WO2023047710A1 - Light irradiating medical device, and method for manufacturing light irradiating medical device - Google Patents

Light irradiating medical device, and method for manufacturing light irradiating medical device Download PDF

Info

Publication number
WO2023047710A1
WO2023047710A1 PCT/JP2022/022437 JP2022022437W WO2023047710A1 WO 2023047710 A1 WO2023047710 A1 WO 2023047710A1 JP 2022022437 W JP2022022437 W JP 2022022437W WO 2023047710 A1 WO2023047710 A1 WO 2023047710A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin tube
medical device
optical fiber
light irradiation
light
Prior art date
Application number
PCT/JP2022/022437
Other languages
French (fr)
Japanese (ja)
Inventor
弘規 ▲高▼田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023047710A1 publication Critical patent/WO2023047710A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes

Definitions

  • the present invention relates to a light irradiation medical device for irradiating light to tissues such as cancer cells in body lumens such as blood vessels and gastrointestinal tracts, and a method for manufacturing the light irradiation medical device.
  • a photosensitizer is administered into the body by intravenous injection or intraperitoneal injection, and the photosensitizer is accumulated in target tissues such as cancer cells, and light of a specific wavelength is used. to excite the photosensitizer.
  • An energy transfer occurs when the excited photosensitizer returns to the ground state, generating reactive oxygen species.
  • Target tissue can be removed by attacking the target tissue with reactive oxygen species.
  • ablation using laser light a target tissue is irradiated with laser light and cauterized. An apparatus for performing such light irradiation has been proposed.
  • Patent documents 1 and 2 disclose a tube in which an optical fiber through which laser light from a laser oscillator is guided is inserted, and which is filled with a predetermined liquid that absorbs the laser light emitted from the tip of the optical fiber.
  • a reinforcing member made of a material having a high melting point and a predetermined rigidity that can withstand the heat generated by the optical fiber is provided on the inner surface of the tube.
  • the reinforcing member can be composed of a coil-shaped member in order to improve the operability of the catheter, and it is disclosed that it functions as a stopper against which the tip of the optical fiber hits.
  • the front irradiation type light irradiation device described in Patent Document 1 and Patent Document 2 needs to emit light at a certain location and then irradiate the target tissue. It was necessary to repeat the operation of slightly shifting the position of the light-emitting part and emitting the light again several times. In addition, irradiation may be difficult depending on the location and shape of the tumor. In addition, since the reinforcing member as described in Patent Documents 1 and 2 is provided on the distal side of the distal end of the optical fiber, it is difficult to sufficiently reduce the diameter of the tube itself. When treating lesions in thin tubes such as the lungs, the optical fiber cannot be inserted close to the affected area.
  • the diameter of the resin tube itself can be easily reduced.
  • the optical fiber can be brought closer to the affected area, and the treatment efficiency can be improved.
  • the presence of the coil member can impart appropriate rigidity, it is possible to improve operability while reducing the diameter.
  • Manufacture of a photoirradiation medical device comprising the steps of: taking out a material; placing a cylindrical member and an optical fiber in a lumen of a resin tube; Method.
  • the resin tube itself can be easily made thin, the light irradiation medical device can be easily inserted into a thin tube, and the optical fiber can be brought closer to the affected area. This can improve treatment efficiency.
  • the existence of the cylindrical member can impart moderate rigidity, so that it is possible to provide a light irradiation medical device that is small in diameter and has good operability.
  • the resin tube itself can be easily made thin, the light irradiation medical device can be easily inserted into a thin tube, and the optical fiber can be brought closer to the affected area. This can improve treatment efficiency.
  • the existence of the cylindrical member can impart moderate rigidity, so that it is possible to provide a light irradiation medical device that is small in diameter and has good operability.
  • the step of forming a resin tube by connecting a second resin tube to the proximal portion of the first resin tube, and forming a reduced-diameter portion whose lumen narrows toward the distal side of the resin tube.
  • the core material has, in the second region, a tapered portion extending from the end of the first region and decreasing in outer diameter toward the distal side [8] to [10], [12 ] or [13].
  • a method for manufacturing the photoirradiation medical device according to 1. [18] The method for manufacturing a light irradiation medical device according to [17], wherein the cylindrical member and the optical fiber are fixed with the optical fiber inserted into the lumen of the cylindrical member. [19] The method for manufacturing a photoirradiation medical device according to any one of [8] to [18], wherein the cylindrical member has a coil portion in which a wire is spirally wound. [20] The method for manufacturing a light irradiation medical device according to [19], wherein the wire is in contact with the inner surface of the resin tube over its entire length.
  • the light irradiation medical device and the method for manufacturing the light irradiation medical device provide a light irradiation medical device in which the diameter of the resin tube itself can be easily reduced. As a result, it is easy to insert into a thin tube, the optical fiber can be brought closer to the affected area, and the treatment efficiency can be improved. In addition, since the presence of the coil member or the cylindrical member can impart appropriate rigidity, it is possible to improve operability while reducing the diameter.
  • FIG. 1 is a cross-sectional view (partial side view) of a light irradiation medical device according to an embodiment of the present invention
  • FIG. FIG. 2 is a cross-sectional end view of the light irradiation medical device shown in FIG. 1 taken along line II-II. 1. It is sectional drawing (partial side view) which shows the modification of the light irradiation medical device shown in FIG. 2 is an enlarged cross-sectional view of the distal side of the optical fiber shown in FIG. 1
  • FIG. FIG. 2 is a cross-sectional view showing a modification of the optical fiber shown in FIG. 1
  • 3 is a cross-sectional view showing another modification of the optical fiber shown in FIG. 1;
  • FIG. 3 is a cross-sectional view showing another modification of the optical fiber shown in FIG. 1;
  • FIG. FIG. 10 is a cross-sectional view (partial side view) enlarging the distal side of a light irradiation medical device according to another embodiment of the present invention.
  • FIG. 4 is a side view showing an example of members prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention.
  • FIG. 4 is a side view showing an example of a core material prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention.
  • FIG. 4 is a side view showing a modification of the core material prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention.
  • FIG. 4 is a side view showing a modification of members prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention. 1. It is sectional drawing (partial side view) which shows the modification of the light irradiation medical device shown in FIG
  • One embodiment of the light irradiation medical device of the present invention includes a resin tube having a reduced diameter portion that narrows the lumen toward the distal side; an optical fiber extending in the longitudinal direction of the resin tube in a predetermined section and having a light diffusing portion that emits light radially outward of the resin tube; and a coil member in which a wire is helically wound around the optical fiber, and the distal end of the coil member and the inner surface of the reduced diameter portion are in contact with each other.
  • the diameter of the resin tube itself can be easily reduced. As a result, it is easy to insert into a thin tube, the optical fiber can be brought closer to the affected area, and the treatment efficiency can be improved.
  • the presence of the coil member can impart appropriate rigidity, the operability can be improved.
  • a photoirradiation medical device is used in PDT and photoablation to irradiate light of a specific wavelength to the treatment area, which is the target tissue such as cancer cells, in a body lumen such as a blood vessel or digestive tract.
  • the light irradiation medical device may be delivered to the treatment site alone, or may be used together with a delivery catheter or endoscope.
  • a light irradiation medical device is placed inside the body through a forceps channel of the endoscope and delivered to a treatment site.
  • FIG. 1 is a cross-sectional view (partial side view) of a light irradiation medical device according to one embodiment of the present invention.
  • FIG. 2 is an end view of the light irradiation medical device shown in FIG. 1 taken along line II-II.
  • FIG. 3 is a cross-sectional view (partial side view) showing a modification of the light irradiation medical device shown in FIG.
  • FIG. 4 is an enlarged cross-sectional view of the distal side of the optical fiber shown in FIG.
  • FIG. 5 is a cross-sectional view showing a modification of the optical fiber shown in FIG.
  • FIG. 6 is a cross-sectional view showing another modification of the optical fiber shown in FIG. FIG.
  • FIG. 7 is a cross-sectional view showing another modification of the optical fiber shown in FIG.
  • FIG. 8 is a cross-sectional view (partial side view) enlarging the distal side of a light irradiation medical device according to another embodiment of the present invention.
  • the light irradiation medical device 1 has a resin tube 10 , an optical fiber 20 and a coil member 40 .
  • the light irradiation medical device may be simply referred to as the device.
  • the device 1 has a resin tube 10.
  • the resin tube 10 has a longitudinal direction x, a radial direction, and a circumferential direction p.
  • the resin tube 10 preferably has a distal end and a proximal end in the longitudinal direction x and has a lumen 11 extending in the longitudinal direction x.
  • the resin tube 10 may have only one lumen 11 or may have a plurality of lumens 11 .
  • the resin tube 10 has a cylindrical shape for arranging the optical fiber 20 and the coil member 40 in its lumen 11 .
  • the resin tube 10 preferably has a tubular shape with only one lumen 11 . Since the resin tube 10 is inserted into the body, it preferably has flexibility.
  • Resin tube 10 has an inner surface 12 and an outer surface 13 .
  • the resin tube 10 can be manufactured by extrusion molding, for example.
  • the resin tube 10 may be composed of a single layer or multiple layers.
  • a part of the resin tube 10 in the longitudinal direction x or the circumferential direction p may be composed of a single layer, and the other part may be composed of a plurality of layers.
  • the resin tube 10 is made of, for example, polyolefin resin (eg, polyethylene or polypropylene), polyamide resin (eg, nylon), polyester resin (eg, PET), aromatic polyether ketone resin (eg, PEEK), polyether polyamide resin, It can be made of synthetic resin such as polyurethane resin, polyimide resin, fluorine resin (for example, PTFE, PFA, ETFE). These may be used individually by 1 type, and may be used in combination of 2 or more types. It is preferable that at least a portion of the resin tube 10 that overlaps with the light diffusion portion 21 described later is made of a resin having light transmittance. At least a portion of the resin tube 10 that overlaps the light diffusion portion 21 may be made of a transparent resin.
  • polyolefin resin eg, polyethylene or polypropylene
  • polyamide resin eg, nylon
  • polyester resin eg, PET
  • aromatic polyether ketone resin eg, PEEK
  • polyether polyamide resin It can
  • the resin tube 10 has a reduced diameter portion 14 in which the lumen 11 narrows toward the distal side.
  • the diameter of the resin tube 10 can be easily reduced, so that the resin tube 10 can be easily inserted into a thin tube, the optical fiber 20 can be brought closer to the affected area, and the treatment efficiency can be improved.
  • the outer diameter of the reduced diameter portion 14 narrows toward the distal side.
  • the diameter of the resin tube 10 can be easily reduced, so that it can be easily inserted into a thin tube, the optical fiber 20 can be easily brought closer to the affected area, and the treatment efficiency can be easily improved.
  • a distal tip 15 may be attached to the distal end of the resin tube 10 as shown in FIG. Damage to living tissue by the distal end of the resin tube 10 can be avoided.
  • Examples of the shape of the distal tip 15 include a cylindrical shape, an oval cylindrical shape, a hemispherical shape, an oval spherical shape, a truncated pyramid shape, a truncated cone shape, a long truncated cone shape, a rounded truncated pyramid shape, or a combination thereof. can be done.
  • the device 1 is arranged in the lumen 11 of the resin tube 10, extends in the longitudinal direction x of the resin tube 10 in a predetermined section of the distal portion, and extends outward in the radial direction of the resin tube 10. It has an optical fiber 20 having a light diffusing portion 21 for emitting light.
  • the optical fiber 20 is a transmission line that transmits optical signals to the target tissue.
  • the optical fiber 20 is arranged in the lumen 11 of the resin tube 10.
  • the proximal end of the optical fiber 20 extends proximally from a handle 60, which will be described later.
  • the proximal end of optical fiber 20 is connected to a light source such as a semiconductor laser.
  • the light diffusing portion 21 functions as a light emitting area capable of emitting light radially outward.
  • the light diffusion portion 21 is arranged to extend in the longitudinal direction x and the circumferential direction p of the resin tube 10 .
  • the light diffusing portion 21 has an outer peripheral surface 23 .
  • An outer peripheral surface 23 of the light diffusion portion 21 faces the inner surface 12 side of the resin tube 10 .
  • the device 1 is inserted through the endoscope to the position where the target tissue is in the body cavity. At this time, the target tissue is positioned radially outward of the outer surface 13 of the resin tube 10 .
  • the light emitted from the light diffusing portion 21 passes through at least a portion of the resin tube 10 that overlaps the light diffusing portion 21 , so that the light reaches the target tissue around the device 1 .
  • the light diffusion portion 21 it is preferable that light is emitted at least outward in the radial direction of the resin tube 10, and from the light diffusion portion 21, the entire circumferential direction p of the resin tube 10 It is preferable that the light is emitted outward in the radial direction of the resin tube 10 over the entire area. From the light diffusing portion 21 , light may be further emitted toward the distal direction of the resin tube 10 , that is, toward the front.
  • the light diffusing part 21 is not a diffusing member separate from the optical fiber 20 (for example, a diffusion plate or a prism), but a part forming part of the optical fiber 20 .
  • Optical fiber 20 has a core and a clad.
  • the clad is arranged on the outer circumference of the core and covers a part of the radially outer side of the core.
  • the light diffusion part 21 has (i) a mode in which only the core is arranged, (ii) a mode in which the core and the clad are arranged, or (iii) a part in which only the core is arranged and the other part in which the core and the clad are arranged. is preferably configured from any of the aspects in which is arranged.
  • a covering material for protection may be arranged outside the clad in the radial direction, but it is preferable that the light diffusing portion 21 is not arranged with members other than the core and the clad.
  • the materials that make up the core and clad are not particularly limited, and glass such as plastic, quartz glass, and fluoride glass can be used.
  • the resin constituting the resin tube 10 contains inorganic particles such as titanium oxide, barium sulfate, and calcium carbonate, and organic particles such as crosslinked acrylic particles and crosslinked styrene particles. Particle light diffusing materials can be added. Light emitted from the light diffusing portion 21 is more easily diffused by the resin tube 10 .
  • the light diffusion part 21 is preferably arranged on the most distal side of the optical fiber 20 . This makes it easier to form the light diffusing portion 21 and increases the flexibility of the distal end portion of the optical fiber 20 .
  • the length of the light diffusion portion 21 in the longitudinal direction x may be set to 1/50 or more, 1/45 or more, or 1/30 or more of the total length of the optical fiber 20 . By setting such a length, it becomes easy to irradiate the entire target tissue with a single irradiation. Also, the length of the light diffusing portion 21 in the longitudinal axis direction x may be set to 1/20 or less, 1/25 or less, or 1/30 or less of the total length of the optical fiber 20 . By setting such a length, it is possible to prevent irradiation of non-target tissues.
  • the light diffusing portion 21 may be arranged only in a part of the resin tube 10 in the circumferential direction p, but as shown in FIG. It is preferable that Since a wide range in the circumferential direction p can be irradiated at once, efficiency of the procedure can be improved.
  • the inner surface 12 of the resin tube 10 and the outer peripheral surface 23 of the light diffusion portion 21 may be in contact with each other.
  • the diameter of the light diffusing portion 21 can be easily reduced, so that the device 1 can be easily made such that the light diffusing portion 21 can be brought closer to the affected area.
  • the inner surface 12 of the resin tube 10 and the outer peripheral surface 23 of the light diffusion portion 21 are in contact with each other, there is no gap between the light diffusion portion 21 and the resin tube 10 at that location, so that the light diffusion portion 21 is Since it is reinforced and strength can be imparted to the light diffusing portion 21, the damage resistance of the light diffusing portion 21 can be easily improved.
  • the inner surface 12 of the resin tube 10 and the outer peripheral surface 23 of the light diffusion portion 21 may not be in contact with each other.
  • the device 1 has a coil member 40 which is arranged in the lumen 11 of the resin tube 10 and has a wire 42 spirally wound around the optical fiber 20 . It is preferable that the entire coil member 40 is arranged in the lumen 11 of the resin tube 10 in the longitudinal direction x. Due to the presence of the coil member 40 , the inner surface 12 of the resin tube 10 on the proximal side of the reduced diameter portion 14 does not have to be in contact with the outer peripheral surface 23 of the optical fiber 20 .
  • the wire rod 42 has a distal end and a proximal end in its longitudinal direction.
  • the wire 42 may be composed of a single linear member from the distal end to the proximal end, or the wire 42 may be composed of a plurality of linear members connected to each other in the longitudinal direction thereof.
  • the cross-sectional shape of the wire rod 42 perpendicular to the longitudinal axis direction may be circular, oval, polygonal, or a combination thereof.
  • the oval shape includes an elliptical shape, an egg shape, and a rounded rectangular shape. The same applies to other descriptions in this specification.
  • the wire diameter (thickness) of the wire 42 constituting the coil member 40 and the number of turns of the wire 42 are not particularly limited.
  • the axial length of the coil member 40 may be larger or smaller than the maximum outer diameter of the coil member 40 .
  • the outer diameter of the coil member 40 may be constant in the longitudinal axis direction x of the resin tube 10, or the outer diameter of the coil member 40 may vary depending on the position in the longitudinal axis direction x. For example, when the coil member 40 is divided into a distal portion and a proximal portion in the longitudinal direction x, the average outer diameter of the distal portion of the coil member 40 is equal to the average outer diameter of the proximal portion of the coil member 40. may be smaller than
  • the inner diameter of the coil member 40 may be constant in the longitudinal axis direction x of the resin tube 10, or the inner diameter of the coil member 40 may vary depending on the position in the longitudinal axis direction x. For example, when the coil member 40 is divided into a distal portion and a proximal portion in the longitudinal direction x, the average inner diameter of the distal portion of the coil member 40 is larger than the average inner diameter of the proximal portion of the coil member 40. It can be small.
  • the coil member 40 is preferably made of a material having a higher reflectance than the resin tube 10. This configuration facilitates diffusion of the reflected light on the inner surface of the coil member 40 .
  • the reflectance refers to the reflectance of light emitted from the light diffusing portion 21, and the unit is %.
  • the reflectance can be measured using a reflectance measurement system OP-RF-VIS-GT50 manufactured by Ocean Photonics.
  • the coil member 40 is preferably constructed of metal, and may be, for example, radiopaque metals such as gold, silver, platinum, palladium, tungsten, tantalum, iridium and alloys thereof, stainless steel, Ni—Ti alloys. and other superelastic alloys.
  • radiopaque metals such as gold, silver, platinum, palladium, tungsten, tantalum, iridium and alloys thereof, stainless steel, Ni—Ti alloys. and other superelastic alloys.
  • a part of the coil member 40 may be made of resin.
  • the coil member 40 may have a coil member main body and a reflective layer arranged on the inner surface of the coil member main body.
  • the light from the light diffusing portion 21 can be reflected by the reflective layer regardless of the material of the coil member main body.
  • a coil body or a resin tube around which a resin wire is wound may be the coil member main body.
  • the reflective layer may be provided by applying a coating agent containing a reflective material to the inner surface of the coil member body, and the reflective material is applied to the inner surface of the coil member body by a method such as vapor deposition, sputtering, electroplating, or chemical plating. It may be arranged by adhering.
  • the reflective layer may be a metal thin film.
  • Reflective materials include, for example, aluminum, gold, silver, copper, tin, titanium dioxide, tantalum pentoxide, aluminum oxide, silicon dioxide, magnesium fluoride, or combinations thereof.
  • the coil member 40 has a reflective layer, at least one of the materials listed as the constituent materials of the resin tube 10 can be used for the coil member main body.
  • the coil member 40 preferably has a pitch P equal to or greater than the wire diameter of the wire rod 42, and may have a pitch of 1.1 times or more. It may have a pitch of .2 or more. Also, the coil member 40 may have a pitch of 3.0 times or less the wire diameter of the wire 42, or may have a pitch of 2.5 times or less.
  • the pitch P is the distance between the central axes of two adjacent wires 42 forming the coil member 40 in the axial direction, as shown in FIG.
  • the pitch P of the coil members 40 may be constant in the axial direction, or may vary depending on the position in the axial direction.
  • all the pitches P existing in the coil member 40 may be within the above range, or a part of the pitches may be within the above range.
  • the coil member 40 may have the same pitch P as the wire diameter of the wire 42 . Such coils are commonly referred to as tight wound coils. A tight-wound coil is preferable because there is no gap between two adjacent wire rods 42 and light is less likely to leak from the coil member 40 . It is also preferable when the coil member 40 is used as a marker.
  • the coil member 40 may have a pitch P smaller than the wire diameter of the wire 42
  • the coil member 40 may be a single-layer winding coil, a multi-layer winding coil, or a combination thereof.
  • FIG. 1 shows an example in which the coil member 40 is a single-layer wound coil.
  • the coil member 40 includes a first coil portion 40a that is wound in a single layer and a second coil portion that is positioned proximal to the first coil portion 40a and is wound in multiple layers. 40b. Torque can be easily transmitted to the distal side by the second coil portion 40b wound in multiple layers, and the operability of the device 1 can be enhanced.
  • the second coil portion 40b wound in multiple layers may be positioned further to the distal side than the first coil portion 40a wound in a single layer.
  • the wire rod 42 of the coil member 40 may be in contact with the inner surface 12 of the resin tube 10.
  • the wire 42 may be in contact with the inner surface 12 of the resin tube 10 over its entire length.
  • the position of the optical fiber 20 in the radial direction of the resin tube 10 can be easily stabilized, so that the operability can be easily improved.
  • the wire 42 of the coil member 40 does not have to be in contact with the inner surface 12 of the resin tube 10 .
  • the distal end portion of the coil member 40 of the device 1 and the inner surface 140 of the reduced diameter portion 14 are in contact. More preferably, the distal end 401 of the coil member 40 and the inner surface 140 of the reduced diameter portion 14 are in contact.
  • the distal end portion of the coil member 40 and the inner surface 140 of the reduced diameter portion 14 may be fixed.
  • the coil member 40 may be directly fixed to the reduced diameter portion 14, or may be indirectly fixed via another member.
  • the method of fixing the coil member 40 and the reduced diameter portion 14 is not particularly limited, but may be, for example, welding, welding, crimping such as caulking, bonding with an adhesive, engagement, connection, binding, ligature, or other physical fixing. methods, or combinations thereof. Note that the distal end portion of the coil member 40 and the inner surface 140 of the reduced diameter portion 14 may not be fixed.
  • the light diffusing portion 21 of the optical fiber 20 may be arranged distally of the distal end 401 of the coil member 40 . Although only part of the light diffusing portion 21 may be arranged distally of the distal end 401 of the coil member 40 , the entire light diffusing portion 21 is distal of the distal end 401 of the coil member 40 . It is more preferable to be arranged on the side. As a result, the diameter of the light diffusing portion 21 can be easily reduced, so that the device 1 can bring the light diffusing portion 21 closer to the affected area. This can improve treatment efficiency.
  • the device 1 may further have a handle 60 connected to the proximal portion of the resin tube 10.
  • the proximal portion of resin tube 10 is connected to handle 60 .
  • the handle 60 extends, for example, in the longitudinal direction x.
  • Handle 60 may be constructed from one or more members.
  • the handle 60 has a hollow portion 61 extending in the longitudinal direction x.
  • the handle 60 may have, for example, a tubular shape.
  • the resin tube 10 , the optical fiber 20 and the coil member 40 are inserted through the hollow portion 61 .
  • the material of the handle 60 is not particularly limited, for example, polyolefin resins such as polypropylene (PP) and polyethylene (PE), polyester resins such as polyethylene terephthalate (PET), polycarbonate resins, ABS resins, and synthetic resins such as polyurethane resins are used. be able to.
  • polyolefin resins such as polypropylene (PP) and polyethylene (PE)
  • PET resins such as polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • polycarbonate resins polycarbonate resins
  • ABS resins polyurethane resins
  • the proximal portion of the coil member 40 may be fixed to the handle 60, or the proximal end portion of the coil member 40 may be fixed to the handle 60.
  • the coil member 40 may be directly fixed to the handle 60, or may be indirectly fixed via another member.
  • the method of fixing the coil member 40 and the handle 60 is not particularly limited. Or a combination thereof can be mentioned. As a result, torque can be easily transmitted, and operability can be easily improved. Note that the coil member 40 does not have to be fixed to the handle 60 .
