する第2環境における二酸化炭素濃度の第2時系列データを取得するステップと、(c)第1時系列データと第2時系列データとの間の差分に基づき、第2環境における二酸化炭素濃度を判定するための基準値を算出するステップとを実行させる。 A measurement program according to another aspect of the present disclosure provides a computer with: (a) a first time series of carbon dioxide concentration in a first environment where there are no carbon dioxide emission sources other than humans as emission sources that emit carbon dioxide into the atmosphere; (b) obtaining a second time series of carbon dioxide concentration in a second environment in which non-human carbon dioxide sources are present; (c) the first time series and the second and calculating a reference value for determining the carbon dioxide concentration in the second environment based on the difference from the time-series data.
 本開示によれば、人以外の二酸化炭素排出源が存在しない第1環境における二酸化炭素濃度の第1時系列データと、人以外の二酸化炭素排出源が存在する第2環境における二酸化炭素濃度の第2時系列データとの間の差分に基づき、第2環境における二酸化炭素濃度を判定するための基準値が生成される。これにより、人以外の二酸化炭素の排出源が存在する環境における二酸化炭素濃度を判定することができるため、人以外の二酸化炭素の排出源が存在する環境において人の密集度を精度よく判定することができる。 According to the present disclosure, first time-series data of carbon dioxide concentration in a first environment where there are no non-human carbon dioxide emission sources and second time series data of carbon dioxide concentration in a second environment where non-human carbon dioxide emission sources are present A reference value for determining the carbon dioxide concentration in the second environment is generated based on the difference between the two time-series data. As a result, it is possible to determine the concentration of carbon dioxide in an environment where non-human carbon dioxide emission sources exist, so that it is possible to accurately determine the density of people in an environment where non-human carbon dioxide emission sources exist. can be done.
実施の形態1に係る判定システムの適用例を説明するための図である。FIG. 2 is a diagram for explaining an application example of the determination system according to Embodiment 1; FIG. 第1環境および第2環境の各々において排出される二酸化炭素濃度に対する人の密集度の基準値の一例を示す図である。FIG. 4 is a diagram showing an example of a standard value of human density with respect to carbon dioxide concentration discharged in each of the first environment and the second environment. 実施の形態1に係る判定システムの構成を示す図である。1 is a diagram showing the configuration of a determination system according to Embodiment 1; FIG. 時系列データの変化の一例を示す図である。It is a figure which shows an example of the change of time-series data. 実施の形態1に係る計測装置および判定装置の処理のタイミングを説明するための図である。FIG. 4 is a diagram for explaining timings of processing of the measuring device and the determination device according to the first embodiment; ディスプレイの表示態様を示す図である。It is a figure which shows the display mode of a display. 実施の形態1に係る計測装置による第1時系列データと第2時系列データとの差分の算出の一例を示す図である。4 is a diagram showing an example of calculation of a difference between first time-series data and second time-series data by the measuring device according to Embodiment 1; FIG. 実施の形態1に係る計測装置が実行する基準値算出処理に関するフローチャートである。4 is a flowchart relating to reference value calculation processing executed by the measuring device according to Embodiment 1. FIG. 第1環境における時系列データに基づく第1特徴データの生成を説明するための図である。FIG. 4 is a diagram for explaining generation of first feature data based on time-series data in a first environment; 特徴値の算出の一例を説明するための図である。FIG. 4 is a diagram for explaining an example of calculation of feature values; 第2環境における時系列データに基づく第1特徴データの生成を説明するための図である。FIG. 10 is a diagram for explaining generation of first feature data based on time-series data in a second environment; 実施の形態2に係る計測装置による第1特徴データと第2特徴データとの差分の算出の一例を示す図である。FIG. 9 is a diagram showing an example of calculation of a difference between first feature data and second feature data by the measuring device according to Embodiment 2; 実施の形態2に係る計測装置が実行する基準値算出処理に関するフローチャートである。10 is a flowchart relating to reference value calculation processing executed by the measuring device according to Embodiment 2; 実施の形態2に係る計測装置が実行する差分算出処理に関するフローチャートである。10 is a flowchart related to difference calculation processing executed by the measuring device according to Embodiment 2; 実施の形態3に係る計測装置による第1特徴データと第2特徴データとの差分の算出の一例を示す図である。FIG. 11 is a diagram showing an example of calculation of a difference between first feature data and second feature data by the measuring device according to Embodiment 3; 実施の形態3に係る計測装置による第1特徴データと第2特徴データとの差分の算出の一例を示す図である。FIG. 11 is a diagram showing an example of calculation of a difference between first feature data and second feature data by the measuring device according to Embodiment 3; 実施の形態3に係る計測装置による第1特徴データと第2特徴データとの差分の算出の一例を示す図である。FIG. 11 is a diagram showing an example of calculation of a difference between first feature data and second feature data by the measuring device according to Embodiment 3; 実施の形態3に係る計測装置が実行する差分算出処理に関するフローチャートである。FIG. 11 is a flow chart relating to difference calculation processing executed by the measuring device according to Embodiment 3. FIG. 実施の形態4に係る計測装置による第1特徴データと第2特徴データとの差分の算出の一例を示す図である。FIG. 12 is a diagram showing an example of calculation of a difference between first feature data and second feature data by the measuring device according to Embodiment 4; 実施の形態4に係る計測装置が実行する差分算出処理に関するフローチャートである。FIG. 13 is a flow chart relating to difference calculation processing executed by the measuring device according to the fourth embodiment; FIG. 実施の形態5に係る判定システムの構成を示す図である。FIG. 13 is a diagram showing the configuration of a determination system according to Embodiment 5; 実施の形態6に係る計測装置が実行する判定処理に関するフローチャートである。FIG. 14 is a flowchart relating to determination processing executed by the measuring device according to Embodiment 6. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 <実施の形態1>
 図1~図8を参照しながら、実施の形態1に係る計測装置1、および計測装置1を備えた判定システム100を説明する。
<Embodiment 1>
A measuring device 1 according to Embodiment 1 and a determination system 100 including the measuring device 1 will be described with reference to FIGS. 1 to 8. FIG.
 [適用例]
 図1は、実施の形態1に係る判定システム100の適用例を説明するための図である。
[Application example]
FIG. 1 is a diagram for explaining an application example of the determination system 100 according to the first embodiment.
 図1に示すように、飲食店においては、客または店員の人数が増えることによって人が密集した状態になり得るが、近年、ウィルスによる感染の拡大を防止するために、飲食店などの閉じられた環境において人が密集することを避けることが提唱されている。 As shown in FIG. 1, restaurants can become crowded as the number of customers or clerks increases. It has been advocated to avoid crowding in crowded environments.
 そこで、実施の形態1においては、時間の経過に伴って変化する室内空間における二酸化炭素(以下、「CO2」(carbon dioxide)とも称する。)の濃度がセンサモジュール2のセンサ25によって測定される。そして、判定システム100は、センサモジュール2から取得したCO2濃度の時系列データを解析することによって、未来におけるCO2濃度の変化を予測する。さらに、判定システム100は、CO2濃度の予測値と人の密集度を判定するための基準値とを比較し、CO2濃度の予測値が基準値を超えている場合、あるいは、CO2濃度の予測値が基準値を超えそうな場合は、人の密集度が高まっていると判断し、ウィルスによる感染の拡大を防止するために、オゾナイザ26を駆動させたり、報知装置3に含まれるディスプレイ31またはスピーカ32を用いてユーザに換気を促したり、さらなる人の増加を抑制するための警告を通知したりする。 Therefore, in Embodiment 1, the sensor 25 of the sensor module 2 measures the concentration of carbon dioxide (hereinafter also referred to as "CO2" (carbon dioxide)) in the indoor space, which changes over time. The determination system 100 then analyzes the time-series data of the CO2 concentration acquired from the sensor module 2 to predict changes in the CO2 concentration in the future. Furthermore, the determination system 100 compares the predicted value of CO2 concentration with a reference value for determining the density of people, and if the predicted value of CO2 concentration exceeds the reference value, or if the predicted value of CO2 concentration is likely to exceed the standard value, it is determined that the density of people is increasing, and in order to prevent the spread of virus infection, the ozonizer 26 is driven, the display 31 included in the notification device 3 or the speaker 32 is used to urge the user to ventilate, or to notify a warning to suppress further increase in the number of people.
 ここで、CO2が排出される環境としては、会議室など、大気中にCO2を排出する排出源として人以外のCO2排出源が存在しない環境(以下、「第1環境」とも称する。)と、飲食店および工場など、人以外のCO2排出源が存在する環境(以下、「第2環境」とも称する。)とがある。たとえば、飲食店においては、客および店員などの人の呼吸、焼くなどの食材の調理、および調理器具の稼働などによって、CO2が排出される。工場などの製造現場においては、作業者などの人の呼吸、および製造装置の稼働などによって、CO2が排出される。このように、第2環境においては、人以外からCO2が排出される分、第1環境よりも、CO2濃度が高くなる傾向にある。このため、第2環境においては、人以外のCO2排出源から排出されるCO2を考慮して、CO2濃度を判定することが必要である。 Here, the environment in which CO2 is emitted includes an environment in which there are no CO2 emission sources other than humans as emission sources for emitting CO2 into the atmosphere, such as a conference room (hereinafter also referred to as a "first environment"); There is an environment (hereinafter also referred to as “second environment”) in which CO2 emission sources other than humans exist, such as restaurants and factories. For example, in a restaurant, CO2 is emitted by the breathing of customers and clerks, the cooking of ingredients such as grilling, the operation of cooking utensils, and the like. In a manufacturing site such as a factory, CO2 is emitted by the breathing of people such as workers and the operation of manufacturing equipment. Thus, in the second environment, the CO2 concentration tends to be higher than in the first environment due to CO2 emissions from non-humans. Therefore, in the second environment, it is necessary to determine the CO2 concentration in consideration of CO2 emitted from CO2 emission sources other than humans.
 図2は、第1環境および第2環境の各々において排出される二酸化炭素濃度に対する人の密集度の基準値の一例を示す図である。図2に示すように、第1環境においては、大気中に元から含まれるCO2に、人から排出されるCO2が加算される。 FIG. 2 is a diagram showing an example of the reference value of the density of people with respect to the concentration of carbon dioxide emitted in each of the first environment and the second environment. As shown in FIG. 2, in the first environment, CO2 emitted by humans is added to CO2 originally contained in the atmosphere.
 たとえば、大気中に元から含まれる約400ppmのCO2に対して人から排出されるCO2が加算された加算結果が1000ppm未満である場合、人が密集していないと言える。加算結果が1000ppm以上でありかつ1500ppm未満である場合、人が密集している可能性があるため、注意が必要であると言える。加算結果が1500ppm以上である場合、人が密集していると言える。これらの基準は、厚生労働省から発表されている数値を基にしており、詳しくは下記のWebアドレスを参照されたし。
 https://www.mhlw.go.jp/content/10900000/000616069.pdf
For example, when the result of adding CO2 emitted from people to about 400 ppm of CO2 originally contained in the atmosphere is less than 1000 ppm, it can be said that people are not densely populated. When the addition result is 1000 ppm or more and less than 1500 ppm, it can be said that caution is required because people may be crowded. When the addition result is 1500 ppm or more, it can be said that people are dense. These standards are based on figures announced by the Ministry of Health, Labor and Welfare. For details, please refer to the following web address.
https://www.mhlw.go.jp/content/10900000/000616069.pdf
 一方、第2環境においては、大気中に元から含まれるCO2に、人から排出されるCO2が加算され、さらに、人以外から排出されるCO2も加算される。すなわち、第2環境においては、人以外のCO2排出源から排出されるCO2濃度が加算される分、第1環境におけるCO2濃度よりも、加算結果が大きくなる。よって、第2環境においては、第1環境において用いられる基準値をそのまま用いることはできず、人以外のCO2排出源から排出されるCO2を考慮して、CO2濃度を判定することが必要である。 On the other hand, in the second environment, the CO2 emitted by humans is added to the CO2 originally contained in the atmosphere, and the CO2 emitted by non-humans is also added. That is, in the second environment, the CO2 concentration emitted from CO2 emission sources other than humans is added, so the addition result is larger than the CO2 concentration in the first environment. Therefore, in the second environment, the reference value used in the first environment cannot be used as it is, and it is necessary to determine the CO2 concentration in consideration of CO2 emitted from CO2 emission sources other than humans. .
 そこで、実施の形態1に係る判定システム100は、以下で説明するように、人以外のCO2排出源から排出されるCO2を考慮して、CO2濃度を判定するように構成されている。 Therefore, the determination system 100 according to Embodiment 1 is configured to determine the CO2 concentration in consideration of CO2 emitted from CO2 emission sources other than humans, as described below.
 [判定システムの構成]
 図3は、実施の形態1に係る判定システム100の構成を示す図である。図3に示すように、判定システム100は、計測装置1と、判定装置4とを備える。
[Configuration of Judgment System]
FIG. 3 is a diagram showing the configuration of the determination system 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 3 , the determination system 100 includes a measurement device 1 and a determination device 4 .
 計測装置1は、センサモジュール2から取得したCO2濃度の時系列データに基づき、センサモジュール2が設置された環境におけるCO2濃度を判定するための基準値を算出する装置であり、制御装置11と、記憶装置12と、データ取得装置13とを備える。 The measurement device 1 is a device that calculates a reference value for determining the CO2 concentration in the environment in which the sensor module 2 is installed, based on the time-series data of the CO2 concentration acquired from the sensor module 2. The control device 11; A storage device 12 and a data acquisition device 13 are provided.
 制御装置11は、プロセッサなどのコンピュータの一例であり、各種のプログラムに従って各種の処理を実行する演算主体である。プロセッサは、たとえば、マイクロコントローラ(microcontroller)、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、またはMPU(Multi Processing Unit)などで構成される。なお、プロセッサは、プログラムを実行することによって各種の処理を実行する機能を有するが、これらの機能の一部または全部を、ASIC(Application Specific Integrated Circuit)またはFPGA(Field-Programmable Gate Array)などの専用のハードウェア回路を用いて実装してもよい。「プロセッサ」は、CPUまたはMPUのようにストアードプログラム方式で処理を実行する狭義のプロセッサに限らず、ASICまたはFPGAなどのハードワイヤード回路を含み得る。このため、プロセッサは、コンピュータ読み取り可能なコードおよび/またはハードワイヤード回路によって予め処理が定義されている、処理回路(processing circuitry)と読み替えることもできる。なお、制御装置11は、1つのチップで構成されてもよいし、複数のチップで構成されてもよい。さらに、制御装置11は、DRAM(Dynamic Random Access Memory)およびSRAM(Static Random Access Memory)などの揮発性メモリ、ROM(Read Only Memory)およびフラッシュメモリなどの不揮発性メモリを備える。 The control device 11 is an example of a computer such as a processor, and is a computing entity that executes various processes according to various programs. The processor is composed of, for example, a microcontroller, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or an MPU (Multi Processing Unit). The processor has the function of executing various processes by executing programs. It may be implemented using a dedicated hardware circuit. A "processor" is not limited to processors in a narrow sense that execute processing in a stored program format, such as CPUs or MPUs, but may include hardwired circuits such as ASICs or FPGAs. As such, processor may also be referred to as processing circuitry having processes pre-defined by computer readable code and/or hardwired circuitry. Note that the control device 11 may be composed of one chip, or may be composed of a plurality of chips. Furthermore, the control device 11 includes volatile memory such as DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory), and non-volatile memory such as ROM (Read Only Memory) and flash memory.
 記憶装置12は、HDD(Hard Disk Drive)およびSSD(Solid State Drive)などの不揮発性メモリを備える。記憶装置12は、制御装置11によって実行される計測プログラム121、制御装置11が参照する演算用データ122、およびセンサモジュール2から取得した時系列データ123など、各種のプログラムおよびデータを格納する。 The storage device 12 includes nonvolatile memories such as HDDs (Hard Disk Drives) and SSDs (Solid State Drives). The storage device 12 stores various programs and data such as a measurement program 121 executed by the control device 11 , calculation data 122 referred to by the control device 11 , and time-series data 123 acquired from the sensor module 2 .
 計測プログラム121は、制御装置11の処理手順(図8、図13、図14、図18、図20、図22に示す処理フロー)が規定されたプログラムを含む。演算用データ122は、計測プログラム121に従った処理を実行するときに用いられるデータであり、CO2濃度を判定するための基準値を算出するためのデータなどを含む。 The measurement program 121 includes a program that defines the processing procedure of the control device 11 (processing flows shown in FIGS. 8, 13, 14, 18, 20, and 22). The calculation data 122 is data used when executing processing according to the measurement program 121, and includes data for calculating a reference value for determining the CO2 concentration.
 なお、計測装置1は、計測プログラム121および演算用データ122を予め記憶装置12に記憶していてもよいし、通信によって、図示しない外部装置から計測プログラム121および演算用データ122を取得してもよい。さらに、計測装置1は、図示しないメディア読取装置をさらに備えていてもよく、メディア読取装置によって記憶媒体であるリムーバブルディスクから計測プログラム121および演算用データ122を取得してもよい。 Note that the measuring device 1 may store the measuring program 121 and the computing data 122 in advance in the storage device 12, or may acquire the measuring program 121 and the computing data 122 from an external device (not shown) through communication. good. Furthermore, the measurement apparatus 1 may further include a media reader (not shown), and the measurement program 121 and the calculation data 122 may be obtained from a removable disk, which is a storage medium, by the medium reader.
 データ取得装置13は、ネットワーク50を介して、センサモジュール2と有線通信または無線通信を行うことによって、センサモジュール2からのデータを受信する。たとえば、データ取得装置13は、センサモジュール2と通信することによって、センサモジュール2からCO2濃度の時系列データを取得する。 The data acquisition device 13 receives data from the sensor module 2 by performing wired communication or wireless communication with the sensor module 2 via the network 50 . For example, the data acquisition device 13 acquires time-series data of CO2 concentration from the sensor module 2 by communicating with the sensor module 2 .
 センサモジュール2は、センサモジュール2が設置された環境におけるCO2濃度の時系列データを取得する装置であり、制御装置21と、通信装置23と、センサ25とを備える。 The sensor module 2 is a device that acquires time-series data of CO2 concentration in the environment in which the sensor module 2 is installed, and includes a control device 21, a communication device 23, and a sensor 25.
 制御装置21は、プロセッサなどのコンピュータの一例であり、各種のプログラムに従って各種の処理を実行する演算主体である。プロセッサは、たとえば、マイクロコントローラ、CPU、GPU、またはMPUなどで構成される。なお、プロセッサは、プログラムを実行することによって各種の処理を実行する機能を有するが、これらの機能の一部または全部を、ASICまたはFPGAなどの専用のハードウェア回路を用いて実装してもよい。「プロセッサ」は、CPUまたはMPUのようにストアードプログラム方式で処理を実行する狭義のプロセッサに限らず、ASICまたはFPGAなどのハードワイヤード回路を含み得る。このため、プロセッサは、コンピュータ読み取り可能なコードおよび/またはハードワイヤード回路によって予め処理が定義されている、処理回路(processing circuitry)と読み替えることもできる。なお、制御装置11は、1つのチップで構成されてもよいし、複数のチップで構成されてもよい。さらに、制御装置21は、DRAMおよびSRAMなどの揮発性メモリ、ROMおよびフラッシュメモリなどの不揮発性メモリを備える。 The control device 21 is an example of a computer such as a processor, and is a computing entity that executes various processes according to various programs. A processor is configured by, for example, a microcontroller, a CPU, a GPU, or an MPU. Note that the processor has the function of executing various processes by executing programs, but some or all of these functions may be implemented using a dedicated hardware circuit such as ASIC or FPGA. . A "processor" is not limited to processors in a narrow sense that execute processing in a stored program format, such as CPUs or MPUs, but may include hardwired circuits such as ASICs or FPGAs. As such, processor may also be referred to as processing circuitry having processes pre-defined by computer readable code and/or hardwired circuitry. Note that the control device 11 may be composed of one chip, or may be composed of a plurality of chips. Further, the control device 21 includes volatile memory such as DRAM and SRAM, and nonvolatile memory such as ROM and flash memory.
 通信装置23は、ネットワーク50を介して、計測装置1と有線通信または無線通信を行うことによって、計測装置1との間でデータを送受信する。たとえば、通信装置23は、計測装置1と通信することによって、CO2濃度の時系列データを計測装置1に送信する。 The communication device 23 transmits and receives data to and from the measuring device 1 by performing wired communication or wireless communication with the measuring device 1 via the network 50 . For example, the communication device 23 transmits time-series data of the CO2 concentration to the measuring device 1 by communicating with the measuring device 1 .
 センサ25は、定期的(たとえば、1分ごと)にセンサモジュール2が設置された環境におけるCO2濃度を測定する。センサ25の測定によって得られたCO2濃度の時系列データは、通信装置23によって計測装置1に送信される。 The sensor 25 periodically (for example, every minute) measures the CO2 concentration in the environment in which the sensor module 2 is installed. The time-series data of the CO2 concentration obtained by the measurement of the sensor 25 is transmitted to the measurement device 1 by the communication device 23 .
 判定装置4は、センサモジュール2によって取得されたCO2濃度の時系列データから、計測装置1によって算出されたCO2濃度の基準値に基づいて、センサモジュール2が設置された環境におけるCO2濃度を判定する装置であり、制御装置41と、記憶装置42と、データ取得装置43と、データ出力装置44とを備える。 The determination device 4 determines the CO2 concentration in the environment in which the sensor module 2 is installed based on the CO2 concentration reference value calculated by the measurement device 1 from the CO2 concentration time-series data acquired by the sensor module 2. A device comprising a control device 41 , a storage device 42 , a data acquisition device 43 and a data output device 44 .
 制御装置41は、プロセッサなどのコンピュータの一例であり、各種のプログラムに従って各種の処理を実行する演算主体である。プロセッサは、たとえば、マイクロコントローラ、CPU、FPGA、GPU、またはMPUなどで構成される。なお、プロセッサは、プログラムを実行することによって各種の処理を実行する機能を有するが、これらの機能の一部または全部を、ASICまたはFPGAなどの専用のハードウェア回路を用いて実装してもよい。「プロセッサ」は、CPUまたはMPUのようにストアードプログラム方式で処理を実行する狭義のプロセッサに限らず、ASICまたはFPGAなどのハードワイヤード回路を含み得る。このため、プロセッサは、コンピュータ読み取り可能なコードおよび/またはハードワイヤード回路によって予め処理が定義されている、処理回路(processing circuitry)と読み替えることもできる。なお、制御装置41は、1つのチップで構成されてもよいし、複数のチップで構成されてもよい。さらに、制御装置41は、DRAMおよびSRAMなどの揮発性メモリ、ROMおよびフラッシュメモリなどの不揮発性メモリを備える。 The control device 41 is an example of a computer such as a processor, and is a computing entity that executes various processes according to various programs. The processor is composed of, for example, a microcontroller, CPU, FPGA, GPU, or MPU. Note that the processor has the function of executing various processes by executing programs, but some or all of these functions may be implemented using a dedicated hardware circuit such as ASIC or FPGA. . A "processor" is not limited to processors in a narrow sense that execute processing in a stored program format, such as CPUs or MPUs, but may include hardwired circuits such as ASICs or FPGAs. As such, processor may also be referred to as processing circuitry having processes pre-defined by computer readable code and/or hardwired circuitry. Note that the control device 41 may be composed of one chip, or may be composed of a plurality of chips. Further, the control device 41 includes volatile memory such as DRAM and SRAM, and nonvolatile memory such as ROM and flash memory.
 記憶装置42は、HDDおよびSSDなどの不揮発性メモリを備える。記憶装置42は、制御装置41によって実行される判定プログラム421、および制御装置41が参照する基準値データ422など、各種のプログラムおよびデータを格納する。 The storage device 42 includes nonvolatile memories such as HDDs and SSDs. The storage device 42 stores various programs and data such as a determination program 421 executed by the control device 41 and reference value data 422 referred to by the control device 41 .
 判定プログラム421は、制御装置41の処理手順が規定されていたプログラムを含む。具体的には、判定プログラム421には、センサモジュール2が設置された環境におけるCO2濃度を判定するための処理手順が規定されている。基準値データ422は、センサモジュール2が設置された環境におけるCO2濃度を判定するための基準値を示すデータであり、計測装置1から取得される。 The determination program 421 includes a program in which the processing procedures of the control device 41 are defined. Specifically, the determination program 421 defines a processing procedure for determining the CO2 concentration in the environment in which the sensor module 2 is installed. The reference value data 422 is data indicating a reference value for determining the CO2 concentration in the environment in which the sensor module 2 is installed, and is acquired from the measuring device 1 .
 なお、判定装置4は、判定プログラム421を予め記憶装置42に記憶していてもよいし、通信によって、図示しない外部装置から判定プログラム421を取得してもよい。さらに、判定装置4は、図示しないメディア読取装置をさらに備えていてもよく、メディア読取装置によって記憶媒体であるリムーバブルディスクから判定プログラム421を取得してもよい。 Note that the determination device 4 may store the determination program 421 in the storage device 42 in advance, or may acquire the determination program 421 from an external device (not shown) through communication. Furthermore, the determination device 4 may further include a media reader (not shown), and the determination program 421 may be acquired from a removable disk, which is a storage medium, by the media reader.
 データ取得装置43は、ネットワーク50を介して、計測装置1と有線通信または無線通信を行うことによって、計測装置1からデータを受信する。たとえば、データ取得装置43は、計測装置1からCO2濃度を判定するための基準値を示す基準値データ422を取得する。 The data acquisition device 43 receives data from the measuring device 1 by performing wired communication or wireless communication with the measuring device 1 via the network 50 . For example, the data acquisition device 43 acquires the reference value data 422 indicating the reference value for judging the CO2 concentration from the measuring device 1 .
 データ出力装置44は、ネットワーク50を介して、図示しない報知装置3および図示しないオゾナイザ26の各々と有線通信または無線通信を行うことによって、報知装置3およびオゾナイザ26の各々に対してデータを送信する。たとえば、データ出力装置44は、報知装置3およびオゾナイザ26の各々に対して、報知装置3およびオゾナイザ26の各々を制御するための制御信号を送信する。 The data output device 44 transmits data to each of the notification device 3 and the ozonizer 26 by performing wired or wireless communication with each of the notification device 3 (not shown) and the ozonizer 26 (not shown) via the network 50. . For example, data output device 44 transmits control signals for controlling notification device 3 and ozonizer 26 to each of notification device 3 and ozonizer 26 .
 このように構成された判定システム100において、計測装置1は、センサモジュール2が設置された環境における人の密集度を判定するためのCO2濃度の基準値を算出する。 In the determination system 100 configured as described above, the measuring device 1 calculates a reference value of the CO2 concentration for determining the density of people in the environment where the sensor module 2 is installed.
 判定装置4は、センサモジュール2によって取得されたCO2濃度の時系列データを解析し、計測装置1によって算出された基準値を用いてセンサモジュール2が設置された環境におけるCO2濃度を判定することによって、センサモジュール2が設置された環境における人の密集度を判定する。判定装置4は、得られているCO2濃度から人の密集度を判定するほかに、現在の状態が続いたときに到達するCO2濃度から人の密集度を判定することもできる。未来における時系列データの変化を予測するには、予測モデルが用いられる。予測モデルを用いれば、時系列データの変化を予測することが可能となり、さらに、CO2濃度の予測値を基準値と比較することによってCO2濃度を判定することが可能となる。 The determination device 4 analyzes the time-series data of the CO2 concentration acquired by the sensor module 2, and uses the reference value calculated by the measurement device 1 to determine the CO2 concentration in the environment in which the sensor module 2 is installed. , determine the density of people in the environment where the sensor module 2 is installed. In addition to determining the human density from the obtained CO2 concentration, the determination device 4 can also determine the human density from the CO2 concentration that will be reached when the current state continues. A prediction model is used to predict changes in time-series data in the future. Using a prediction model makes it possible to predict changes in time-series data, and to determine the CO2 concentration by comparing the predicted value of the CO2 concentration with a reference value.
 予測モデルは、経過時間と時間の経過に伴って変化するデータとの関係を表す関数(数式)によって定義される。たとえば、予測モデルは、下記の式(1)によって表される関数(数式)によって定義される。 A prediction model is defined by a function (formula) that expresses the relationship between elapsed time and data that changes over time. For example, the prediction model is defined by a function (formula) represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Cは、下記の式(2)によって表される。 In Equation (1), C∞ is represented by Equation (2) below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)において、tは、あるタイミング(時刻)を表す。Cは、タイミングtにおいて閉じられた環境(室内空間)で生じるCO2濃度([ppm])を表すパラメータである。Vは、閉じられた環境(室内空間)の体積([m])を表すパラメータである。Qは、閉じられた環境(室内空間)における換気量([m/h])を表すパラメータである。式(2)において、Gは、閉じられた環境(室内空間)から排出されるCO2濃度の排出量([ppm*m/h])を表すパラメータである。Coutは、外気のCO2濃度([ppm])(大気中に元から含まれるCO2濃度)を表すパラメータであり、約400ppmである。 In Equation (1), t represents a certain timing (time). C is a parameter representing the CO2 concentration ([ppm]) generated in a closed environment (indoor space) at timing t. V is a parameter representing the volume ([m 3 ]) of the closed environment (indoor space). Q is a parameter representing the ventilation rate ([m 3 /h]) in a closed environment (indoor space). In Equation (2), G is a parameter representing the CO2 concentration emission amount ([ppm*m 3 /h]) emitted from a closed environment (indoor space). C out is a parameter representing the CO2 concentration ([ppm]) of outside air (CO2 concentration originally contained in the atmosphere), and is approximately 400 ppm.
 [時系列データの変化の予測の具体例]
 図4および図5を参照しながら、時系列データの変化の予測について説明する。図4は、時系列データの変化の一例を示す図である。
[Specific example of forecasting changes in time-series data]
Prediction of changes in time-series data will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 is a diagram showing an example of changes in time-series data.
 図4においては、縦軸にCO2濃度、横軸に時間をとった時系列データのグラフが示されている。t以降においてセンサ25によって実際に取得されたCO2濃度の実測値は、ラインAで表されている。さらに、未来の時系列データの変化を予測する時点をtとして、上述した式(1)および式(2)で表される予測モデルを用いてtの時点において時系列データの変化を予測した結果は、ラインGで表されている。 FIG. 4 shows a graph of time-series data with the CO2 concentration on the vertical axis and the time on the horizontal axis. Line A represents the measured CO2 concentration actually obtained by the sensor 25 after t0 . Furthermore, with the time point at which changes in future time-series data are predicted as t0 , changes in time-series data at time t0 are predicted using the prediction model represented by the above formulas (1) and (2). The result is represented by line G.
 図4に示すように、予測値のラインGは、実測値のラインAと近似し、概ね一致する。すなわち、上述した式(1)および式(2)で表される予測モデルを用いれば、センサ25によって実際に取得されるCO2濃度の実測値と概ね一致するように、時系列データの変化を予測することが可能となる。 As shown in FIG. 4, the predicted value line G approximates and roughly matches the measured value line A. That is, by using the prediction model represented by the above-described formulas (1) and (2), changes in the time-series data can be predicted so as to roughly match the CO2 concentration actually measured by the sensor 25. It becomes possible to
 図5は、実施の形態1に係る計測装置1および判定装置4の処理のタイミングを説明するための図である。図5においては、センサモジュール2によって実行される処理のタイミングと、計測装置1によって実行される処理のタイミングと、判定装置4によって実行される処理のタイミングが示されている。 FIG. 5 is a diagram for explaining processing timings of the measuring device 1 and the determination device 4 according to the first embodiment. In FIG. 5, the timing of processing performed by the sensor module 2, the timing of processing performed by the measuring device 1, and the timing of processing performed by the determination device 4 are shown.
 図5に示すように、センサモジュール2がt10からt11までの時間にわたってCO2濃度の時系列データを取得すると、計測装置1は、t11以降において、時系列データ(t10からt11までの時系列データ)に基づきCO2濃度を判定するための基準値を算出する。判定装置4は、t12以降において、計測装置1によって算出された基準値を用いて、CO2濃度を判定する。センサモジュール2が時系列データを取得する周期(たとえば、t10~t11やt11~t12の期間におけるデータ取得周期)は、たとえば、1分間隔、5分間隔、または10分間隔などである。計測装置1が基準値を算出する周期(たとえば、t11~t15の期間)は、たとえば、1週間または10日間などである。判定装置4が計測装置1によって算出された基準値を用いてCO2濃度を判定する周期(たとえば、t12~t13やt13~t14の期間)は、センサモジュール2が時系列データを取得する周期と同様に、たとえば、1分間隔、5分間隔、または10分間隔などである。図5では、基準値算出に用いた時系列データとCO2判定に用いた時系列データとを分けているが、両者は共用されてもよい。 As shown in FIG. 5, when the sensor module 2 acquires the time-series data of the CO2 concentration from t10 to t11 , the measuring device 1 collects the time-series data (from t10 to t11) after t11 . (time-series data)) to calculate the reference value for judging the CO2 concentration. The determination device 4 uses the reference value calculated by the measurement device 1 to determine the CO2 concentration after t12 . The period at which the sensor module 2 acquires the time-series data (for example, the data acquisition period in the period of t 10 to t 11 or t 11 to t 12 ) is, for example, 1-minute intervals, 5-minute intervals, or 10-minute intervals. be. A period (for example, a period from t 11 to t 15 ) in which the measuring device 1 calculates the reference value is, for example, one week or ten days. The sensor module 2 acquires time-series data during the period (for example, the period from t 12 to t 13 or from t 13 to t 14 ) in which the determination device 4 determines the CO2 concentration using the reference value calculated by the measurement device 1. For example, 1 minute, 5 minute, or 10 minute intervals. In FIG. 5, the time-series data used for reference value calculation and the time-series data used for CO2 determination are separated, but both may be shared.
 このように、計測装置1は、予め決められた時間区間(たとえば、1週間または10日間)ごとに定期的に、センサモジュール2によって取得された時系列データに基づき基準値を算出する。 In this way, the measuring device 1 periodically calculates the reference value based on the time-series data acquired by the sensor module 2 for each predetermined time interval (for example, one week or ten days).
 [ディスプレイの表示態様]
 図6は、ディスプレイ31の表示態様を示す図である。図6に示すように、ディスプレイ31に表示された画面は、センサモジュール2が設置された環境(たとえば、飲食店)における現在のCO2濃度を示すアイコン311と、CO2濃度の変化を示すグラフ312と、換気が必要となるまでの残り時間(到達予測時間)を示すアイコン313と、スピーカ32による判定結果の音声通知を有効にするためのアイコン314とを含む。
[Display mode]
FIG. 6 is a diagram showing a display mode of the display 31. As shown in FIG. As shown in FIG. 6, the screen displayed on the display 31 includes an icon 311 indicating the current CO2 concentration in the environment (e.g., restaurant) where the sensor module 2 is installed, and a graph 312 indicating changes in the CO2 concentration. , an icon 313 indicating the remaining time (predicted arrival time) until ventilation is required, and an icon 314 for enabling voice notification of the determination result by the speaker 32 .