  • the outer peripheral surface 23 of the optical fiber 20 and the inner peripheral surface of the coil member 40 may be fixed.
  • the coil member 40 may be directly fixed to the optical fiber 20, or may be indirectly fixed via another member.
  • the method of fixing the coil member 40 and the optical fiber 20 is not particularly limited. Or a combination thereof can be mentioned. Note that the outer peripheral surface 23 of the optical fiber 20 and the inner peripheral surface of the coil member 40 may not be fixed.
  • the optical fiber 20 has a core 25 extending in the longitudinal direction x, and the optical fiber 20 has a first clad 26 disposed around the core 25. It has one section 31 .
  • the light is likely to be totally reflected at the boundary between the core 25 and the first clad 26. Therefore, in the first section 31, the light is confined within the core 25 and propagates to the distal side of the optical fiber 20. .
  • one core 25 is arranged in one first clad 26 in the first section 31 .
  • the optical fiber 20 can be rephrased as a single-core optical fiber.
  • the first clad 26 may be positioned radially outwardly of the optical fiber 20 in the first section 31 . That is, the first section 31 does not need to be provided with other members such as a covering material.
  • the first section 31 of the optical fiber 20 may be provided with a coating material around the outer periphery of the first clad 26 . It is possible to protect the outside of the first section 31 , and it is also possible to suppress light leakage and emission to the outside in the first section 31 .
  • the coating material may be a coating layer arranged on the outer peripheral surface of the first clad 26 or a sheath enclosing the first clad 26 .
  • the covering material can be made of a resin such as an ultraviolet curable resin.
  • the optical fiber 20 has a second section 32 having a second clad 27 disposed on the outer periphery of the core 25 and having a larger outer surface roughness than the first clad 26 in the light diffusion portion 21 . It shows an embodiment having The second section 32 is positioned more distally than the first section 31 . By making the clad surface roughness larger in the second section 32 than in the first section 31, part of the light is confined within the core 25 and propagated to the distal side of the optical fiber 20, and the remaining light is transmitted to the second section 31. It leaks out from the clad 27 and is injected radially outward. It is preferable that the first section 31 does not emit light radially outward, or that the amount of light leakage is smaller than that of the second section 32 .
  • one core 25 is preferably arranged in one second clad 27 .
  • the first section 31 and the second section 32 may consist of one optical fiber.
  • the first clad 26 of the first section 31 and the second clad 27 of the second section 32 may be integrally molded.
  • the optical fiber 20 may be formed by joining the optical fiber for the first section 31 and the optical fiber for the second section 32 in the longitudinal axis direction x.
  • the first clad 26 of the first section 31 and the second clad 27 of the second section 32 may be separately formed and then joined together.
  • the second clad 27 is located on the outermost side of the optical fiber 20 in the radial direction. That is, in the second section 32, it is preferable that no member (for example, a covering material) other than the core 25 and the second clad 27 is arranged. With this configuration, light can be emitted outward in the radial direction of the resin tube 10 from the second section 32 .
  • the surface roughness of the outer peripheral surface of the second clad 27 in the second section 32 is greater than the surface roughness of the outer peripheral surface of the first clad 26 in the first section 31 .
  • the surface roughness is the arithmetic mean roughness Ra between the reference lengths of the roughness curve in the longitudinal axis direction of the outer peripheral surface of the optical fiber 20 .
  • the reference length may be set according to the magnification of the laser microscope used, and is, for example, 200 ⁇ m.
  • the above arithmetic mean roughness Ra corresponds to the arithmetic mean roughness Ra specified in JIS B 0601 (2001) and is measured according to JIS B 0633 (2001).
  • a measuring machine specified in JIS B 0651 (2001) for example, a laser microscope VK-X3000 manufactured by Keyence Corporation is used.
  • the average value of the surface roughness of the outer peripheral surface of the second clad 27 in the second section 32 is preferably larger than the average value of the surface roughness of the outer peripheral surface of the first clad 26 in the first section 31 .
  • the average value of the surface roughness is the average value of the surface roughness values of 10 or more measurement points set so as to be aligned in the longitudinal axis direction x in the section to be measured (for example, the first section 31). .
  • the surface roughness of the outer peripheral surface of the second clad 27 in the proximal portion 324 is The average value is preferably smaller than the average surface roughness of the outer peripheral surface of the second clad 27 in the distal portion 323 .
  • the proximal portion 324 enhances the effect of confining light within the core 25 more than the distal portion 323, while the distal portion 323 facilitates the radially outward emission of light from the second clad 27. Therefore, the emission intensity distribution of the second section 32 is easily uniformed in the longitudinal direction x.
  • the second section 32 is preferably shorter than the first section 31 in the longitudinal direction x. It becomes easier to form the light diffusing portion 21, and the flexibility of the distal end portion of the optical fiber 20 can also be increased.
  • the length of the second section 32 in the longitudinal direction x can be set to 1/20 or less, 1/25 or less, or 1/30 or less of the length of the first section 31 .
  • the length of the second section 32 in the longitudinal axis direction x may be set to 1/50 or more, 1/45 or more, or 1/30 or more of the length of the first section 31. good.
  • the average thickness of the second clad 27 in the second section 32 is preferably smaller than the average thickness of the first clad 26 in the first section 31.
  • the clad thickness can be measured using a laser microscope VK-X3000 manufactured by Keyence Corporation.
  • the optical fiber 20 has the first section 31, the optical fiber 20 has no cladding in the light diffusing portion 21 and is located distal to the first section 31. You may have the 3rd area 33 which is carrying out. Since there is no clad in the third section 33, the light from the core 25 is emitted radially outward.
  • no clad exists in at least a part of the core 25 in the circumferential direction, and more preferably, no clad exists in the entire circumferential direction of the core 25.
  • the core 25 is positioned radially outermost in the optical fiber 20. That is, in the third section 33, not only the clad but also any member other than the core 25 (for example, a covering material) is preferably not arranged.
  • the outer diameter of the core 25 in the third section 33 may be a constant value, or the outer diameter of the core 25 may be a different value depending on the position in the longitudinal direction x.
  • the distal end of the third section 33 is preferably at the same position as the distal end of the core 25 in the longitudinal direction x. It becomes easier to form the third section 33, and the flexibility at the distal end of the optical fiber 20 can also be increased.
  • the surface roughness of the outer peripheral surface of the core 25 in the third section 33 is preferably larger than the surface roughness of the outer peripheral surface of the first clad 26 in the first section 31 . Light is likely to be confined within the core 25 in the first section 31 , and light is likely to be emitted radially outward from the core 25 in the third section 33 .
  • At least one of the second section 32 and the third section 33 is preferably arranged in the light diffusion section 21, and both the second section 32 and the third section 33 may be arranged.
  • a second section 32 and a third section 33 are arranged in order from the proximal side to the distal side of the light diffusing section 21 .
  • the first section 31, the second section 32, and the third section 33 are adjacent to each other in the longitudinal direction x. More specifically, the first section 31 and the second section 32 are adjacent to each other, and the second section 32 and the third section 33 are preferably adjacent to each other.
  • the optical fiber 20 has a second section 32 and a third section 33
  • the third section 33 is shorter than the second section 32 in the longitudinal direction x as shown in FIG. With this configuration, it becomes easier to uniform the emission intensity distribution of the entire light diffusing portion 21 in the longitudinal direction x.
  • a mode in which the second section 32 is shorter than the third section 33 in the longitudinal direction x is also allowed.
  • the length of the third section 33 in the longitudinal direction x is preferably 20% or less of the total length of the second section 32 and the third section 33, and is preferably 18% or less. More preferably, the size is 15% or less. In addition, the length of the third section 33 in the longitudinal direction x may be 5% or more, 8% or more, or 10% or more of the total length of the second section 32 and the third section 33. . This configuration makes it easier to uniformize the light emission intensity distribution of the light diffusion portion 21 in the longitudinal direction x.
  • the average value of the surface roughness of the outer peripheral surface of the second clad 27 in the second section 32 is preferably smaller than the average value of the surface roughness of the outer peripheral surface of the core 25 in the third section 33 . This configuration makes it easier to uniformize the emission intensity distribution in the longitudinal axis direction x in each of the second section 32 and the third section 33 .
  • the optical fiber 20 may have only the second section 32 in the light diffusing portion 21 . That is, the optical fiber 20 does not have to have the third section 33 in the light diffusing portion 21 . Even with the configuration having only the second section 32, the light emission intensity distribution of the light diffusing portion 21 in the longitudinal axis direction x can be made uniform. Since the core 25 is not exposed, it also has the effect of preventing damage to the optical fiber 20 due to bending of the device 1 during the procedure.
  • the distal end of the second section 32 is preferably at the same position as the distal end of the core 25 in the longitudinal direction x. .
  • the optical fiber 20 may have only the third section 33 in the light diffusing portion 21 . That is, the optical fiber 20 does not have to have the second section 32 in the light diffusing portion 21 . Even with the configuration having only the third section 33, the light emission intensity distribution of the light diffusing portion 21 in the longitudinal axis direction x can be made uniform.
  • the second section 32 and the third section 33 can be formed by removing the clad by etching or polishing.
  • the outer peripheral surface of the second clad 27 and the outer peripheral surface of the core 25 of the third section 33 may be uneven.
  • the unevenness can be formed by mechanically or chemically roughening the surface of the core 25 of the second clad 27 or the third section 33 . Examples of methods for roughening the surface include etching, blasting, a method using a scribe, a wire brush, or sandpaper.
  • the distal end surface of the optical fiber 20 is provided with a reflector 200 .
  • the reflector 200 is, for example, a mirror arranged so that the reflecting surface faces the proximal side. This configuration makes it easier for the reflected light to diffuse outward in the radial direction of the resin tube 10 .
  • the surface of the reflector 200 is preferably made of aluminum, gold, silver, copper, tin, titanium dioxide, tantalum pentoxide, aluminum oxide, silicon dioxide, or magnesium fluoride.
  • the light diffusing portion 21 should emit the first light beam for treatment.
  • the first light beam is preferably laser light with a wavelength suitable for phototherapy such as PDT and PIT for irradiating internal tissue.
  • a second targeting beam may be emitted.
  • the second light beam is a light beam emitted to grasp the treatment site before the first light beam is emitted, and preferably has a lower radiant energy than the first light beam.
  • the outer diameter of the core 25 at the distal end of the optical fiber 20 may decrease toward the distal end. As shown in FIG. 8 , the outer diameter of the core 25 may decrease toward the distal end side over the entire longitudinal axis direction x in the third section 33 .
  • the device 1 further includes a distal side coil member 50 that is in contact with the outer peripheral surface of the core 25 and that extends in the longitudinal direction x of the resin tube 10 . good too.
  • the distal side coil member 50 is arranged distally of the coil member 40 . As shown in FIG. 8 , the distal coil member 50 may contact the outer peripheral surface of the third section 33 .
  • the distal coil member 50 is composed of a wire 52 having an outer diameter equal to or less than the thickness of the first clad 26 of the first section 31. It is preferable that Moreover, it is preferable that the wire rod 52 is arranged so as to surround the core 25 . As a result, the light emitted from the third section 33 can be reflected on the inner surface of the distal coil member 50 while the distal end portion of the device 1 is made thinner, so that the reflected light can be reflected by the optical fiber 20 . It becomes easy to diffuse in various directions from the part not covered with the distal side coil member 50 among them. As for the material forming the distal coil member 50, the description of the coil member 40 can be referred to.
  • FIG. 9 is a side view showing an example of members prepared when manufacturing the photoirradiation medical device according to one embodiment of the present invention.
  • FIG. 10 is a side view showing an example of a core material prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention.
  • FIG. 11 is a side view showing a modification of the core material prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention.
  • FIG. 12 is a side view showing a modification of members prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention.
  • FIG. 13 is a cross-sectional view (partial side view) showing a modification of the light irradiation medical device shown in FIG. 1.
  • FIG. 13 is a cross-sectional view (partial side view) showing a modification of the light irradiation medical device shown in FIG. 1.
  • FIG. 13 is a cross-sectional view (partial side view) showing a modification of the light irradiation medical device shown in FIG. 1.
  • One embodiment of the method for manufacturing a light irradiation medical device of the present invention includes a resin tube, and a resin tube extending in the longitudinal axis direction x of the resin tube in a predetermined section of the distal portion and extending outward in the radial direction of the resin tube.
  • an optical fiber having a light diffusing portion that emits light through a cylindrical member; and a core member having a first region having a predetermined outer diameter and a second region having an outer diameter larger than that of the first region.
  • the resin tube itself can be easily made thin, the light irradiation medical device 1 can be easily inserted into a thin tube, and the optical fiber can be brought closer to the affected area. This can improve treatment efficiency.
  • the presence of the cylindrical member can impart appropriate rigidity, so that the light irradiation medical device 1 with good operability can be provided while having a small diameter.
  • a resin tube 1010, an optical fiber 20 having a light diffusing portion 21, a cylindrical member 1050, a first region 1060a having a predetermined outer diameter, and a A core material 1060 having a second region 1060b with a large outer diameter is prepared.
  • the resin tube 1010 prepared here refers to the resin tube before the diameter-reduced portion described above is formed.
  • the tubular member 1050 is a tubular member that partially covers the optical fiber 20 .
  • Tubular member 1050 preferably has one lumen.
  • the shape of the cylindrical member 1050 is not particularly limited, but may be cylindrical, elliptical, or polygonal.
  • the axial length of tubular member 1050 may be larger or smaller than the maximum outer diameter of tubular member 1050 .
  • the core material 1060 is a member having a first region 1060a with a predetermined outer diameter and a second region 1060b with a larger outer diameter than the first region 1060a.
  • the shape of the core material 1060 is preferably a cylindrical shape, an oval columnar shape, a polygonal columnar shape, or the like.
  • the shape of the core material 1060 is not limited to the shape shown in FIG. 10. As shown in FIG. It may be a shape having a tapered portion in which .DELTA.
  • a core material 1060 is inserted into the lumen 1011 of the prepared resin tube 1010, and the resin tube 1010 is heated to thermally shrink the resin tube 1010, thereby reducing the lumen narrowing toward the distal side with respect to the resin tube. forming a diameter;
  • the resin tube having the reduced diameter portion formed in this way corresponds to the resin tube 10 shown in FIG. 1 and the like.
  • the resin tube 1010 Before heating the resin tube 1010 to heat shrink the resin tube 1010, there may be a step of inserting the resin tube 1010 into the lumen of the heat shrink tube. If such a step is included, it is preferable to apply heat from the outside of the heat-shrinkable tube to heat-shrink the resin tube 1010 .
  • the core material 1060 is taken out from the lumen 11 of the resin tube 10, and the tubular member 1050 and the optical fiber 20 are arranged in the lumen 11 of the resin tube 10.
  • the tubular member 1050 is preferably formed to extend in the longitudinal direction x of the resin tube 10 .
  • the distal end portion of the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 are brought into contact with each other.
  • the distal end 1051 of the tubular member 1050 and the inner surface 140 of the reduced diameter portion 14 may be brought into contact.
  • the diameter of the resin tube 10 itself can be easily reduced, the light irradiation medical device 1 can be easily inserted into a thin tube, and the optical fiber 20 can be brought closer to the affected area. This can improve treatment efficiency.
  • due to the presence of the cylindrical member 1050 it is possible to impart moderate rigidity, so that it is possible to provide the light irradiation medical device 1 with good operability while having a reduced diameter.
  • the distal end portion of the tubular member 1050 and the inner surface 140 of the reduced diameter portion 14 may be fixed.
  • the tubular member 1050 may be directly fixed to the reduced diameter portion 14, or may be indirectly fixed via another member.
  • the method of fixing the cylindrical member 1050 and the reduced diameter portion 14 is not particularly limited, but may be, for example, welding, welding, crimping such as caulking, bonding with an adhesive, engagement, connection, binding, ligature, or other physical fixing. methods, or combinations thereof. Note that the distal end portion of the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 may not be fixed.
  • the tubular member 1050 may have a coil portion in which a wire is spirally wound.
  • the cylindrical member 1050 may be the coil member 40 described above.
  • the wire 42 may be in contact with the inner surface 12 of the resin tube 10 over its entire length.
  • the position of the optical fiber 20 in the radial direction of the resin tube 10 can be easily stabilized, so that the operability can be easily improved.
  • the wire 42 does not have to be in contact with the inner surface 12 of the resin tube 10 .
  • the inner surface 12 on the distal side of the reduced diameter portion 14 of the resin tube 10 and the outer peripheral surface 23 of the light diffusion portion 21 may be in contact with each other.
  • the diameter of the light diffusing portion 21 can be easily reduced, so that the device 1 can bring the light diffusing portion 21 closer to the affected area, and the treatment efficiency can be easily increased.
  • the inner surface 12 of the resin tube 10 on the distal side of the reduced diameter portion 14 and the outer peripheral surface 23 of the light diffusion portion 21 may not be in contact with each other.
  • the inner surface 12 of the resin tube 10 on the proximal side of the reduced diameter portion 14 and the outer peripheral surface 23 of the optical fiber 20 may not be in contact.
  • the presence of the tubular member 1050 or the coil member 40 makes it easier to transmit torque to the distal side, so that the operability of the device 1 can be improved.
  • Another embodiment of the method for manufacturing a photoirradiation medical device of the present invention includes a first resin tube, a second resin tube having an inner diameter larger than that of the first resin tube, and a predetermined section of the distal portion of the first resin tube and an optical fiber extending in the longitudinal direction of the second resin tube and having a light diffusing portion that emits light outward in the radial direction of at least one of the first resin tube and the second resin tube; connecting a second resin tube to the proximal portion of the first resin tube to form a resin tube, the diameter of which narrows the lumen distally relative to the resin tube; and placing a cylindrical member and an optical fiber in a lumen of a resin tube to bring the distal end of the cylindrical member into contact with the inner surface of the reduced diameter portion.
  • the resin tube itself can be easily made thin, the light irradiation medical device can be easily inserted into a thin tube, and the optical fiber can be brought closer to the affected area. As a result, treatment efficiency can be increased.
  • the existence of the cylindrical member can impart moderate rigidity, so that it is possible to provide a light irradiation medical device that is small in diameter and has good operability.
  • the first resin tube 1010a and the second resin tube 1010b prepared here refer to resin tubes in which the above-described reduced diameter portion is not formed.
  • a second resin tube 1010b is connected to the proximal portion of the prepared first resin tube 1010a to form one resin tube.
  • the above-described reduced diameter portion may be formed at the joint portion when connecting the first resin tube 1010a and the second resin tube 1010b.
  • the above-described core material 1060 is used for the resin tube after the second resin tube 1010b is connected to the proximal portion of the first resin tube 1010a, so that the diameter of the inner lumen narrows toward the distal side. It does not matter if you form a part.
  • a resin tube is formed by connecting the second resin tube 1010b to the proximal portion of the first resin tube 1010a, and a reduced-diameter portion is formed in which the inner lumen narrows toward the distal side of the resin tube.
  • a core member 1060 having a first region 1060a having a predetermined outer diameter and a second region 1060b having a larger outer diameter than the first region 1060a as shown in FIGS. and heating the resin tube to heat shrink the resin tube to form a reduced diameter portion that narrows the lumen distally with respect to the resin tube. good too.
  • the first region 1060a of the core material 1060 is arranged in the lumen 1011a of the first resin tube 1010a.
  • the second region 1060b may be arranged in the lumen 1011b of the second resin tube 1010b.
  • the resin tube having the reduced diameter portion formed in this way corresponds to the resin tube 10 shown in FIG.
  • a step of removing the core material 1060 from the inner cavity 11 of the resin tube 10 may be provided after the resin tube is heat-shrunk.
  • the cylindrical member 1050 and the optical fiber 20 are arranged in the lumen 11 of the resin tube 10 having the reduced diameter portion 14 formed therein, and the distal end portion of the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 are brought into contact. More preferably, the distal end 1051 of the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 are in contact with each other.
  • the diameter of the resin tube 10 itself can be easily reduced, the light irradiation medical device 1 can be easily inserted into a thin tube, and the optical fiber 20 can be brought closer to the affected area. This can improve treatment efficiency.
  • due to the presence of the cylindrical member 1050 it is possible to impart moderate rigidity, so that it is possible to provide the light irradiation medical device 1 with good operability while having a reduced diameter.
  • the distal end portion of the tubular member 1050 and the inner surface 140 of the reduced diameter portion 14 may be fixed.
  • the cylindrical member 1050 may be directly fixed to the inner surface 140 of the reduced diameter portion 14, or may be indirectly fixed via another member.
  • the method of fixing the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 is not particularly limited, but for example, physical bonding such as welding, welding, crimping such as caulking, bonding with adhesive, engagement, connection, binding, ligature, etc. methods such as fixation, or a combination thereof. Note that the distal end portion of the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 may not be fixed.
  • the method for manufacturing the light irradiation medical device further includes a step of inserting the optical fiber 20 into the lumen of the tubular member 1050 before placing the tubular member 1050 and the optical fiber 20 into the lumen 11 of the resin tube 10. good too. By inserting the optical fiber 20 into the lumen of the tubular member 1050, the optical fiber 20 can be made less likely to break.
  • the tubular member 1050 and the optical fiber 20 may be fixed while the optical fiber 20 is inserted into the lumen of the tubular member 1050 .
  • the tubular member 1050 may be directly fixed to the optical fiber 20, or may be indirectly fixed via another member.
  • the method of fixing the cylindrical member 1050 and the optical fiber 20 is not particularly limited, but for example, welding, welding, crimping such as crimping, bonding with an adhesive, engaging, connecting, binding, ligating, etc. physical fixing methods, Or a combination thereof can be mentioned. Note that the tubular member 1050 and the optical fiber 20 may not be fixed.
  • the inner surface of the first resin tube 1010a of the resin tubes 10 and the outer peripheral surface 23 of the light diffusing portion 21 may be in contact with each other.
  • the diameter of the resin tube 10 itself can be easily reduced, the light irradiation medical device 1 can be easily inserted into a thin tube, and the optical fiber 20 can be brought closer to the affected area. This can improve treatment efficiency.
  • the inner surface of the second resin tube 1010b of the resin tube 10 and the outer peripheral surface 23 of the optical fiber 20 do not have to be in contact. Due to the presence of the cylindrical member 1050 or the coil member 40, torque can be easily transmitted to the distal side, so that the operability of the device 1 can be easily improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The present invention relates to a light irradiating medical device (1) and a method for manufacturing the light irradiating medical device (1), in which the light irradiating medical device (1) is provided with: a resin tube (10) which has a tapered diameter part (14) having a structure such that an inner cavity (11) is tapered toward the distal end side; an optical fiber (20) which is arranged in the inner cavity (11) of the resin tube (10), extends in a predetermined zone in the distal end part along the longer axis direction (x) of the resin tube (10), and has a light diffusion part (21) capable of ejecting light outward in the direction of the diameter of the resin tube (10); and a coil member (40) which is arranged in the inner cavity (11) of the resin tube (10), and around which a wire material (42) is wound in a spiral manner so as to be circulated around the optical fiber (20). In the light irradiating medical device (1), the distal end part of the coil member (40) and the inner surface of the tapered diameter part (14) are came into contact with each other.