 なお、ユーザは、アイコン314をタッチ操作することで、音声通知を有効または無効に設定してもよいし、図示しないマウスなどのツールを用いてアイコン314を操作することで、音声通知を有効または無効に設定してもよい。 Note that the user may enable or disable the voice notification by performing a touch operation on the icon 314, or enable or disable the voice notification by operating the icon 314 using a tool such as a mouse (not shown). You can set it to disabled.
 予測モデルを用いてCO2濃度の変化が予測され、予測値と基準値とが比較されることによって、換気が必要となるまでの残り時間が算出される。ディスプレイ31は、算出された残り時間をアイコン313によってユーザに通知する。 The change in CO2 concentration is predicted using a prediction model, and the remaining time until ventilation is required is calculated by comparing the predicted value with the reference value. The display 31 notifies the user of the calculated remaining time with an icon 313 .
 [基準値の算出]
 図7および図8を参照しながら、計測装置1による基準値の算出について説明する。図7および図8においては、図1に示す飲食店などの第2環境におけるCO2濃度の基準値を計測装置1が算出する例について説明する。
[Calculation of reference value]
Calculation of the reference value by the measuring device 1 will be described with reference to FIGS. 7 and 8. FIG. 7 and 8, an example in which the measuring device 1 calculates the reference value of the CO2 concentration in the second environment such as the restaurant shown in FIG. 1 will be described.
 図7は、実施の形態1に係る計測装置1による第1時系列データと第2時系列データとの差分の算出の一例を示す図である。計測装置1は、第2環境における基準値を算出する準備として、会議室などの第1環境におけるCO2濃度の時系列データ(以下、「第1時系列データ」とも称する。)を事前に取得する。 FIG. 7 is a diagram showing an example of calculation of the difference between the first time-series data and the second time-series data by the measuring device 1 according to Embodiment 1. FIG. In preparation for calculating the reference value in the second environment, the measuring device 1 acquires time-series data (hereinafter also referred to as "first time-series data") of the CO2 concentration in the first environment such as a conference room in advance. .
 たとえば、図7(A)においては、縦軸にCO2濃度、横軸に時間をとった第1時系列データのグラフが示されている。図7(A)に示すように、計測装置1は、第1環境において定期的(たとえば、1分ごと)に測定されたCO2濃度の第1時系列データを取得する。なお、図7(A)のグラフにおいて、CO2濃度の変化量が大きい部分は、たとえば、会議室で会議が行われていることなどが想定される。つまり、第1環境に存在する人に起因してCO2が生じていることが想定される。 For example, FIG. 7(A) shows a graph of the first time-series data with CO2 concentration on the vertical axis and time on the horizontal axis. As shown in FIG. 7A, the measuring device 1 obtains first time-series data of CO2 concentration measured periodically (for example, every minute) in the first environment. In the graph of FIG. 7A, it is assumed that a meeting is being held in a conference room, for example, in a portion where the amount of change in CO2 concentration is large. In other words, it is assumed that CO2 is generated due to people present in the first environment.
 計測装置1は、図7(A)で示したような第1環境における第1時系列データを記憶装置12に記憶した上で、第2環境に設置されたセンサ25から第2環境における時系列データ(以下、「第2時系列データ」とも称する。)を取得する。 The measuring device 1 stores the first time-series data in the first environment as shown in FIG. Data (hereinafter also referred to as “second time-series data”) is acquired.
 たとえば、図7(B)においては、縦軸にCO2濃度、横軸に時間をとった第2時系列データのグラフが示されている。図7(B)に示すように、計測装置1は、第2環境において定期的(たとえば、1分ごと)に測定されたCO2濃度の第2時系列データを取得する。なお、図7(B)のグラフにおいて、CO2濃度の変化量が大きい部分は、たとえば、飲食店で客が増えたり、焼くなどの食材の調理が行われたりしていることが想定される。つまり、第2環境に存在する人に起因してCO2が生じていることに加えて、第2環境に存在する人以外の原因によってもCO2が生じていることが想定される。 For example, FIG. 7(B) shows a graph of the second time-series data with the CO2 concentration on the vertical axis and the time on the horizontal axis. As shown in FIG. 7B, the measuring device 1 obtains second time-series data of the CO2 concentration measured periodically (for example, every minute) in the second environment. In the graph of FIG. 7(B), it is assumed that the portion where the amount of change in the CO2 concentration is large indicates, for example, that the number of customers in a restaurant has increased, or that foodstuffs such as grilling are being cooked. In other words, in addition to CO2 being generated by people present in the second environment, it is assumed that CO2 is also being generated by causes other than people present in the second environment.
 計測装置1は、第1時系列データと第2時系列データとの間の差分を算出する。具体的には、計測装置1は、第1時系列データに基づき第1算出値を算出し、第2時系列データに基づき第2算出値を算出し、第2算出値から第1算出値を減算することによって、差分を算出する。 The measuring device 1 calculates the difference between the first time-series data and the second time-series data. Specifically, the measuring device 1 calculates a first calculated value based on the first time-series data, calculates a second calculated value based on the second time-series data, and calculates the first calculated value from the second calculated value. Calculate the difference by subtracting.
 たとえば、計測装置1は、第1算出値として、第1時系列データに含まれる第1環境において時系列で取得された複数のCO2濃度の平均値(たとえば、636.08)を算出する。また、計測装置1は、第2算出値として、第2時系列データに含まれる第2環境において時系列で取得された複数のCO2濃度の平均値(たとえば、942.48)を算出する。そして、計測装置1は、第2算出値(たとえば、942.48)から第1算出値(たとえば、636.08)を減算することによって、差分(たとえば、306.4)を算出する。 For example, the measuring device 1 calculates, as the first calculated value, an average value (for example, 636.08) of multiple CO2 concentrations acquired in time series in the first environment included in the first time series data. In addition, the measuring device 1 calculates, as a second calculated value, an average value (for example, 942.48) of a plurality of CO2 concentrations acquired in time series in the second environment included in the second time series data. Then, the measuring device 1 calculates the difference (eg, 306.4) by subtracting the first calculated value (eg, 636.08) from the second calculated value (eg, 942.48).
 上述した差分は、第1環境と第2環境との間における環境の違いから生じている。すなわち、上述した差分は、第2環境における人以外のCO2排出源から排出されるCO2に起因する値である。そこで、計測装置1は、第1環境において用いられるCO2濃度の基準値を基準として、算出した差分を考慮して第2環境におけるCO2濃度を判定するための基準値を算出する。 The difference described above arises from the environmental difference between the first environment and the second environment. That is, the difference described above is a value resulting from CO2 emitted from CO2 emission sources other than humans in the second environment. Therefore, the measuring device 1 calculates a reference value for determining the CO2 concentration in the second environment, taking into consideration the calculated difference, using the reference value of the CO2 concentration used in the first environment as a reference.
 具体的には、計測装置1は、第1環境におけるCO2濃度の基準値(以下、「第1基準値」とも称する。)に差分を加算することによって、第2環境におけるCO2濃度の基準値(以下、「第2基準値」とも称する。)を算出する。たとえば、第1環境におけるCO2濃度の第1基準値が1000ppmである場合、計測装置1は、1000ppmに306.4ppm(差分)を加算することによって、第2基準値として1306.4を算出する。すなわち、第2環境においてCO2濃度が第2基準値である1306.4ppmを超えていることは、第2環境において人の密集度が高まってきているので注意が必要であることを意味する。 Specifically, the measuring device 1 adds the difference to the reference value of the CO2 concentration in the first environment (hereinafter also referred to as the “first reference value”) to obtain the reference value of the CO2 concentration in the second environment ( hereinafter also referred to as a “second reference value”). For example, if the first reference value of the CO2 concentration in the first environment is 1000 ppm, the measuring device 1 adds 306.4 ppm (difference) to 1000 ppm to calculate 1306.4 as the second reference value. That is, the fact that the CO2 concentration exceeds the second reference value of 1306.4 ppm in the second environment means that the density of people is increasing in the second environment, and caution is required.
 あるいは、判定装置4は、第2環境におけるCO2濃度の第2時系列データから差分を減算することによって、予め人以外のCO2排出源から排出されるCO2濃度を第2時系列データから取り除いてもよい。すなわち、計測装置1は、人の密集度を判定するためのCO2濃度の基準値を変更することなく、第2環境におけるCO2濃度の第2時系列データを第1環境におけるCO2濃度の時系列データ相当に変換してもよい。このようにすれば、判定装置4は、第2環境において、変換後の時系列データと第1環境における第1基準値とを比較することができる。 Alternatively, the determination device 4 may remove in advance the CO2 concentration emitted from CO2 emission sources other than humans from the second time-series data of the CO2 concentration in the second environment by subtracting the difference from the second time-series data. good. That is, the measuring device 1 converts the second time-series data of the CO2 concentration in the second environment to the time-series data of the CO2 concentration in the first environment without changing the reference value of the CO2 concentration for determining the density of people. It can be converted accordingly. In this way, the determination device 4 can compare the converted time-series data with the first reference value in the first environment in the second environment.
 [計測装置による処理]
 図8は、実施の形態1に係る計測装置1が実行する処理に関するフローチャートである。計測装置1の制御装置11は、記憶装置12に格納された計測プログラム121を実行することで、図8に示すフローチャートの処理を定期的に実行する。なお、図中において、「S」は「STEP」の略称として用いられる。
[Processing by measuring device]
FIG. 8 is a flowchart regarding processing executed by the measuring device 1 according to the first embodiment. The control device 11 of the measurement device 1 executes the measurement program 121 stored in the storage device 12 to periodically execute the process of the flowchart shown in FIG. In the drawings, "S" is used as an abbreviation for "STEP".
 図8に示すように、制御装置11は、所定時間分(たとえば、1日分)の第2時系列データを取得したか否かを判定する(S1)。制御装置11は、所定時間分の第2時系列データを取得していない場合(S1でNO)、本処理を終了する。 As shown in FIG. 8, the control device 11 determines whether or not second time-series data for a predetermined period of time (for example, one day's worth) has been acquired (S1). If the control device 11 has not acquired the second time-series data for the predetermined time (NO in S1), the process ends.
 一方、制御装置11は、所定時間分の第2時系列データを取得した場合(S1でYES)、第1時系列データに基づき第1算出値を算出する(S2)。たとえば、制御装置11は、図7(A)に示すように、第1環境における第1時系列データに基づき、第1算出値として、第1時系列データの平均値を算出する。さらに、制御装置11は、第2時系列データに基づき第2算出値を算出する(S3)。たとえば、制御装置11は、図7(B)に示すように、第2環境における第2時系列データに基づき、第2算出値として、第2時系列データの平均値を算出する。そして、制御装置11は、第2算出値から第1算出値を減算することによって、差分を算出する(S4)。 On the other hand, when the control device 11 acquires the second time-series data for a predetermined time (YES in S1), it calculates the first calculated value based on the first time-series data (S2). For example, as shown in FIG. 7A, the control device 11 calculates the average value of the first time-series data as the first calculated value based on the first time-series data in the first environment. Furthermore, the control device 11 calculates a second calculated value based on the second time-series data (S3). For example, as shown in FIG. 7B, the control device 11 calculates the average value of the second time-series data as the second calculated value based on the second time-series data in the second environment. Then, the control device 11 calculates the difference by subtracting the first calculated value from the second calculated value (S4).
 制御装置11は、差分に基づき、第2環境におけるCO2濃度の第2基準値を算出する(S5)。たとえば、制御装置11は、予め定められた第1環境におけるCO2濃度の第1基準値に差分を加算することによって、第2環境におけるCO2濃度の第2基準値を算出する。その後、制御装置11は、本処理を終了する。 The control device 11 calculates the second reference value of the CO2 concentration in the second environment based on the difference (S5). For example, the control device 11 calculates the second reference value of the CO2 concentration in the second environment by adding the difference to the predetermined first reference value of the CO2 concentration in the first environment. After that, the control device 11 terminates this process.
 以上のように、実施の形態1に係る計測装置1は、人以外のCO2排出源が存在しない第1環境におけるCO2濃度の第1時系列データと、人以外のCO2排出源が存在する第2環境におけるCO2濃度の第2時系列データとの間の差分を算出し、算出した差分に基づき、第2環境におけるCO2濃度を判定するための基準値(この例では第2基準値)を算出する。これにより、判定装置4は、計測装置1によって算出された基準値を用いて、人以外のCO2排出源から排出されるCO2を考慮して第2環境におけるCO2濃度を判定することができるため、人以外のCO2排出源が存在する第2環境であっても、CO2濃度を精度よく判定することができる。すなわち、判定装置4は、計測装置1によって算出された基準値を用いて、人以外のCO2排出源が存在する第2環境における人の密集度を精度よく判定することができる。 As described above, the measuring device 1 according to the first embodiment provides the first time-series data of the CO2 concentration in the first environment in which there are no non-human CO2 emission sources, and the second time-series data in which there are non-human CO2 emission sources. Calculate the difference between the CO2 concentration in the environment and the second time-series data, and calculate a reference value (second reference value in this example) for determining the CO2 concentration in the second environment based on the calculated difference . As a result, the determination device 4 can determine the CO2 concentration in the second environment by using the reference value calculated by the measurement device 1, taking into account CO2 emitted from CO2 emission sources other than humans. Even in the second environment where there are CO2 emission sources other than humans, the CO2 concentration can be accurately determined. That is, using the reference value calculated by the measuring device 1, the determination device 4 can accurately determine the density of people in the second environment where there are CO2 emission sources other than people.
 図8のフローにおける第1時系列データから第1算出値を求めるステップ(S2)は、記憶装置12から第1算出値を読み出すステップであってもよい。すなわち、制御装置11は、第1環境に関する第1時系列データまたは第1算出値を予め算出して記憶装置12に記憶しておき、第2時系列データから第2基準値を算出する場合には記憶している第1算出値を読み出すことで、第2算出値との差分を算出することもできる。 The step (S2) of obtaining the first calculated value from the first time-series data in the flow of FIG. 8 may be a step of reading the first calculated value from the storage device 12. That is, the control device 11 calculates in advance the first time-series data or the first calculated value regarding the first environment and stores it in the storage device 12, and when calculating the second reference value from the second time-series data, can also calculate the difference from the second calculated value by reading out the stored first calculated value.
 また、センサモジュール2によって取得される第2環境における第2時系列データは、センサモジュール2が設置された第2環境に応じて異なる。たとえば、飲食店においては、焼くなどの食材の調理をするか否か、調理時間、調理器具の数、および店内の大きさなどに応じて、人以外のCO2排出源から排出されるCO2の濃度が異なる。あるいは、工場などの製造現場においては、製造装置の数、製造装置の稼働時間、および工場の大きさなどに応じて、人以外のCO2排出源から排出されるCO2の濃度が異なる。このため、CO2濃度を判定するための基準値も、センサモジュール2が設置された第2環境に応じて設定されることが好ましい。 Also, the second time-series data in the second environment acquired by the sensor module 2 differs according to the second environment in which the sensor module 2 is installed. For example, in a restaurant, the concentration of CO2 emitted from non-human CO2 emission sources depends on whether the ingredients are cooked such as grilling, the cooking time, the number of cooking utensils, and the size of the restaurant. is different. Alternatively, in a manufacturing site such as a factory, the concentration of CO2 emitted from non-human CO2 emission sources varies depending on the number of manufacturing apparatuses, the operating time of the manufacturing apparatuses, the size of the factory, and the like. Therefore, it is preferable that the reference value for determining the CO2 concentration is also set according to the second environment in which the sensor module 2 is installed.
 この点、計測装置1は、センサモジュール2が設置された第2環境ごとにCO2濃度の第2時系列データを取得し、取得した第2時系列データと第1時系列データとの差分を算出することによって、センサモジュール2が設置された第2環境に応じて基準値を設定することができる。これにより、判定装置4は、計測装置1が算出した基準値を用いて、センサモジュール2が設置された第2環境に応じて、適切にCO2濃度を判定することができる。 In this regard, the measuring device 1 acquires second time-series data of the CO2 concentration for each second environment in which the sensor module 2 is installed, and calculates the difference between the acquired second time-series data and the first time-series data. By doing so, the reference value can be set according to the second environment in which the sensor module 2 is installed. Thereby, the determination device 4 can appropriately determine the CO2 concentration using the reference value calculated by the measurement device 1 according to the second environment in which the sensor module 2 is installed.
 また、人以外から排出されたCO2濃度のみを計測することは場合によっては可能であるが、特に飲食店ではCO2濃度を測定するために営業を止めて調理をする必要があったり、調理する人の影響を排除することができなかったりするなど、人に由来するCO2濃度以外のCO2濃度を測定することが困難な場合もある。この点、計測装置1は、実際の営業が行われながらCO2濃度を計測するための基準値を設定することができるため、営業や製造への影響を最小限に抑えることができ、実際の調理や稼働の状態で人以外から排出されたCO2濃度を判定に用いることができる。 In some cases, it is possible to measure only the CO2 concentration emitted by people other than people, but especially in restaurants, it is necessary to stop the business and cook in order to measure the CO2 concentration, or the person who cooks In some cases, it is difficult to measure CO2 concentrations other than human-derived CO2 concentrations, such as the fact that the influence of CO2 cannot be eliminated. In this regard, the measuring device 1 can set the reference value for measuring the CO2 concentration while the actual business is being carried out, so that the influence on the business and manufacturing can be minimized, and the actual cooking can be performed. It is possible to use the concentration of CO2 emitted by people other than people in the state of operation.