Description

光照射医療装置および光照射医療装置の製造方法Photoirradiation medical device and method for manufacturing photoirradiation medical device
 本発明は、血管や消化管等の体内管腔において、がん細胞等の組織に光を照射するための光照射医療装置および光照射医療装置の製造方法に関するものである。 The present invention relates to a light irradiation medical device for irradiating light to tissues such as cancer cells in body lumens such as blood vessels and gastrointestinal tracts, and a method for manufacturing the light irradiation medical device.
 光線力学的療法(Photodynamic Therapy:PDT)では、光増感剤を静脈注射や腹腔内投与で体内に投与し、がん細胞等の対象組織に光増感剤を集積させ、特定の波長の光を照射することにより光増感剤を励起させる。励起された光増感剤が基底状態に戻るときにエネルギー転換が生じ、活性酸素種を発生させる。活性酸素種が対象組織を攻撃することにより、対象組織を除去することができる。レーザー光を用いたアブレーションでは、対象組織にレーザー光を照射し、焼灼することが行われる。このような光照射を行うための装置が提案されている。 In photodynamic therapy (PDT), a photosensitizer is administered into the body by intravenous injection or intraperitoneal injection, and the photosensitizer is accumulated in target tissues such as cancer cells, and light of a specific wavelength is used. to excite the photosensitizer. An energy transfer occurs when the excited photosensitizer returns to the ground state, generating reactive oxygen species. Target tissue can be removed by attacking the target tissue with reactive oxygen species. In ablation using laser light, a target tissue is irradiated with laser light and cauterized. An apparatus for performing such light irradiation has been proposed.
 特許文献1および特許文献2には、レーザー発振器からのレーザー光が導光される光ファイバーが内部に挿通され、当該光ファイバーの先端部から照射されるレーザー光を吸収する所定の液体が充填されるチューブを備え、チューブの内面に光ファイバーが発する熱に耐え得る高融点でかつ所定の剛性を有する材料からなる補強部材が設けられたカテーテルが開示されている。また、カテーテルの操作性を高めるため、補強部材はコイル状部材により構成されることができることが開示されており、光ファイバーの先端部が当たるストッパとして機能する旨が開示されている。 Patent documents 1 and 2 disclose a tube in which an optical fiber through which laser light from a laser oscillator is guided is inserted, and which is filled with a predetermined liquid that absorbs the laser light emitted from the tip of the optical fiber. , and a reinforcing member made of a material having a high melting point and a predetermined rigidity that can withstand the heat generated by the optical fiber is provided on the inner surface of the tube. Further, it is disclosed that the reinforcing member can be composed of a coil-shaped member in order to improve the operability of the catheter, and it is disclosed that it functions as a stopper against which the tip of the optical fiber hits.
特開2005-152094号公報JP 2005-152094 A 特開2005-152093号公報JP 2005-152093 A
 しかし、特許文献1および特許文献2に記載されているような前方照射型の光照射装置は、腫瘍等の対象組織の全体を照射するためには、ある場所で光を射出した後に対象組織に対する発光部位の位置を少しずらして再び光を射出するという操作を複数回行う必要があった。また、腫瘍の発生場所や形状によっては照射が行いにくいこともあった。また、特許文献1および特許文献2に記載されているような補強部材が光ファイバーの遠位端よりも遠位側に備えられることによって、チューブ自体の細径化を十分に行うことが困難で、肺などの細い管に存在する病変を治療するような際には光ファイバーを患部の近くまで挿入することができなかった。また、チューブ等を細くしようとするとその内腔に入れておける部材の大きさや数に限界があるため、細径化しつつも操作性を上げることが困難であった。そこで本発明は、光ファイバーを患部により近づけることによって治療効率をあげることができ、操作性も向上させることができる光照射医療装置および光照射医療装置の製造方法を提供することを目的とする。 However, in order to irradiate the entire target tissue such as a tumor, the front irradiation type light irradiation device described in Patent Document 1 and Patent Document 2 needs to emit light at a certain location and then irradiate the target tissue. It was necessary to repeat the operation of slightly shifting the position of the light-emitting part and emitting the light again several times. In addition, irradiation may be difficult depending on the location and shape of the tumor. In addition, since the reinforcing member as described in Patent Documents 1 and 2 is provided on the distal side of the distal end of the optical fiber, it is difficult to sufficiently reduce the diameter of the tube itself. When treating lesions in thin tubes such as the lungs, the optical fiber cannot be inserted close to the affected area. In addition, when trying to make the tube thinner, there is a limit to the size and number of members that can be placed in the inner cavity, so it is difficult to increase the operability while reducing the diameter. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a light irradiation medical device and a method for manufacturing the light irradiation medical device that can increase treatment efficiency and improve operability by bringing the optical fiber closer to the affected area.
 上記目的を達成し得た本発明の光照射医療装置の一実施態様は下記の通りである。
 [1]遠位側に向けて内腔が狭くなる減径部を有している樹脂チューブと、樹脂チューブの内腔に配置されており、遠位部の所定区間に樹脂チューブの長手軸方向に延在しており樹脂チューブの径方向の外方に向かって光を射出する光拡散部を有する光ファイバーと、樹脂チューブの内腔に配置されており、光ファイバーを周回するように線材がらせん状に巻回されているコイル部材と、を有し、コイル部材の遠位端部と減径部の内表面とが接している光照射医療装置。
 上記光照射医療装置は、樹脂チューブ自体を細径化しやすいものである。これにより、細い管にも挿入しやすく、光ファイバーを患部により近づけることができ、治療効率をあげることができる。また、コイル部材の存在によりほどよい剛性を付与することができるため、細径化しつつ操作性を向上させることができるものである。
 [2]光拡散部がコイル部材の遠位端よりも遠位側に配置されている[1]に記載の光照射医療装置。
 [3]樹脂チューブの内表面と光拡散部の外周面が接している[1]または[2]に記載の光照射医療装置。
 [4]樹脂チューブの減径部よりも近位側の内表面と光ファイバーの外周面が接していない[1]~[3]のいずれか一項に記載の光照射医療装置。
 [5]樹脂チューブの近位部に接続されているハンドルをさらに有し、コイル部材の近位部がハンドルに固定されている[1]~[4]のいずれか一項に記載の光照射医療装置。
 [6]線材はその全長にわたって樹脂チューブの内表面に接している[1]~[5]のいずれか一項に記載の光照射医療装置。
 [7]光ファイバーの外周面とコイル部材の内周面が固定されている[1]~[6]のいずれか一項に記載の光照射医療装置。
One embodiment of the photoirradiation medical device of the present invention that can achieve the above objects is as follows.
[1] A resin tube having a reduced diameter portion that narrows the lumen toward the distal side; and an optical fiber having a light diffusing portion that emits light outward in the radial direction of the resin tube; wherein the distal end of the coil member and the inner surface of the reduced diameter portion are in contact.
In the light irradiation medical device, the diameter of the resin tube itself can be easily reduced. As a result, it is easy to insert into a thin tube, the optical fiber can be brought closer to the affected area, and the treatment efficiency can be improved. In addition, since the presence of the coil member can impart appropriate rigidity, it is possible to improve operability while reducing the diameter.
[2] The light irradiation medical device according to [1], in which the light diffusing part is arranged on the distal side of the distal end of the coil member.
[3] The light irradiation medical device according to [1] or [2], in which the inner surface of the resin tube and the outer peripheral surface of the light diffusion portion are in contact with each other.
[4] The light irradiation medical device according to any one of [1] to [3], in which the inner surface of the resin tube proximal to the reduced diameter portion is not in contact with the outer peripheral surface of the optical fiber.
[5] The light irradiation according to any one of [1] to [4], further comprising a handle connected to the proximal portion of the resin tube, wherein the proximal portion of the coil member is fixed to the handle. medical device.
[6] The light irradiation medical device according to any one of [1] to [5], wherein the wire is in contact with the inner surface of the resin tube over its entire length.
[7] The light irradiation medical device according to any one of [1] to [6], wherein the outer peripheral surface of the optical fiber and the inner peripheral surface of the coil member are fixed.
 上記目的を達成し得た本発明の光照射医療装置の製造方法の一実施態様は下記の通りである。
 [8]樹脂チューブと、遠位部の所定区間に樹脂チューブの長手軸方向に延在しており樹脂チューブの径方向の外方に向かって光を射出する光拡散部を有する光ファイバーと、筒部材と、所定の外径である第1領域と該第1領域よりも外径が大きい第2領域を有している芯材と、を準備するステップと、樹脂チューブの内腔に芯材を挿入するステップと、樹脂チューブを加熱して樹脂チューブを熱収縮させ、樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップと、樹脂チューブの内腔から芯材を取り出すステップと、筒部材と光ファイバーとを樹脂チューブの内腔に配置し、筒部材の遠位端部と減径部の内表面とを接させるステップと、を有する光照射医療装置の製造方法。
 上記光照射医療装置の製造方法によれば、樹脂チューブ自体を細径化しやすくすることができ、細い管にも挿入しやすく、光ファイバーを患部により近づけることができる光照射医療装置となる。これにより、治療効率をあげることができる。また、筒部材の存在により、ほどよい剛性を付与することができるため、細径化しつつ操作性のよい光照射医療装置を提供することができる。
 [9]樹脂チューブの減径部よりも遠位側の内表面と光拡散部の外周面が接している[8]に記載の光照射医療装置の製造方法。
 [10]樹脂チューブの減径部よりも近位側の内表面と光ファイバーの外周面が接していない[8]または[9]に記載の光照射医療装置の製造方法。
One embodiment of the method for manufacturing a photoirradiation medical device according to the present invention, which can achieve the above objects, is as follows.
[8] A resin tube, an optical fiber having a light diffusing portion extending in the longitudinal direction of the resin tube in a predetermined section of the distal portion and emitting light outward in the radial direction of the resin tube; preparing a member and a core material having a first region with a predetermined outer diameter and a second region with a larger outer diameter than the first region; inserting; heating the resin tube to thermally shrink the resin tube to form a reduced diameter portion that narrows the lumen distally with respect to the resin tube; Manufacture of a photoirradiation medical device comprising the steps of: taking out a material; placing a cylindrical member and an optical fiber in a lumen of a resin tube; Method.
According to the manufacturing method of the above-described light irradiation medical device, the resin tube itself can be easily made thin, the light irradiation medical device can be easily inserted into a thin tube, and the optical fiber can be brought closer to the affected area. This can improve treatment efficiency. In addition, the existence of the cylindrical member can impart moderate rigidity, so that it is possible to provide a light irradiation medical device that is small in diameter and has good operability.
[9] The method for manufacturing a light irradiation medical device according to [8], wherein the inner surface of the resin tube on the distal side of the reduced diameter portion is in contact with the outer peripheral surface of the light diffusing portion.
[10] The method for manufacturing a light irradiation medical device according to [8] or [9], wherein the inner surface of the resin tube on the proximal side of the reduced diameter portion is not in contact with the outer peripheral surface of the optical fiber.
 上記目的を達成し得た本発明の光照射医療装置の製造方法の他の実施態様は下記の通りである。
 [11]第1樹脂チューブと、第1樹脂チューブよりも内径が大きい第2樹脂チューブと、遠位部の所定区間に第1樹脂チューブおよび第2樹脂チューブの長手軸方向に延在しており第1樹脂チューブおよび第2樹脂チューブの少なくともいずれか一方の径方向の外方に向かって光を射出する光拡散部を有する光ファイバーと、筒部材と、を準備するステップと、第1樹脂チューブの近位部に第2樹脂チューブを接続して樹脂チューブを形成し、樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップと、筒部材と光ファイバーとを樹脂チューブの内腔に配置し、筒部材の遠位端部と減径部の内表面とを接させるステップと、を有する光照射医療装置の製造方法。
 上記光照射医療装置の製造方法によれば、樹脂チューブ自体を細径化しやすくすることができ、細い管にも挿入しやすく、光ファイバーを患部により近づけることができる光照射医療装置となる。これにより、治療効率をあげることができる。また、筒部材の存在により、ほどよい剛性を付与することができるため、細径化しつつ操作性のよい光照射医療装置を提供することができる。
 [12]第1樹脂チューブの近位部に第2樹脂チューブを接続して樹脂チューブを形成し、樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップにおいて、所定の外径である第1領域と、該第1領域よりも外径が大きい第2領域を有している芯材を樹脂チューブの内腔に挿入するステップと、樹脂チューブを加熱して樹脂チューブを熱収縮させ、樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップと、樹脂チューブの内腔から芯材を取り出すステップと、を有する[11]に記載の光照射医療装置の製造方法。
 [13]芯材を樹脂チューブの内腔に挿入するステップにおいて、芯材の第1領域は第1樹脂チューブの内腔に配置し、芯材の第2領域は第2樹脂チューブの内腔に配置する[12]に記載の光照射医療装置の製造方法。
 [14]第1樹脂チューブの内表面と光拡散部の外周面が接している[11]~[13]のいずれか一項に記載の光照射医療装置の製造方法。
 [15]第2樹脂チューブの内表面と光ファイバーの外周面が接していない[11]~[14]のいずれか一項に記載の光照射医療装置の製造方法。
 [16]芯材は、第2領域において、第1領域の端部から延びており遠位側に向けて外径が小さくなるテーパー部を有している[8]~[10]、[12]または[13]のいずれか一項に記載の光照射医療装置の製造方法。
 [17]筒部材と光ファイバーとを樹脂チューブの内腔に配置する前に、光ファイバーを筒部材の内腔に挿入するステップをさらに有している、[8]~[16]のいずれか一項に記載の光照射医療装置の製造方法。
 [18]光ファイバーが筒部材の内腔に挿入された状態で、筒部材と光ファイバーが固定されている[17]に記載の光照射医療装置の製造方法。
 [19]筒部材は線材がらせん状に巻回されているコイル部を有している[8]~[18]のいずれか一項に記載の光照射医療装置の製造方法。
 [20]線材はその全長にわたって樹脂チューブの内表面に接している[19]に記載の光照射医療装置の製造方法。
Another embodiment of the method for manufacturing a photoirradiation medical device according to the present invention, which has achieved the above object, is as follows.
[11] A first resin tube, a second resin tube having an inner diameter larger than that of the first resin tube, and extending in the longitudinal direction of the first resin tube and the second resin tube in a predetermined section of the distal portion. preparing an optical fiber having a light diffusing portion that emits light outward in the radial direction of at least one of the first resin tube and the second resin tube; and a cylindrical member; forming a resin tube by connecting a second resin tube to the proximal portion and forming a reduced diameter portion with a narrower lumen toward the distal side of the resin tube; placing in the lumen of a tube and bringing the distal end of the tubular member into contact with the inner surface of the reduced diameter portion.
According to the manufacturing method of the above-described light irradiation medical device, the resin tube itself can be easily made thin, the light irradiation medical device can be easily inserted into a thin tube, and the optical fiber can be brought closer to the affected area. This can improve treatment efficiency. In addition, the existence of the cylindrical member can impart moderate rigidity, so that it is possible to provide a light irradiation medical device that is small in diameter and has good operability.
[12] In the step of forming a resin tube by connecting a second resin tube to the proximal portion of the first resin tube, and forming a reduced-diameter portion whose lumen narrows toward the distal side of the resin tube. a step of inserting a core material having a first region with a predetermined outer diameter and a second region with a larger outer diameter than the first region into the lumen of the resin tube; heat-shrinking a resin tube to form a reduced-diameter portion with a narrower lumen toward the distal side of the resin tube; and removing a core material from the lumen of the resin tube [11]. 2. A method for manufacturing the photoirradiation medical device according to 1.
[13] In the step of inserting the core material into the lumen of the resin tube, the first region of the core material is arranged in the lumen of the first resin tube, and the second region of the core material is arranged in the lumen of the second resin tube. The method for manufacturing the photoirradiation medical device according to [12].
[14] The method for manufacturing a light irradiation medical device according to any one of [11] to [13], wherein the inner surface of the first resin tube and the outer peripheral surface of the light diffusion portion are in contact with each other.
[15] The method for manufacturing a light irradiation medical device according to any one of [11] to [14], wherein the inner surface of the second resin tube and the outer peripheral surface of the optical fiber are not in contact with each other.
[16] The core material has, in the second region, a tapered portion extending from the end of the first region and decreasing in outer diameter toward the distal side [8] to [10], [12 ] or [13].
[17] Any one of [8] to [16], further comprising a step of inserting the optical fiber into the lumen of the tubular member before arranging the tubular member and the optical fiber into the lumen of the resin tube. 2. A method for manufacturing the photoirradiation medical device according to 1.
[18] The method for manufacturing a light irradiation medical device according to [17], wherein the cylindrical member and the optical fiber are fixed with the optical fiber inserted into the lumen of the cylindrical member.
[19] The method for manufacturing a photoirradiation medical device according to any one of [8] to [18], wherein the cylindrical member has a coil portion in which a wire is spirally wound.
[20] The method for manufacturing a light irradiation medical device according to [19], wherein the wire is in contact with the inner surface of the resin tube over its entire length.
 上記光照射医療装置および光照射医療装置の製造方法は、樹脂チューブ自体を細径化しやすい光照射医療装置を提供するものである。これにより、細い管にも挿入しやすく、光ファイバーを患部により近づけることができ、治療効率をあげることができる。また、コイル部材または筒部材の存在によりほどよい剛性を付与することができるため、細径化しつつ操作性を向上させることができるものである。 The light irradiation medical device and the method for manufacturing the light irradiation medical device provide a light irradiation medical device in which the diameter of the resin tube itself can be easily reduced. As a result, it is easy to insert into a thin tube, the optical fiber can be brought closer to the affected area, and the treatment efficiency can be improved. In addition, since the presence of the coil member or the cylindrical member can impart appropriate rigidity, it is possible to improve operability while reducing the diameter.
本発明の一実施形態に係る光照射医療装置の断面図(一部側面図)である。1 is a cross-sectional view (partial side view) of a light irradiation medical device according to an embodiment of the present invention; FIG. 図1に示した光照射医療装置のII-II線における切断部端面図である。FIG. 2 is a cross-sectional end view of the light irradiation medical device shown in FIG. 1 taken along line II-II. 図1に示した光照射医療装置の変形例を示す断面図(一部側面図)である。1. It is sectional drawing (partial side view) which shows the modification of the light irradiation medical device shown in FIG. 図1に示した光ファイバーの遠位側を拡大した断面図である。2 is an enlarged cross-sectional view of the distal side of the optical fiber shown in FIG. 1; FIG. 図1に示した光ファイバーの変形例を示す断面図である。FIG. 2 is a cross-sectional view showing a modification of the optical fiber shown in FIG. 1; 図1に示した光ファイバーの他の変形例を示す断面図である。3 is a cross-sectional view showing another modification of the optical fiber shown in FIG. 1; FIG. 図1に示した光ファイバーの他の変形例を示す断面図である。3 is a cross-sectional view showing another modification of the optical fiber shown in FIG. 1; FIG. 本発明の他の実施形態に係る光照射医療装置の遠位側を拡大した断面図(一部側面図)である。FIG. 10 is a cross-sectional view (partial side view) enlarging the distal side of a light irradiation medical device according to another embodiment of the present invention. 本発明の一実施形態に係る光照射医療装置の製造時に準備する部材の一例を示す側面図である。FIG. 4 is a side view showing an example of members prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention. 本発明の一実施形態に係る光照射医療装置の製造時に準備する芯材の一例を示す側面図である。FIG. 4 is a side view showing an example of a core material prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention. 本発明の一実施形態に係る光照射医療装置の製造時に準備する芯材の変形例を示す側面図である。FIG. 4 is a side view showing a modification of the core material prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention. 本発明の一実施形態に係る光照射医療装置の製造時に準備する部材の変形例を示す側面図である。FIG. 4 is a side view showing a modification of members prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention. 図1に示した光照射医療装置の変形例を示す断面図(一部側面図)である。1. It is sectional drawing (partial side view) which shows the modification of the light irradiation medical device shown in FIG.
 以下、本発明に関して、図面を参照しつつ具体的に説明するが、本発明はもとより図示例に限定されることはなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。各図において、便宜上、ハッチングや符号等を省略する場合もあるが、かかる場合、明細書や他の図を参照するものとする。また、図面における種々部品の寸法は、本発明の特徴を理解に資することを優先しているため、実際の寸法とは異なる場合がある。 Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the illustrated examples, and can be implemented with appropriate modifications within the scope that can conform to the gist of the above and later descriptions. All of them are included in the technical scope of the present invention. In each drawing, hatching, symbols, etc. may be omitted for the sake of convenience. In such cases, the specification and other drawings shall be referred to. In addition, the dimensions of various parts in the drawings may differ from the actual dimensions, since priority is given to aid understanding of the features of the present invention.
 本発明の光照射医療装置の一実施態様は、遠位側に向けて内腔が狭くなる減径部を有している樹脂チューブと、樹脂チューブの内腔に配置されており、遠位部の所定区間に樹脂チューブの長手軸方向に延在しており樹脂チューブの径方向の外方に向かって光を射出する光拡散部を有する光ファイバーと、樹脂チューブの内腔に配置されており、光ファイバーを周回するように線材がらせん状に巻回されているコイル部材と、を有し、コイル部材の遠位端部と減径部の内表面とが接している点に要旨を有する。上記光照射医療装置は、樹脂チューブ自体を細径化しやすいものである。これにより、細い管にも挿入しやすく、光ファイバーを患部により近づけることができ、治療効率をあげることができる。また、コイル部材の存在によりほどよい剛性を付与することができるため、操作性を向上させることができるものである。 One embodiment of the light irradiation medical device of the present invention includes a resin tube having a reduced diameter portion that narrows the lumen toward the distal side; an optical fiber extending in the longitudinal direction of the resin tube in a predetermined section and having a light diffusing portion that emits light radially outward of the resin tube; and a coil member in which a wire is helically wound around the optical fiber, and the distal end of the coil member and the inner surface of the reduced diameter portion are in contact with each other. In the light irradiation medical device, the diameter of the resin tube itself can be easily reduced. As a result, it is easy to insert into a thin tube, the optical fiber can be brought closer to the affected area, and the treatment efficiency can be improved. In addition, since the presence of the coil member can impart appropriate rigidity, the operability can be improved.
 光照射医療装置は、PDTや光アブレーションにおいて血管や消化管等の体内管腔で、がん細胞等の対象組織である処置部に対して特定の波長の光を照射するために用いられる。光照射医療装置は、単独で処置部まで送達されるものであってもよく、送達用のカテーテルや内視鏡と共に用いられてもよい。内視鏡を用いた治療では、内視鏡の鉗子チャンネルを通じて光照射医療装置が体内に配置され、処置部まで送達される。 A photoirradiation medical device is used in PDT and photoablation to irradiate light of a specific wavelength to the treatment area, which is the target tissue such as cancer cells, in a body lumen such as a blood vessel or digestive tract. The light irradiation medical device may be delivered to the treatment site alone, or may be used together with a delivery catheter or endoscope. In treatment using an endoscope, a light irradiation medical device is placed inside the body through a forceps channel of the endoscope and delivered to a treatment site.
 図1~図8を参照しながら、装置の基本構成について説明する。図1は、本発明の一実施形態に係る光照射医療装置の断面図(一部側面図)である。図2は、図1に示した光照射医療装置のII-II線における切断部端面図である。図3は、図1に示した光照射医療装置の変形例を示す断面図(一部側面図)である。図4は、図1に示した光ファイバーの遠位側を拡大した断面図である。図5は、図1に示した光ファイバーの変形例を示す断面図である。図6は、図1に示した光ファイバーの他の変形例を示す断面図である。図7は、図1に示した光ファイバーの他の変形例を示す断面図である。図8は、本発明の他の実施形態に係る光照射医療装置の遠位側を拡大した断面図(一部側面図)である。光照射医療装置1は、樹脂チューブ10と光ファイバー20とコイル部材40を有している。以下では光照射医療装置を単に装置と称することがある。 The basic configuration of the device will be described with reference to FIGS. 1 to 8. FIG. 1 is a cross-sectional view (partial side view) of a light irradiation medical device according to one embodiment of the present invention. FIG. 2 is an end view of the light irradiation medical device shown in FIG. 1 taken along line II-II. FIG. 3 is a cross-sectional view (partial side view) showing a modification of the light irradiation medical device shown in FIG. FIG. 4 is an enlarged cross-sectional view of the distal side of the optical fiber shown in FIG. FIG. 5 is a cross-sectional view showing a modification of the optical fiber shown in FIG. FIG. 6 is a cross-sectional view showing another modification of the optical fiber shown in FIG. FIG. 7 is a cross-sectional view showing another modification of the optical fiber shown in FIG. FIG. 8 is a cross-sectional view (partial side view) enlarging the distal side of a light irradiation medical device according to another embodiment of the present invention. The light irradiation medical device 1 has a resin tube 10 , an optical fiber 20 and a coil member 40 . In the following, the light irradiation medical device may be simply referred to as the device.
 上記装置1は、樹脂チューブ10を有する。樹脂チューブ10は長手軸方向xと径方向と周方向pを有している。樹脂チューブ10は、長手軸方向xに遠位端と近位端を有し、かつ長手軸方向xに延在している内腔11を有することが好ましい。樹脂チューブ10は、内腔11を1つのみ有していてもよく、複数有していてもよい。樹脂チューブ10はその内腔11に光ファイバー20およびコイル部材40を配置するために筒形状を有している。樹脂チューブ10は、内腔11を1つのみ有する筒形状を有していることが好ましい。樹脂チューブ10は体内に挿入されるため、好ましくは可撓性を有している。樹脂チューブ10は内表面12と外表面13を有している。 The device 1 has a resin tube 10. The resin tube 10 has a longitudinal direction x, a radial direction, and a circumferential direction p. The resin tube 10 preferably has a distal end and a proximal end in the longitudinal direction x and has a lumen 11 extending in the longitudinal direction x. The resin tube 10 may have only one lumen 11 or may have a plurality of lumens 11 . The resin tube 10 has a cylindrical shape for arranging the optical fiber 20 and the coil member 40 in its lumen 11 . The resin tube 10 preferably has a tubular shape with only one lumen 11 . Since the resin tube 10 is inserted into the body, it preferably has flexibility. Resin tube 10 has an inner surface 12 and an outer surface 13 .