 <実施の形態2>
 図9~図14を参照しながら、実施の形態2に係る計測装置について説明する。以下では、実施の形態2に係る計測装置について、実施の形態1に係る計測装置1と異なる部分のみを説明する。
<Embodiment 2>
A measuring device according to a second embodiment will be described with reference to FIGS. 9 to 14. FIG. Only parts of the measuring device according to the second embodiment that are different from the measuring device 1 according to the first embodiment will be described below.
 [差分の算出]
 図9は、第1環境における時系列データに基づく第1特徴データの生成を説明するための図である。図9(A)においては、縦軸にCO2濃度、横軸に時間をとった第1時系列データのグラフが示されている。図9(A)に示すように、計測装置1は、第1環境において定期的(たとえば、1分ごと)に測定されたCO2濃度の第1時系列データを取得する。
[Calculation of difference]
FIG. 9 is a diagram for explaining generation of first feature data based on time-series data in the first environment. FIG. 9A shows a graph of the first time-series data in which the vertical axis represents CO2 concentration and the horizontal axis represents time. As shown in FIG. 9A, the measuring device 1 acquires first time-series data of CO2 concentration measured periodically (for example, every minute) in the first environment.
 次に、計測装置1は、第1環境における第1時系列データに基づき、第1特徴データを生成し、生成した第1特徴データを演算用データ122として記憶装置12に記憶する。 Next, the measuring device 1 generates first feature data based on the first time-series data in the first environment, and stores the generated first feature data in the storage device 12 as calculation data 122 .
 具体的には、計測装置1は、第1特徴データとして、第1時系列データからヒストグラムを生成する。たとえば、図9(B)および図9(C)においては、縦軸に個数、横軸にG/Qをとったヒストグラムが示されている。図9(B)および図9(C)に示すように、計測装置1は、G/Qの値ごとの個数をヒストグラムで表すことによって、第1時系列データの特徴を表す第1特徴データを生成する。なお、計測装置1は、第1特徴データに対応するヒストグラムにおいて、G/Qに限らず、Q/VまたはG/Vを横軸にとってもよい。 Specifically, the measuring device 1 generates a histogram from the first time-series data as the first feature data. For example, FIGS. 9B and 9C show histograms with the number on the vertical axis and G/Q on the horizontal axis. As shown in FIGS. 9(B) and 9(C), the measuring device 1 obtains the first feature data representing the feature of the first time-series data by representing the number for each value of G/Q in a histogram. Generate. Note that the measuring device 1 may use Q/V or G/V as the horizontal axis in the histogram corresponding to the first feature data, instead of G/Q.
 式(1)および式(2)を用いて説明したように、G/Qは、単位換気量当たりのCO2濃度を表すパラメータである。Q/Vは、単位体積当たりの換気量を表すパラメータである。G/Vは、単位体積当たりのCO2濃度排出量を表すパラメータである。計測装置1は、第1特徴データ(ヒストグラム)を生成するにあたって、C(CO2濃度)そのものではなく、G/Q、Q/V、およびG/Vのいずれの特徴値を算出してもよい。 As explained using formulas (1) and (2), G/Q is a parameter that represents the CO2 concentration per unit ventilation. Q/V is a parameter representing the ventilation volume per unit volume. G/V is a parameter representing the CO2 concentration emission amount per unit volume. In generating the first feature data (histogram), the measuring device 1 may calculate any of G/Q, Q/V, and G/V feature values instead of C (CO2 concentration) itself.
 ここで、図10を参照しながら、特徴値の算出について説明する。図10は、特徴値の算出の一例を説明するための図である。図10においては、縦軸にCO2濃度、横軸に時間をとったCO2濃度の時系列データのグラフが示されている。計測装置1は、連立方程式の演算を用いることで、式(1)および式(2)から特徴値を算出する。 Here, calculation of feature values will be described with reference to FIG. FIG. 10 is a diagram for explaining an example of calculation of feature values. FIG. 10 shows a graph of time-series data of the CO2 concentration, with the vertical axis representing the CO2 concentration and the horizontal axis representing time. The measuring device 1 calculates the characteristic value from the equations (1) and (2) by using simultaneous equations.
 具体的には、図10に示すように、計測装置1は、第1時系列データから、特定個数のデータを抽出する。たとえば、計測装置1は、tにおけるCO2濃度C(t)、tにおけるCO2濃度C(t)、およびtにおけるCO2濃度C(t)を抽出する。 Specifically, as shown in FIG. 10, the measuring device 1 extracts a specific number of pieces of data from the first time-series data. For example, the measuring device 1 extracts the CO2 concentration C(t 0 ) at t 0 , the CO2 concentration C(t 1 ) at t 1 , and the CO2 concentration C(t 2 ) at t 2 .
 計測装置1は、式(1)と、抽出したC(t)、C(t)、およびC(t)とから、下記の連立方程式(3)を算出する。 The measuring device 1 calculates the following simultaneous equations (3) from the equation (1) and the extracted C(t 0 ), C(t 1 ), and C(t 2 ).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 計測装置1は、連立方程式(3)から、下記の式(4)を算出する。 The measuring device 1 calculates the following formula (4) from the simultaneous equations (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 計測装置1は、式(4)から、下記の式(5)を算出する。 The measuring device 1 calculates the following formula (5) from the formula (4).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 計測装置1は、式(2)および式(5)から、下記の式(6)を算出することができる。 The measuring device 1 can calculate the following equation (6) from equations (2) and (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 また、計測装置1は、式(3)および式(5)から、下記の式(7)を算出することができる。 Also, the measuring device 1 can calculate the following formula (7) from the formulas (3) and (5).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このように、計測装置1は、第1時系列データから、G/Q(式(6))およびQ/V(式(7))を算出することができる。さらに、計測装置1は、G/Q(式(6))とQ/V(式(7))とから、G/Vを算出することができる。 Thus, the measuring device 1 can calculate G/Q (equation (6)) and Q/V (equation (7)) from the first time-series data. Furthermore, the measuring device 1 can calculate G/V from G/Q (equation (6)) and Q/V (equation (7)).
 図10の例では、計測装置1は、t、t、およびtといった3つの抽出タイミングにおけるCO2濃度(C(t))を用いて特徴値を算出したが、これらの抽出タイミングを変化させることによって、複数の特徴値を算出することができる。図9(A)の例では、1分ごとにCO2濃度が取得されているため、計測装置1は、たとえば、tを15時00分とすれば、tを15時01分、tを15時02分とすればよい。さらに、計測装置1は、tを1分間更新して、tを15時01分とすれば、tを15時02分、tを15時03分とすればよい。 In the example of FIG. 10, the measuring device 1 calculates the feature value using the CO2 concentration (C(t)) at three extraction timings of t 0 , t 1 and t 2 , but these extraction timings can be changed. A plurality of feature values can be calculated by In the example of FIG. 9A, the CO2 concentration is acquired every minute, so if t0 is 15:00, the measuring device 1 can set t0 to 15:01, t1 to 15:01, t2 to should be set to 15:02. Furthermore, the measuring device 1 updates t for one minute, and if t0 is set to 15:01, t1 is set to 15:02 and t2 is set to 15:03.
 図9に戻り、計測装置1は、第1時系列データから算出した複数の特徴値に基づき、ヒストグラムを生成する。ここで、計測装置1は、図9(A)に示す第1時系列データに含まれる全てのデータを用いて特徴値(この例では、G/Q)を算出してもよいし、図9(A)に示す第1時系列データに含まれる全てのデータのうち、所定のルールに従って選択されたデータを用いて特徴値(この例では、G/Q)を算出してもよい。 Returning to FIG. 9, the measuring device 1 generates a histogram based on multiple feature values calculated from the first time-series data. Here, the measuring device 1 may calculate the characteristic value (G/Q in this example) using all the data included in the first time-series data shown in FIG. A feature value (G/Q in this example) may be calculated using data selected according to a predetermined rule from all data included in the first time-series data shown in (A).
 たとえば、計測装置1は、第1時系列データにおけるCO2濃度の変化量が閾値(たとえば、200ppm)を超える期間のCO2濃度を用いて、特徴値を算出してもよい。具体的には、第1時系列データにおいて、時系列で変化するCO2濃度が極小値から極大値に変化する場合、計測装置1は、当該極小値と当該極大値との差(すなわちCO2濃度の変化量)が閾値(200ppm)を超える期間を特定し、当該期間内で取得されたCO2濃度を用いて特徴値を算出してもよい。 For example, the measuring device 1 may calculate the feature value using the CO2 concentration during the period in which the amount of change in the CO2 concentration in the first time-series data exceeds the threshold (for example, 200 ppm). Specifically, in the first time-series data, when the CO2 concentration that changes in time series changes from a minimum value to a maximum value, the measuring device 1 detects the difference between the minimum value and the maximum value (that is, the CO2 concentration A period in which the amount of change) exceeds the threshold value (200 ppm) may be specified, and the feature value may be calculated using the CO2 concentration acquired within the period.
 一例として、図9(A)では、タイミングt21で取得されたCO2濃度が極小値であり、タイミングt22で取得されたCO2濃度が極大値であり、かつ、当該極小値と当該極大値との差が200ppmを超えるため、計測装置1は、タイミングt21からタイミングt22までの期間で取得されたCO2濃度を用いて、特徴値を算出する。 As an example, in FIG. 9A, the CO2 concentration acquired at timing t21 is the minimum value, the CO2 concentration acquired at timing t22 is the maximum value, and the minimum value and the maximum value exceeds 200 ppm, the measuring device 1 calculates the feature value using the CO2 concentration acquired during the period from timing t21 to timing t22 .
 計測装置1が図9(A)に示す第1時系列データに含まれる全てのデータを用いて複数の特徴値を算出した場合、算出された特徴値に対応するヒストグラムは、図9(B)で表される。一方、計測装置1が図9(A)に示す第1時系列データに含まれる全てのデータのうち、上述した所定のルールに従って選択されたデータを用いて複数の特徴値を算出した場合、算出された複数の特徴値に対応するヒストグラムは、図9(C)で表される。 When the measuring device 1 calculates a plurality of feature values using all the data included in the first time-series data shown in FIG. 9(A), the histogram corresponding to the calculated feature values is shown in FIG. 9(B). is represented by On the other hand, when the measuring device 1 calculates a plurality of feature values using data selected according to the above-described predetermined rule among all the data included in the first time-series data shown in FIG. A histogram corresponding to the obtained feature values is shown in FIG. 9(C).
 図9(B)のヒストグラムでは、図9(A)に示す第1時系列データに含まれる全てのデータを用いて特徴値が算出されているため、図9(A)のようにイベントの発生頻度が低い場合はイベントに関するヒストグラムの特徴が現れ難くなっている。これに対して、図9(C)のヒストグラムでは、図9(A)に示す第1時系列データに含まれる全てのデータのうち、CO2濃度の変化量が大きくなっている期間のデータを用いて特徴値が算出されているため、ヒストグラムの特徴が現れ易くなっている。なお、第1時系列データにおいて、イベントの発生頻度が高い、すなわち上述した所定のルールに従って選択されるようなピークが多く現れるような場合は、特定データの抜き出しをすることなくそのままのデータを使用すればよい。 In the histogram of FIG. 9B, the feature values are calculated using all the data included in the first time-series data shown in FIG. 9A. When the frequency is low, the features of the histogram regarding the event are difficult to appear. On the other hand, in the histogram of FIG. 9C, among all the data included in the first time-series data shown in FIG. Since the feature values are calculated using the In the first time-series data, if the frequency of occurrence of events is high, that is, if many peaks appear that are selected according to the above-described predetermined rule, the data is used as it is without extracting specific data. do it.
 図11は、第2環境における時系列データに基づく第2特徴データの生成を説明するための図である。計測装置1は、図9(B)または図9(C)で示したような第1環境における第1時系列データの第1特徴データを記憶装置12に記憶した上で、第2環境における第2時系列データの第2特徴データを生成する。 FIG. 11 is a diagram for explaining generation of second feature data based on time-series data in the second environment. The measuring device 1 stores the first feature data of the first time series data in the first environment as shown in FIG. 9B or 9C in the storage device 12, and then stores the first feature data in the second environment. 2. Generate second feature data of time-series data.
 たとえば、図11(A)においては、縦軸にCO2濃度、横軸に時間をとった第2時系列データのグラフが示されている。図11(A)に示すように、計測装置1は、第2環境において定期的(たとえば、1分ごと)に測定されたCO2濃度の第2時系列データを取得する。 For example, FIG. 11(A) shows a graph of the second time-series data with the CO2 concentration on the vertical axis and the time on the horizontal axis. As shown in FIG. 11A, the measuring device 1 acquires second time-series data of the CO2 concentration measured periodically (for example, every minute) in the second environment.
 次に、計測装置1は、第2環境における第2時系列データに基づき、第2特徴データを生成し、生成した第2特徴データを演算用データ122として記憶装置12に記憶する。 Next, the measuring device 1 generates second feature data based on the second time-series data in the second environment, and stores the generated second feature data in the storage device 12 as calculation data 122 .
 具体的には、計測装置1は、第2特徴データとして、第2時系列データからヒストグラムを生成する。たとえば、図11(B)および図11(C)においては、縦軸に個数、横軸にG/Qをとったヒストグラムが示されている。図11(B)および図11(C)に示すように、計測装置1は、G/Qの値ごとの個数をヒストグラムで表すことによって、第2時系列データの特徴を表す第2特徴データを生成する。なお、計測装置1は、第2特徴データに対応するヒストグラムにおいて、G/Qに限らず、Q/VまたはG/Vを横軸にとってもよい。但し、計測装置1は、第1特徴データと第2特徴データとで、同じ種類の特徴値(たとえば、G/Q)を用いる。これらの特徴値の算出方法は、図9および図10を用いて説明した第1環境における第1特徴データの算出方法と同じである。 Specifically, the measuring device 1 generates a histogram from the second time-series data as the second feature data. For example, FIGS. 11B and 11C show histograms with the number on the vertical axis and G/Q on the horizontal axis. As shown in FIGS. 11(B) and 11(C), the measuring device 1 obtains the second feature data representing the feature of the second time-series data by representing the number for each value of G/Q in a histogram. Generate. Note that the measuring apparatus 1 may use Q/V or G/V as the horizontal axis in the histogram corresponding to the second feature data, instead of G/Q. However, the measuring device 1 uses the same type of feature value (for example, G/Q) for the first feature data and the second feature data. The method of calculating these feature values is the same as the method of calculating the first feature data in the first environment described with reference to FIGS. 9 and 10. FIG.
 ここで、計測装置1は、図11(A)に示す時系列データに含まれる全てのデータを用いて特徴値(この例では、G/Q)を算出してもよいし、図11(A)に示す時系列データに含まれる全てのデータのうち、所定のルールに従って選択されたデータを用いて特徴値(この例では、G/Q)を算出してもよい。 Here, the measuring device 1 may calculate the characteristic value (G/Q in this example) using all the data included in the time-series data shown in FIG. ), data selected according to a predetermined rule may be used to calculate the characteristic value (G/Q in this example).
 たとえば、計測装置1は、第2時系列データにおけるCO2濃度の変化量が閾値(たとえば、200ppm)を超える期間のCO2濃度を用いて、特徴値を算出してもよい。具体的には、第2時系列データにおいて、時系列で変化するCO2濃度が極小値から極大値に変化する場合、計測装置1は、当該極小値と当該極大値との差(すなわちCO2濃度の変化量)が閾値(200ppm)を超える期間を特定し、当該期間内で取得されたCO2濃度を用いて特徴値を算出してもよい。 For example, the measuring device 1 may calculate the characteristic value using the CO2 concentration during the period in which the amount of change in the CO2 concentration in the second time-series data exceeds the threshold (for example, 200 ppm). Specifically, in the second time-series data, when the CO2 concentration that changes in time series changes from a minimum value to a maximum value, the measuring device 1 detects the difference between the minimum value and the maximum value (that is, the CO2 concentration A period in which the amount of change) exceeds the threshold value (200 ppm) may be specified, and the feature value may be calculated using the CO2 concentration acquired within the period.
 一例として、図11(A)では、タイミングt31で取得されたCO2濃度が極小値であり、タイミングt32で取得されたCO2濃度が極大値であり、かつ、当該極小値と当該極大値との差が200ppmを超えるため、計測装置1は、タイミングt31からタイミングt32までの期間で取得されたCO2濃度を用いて、特徴値を算出する。 As an example, in FIG. 11A, the CO2 concentration acquired at timing t31 is the minimum value, the CO2 concentration acquired at timing t32 is the maximum value, and the minimum value and the maximum value exceeds 200 ppm, the measuring device 1 calculates the feature value using the CO2 concentration acquired during the period from timing t31 to timing t32 .
 計測装置1が図11(A)に示す第2時系列データに含まれる全てのデータを用いて複数の特徴値を算出した場合、算出された特徴値に対応するヒストグラムは、図11(B)で表される。一方、計測装置1が図11(A)に示す第2時系列データに含まれる全てのデータのうち、上述した所定のルールに従って選択されたデータを用いて複数の特徴値を算出した場合、算出された複数の特徴値に対応するヒストグラムは、図11(C)で表される。 When the measuring device 1 calculates a plurality of feature values using all data included in the second time-series data shown in FIG. 11(A), the histogram corresponding to the calculated feature values is shown in FIG. 11(B). is represented by On the other hand, when the measurement device 1 calculates a plurality of feature values using data selected according to the above-described predetermined rule among all the data included in the second time-series data shown in FIG. A histogram corresponding to the obtained feature values is shown in FIG. 11(C).