 樹脂チューブ10は、例えば押出成形によって製造することができる。樹脂チューブ10は、単層であってもよいし複数層から構成されていてもよい。樹脂チューブ10は長手軸方向xまたは周方向pの一部が単層から構成されており、他部が複数層から構成されていてもよい。 The resin tube 10 can be manufactured by extrusion molding, for example. The resin tube 10 may be composed of a single layer or multiple layers. A part of the resin tube 10 in the longitudinal direction x or the circumferential direction p may be composed of a single layer, and the other part may be composed of a plurality of layers.
 樹脂チューブ10は、例えば、ポリオレフィン樹脂(例えば、ポリエチレンやポリプロピレン)、ポリアミド樹脂(例えば、ナイロン)、ポリエステル樹脂(例えば、PET)、芳香族ポリエーテルケトン樹脂(例えば、PEEK)、ポリエーテルポリアミド樹脂、ポリウレタン樹脂、ポリイミド樹脂、フッ素樹脂(例えば、PTFE、PFA、ETFE)等の合成樹脂から構成することができる。これらは一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。樹脂チューブ10のうち少なくとも後述する光拡散部21と重なる部分は、光透過性を有する樹脂から構成されていることが好ましい。樹脂チューブ10のうち少なくとも光拡散部21と重なる部分は、透明樹脂から構成されていてもよい。 The resin tube 10 is made of, for example, polyolefin resin (eg, polyethylene or polypropylene), polyamide resin (eg, nylon), polyester resin (eg, PET), aromatic polyether ketone resin (eg, PEEK), polyether polyamide resin, It can be made of synthetic resin such as polyurethane resin, polyimide resin, fluorine resin (for example, PTFE, PFA, ETFE). These may be used individually by 1 type, and may be used in combination of 2 or more types. It is preferable that at least a portion of the resin tube 10 that overlaps with the light diffusion portion 21 described later is made of a resin having light transmittance. At least a portion of the resin tube 10 that overlaps the light diffusion portion 21 may be made of a transparent resin.
 図1に示すように樹脂チューブ10は、遠位側に向けて内腔11が狭くなる減径部14を有している。これにより、樹脂チューブ10を細径化しやすくすることができるため、細い管にも挿入しやすく、光ファイバー20を患部により近づけることができ、治療効率をあげることができる。 As shown in FIG. 1, the resin tube 10 has a reduced diameter portion 14 in which the lumen 11 narrows toward the distal side. As a result, the diameter of the resin tube 10 can be easily reduced, so that the resin tube 10 can be easily inserted into a thin tube, the optical fiber 20 can be brought closer to the affected area, and the treatment efficiency can be improved.
 減径部14の外径が遠位側に向けて狭くなっていることが好ましい。これにより、樹脂チューブ10を細径化しやすくすることができるため、細い管にも挿入しやすく、光ファイバー20を患部により近づけやすくすることができ、治療効率をあげやすくすることができる。 It is preferable that the outer diameter of the reduced diameter portion 14 narrows toward the distal side. As a result, the diameter of the resin tube 10 can be easily reduced, so that it can be easily inserted into a thin tube, the optical fiber 20 can be easily brought closer to the affected area, and the treatment efficiency can be easily improved.
 図1に示すように樹脂チューブ10の遠位端には先端チップ15が取り付けられていてもよい。樹脂チューブ10の遠位端部による生体組織の損傷を回避することができる。先端チップ15の形状としては、例えば円柱形状、長円柱形状、半球形状、長円球形状、角錐台形状、円錐台形状、長円錐台形状、角丸錐台形状、またはこれらの組み合わせを挙げることができる。 A distal tip 15 may be attached to the distal end of the resin tube 10 as shown in FIG. Damage to living tissue by the distal end of the resin tube 10 can be avoided. Examples of the shape of the distal tip 15 include a cylindrical shape, an oval cylindrical shape, a hemispherical shape, an oval spherical shape, a truncated pyramid shape, a truncated cone shape, a long truncated cone shape, a rounded truncated pyramid shape, or a combination thereof. can be done.
 上記装置1は、樹脂チューブ10の内腔11に配置されており、遠位部の所定区間に樹脂チューブ10の長手軸方向xに延在しており樹脂チューブ10の径方向の外方に向かって光を射出する光拡散部21を有する光ファイバー20を有している。光ファイバー20は、対象組織まで光信号を送信する伝送路である。図1に示すように光ファイバー20は、樹脂チューブ10の内腔11に配置されている。図1では光ファイバー20の近位端部は後述するハンドル60から近位側に向かって延出している。光ファイバー20の近位端部は半導体レーザー等の光源に接続される。光拡散部21は径方向の外方に向かって発光することができる発光エリアとして機能する。光拡散部21は、樹脂チューブ10の長手軸方向xおよび周方向pに延在するように配されている。光拡散部21は外周面23を有している。光拡散部21の外周面23は樹脂チューブ10の内表面12側に面している。 The device 1 is arranged in the lumen 11 of the resin tube 10, extends in the longitudinal direction x of the resin tube 10 in a predetermined section of the distal portion, and extends outward in the radial direction of the resin tube 10. It has an optical fiber 20 having a light diffusing portion 21 for emitting light. The optical fiber 20 is a transmission line that transmits optical signals to the target tissue. As shown in FIG. 1, the optical fiber 20 is arranged in the lumen 11 of the resin tube 10. As shown in FIG. In FIG. 1, the proximal end of the optical fiber 20 extends proximally from a handle 60, which will be described later. The proximal end of optical fiber 20 is connected to a light source such as a semiconductor laser. The light diffusing portion 21 functions as a light emitting area capable of emitting light radially outward. The light diffusion portion 21 is arranged to extend in the longitudinal direction x and the circumferential direction p of the resin tube 10 . The light diffusing portion 21 has an outer peripheral surface 23 . An outer peripheral surface 23 of the light diffusion portion 21 faces the inner surface 12 side of the resin tube 10 .
 内視鏡を通じて、装置1を体腔内の対象組織がある位置まで挿入する。このとき、対象組織が樹脂チューブ10の外表面13よりも径方向の外方に位置するように配される。光拡散部21から射出された光が樹脂チューブ10のうち少なくとも光拡散部21と重なる部分を透過することで、装置1の周りにある対象組織に光が到達する。 The device 1 is inserted through the endoscope to the position where the target tissue is in the body cavity. At this time, the target tissue is positioned radially outward of the outer surface 13 of the resin tube 10 . The light emitted from the light diffusing portion 21 passes through at least a portion of the resin tube 10 that overlaps the light diffusing portion 21 , so that the light reaches the target tissue around the device 1 .
 上述のように、光拡散部21からは、少なくとも樹脂チューブ10の径方向の外方に向かって光が射出されることが好ましく、光拡散部21からは、樹脂チューブ10の周方向pの全体に亘って樹脂チューブ10の径方向の外方に向かって光が射出されることが好ましい。光拡散部21からは、さらに樹脂チューブ10の遠位方向、すなわち前方に向かって光が射出されてもよい。 As described above, from the light diffusion portion 21, it is preferable that light is emitted at least outward in the radial direction of the resin tube 10, and from the light diffusion portion 21, the entire circumferential direction p of the resin tube 10 It is preferable that the light is emitted outward in the radial direction of the resin tube 10 over the entire area. From the light diffusing portion 21 , light may be further emitted toward the distal direction of the resin tube 10 , that is, toward the front.
 光拡散部21は、光ファイバー20とは別個の拡散部材(例えば拡散板やプリズム)ではなく、光ファイバー20の一部を構成する部分である。光ファイバー20はコアとクラッドを有している。クラッドはコアの外周に配されて、コアの径方向の外方の一部を覆っている。光拡散部21は(i)コアのみ配されている態様、(ii)コアおよびクラッドが配されている態様、または(iii)一部がコアのみが配されており、他部がコアおよびクラッドが配されている態様のいずれかから構成されていることが好ましい。クラッドの径方向の外方には保護用の被覆材が配されていてもよいが、光拡散部21ではコアおよびクラッド以外の部材は配されていないことが好ましい。 The light diffusing part 21 is not a diffusing member separate from the optical fiber 20 (for example, a diffusion plate or a prism), but a part forming part of the optical fiber 20 . Optical fiber 20 has a core and a clad. The clad is arranged on the outer circumference of the core and covers a part of the radially outer side of the core. The light diffusion part 21 has (i) a mode in which only the core is arranged, (ii) a mode in which the core and the clad are arranged, or (iii) a part in which only the core is arranged and the other part in which the core and the clad are arranged. is preferably configured from any of the aspects in which is arranged. A covering material for protection may be arranged outside the clad in the radial direction, but it is preferable that the light diffusing portion 21 is not arranged with members other than the core and the clad.
 コアおよびクラッドを構成する材料は特に限定されず、プラスチック、石英ガラス、フッ化物ガラス等のガラスを用いることができる。 The materials that make up the core and clad are not particularly limited, and glass such as plastic, quartz glass, and fluoride glass can be used.
 樹脂チューブ10のうち少なくとも光拡散部21と重なる部分では、樹脂チューブ10を構成する樹脂に酸化チタン、硫酸バリウム、炭酸カルシウム等の無機系粒子、架橋アクリル系粒子、架橋スチレン系粒子等の有機系粒子の光拡散性の材料を添加することができる。光拡散部21から射出される光が樹脂チューブ10によって一層拡散されやすくなる。 At least in the portion of the resin tube 10 that overlaps the light diffusion portion 21, the resin constituting the resin tube 10 contains inorganic particles such as titanium oxide, barium sulfate, and calcium carbonate, and organic particles such as crosslinked acrylic particles and crosslinked styrene particles. Particle light diffusing materials can be added. Light emitted from the light diffusing portion 21 is more easily diffused by the resin tube 10 .
 光拡散部21は、光ファイバー20の最も遠位側に配されていることが好ましい。これにより光拡散部21の形成が行いやすくなり、光ファイバー20の遠位端部での柔軟性も高めることができる。 The light diffusion part 21 is preferably arranged on the most distal side of the optical fiber 20 . This makes it easier to form the light diffusing portion 21 and increases the flexibility of the distal end portion of the optical fiber 20 .
 長手軸方向xにおいて光拡散部21の長さは光ファイバー20の全長の50分の1以上、45分の1以上、30分の1以上の長さに設定されてもよい。このような長さに設定することで一度の照射で対象組織全体を照射しやすくなる。また、長手軸方向xにおいて光拡散部21の長さは光ファイバー20の全長の20分の1以下、25分の1以下、30分の1以下の長さに設定されてもよい。このような長さに設定することで対象外の組織への照射を防ぐことができる。 The length of the light diffusion portion 21 in the longitudinal direction x may be set to 1/50 or more, 1/45 or more, or 1/30 or more of the total length of the optical fiber 20 . By setting such a length, it becomes easy to irradiate the entire target tissue with a single irradiation. Also, the length of the light diffusing portion 21 in the longitudinal axis direction x may be set to 1/20 or less, 1/25 or less, or 1/30 or less of the total length of the optical fiber 20 . By setting such a length, it is possible to prevent irradiation of non-target tissues.
 光拡散部21は、樹脂チューブ10の周方向pの一部のみに配されていてもよいが、図2に示すように、光拡散部21は、樹脂チューブ10の周方向pの全体に配されていることが好ましい。周方向pの広範囲を一度に照射することができるため、手技の効率化が図られる。 The light diffusing portion 21 may be arranged only in a part of the resin tube 10 in the circumferential direction p, but as shown in FIG. It is preferable that Since a wide range in the circumferential direction p can be irradiated at once, efficiency of the procedure can be improved.
 図2に示すように、樹脂チューブ10の内表面12と光拡散部21の外周面23が接していてもよい。これにより、光拡散部21部分を細径化しやすくすることができるため、光拡散部21部分を患部により近づけることができる装置1にしやすくすることができる。これにより、細部まで光を照射しやすくすることができ、治療効率をあげることができる。また、樹脂チューブ10の内表面12と光拡散部21の外周面23が接していることにより、当該箇所では光拡散部21と樹脂チューブ10との間に隙間がなくなることによって光拡散部21が補強され、光拡散部21に強度を付与することができるため光拡散部21の耐破損性を向上させやすくすることができる。なお、樹脂チューブ10の内表面12と光拡散部21の外周面23が接していなくても構わない。 As shown in FIG. 2, the inner surface 12 of the resin tube 10 and the outer peripheral surface 23 of the light diffusion portion 21 may be in contact with each other. As a result, the diameter of the light diffusing portion 21 can be easily reduced, so that the device 1 can be easily made such that the light diffusing portion 21 can be brought closer to the affected area. As a result, it is possible to easily irradiate even the smallest details with light, and the treatment efficiency can be improved. In addition, since the inner surface 12 of the resin tube 10 and the outer peripheral surface 23 of the light diffusion portion 21 are in contact with each other, there is no gap between the light diffusion portion 21 and the resin tube 10 at that location, so that the light diffusion portion 21 is Since it is reinforced and strength can be imparted to the light diffusing portion 21, the damage resistance of the light diffusing portion 21 can be easily improved. In addition, the inner surface 12 of the resin tube 10 and the outer peripheral surface 23 of the light diffusion portion 21 may not be in contact with each other.
 図1に示すように、装置1は、樹脂チューブ10の内腔11に配置されており、光ファイバー20を周回するように線材42がらせん状に巻回されているコイル部材40を有する。長手軸方向xにおいてコイル部材40の全体が、樹脂チューブ10の内腔11に配置されていることが好ましい。上記コイル部材40の存在により、樹脂チューブ10の減径部14よりも近位側の内表面12と光ファイバー20の外周面23が接していなくてもよい。 As shown in FIG. 1, the device 1 has a coil member 40 which is arranged in the lumen 11 of the resin tube 10 and has a wire 42 spirally wound around the optical fiber 20 . It is preferable that the entire coil member 40 is arranged in the lumen 11 of the resin tube 10 in the longitudinal direction x. Due to the presence of the coil member 40 , the inner surface 12 of the resin tube 10 on the proximal side of the reduced diameter portion 14 does not have to be in contact with the outer peripheral surface 23 of the optical fiber 20 .
 線材42はその長手軸方向に先端と基端を有している。線材42は先端から基端まで単一の線状部材から構成されていてもよく、線材42はその長手軸方向において互いに連結された複数の線状部材から構成されてもよい。 The wire rod 42 has a distal end and a proximal end in its longitudinal direction. The wire 42 may be composed of a single linear member from the distal end to the proximal end, or the wire 42 may be composed of a plurality of linear members connected to each other in the longitudinal direction thereof.
 線材42の長手軸方向に垂直な断面の形状は、円形状、長円形状、多角形状、またはこれらの組み合わせであってもよい。長円形状には楕円形状、卵形状、角丸長方形状が含まれるものとする。本明細書の他の説明においても同様である。 The cross-sectional shape of the wire rod 42 perpendicular to the longitudinal axis direction may be circular, oval, polygonal, or a combination thereof. The oval shape includes an elliptical shape, an egg shape, and a rounded rectangular shape. The same applies to other descriptions in this specification.
 コイル部材40を構成する線材42の線径(太さ)や、線材42の巻き数は特に限定されない。コイル部材40の軸方向の長さはコイル部材40の最大外径より大きくても小さくてもよい。 The wire diameter (thickness) of the wire 42 constituting the coil member 40 and the number of turns of the wire 42 are not particularly limited. The axial length of the coil member 40 may be larger or smaller than the maximum outer diameter of the coil member 40 .
 樹脂チューブ10の長手軸方向xにおいてコイル部材40の外径は一定であってもよく、長手軸方向xの位置によってコイル部材40の外径が異なっていてもよい。例えば、長手軸方向xにおいてコイル部材40を遠位部と近位部に二等分割したときに、コイル部材40の遠位部の平均外径が、コイル部材40の近位部の平均外径よりも小さくてもよい。 The outer diameter of the coil member 40 may be constant in the longitudinal axis direction x of the resin tube 10, or the outer diameter of the coil member 40 may vary depending on the position in the longitudinal axis direction x. For example, when the coil member 40 is divided into a distal portion and a proximal portion in the longitudinal direction x, the average outer diameter of the distal portion of the coil member 40 is equal to the average outer diameter of the proximal portion of the coil member 40. may be smaller than
 樹脂チューブ10の長手軸方向xにおいてコイル部材40の内径は一定であってもよく、長手軸方向xの位置によってコイル部材40の内径が異なっていてもよい。例えば、長手軸方向xにおいてコイル部材40を遠位部と近位部に二等分割したときに、コイル部材40の遠位部の平均内径が、コイル部材40の近位部の平均内径よりも小さくてもよい。 The inner diameter of the coil member 40 may be constant in the longitudinal axis direction x of the resin tube 10, or the inner diameter of the coil member 40 may vary depending on the position in the longitudinal axis direction x. For example, when the coil member 40 is divided into a distal portion and a proximal portion in the longitudinal direction x, the average inner diameter of the distal portion of the coil member 40 is larger than the average inner diameter of the proximal portion of the coil member 40. It can be small.
 コイル部材40は、樹脂チューブ10よりも反射率が高い材料から構成されていることが好ましい。この構成により、コイル部材40の内面で反射光が拡散されやすくなる。ここで、反射率は光拡散部21から射出される光の反射率を指し、単位は%である。反射率は、オーシャンフォトニクス社製 反射率測定システム OP-RF-VIS-GT50を用いて測定することができる。 The coil member 40 is preferably made of a material having a higher reflectance than the resin tube 10. This configuration facilitates diffusion of the reflected light on the inner surface of the coil member 40 . Here, the reflectance refers to the reflectance of light emitted from the light diffusing portion 21, and the unit is %. The reflectance can be measured using a reflectance measurement system OP-RF-VIS-GT50 manufactured by Ocean Photonics.
 コイル部材40は金属から構成されていることが好ましく、例えば、金、銀、白金、パラジウム、タングステン、タンタル、イリジウムおよびそれらの合金等の放射線不透過性金属でもよく、ステンレス鋼、Ni-Ti合金等の超弾性合金でもよい。 The coil member 40 is preferably constructed of metal, and may be, for example, radiopaque metals such as gold, silver, platinum, palladium, tungsten, tantalum, iridium and alloys thereof, stainless steel, Ni—Ti alloys. and other superelastic alloys.
 コイル部材40の一部が樹脂から構成されていてもよい。コイル部材40が、コイル部材本体と、コイル部材本体の内面に配されている反射層とを有していてもよい。コイル部材本体の材料によらず、反射層によって光拡散部21からの光を反射させることができる。例えば樹脂線材が巻回されたコイル体または樹脂チューブがコイル部材本体であってもよい。反射層は、コイル部材本体の内面に反射材料を含むコート剤が塗布されることで配されてもよく、蒸着、スパッタリング、電気メッキ、化学メッキ等の方法で反射材料をコイル部材本体の内面に付着させることにより配されてもよい。なお、反射層は金属薄膜であってもよい。反射材料としては、例えば、アルミニウム、金、銀、銅、スズ、二酸化チタン、五酸化タンタル、酸化アルミニウム、二酸化ケイ素、フッ化マグネシウムまたはこれらの組み合わせが挙げられる。コイル部材40が反射層を有する場合、コイル部材本体には樹脂チューブ10の構成材料として挙げた材料の少なくともいずれか1つを用いることができる。 A part of the coil member 40 may be made of resin. The coil member 40 may have a coil member main body and a reflective layer arranged on the inner surface of the coil member main body. The light from the light diffusing portion 21 can be reflected by the reflective layer regardless of the material of the coil member main body. For example, a coil body or a resin tube around which a resin wire is wound may be the coil member main body. The reflective layer may be provided by applying a coating agent containing a reflective material to the inner surface of the coil member body, and the reflective material is applied to the inner surface of the coil member body by a method such as vapor deposition, sputtering, electroplating, or chemical plating. It may be arranged by adhering. Note that the reflective layer may be a metal thin film. Reflective materials include, for example, aluminum, gold, silver, copper, tin, titanium dioxide, tantalum pentoxide, aluminum oxide, silicon dioxide, magnesium fluoride, or combinations thereof. When the coil member 40 has a reflective layer, at least one of the materials listed as the constituent materials of the resin tube 10 can be used for the coil member main body.
 コイル部材40のピッチPは特に限定されないが、コイル部材40は線材42の線径以上のピッチPを有していることが好ましく、1.1倍以上のピッチを有していてもよく、1.2倍以上のピッチを有していてもよい。また、コイル部材40は線材42の線径の3.0倍以下のピッチを有していてもよく、2.5倍以下のピッチを有していてもよい。ピッチPとは、図1に示すように軸方向においてコイル部材40を形成する隣り合う2つの線材42の中心軸の間隔である。コイル部材40のピッチPは軸方向において一定であってもよく、軸方向の位置によって異なっていてもよい。なお、コイル部材40に存在する全てのピッチPが上記の範囲内であってもよいし、一部のピッチが上記の範囲内であってもよい。上記のようなピッチPを有していることによって、柔軟性とほどよい剛性を持たせることができ、操作性を向上させやすくすることができる。 Although the pitch P of the coil member 40 is not particularly limited, the coil member 40 preferably has a pitch P equal to or greater than the wire diameter of the wire rod 42, and may have a pitch of 1.1 times or more. It may have a pitch of .2 or more. Also, the coil member 40 may have a pitch of 3.0 times or less the wire diameter of the wire 42, or may have a pitch of 2.5 times or less. The pitch P is the distance between the central axes of two adjacent wires 42 forming the coil member 40 in the axial direction, as shown in FIG. The pitch P of the coil members 40 may be constant in the axial direction, or may vary depending on the position in the axial direction. In addition, all the pitches P existing in the coil member 40 may be within the above range, or a part of the pitches may be within the above range. By having the pitch P as described above, it is possible to impart flexibility and moderate rigidity, and it is possible to easily improve the operability.
 コイル部材40は線材42の線径と同じピッチPを有していてもよい。このようなコイルは、一般に密着巻きコイルと称される。密着巻きコイルでは、隣り合う2つの線材42の間に隙間がなく、コイル部材40から光が漏れにくいため好ましい。また、コイル部材40をマーカーとして使用する場合にも好ましい。 The coil member 40 may have the same pitch P as the wire diameter of the wire 42 . Such coils are commonly referred to as tight wound coils. A tight-wound coil is preferable because there is no gap between two adjacent wire rods 42 and light is less likely to leak from the coil member 40 . It is also preferable when the coil member 40 is used as a marker.
 線材42の線径が、その長手軸方向で変化している場合(例えば、太径部と、太径部よりも線径が細い細径部がある場合)には、コイル部材40は線材42の線径よりも小さいピッチPを有していてもよい。 When the wire diameter of the wire 42 changes in its longitudinal axis direction (for example, when there is a large diameter portion and a small diameter portion with a smaller wire diameter than the large diameter portion), the coil member 40 may have a pitch P smaller than the wire diameter of the
 コイル部材40は、単層巻きコイルであってもよく、多層巻きコイルであってもよく、これらを組み合わせたものであってもよい。例えば図1ではコイル部材40が単層巻きコイルである例を示している。 The coil member 40 may be a single-layer winding coil, a multi-layer winding coil, or a combination thereof. For example, FIG. 1 shows an example in which the coil member 40 is a single-layer wound coil.
 図3に示すように、コイル部材40は、単層巻きされている第1コイル部40aと、第1コイル部40aよりも近位側に位置しており、多層巻きされている第2コイル部40bを有していていてもよい。多層巻きされている第2コイル部40bによりトルクが遠位側に伝わりやすくなり、装置1の操作性を高めることができる。なお、コイル部材40において、多層巻きされている第2コイル部40bは、単層巻きされている第1コイル部40aよりも遠位側に位置していてもよい。 As shown in FIG. 3, the coil member 40 includes a first coil portion 40a that is wound in a single layer and a second coil portion that is positioned proximal to the first coil portion 40a and is wound in multiple layers. 40b. Torque can be easily transmitted to the distal side by the second coil portion 40b wound in multiple layers, and the operability of the device 1 can be enhanced. In the coil member 40, the second coil portion 40b wound in multiple layers may be positioned further to the distal side than the first coil portion 40a wound in a single layer.
 図1に示すように、コイル部材40の線材42は樹脂チューブ10の内表面12に接していてもよい。線材42はその全長にわたって樹脂チューブ10の内表面12に接していてもよい。これにより、光ファイバー20の樹脂チューブ10の径方向における位置を安定させやすくすることができるため、操作性を向上させやすくすることができる。なお、コイル部材40の線材42は樹脂チューブ10の内表面12に接していなくても構わない。 As shown in FIG. 1, the wire rod 42 of the coil member 40 may be in contact with the inner surface 12 of the resin tube 10. The wire 42 may be in contact with the inner surface 12 of the resin tube 10 over its entire length. As a result, the position of the optical fiber 20 in the radial direction of the resin tube 10 can be easily stabilized, so that the operability can be easily improved. Note that the wire 42 of the coil member 40 does not have to be in contact with the inner surface 12 of the resin tube 10 .
 図1に示すように、装置1のコイル部材40の遠位端部と減径部14の内表面140とが接している。コイル部材40の遠位端401と減径部14の内表面140とが接していることがより好ましい。当該構成により、ほどよい剛性を付与することができるため、細径化しつつ操作性のよい光照射医療装置1を提供することができる。 As shown in FIG. 1, the distal end portion of the coil member 40 of the device 1 and the inner surface 140 of the reduced diameter portion 14 are in contact. More preferably, the distal end 401 of the coil member 40 and the inner surface 140 of the reduced diameter portion 14 are in contact. With this configuration, moderate rigidity can be imparted, so that it is possible to provide the light irradiation medical device 1 with good operability while having a small diameter.
 コイル部材40の遠位端部と減径部14の内表面140とは固定されていてもよい。コイル部材40は減径部14に直接固定されていてもよく、別の部材を介して間接的に固定されていてもよい。コイル部材40と減径部14の固定方法は特に限定されないが、例えば、溶着、溶接、かしめ等の圧着、接着剤による接着、係合、連結、結着、結紮等の物理的な固定等の方法、またはこれらの組み合わせを挙げることができる。なお、コイル部材40の遠位端部と減径部14の内表面140とが固定されていなくてもよい。 The distal end portion of the coil member 40 and the inner surface 140 of the reduced diameter portion 14 may be fixed. The coil member 40 may be directly fixed to the reduced diameter portion 14, or may be indirectly fixed via another member. The method of fixing the coil member 40 and the reduced diameter portion 14 is not particularly limited, but may be, for example, welding, welding, crimping such as caulking, bonding with an adhesive, engagement, connection, binding, ligature, or other physical fixing. methods, or combinations thereof. Note that the distal end portion of the coil member 40 and the inner surface 140 of the reduced diameter portion 14 may not be fixed.
 図1に示すように、光ファイバー20の光拡散部21がコイル部材40の遠位端401よりも遠位側に配置されていてもよい。光拡散部21の一部のみがコイル部材40の遠位端401よりも遠位側に配置されていてもよいが、光拡散部21の全体がコイル部材40の遠位端401よりも遠位側に配置されていることがより好ましい。これにより、光拡散部21部分を細径化しやすくすることができるため、光拡散部21部分を患部により近づけることができる装置1となる。これにより、治療効率をあげることができる。 As shown in FIG. 1 , the light diffusing portion 21 of the optical fiber 20 may be arranged distally of the distal end 401 of the coil member 40 . Although only part of the light diffusing portion 21 may be arranged distally of the distal end 401 of the coil member 40 , the entire light diffusing portion 21 is distal of the distal end 401 of the coil member 40 . It is more preferable to be arranged on the side. As a result, the diameter of the light diffusing portion 21 can be easily reduced, so that the device 1 can bring the light diffusing portion 21 closer to the affected area. This can improve treatment efficiency.