 図11(B)のヒストグラムでは、図11(A)に示す第2時系列データに含まれる全てのデータを用いて特徴値が算出されているため、図11(A)のようにイベントの発生頻度が低い場合はイベントに関するヒストグラムの特徴が現れ難くなっている。これに対して、図11(C)のヒストグラムでは、図11(A)に示す第2時系列データに含まれる全てのデータのうち、CO2濃度の変化量が大きくなっている期間のデータを用いて特徴値が算出されているため、ヒストグラムの特徴が現れ易くなっている。なお、第2時系列データにおいて、イベントの発生頻度が高い、すなわち上述した所定のルールに従って選択されるようなピークが多く現れるような場合は、特定データの抜き出しをすることなくそのままのデータを使用すればよい。特定データを抜き出すかそのままのデータを使用するかは、第1環境および第2環境の各々で測定したデータに対して同じ処理を行うことが好ましい。 In the histogram of FIG. 11B, the feature values are calculated using all the data included in the second time-series data shown in FIG. 11A. When the frequency is low, the features of the histogram regarding the event are difficult to appear. On the other hand, in the histogram of FIG. 11(C), among all the data included in the second time-series data shown in FIG. Since the feature values are calculated using the In the second time-series data, if the frequency of occurrence of events is high, that is, if many peaks appear that are selected according to the predetermined rule described above, the data is used as it is without extracting specific data. do it. Whether the specific data is extracted or the data is used as it is, it is preferable to perform the same processing on the data measured in each of the first environment and the second environment.
 図12は、実施の形態2に係る計測装置1による第1特徴データと第2特徴データとの差分の算出の一例を示す図である。図12(A)には、第1環境における第1特徴データのヒストグラムが示されている。すなわち、図12(A)のヒストグラムは、図9(C)に示す第1特徴データのヒストグラムに対応する。図12(B)には、第2環境における第2特徴データのヒストグラムが示されている。すなわち、図12(B)のヒストグラムは、図11(C)に示す第2特徴データのヒストグラムに対応する。 FIG. 12 is a diagram showing an example of calculation of the difference between the first feature data and the second feature data by the measuring device 1 according to the second embodiment. FIG. 12A shows a histogram of the first feature data in the first environment. That is, the histogram of FIG. 12(A) corresponds to the histogram of the first feature data shown in FIG. 9(C). FIG. 12B shows a histogram of the second feature data in the second environment. That is, the histogram of FIG. 12(B) corresponds to the histogram of the second feature data shown in FIG. 11(C).
 図12に示すように、計測装置1は、第2特徴データを生成した後、事前に記憶装置12に記憶された第1特徴データと、生成した第2特徴データとの間の差分を算出する。具体的には、計測装置1は、第1特徴データから第1算出値を算出し、第2特徴データから第2算出値を算出し、第2算出値から第1算出値を減算することによって、差分を算出する。 As shown in FIG. 12, after generating the second feature data, the measuring device 1 calculates the difference between the first feature data stored in advance in the storage device 12 and the generated second feature data. . Specifically, the measuring device 1 calculates a first calculated value from the first characteristic data, calculates a second calculated value from the second characteristic data, and subtracts the first calculated value from the second calculated value. , to calculate the difference.
 たとえば、図12(A)に示すように、計測装置1は、第1環境におけるヒストグラムに基づき、第1算出値として特徴値(この例ではG/Q)の平均値を算出する。また、図12(B)に示すように、計測装置1は、第2環境におけるヒストグラムに基づき、第2算出値として特徴値(この例ではG/Q)の平均値を算出する。そして、計測装置1は、第2算出値から第1算出値を減算することによって、差分を算出する。 For example, as shown in FIG. 12(A), the measuring device 1 calculates the average value of the feature values (G/Q in this example) as the first calculated value based on the histogram in the first environment. Further, as shown in FIG. 12B, the measuring device 1 calculates the average value of the characteristic values (G/Q in this example) as the second calculated value based on the histogram in the second environment. Then, the measuring device 1 calculates the difference by subtracting the first calculated value from the second calculated value.
 上述した差分は、第1環境と第2環境との間における環境の違いから生じている。すなわち、上述した差分は、第2環境における人以外のCO2排出源から排出されるCO2に起因する値である。そこで、計測装置1は、第1環境において用いられるCO2濃度の基準値を基準として、算出した差分を考慮して第2環境におけるCO2濃度を判定するためのデータを算出する。 The difference described above arises from the environmental difference between the first environment and the second environment. That is, the difference described above is a value resulting from CO2 emitted from CO2 emission sources other than humans in the second environment. Therefore, the measuring device 1 calculates data for determining the CO2 concentration in the second environment, taking into consideration the calculated difference, using the reference value of the CO2 concentration used in the first environment as a reference.
 具体的には、判定装置4は、第1環境におけるCO2濃度の第1基準値に差分を加算することによって、第2環境におけるCO2濃度の第2基準値を算出する。たとえば、第1環境におけるCO2濃度の第1基準値が1000ppmである場合、計測装置1は、1000ppmに差分(たとえば、306.4ppm)を加算することによって、第2基準値として1306.4を算出する。すなわち、第2環境においてCO2濃度が第2基準値である1306.4ppmを超えていることは、第2環境において人の密集度が高まってきているので注意が必要であることを意味する。 Specifically, the determination device 4 calculates the second reference value of the CO2 concentration in the second environment by adding the difference to the first reference value of the CO2 concentration in the first environment. For example, if the first reference value of the CO2 concentration in the first environment is 1000 ppm, the measuring device 1 calculates 1306.4 as the second reference value by adding a difference (for example, 306.4 ppm) to 1000 ppm. do. That is, the fact that the CO2 concentration exceeds the second reference value of 1306.4 ppm in the second environment means that the density of people is increasing in the second environment, and caution is required.
 あるいは、判定装置4は、第2環境におけるCO2濃度の第2時系列データから差分を加算することによって、予め人以外のCO2排出源から排出されるCO2濃度を第2時系列データから取り除いてもよい。すなわち、計測装置1は、人の密集度を判定するためのCO2濃度の基準値を変更することなく、第2環境におけるCO2濃度の第2時系列データを第1環境におけるCO2濃度の時系列データ相当に変換してもよい。このようにすれば、判定装置4は、第2環境において、変換後の時系列データと第1環境における第1基準値とを比較することができる。 Alternatively, the determination device 4 may add the difference from the second time-series data of the CO2 concentration in the second environment to remove in advance the CO2 concentration emitted from the CO2 emission sources other than humans from the second time-series data. good. That is, the measuring device 1 converts the second time-series data of the CO2 concentration in the second environment to the time-series data of the CO2 concentration in the first environment without changing the reference value of the CO2 concentration for determining the density of people. It can be converted accordingly. In this way, the determination device 4 can compare the converted time-series data with the first reference value in the first environment in the second environment.
 なお、図12の例では、計測装置1は、算出値として特徴値の平均値を算出していたが、算出値として特徴値の分散値を算出してもよい。すなわち、計測装置1は、第1環境におけるヒストグラムに基づき、第1算出値として特徴値(この例ではG/Q)の分散値を算出してもよい。また、計測装置1は、第2環境におけるヒストグラムに基づき、第2算出値として特徴値(この例ではG/Q)の分散値を算出してもよい。さらに、計測装置1は、算出値として特徴値の平均値および分散値の両方を算出してもよい。すなわち、計測装置1は、算出値として特徴値の平均値および分散値のうちの少なくとも1つを算出すればよい。 In the example of FIG. 12, the measuring device 1 calculates the average value of the characteristic values as the calculated value, but may calculate the variance of the characteristic values as the calculated value. That is, the measuring device 1 may calculate the variance value of the feature value (G/Q in this example) as the first calculated value based on the histogram in the first environment. Further, the measuring device 1 may calculate the variance of the characteristic value (G/Q in this example) as the second calculated value based on the histogram in the second environment. Furthermore, the measuring device 1 may calculate both the average value and the variance value of the feature values as the calculated values. That is, the measuring device 1 may calculate at least one of the average value and the variance value of the feature values as the calculated value.
 なお、計測装置1は、図12(A)に示すように、図9(C)に示す第1特徴データのヒストグラムを用いて第1算出値を算出していたが、図9(B)に示す第1特徴データのヒストグラムを用いて第1算出値を算出してもよい。計測装置1は、図12(B)に示すように、図11(C)に示す第2特徴データのヒストグラムを用いて第2算出値を算出していたが、図11(B)に示す第2特徴データのヒストグラムを用いて第2算出値を算出してもよい。 Note that the measuring device 1 calculates the first calculated value using the histogram of the first feature data shown in FIG. 9(C) as shown in FIG. 12(A). The first calculated value may be calculated using the histogram of the first feature data shown. As shown in FIG. 12(B), the measuring apparatus 1 calculates the second calculated value using the histogram of the second feature data shown in FIG. 11(C). The second calculated value may be calculated using a histogram of two feature data.
 [計測装置による処理]
 図13および図14を参照しながら、実施の形態2に係る計測装置1が実行する処理について説明する。図13は、実施の形態2に係る計測装置1が実行する基準値算出処理に関するフローチャートである。図14は、実施の形態2に係る計測装置が実行する差分算出処理に関するフローチャートである。計測装置1の制御装置11は、記憶装置12に格納された計測プログラム121を実行することで、図13および図14に示すフローチャートの処理を定期的に実行する。なお、図中において、「S」は「STEP」の略称として用いられる。
[Processing by measuring device]
Processing executed by the measuring device 1 according to the second embodiment will be described with reference to FIGS. 13 and 14. FIG. FIG. 13 is a flowchart relating to reference value calculation processing executed by the measuring device 1 according to the second embodiment. FIG. 14 is a flowchart of difference calculation processing executed by the measuring device according to the second embodiment. The control device 11 of the measurement device 1 executes the measurement program 121 stored in the storage device 12 to periodically execute the processes of the flowcharts shown in FIGS. 13 and 14 . In the drawings, "S" is used as an abbreviation for "STEP".
 図13に示すように、制御装置11は、所定時間分(たとえば、1日分)の第2時系列データを取得したか否かを判定する(S11)。制御装置11は、所定時間分の第2時系列データを取得していない場合(S11でNO)、本処理を終了する。 As shown in FIG. 13, the control device 11 determines whether or not the second time-series data for a predetermined period of time (for example, one day's worth) has been acquired (S11). If the control device 11 has not acquired the second time-series data for the predetermined time (NO in S11), the process ends.
 一方、制御装置11は、所定時間分の第2時系列データを取得した場合(S11でYES)、第2時系列データのうち、CO2濃度の変化量が閾値(たとえば、200ppm)を超える期間のCO2濃度を抽出する(S12)。制御装置11は、CO2濃度を抜き出す必要がないような時系列データを取り扱う場合、S12の処理をスキップしてS13の処理に移行してもよい。制御装置11は、第1時系列データから図9(C)に示すようなヒストグラム(第1特徴データ)を生成する(S13)。また、制御装置11は、抽出したCO2濃度の第2時系列データから図11(C)に示すようなヒストグラム(第2特徴データ)を生成する(S14)。 On the other hand, when the control device 11 acquires the second time-series data for a predetermined period of time (YES in S11), the control device 11 controls the second time-series data for the period in which the amount of change in the CO2 concentration exceeds the threshold value (for example, 200 ppm). CO2 concentration is extracted (S12). The control device 11 may skip the process of S12 and proceed to the process of S13 when handling time-series data from which it is not necessary to extract the CO2 concentration. The control device 11 generates a histogram (first feature data) as shown in FIG. 9C from the first time-series data (S13). Further, the control device 11 generates a histogram (second feature data) as shown in FIG. 11C from the extracted second time-series data of the CO2 concentration (S14).
 次に、制御装置11は、第1特徴データと第2特徴データとの間の差分を算出するための差分算出処理を実行する(S15)。 Next, the control device 11 executes difference calculation processing for calculating the difference between the first feature data and the second feature data (S15).
 図14に示すように、差分算出処理において、制御装置11は、第1特徴データから第1算出値を算出する(S111)。たとえば、制御装置11は、図12(A)に示すように、第1環境におけるヒストグラム(第1特徴データ)に基づき、第1算出値として特徴値(この例ではG/Q)の統計量を算出する。統計量としては、平均値、分散値、最小値、中央値、第一四分位、第三四分位、歪度、および尖度などが挙げられる。 As shown in FIG. 14, in the difference calculation process, the control device 11 calculates a first calculated value from the first feature data (S111). For example, as shown in FIG. 12A, the control device 11 uses the histogram (first feature data) in the first environment to calculate the statistic of the feature value (G/Q in this example) as the first calculated value. calculate. Statistics include mean, variance, minimum, median, first quartile, third quartile, skewness, and kurtosis.
 制御装置11は、第2特徴データから第2算出値を算出する(S112)。たとえば、制御装置11は、図12(B)に示すように、第2環境におけるヒストグラム(第2特徴データ)に基づき、第2算出値として特徴値(この例ではG/Q)の統計量を算出する。統計量としては、平均値、分散値、最小値、中央値、第一四分位、第三四分位、歪度、および尖度などが挙げられる。 The control device 11 calculates a second calculated value from the second feature data (S112). For example, as shown in FIG. 12B, the control device 11 uses the histogram (second feature data) in the second environment to calculate the statistic of the feature value (G/Q in this example) as the second calculated value. calculate. Statistics include mean, variance, minimum, median, first quartile, third quartile, skewness, and kurtosis.
 そして、制御装置11は、第2特徴データから算出される第2算出値から第1特徴データから算出される第1算出値を減算することによって、差分を算出する(S113)。 Then, the control device 11 calculates the difference by subtracting the first calculated value calculated from the first feature data from the second calculated value calculated from the second feature data (S113).
 図13に戻り、制御装置11は、差分に基づき、第2環境におけるCO2濃度の第2基準値を算出する(S16)。たとえば、制御装置11は、予め定められた第1環境におけるCO2濃度の第1基準値に差分を加算することによって、第2環境におけるCO2濃度の第2基準値を算出する。その後、制御装置11は、本処理を終了する。 Returning to FIG. 13, the control device 11 calculates the second reference value of the CO2 concentration in the second environment based on the difference (S16). For example, the control device 11 calculates the second reference value of the CO2 concentration in the second environment by adding the difference to the predetermined first reference value of the CO2 concentration in the first environment. After that, the control device 11 terminates this process.
 以上のように、実施の形態2に係る計測装置1は、人以外のCO2排出源が存在しない第1環境におけるCO2濃度の第1時系列データに基づき生成された第1特徴データと、人以外のCO2排出源が存在する第2環境におけるCO2濃度の第2時系列データに基づき生成された第2特徴データとの間の差分を算出し、算出した差分に基づき、第2環境におけるCO2濃度を判定するための基準値(この例では第2基準値)を算出する。これにより、判定装置4は、計測装置1によって算出された基準値を用いて、人以外のCO2排出源から排出されるCO2を考慮して第2環境におけるCO2濃度を判定することができるため、人以外のCO2排出源が存在する第2環境であっても、CO2濃度を精度よく判定することができる。 As described above, the measuring device 1 according to the second embodiment provides the first feature data generated based on the first time-series data of the CO2 concentration in the first environment in which there are no CO2 emission sources other than humans, Calculating the difference between the second feature data generated based on the second time-series data of the CO2 concentration in the second environment where the CO2 emission source is present, and calculating the CO2 concentration in the second environment based on the calculated difference A reference value (second reference value in this example) for determination is calculated. As a result, the determination device 4 can determine the CO2 concentration in the second environment by using the reference value calculated by the measurement device 1, taking into account CO2 emitted from CO2 emission sources other than humans. Even in the second environment where there are CO2 emission sources other than humans, the CO2 concentration can be accurately determined.
 計測装置1は、第2特徴データから算出される第2算出値から第1特徴データから算出される第1算出値を減算することによって、第1特徴データと第2特徴データとの間の差分を算出するため、差分を算出するために新たな特徴データを生成するといった複雑な処理を行うことなく、比較的簡単に差分を算出することができる。 The measuring device 1 subtracts the first calculated value calculated from the first feature data from the second calculated value calculated from the second feature data, thereby obtaining the difference between the first feature data and the second feature data. is calculated, the difference can be calculated relatively easily without performing complicated processing such as generating new feature data for calculating the difference.
 図13のフローのS13において、制御装置11は、第1特徴データを読み出してもよい。すなわち、計測装置1は、第1時系列データから第1特徴データを予め算出して記憶装置12に記憶しておき、記憶していた第1特徴データを読み出すことで、処理時間を短くすることができる。同様に図14のS111においても、計測装置1は、第1算出値を読み出してもよい。すなわち、計測装置1は、第1特徴データから第1算出値を予め算出して記憶装置12に記憶しておくことで、判定時には記憶装置12から第1算出値を読み出すだけで対応可能である。 In S13 of the flow of FIG. 13, the control device 11 may read the first feature data. That is, the measuring device 1 calculates in advance the first feature data from the first time-series data, stores the first feature data in the storage device 12, and reads out the stored first feature data, thereby shortening the processing time. can be done. Similarly, in S111 of FIG. 14, the measuring device 1 may read the first calculated value. That is, the measuring device 1 calculates the first calculated value from the first feature data in advance and stores it in the storage device 12, so that the first calculated value can be read out from the storage device 12 at the time of determination. .
 <実施の形態3>
 図15~図18を参照しながら、実施の形態3に係る計測装置1について説明する。以下では、実施の形態3に係る計測装置1について、実施の形態2に係る計測装置1と異なる部分のみを説明する。
<Embodiment 3>
A measuring device 1 according to Embodiment 3 will be described with reference to FIGS. 15 to 18. FIG. Only parts of the measuring device 1 according to the third embodiment that differ from the measuring device 1 according to the second embodiment will be described below.