 上記装置1が樹脂チューブ10の近位部に接続されているハンドル60をさらに有していてもよい。図1では、樹脂チューブ10の近位部がハンドル60に接続されている。術者がハンドル60を把持することで、装置1の操作が行いやすくなる。ハンドル60は、例えば長手軸方向xに延在している。ハンドル60は、一または複数の部材から構成することができる。図1では、ハンドル60は長手軸方向xに延在している中空部61を有している。ハンドル60は例えば筒形状を有していてもよい。図1では、中空部61に樹脂チューブ10と光ファイバー20とコイル部材40が挿通されている。 The device 1 may further have a handle 60 connected to the proximal portion of the resin tube 10. In FIG. 1, the proximal portion of resin tube 10 is connected to handle 60 . By holding the handle 60 by the operator, the device 1 can be easily operated. The handle 60 extends, for example, in the longitudinal direction x. Handle 60 may be constructed from one or more members. In FIG. 1, the handle 60 has a hollow portion 61 extending in the longitudinal direction x. The handle 60 may have, for example, a tubular shape. In FIG. 1 , the resin tube 10 , the optical fiber 20 and the coil member 40 are inserted through the hollow portion 61 .
 ハンドル60の構成材料は特に限定されないが、例えばポリプロピレン(PP)、ポリエチレン(PE)等のポリオレフィン樹脂、ポリエチレンテレフタレート(PET)等のポリエステル樹脂、ポリカーボネート樹脂、ABS樹脂、ポリウレタン樹脂等の合成樹脂を用いることができる。 Although the material of the handle 60 is not particularly limited, for example, polyolefin resins such as polypropylene (PP) and polyethylene (PE), polyester resins such as polyethylene terephthalate (PET), polycarbonate resins, ABS resins, and synthetic resins such as polyurethane resins are used. be able to.
 コイル部材40の近位部がハンドル60に固定されていてもよいし、コイル部材40の近位端部がハンドル60に固定されていてもよい。コイル部材40はハンドル60に直接固定されていてもよく、別の部材を介して間接的に固定されていてもよい。コイル部材40とハンドル60の固定方法は特に限定されないが、例えば、溶着、溶接、かしめ等の圧着、接着剤による接着、係合、連結、結着、結紮等の物理的な固定等の方法、またはこれらの組み合わせを挙げることができる。これにより、トルクを伝えやすくすることができるため、操作性を向上させやすくすることができる。なお、コイル部材40がハンドル60に固定されていなくても構わない。 The proximal portion of the coil member 40 may be fixed to the handle 60, or the proximal end portion of the coil member 40 may be fixed to the handle 60. The coil member 40 may be directly fixed to the handle 60, or may be indirectly fixed via another member. The method of fixing the coil member 40 and the handle 60 is not particularly limited. Or a combination thereof can be mentioned. As a result, torque can be easily transmitted, and operability can be easily improved. Note that the coil member 40 does not have to be fixed to the handle 60 .
 光ファイバー20の外周面23とコイル部材40の内周面が固定されていてもよい。コイル部材40は光ファイバー20に直接固定されていてもよく、別の部材を介して間接的に固定されていてもよい。コイル部材40と光ファイバー20の固定方法は特に限定されないが、例えば、溶着、溶接、かしめ等の圧着、接着剤による接着、係合、連結、結着、結紮等の物理的な固定等の方法、またはこれらの組み合わせを挙げることができる。なお、光ファイバー20の外周面23とコイル部材40の内周面が固定されていなくてもよい。 The outer peripheral surface 23 of the optical fiber 20 and the inner peripheral surface of the coil member 40 may be fixed. The coil member 40 may be directly fixed to the optical fiber 20, or may be indirectly fixed via another member. The method of fixing the coil member 40 and the optical fiber 20 is not particularly limited. Or a combination thereof can be mentioned. Note that the outer peripheral surface 23 of the optical fiber 20 and the inner peripheral surface of the coil member 40 may not be fixed.
 図4~図7を参照しながら光ファイバー20の構成例を説明する。図4~図7では、光ファイバー20は、長手軸方向xに延在しているコア25を有し、光ファイバー20は、コア25の外周に配されている第1クラッド26を有している第1区間31を有している。第1区間31では、コア25と第1クラッド26の境界で光が全反射しやすくなるため、第1区間31では、光がコア25内に閉じ込められながら光ファイバー20の遠位側に伝搬される。 A configuration example of the optical fiber 20 will be described with reference to FIGS. 4 to 7. FIG. 4-7, the optical fiber 20 has a core 25 extending in the longitudinal direction x, and the optical fiber 20 has a first clad 26 disposed around the core 25. It has one section 31 . In the first section 31, the light is likely to be totally reflected at the boundary between the core 25 and the first clad 26. Therefore, in the first section 31, the light is confined within the core 25 and propagates to the distal side of the optical fiber 20. .
 第1区間31では、1つの第1クラッド26の中に1つのコア25が配されていることが好ましい。第1区間31では、光ファイバー20をシングルコア光ファイバーと言い換えることができる。 It is preferable that one core 25 is arranged in one first clad 26 in the first section 31 . In the first section 31, the optical fiber 20 can be rephrased as a single-core optical fiber.
 光ファイバー20のプロファイルの増加を防ぐために、第1区間31では第1クラッド26が光ファイバー20の径方向の最も外側に位置していてもよい。すなわち、第1区間31には被覆材などの他の部材が配されなくてもよい。 In order to prevent the profile of the optical fiber 20 from increasing, the first clad 26 may be positioned radially outwardly of the optical fiber 20 in the first section 31 . That is, the first section 31 does not need to be provided with other members such as a covering material.
 図示していないが、光ファイバー20の第1区間31には、第1クラッド26の外周に被覆材が配されていてもよい。第1区間31の外側を保護することが可能となり、第1区間31において外への光漏れや射出を抑制することもできる。被覆材は、第1クラッド26の外周面上に配される被覆層であってもよく、第1クラッド26を内包するシースであってもよい。被覆材は、紫外線硬化樹脂等の樹脂から構成することができる。 Although not shown, the first section 31 of the optical fiber 20 may be provided with a coating material around the outer periphery of the first clad 26 . It is possible to protect the outside of the first section 31 , and it is also possible to suppress light leakage and emission to the outside in the first section 31 . The coating material may be a coating layer arranged on the outer peripheral surface of the first clad 26 or a sheath enclosing the first clad 26 . The covering material can be made of a resin such as an ultraviolet curable resin.
 図4では、光ファイバー20が、光拡散部21に、コア25の外周に配されており第1クラッド26よりも外周面の表面粗さが大きい第2クラッド27を有している第2区間32を有している態様を示している。第2区間32は第1区間31よりも遠位側に位置している。第1区間31よりも第2区間32でクラッドの表面粗さを大きくすることで、光の一部はコア25内に閉じ込められながら光ファイバー20の遠位側に伝搬され、残りの光は第2クラッド27から外に漏れて径方向の外方に射出される。なお、第1区間31では光が径方向の外方に射出されないか、または第2区間32よりも光の漏れ量が小さいことが好ましい。 In FIG. 4 , the optical fiber 20 has a second section 32 having a second clad 27 disposed on the outer periphery of the core 25 and having a larger outer surface roughness than the first clad 26 in the light diffusion portion 21 . It shows an embodiment having The second section 32 is positioned more distally than the first section 31 . By making the clad surface roughness larger in the second section 32 than in the first section 31, part of the light is confined within the core 25 and propagated to the distal side of the optical fiber 20, and the remaining light is transmitted to the second section 31. It leaks out from the clad 27 and is injected radially outward. It is preferable that the first section 31 does not emit light radially outward, or that the amount of light leakage is smaller than that of the second section 32 .
 第1区間31と同様に、第2区間32では、1つの第2クラッド27の中に1つのコア25が配されていることが好ましい。第1区間31と第2区間32は一の光ファイバーから構成されていてもよい。第1区間31の第1クラッド26と第2区間32の第2クラッド27は一体成形されていてもよい。光ファイバー20は、第1区間31用の光ファイバーと第2区間32用の光ファイバーが長手軸方向xに接合されることによって形成されていてもよい。第1区間31の第1クラッド26と第2区間32の第2クラッド27は別々に形成された後で接合されてもよい。 As in the first section 31 , in the second section 32 , one core 25 is preferably arranged in one second clad 27 . The first section 31 and the second section 32 may consist of one optical fiber. The first clad 26 of the first section 31 and the second clad 27 of the second section 32 may be integrally molded. The optical fiber 20 may be formed by joining the optical fiber for the first section 31 and the optical fiber for the second section 32 in the longitudinal axis direction x. The first clad 26 of the first section 31 and the second clad 27 of the second section 32 may be separately formed and then joined together.
 第2区間32では、第2クラッド27が光ファイバー20の径方向の最も外側に位置していることが好ましい。すなわち、第2区間32では、コア25と第2クラッド27以外の部材(例えば被覆材)が配されていないことが好ましい。この構成により、第2区間32から樹脂チューブ10の径方向の外方に向かって光を射出することができる。 In the second section 32, it is preferable that the second clad 27 is located on the outermost side of the optical fiber 20 in the radial direction. That is, in the second section 32, it is preferable that no member (for example, a covering material) other than the core 25 and the second clad 27 is arranged. With this configuration, light can be emitted outward in the radial direction of the resin tube 10 from the second section 32 .
 第2区間32の第2クラッド27の外周面の表面粗さは、第1区間31の第1クラッド26の外周面の表面粗さよりも大きい。ここで、表面粗さは、光ファイバー20の外周面の長手軸方向における粗さ曲線の基準長さ間での算術平均粗さRaである。基準長さは、使用するレーザー顕微鏡の拡大率に応じて設定すればよいが、例えば200μmである。上記算術平均粗さRaは、JIS B 0601(2001)に規定される算術平均粗さRaに相当し、JIS B 0633(2001)に準じて測定される。測定には、JIS B 0651(2001)に規定される測定機(例えば、キーエンス社製レーザー顕微鏡 VK-X3000)を用いる。 The surface roughness of the outer peripheral surface of the second clad 27 in the second section 32 is greater than the surface roughness of the outer peripheral surface of the first clad 26 in the first section 31 . Here, the surface roughness is the arithmetic mean roughness Ra between the reference lengths of the roughness curve in the longitudinal axis direction of the outer peripheral surface of the optical fiber 20 . The reference length may be set according to the magnification of the laser microscope used, and is, for example, 200 μm. The above arithmetic mean roughness Ra corresponds to the arithmetic mean roughness Ra specified in JIS B 0601 (2001) and is measured according to JIS B 0633 (2001). For the measurement, a measuring machine specified in JIS B 0651 (2001) (for example, a laser microscope VK-X3000 manufactured by Keyence Corporation) is used.
 第2区間32の第2クラッド27の外周面の表面粗さの平均値が、第1区間31の第1クラッド26の外周面の表面粗さの平均値よりも大きいことが好ましい。第1区間31ではコア25内に光が閉じ込められやすくなり、第2区間32では第2クラッド27から光が径方向の外方に射出されやすくなる。その結果、長手軸方向xにおいて光拡散部21の発光強度分布が均一化されやすくなる。表面粗さの平均値とは、測定対象となる区間(例えば第1区間31)において、長手軸方向xに並ぶように設定された10点以上の測定点の表面粗さ値の平均値である。 The average value of the surface roughness of the outer peripheral surface of the second clad 27 in the second section 32 is preferably larger than the average value of the surface roughness of the outer peripheral surface of the first clad 26 in the first section 31 . In the first section 31 , light is likely to be confined within the core 25 , and in the second section 32 , light is likely to be emitted radially outward from the second clad 27 . As a result, the light emission intensity distribution of the light diffusing portion 21 is easily made uniform in the longitudinal direction x. The average value of the surface roughness is the average value of the surface roughness values of 10 or more measurement points set so as to be aligned in the longitudinal axis direction x in the section to be measured (for example, the first section 31). .
 図4に示すように長手軸方向xにおいて第2区間32を遠位部323と近位部324に二等分割したときに、近位部324における第2クラッド27の外周面の表面粗さの平均値が、遠位部323における第2クラッド27の外周面の表面粗さの平均値よりも小さいことが好ましい。この構成により、近位部324では遠位部323よりもコア25内に光を閉じ込める効果を高めつつ、遠位部323では第2クラッド27から径方向の外方に向かって光が射出されやすくなるため、長手軸方向xにおいて第2区間32の発光強度分布が均一化されやすくなる。 As shown in FIG. 4, when the second section 32 is divided into a distal portion 323 and a proximal portion 324 in the longitudinal direction x, the surface roughness of the outer peripheral surface of the second clad 27 in the proximal portion 324 is The average value is preferably smaller than the average surface roughness of the outer peripheral surface of the second clad 27 in the distal portion 323 . With this configuration, the proximal portion 324 enhances the effect of confining light within the core 25 more than the distal portion 323, while the distal portion 323 facilitates the radially outward emission of light from the second clad 27. Therefore, the emission intensity distribution of the second section 32 is easily uniformed in the longitudinal direction x.
 長手軸方向xにおいて第1区間31よりも第2区間32の方が短いことが好ましい。光拡散部21を形成しやすくなり、光ファイバー20の遠位端部での柔軟性も高めることができる。長手軸方向xにおいて第2区間32の長さは、第1区間31の長さの20分の1以下、25分の1以下、30分の1以下の長さに設定することができる。また、長手軸方向xにおいて第2区間32の長さは、第1区間31の長さの50分の1以上、45分の1以上、あるいは30分の1以上の長さに設定されてもよい。 The second section 32 is preferably shorter than the first section 31 in the longitudinal direction x. It becomes easier to form the light diffusing portion 21, and the flexibility of the distal end portion of the optical fiber 20 can also be increased. The length of the second section 32 in the longitudinal direction x can be set to 1/20 or less, 1/25 or less, or 1/30 or less of the length of the first section 31 . Also, the length of the second section 32 in the longitudinal axis direction x may be set to 1/50 or more, 1/45 or more, or 1/30 or more of the length of the first section 31. good.
 図4から理解できるように第2区間32の第2クラッド27の平均厚みは、第1区間31の第1クラッド26の平均厚みよりも小さいことが好ましい。このようにクラッドの厚みを調整することで、第1区間31ではコア25内に光が閉じ込められやすくなり、第2区間32では第2クラッド27から光が径方向の外方に射出されやすくなる。ここで、クラッドの厚みは、キーエンス社製レーザー顕微鏡 VK-X3000を用いて測定することができる。 As can be understood from FIG. 4, the average thickness of the second clad 27 in the second section 32 is preferably smaller than the average thickness of the first clad 26 in the first section 31. By adjusting the thickness of the clad in this way, light is more likely to be confined in the core 25 in the first section 31, and light is more likely to be emitted radially outward from the second clad 27 in the second section 32. . Here, the clad thickness can be measured using a laser microscope VK-X3000 manufactured by Keyence Corporation.
 図5、図6に示すように、光ファイバー20が第1区間31を有している場合、光ファイバー20は、光拡散部21に、クラッドが存在せず第1区間31よりも遠位側に位置している第3区間33を有していてもよい。第3区間33ではクラッドが存在しないことにより、コア25からの光が径方向の外方に射出される。 As shown in FIGS. 5 and 6, when the optical fiber 20 has the first section 31, the optical fiber 20 has no cladding in the light diffusing portion 21 and is located distal to the first section 31. You may have the 3rd area 33 which is carrying out. Since there is no clad in the third section 33, the light from the core 25 is emitted radially outward.
 第3区間33では、コア25の周方向の少なくとも一部でクラッドが存在していないことが好ましく、コア25の周方向の全体でクラッドが存在していないことがより好ましい。 In the third section 33, it is preferable that no clad exists in at least a part of the core 25 in the circumferential direction, and more preferably, no clad exists in the entire circumferential direction of the core 25.
 第3区間33では、光ファイバー20の中ではコア25が径方向の最も外側に位置していることが好ましい。すなわち、第3区間33では、クラッドだけでなく、コア25以外のあらゆる部材(例えば被覆材)が配されていないことが好ましい。 In the third section 33, it is preferable that the core 25 is positioned radially outermost in the optical fiber 20. That is, in the third section 33, not only the clad but also any member other than the core 25 (for example, a covering material) is preferably not arranged.
 長手軸方向xにおいて、第3区間33のコア25の外径は一定の値であってもよく、長手軸方向xの位置によってコア25の外径が異なる値であってもよい。 In the longitudinal direction x, the outer diameter of the core 25 in the third section 33 may be a constant value, or the outer diameter of the core 25 may be a different value depending on the position in the longitudinal direction x.
 図5、図6に示すように、長手軸方向xにおいて、第3区間33の遠位端は、コア25の遠位端と同じ位置にあることが好ましい。第3区間33を形成しやすくなり、光ファイバー20の遠位端部での柔軟性も高めることができる。 As shown in FIGS. 5 and 6, the distal end of the third section 33 is preferably at the same position as the distal end of the core 25 in the longitudinal direction x. It becomes easier to form the third section 33, and the flexibility at the distal end of the optical fiber 20 can also be increased.
 第3区間33のコア25の外周面の表面粗さは、第1区間31の第1クラッド26の外周面の表面粗さよりも大きいことが好ましい。第1区間31ではコア25内に光が閉じ込められやすくなり、第3区間33ではコア25から光が径方向の外方に射出されやすくなる。 The surface roughness of the outer peripheral surface of the core 25 in the third section 33 is preferably larger than the surface roughness of the outer peripheral surface of the first clad 26 in the first section 31 . Light is likely to be confined within the core 25 in the first section 31 , and light is likely to be emitted radially outward from the core 25 in the third section 33 .
 光拡散部21には第2区間32と第3区間33の少なくともいずれか一方が配されていることが好ましく、第2区間32と第3区間33の両方が配されていてもよい。図5に示すように、光拡散部21には、その近位側から遠位側に向かって順に第2区間32、第3区間33が配されていることが好ましい。この構成により、長手軸方向xにおいて光拡散部21の発光強度分布が均一化されやすくなる。この効果を高めるためには、長手軸方向xにおいて第1区間31と第2区間32と第3区間33は隣接していることが好ましく、より詳細には、第1区間31と第2区間32が隣接しており、第2区間32と第3区間33が隣接していることが好ましい。 At least one of the second section 32 and the third section 33 is preferably arranged in the light diffusion section 21, and both the second section 32 and the third section 33 may be arranged. As shown in FIG. 5, it is preferable that a second section 32 and a third section 33 are arranged in order from the proximal side to the distal side of the light diffusing section 21 . With this configuration, the light emission intensity distribution of the light diffusing portion 21 can be easily uniformed in the longitudinal direction x. In order to enhance this effect, it is preferable that the first section 31, the second section 32, and the third section 33 are adjacent to each other in the longitudinal direction x. More specifically, the first section 31 and the second section 32 are adjacent to each other, and the second section 32 and the third section 33 are preferably adjacent to each other.
 光ファイバー20が第2区間32と第3区間33を有している場合、図5に示すように長手軸方向xにおいて第2区間32よりも第3区間33の方が短いことが好ましい。この構成により、長手軸方向xにおける光拡散部21の全体の発光強度分布を均一化させやすくなる。なお、長手軸方向xにおいて第3区間33よりも第2区間32の方が短い態様も許容される。 When the optical fiber 20 has a second section 32 and a third section 33, it is preferable that the third section 33 is shorter than the second section 32 in the longitudinal direction x as shown in FIG. With this configuration, it becomes easier to uniform the emission intensity distribution of the entire light diffusing portion 21 in the longitudinal direction x. A mode in which the second section 32 is shorter than the third section 33 in the longitudinal direction x is also allowed.
 長手軸方向xにおいて第3区間33の長さは、第2区間32および第3区間33の合計長さの20%以下の大きさであることが好ましく、18%以下の大きさであることがより好ましく、15%以下の大きさであることがさらに好ましい。また、長手軸方向xにおいて第3区間33の長さは、第2区間32および第3区間33の合計長さの5%以上、8%以上、あるいは10%以上の大きさであってもよい。この構成により、長手軸方向xにおける光拡散部21の発光強度分布を均一化させやすくなる。 The length of the third section 33 in the longitudinal direction x is preferably 20% or less of the total length of the second section 32 and the third section 33, and is preferably 18% or less. More preferably, the size is 15% or less. In addition, the length of the third section 33 in the longitudinal direction x may be 5% or more, 8% or more, or 10% or more of the total length of the second section 32 and the third section 33. . This configuration makes it easier to uniformize the light emission intensity distribution of the light diffusion portion 21 in the longitudinal direction x.
 第2区間32の第2クラッド27の外周面の表面粗さの平均値は、第3区間33のコア25の外周面の表面粗さの平均値よりも小さいことが好ましい。この構成により、第2区間32と第3区間33のそれぞれで、長手軸方向xにおける発光強度分布を均一化させやすくなる。 The average value of the surface roughness of the outer peripheral surface of the second clad 27 in the second section 32 is preferably smaller than the average value of the surface roughness of the outer peripheral surface of the core 25 in the third section 33 . This configuration makes it easier to uniformize the emission intensity distribution in the longitudinal axis direction x in each of the second section 32 and the third section 33 .
 図4に示すように、光ファイバー20は、光拡散部21に第2区間32のみを有していてもよい。すなわち、光ファイバー20は、光拡散部21に第3区間33を有していなくてもよい。第2区間32のみを有する構成であっても、長手軸方向xにおける光拡散部21の発光強度分布を均一化させることができる。コア25が露出していないため、手技中の装置1の曲げに伴う光ファイバー20の損傷を防ぐ効果も有する。 As shown in FIG. 4, the optical fiber 20 may have only the second section 32 in the light diffusing portion 21 . That is, the optical fiber 20 does not have to have the third section 33 in the light diffusing portion 21 . Even with the configuration having only the second section 32, the light emission intensity distribution of the light diffusing portion 21 in the longitudinal axis direction x can be made uniform. Since the core 25 is not exposed, it also has the effect of preventing damage to the optical fiber 20 due to bending of the device 1 during the procedure.
 光ファイバー20が、光拡散部21に第2区間32のみを有している場合、長手軸方向xにおいて、第2区間32の遠位端がコア25の遠位端と同じ位置にあることが好ましい。 When the optical fiber 20 has only the second section 32 in the light diffusing portion 21, the distal end of the second section 32 is preferably at the same position as the distal end of the core 25 in the longitudinal direction x. .
 図6に示すように、光ファイバー20は、光拡散部21に第3区間33のみを有していてもよい。すなわち、光ファイバー20は、光拡散部21に第2区間32を有していなくてもよい。第3区間33のみを有する構成であっても、長手軸方向xにおける光拡散部21の発光強度分布を均一化させることができる。 As shown in FIG. 6, the optical fiber 20 may have only the third section 33 in the light diffusing portion 21 . That is, the optical fiber 20 does not have to have the second section 32 in the light diffusing portion 21 . Even with the configuration having only the third section 33, the light emission intensity distribution of the light diffusing portion 21 in the longitudinal axis direction x can be made uniform.
 第2区間32および第3区間33は、エッチングや研磨によりクラッドを剥離させることで形成することができる。第2区間32や第3区間33の表面粗さを調整するために、第2クラッド27の外周面や第3区間33のコア25の外周面に凹凸が配されていてもよい。凹凸は、機械的または化学的に第2クラッド27または第3区間33のコア25の表面を荒らすことで形成可能である。表面を荒らす方法としては、エッチング加工、ブラスト加工、けがき針、ワイヤブラシ、またはサンドペーパーを用いる方法が挙げられる。 The second section 32 and the third section 33 can be formed by removing the clad by etching or polishing. In order to adjust the surface roughness of the second section 32 and the third section 33, the outer peripheral surface of the second clad 27 and the outer peripheral surface of the core 25 of the third section 33 may be uneven. The unevenness can be formed by mechanically or chemically roughening the surface of the core 25 of the second clad 27 or the third section 33 . Examples of methods for roughening the surface include etching, blasting, a method using a scribe, a wire brush, or sandpaper.
 図7に示すように、光ファイバー20の遠位端面には反射材200が設けられていることが好ましい。反射材200とは、例えば反射面が近位側を向くように配されたミラーである。この構成により、反射光が樹脂チューブ10の径方向の外方に拡散されやすくなる。 As shown in FIG. 7, it is preferable that the distal end surface of the optical fiber 20 is provided with a reflector 200 . The reflector 200 is, for example, a mirror arranged so that the reflecting surface faces the proximal side. This configuration makes it easier for the reflected light to diffuse outward in the radial direction of the resin tube 10 .
 反射材200の表面は、アルミニウム、金、銀、銅、スズ、二酸化チタン、五酸化タンタル、酸化アルミニウム、二酸化ケイ素、またはフッ化マグネシウムから構成されていることが好ましい。 The surface of the reflector 200 is preferably made of aluminum, gold, silver, copper, tin, titanium dioxide, tantalum pentoxide, aluminum oxide, silicon dioxide, or magnesium fluoride.
 光拡散部21からは治療用の第1光線が射出されればよい。第1光線は、体内組織を照射し、PDTやPITといった光治療に適した波長のレーザー光であることが好ましい。第1光線のほか、標的化用の第2光線が射出されてもよい。第2光線は、第1光線の射出前に治療部位を把握するために射出される光線であり、第1光線よりも放射エネルギーが低いことが好ましい。 The light diffusing portion 21 should emit the first light beam for treatment. The first light beam is preferably laser light with a wavelength suitable for phototherapy such as PDT and PIT for irradiating internal tissue. In addition to the first beam, a second targeting beam may be emitted. The second light beam is a light beam emitted to grasp the treatment site before the first light beam is emitted, and preferably has a lower radiant energy than the first light beam.
 光ファイバー20の遠位端部のコア25の外径が遠位端側に向かって小さくなっていてもよい。図8に示すように、第3区間33において長手軸方向xの全体に亘ってコア25の外径が遠位端側に向かって小さくなっていてもよい。 The outer diameter of the core 25 at the distal end of the optical fiber 20 may decrease toward the distal end. As shown in FIG. 8 , the outer diameter of the core 25 may decrease toward the distal end side over the entire longitudinal axis direction x in the third section 33 .
 図8に示すように、装置1は、コア25の外周面に接しており、樹脂チューブ10の長手軸方向xに延在するように配置される遠位側コイル部材50をさらに有していてもよい。遠位側コイル部材50は、コイル部材40よりも遠位側に配置される。図8に示すように、遠位側コイル部材50は第3区間33の外周面に接していてもよい。 As shown in FIG. 8 , the device 1 further includes a distal side coil member 50 that is in contact with the outer peripheral surface of the core 25 and that extends in the longitudinal direction x of the resin tube 10 . good too. The distal side coil member 50 is arranged distally of the coil member 40 . As shown in FIG. 8 , the distal coil member 50 may contact the outer peripheral surface of the third section 33 .
 図8に示すように、遠位側コイル部材50は、第1区間31の第1クラッド26の厚みと同じもしくは第1区間31の第1クラッド26の厚み以下の外径を有する線材52によって構成されていることが好ましい。また、線材52は、コア25を周回するように配置されていることが好ましい。これにより、装置1の遠位端部を細径化しつつ、第3区間33から射出される光が遠位側コイル部材50の内面で反射することができるようになるため、反射光が光ファイバー20のうち遠位側コイル部材50で覆われていない部分から様々な方向に拡散されやすくなる。遠位側コイル部材50を構成する材料については、コイル部材40の説明を参照することができる。 As shown in FIG. 8, the distal coil member 50 is composed of a wire 52 having an outer diameter equal to or less than the thickness of the first clad 26 of the first section 31. It is preferable that Moreover, it is preferable that the wire rod 52 is arranged so as to surround the core 25 . As a result, the light emitted from the third section 33 can be reflected on the inner surface of the distal coil member 50 while the distal end portion of the device 1 is made thinner, so that the reflected light can be reflected by the optical fiber 20 . It becomes easy to diffuse in various directions from the part not covered with the distal side coil member 50 among them. As for the material forming the distal coil member 50, the description of the coil member 40 can be referred to.
 次に、図9~図13を参照して、本発明の実施態様に係る光照射医療装置の製造方法について説明する。図9は、本発明の一実施形態に係る光照射医療装置の製造時に準備する部材の一例を示す側面図である。図10は、本発明の一実施形態に係る光照射医療装置の製造時に準備する芯材の一例を示す側面図である。図11は、本発明の一実施形態に係る光照射医療装置の製造時に準備する芯材の変形例を示す側面図である。図12は、本発明の一実施形態に係る光照射医療装置の製造時に準備する部材の変形例を示す側面図である。図13は、図1に示した光照射医療装置の変形例を示す断面図(一部側面図)である。なお、上記装置1の説明において、既に説明した部材等については同一の符号を付し、説明を省略する。 Next, with reference to FIGS. 9 to 13, a method for manufacturing a light irradiation medical device according to an embodiment of the present invention will be described. FIG. 9 is a side view showing an example of members prepared when manufacturing the photoirradiation medical device according to one embodiment of the present invention. FIG. 10 is a side view showing an example of a core material prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention. FIG. 11 is a side view showing a modification of the core material prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention. FIG. 12 is a side view showing a modification of members prepared when manufacturing the light irradiation medical device according to one embodiment of the present invention. 13 is a cross-sectional view (partial side view) showing a modification of the light irradiation medical device shown in FIG. 1. FIG. In addition, in the description of the apparatus 1, the same reference numerals are given to the members and the like that have already been described, and the description thereof will be omitted.
 本発明の光照射医療装置の製造方法の一実施態様は、樹脂チューブと、遠位部の所定区間に樹脂チューブの長手軸方向xに延在しており樹脂チューブの径方向の外方に向かって光を射出する光拡散部を有する光ファイバーと、筒部材と、所定の外径である第1領域と該第1領域よりも外径が大きい第2領域を有している芯材と、を準備するステップと、樹脂チューブの内腔に芯材を挿入するステップと、樹脂チューブを加熱して樹脂チューブを熱収縮させ、樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップと、樹脂チューブの内腔から芯材を取り出すステップと、筒部材と光ファイバーとを樹脂チューブの内腔に配置し、筒部材の遠位端部と減径部の内表面とを接させるステップと、を有する点に要旨を有する。上記光照射医療装置の製造方法によれば、樹脂チューブ自体を細径化しやすくすることができ、細い管にも挿入しやすく、光ファイバーを患部により近づけることができる光照射医療装置1となる。これにより、治療効率をあげることができる。また、筒部材の存在により、ほどよい剛性を付与することができるため、細径化しつつ操作性のよい光照射医療装置1を提供することができる。 One embodiment of the method for manufacturing a light irradiation medical device of the present invention includes a resin tube, and a resin tube extending in the longitudinal axis direction x of the resin tube in a predetermined section of the distal portion and extending outward in the radial direction of the resin tube. an optical fiber having a light diffusing portion that emits light through a cylindrical member; and a core member having a first region having a predetermined outer diameter and a second region having an outer diameter larger than that of the first region. preparing, inserting a core material into the lumen of the resin tube, heating the resin tube to heat shrink the resin tube, and reducing the diameter of the resin tube by narrowing the lumen toward the distal side. removing the core material from the lumen of the resin tube; placing the cylindrical member and the optical fiber in the lumen of the resin tube, and the distal end of the cylindrical member and the inner surface of the reduced diameter portion and a step of contacting. According to the manufacturing method of the above-described light irradiation medical device, the resin tube itself can be easily made thin, the light irradiation medical device 1 can be easily inserted into a thin tube, and the optical fiber can be brought closer to the affected area. This can improve treatment efficiency. In addition, the presence of the cylindrical member can impart appropriate rigidity, so that the light irradiation medical device 1 with good operability can be provided while having a small diameter.
 まず、図9、図10に示すように、樹脂チューブ1010と、光拡散部21を有する光ファイバー20と、筒部材1050と、所定の外径である第1領域1060aと該第1領域1060aよりも外径が大きい第2領域1060bを有している芯材1060と、を準備する。なお、ここで準備される樹脂チューブ1010は、上述した減径部が形成される前の樹脂チューブのことを指す。 First, as shown in FIGS. 9 and 10, a resin tube 1010, an optical fiber 20 having a light diffusing portion 21, a cylindrical member 1050, a first region 1060a having a predetermined outer diameter, and a A core material 1060 having a second region 1060b with a large outer diameter is prepared. Note that the resin tube 1010 prepared here refers to the resin tube before the diameter-reduced portion described above is formed.
 筒部材1050は、光ファイバー20の一部を覆う筒状の部材である。筒部材1050は、1つの内腔を有していることが好ましい。筒部材1050の形状は特に限定されないが、円筒形状、楕円筒形状、または多角筒形状であってもよい。筒部材1050の軸方向の長さは筒部材1050の最大外径より大きくても小さくてもよい。 The tubular member 1050 is a tubular member that partially covers the optical fiber 20 . Tubular member 1050 preferably has one lumen. The shape of the cylindrical member 1050 is not particularly limited, but may be cylindrical, elliptical, or polygonal. The axial length of tubular member 1050 may be larger or smaller than the maximum outer diameter of tubular member 1050 .
 芯材1060は所定の外径である第1領域1060aと該第1領域1060aよりも外径が大きい第2領域1060bを有している部材である。芯材1060の形状は円柱状、長円柱状、多角柱状等であることが好ましい。芯材1060の形状は、図10に示すような形状だけでなく、図11に示すように、第2領域1060bにおいて、第1領域1060aの端部から延びており遠位側に向けて外径が小さくなるテーパー部を有している形状であってもよい。 The core material 1060 is a member having a first region 1060a with a predetermined outer diameter and a second region 1060b with a larger outer diameter than the first region 1060a. The shape of the core material 1060 is preferably a cylindrical shape, an oval columnar shape, a polygonal columnar shape, or the like. The shape of the core material 1060 is not limited to the shape shown in FIG. 10. As shown in FIG. It may be a shape having a tapered portion in which .DELTA.
 準備した樹脂チューブ1010の内腔1011に芯材1060を挿入し、樹脂チューブ1010を加熱して樹脂チューブ1010を熱収縮させ、当該樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成する。このようにして減径部が形成された樹脂チューブが図1等に示した樹脂チューブ10に相当する。 A core material 1060 is inserted into the lumen 1011 of the prepared resin tube 1010, and the resin tube 1010 is heated to thermally shrink the resin tube 1010, thereby reducing the lumen narrowing toward the distal side with respect to the resin tube. forming a diameter; The resin tube having the reduced diameter portion formed in this way corresponds to the resin tube 10 shown in FIG. 1 and the like.
 樹脂チューブ1010を加熱して樹脂チューブ1010を熱収縮させる前に、熱収縮チューブの内腔に樹脂チューブ1010を挿入するステップを有していてもよい。当該ステップを有する場合は、熱収縮チューブの外側から熱を加えて樹脂チューブ1010を熱収縮させることが好ましい。 Before heating the resin tube 1010 to heat shrink the resin tube 1010, there may be a step of inserting the resin tube 1010 into the lumen of the heat shrink tube. If such a step is included, it is preferable to apply heat from the outside of the heat-shrinkable tube to heat-shrink the resin tube 1010 .
 熱収縮させた後、樹脂チューブ10の内腔11から芯材1060を取り出し、筒部材1050と光ファイバー20とを樹脂チューブ10の内腔11に配置する。筒部材1050は、樹脂チューブ10の長手軸方向xに延在するように形成されることが好ましい。このとき、筒部材1050の遠位端部と減径部14の内表面140とを接させる。筒部材1050の遠位端1051と減径部14の内表面140とを接させてもよい。当該構成により、樹脂チューブ10自体を細径化しやすくすることができ、細い管にも挿入しやすく、光ファイバー20を患部により近づけることができる光照射医療装置1となる。これにより、治療効率をあげることができる。また、筒部材1050の存在により、ほどよい剛性を付与することができるため、細径化しつつ操作性のよい光照射医療装置1を提供することができる。 After heat shrinking, the core material 1060 is taken out from the lumen 11 of the resin tube 10, and the tubular member 1050 and the optical fiber 20 are arranged in the lumen 11 of the resin tube 10. The tubular member 1050 is preferably formed to extend in the longitudinal direction x of the resin tube 10 . At this time, the distal end portion of the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 are brought into contact with each other. The distal end 1051 of the tubular member 1050 and the inner surface 140 of the reduced diameter portion 14 may be brought into contact. With this configuration, the diameter of the resin tube 10 itself can be easily reduced, the light irradiation medical device 1 can be easily inserted into a thin tube, and the optical fiber 20 can be brought closer to the affected area. This can improve treatment efficiency. In addition, due to the presence of the cylindrical member 1050, it is possible to impart moderate rigidity, so that it is possible to provide the light irradiation medical device 1 with good operability while having a reduced diameter.
 筒部材1050の遠位端部と減径部14の内表面140とは固定されていてもよい。筒部材1050は減径部14に直接固定されていてもよく、別の部材を介して間接的に固定されていてもよい。筒部材1050と減径部14の固定方法は特に限定されないが、例えば、溶着、溶接、かしめ等の圧着、接着剤による接着、係合、連結、結着、結紮等の物理的な固定等の方法、またはこれらの組み合わせを挙げることができる。なお、筒部材1050の遠位端部と減径部14の内表面140とが固定されていなくてもよい。 The distal end portion of the tubular member 1050 and the inner surface 140 of the reduced diameter portion 14 may be fixed. The tubular member 1050 may be directly fixed to the reduced diameter portion 14, or may be indirectly fixed via another member. The method of fixing the cylindrical member 1050 and the reduced diameter portion 14 is not particularly limited, but may be, for example, welding, welding, crimping such as caulking, bonding with an adhesive, engagement, connection, binding, ligature, or other physical fixing. methods, or combinations thereof. Note that the distal end portion of the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 may not be fixed.
 上記筒部材1050は線材がらせん状に巻回されているコイル部を有していてもよい。上記筒部材1050は上述したコイル部材40であってもよい。 The tubular member 1050 may have a coil portion in which a wire is spirally wound. The cylindrical member 1050 may be the coil member 40 described above.
 筒部材1050がコイル部材40である場合、線材42はその全長にわたって樹脂チューブ10の内表面12に接していてもよい。これにより、光ファイバー20の樹脂チューブ10の径方向における位置を安定させやすくすることができるため、操作性を向上させやすくすることができる。なお、線材42は樹脂チューブ10の内表面12に接していなくても構わない。 When the tubular member 1050 is the coil member 40, the wire 42 may be in contact with the inner surface 12 of the resin tube 10 over its entire length. As a result, the position of the optical fiber 20 in the radial direction of the resin tube 10 can be easily stabilized, so that the operability can be easily improved. Note that the wire 42 does not have to be in contact with the inner surface 12 of the resin tube 10 .
 樹脂チューブ10の減径部14よりも遠位側の内表面12と光拡散部21の外周面23が接していてもよい。これにより、光拡散部21部分を細径化しやすくすることができるため、光拡散部21部分を患部により近づけることができる装置1となり、治療効率をあげやすくすることができる。なお、樹脂チューブ10の減径部14よりも遠位側の内表面12と光拡散部21の外周面23が接していなくてもよい。 The inner surface 12 on the distal side of the reduced diameter portion 14 of the resin tube 10 and the outer peripheral surface 23 of the light diffusion portion 21 may be in contact with each other. As a result, the diameter of the light diffusing portion 21 can be easily reduced, so that the device 1 can bring the light diffusing portion 21 closer to the affected area, and the treatment efficiency can be easily increased. In addition, the inner surface 12 of the resin tube 10 on the distal side of the reduced diameter portion 14 and the outer peripheral surface 23 of the light diffusion portion 21 may not be in contact with each other.
 上記筒部材1050、または、コイル部材40の存在により、樹脂チューブ10の減径部14よりも近位側の内表面12と光ファイバー20の外周面23が接していなくてもよい。筒部材1050、または、コイル部材40の存在により、トルクを遠位側に伝えやすくすることができるため、装置1の操作性を上げることができる。 Due to the presence of the cylindrical member 1050 or the coil member 40, the inner surface 12 of the resin tube 10 on the proximal side of the reduced diameter portion 14 and the outer peripheral surface 23 of the optical fiber 20 may not be in contact. The presence of the tubular member 1050 or the coil member 40 makes it easier to transmit torque to the distal side, so that the operability of the device 1 can be improved.
 本発明の光照射医療装置の製造方法の他の実施態様は、第1樹脂チューブと、第1樹脂チューブよりも内径が大きい第2樹脂チューブと、遠位部の所定区間に第1樹脂チューブおよび第2樹脂チューブの長手軸方向に延在しており第1樹脂チューブおよび第2樹脂チューブの少なくともいずれか一方の径方向の外方に向かって光を射出する光拡散部を有する光ファイバーと、筒部材と、を準備するステップと、第1樹脂チューブの近位部に第2樹脂チューブを接続して樹脂チューブを形成し、樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップと、筒部材と光ファイバーとを樹脂チューブの内腔に配置し、筒部材の遠位端部と前記減径部の内表面とを接させるステップと、を有する点に要旨を有する。上記光照射医療装置の製造方法によれば、樹脂チューブ自体を細径化しやすくすることができ、細い管にも挿入しやすく、光ファイバーを患部により近づけることができる光照射医療装置となる。これにより、治療効率をあげることができる。また、筒部材の存在により、ほどよい剛性を付与することができるため、細径化しつつ操作性のよい光照射医療装置を提供することができる。 Another embodiment of the method for manufacturing a photoirradiation medical device of the present invention includes a first resin tube, a second resin tube having an inner diameter larger than that of the first resin tube, and a predetermined section of the distal portion of the first resin tube and an optical fiber extending in the longitudinal direction of the second resin tube and having a light diffusing portion that emits light outward in the radial direction of at least one of the first resin tube and the second resin tube; connecting a second resin tube to the proximal portion of the first resin tube to form a resin tube, the diameter of which narrows the lumen distally relative to the resin tube; and placing a cylindrical member and an optical fiber in a lumen of a resin tube to bring the distal end of the cylindrical member into contact with the inner surface of the reduced diameter portion. have. According to the manufacturing method of the above-described light irradiation medical device, the resin tube itself can be easily made thin, the light irradiation medical device can be easily inserted into a thin tube, and the optical fiber can be brought closer to the affected area. As a result, treatment efficiency can be increased. In addition, the existence of the cylindrical member can impart moderate rigidity, so that it is possible to provide a light irradiation medical device that is small in diameter and has good operability.
 まず、図12に示すように、第1樹脂チューブ1010aと、第1樹脂チューブ1010aよりも内径が大きい第2樹脂チューブ1010bと、遠位部の所定区間に第1樹脂チューブ1010aおよび第2樹脂チューブ1010bの長手軸方向xに延在しており第1樹脂チューブ1010aおよび第2樹脂チューブ1010bの少なくともいずれか一方の径方向の外方に向かって光を射出する光拡散部21を有する光ファイバー20と、筒部材1050と、を準備する。なお、ここで準備される第1樹脂チューブ1010a及び第2樹脂チューブ1010bは、上述した減径部が形成されていない樹脂チューブを指す。 First, as shown in FIG. 12, a first resin tube 1010a, a second resin tube 1010b having an inner diameter larger than that of the first resin tube 1010a, and a predetermined section of the distal portion of the first resin tube 1010a and the second resin tube an optical fiber 20 having a light diffusing portion 21 extending in the longitudinal direction x of the first resin tube 1010b and emitting light outward in the radial direction of at least one of the first resin tube 1010a and the second resin tube 1010b; , and a cylindrical member 1050 are prepared. Note that the first resin tube 1010a and the second resin tube 1010b prepared here refer to resin tubes in which the above-described reduced diameter portion is not formed.
 準備した第1樹脂チューブ1010aの近位部に第2樹脂チューブ1010bを接続して1つの樹脂チューブを形成する。当該樹脂チューブを利用する場合、第1樹脂チューブ1010aと第2樹脂チューブ1010bを接続する際に、継ぎ目部分に上述した減径部を形成しても構わない。 A second resin tube 1010b is connected to the proximal portion of the prepared first resin tube 1010a to form one resin tube. When using the resin tube, the above-described reduced diameter portion may be formed at the joint portion when connecting the first resin tube 1010a and the second resin tube 1010b.
 また、第1樹脂チューブ1010aの近位部に第2樹脂チューブ1010bを接続した後の樹脂チューブに対して、上述した芯材1060を用いて、遠位側に向けて内腔が狭くなる減径部を形成しても構わない。例えば、上記第1樹脂チューブ1010aの近位部に第2樹脂チューブ1010bを接続して樹脂チューブを形成し、樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップにおいて、図10、図11に示すような所定の外径である第1領域1060aと、該第1領域1060aよりも外径が大きい第2領域1060bを有している芯材1060を樹脂チューブの内腔に挿入するステップと、樹脂チューブを加熱して樹脂チューブを熱収縮させ、樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップを有していてもよい。 In addition, the above-described core material 1060 is used for the resin tube after the second resin tube 1010b is connected to the proximal portion of the first resin tube 1010a, so that the diameter of the inner lumen narrows toward the distal side. It does not matter if you form a part. For example, a resin tube is formed by connecting the second resin tube 1010b to the proximal portion of the first resin tube 1010a, and a reduced-diameter portion is formed in which the inner lumen narrows toward the distal side of the resin tube. In the step, a core member 1060 having a first region 1060a having a predetermined outer diameter and a second region 1060b having a larger outer diameter than the first region 1060a as shown in FIGS. and heating the resin tube to heat shrink the resin tube to form a reduced diameter portion that narrows the lumen distally with respect to the resin tube. good too.
 上記光照射医療装置の製造方法の芯材1060を樹脂チューブの内腔に挿入するステップにおいて、芯材1060の第1領域1060aは第1樹脂チューブ1010aの内腔1011aに配置し、芯材1060の第2領域1060bは第2樹脂チューブ1010bの内腔1011bに配置してもよい。 In the step of inserting the core material 1060 into the lumen of the resin tube in the method for manufacturing a light irradiation medical device, the first region 1060a of the core material 1060 is arranged in the lumen 1011a of the first resin tube 1010a. The second region 1060b may be arranged in the lumen 1011b of the second resin tube 1010b.
 樹脂チューブを加熱して熱収縮させる前に、熱収縮チューブの内腔に樹脂チューブを挿入するステップを有していてもよい。当該ステップを有する場合は、熱収縮チューブの外側から熱を加えて樹脂チューブを熱収縮させることが好ましい。このようにして減径部が形成された樹脂チューブが図13に示した樹脂チューブ10に相当する。 You may have a step of inserting the resin tube into the lumen of the heat-shrinkable tube before heating and heat-shrinking the resin tube. If this step is included, it is preferable to apply heat from the outside of the heat-shrinkable tube to heat-shrink the resin tube. The resin tube having the reduced diameter portion formed in this way corresponds to the resin tube 10 shown in FIG.
 樹脂チューブを熱収縮させた後、樹脂チューブ10の内腔11から芯材1060を取り出すステップを有していてもよい。 A step of removing the core material 1060 from the inner cavity 11 of the resin tube 10 may be provided after the resin tube is heat-shrunk.
 筒部材1050と光ファイバー20とを減径部14を形成した樹脂チューブ10の内腔11に配置し、筒部材1050の遠位端部と減径部14の内表面140とを接させる。筒部材1050の遠位端1051と減径部14の内表面140とを接させることがより好ましい。当該構成により、樹脂チューブ10自体を細径化しやすくすることができ、細い管にも挿入しやすく、光ファイバー20を患部により近づけることができる光照射医療装置1となる。これにより、治療効率をあげることができる。また、筒部材1050の存在により、ほどよい剛性を付与することができるため、細径化しつつ操作性のよい光照射医療装置1を提供することができる。 The cylindrical member 1050 and the optical fiber 20 are arranged in the lumen 11 of the resin tube 10 having the reduced diameter portion 14 formed therein, and the distal end portion of the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 are brought into contact. More preferably, the distal end 1051 of the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 are in contact with each other. With this configuration, the diameter of the resin tube 10 itself can be easily reduced, the light irradiation medical device 1 can be easily inserted into a thin tube, and the optical fiber 20 can be brought closer to the affected area. This can improve treatment efficiency. In addition, due to the presence of the cylindrical member 1050, it is possible to impart moderate rigidity, so that it is possible to provide the light irradiation medical device 1 with good operability while having a reduced diameter.
 筒部材1050の遠位端部と減径部14の内表面140とは固定されていてもよい。筒部材1050は減径部14の内表面140に直接固定されていてもよく、別の部材を介して間接的に固定されていてもよい。筒部材1050と減径部14の内表面140の固定方法は特に限定されないが、例えば、溶着、溶接、かしめ等の圧着、接着剤による接着、係合、連結、結着、結紮等の物理的な固定等の方法、またはこれらの組み合わせを挙げることができる。なお、筒部材1050の遠位端部と減径部14の内表面140とは固定されていなくてもよい。 The distal end portion of the tubular member 1050 and the inner surface 140 of the reduced diameter portion 14 may be fixed. The cylindrical member 1050 may be directly fixed to the inner surface 140 of the reduced diameter portion 14, or may be indirectly fixed via another member. The method of fixing the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 is not particularly limited, but for example, physical bonding such as welding, welding, crimping such as caulking, bonding with adhesive, engagement, connection, binding, ligature, etc. methods such as fixation, or a combination thereof. Note that the distal end portion of the cylindrical member 1050 and the inner surface 140 of the reduced diameter portion 14 may not be fixed.
 上記光照射医療装置の製造方法は、筒部材1050と光ファイバー20とを樹脂チューブ10の内腔11に配置する前に、光ファイバー20を筒部材1050の内腔に挿入するステップをさらに有していてもよい。光ファイバー20を筒部材1050の内腔に挿入することで、光ファイバー20を破損しにくくすることができる。 The method for manufacturing the light irradiation medical device further includes a step of inserting the optical fiber 20 into the lumen of the tubular member 1050 before placing the tubular member 1050 and the optical fiber 20 into the lumen 11 of the resin tube 10. good too. By inserting the optical fiber 20 into the lumen of the tubular member 1050, the optical fiber 20 can be made less likely to break.
 光ファイバー20が筒部材1050の内腔に挿入された状態で、筒部材1050と光ファイバー20が固定されていてもよい。筒部材1050は光ファイバー20に直接固定されていてもよく、別の部材を介して間接的に固定されていてもよい。筒部材1050と光ファイバー20の固定方法は特に限定されないが、例えば、溶着、溶接、かしめ等の圧着、接着剤による接着、係合、連結、結着、結紮等の物理的な固定等の方法、またはこれらの組み合わせを挙げることができる。なお、筒部材1050と光ファイバー20とが固定されていなくてもよい。 The tubular member 1050 and the optical fiber 20 may be fixed while the optical fiber 20 is inserted into the lumen of the tubular member 1050 . The tubular member 1050 may be directly fixed to the optical fiber 20, or may be indirectly fixed via another member. The method of fixing the cylindrical member 1050 and the optical fiber 20 is not particularly limited, but for example, welding, welding, crimping such as crimping, bonding with an adhesive, engaging, connecting, binding, ligating, etc. physical fixing methods, Or a combination thereof can be mentioned. Note that the tubular member 1050 and the optical fiber 20 may not be fixed.
 図13に示すように、樹脂チューブ10のうちの第1樹脂チューブ1010aの内表面と光拡散部21の外周面23が接していてもよい。これにより樹脂チューブ10自体を細径化しやすくすることができ、細い管にも挿入しやすく、光ファイバー20を患部により近づけやすい光照射医療装置1となる。これにより、治療効率をあげることができる。 As shown in FIG. 13, the inner surface of the first resin tube 1010a of the resin tubes 10 and the outer peripheral surface 23 of the light diffusing portion 21 may be in contact with each other. As a result, the diameter of the resin tube 10 itself can be easily reduced, the light irradiation medical device 1 can be easily inserted into a thin tube, and the optical fiber 20 can be brought closer to the affected area. This can improve treatment efficiency.
 上記筒部材1050、または、コイル部材40の存在により、樹脂チューブ10のうちの第2樹脂チューブ1010bの内表面と光ファイバー20の外周面23が接していなくてもよい。筒部材1050、または、コイル部材40の存在により、遠位側にトルクを伝えやすくすることができるため、装置1の操作性を上げやすくすることができる。 Due to the presence of the cylindrical member 1050 or the coil member 40, the inner surface of the second resin tube 1010b of the resin tube 10 and the outer peripheral surface 23 of the optical fiber 20 do not have to be in contact. Due to the presence of the cylindrical member 1050 or the coil member 40, torque can be easily transmitted to the distal side, so that the operability of the device 1 can be easily improved.
 本願は、2021年9月27日に出願された日本国特許出願第2021-156418号に基づく優先権の利益を主張するものである。2021年9月27日に出願された日本国特許出願第2021-156418号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2021-156418 filed on September 27, 2021. The entire contents of the specification of Japanese Patent Application No. 2021-156418 filed on September 27, 2021 are incorporated herein by reference.
1:光照射医療装置
10:樹脂チューブ
11:内腔
14:減径部
140:内表面
20:光ファイバー
21:光拡散部
25:コア
26:第1クラッド
27:第2クラッド
31:第1区間
32:第2区間
323:遠位部
324:近位部
33:第3区間
40:コイル部材
40a:第1コイル部
40b:第2コイル部
42:線材
50:遠位側コイル部材
52:線材
60:ハンドル
200:反射材
1010:樹脂チューブ
1011:内腔
1010a:第1樹脂チューブ
1010b:第2樹脂チューブ
1050:筒部材
1060:芯材
1060a:第1領域
1060b:第2領域
x:長手軸方向
p:周方向
1: Light irradiation medical device 10: Resin tube 11: Lumen 14: Reduced diameter portion 140: Inner surface 20: Optical fiber 21: Light diffusion portion 25: Core 26: First clad 27: Second clad 31: First section 32 : second section 323: distal section 324: proximal section 33: third section 40: coil member 40a: first coil section 40b: second coil section 42: wire rod 50: distal side coil member 52: wire rod 60: Handle 200: Reflective material 1010: Resin tube 1011: Lumen 1010a: First resin tube 1010b: Second resin tube 1050: Cylindrical member 1060: Core material 1060a: First region 1060b: Second region x: Longitudinal axis direction p: circumferential direction