 [差分の算出]
 図15~図17は、実施の形態3に係る計測装置1による第1特徴データと第2特徴データとの差分の算出の一例を示す図である。図15(A)には、第1環境における第1特徴データのヒストグラムが示されている。すなわち、図15(A)のヒストグラムは、図9(C)に示す第1特徴データのヒストグラムに対応する。図15(B)には、第2環境における第2特徴データのヒストグラムが示されている。すなわち、図15(B)のヒストグラムは、図11(C)に示す第2特徴データのヒストグラムに対応する。
[Calculation of difference]
15 to 17 are diagrams showing an example of calculation of the difference between the first feature data and the second feature data by the measurement device 1 according to Embodiment 3. FIG. FIG. 15A shows a histogram of the first feature data in the first environment. That is, the histogram of FIG. 15(A) corresponds to the histogram of the first feature data shown in FIG. 9(C). FIG. 15B shows a histogram of the second feature data in the second environment. That is, the histogram of FIG. 15(B) corresponds to the histogram of the second feature data shown in FIG. 11(C).
 図15に示すように、実施の形態3に係る計測装置1は、第2特徴データを生成した後、事前に記憶装置12に記憶された第1特徴データと、生成した第2特徴データとの間の差分を算出する。具体的には、計測装置1は、第2特徴データから第1特徴データを減算することによって新たな特徴データ(以下、「第3特徴データ」とも称する。)を生成する。 As shown in FIG. 15, after generating the second feature data, the measuring apparatus 1 according to the third embodiment compares the first feature data stored in advance in the storage device 12 with the generated second feature data. Calculate the difference between Specifically, the measuring device 1 generates new feature data (hereinafter also referred to as “third feature data”) by subtracting the first feature data from the second feature data.
 たとえば、計測装置1は、図15(B)に示す第2特徴データのヒストグラムの各階級の度数から、図15(A)に示す第1特徴データのヒストグラムの各階級の度数を減算することによって、図15(C)に示すような第3特徴データのヒストグラムを生成する。このため、第1環境のヒストグラムと第2環境のヒストグラムは同じ階級の幅で作成されることが望ましい。 For example, the measuring device 1 subtracts the frequency of each class of the histogram of the first feature data shown in FIG. 15(A) from the frequency of each class of the histogram of the second feature data shown in FIG. 15(B). , generates a histogram of the third feature data as shown in FIG. 15(C). Therefore, it is desirable that the histogram of the first environment and the histogram of the second environment are created with the same class width.
 ここで、計測装置1は、第1特徴データに含まれるデータ数が、第2特徴データに含まれるデータ数よりも少ない場合、第3特徴データを適切に生成することができないため、以下のいずれかの条件を満たした場合に、第3特徴データを生成する。 Here, if the number of data included in the first feature data is less than the number of data included in the second feature data, the measuring apparatus 1 cannot appropriately generate the third feature data. When the above condition is satisfied, the third feature data is generated.
 たとえば、計測装置1は、第1時系列データにおけるCO2濃度の取得時間が第2時系列データにおけるCO2濃度の取得時間以上である場合に、第3特徴データを生成する。あるいは、計測装置1は、第1特徴データにおけるデータ量(特徴値G/Qの個数)が第2特徴データにおけるデータ量(特徴値G/Qの個数)以上である場合に、第3特徴データを生成する。 For example, the measuring device 1 generates the third feature data when the acquisition time of the CO2 concentration in the first time-series data is equal to or longer than the acquisition time of the CO2 concentration in the second time-series data. Alternatively, when the data amount (the number of feature values G/Q) in the first feature data is equal to or greater than the data amount (the number of feature values G/Q) in the second feature data, the measuring apparatus 1 determines the third feature data to generate
 さらに、計測装置1は、第1特徴データにおけるデータ数が第2特徴データにおけるデータ数よりも少ない場合に、第1特徴データにおけるデータ数に所定数を乗算することによって第1特徴データにおけるデータ数を第2特徴データにおけるデータ数以上とした上で、第3特徴データを生成してもよい。乗算される所定数は、たとえば、第2特徴データにおけるデータ数(たとえば、D2)から第1特徴データにおけるデータ数(たとえば、D1)を割った数(たとえば、D1/D2)を用いればよい。 Furthermore, when the number of data in the first feature data is smaller than the number of data in the second feature data, the measuring device 1 multiplies the number of data in the first feature data by a predetermined number to obtain the number of data in the first feature data. may be equal to or greater than the number of data in the second feature data, and then the third feature data may be generated. The predetermined number to be multiplied may be, for example, a number (eg, D1/D2) obtained by dividing the number of data in the second feature data (eg, D2) by the number of data in the first feature data (eg, D1).
 計測装置1は、第3特徴データを生成した後、第3特徴データのヒストグラムに基づき、差分として、特徴値(この例ではG/Q)の平均値(たとえば、394.63)を算出する。なお、計測装置1は、第3特徴データのヒストグラムに基づき、差分として、特徴値の統計量を算出してもよい。統計量としては、平均値の他に、分散値、最小値、中央値、第一四分位、第三四分位、歪度、および尖度などが挙げられる。計測装置1は、上述した統計量のうちの少なくとも1つを算出してもよい。たとえば、計測装置1は、第3特徴データのヒストグラムに基づき、差分として、特徴値の分散値を算出してもよい。さらに、計測装置1は、第3特徴データのヒストグラムに基づき、差分として、特徴値の平均値および分散値の両方を算出してもよい。ここで、計測装置1は、差分を算出するにあたって、第3特徴データのヒストグラムに含まれる複数の特徴値について、最低値が0となるように複数の特徴値を変更する。 After generating the third feature data, the measuring device 1 calculates the average value (for example, 394.63) of the feature values (G/Q in this example) as the difference based on the histogram of the third feature data. Note that the measuring device 1 may calculate the statistic of the feature value as the difference based on the histogram of the third feature data. In addition to the mean, the statistics include variance, minimum, median, first quartile, third quartile, skewness, and kurtosis. The measuring device 1 may calculate at least one of the statistics described above. For example, the measuring device 1 may calculate the variance of the feature values as the difference based on the histogram of the third feature data. Furthermore, the measuring device 1 may calculate both the mean value and the variance value of the feature values as the difference based on the histogram of the third feature data. Here, in calculating the difference, the measuring device 1 changes the plurality of feature values included in the histogram of the third feature data so that the lowest value becomes 0.
 たとえば、計測装置1は、図16(A)に示すように、第3特徴データに含まれる複数の特徴値の全てを変更対象として、図16(B)に示すように、変更対象の特徴値における最低値が0となるように、変更対象の特徴値を0から順に配置する。 For example, as shown in FIG. 16A, the measuring apparatus 1 sets all of the plurality of feature values included in the third feature data as change targets, and as shown in FIG. The feature values to be changed are arranged in order from 0 so that the lowest value in is 0.
 あるいは、計測装置1は、図17(A)および図17(B)に示すように、第3特徴データに含まれる複数の特徴値のうち、第1特徴データに含まれる特徴値における最大値に対応する特徴値を含む部分を変更対象として、図17(C)に示すように、変更対象の特徴値における最低値が0となるように、変更対象の特徴値を0から順に配置する。 Alternatively, as shown in FIGS. 17(A) and 17(B), the measuring apparatus 1 determines the maximum value of the feature values included in the first feature data among the plurality of feature values included in the third feature data. As shown in FIG. 17C, the feature values to be changed are arranged in order from 0 so that the minimum value of the feature values to be changed is 0, with the portion including the corresponding feature value being the change target.
 これにより、計測装置1は、第2環境における人以外のCO2排出源から排出されるCO2によって生じる特徴値を算出することができ、このような特徴値に基づき差分を算出することができる。 As a result, the measuring device 1 can calculate a characteristic value caused by CO2 emitted from CO2 emission sources other than humans in the second environment, and can calculate a difference based on such a characteristic value.
 なお、計測装置1は、図15(A)に示すように、図9(C)に示す第1特徴データのヒストグラムを用いて第3特徴データを生成していたが、図9(B)に示す第1特徴データのヒストグラムを用いて第3特徴データを生成してもよい。計測装置1は、図15(B)に示すように、図11(C)に示す第2特徴データのヒストグラムを用いて第3特徴データを生成していたが、図11(B)に示す第2特徴データのヒストグラムを用いて第3特徴データを生成してもよい。 Note that the measuring apparatus 1 generates the third feature data using the histogram of the first feature data shown in FIG. 9(C) as shown in FIG. 15(A). The histogram of the first feature data shown may be used to generate the third feature data. As shown in FIG. 15(B), the measuring apparatus 1 generates the third feature data using the histogram of the second feature data shown in FIG. 11(C). A histogram of two feature data may be used to generate the third feature data.
 [計測装置による処理]
 図18は、実施の形態3に係る計測装置1が実行する差分算出処理(図13のS15)に関するフローチャートである。実施の形態3に係る計測装置1の制御装置11は、記憶装置12に格納された計測プログラム121を実行することで、図18に示すフローチャートの処理を定期的に実行する。
[Processing by measuring device]
FIG. 18 is a flowchart relating to the difference calculation process (S15 in FIG. 13) executed by the measuring device 1 according to the third embodiment. The control device 11 of the measurement device 1 according to Embodiment 3 executes the measurement program 121 stored in the storage device 12, thereby periodically executing the processing of the flowchart shown in FIG.
 図13に示すように、制御装置11は、S11~S14の処理によって、図9(C)に示すようなヒストグラム(第1特徴データ)および図11(C)に示すようなヒストグラム(第2特徴データ)を生成した後、図18に示す差分算出処理を実行する。 As shown in FIG. 13, the control device 11 generates a histogram (first feature data) as shown in FIG. 9C and a histogram (second feature data) as shown in FIG. data) is generated, the difference calculation process shown in FIG. 18 is executed.
 図18に示すように、制御装置11は、第2特徴データから第1特徴データを減算することによって、図15(C)に示すような第3特徴データのヒストグラムを生成する(S121)。 As shown in FIG. 18, the control device 11 generates a histogram of the third feature data as shown in FIG. 15(C) by subtracting the first feature data from the second feature data (S121).
 制御装置11は、図16(B)および図17(C)に示すように、第3特徴データのヒストグラムにおける最低値が0となるように複数の特徴値を変更することによって、第3特徴データのヒストグラムを再配置する(S122)。制御装置11は、再配置後の3特徴データのヒストグラムに基づき、特徴値の平均値を算出することによって、差分を算出する(S123)。 As shown in FIGS. 16(B) and 17(C), the control device 11 changes the plurality of feature values so that the lowest value in the histogram of the third feature data is 0, so that the third feature data are rearranged (S122). The control device 11 calculates the difference by calculating the average value of the feature values based on the histogram of the three feature data after rearrangement (S123).
 その後、図13に示すように、制御装置11は、S16の処理によって、差分に基づき第2基準値を算出する。 After that, as shown in FIG. 13, the control device 11 calculates the second reference value based on the difference through the process of S16.
 以上のように、実施の形態3に係る計測装置1は、第2特徴データから第1特徴データを減算することによって第3特徴データを生成し、第3特徴データに基づき差分を算出する。これにより、差分を算出するために新たな第3特徴データを用いることで、精度よく差分を算出することができる。 As described above, the measuring device 1 according to Embodiment 3 generates the third feature data by subtracting the first feature data from the second feature data, and calculates the difference based on the third feature data. Accordingly, by using the new third feature data to calculate the difference, the difference can be calculated with high accuracy.
 <実施の形態4>
 図19および図20を参照しながら、実施の形態4に係る計測装置1について説明する。以下では、実施の形態4に係る計測装置1について、実施の形態2に係る計測装置1と異なる部分のみを説明する。
<Embodiment 4>
A measuring device 1 according to Embodiment 4 will be described with reference to FIGS. 19 and 20. FIG. Only parts of the measuring device 1 according to the fourth embodiment that are different from the measuring device 1 according to the second embodiment will be described below.
 [差分の算出]
 図19は、実施の形態4に係る計測装置1による第1特徴データと第2特徴データとの差分の算出の一例を示す図である。図19(A)には、第2環境における第2特徴データのヒストグラムが示されている。すなわち、図19(A)のヒストグラムは、図11(C)に示す第2特徴データのヒストグラムに対応する。
[Calculation of difference]
FIG. 19 is a diagram showing an example of calculation of the difference between the first feature data and the second feature data by the measuring device 1 according to the fourth embodiment. FIG. 19A shows a histogram of the second feature data in the second environment. That is, the histogram of FIG. 19(A) corresponds to the histogram of the second feature data shown in FIG. 11(C).
 図19に示すように、実施の形態4に係る計測装置1は、第2特徴データを生成した後、事前に記憶装置12に記憶された第1特徴データと、生成した第2特徴データとの間の差分を算出する。具体的には、計測装置1は、第2特徴データから、第1特徴データの第1算出値に相当する特徴値を有するデータを減算することによって新たな特徴データ(以下、「第4特徴データ」とも称する。)を生成する。 As shown in FIG. 19, after generating the second feature data, the measuring apparatus 1 according to the fourth embodiment compares the first feature data stored in advance in the storage device 12 with the generated second feature data. Calculate the difference between Specifically, the measuring device 1 generates new feature data (hereinafter referred to as "fourth feature data ”) is generated.
 たとえば、計測装置1は、図19(A)に示す第2特徴データのヒストグラムを、図19(B)に示すヒストグラムと、図19(C)に示すヒストグラムとに分ける。図19(B)のヒストグラムに含まれる特徴値(この例ではG/Q)の平均値は、図12(A)に示した第1環境におけるヒストグラムに含まれる特徴値(この例ではG/Q)の平均値に相当する。すなわち、図19(B)のヒストグラムに含まれる特徴値の平均値は、第1特徴データの第1算出値と同一または略同一である。 For example, the measuring device 1 divides the histogram of the second feature data shown in FIG. 19(A) into the histogram shown in FIG. 19(B) and the histogram shown in FIG. 19(C). The average value of the feature values (G/Q in this example) included in the histogram of FIG. 19B is the feature value (G/Q in this example) included in the histogram in the first environment shown in ). That is, the average value of the feature values included in the histogram of FIG. 19B is the same or substantially the same as the first calculated value of the first feature data.
 計測装置1は、図19(A)に示す第2特徴データから、第1特徴データの平均値に相当する特徴値を有するデータを減算することによって、図19(C)に示すように、残った特徴値を含むヒストグラムを第4特徴データとして生成する。 The measuring device 1 subtracts data having a feature value corresponding to the average value of the first feature data from the second feature data shown in FIG. A histogram including the feature values obtained is generated as the fourth feature data.
 なお、計測装置1は、第1算出値として第1環境におけるヒストグラムに含まれる特徴値の平均値以外の統計量を算出してもよい。平均値以外の統計量としては、分散値、最小値、中央値、第一四分位、第三四分位、歪度、および尖度などが挙げられる。そして、計測装置1は、第2特徴データから、第1特徴データの分散値に相当する特徴値を有するデータを減算することによって第4特徴データを生成してもよい。 Note that the measuring device 1 may calculate a statistic other than the average value of the feature values included in the histogram in the first environment as the first calculated value. Statistics other than mean include variance, minimum, median, first quartile, third quartile, skewness, and kurtosis. Then, the measuring device 1 may generate fourth feature data by subtracting data having a feature value corresponding to the variance value of the first feature data from the second feature data.
 計測装置1は、第4特徴データを生成した後、第4特徴データのヒストグラムに基づき、特徴値(この例ではG/Q)の平均値(たとえば、464.7)を算出する。なお、計測装置1は、第4特徴データのヒストグラムに基づき、差分として、特徴値の統計量を算出してもよい。統計量としては、平均値、分散値、最小値、中央値、第一四分位、第三四分位、歪度、および尖度などがあげられる。計測装置1は、上述した統計量のうちの少なくとも1つを算出してもよい。たとえば、計測装置1は、第4特徴データのヒストグラムに基づき、差分として、特徴値の分散値を算出してもよい。さらに、計測装置1は、第4特徴データのヒストグラムに基づき、差分として、特徴値の平均値および分散値の両方を算出してもよい。ここで、計測装置1は、差分を算出するにあたって、第4特徴データのヒストグラムに含まれる複数の特徴値について、最低値が0となるように複数の特徴値を変更する。 After generating the fourth feature data, the measuring device 1 calculates the average value (for example, 464.7) of the feature values (G/Q in this example) based on the histogram of the fourth feature data. Note that the measuring device 1 may calculate the statistic of the feature value as the difference based on the histogram of the fourth feature data. Statistics include mean, variance, minimum, median, first quartile, third quartile, skewness, and kurtosis. The measuring device 1 may calculate at least one of the statistics described above. For example, the measuring device 1 may calculate the variance of the feature values as the difference based on the histogram of the fourth feature data. Furthermore, the measuring device 1 may calculate both the mean value and variance value of the feature values as the difference based on the histogram of the fourth feature data. Here, in calculating the difference, the measuring device 1 changes the plurality of feature values included in the histogram of the fourth feature data so that the lowest value becomes zero.
 たとえば、計測装置1は、第4特徴データに含まれる複数の特徴値の全てを変更対象として、変更対象の特徴値における最低値が0となるように、変更対象の特徴値を0から順に配置する。 For example, the measuring device 1 arranges the feature values to be changed in order from 0 so that all of the plurality of feature values included in the fourth feature data are to be changed, and the lowest value among the feature values to be changed is 0. do.
 これにより、計測装置1は、第2環境における人以外のCO2排出源から排出されるCO2によって生じる特徴値を算出することができ、このような特徴値に基づき差分を算出することができる。 As a result, the measuring device 1 can calculate a characteristic value caused by CO2 emitted from CO2 emission sources other than humans in the second environment, and can calculate a difference based on such a characteristic value.
 なお、計測装置1は、図19(A)に示すように、図11(C)に示す第2特徴データのヒストグラムを用いて第4特徴データを生成していたが、図11(B)に示す第2特徴データのヒストグラムを用いて第4特徴データを生成してもよい。 Note that, as shown in FIG. 19(A), the measuring apparatus 1 generates the fourth feature data using the histogram of the second feature data shown in FIG. 11(C). The histogram of the second feature data shown may be used to generate the fourth feature data.
 [計測装置による処理]
 図20は、実施の形態4に係る計測装置1が実行する処理に関するフローチャートである。実施の形態4に係る計測装置1の制御装置11は、記憶装置12に格納された計測プログラム121を実行することで、図20に示すフローチャートの処理を定期的に実行する。
[Processing by measuring device]
FIG. 20 is a flowchart regarding processing executed by the measuring device 1 according to the fourth embodiment. The control device 11 of the measurement device 1 according to Embodiment 4 executes the measurement program 121 stored in the storage device 12, thereby periodically executing the processing of the flowchart shown in FIG.
 図13に示すように、制御装置11は、S11~S14の処理によって、図9(C)に示すようなヒストグラム(第1特徴データ)および図11(C)に示すようなヒストグラム(第2特徴データ)を生成した後、図20に示す差分算出処理を実行する。 As shown in FIG. 13, the control device 11 generates a histogram (first feature data) as shown in FIG. 9C and a histogram (second feature data) as shown in FIG. data) is generated, the difference calculation process shown in FIG. 20 is executed.
 図20に示すように、制御装置11は、第1特徴データから第1算出値を算出する(S131)。たとえば、制御装置11は、第1環境におけるヒストグラム(第1特徴データ)に基づき、第1算出値として特徴値(この例ではG/Q)の平均値を算出する。 As shown in FIG. 20, the control device 11 calculates the first calculated value from the first feature data (S131). For example, the control device 11 calculates the average value of the feature values (G/Q in this example) as the first calculated value based on the histogram (first feature data) in the first environment.
 制御装置11は、第2特徴データから、第1特徴データの第1算出値に相当する特徴値を有するデータを減算することによって、図19(C)に示すような第4特徴データのヒストグラムを生成する(S132)。 Control device 11 subtracts data having a feature value corresponding to the first calculated value of the first feature data from the second feature data, thereby creating a histogram of fourth feature data as shown in FIG. Generate (S132).
 制御装置11は、第4特徴データのヒストグラムにおける最低値が0となるように複数の特徴値を変更することによって、第4特徴データのヒストグラムを再配置する(S133)。制御装置11は、再配置後の4特徴データのヒストグラムに基づき、特徴値の平均値を算出することによって、差分を算出する(S134)。 The control device 11 rearranges the histogram of the fourth feature data by changing the plurality of feature values so that the lowest value in the histogram of the fourth feature data is 0 (S133). The control device 11 calculates the difference by calculating the average value of the feature values based on the histogram of the rearranged four feature data (S134).
 その後、図13に示すように、制御装置11は、S16の処理によって、差分に基づき第2基準値を算出する。制御装置11は、第1特徴データから第1算出値を予め算出して記憶装置12に記憶しておき、記憶していた第1算出値を読み出してもよい。すなわち、制御装置11は、S131において、第1算出値を読み出してもよい。 After that, as shown in FIG. 13, the control device 11 calculates the second reference value based on the difference through the process of S16. The control device 11 may calculate the first calculated value in advance from the first characteristic data, store it in the storage device 12, and read the stored first calculated value. That is, the control device 11 may read the first calculated value in S131.
 以上のように、実施の形態4に係る計測装置1は、第2特徴データから、第1特徴データの第1算出値に相当する特徴値を有するデータを減算することによって第4特徴データを生成し、第4特徴データに基づき差分を算出する。これにより、差分を算出するために新たな第4特徴データを用いることで、精度よく差分を算出することができる。さらに、計測装置1は、第2特徴データから第1特徴データをそのまま減算するのではなく、第2特徴データから、第1特徴データの第1算出値に相当する特徴値を有するデータを減算することによって第4特徴データを生成するため、より精度よく差分を算出することができる。 As described above, the measuring device 1 according to Embodiment 4 generates the fourth feature data by subtracting the data having the feature value corresponding to the first calculated value of the first feature data from the second feature data. and the difference is calculated based on the fourth feature data. Thus, by using the new fourth feature data to calculate the difference, it is possible to calculate the difference with high accuracy. Furthermore, the measuring device 1 does not subtract the first feature data from the second feature data as it is, but subtracts data having a feature value corresponding to the first calculated value of the first feature data from the second feature data. As a result, the fourth feature data is generated, so the difference can be calculated with higher accuracy.
 <実施の形態5>
 図21を参照しながら、実施の形態5に係る判定システム100について説明する。以下では、実施の形態5に係る判定システム100について、実施の形態1に係る判定システム100と異なる部分のみを説明する。
<Embodiment 5>
A determination system 100 according to Embodiment 5 will be described with reference to FIG. Only parts of the determination system 100 according to the fifth embodiment that differ from the determination system 100 according to the first embodiment will be described below.
 図21に示すように、判定システム100は、計測装置1およびセンサモジュール2に加えて、報知装置3をさらに備える。また、センサモジュール2は、オゾナイザ26をさらに備える。 As shown in FIG. 21 , the determination system 100 further includes a notification device 3 in addition to the measurement device 1 and the sensor module 2 . Moreover, the sensor module 2 further includes an ozonizer 26 .
 判定装置4は、センサモジュール2から取得したCO2濃度の第2時系列データを解析することによって、未来におけるCO2濃度の変化を予測する。さらに、判定装置4は、CO2濃度の予測値を計測装置1から取得した第2基準値と比較し、CO2濃度の予測値が第2基準値を超えている場合、あるいは、CO2濃度の予測値が第2基準値を超えそうな場合に、ウィルスによる感染の拡大を防止するために、オゾナイザ26を駆動させたり、報知装置3に含まれるディスプレイ31またはスピーカ32を用いてユーザに換気を促したりする。 The determination device 4 predicts changes in the CO2 concentration in the future by analyzing the second time-series data of the CO2 concentration acquired from the sensor module 2. Furthermore, the determination device 4 compares the predicted value of the CO2 concentration with the second reference value acquired from the measuring device 1, and if the predicted value of the CO2 concentration exceeds the second reference value, or if the predicted value of the CO2 concentration is likely to exceed the second reference value, the ozonizer 26 is driven, or the display 31 or speaker 32 included in the notification device 3 is used to prompt the user to ventilate in order to prevent the spread of virus infection. do.
 判定装置4のデータ出力装置44は、制御装置41の指令に従って、オゾナイザ26を制御するための制御信号をセンサモジュール2に出力したり、報知装置3を制御するための制御信号を報知装置3に出力したりする。 The data output device 44 of the determination device 4 outputs a control signal for controlling the ozonizer 26 to the sensor module 2 or outputs a control signal for controlling the notification device 3 to the notification device 3 in accordance with a command from the control device 41 . output.
 センサモジュール2のオゾナイザ26は、オゾンを生成するとともに、生成したオゾンをセンサモジュール2が設置された第2環境に排出する。制御装置21は、判定装置4からの制御信号に従ってオゾナイザ26を制御することによって、オゾナイザ26からオゾンを発生させる。 The ozonizer 26 of the sensor module 2 generates ozone and discharges the generated ozone to the second environment where the sensor module 2 is installed. The control device 21 causes the ozonizer 26 to generate ozone by controlling the ozonizer 26 according to the control signal from the determination device 4 .
 報知装置3は、ディスプレイ31と、スピーカ32とを備える。ディスプレイ31は、判定装置4からの制御信号に従って、制御装置41によって算出されたCO2濃度の判定結果に基づく画像など、各種の画像を表示する。たとえば、ディスプレイ31は、判定装置4からの制御信号に従って、ユーザに換気を促すための画像を表示する。スピーカ32は、判定装置4からの制御信号に従って、制御装置41によって算出されたCO2濃度の判定結果に基づく音など、各種の音を出力する。たとえば、スピーカ32は、判定装置4からの制御信号に従って、ユーザに換気を促すための音を出力する。 The notification device 3 includes a display 31 and a speaker 32. The display 31 displays various images such as an image based on the determination result of the CO2 concentration calculated by the control device 41 according to the control signal from the determination device 4 . For example, the display 31 displays an image for prompting the user to ventilate in accordance with the control signal from the determination device 4 . The speaker 32 outputs various sounds such as sounds based on the determination result of the CO2 concentration calculated by the control device 41 according to the control signal from the determination device 4 . For example, the speaker 32 outputs a sound for prompting the user to ventilate in accordance with the control signal from the determination device 4 .
 なお、報知装置3は、判定装置4と別の構成であることに限らない。判定装置4は、ディスプレイ31およびスピーカ32のうちの少なくとも1つを備えていてもよい。さらに、報知装置3は、計測装置1または判定装置4のユーザが所有する携帯端末またはPC(Personal Computer)であってもよい。たとえば、判定装置4は、近距離無線通信などによってユーザが所有する携帯端末またはPCに制御信号を出力し、携帯端末またはPC(報知装置3)は、判定装置4からの制御信号に基づき、ディスプレイ31に画像を表示したり、スピーカ32から音を出力したりしてもよい。 Note that the notification device 3 is not limited to a configuration different from that of the determination device 4 . The determination device 4 may have at least one of the display 31 and the speaker 32 . Furthermore, the notification device 3 may be a mobile terminal or a PC (Personal Computer) owned by the user of the measurement device 1 or the determination device 4 . For example, the determination device 4 outputs a control signal to a mobile terminal or PC owned by the user through short-range wireless communication or the like, and the mobile terminal or PC (informing device 3) outputs a control signal based on the control signal from the determination device 4 to display An image may be displayed on 31 or sound may be output from speaker 32 .
 このように構成された判定システム100において、判定装置4は、センサモジュール2によって取得されたCO2濃度の時系列データを解析することによって、未来におけるCO2濃度の変化を予測する。そして、判定装置4は、CO2濃度の予測値を計測装置1から取得した第2基準値と比較し、CO2濃度の予測値が第2基準値を超えている場合、あるいは、CO2濃度の予測値が第2基準値を超えそうな場合に、センサモジュール2に制御信号を出力することによってオゾナイザ26を駆動させたり、報知装置3に制御信号を出力することによってディスプレイ31またはスピーカ32を制御したりする。 In the determination system 100 configured in this way, the determination device 4 analyzes the time-series data of the CO2 concentration acquired by the sensor module 2 to predict changes in the CO2 concentration in the future. Then, the determination device 4 compares the predicted value of the CO2 concentration with the second reference value acquired from the measuring device 1, and if the predicted value of the CO2 concentration exceeds the second reference value, or if the predicted value of the CO2 concentration is likely to exceed the second reference value, a control signal is output to the sensor module 2 to drive the ozonizer 26, or a control signal is output to the notification device 3 to control the display 31 or the speaker 32. do.
 <実施の形態6>
 図22を参照しながら、実施の形態6に係る計測装置1について説明する。以下では、実施の形態6に係る計測装置1について、実施の形態1~4に係る計測装置1と異なる部分のみを説明する。
<Embodiment 6>
A measuring device 1 according to Embodiment 6 will be described with reference to FIG. 22 . Only parts of the measuring device 1 according to the sixth embodiment that are different from the measuring devices 1 according to the first to fourth embodiments will be described below.
 実施の形態1~4に係る計測装置1は、第2環境におけるCO2濃度を判定するための第2基準値を算出するように構成されていたが、実施の形態6に係る計測装置1は、さらに、算出した第2基準値を用いて、第2環境におけるCO2濃度を判定してもよい。すなわち、計測装置1は、判定装置4の機能を備えていてもよく、判定装置4と一体化された装置であってもよい。具体的には、実施の形態6に係る計測装置1は、データ取得装置13によってセンサモジュール2から取得された第2環境におけるCO2濃度の到達値を、予測モデルを用いて予測し、予測した到達値と第2基準値とに基づき、第2環境におけるCO2濃度を判定してもよい。 The measuring device 1 according to Embodiments 1 to 4 is configured to calculate the second reference value for determining the CO2 concentration in the second environment, but the measuring device 1 according to Embodiment 6 Furthermore, the CO2 concentration in the second environment may be determined using the calculated second reference value. That is, the measuring device 1 may have the function of the determination device 4 or may be a device integrated with the determination device 4 . Specifically, the measuring device 1 according to Embodiment 6 predicts the target value of the CO2 concentration in the second environment acquired from the sensor module 2 by the data acquisition device 13 using a prediction model, and the predicted target value A CO2 concentration in the second environment may be determined based on the value and the second reference value.
 たとえば、図22は、実施の形態6に係る計測装置1が実行する判定処理に関するフローチャートである。計測装置1の制御装置11は、記憶装置12に格納された計測プログラム121を実行することで、図22に示すフローチャートの処理を定期的に実行する。なお、図中において、「S」は「STEP」の略称として用いられる。 For example, FIG. 22 is a flowchart relating to determination processing executed by the measuring device 1 according to the sixth embodiment. The control device 11 of the measurement device 1 executes the measurement program 121 stored in the storage device 12 to periodically execute the processing of the flowchart shown in FIG. 22 . In the drawings, "S" is used as an abbreviation for "STEP".
 図22に示すように、制御装置11は、所定時間分の第2時系列データを取得したか否かを判定する(S51)。なお、制御装置11は、S51において、予測モデルによって未来におけるCO2濃度の変化を予測可能なデータ量の第2時系列データを取得したか否かを判定してもよい。制御装置11は、所定時間分の第2時系列データを取得していない場合(S51でNO)、本処理を終了する。 As shown in FIG. 22, the control device 11 determines whether or not the second time-series data for a predetermined period of time has been acquired (S51). Note that, in S51, the control device 11 may determine whether or not the second time-series data having the amount of data capable of predicting future changes in the CO2 concentration by the prediction model has been acquired. If the control device 11 has not acquired the second time-series data for the predetermined time (NO in S51), the process ends.
 一方、制御装置11は、所定時間分の第2時系列データを取得した場合(S51でYES)、予測モデルを用いて第2時系列データの変化を予測することによって、第2環境におけるCO2濃度の予測値(到達値)を算出する(S52)。制御装置11は、予測値を第2基準値と比較することで、第2環境におけるCO2濃度を判定し(S53)、判定結果を出力する(S54)。たとえば、制御装置11は、予測値が第2基準値を超えている場合、あるいは、予測値が第2基準値を超えそうな場合に、オゾナイザ26を制御するための制御信号をセンサモジュール2に出力したり、報知装置3を制御するための制御信号を報知装置3に出力したりする。その後、制御装置11は、本処理を終了する。 On the other hand, when the control device 11 acquires the second time-series data for a predetermined period of time (YES in S51), the control device 11 predicts changes in the second time-series data using the prediction model, thereby calculating the CO2 concentration in the second environment. is calculated (S52). The control device 11 compares the predicted value with the second reference value to determine the CO2 concentration in the second environment (S53), and outputs the determination result (S54). For example, when the predicted value exceeds the second reference value, or when the predicted value is likely to exceed the second reference value, the control device 11 sends a control signal for controlling the ozonizer 26 to the sensor module 2. and outputs a control signal for controlling the notification device 3 to the notification device 3 . After that, the control device 11 terminates this process.
 以上のように、実施の形態6に係る計測装置1は、人以外のCO2排出源が存在しない第1環境におけるCO2濃度の第1時系列データと、人以外のCO2排出源が存在する第2環境におけるCO2濃度の第2時系列データとの間の差分を算出し、算出した差分と、第2時系列データとに基づき、第2環境におけるCO2濃度を判定する。これにより、計測装置1は、人以外のCO2排出源から排出されるCO2を考慮して第2環境におけるCO2濃度を判定することができるため、人以外のCO2排出源が存在する第2環境であっても、CO2濃度を精度よく判定することができる。 As described above, the measuring device 1 according to Embodiment 6 provides the first time-series data of the CO2 concentration in the first environment in which there are no non-human CO2 emission sources, and the second time-series data in which there are non-human CO2 emission sources. A difference between the CO2 concentration in the environment and the second time-series data is calculated, and the CO2 concentration in the second environment is determined based on the calculated difference and the second time-series data. As a result, the measuring device 1 can determine the CO2 concentration in the second environment in consideration of CO2 emitted from non-human CO2 emission sources. Even if there is, the CO2 concentration can be determined with high accuracy.
 <変形例>
 図22のS52の処理において、制御装置11は、データ取得装置13によってセンサモジュール2から取得された第2環境におけるCO2濃度から差分を減算することによって、減算値を算出し、減算値と第1環境におけるCO2濃度の第1基準値とに基づき、第2環境におけるCO2濃度を判定してもよい。
<Modification>
In the process of S52 in FIG. 22, the control device 11 calculates a subtraction value by subtracting the difference from the CO2 concentration in the second environment acquired from the sensor module 2 by the data acquisition device 13, and calculates the subtraction value and the first A CO2 concentration in the second environment may be determined based on the first reference value of CO2 concentration in the environment.
 さらに、制御装置11は、データ取得装置13によってセンサモジュール2から取得された第2環境におけるCO2濃度の到達値を、予測モデルを用いて予測し、予測した到達値から差分を減算することによって、上述した減算値を算出してもよい。 Further, the control device 11 predicts the target value of the CO2 concentration in the second environment acquired from the sensor module 2 by the data acquisition device 13 using a prediction model, and subtracts the difference from the estimated target value. You may calculate the subtraction value mentioned above.
 上述した実施の形態においては、計測装置1がセンサモジュール2と別体であったが、計測装置1がセンサモジュール2に含まれる各構成を備えていてもよい。すなわち、変形例に係る計測装置1は、センサ25と、オゾナイザ26とを備え、制御装置11がセンサ25およびオゾナイザ26を制御してもよい。また、計測装置1は、通信部(データ取得装置13)、制御部(制御装置11)、および記憶部(記憶装置12)を一体的に備える1つの装置でなく、たとえば、データ取得装置13に対応する機能を有する通信部に特化した装置と、制御装置11に対応する機能を有する制御部を備えた装置と、記憶装置12に対応する機能を有する記憶部を備えた装置とに分かれているなど、複数の装置から構成されていてもよい。 Although the measuring device 1 is separate from the sensor module 2 in the above-described embodiment, the measuring device 1 may include each component included in the sensor module 2 . That is, the measuring device 1 according to the modification may include the sensor 25 and the ozonizer 26 , and the control device 11 may control the sensor 25 and the ozonizer 26 . Further, the measurement device 1 is not a single device integrally including a communication unit (data acquisition device 13), a control unit (control device 11), and a storage unit (storage device 12), but for example, the data acquisition device 13 It is divided into a device specializing in a communication section having a corresponding function, a device having a control section having a function corresponding to the control device 11, and a device having a storage section having a function corresponding to the storage device 12. It may be composed of a plurality of devices, such as
 さらに、計測装置1は、報知装置3に含まれる各構成を備えていてもよい。すなわち、変形例に係る計測装置1は、ディスプレイ31と、スピーカ32とを備え、制御装置11がディスプレイ31およびスピーカ32を制御してもよい。 Furthermore, the measuring device 1 may include each component included in the notification device 3. That is, the measuring device 1 according to the modification may include a display 31 and a speaker 32 , and the control device 11 may control the display 31 and the speaker 32 .
 以上、複数の実施の形態および変形例について説明したが、これらの複数の実施の形態および変形例の各々における特徴は、矛盾が生じない範囲で適宜組み合わせることが可能である。 A plurality of embodiments and modifications have been described above, but the features of each of these embodiments and modifications can be appropriately combined within a range that does not cause contradiction.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1 計測装置、2 センサモジュール、3 報知装置、4 判定装置、11,21,41 制御装置、12,42 記憶装置、13,43 データ取得装置、23 通信装置、25 センサ、26 オゾナイザ、31 ディスプレイ、32 スピーカ、44 データ出力装置、50 ネットワーク、100 判定システム、121 計測プログラム、122 演算用データ、123 時系列データ、311,313,314 アイコン、421 判定プログラム、422 基準値データ。 1 measuring device, 2 sensor module, 3 reporting device, 4 judging device, 11, 21, 41 control device, 12, 42 storage device, 13, 43 data acquisition device, 23 communication device, 25 sensor, 26 ozonizer, 31 display, 32 speaker, 44 data output device, 50 network, 100 judgment system, 121 measurement program, 122 calculation data, 123 time-series data, 311, 313, 314 icons, 421 judgment program, 422 reference value data.

Claims (17)

  1.  二酸化炭素濃度を計測する計測装置であって、
     大気中に二酸化炭素を排出する排出源として人以外の二酸化炭素排出源が存在しない第1環境における二酸化炭素濃度の第1時系列データを記憶する記憶装置と、
     前記人以外の前記二酸化炭素排出源が存在する第2環境における二酸化炭素濃度の第2時系列データを取得するデータ取得装置と、
     制御装置とを備え、
     前記制御装置は、前記第1時系列データと前記第2時系列データとの間の差分に基づき、前記第2環境における二酸化炭素濃度を判定するための基準値を算出する、計測装置。
    A measuring device for measuring carbon dioxide concentration,
    a storage device that stores first time-series data of carbon dioxide concentration in a first environment where there are no carbon dioxide emission sources other than humans as emission sources that emit carbon dioxide into the atmosphere;
    a data acquisition device that acquires second time-series data of carbon dioxide concentration in a second environment in which the carbon dioxide emission source other than the person exists;
    a control device;
    The measuring device, wherein the control device calculates a reference value for determining the carbon dioxide concentration in the second environment based on a difference between the first time series data and the second time series data.
  2.  前記制御装置は、
     前記第1時系列データに基づき第1算出値を算出し、
     前記第2時系列データに基づき第2算出値を算出し、
     前記第2算出値から前記第1算出値を減算することによって、前記差分を算出する、請求項1に記載の計測装置。
    The control device is
    Calculate a first calculated value based on the first time-series data,
    Calculate a second calculated value based on the second time-series data,
    The measuring device according to claim 1, wherein said difference is calculated by subtracting said first calculated value from said second calculated value.
  3.  前記第1算出値は、前記第1時系列データの平均値を含み、
     前記第2算出値は、前記第2時系列データの平均値を含む、請求項2に記載の計測装置。
    The first calculated value includes an average value of the first time-series data,
    The measuring device according to claim 2, wherein said second calculated value includes an average value of said second time-series data.
  4.  前記制御装置は、
     前記第1時系列データに基づき第1特徴データを生成し、
     前記第2時系列データに基づき第2特徴データを生成し、
     前記第1特徴データに基づき第1算出値を算出し、
     前記第2特徴データに基づき第2算出値を算出し、
     前記第2算出値から前記第1算出値を減算することによって、前記差分を算出する、請求項1に記載の計測装置。
    The control device is
    generating first feature data based on the first time-series data;
    generating second feature data based on the second time-series data;
    calculating a first calculated value based on the first feature data;
    calculating a second calculated value based on the second feature data;
    The measuring device according to claim 1, wherein said difference is calculated by subtracting said first calculated value from said second calculated value.
  5.  前記制御装置は、
     前記第1時系列データに基づき第1特徴データを生成し、
     前記第2時系列データに基づき第2特徴データを生成し、
     前記第2特徴データから前記第1特徴データを減算することによって、第3特徴データを生成し、
     前記第3特徴データの平均値および分散値の少なくとも1つを算出することによって、前記差分を算出する、請求項1に記載の計測装置。
    The control device is
    generating first feature data based on the first time-series data;
    generating second feature data based on the second time-series data;
    generating third feature data by subtracting the first feature data from the second feature data;
    The measuring device according to claim 1, wherein said difference is calculated by calculating at least one of an average value and a variance value of said third feature data.
  6.  前記制御装置は、
     前記第1時系列データに基づき第1特徴データを生成し、
     前記第2時系列データに基づき第2特徴データを生成し、
     前記第1特徴データに基づき第1算出値を算出し、
     前記第2特徴データから、前記第1算出値に相当するデータを減算することによって第4特徴データを生成し、
     前記第4特徴データの平均値および分散値の少なくとも1つを算出することによって、前記差分を算出する、請求項1に記載の計測装置。
    The control device is
    generating first feature data based on the first time-series data;
    generating second feature data based on the second time-series data;
    calculating a first calculated value based on the first feature data;
    generating fourth feature data by subtracting data corresponding to the first calculated value from the second feature data;
    The measuring device according to claim 1, wherein said difference is calculated by calculating at least one of an average value and a variance value of said fourth feature data.
  7.  前記第1算出値は、前記第1特徴データの平均値および分散値の少なくとも1つを含む、請求項6に記載の計測装置。 The measuring device according to claim 6, wherein the first calculated value includes at least one of an average value and a variance value of the first feature data.
  8.  前記制御装置は、
     前記第1時系列データにおける二酸化炭素濃度の変化量が閾値を超える期間の二酸化炭素濃度に基づき前記第1特徴データを生成し、
     前記第2時系列データにおける二酸化炭素濃度の変化量が前記閾値を超える期間の二酸化炭素濃度に基づき前記第1特徴データを生成する、請求項4~請求項7のいずれか1項に記載の計測装置。
    The control device is
    generating the first feature data based on the carbon dioxide concentration during a period in which the amount of change in the carbon dioxide concentration in the first time-series data exceeds a threshold;
    The measurement according to any one of claims 4 to 7, wherein the first feature data is generated based on the carbon dioxide concentration in a period in which the amount of change in carbon dioxide concentration in the second time-series data exceeds the threshold. Device.
  9.  前記変化量は、時系列で変化する二酸化炭素濃度が極小値から極大値に変化する場合における前記極小値と前記極大値との間の差を含む、請求項8に記載の計測装置。 The measuring device according to claim 8, wherein the amount of change includes a difference between the minimum value and the maximum value when the carbon dioxide concentration that changes in time series changes from the minimum value to the maximum value.
  10.  前記制御装置は、前記第1環境における二酸化炭素濃度を判定するための第1基準値に前記差分を加算することによって、前記第2環境における二酸化炭素濃度を判定するための前記基準値を算出する、請求項1~請求項9のいずれか1項に記載の計測装置。 The control device calculates the reference value for determining the carbon dioxide concentration in the second environment by adding the difference to a first reference value for determining the carbon dioxide concentration in the first environment. , The measuring device according to any one of claims 1 to 9.
  11.  請求項1~10のいずれか1項に記載の前記計測装置と、
     判定装置とを備え、
     前記判定装置は、前記計測装置によって算出された前記基準値に基づき、前記第2環境における二酸化炭素濃度を判定する、判定システム。
    The measuring device according to any one of claims 1 to 10;
    and a determination device,
    The determination system, wherein the determination device determines the carbon dioxide concentration in the second environment based on the reference value calculated by the measurement device.
  12.  前記判定装置は、
     前記第2環境における二酸化炭素濃度の到達値を予測し、
     予測した前記到達値と前記基準値とに基づき、前記第2環境における二酸化炭素濃度を判定する、請求項11に記載の判定システム。
    The determination device is
    Predicting the reached value of the carbon dioxide concentration in the second environment,
    12. The determination system according to claim 11, wherein the carbon dioxide concentration in said second environment is determined based on said predicted attainment value and said reference value.
  13.  前記判定装置は、
     前記第2環境における二酸化炭素濃度から前記計測装置によって算出された前記差分を減算することによって、減算値を算出し、
     前記減算値と前記第1環境における二酸化炭素濃度を判定するための第1基準値とに基づき、前記第2環境における二酸化炭素濃度を判定する、請求項11または請求項12に記載の判定システム。
    The determination device is
    calculating a subtraction value by subtracting the difference calculated by the measuring device from the carbon dioxide concentration in the second environment;
    13. The determination system according to claim 11 or 12, wherein the carbon dioxide concentration in the second environment is determined based on the subtraction value and a first reference value for determining the carbon dioxide concentration in the first environment.
  14.  前記判定装置は、
     前記第2環境における二酸化炭素濃度の到達値を予測し、
     予測した前記到達値から前記計測装置によって算出された前記差分を減算することによって、前記減算値を算出する、請求項13に記載の判定システム。
    The determination device is
    Predicting the reached value of the carbon dioxide concentration in the second environment,
    14. The determination system according to claim 13, wherein said subtraction value is calculated by subtracting said difference calculated by said measuring device from said predicted arrival value.
  15.  前記判定装置は、前記第2環境における二酸化炭素濃度の判定結果に基づき、前記第2環境に配置されたオゾナイザを制御するための信号を前記オゾナイザに送信する、請求項11~請求項14のいずれか1項に記載の判定システム。 15. The determination device according to any one of claims 11 to 14, wherein the determination device transmits a signal for controlling the ozonizer placed in the second environment to the ozonizer based on the determination result of the carbon dioxide concentration in the second environment. or the determination system according to item 1.
  16.  コンピュータによる二酸化炭素濃度を計測する計測方法であって、
     大気中に二酸化炭素を排出する排出源として人以外の二酸化炭素排出源が存在しない第1環境における二酸化炭素濃度の第1時系列データを記憶するステップと、
     前記人以外の前記二酸化炭素排出源が存在する第2環境における二酸化炭素濃度の第2時系列データを取得するステップと、
     前記第1時系列データと前記第2時系列データとの間の差分に基づき、前記第2環境における二酸化炭素濃度を判定するための基準値を算出するステップとを含む、計測方法。
    A measuring method for measuring carbon dioxide concentration by computer,
    storing first time-series data of carbon dioxide concentration in a first environment in which there are no non-human carbon dioxide emission sources as emission sources of carbon dioxide into the atmosphere;
    obtaining a second time-series data of carbon dioxide concentration in a second environment in which the carbon dioxide emission source other than the person is present;
    and calculating a reference value for determining the carbon dioxide concentration in the second environment based on the difference between the first time-series data and the second time-series data.
  17.  二酸化炭素濃度を計測する計測プログラムであって、
     コンピュータに、
     大気中に二酸化炭素を排出する排出源として人以外の二酸化炭素排出源が存在しない第1環境における二酸化炭素濃度の第1時系列データを記憶するステップと、
     前記人以外の前記二酸化炭素排出源が存在する第2環境における二酸化炭素濃度の第2時系列データを取得するステップと、
     前記第1時系列データと前記第2時系列データとの間の差分に基づき、前記第2環境における二酸化炭素濃度を判定するための基準値を算出するステップとを実行させる、計測プログラム。
    A measurement program for measuring carbon dioxide concentration,
    to the computer,
    storing first time-series data of carbon dioxide concentration in a first environment in which there are no non-human carbon dioxide emission sources as emission sources of carbon dioxide into the atmosphere;
    obtaining a second time-series data of carbon dioxide concentration in a second environment in which the carbon dioxide emission source other than the person is present;
    calculating a reference value for determining the carbon dioxide concentration in the second environment based on the difference between the first time series data and the second time series data.
PCT/JP2022/033383 2021-09-21 2022-09-06 Measurement device, measurement method, measurement program, and assessment system WO2023047939A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023516549A JPWO2023047939A1 (en) 2021-09-21 2022-09-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021153324 2021-09-21
JP2021-153324 2021-09-21

Publications (1)

Publication Number Publication Date
WO2023047939A1 true WO2023047939A1 (en) 2023-03-30

Family

ID=85720594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033383 WO2023047939A1 (en) 2021-09-21 2022-09-06 Measurement device, measurement method, measurement program, and assessment system

Country Status (2)

Country Link
JP (1) JPWO2023047939A1 (en)
WO (1) WO2023047939A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052276A (en) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd Behavior deciding device, care system, house with case and program recording medium
JP2004278868A (en) * 2003-03-13 2004-10-07 Toshiba Corp In-room number calculation system and its method
JP2005156138A (en) * 2003-11-04 2005-06-16 Daikin Ind Ltd Ventilation controller
JP2020166731A (en) * 2019-03-29 2020-10-08 株式会社エクォス・リサーチ Persons in room estimation device and persons in room estimation program
JP6934553B1 (en) * 2020-11-26 2021-09-15 株式会社クリエイティブジャパン Information processing equipment, information processing system, information processing method and information processing program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052276A (en) * 1999-08-05 2001-02-23 Matsushita Electric Ind Co Ltd Behavior deciding device, care system, house with case and program recording medium
JP2004278868A (en) * 2003-03-13 2004-10-07 Toshiba Corp In-room number calculation system and its method
JP2005156138A (en) * 2003-11-04 2005-06-16 Daikin Ind Ltd Ventilation controller
JP2020166731A (en) * 2019-03-29 2020-10-08 株式会社エクォス・リサーチ Persons in room estimation device and persons in room estimation program
JP6934553B1 (en) * 2020-11-26 2021-09-15 株式会社クリエイティブジャパン Information processing equipment, information processing system, information processing method and information processing program

Also Published As

Publication number Publication date
JPWO2023047939A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US9418665B2 (en) Method for controlling device and device control system
Finkenstädt et al. A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks
CN106796707B (en) Chronic disease discovery and management system
US9002671B2 (en) Systems and methods for latency and measurement uncertainty management in stimulus-response tests
US20100311023A1 (en) Systems amd methods for evaluating neurobehavioural performance from reaction time tests
KR102107722B1 (en) Method and system for non-contact monitoring biological information by using a microwave radar signal
EP3633643A1 (en) Drowsiness estimating device, awakening-induction control device, and awakening induction system
JP2018048749A (en) Estimation device, estimation system, estimation method and estimation program
US9116515B2 (en) In-room probability estimating apparatus, method therefor and program
WO2023047939A1 (en) Measurement device, measurement method, measurement program, and assessment system
JP2008299820A (en) Position information processor
JP7006199B2 (en) Data generator, data generator, data generator and sensor device
US9770572B2 (en) Device, method, medium for guiding a user to a desired sleep state
KR101896157B1 (en) Method for controlling sensor based on statistical process control
JP2014186005A (en) Absence estimation device and absence estimation method, and program for the same
JP7180819B1 (en) predictor
Hassan et al. External validation of risk scores to predict in-hospital mortality in patients hospitalized due to coronavirus disease 2019
JP2019068153A (en) Information processing method, information processing unit and information processing program
JP6648435B2 (en) Discrimination device, discrimination method, program, model generation device, and model generation method
Kirkegaard et al. Variability of individual infectiousness derived from aggregate statistics of Covid-19
JP2020162649A (en) Health management device, health management system, health management program, and health management method
Pardoe A Bayesian sampling approach to regression model checking
JP2022151708A (en) Determination device, determination system, determination method, and determination program
US20210007704A1 (en) Detecting subjects with disordered breathing
CN112924617A (en) Self-adjusting event detection

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023516549

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872695

Country of ref document: EP

Kind code of ref document: A1