Claims (20)

  1.  遠位側に向けて内腔が狭くなる減径部を有している樹脂チューブと、
     前記樹脂チューブの内腔に配置されており、遠位部の所定区間に前記樹脂チューブの長手軸方向に延在しており前記樹脂チューブの径方向の外方に向かって光を射出する光拡散部を有する光ファイバーと、
     前記樹脂チューブの内腔に配置されており、前記光ファイバーを周回するように線材がらせん状に巻回されているコイル部材と、を有し、
     前記コイル部材の遠位端部と前記減径部の内表面とが接している光照射医療装置。
    a resin tube having a reduced diameter portion in which the lumen narrows toward the distal side;
    A light diffuser that is arranged in the lumen of the resin tube, extends in the longitudinal direction of the resin tube in a predetermined section of the distal portion, and emits light outward in the radial direction of the resin tube. an optical fiber having a portion;
    a coil member arranged in the lumen of the resin tube and having a wire wound spirally around the optical fiber;
    A light irradiation medical device in which the distal end portion of the coil member and the inner surface of the reduced diameter portion are in contact.
  2.  前記光拡散部が前記コイル部材の遠位端よりも遠位側に配置されている請求項1に記載の光照射医療装置。 The light irradiation medical device according to claim 1, wherein the light diffusing part is arranged on the distal side of the distal end of the coil member.
  3.  前記樹脂チューブの内表面と前記光拡散部の外周面が接している請求項1に記載の光照射医療装置。 The light irradiation medical device according to claim 1, wherein the inner surface of the resin tube and the outer peripheral surface of the light diffusing portion are in contact with each other.
  4.  前記樹脂チューブの前記減径部よりも近位側の内表面と前記光ファイバーの外周面が接していない請求項1に記載の光照射医療装置。 The light irradiation medical device according to claim 1, wherein the inner surface of the resin tube on the proximal side of the reduced diameter portion is not in contact with the outer peripheral surface of the optical fiber.
  5.  前記樹脂チューブの近位部に接続されているハンドルをさらに有し、
     前記コイル部材の近位部が前記ハンドルに固定されている請求項1に記載の光照射医療装置。
    further comprising a handle connected to the proximal portion of the resin tube;
    2. The light irradiation medical device according to claim 1, wherein a proximal portion of said coil member is fixed to said handle.
  6.  前記線材はその全長にわたって前記樹脂チューブの内表面に接している請求項1に記載の光照射医療装置。 The light irradiation medical device according to claim 1, wherein the wire is in contact with the inner surface of the resin tube over its entire length.
  7.  前記光ファイバーの外周面と前記コイル部材の内周面が固定されている請求項1~6のいずれか一項に記載の光照射医療装置。 The light irradiation medical device according to any one of claims 1 to 6, wherein the outer peripheral surface of the optical fiber and the inner peripheral surface of the coil member are fixed.
  8.  樹脂チューブと、遠位部の所定区間に前記樹脂チューブの長手軸方向に延在しており前記樹脂チューブの径方向の外方に向かって光を射出する光拡散部を有する光ファイバーと、筒部材と、所定の外径である第1領域と該第1領域よりも外径が大きい第2領域を有している芯材と、を準備するステップと、
     前記樹脂チューブの内腔に前記芯材を挿入するステップと、
     前記樹脂チューブを加熱して前記樹脂チューブを熱収縮させ、前記樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップと、
     前記樹脂チューブの内腔から前記芯材を取り出すステップと、
     前記筒部材と前記光ファイバーとを前記樹脂チューブの内腔に配置し、前記筒部材の遠位端部と前記減径部の内表面とを接させるステップと、を有する光照射医療装置の製造方法。
    an optical fiber having a resin tube, a light diffusing portion extending in the longitudinal direction of the resin tube in a predetermined section of the distal portion and emitting light radially outward of the resin tube, and a cylindrical member. and preparing a core material having a first region with a predetermined outer diameter and a second region with a larger outer diameter than the first region;
    inserting the core material into the lumen of the resin tube;
    a step of heating the resin tube to thermally shrink the resin tube to form a reduced diameter portion in which the lumen narrows toward the distal side with respect to the resin tube;
    removing the core material from the lumen of the resin tube;
    A method for manufacturing a light irradiation medical device, comprising: disposing the cylindrical member and the optical fiber in the inner cavity of the resin tube, and bringing the distal end portion of the cylindrical member into contact with the inner surface of the reduced diameter portion. .
  9.  前記樹脂チューブの前記減径部よりも遠位側の内表面と前記光拡散部の外周面が接している請求項8に記載の光照射医療装置の製造方法。 The method for manufacturing a light irradiation medical device according to claim 8, wherein the inner surface of the resin tube on the distal side of the reduced diameter portion is in contact with the outer peripheral surface of the light diffusing portion.
  10.  前記樹脂チューブの前記減径部よりも近位側の内表面と前記光ファイバーの外周面が接していない請求項8に記載の光照射医療装置の製造方法。 The method for manufacturing a light irradiation medical device according to claim 8, wherein the inner surface of the resin tube on the proximal side of the reduced diameter portion is not in contact with the outer peripheral surface of the optical fiber.
  11.  第1樹脂チューブと、前記第1樹脂チューブよりも内径が大きい第2樹脂チューブと、遠位部の所定区間に前記第1樹脂チューブおよび前記第2樹脂チューブの長手軸方向に延在しており前記第1樹脂チューブおよび前記第2樹脂チューブの少なくともいずれか一方の径方向の外方に向かって光を射出する光拡散部を有する光ファイバーと、筒部材と、を準備するステップと、
     前記第1樹脂チューブの近位部に前記第2樹脂チューブを接続して樹脂チューブを形成し、前記樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップと、
     前記筒部材と前記光ファイバーとを前記樹脂チューブの内腔に配置し、前記筒部材の遠位端部と前記減径部の内表面とを接させるステップと、を有する光照射医療装置の製造方法。
    A first resin tube, a second resin tube having an inner diameter larger than that of the first resin tube, and the first resin tube and the second resin tube extending in a predetermined section of a distal portion in the longitudinal direction of the first resin tube and the second resin tube. preparing an optical fiber having a light diffusing portion that emits light outward in the radial direction of at least one of the first resin tube and the second resin tube; and a cylindrical member;
    connecting the second resin tube to the proximal portion of the first resin tube to form a resin tube, and forming a reduced diameter portion with a lumen narrowing toward the distal side of the resin tube; ,
    A method for manufacturing a light irradiation medical device, comprising: disposing the cylindrical member and the optical fiber in the inner cavity of the resin tube, and bringing the distal end portion of the cylindrical member into contact with the inner surface of the reduced diameter portion. .
  12.  前記第1樹脂チューブの近位部に前記第2樹脂チューブを接続して樹脂チューブを形成し、前記樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップにおいて、
     所定の外径である第1領域と、該第1領域よりも外径が大きい第2領域を有している芯材を前記樹脂チューブの内腔に挿入するステップと、
     前記樹脂チューブを加熱して前記樹脂チューブを熱収縮させ、前記樹脂チューブに対して遠位側に向けて内腔が狭くなる減径部を形成するステップと、
     前記樹脂チューブの内腔から前記芯材を取り出すステップと、を有する請求項11に記載の光照射医療装置の製造方法。
    In the step of connecting the second resin tube to the proximal portion of the first resin tube to form a resin tube, and forming a reduced diameter portion with a lumen narrowing toward the distal side with respect to the resin tube ,
    a step of inserting a core material having a first region with a predetermined outer diameter and a second region with a larger outer diameter than the first region into the lumen of the resin tube;
    a step of heating the resin tube to thermally shrink the resin tube to form a reduced diameter portion in which the lumen narrows toward the distal side with respect to the resin tube;
    The method for manufacturing a light irradiation medical device according to claim 11, further comprising the step of taking out the core material from the inner cavity of the resin tube.
  13.  前記芯材を前記樹脂チューブの内腔に挿入するステップにおいて、前記芯材の前記第1領域は前記第1樹脂チューブの内腔に配置し、前記芯材の前記第2領域は前記第2樹脂チューブの内腔に配置する請求項12に記載の光照射医療装置の製造方法。 In the step of inserting the core material into the lumen of the resin tube, the first region of the core material is arranged in the lumen of the first resin tube, and the second region of the core material is the second resin tube. 13. The method for manufacturing the photoirradiation medical device according to claim 12, wherein the device is arranged in the lumen of a tube.
  14.  前記第1樹脂チューブの内表面と前記光拡散部の外周面が接している請求項11に記載の光照射医療装置の製造方法。 The method for manufacturing a light irradiation medical device according to claim 11, wherein the inner surface of the first resin tube and the outer peripheral surface of the light diffusing portion are in contact with each other.
  15.  前記第2樹脂チューブの内表面と前記光ファイバーの外周面が接していない請求項11に記載の光照射医療装置の製造方法。 The method for manufacturing a light irradiation medical device according to claim 11, wherein the inner surface of the second resin tube and the outer peripheral surface of the optical fiber are not in contact with each other.
  16.  前記芯材は、前記第2領域において、前記第1領域の端部から延びており遠位側に向けて外径が小さくなるテーパー部を有している請求項8または12に記載の光照射医療装置の製造方法。 13. The light irradiation according to claim 8 or 12, wherein the core member has, in the second region, a tapered portion extending from the end of the first region and having an outer diameter that decreases toward the distal side. A method for manufacturing a medical device.
  17.  前記筒部材と前記光ファイバーとを前記樹脂チューブの内腔に配置する前に、前記光ファイバーを前記筒部材の内腔に挿入するステップをさらに有している、請求項8または12に記載の光照射医療装置の製造方法。 13. The light irradiation according to claim 8, further comprising a step of inserting the optical fiber into the lumen of the tubular member before arranging the tubular member and the optical fiber into the lumen of the resin tube. A method for manufacturing a medical device.
  18.  前記光ファイバーが前記筒部材の内腔に挿入された状態で、前記筒部材と前記光ファイバーが固定されている請求項17に記載の光照射医療装置の製造方法。 The method for manufacturing a light irradiation medical device according to claim 17, wherein the cylindrical member and the optical fiber are fixed with the optical fiber inserted into the lumen of the cylindrical member.
  19.  前記筒部材は線材がらせん状に巻回されているコイル部を有している請求項8または12に記載の光照射医療装置の製造方法。 The method for manufacturing a light irradiation medical device according to claim 8 or 12, wherein the cylindrical member has a coil portion in which a wire is spirally wound.
  20.  前記線材はその全長にわたって前記樹脂チューブの内表面に接している請求項19に記載の光照射医療装置の製造方法。 The method for manufacturing a light irradiation medical device according to claim 19, wherein the wire is in contact with the inner surface of the resin tube over its entire length.
PCT/JP2022/022437 2021-09-27 2022-06-02 Light irradiating medical device, and method for manufacturing light irradiating medical device WO2023047710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156418 2021-09-27
JP2021156418 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023047710A1 true WO2023047710A1 (en) 2023-03-30

Family

ID=85720415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022437 WO2023047710A1 (en) 2021-09-27 2022-06-02 Light irradiating medical device, and method for manufacturing light irradiating medical device

Country Status (1)

Country Link
WO (1) WO2023047710A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309155A (en) * 1998-04-30 1999-11-09 Hamamatsu Photonics Kk Optical fiber probe for laser therapy
JP2003521261A (en) * 1997-12-22 2003-07-15 マイクルス コーポレイション Variable rigidity optical fiber shaft
JP2005152094A (en) * 2003-11-21 2005-06-16 Terumo Corp Catheter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521261A (en) * 1997-12-22 2003-07-15 マイクルス コーポレイション Variable rigidity optical fiber shaft
JPH11309155A (en) * 1998-04-30 1999-11-09 Hamamatsu Photonics Kk Optical fiber probe for laser therapy
JP2005152094A (en) * 2003-11-21 2005-06-16 Terumo Corp Catheter

Similar Documents

Publication Publication Date Title
AU725320B2 (en) Phototherapeutic apparatus
US6270492B1 (en) Phototherapeutic apparatus with diffusive tip assembly
JP5113400B2 (en) Optical fiber, optical fiber device and bundle fiber
JP7408670B2 (en) Light irradiation medical device
CN110339489B (en) Novel blood vessel optic fibre seal wire
JP7384814B2 (en) Light irradiation medical device
WO2023047710A1 (en) Light irradiating medical device, and method for manufacturing light irradiating medical device
JP2021090503A (en) Light radiation device
US20160089203A1 (en) Irradiation device
WO2023047709A1 (en) Light irradiating medical device
WO2023047711A1 (en) Light-irradiating medical device
WO2023281918A1 (en) Light-emitting medical apparatus
WO2023281917A1 (en) Light-emitting medical apparatus
JP2023047482A (en) Light irradiation medical device
JP7454571B2 (en) Phototherapy diagnostic device
JP7389801B2 (en) Phototherapeutic diagnostic device and method of operation thereof
JP2023009439A (en) Light irradiation medical device
JP7292301B2 (en) BODY TISSUE TREATMENT DEVICE AND METHOD FOR MANUFACTURING SAME
JP2023009440A (en) Light irradiation medical device
US8790332B2 (en) Laser applicator
WO2022158075A1 (en) Light-emitting medical apparatus
WO2022123920A1 (en) Light emission medical apparatus
WO2022118559A1 (en) Light emission medical apparatus
WO2022224792A1 (en) Ablation catheter
WO2024147243A1 (en) Endoscope and method for manufacturing endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE