WO2023047656A1 - Infusion pump and infusion pump control method - Google Patents

Infusion pump and infusion pump control method Download PDF

Info

Publication number
WO2023047656A1
WO2023047656A1 PCT/JP2022/012093 JP2022012093W WO2023047656A1 WO 2023047656 A1 WO2023047656 A1 WO 2023047656A1 JP 2022012093 W JP2022012093 W JP 2022012093W WO 2023047656 A1 WO2023047656 A1 WO 2023047656A1
Authority
WO
WIPO (PCT)
Prior art keywords
infusion
dose
period
air bubbles
amount
Prior art date
Application number
PCT/JP2022/012093
Other languages
French (fr)
Japanese (ja)
Inventor
勝平 佐々木
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2023047656A1 publication Critical patent/WO2023047656A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/36Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests with means for eliminating or preventing injection or infusion of air into body

Definitions

  • the present disclosure relates to an infusion pump and a method for controlling the infusion pump.
  • An infusion pump is a device that delivers infusions such as drug solutions into the patient's body through an infusion tube. In an infusion pump, it is important to accurately deliver a prescribed dose of infusion into the body.
  • Patent Literature 1 describes a technique related to detecting the delivery amount of an infusion solution.
  • the infusion solution containing air bubbles is administered only at the dosage set by the user.
  • the total amount of infusion fluid received was insufficient for the set dose.
  • minute air bubbles that have no effect on the human body may be administered into the patient's body without being detected. There could be cases where the amount was insufficient for the set value. Therefore, conventional infusion pumps have room for improvement in controlling the amount of infusion with high accuracy.
  • An object of the present disclosure is to provide an infusion pump and a control method for the infusion pump that can control the dose of the infusion with higher accuracy.
  • An infusion pump is an infusion pump that delivers a preset dose of infusion through an infusion tube, and acquires an image of the infusion tube captured by a two-dimensional sensor. and a control unit that analyzes the photographed image, detects the volume of air bubbles contained in the infusion solution, and corrects the dosage based on the detected air volume of the air bubbles.
  • control unit corrects the dose so as to increase the infusion delivering an additional dose equal to the amount of air bubbles detected.
  • the control unit controls the second period following the first period.
  • the infusion dose preset for period 2 is corrected by incrementing the same additional dose as the first bubble volume.
  • the control unit when bubbles of the first bubble volume are detected when the infusion solution is delivered in the first period, the control unit preliminarily determines the dose amount of the infusion solution that can be administered in the same period.
  • the preset dose of the infusion solution for the second period is increased within a range not exceeding the set upper limit.
  • the controller controls, in a plurality of second periods subsequent to the first period, The dose of the transfusion solution preset for each of the plurality of second periods is corrected by increasing the amount of the first bubble divided by the number of the plurality of second periods.
  • control unit detects the amount of air bubbles contained in the infusion solution based on the light intensity in the area occupied by the infusion tube in the captured image.
  • control unit detects the amount of air bubbles contained in the infusion solution based on the boundary between the infusion solution and the air bubbles in the area occupied by the infusion tube in the captured image.
  • a control method for an infusion pump is a control method for an infusion pump including a control unit that delivers a preset dose of infusion through an infusion tube, wherein the control unit obtaining a photographed image of the infusion tube photographed by a two-dimensional sensor; analyzing the photographed image to detect the amount of air bubbles contained in the infusion; compensating the dose based on the amount.
  • FIG. 1 is a front view showing a configuration example of an infusion pump according to one embodiment
  • FIG. FIG. 2 is a perspective view showing a configuration example of the infusion cartridge of FIG. 1
  • FIG. 2 is a diagram schematically showing air bubbles in an infusion solution flowing through the infusion tube of FIG. 1
  • FIG. 2 is a diagram schematically showing air bubbles in an infusion solution flowing through the infusion tube of FIG. 1
  • FIG. 2 is a diagram schematically showing air bubbles in an infusion solution flowing through the infusion tube of FIG. 1
  • 4 is a bar graph schematically showing the operation of the infusion pump according to one embodiment to correct the dose of the infusion. 4 is a graph showing an example of changes in the amount of infusion corrected by the infusion pump according to one embodiment.
  • 4 is a flowchart showing an example of correction processing executed by an infusion pump according to one embodiment
  • 4 is a bar graph schematically showing the operation of the infusion pump according to one embodiment to correct the dose of the infusion.
  • 4 is a graph showing an example of changes in the amount of infusion corrected by the infusion pump according to one embodiment.
  • 4 is a flowchart showing an example of correction processing executed by an infusion pump according to one embodiment
  • FIG. 1 is a front view showing a configuration example of an infusion pump 1 according to an embodiment of the present disclosure.
  • the infusion pump 1 includes a pump body 10 and an infusion cartridge 20 .
  • the pump main body 10 includes a control section 11 , a storage section 12 , an air bubble detection section 13 , an input section 14 , a liquid feeding section 15 , an output section 16 and a battery 17 .
  • the infusion pump 1 shown in FIG. 1 may be used as, for example, a PCA (Patient Controlled Analgesia) pump, but its application is not particularly limited.
  • PCA Principal Controlled Analgesia
  • the infusion pump 1 of this embodiment is, for example, a PCA pump in which the pump body 10 can be reused by replacing the disposable infusion cartridge 20 .
  • the infusion pump 1 is not limited to the PCA pump.
  • the infusion pump 1 may be a common infusion pump, syringe pump, nutrition pump, blood pump, or insulin pump.
  • a general infusion pump is, for example, a pump that does not include an infusion cartridge 20 and pushes an infusion tube 30 connected to an infusion bag outside the pump to deliver the infusion in the infusion bag.
  • the infusion pump 1 detects air bubbles in the infusion tube 30 from the photographed image of the infusion tube 30, and corrects the preset infusion dose based on the information on the air bubbles, thereby controlling the infusion dose with high accuracy. make it possible to
  • an output section 16 that displays various information and an input section 14 in which operation switches are arranged are arranged.
  • the output unit 16 is, for example, a display that displays the liquid feeding speed, the cumulative dose, and the like.
  • the output unit 16 may be, for example, a liquid crystal screen with a touch panel for setting the liquid feeding speed and the like.
  • the output unit 16 may be any device capable of outputting information to the user, and includes at least one of a speaker for outputting a sound such as an alarm, a vibrator that vibrates, and a lamp. good too.
  • the operation switch of the input unit 14 is, for example, a fast-forward switch that enables liquid feeding at a liquid feeding speed higher than the set liquid feeding speed (mL/h) while being pressed by the user.
  • a start switch for starting liquid feeding, a stop switch for forcibly stopping liquid feeding when pressed, and a power switch for instructing ON/OFF of the power supply of the pump main body 10 may be used.
  • the input unit 14 may have other configurations in place of or in addition to these switches as long as the user can input information.
  • the input unit 14 may be configured as a touch panel.
  • the liquid feeding section 15 sandwiches the infusion tube 30 of the infusion cartridge 20 between the tube receiving section 24 (see FIG. 2) of the infusion cartridge 20 to be attached, and causes the infusion in the infusion tube 30 to flow from the upstream side of the flow path. Send it to the downstream side of the road.
  • the liquid sending unit 15 includes a plurality of fingers 151 and a driving unit that drives each finger 151 .
  • the plurality of fingers 151 are arranged on the side of the pump body 10 facing the tube receiving portion 24 located on the side of the infusion cartridge 20 .
  • the plurality of fingers 151 are arranged along the extending direction (x direction) of the infusion tube 30 .
  • Each finger 151 is driven by the driving section so as to reciprocate in a direction (z direction) facing the tube receiving section 24 of the infusion cartridge 20 .
  • the drive section may have a configuration that converts the power of the motor into reciprocating movement of each finger 151 in the z direction using a mechanical component such as a cam.
  • a mechanical component such as a cam.
  • the infusion tube 30 is sequentially compressed and closed from the upstream side of the flow path toward the downstream side of the flow path, and performs peristaltic motion. Therefore, the infusion solution in the infusion tube 30 can be delivered from the upstream side of the flow path toward the downstream side of the flow path.
  • the control unit 11 is one or more processors and controls the operation of each component of the pump body 10 .
  • the control unit 11 is realized by a dedicated processor that specializes in processing such as sending infusion into the patient's body and inputting and outputting information with the user, but is realized by a general-purpose processor such as a CPU (Central Processing Unit). may be
  • Control unit 11 may include one or more dedicated circuits, or one or more processors may be replaced by one or more dedicated circuits in control unit 11 .
  • the dedicated circuit is, for example, an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
  • the control section 11 controls each section of the pump body 10 and executes information processing related to the operation of the infusion pump 1 .
  • the storage unit 12 includes arbitrary storage modules including, for example, RAM (Random Access Memory) and ROM (Read-Only Memory).
  • the storage unit 12 stores arbitrary information used for the operation of the infusion pump 1 .
  • the storage unit 12 may store various programs such as a system program and an application program, information on the dose of the infusion solution, and various data such as a photographed image of the infusion tube 30 .
  • the air bubble detection unit 13 photographs the infusion tube 30 and detects air bubbles present in the infusion in the infusion tube 30 .
  • the air bubble detection unit 13 includes a light emitting unit that emits an imaging light flux having a specific wavelength to the infusion tube 30, and a two-dimensional sensor that photoelectrically converts the light flux that passes through the infusion tube 30 and forms an image to form a captured image. (camera) may be provided.
  • the two-dimensional sensor of the air bubble detection unit 13 may be configured by, for example, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, a CCD (Charge Coupled Device) image sensor, or the like.
  • the light emitting unit can emit light of any wavelength as a light flux, but may emit infrared light, for example.
  • the two-dimensional sensor may be configured by a sensor capable of detecting a light flux of a specific wavelength such as infrared light wavelength.
  • the battery 17 stores power for operating the infusion pump 1 .
  • the battery 17 may be composed of a lithium ion battery. Electric power for operating the infusion pump 1 may be supplied not only from the battery 17 but also from a commercial power source, for example.
  • the pump body 10 is not limited to the configuration of this embodiment.
  • the pump main body 10 includes a control unit 11, a storage unit 12, an air bubble detection unit 13, an input unit 14, a liquid delivery unit 15, an output unit 16, and a battery 17, as well as, for example, an occlusion sensor. You may provide a part etc.
  • the pump body 10 may include components other than the components described above, or may be replaced with components having equivalent functions.
  • the liquid feeding section 15 presses the infusion tube 30 with the plurality of fingers 151, but the liquid feeding section 15 can feed the infusion in the infusion tube 30. If so, it may have a configuration different from the finger 151 .
  • FIG. 2 is a perspective view showing a configuration example of the infusion cartridge 20 of FIG.
  • the infusion cartridge 20 includes a storage portion 22 , a filling port 23 and a tube receiving portion 24 .
  • An infusion tube 30 is attached to the infusion cartridge 20 to supply the infusion from the inside of the infusion bag. Alternatively, however, the infusion tube 30 may be attached directly to the infusion bag.
  • the storage unit 22 accommodates an infusion bag filled with an infusion.
  • the filling port 23 , the tube receiving portion 24 , and the infusion tube 30 are provided on the side of the housing portion 22 facing the pump body 10 when the infusion cartridge 20 is attached to the pump body 10 .
  • the filling port 23 is connected to an infusion bag housed inside the housing portion 22 and connected to an infusion tube 30 from the outside of the housing portion 22 .
  • the tube receiving portion 24 holds the infusion tube 30 by sandwiching the infusion tube 30 with the pump main body 10 .
  • the tube receiving portion 24 may include, for example, a groove into which the infusion tube 30 is fitted. With such a configuration, the infusion solution in the infusion bag stored in the storage part 22 can be delivered to the outside through the infusion tube 30 .
  • FIG. 3A to 3C are diagrams schematically showing air bubbles in the infusion solution flowing through the infusion tube 30 of FIG. 1.
  • FIG. 3A to 3C all show how the infusion 35 flows through the infusion tube 30.
  • FIG. 3A in the infusion tube 30 , there is a bubble 31 that is occupied only by air for a length L in the longitudinal direction of the infusion tube 30 .
  • the radius of the channel in the infusion tube 30 is r
  • the volume V 1 of the air bubble 31 is expressed by the following equation (1).
  • V 1 ⁇ r 2 ⁇ L Therefore, when the bubble detector 13 detects the bubble 31, the infusion pump 1 may correct the dose of the infusion by the volume V1 .
  • the infusion pump 1 displays the image showing the boundary as described above. Based on this, the amount of air bubbles contained in the infusion solution 35 may be detected. On the other hand, if the boundary between the infusion 35 and the bubbles cannot be clearly obtained, the infusion pump 1 is included in the infusion 35 based on the light intensity (for example, luminance, illuminance, etc.) in the area occupied by the infusion tube 30 in the captured image. The bubble volume of bubbles may be detected. In FIG.
  • the infusion pump 1 can specify the amount of air bubbles 33 mixed in the infusion 35 based on the average brightness in the area occupied by the infusion tube 30 .
  • the infusion pump 1 obtains in advance, for example, by machine learning, information indicating the correspondence relationship between the average brightness in the area occupied by the infusion tube 30 in the captured image and the volume of the air bubbles 33 contained in the unit amount of the infusion 35, and stores the information in a table. It may be stored in a format such as The infusion pump 1 obtains the volume V3 of the air bubbles 33 mixed in the infusion 35 from the photographed image of the infusion tube 30 based on the information of such a correspondence relationship, and corrects the dose of the infusion by the volume V3 . good too.
  • the infusion pump 1 calculates the amount of bubbles mixed in the infusion 35 based on the average brightness of the area occupied by the infusion tube 30 in the captured image. Obtained, the dose of the infusion 35 can be corrected.
  • FIG. 4 is a bar graph schematically showing the operation of the infusion pump 1 according to Example 1 for correcting the dose of the infusion.
  • periods T1 to T6 indicate periods during which the infusion is administered.
  • the height of the graph in periods T1 to T6 indicates the dose of the infusion solution in each period.
  • one administration is performed over a certain period of time, for example, 5 to 30 minutes.
  • Each of the periods T1 to T6 is a time with a certain width, such as 13:00 to 13:30.
  • the infusion solution in each of the period T1 and the periods T4 to T6, the infusion solution is administered in a dose preset by the user without air bubbles.
  • the period T2 air bubbles are mixed in, and the infusion solution is not administered for the amount of the air bubbles. Therefore, in the period T3, the same volume of the infusion liquid as the bubbles mixed in the infusion liquid in the period T2 is additionally administered. In this way, when the infusion pump 1 fails to administer the infusion solution to be administered in a certain period due to air bubbles, etc., the infusion pump 1 additionally administers the same volume of the infusion solution as the entrained air bubbles in the next period.
  • the infusion pump 1 can inject into the patient's body an amount of infusion set in advance by the user as a whole, even if air bubbles occur during the liquid transfer.
  • the infusion pump 1 immediately corrects the volume of the generated air bubbles upon detection of the air bubbles, it is possible to quickly correct the dose of the infusion solution.
  • the infusion pump 1 supplies the infusion solution for which an upper limit value (limit value) of the amount that can be administered in one process is set, within a range not exceeding the upper limit value, in the period following the period in which air bubbles are detected. Dosage corrections may be made. If administration of the additional dose of infusion is still not completed, the infusion pump 1 may further correct the dose of the infusion within the range not exceeding the upper limit value in the next period and thereafter. In this way, the infusion pump 1 corrects the dose of the infusion within a range not exceeding the upper limit of the dose until the administration of the additional dose corresponding to the amount of the detected air bubbles is completed.
  • limit value limit value
  • the infusion pump 1 supplies the patient with the dose preset by the user without exceeding the upper limit of the dose for each period. It can be administered into the body.
  • the infusion pump 1 discovers air bubbles during administration during the period T2
  • the infusion pump 1 immediately acquires an additional dose, and does not exceed the upper limit of the amount that can be administered during the period T2. Additional doses of fluid may be administered.
  • the infusion pump 1 can immediately administer the dose of the infusion set in advance by the user even if air bubbles occur during the liquid transfer.
  • FIG. 4 shows an example in which the dosage of the infusion solution preset for each of the periods T1 to T6 is the same, but the dosage of the infusion solution may differ depending on the period.
  • FIG. 5 is a graph showing an example of changes in cumulative values of doses (target dose, actual dose) corrected by the infusion pump 1 according to Example 1.
  • the target dose is a target cumulative value of the dose of the infusion solution preset by the user.
  • the actual dose is the cumulative value of the dose of the infusion solution actually administered to the patient.
  • the horizontal axis indicates time, and the vertical axis indicates the cumulative amount of the infusion administered to the patient.
  • the period from time t0 to t1 in FIG. 5 may correspond to period T1 in FIG. 4, for example.
  • the period from time t2 to t3 may correspond to period T2, for example.
  • the period from time t4 to t5 may correspond to period T3, for example.
  • the period from time t6 to t7 may correspond to period T4, for example.
  • the periods T1, T2, . . . T6, . , times t5 and t6, and times t7 and t8 are continuous, that is, the graph omits the periods of times t1 to t2, times t3 to t4, times t5 to t6, and times t7 to t8.
  • no air bubbles are generated during the period from time t0 to t1, and the infusion is administered at a constant flow rate.
  • the flow rate is the amount of infusion delivered by the infusion pump 1 per unit time.
  • air bubbles are generated and the administration of the infusion solution is temporarily interrupted. Therefore, in the period from time t4 to t5, the infusion pump 1 initially administers the infusion at a normal flow rate, and at time t5, an additional dose of the infusion having the same volume as the bubbles generated in the period from time t2 to t3. are sending out.
  • the infusion pump 1 pumps the infusion at a higher than normal flow rate throughout the period of time t4-t5, rather than pumping an additional dose of infusion in bulk at the end of the period of time t4-t5. , the infusion may be delivered in increments of additional doses. This makes it possible to reduce fluctuations in the total amount of infusion per unit time and reduce the burden on the patient. During the period from time t6 to t7, no bubbles are generated, and the infusion pump 1 administers the infusion at a constant flow rate.
  • FIG. 6 is a flow chart showing an example of correction processing executed by the infusion pump 1 according to the first embodiment.
  • the operation of the infusion pump 1 described with reference to FIG. 6 corresponds to one control method of the infusion pump 1 according to the first embodiment.
  • the operation of each step in FIG. 6 is executed under the control of the control section 11 of the pump main body 10 .
  • a priming operation is performed in advance to fill the infusion tube 30 connected to the infusion bag housed inside the storage section 22 with the infusion liquid, and the primed infusion tube 30 and the infusion cartridge 20 are connected to the pump main body 10. is properly attached to the
  • the control unit 11 causes the air bubble detection unit 13 to start detecting air bubbles in the infusion tube 30 . Specifically, the control unit 11 activates the two-dimensional sensor of the air bubble detection unit 13 so that air bubbles can be detected.
  • step S2 the control unit 11 starts liquid feeding.
  • a liquid feeding amount is set in advance via the input unit 14, and the control unit 11 controls the liquid feeding unit 15 so as to feed the set amount of the infusion liquid.
  • the control unit 11 repeats the processing of steps S3 to S7 at regular time intervals (for example, 1 second to 30 minutes).
  • step S3 the control unit 11 determines whether or not the set amount of infusion has been administered. If the administration has been completed (Yes in step S3), the control unit 11 ends the processing of the flowchart, otherwise (No in step S3), the process proceeds to step S4.
  • step S4 the control unit 11 determines whether or not the air bubble detection unit 13 has detected air bubbles. If an air bubble is detected (Yes in step S4), the controller 11 proceeds to step S5, otherwise (No in step S4), it proceeds to step S3 to continue liquid transfer.
  • step S5 the control unit 11 measures the amount of air bubbles detected. For example, when the controller 11 detects an air bubble having a length L in the longitudinal direction of the infusion tube 30 as shown in FIG. For example, as shown in FIG. 3B, the control unit 11 may measure the amount of air bubbles using Equation 2 when spherical air bubbles having a radius of s are detected. For example, when a large number of minute bubbles 33 are detected as shown in FIG. 3C, the controller 11 may measure the amount of bubbles based on the average brightness of the portion inside the infusion tube 30 in the captured image.
  • step S6 the control unit 11 determines whether or not the amount of air bubbles detected in step S5 exceeds a predetermined amount, which is a predetermined threshold.
  • the predetermined amount is set in the infusion pump 1 in advance by the user. If it exceeds the predetermined amount (Yes in step S6), the controller 11 proceeds to step S8, otherwise (No in step S6), it proceeds to step S7.
  • step S7 the control unit 11 administers an additional dose of the transfusion that is the same as the amount of air bubbles measured in step S5.
  • FIG. 6 shows the process of administering the same amount of infusion fluid as the amount of detected air bubbles in the same period immediately after air bubbles are detected, as described with reference to FIGS.
  • the infusion pump 1 may administer additional doses of infusion after the next period.
  • the infusion pump 1 stores the detected bubble amount in the storage unit 12, and reads out the bubble amount stored in the storage unit 12 in the next period. , the dosage may be corrected. Then, the control unit 11 returns to step 3.
  • step S8 the control unit 11 issues an alarm from the output unit 16 to notify the user that bubbles exceeding a predetermined amount have been issued.
  • the control unit 11 may display a warning on the display illustrated in FIG. 1 or output a warning sound from a speaker. Then, the control unit 11 ends the processing of the flowchart.
  • the infusion pump 1 delivers a preset dose of infusion via the infusion tube 30 .
  • the infusion pump 1 acquires a photographed image of the infusion tube 30 photographed by the air bubble detection unit 13 having a two-dimensional sensor, analyzes the photographed image, and detects the amount of air bubbles contained in the infusion. , corrects the dose of the infusion solution based on the bubble volume of the detected bubbles. Therefore, even if air bubbles enter the infusion solution during feeding, the infusion pump 1 corrects the dose of the infusion solution according to the amount of air bubbles, so that a preset dose of the infusion solution can be administered. Therefore, according to the infusion pump 1, it is possible to control the dose of the infusion with higher accuracy.
  • the infusion pump 1 corrects the dose so as to increase the delivered infusion by the same additional dose as the amount of air bubbles detected. Therefore, even if air bubbles are mixed into the infusion solution during feeding, the dose of the infusion solution is increased according to the amount of air bubbles, so that the preset dose of the infusion solution can be administered without decreasing the dose of the infusion solution. be able to.
  • the infusion pump 1 detects the first amount of air bubbles when pumping out the infusion in the first period (for example, T2 in FIG. 4), the infusion pump 1 performs the second period (for example, at T3) in FIG. 4, the pre-set infusion dose for the second period is corrected by incrementing it by the same additional dose as the first bubble volume.
  • the infusion pump 1 can quickly make up for the shortage of the infusion by correcting the dose for the period following the period in which air bubbles are detected.
  • the infusion pump 1 sets a preset upper limit of the dose of the infusion that can be administered in the same period. The preset infusion dose for the second time period may be incremented without exceeding the value. By doing so, the infusion pump 1 can quickly compensate for the shortage of the infusion while protecting the safety of the patient.
  • Example 2 In the infusion pump 1 according to Example 1 described with reference to FIGS. 4 to 6, when air bubbles are detected in a certain period, the dose is corrected immediately during that period or the next period, but an additional dose of infusion is added.
  • the administration may be spread out over multiple periods.
  • the infusion pump 1 according to the second embodiment can suppress fluctuations in the dose by dispersing the administration of the additional dose of the infusion over a plurality of periods.
  • FIG. 7 is a bar graph schematically showing how the infusion pump 1 according to Example 2 corrects the dose of the infusion.
  • periods T1 to T6 indicate periods during which the infusion is administered.
  • the height of the graph in periods T1 to T6 indicates the dose of the infusion solution in each period.
  • each of the periods T1 to T6 is a time with a certain width, such as 13:00 to 13:30.
  • the infusion pump 1 will administer the amount of the infusion liquid that could not be administered due to the air bubbles. It can be administered into the body.
  • the infusion pump 1 distributes and administers additional doses of the infusion over a plurality of periods, fluctuations in the dose can be suppressed, and the burden on the patient can be reduced.
  • the amount of the additional infusion solution administered in each period may be the same in all periods, or may vary depending on the period.
  • FIG. 8 is a graph showing an example of changes in cumulative values of doses (target dose, actual dose) corrected by the infusion pump 1 according to the second embodiment.
  • the horizontal axis indicates time, and the vertical axis indicates the cumulative amount of infusion administered to the patient.
  • the period from time t0 to t1 in FIG. 8 may correspond to period T1 in FIG. 7, for example.
  • the period from time t2 to t3 may correspond to period T2, for example.
  • the period from time t4 to t5 may correspond to period T3, for example.
  • the period from time t6 to t7 may correspond to period T4, for example.
  • times t5 and t6, and times t7 and t8 are continuous, that is, the graph omits the periods of times t1 to t2, times t3 to t4, times t5 to t6, and times t7 to t8.
  • the infusion pump 1 initially administers the infusion at a normal flow rate during the period from time t4 to t5, and at time t5, pumps out the infusion with a volume that is about half the volume of the bubbles generated during the period from time t2 to t3.
  • the infusion pump 1 initially administers the infusion at a normal flow rate during the period from time t6 to t7, and at time t7, the amount of the infusion administered at time t5 is reduced due to the volume of air bubbles generated during the period from time t2 to t3. You are delivering the volume of the infusion minus the volume.
  • the infusion pump 1 maintains its normal flow rate throughout the periods t4-t5 and t6-t7, rather than bulking up at the end of the periods t4-t5 and t6-t7.
  • the infusion may be delivered at a flow rate greater than . As a result, fluctuations in the dose of the infusion solution per unit time can be reduced, and the burden on the patient can be reduced.
  • FIG. 9 is a flowchart showing an example of correction processing executed by the infusion pump 1 according to the second embodiment.
  • the operation of the infusion pump 1 described with reference to FIG. 9 corresponds to one control method of the infusion pump 1 according to the second embodiment.
  • the operation of each step in FIG. 9 is executed under the control of the control section 11 of the pump main body 10 .
  • a priming operation is performed in advance to fill the infusion tube 30 connected to the infusion bag housed inside the storage section 22 with the infusion liquid, and the primed infusion tube 30 and the infusion cartridge 20 are connected to the pump main body 10. is properly attached to the
  • step S11 of FIG. 9 the controller 11 causes the bubble detector 13 to start detecting bubbles in the infusion tube 30.
  • the processing of step S11 is the same as that of step S1 in FIG.
  • step S12 the control unit 11 starts liquid feeding.
  • the processing of step S12 is the same as that of step S2 in FIG. Thereafter, the control unit 11 repeats the processing of steps S13 to S19 at regular time intervals (for example, 1 second to 30 minutes).
  • step S13 the control unit 11 determines whether or not the set amount of infusion has been administered. If administration has been completed (Yes in step S13), the control unit 11 ends the processing of the flowchart, otherwise (No in step S13), the process proceeds to step S14.
  • step S14 the control unit 11 determines whether or not the air bubble detection unit 13 has detected air bubbles. If bubbles are detected (Yes in step S14), the controller 11 proceeds to step S15; otherwise (No in step S14), the controller 11 proceeds to step S13 to continue liquid feeding.
  • step S15 the control unit 11 measures the amount of air bubbles detected.
  • the processing of step S15 is the same as that of step S5 in FIG.
  • step S16 the control unit 11 determines whether or not the amount of air bubbles detected in step S15 exceeds a predetermined amount, which is a predetermined threshold.
  • the processing of step S16 is the same as that of step S6 in FIG. If it exceeds the predetermined amount (Yes in step S16), the control section 11 proceeds to step S20, otherwise (No in step S16), it proceeds to step S17.
  • step S17 the control unit 11 calculates the corrected number of injections N based on the amount of air bubbles measured in step S15. For example, based on the upper limit of the dose of the infusion in each period and the dose set in advance for each period, the control unit 11 determines the amount of the infusion in each period when an additional dose of the infusion is administered over a plurality of periods. The minimum number of administrations such that the total dose does not exceed the upper limit may be determined as the corrected number of administrations N.
  • step S18 the control unit 11 determines whether or not the number of times correction administration has been performed is equal to or less than the number N of correction administrations. If the number is equal to or less than N (Yes in step S18), the control unit 11 proceeds to step S19, otherwise (No in step S18), returns to step S13.
  • step S19 the control unit 11 administers an amount of infusion solution for correcting the amount of air bubbles measured in step S15 in N batches.
  • FIG. 9 shows the process of administering additional doses of transfusion in N separate doses immediately during the same period when air bubbles are detected, but please refer to FIGS.
  • the infusion pump 1 may administer additional doses of the infusion over multiple subsequent periods.
  • the infusion pump 1 stores the detected amount of air bubbles and the amount of the infusion solution that has been administered in the storage unit 12. The volume and amount of infusion administered may be read to correct the dose. After finishing the correction divided into N times (No in step S18), the control unit 11 returns to step S13.
  • step S20 the control unit 11 issues an alarm from the output unit 16 to notify the user that bubbles exceeding a predetermined amount have been issued.
  • the processing of step S20 is the same as that of step S8 in FIG. Then, the control unit 11 ends the processing of the flowchart.
  • the infusion pump 1 when the infusion pump 1 detects the first amount of air bubbles during the first period (for example, T1 and T2 in FIG. 7) while pumping out the infusion, the infusion pump 1 continues the first period.
  • the amount of infusion solution set in advance for each of the plurality of second periods is Correct by incrementing by the number of additional doses divided.
  • the infusion pump 1 distributes and administers additional doses of the infusion over a plurality of second periods. Therefore, the infusion pump 1 can keep fluctuations in the dose small while administering a preset dose of the infusion solution, thereby reducing the burden on the patient.

Abstract

An infusion pump 1 for delivering a pre-set dosage of a fluid infusion via an infusion tube 30, said infusion pump 1 being equipped with a control unit 11 for obtaining a captured image of the infusion tube 30 which was captured by a two-dimensional sensor, analyzing the captured image, detecting the amount of bubbles contained in the fluid infusion, and correcting the dosage on the basis of the detected amount of bubbles.

Description

輸液ポンプ及び輸液ポンプの制御方法Infusion pump and control method for infusion pump
 本開示は、輸液ポンプ及び輸液ポンプの制御方法に関する。 The present disclosure relates to an infusion pump and a method for controlling the infusion pump.
 輸液ポンプは、輸液チューブを介して、薬液等の輸液を患者の体内へ送り出す装置である。輸液ポンプにおいては、定められた投与量の輸液を高精度に体内へ送り出すことが重要である。特許文献1には、輸液の送出量を検出することに関する技術が記載されている。 An infusion pump is a device that delivers infusions such as drug solutions into the patient's body through an infusion tube. In an infusion pump, it is important to accurately deliver a prescribed dose of infusion into the body. Patent Literature 1 describes a technique related to detecting the delivery amount of an infusion solution.
特開2019-217072号公報JP 2019-217072 A
 しかし、従来の輸液ポンプの構成においては、輸液の中に気泡が混入しているにもかかわらず、気泡を含む輸液をユーザにより設定された投与量だけ投与していたため、実際に患者に投与された輸液の総量が、投与量の設定値に対して不足する場合があり得た。特に、従来の輸液ポンプの構成においては、人体に影響がない微小な気泡が検出されずに患者の体内に投与される場合があり、その結果、実際に投与された輸液の投与量が、投与量の設定値に対して不足する場合があり得た。そのため、従来の輸液ポンプにおいては、輸液の投与量を高い精度で制御することにつき改善の余地があった。 However, in the configuration of the conventional infusion pump, even though the infusion solution contains air bubbles, the infusion solution containing air bubbles is administered only at the dosage set by the user. In some cases, the total amount of infusion fluid received was insufficient for the set dose. In particular, in the configuration of a conventional infusion pump, minute air bubbles that have no effect on the human body may be administered into the patient's body without being detected. There could be cases where the amount was insufficient for the set value. Therefore, conventional infusion pumps have room for improvement in controlling the amount of infusion with high accuracy.
 本開示の目的は、輸液の投与量をより高い精度で制御することが可能な輸液ポンプ及び輸液ポンプの制御方法を提供することである。 An object of the present disclosure is to provide an infusion pump and a control method for the infusion pump that can control the dose of the infusion with higher accuracy.
 本開示の一実施形態に係る輸液ポンプは、予め設定された投与量の輸液を、輸液チューブを介して送り出す輸液ポンプであって、2次元センサにより撮影された前記輸液チューブの撮影画像を取得し、前記撮影画像を解析して、前記輸液に含まれる気泡の気泡量を検出し、検出された前記気泡の気泡量に基づいて、前記投与量を補正する、制御部を備える。 An infusion pump according to an embodiment of the present disclosure is an infusion pump that delivers a preset dose of infusion through an infusion tube, and acquires an image of the infusion tube captured by a two-dimensional sensor. and a control unit that analyzes the photographed image, detects the volume of air bubbles contained in the infusion solution, and corrects the dosage based on the detected air volume of the air bubbles.
 一実施形態として、前記制御部は、検出された前記気泡の気泡量と同一の追加投与量だけ送り出す前記輸液を増分するように前記投与量を補正する。 In one embodiment, the control unit corrects the dose so as to increase the infusion delivering an additional dose equal to the amount of air bubbles detected.
 一実施形態として、前記制御部は、第1の期間において前記輸液を送り出す際に第1の気泡量の気泡が検出された場合、前記第1の期間に後続する第2の期間において、当該第2の期間について予め設定された前記輸液の投与量を、前記第1の気泡量と同一の追加投与量だけ増分して補正する。 As one embodiment, when a first volume of bubbles is detected when the infusion solution is delivered during the first period, the control unit controls the second period following the first period. The infusion dose preset for period 2 is corrected by incrementing the same additional dose as the first bubble volume.
 一実施形態として、前記制御部は、前記第1の期間において前記輸液を送り出す際に前記第1の気泡量の気泡が検出された場合、同一の期間において投与可能な前記輸液の投与量の予め設定された上限値を超えない範囲で、前記第2の期間について予め設定された前記輸液の投与量を増分する。 As one embodiment, when bubbles of the first bubble volume are detected when the infusion solution is delivered in the first period, the control unit preliminarily determines the dose amount of the infusion solution that can be administered in the same period. The preset dose of the infusion solution for the second period is increased within a range not exceeding the set upper limit.
 一実施形態として、前記制御部は、第1の期間において前記輸液を送り出す際に第1の気泡量の気泡が検出された場合、前記第1の期間に後続する複数の第2の期間において、当該複数の第2の期間の各々について予め設定された前記輸液の投与量を、前記第1の気泡量を前記複数の第2の期間の個数で分けた追加投与量だけ増分して補正する。 As one embodiment, when a first volume of air bubbles is detected when the infusion solution is delivered in the first period, the controller controls, in a plurality of second periods subsequent to the first period, The dose of the transfusion solution preset for each of the plurality of second periods is corrected by increasing the amount of the first bubble divided by the number of the plurality of second periods.
 一実施形態として、前記制御部は、前記撮影画像において前記輸液チューブが占める領域における光強度に基づき、前記輸液に含まれる気泡の気泡量を検出する。 As one embodiment, the control unit detects the amount of air bubbles contained in the infusion solution based on the light intensity in the area occupied by the infusion tube in the captured image.
 一実施形態として、前記制御部は、前記撮影画像において前記輸液チューブが占める領域における、前記輸液と前記気泡との境界に基づき、前記輸液に含まれる気泡の気泡量を検出する。 As one embodiment, the control unit detects the amount of air bubbles contained in the infusion solution based on the boundary between the infusion solution and the air bubbles in the area occupied by the infusion tube in the captured image.
 本開示の一実施形態に係る輸液ポンプの制御方法は、予め設定された投与量の輸液を、輸液チューブを介して送り出す、制御部を備えた輸液ポンプの制御方法であって、前記制御部が、2次元センサにより撮影された前記輸液チューブの撮影画像を取得する工程と、前記撮影画像を解析して、前記輸液に含まれる気泡の気泡量を検出する工程と、検出された前記気泡の気泡量に基づいて、前記投与量を補正する工程と、を含む。 A control method for an infusion pump according to an embodiment of the present disclosure is a control method for an infusion pump including a control unit that delivers a preset dose of infusion through an infusion tube, wherein the control unit obtaining a photographed image of the infusion tube photographed by a two-dimensional sensor; analyzing the photographed image to detect the amount of air bubbles contained in the infusion; compensating the dose based on the amount.
 本開示の一実施形態によれば、輸液の投与量をより高い精度で制御することが可能である。 According to one embodiment of the present disclosure, it is possible to control the dosage of the infusion with higher accuracy.
一実施形態に係る輸液ポンプの構成例を示す正面図である。1 is a front view showing a configuration example of an infusion pump according to one embodiment; FIG. 図1の輸液カートリッジの構成例を示す斜視図である。FIG. 2 is a perspective view showing a configuration example of the infusion cartridge of FIG. 1; 図1の輸液チューブを流れる輸液の気泡を模式的に示す図である。FIG. 2 is a diagram schematically showing air bubbles in an infusion solution flowing through the infusion tube of FIG. 1; 図1の輸液チューブを流れる輸液の気泡を模式的に示す図である。FIG. 2 is a diagram schematically showing air bubbles in an infusion solution flowing through the infusion tube of FIG. 1; 図1の輸液チューブを流れる輸液の気泡を模式的に示す図である。FIG. 2 is a diagram schematically showing air bubbles in an infusion solution flowing through the infusion tube of FIG. 1; 一実施形態に係る輸液ポンプが輸液の投与量を補正する動作を模式的に示す棒グラフである。4 is a bar graph schematically showing the operation of the infusion pump according to one embodiment to correct the dose of the infusion. 一実施形態に係る輸液ポンプにより補正された輸液の投与量の推移の一例を示すグラフである。4 is a graph showing an example of changes in the amount of infusion corrected by the infusion pump according to one embodiment. 一実施形態に係る輸液ポンプが実行する補正処理の一例を示すフローチャートである。4 is a flowchart showing an example of correction processing executed by an infusion pump according to one embodiment; 一実施形態に係る輸液ポンプが輸液の投与量を補正する動作を模式的に示す棒グラフである。4 is a bar graph schematically showing the operation of the infusion pump according to one embodiment to correct the dose of the infusion. 一実施形態に係る輸液ポンプにより補正された輸液の投与量の推移の一例を示すグラフである。4 is a graph showing an example of changes in the amount of infusion corrected by the infusion pump according to one embodiment. 一実施形態に係る輸液ポンプが実行する補正処理の一例を示すフローチャートである。4 is a flowchart showing an example of correction processing executed by an infusion pump according to one embodiment;
 以下、本開示の一実施形態について、図面を参照して説明する。各図面中、同一の構成又は機能を有する部分には、同一の符号を付している。本実施形態の説明において、同一の部分については、重複する説明を適宜省略又は簡略化する場合がある。 An embodiment of the present disclosure will be described below with reference to the drawings. In each drawing, parts having the same configuration or function are given the same reference numerals. In the description of the present embodiment, overlapping descriptions of the same parts may be appropriately omitted or simplified.
 (輸液ポンプの構成)
 図1は、本開示の一実施形態に係る輸液ポンプ1の構成例を示す正面図である。図1に示すように、輸液ポンプ1は、ポンプ本体10、及び輸液カートリッジ20を備える。ポンプ本体10は、制御部11、記憶部12、気泡検出部13、入力部14、送液部15、出力部16、及びバッテリ17を備える。図1に示す輸液ポンプ1は、例えばPCA(Patient Controlled Analgesia)ポンプとして使用してもよいが、用途は特に限定されない。本実施形態の輸液ポンプ1は、一例として、使い捨ての輸液カートリッジ20を取り替えることで、ポンプ本体10を再使用することができるPCAポンプである。輸液ポンプ1は、PCAポンプに限られない。輸液ポンプ1は、一般的な輸液ポンプ、シリンジポンプ、栄養ポンプ、血液ポンプ、又はインスリンポンプであってもよい。一般的な輸液ポンプとは、例えば、輸液カートリッジ20を備えず、ポンプ外の輸液バッグに接続された輸液チューブ30を押圧して輸液バッグ内の輸液を送液するポンプである。輸液ポンプ1は、輸液チューブ30の撮影画像から輸液チューブ30内の気泡を検出し、気泡の情報に基づき予め設定された輸液の投与量を補正することで、輸液の投与量を高い精度で制御することを可能にする。
(Configuration of infusion pump)
FIG. 1 is a front view showing a configuration example of an infusion pump 1 according to an embodiment of the present disclosure. As shown in FIG. 1 , the infusion pump 1 includes a pump body 10 and an infusion cartridge 20 . The pump main body 10 includes a control section 11 , a storage section 12 , an air bubble detection section 13 , an input section 14 , a liquid feeding section 15 , an output section 16 and a battery 17 . The infusion pump 1 shown in FIG. 1 may be used as, for example, a PCA (Patient Controlled Analgesia) pump, but its application is not particularly limited. The infusion pump 1 of this embodiment is, for example, a PCA pump in which the pump body 10 can be reused by replacing the disposable infusion cartridge 20 . The infusion pump 1 is not limited to the PCA pump. The infusion pump 1 may be a common infusion pump, syringe pump, nutrition pump, blood pump, or insulin pump. A general infusion pump is, for example, a pump that does not include an infusion cartridge 20 and pushes an infusion tube 30 connected to an infusion bag outside the pump to deliver the infusion in the infusion bag. The infusion pump 1 detects air bubbles in the infusion tube 30 from the photographed image of the infusion tube 30, and corrects the preset infusion dose based on the information on the air bubbles, thereby controlling the infusion dose with high accuracy. make it possible to
 図1に示すように、ポンプ本体10の正面には、各種情報が表示される出力部16、及び操作スイッチ類が配列された入力部14が配置されている。出力部16は、例えば、送液速度、及び積算投与量等を表示するディスプレイである。出力部16は、例えば、送液速度等を設定するタッチパネル付きの液晶画面であってもよい。また、出力部16は、ユーザに情報を出力することが可能ないかなる装置でもよく、例えば、警報(アラーム)等の音声を出力するスピーカ、振動するバイブレータ、及びランプ等の少なくともいずれかを備えてもよい。入力部14の操作スイッチは、例えば、ユーザにより押圧されている間、設定された送液速度(mL/h)よりも高い送液速度での送液が可能となる早送りスイッチ、押圧されることで送液が開始される開始スイッチ、押圧されることで送液が強制停止される停止スイッチ、及びポンプ本体10の電源のON/OFFを指示するための電源スイッチ等としてもよい。ただし、入力部14は、ユーザから情報を入力可能であれば、これらのスイッチに代えて、又は、これらのスイッチに加えて、他の構成を備えてもよい。例えば、入力部14は、タッチパネルとして構成されてもよい。 As shown in FIG. 1, on the front of the pump main body 10, an output section 16 that displays various information and an input section 14 in which operation switches are arranged are arranged. The output unit 16 is, for example, a display that displays the liquid feeding speed, the cumulative dose, and the like. The output unit 16 may be, for example, a liquid crystal screen with a touch panel for setting the liquid feeding speed and the like. In addition, the output unit 16 may be any device capable of outputting information to the user, and includes at least one of a speaker for outputting a sound such as an alarm, a vibrator that vibrates, and a lamp. good too. The operation switch of the input unit 14 is, for example, a fast-forward switch that enables liquid feeding at a liquid feeding speed higher than the set liquid feeding speed (mL/h) while being pressed by the user. A start switch for starting liquid feeding, a stop switch for forcibly stopping liquid feeding when pressed, and a power switch for instructing ON/OFF of the power supply of the pump main body 10 may be used. However, the input unit 14 may have other configurations in place of or in addition to these switches as long as the user can input information. For example, the input unit 14 may be configured as a touch panel.
 送液部15は、装着される輸液カートリッジ20の管受け部24(図2参照)との間で、輸液カートリッジ20の輸液チューブ30を挟み込み、輸液チューブ30内の輸液を流路上流側から流路下流側に送り出す。送液部15は、複数のフィンガ151、及び、各フィンガ151を駆動する駆動部を備える。複数のフィンガ151は、輸液カートリッジ20の側面に位置する管受け部24と対向する、ポンプ本体10の側面に配置されている。複数のフィンガ151は、輸液チューブ30の延在方向(x方向)に沿って配列されている。各フィンガ151は、輸液カートリッジ20の管受け部24との対向方向(z方向)に往復移動するように、駆動部により駆動される。駆動部は、例えば、モーターの動力をカム等の機械部品により各フィンガ151のz方向の往復移動に変換する構成を有してもよい。各フィンガ151が輸液カートリッジ20に近接するように移動することで、輸液チューブ30は、各フィンガ151と管受け部24との間に挟み込まれる。これにより、輸液チューブ30は圧閉される。駆動部は、輸液チューブ30の延在方向(x方向)において、流路上流側から流路下流側に向かってフィンガ151を順次駆動する。これにより、輸液チューブ30は、流路上流側から流路下流側に向かって順次圧閉され、蠕動運動する。そのため、輸液チューブ30内の輸液を流路上流側から流路下流側に向かって送り出すことができる。 The liquid feeding section 15 sandwiches the infusion tube 30 of the infusion cartridge 20 between the tube receiving section 24 (see FIG. 2) of the infusion cartridge 20 to be attached, and causes the infusion in the infusion tube 30 to flow from the upstream side of the flow path. Send it to the downstream side of the road. The liquid sending unit 15 includes a plurality of fingers 151 and a driving unit that drives each finger 151 . The plurality of fingers 151 are arranged on the side of the pump body 10 facing the tube receiving portion 24 located on the side of the infusion cartridge 20 . The plurality of fingers 151 are arranged along the extending direction (x direction) of the infusion tube 30 . Each finger 151 is driven by the driving section so as to reciprocate in a direction (z direction) facing the tube receiving section 24 of the infusion cartridge 20 . For example, the drive section may have a configuration that converts the power of the motor into reciprocating movement of each finger 151 in the z direction using a mechanical component such as a cam. By moving each finger 151 closer to the infusion cartridge 20 , the infusion tube 30 is sandwiched between each finger 151 and the tube receiving portion 24 . As a result, the infusion tube 30 is closed. The drive unit sequentially drives the fingers 151 from the flow channel upstream side toward the flow channel downstream side in the extending direction (x direction) of the infusion tube 30 . As a result, the infusion tube 30 is sequentially compressed and closed from the upstream side of the flow path toward the downstream side of the flow path, and performs peristaltic motion. Therefore, the infusion solution in the infusion tube 30 can be delivered from the upstream side of the flow path toward the downstream side of the flow path.
 制御部11は、1つ以上のプロセッサであり、ポンプ本体10の各構成要素の動作を制御する。制御部11は輸液を患者の体内に送り出したり、ユーザとの間で情報を入出力したりする処理に特化した専用プロセッサにより実現されるが、CPU(Central Processing Unit)等の汎用プロセッサにより実現されてもよい。制御部11には、1つ以上の専用回路が含まれてもよいし、又は制御部11において、1つ以上のプロセッサを1つ以上の専用回路に置き換えてもよい。専用回路は、例えば、FPGA(Field-Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)である。制御部11は、ポンプ本体10の各部を制御して、輸液ポンプ1の動作に関わる情報処理を実行する。 The control unit 11 is one or more processors and controls the operation of each component of the pump body 10 . The control unit 11 is realized by a dedicated processor that specializes in processing such as sending infusion into the patient's body and inputting and outputting information with the user, but is realized by a general-purpose processor such as a CPU (Central Processing Unit). may be Control unit 11 may include one or more dedicated circuits, or one or more processors may be replaced by one or more dedicated circuits in control unit 11 . The dedicated circuit is, for example, an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). The control section 11 controls each section of the pump body 10 and executes information processing related to the operation of the infusion pump 1 .
 記憶部12は、例えばRAM(Random Access Memory)及びROM(Read-Only Memory)を含む任意の記憶モジュールを含む。記憶部12は、輸液ポンプ1の動作に用いられる任意の情報を記憶する。例えば、記憶部12は、システムプログラム、及びアプリケーションプログラム等の各種プログラム、並びに、輸液の投与量に関する情報、及び輸液チューブ30の撮影画像等の各種データ等を記憶してもよい。 The storage unit 12 includes arbitrary storage modules including, for example, RAM (Random Access Memory) and ROM (Read-Only Memory). The storage unit 12 stores arbitrary information used for the operation of the infusion pump 1 . For example, the storage unit 12 may store various programs such as a system program and an application program, information on the dose of the infusion solution, and various data such as a photographed image of the infusion tube 30 .
 気泡検出部13は、輸液チューブ30を撮影して、輸液チューブ30内の輸液に存在する気泡を検出する。気泡検出部13は、特定の波長を有する撮影用の光束を輸液チューブ30へ出射する発光部と、輸液チューブ30を通過して結像した光束を光電変換して撮影画像を形成する2次元センサ(カメラ)を備えてもよい。気泡検出部13の2次元センサは、例えば、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ、又はCCD(Charge Coupled Device)イメージセンサ等により構成してもよい。輸液チューブ30を撮影する際に、発光部は、光束として任意の波長の光を出射することができるが、例えば、赤外光を出射してもよい。2次元センサは、例えば、赤外光の波長等の、特定の波長の光束を検出可能なセンサにより構成されてもよい。可視光ではなく赤外光を用いて撮影することで、輸液ポンプ1内へ使用する室内の照明光等が侵入しても、撮影画像が乱れることを抑制することができる。また、赤外光は比較的エネルギーが低いため、輸液への影響を抑制することができる。さらに赤外光が装置外に漏れても人の目に感知されにいという利点が得られる。 The air bubble detection unit 13 photographs the infusion tube 30 and detects air bubbles present in the infusion in the infusion tube 30 . The air bubble detection unit 13 includes a light emitting unit that emits an imaging light flux having a specific wavelength to the infusion tube 30, and a two-dimensional sensor that photoelectrically converts the light flux that passes through the infusion tube 30 and forms an image to form a captured image. (camera) may be provided. The two-dimensional sensor of the air bubble detection unit 13 may be configured by, for example, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, a CCD (Charge Coupled Device) image sensor, or the like. When photographing the infusion tube 30, the light emitting unit can emit light of any wavelength as a light flux, but may emit infrared light, for example. The two-dimensional sensor may be configured by a sensor capable of detecting a light flux of a specific wavelength such as infrared light wavelength. By photographing using infrared light instead of visible light, it is possible to suppress disturbance of the photographed image even if illumination light used in the room enters the infusion pump 1 . In addition, since infrared light has relatively low energy, it is possible to suppress the influence on the infusion solution. Furthermore, there is the advantage that even if infrared light leaks out of the apparatus, it is difficult for the human eye to perceive it.
 バッテリ17は、輸液ポンプ1の動作させるための電力を蓄える。バッテリ17は、リチウムイオン電池により構成してもよい。輸液ポンプ1の動作させるための電力は、バッテリ17から供給されるだけでなく、例えば、商用電源から供給されてもよい。 The battery 17 stores power for operating the infusion pump 1 . The battery 17 may be composed of a lithium ion battery. Electric power for operating the infusion pump 1 may be supplied not only from the battery 17 but also from a commercial power source, for example.
 ポンプ本体10は、本実施形態の構成に限定されない。ポンプ本体10は、他の輸液ポンプと同様に、制御部11、記憶部12、気泡検出部13、入力部14、送液部15、出力部16、及びバッテリ17以外にも、例えば、閉塞センサ部等を備えてもよい。ポンプ本体10は、上述した構成要素とは別の構成要素を備えてもよく、同等の機能を有する構成要素に代わられてもよい。また、上述のように、本実施形態の例では、送液部15は、複数のフィンガ151により輸液チューブ30を押圧するが、送液部15は、輸液チューブ30内の輸液を送り出すことが可能であれば、フィンガ151とは異なる構成を備えてもよい。 The pump body 10 is not limited to the configuration of this embodiment. As with other infusion pumps, the pump main body 10 includes a control unit 11, a storage unit 12, an air bubble detection unit 13, an input unit 14, a liquid delivery unit 15, an output unit 16, and a battery 17, as well as, for example, an occlusion sensor. You may provide a part etc. The pump body 10 may include components other than the components described above, or may be replaced with components having equivalent functions. Further, as described above, in the example of the present embodiment, the liquid feeding section 15 presses the infusion tube 30 with the plurality of fingers 151, but the liquid feeding section 15 can feed the infusion in the infusion tube 30. If so, it may have a configuration different from the finger 151 .
 図2は、図1の輸液カートリッジ20の構成例を示す斜視図である。輸液カートリッジ20は、収容部22、充填口23、及び管受け部24を備える。輸液カートリッジ20には、輸液バッグの内部から輸液を供給する輸液チューブ30が取り付けられている。ただし、これに代えて、輸液チューブ30は、輸液バッグに直接取り付けられてもよい。 FIG. 2 is a perspective view showing a configuration example of the infusion cartridge 20 of FIG. The infusion cartridge 20 includes a storage portion 22 , a filling port 23 and a tube receiving portion 24 . An infusion tube 30 is attached to the infusion cartridge 20 to supply the infusion from the inside of the infusion bag. Alternatively, however, the infusion tube 30 may be attached directly to the infusion bag.
 収容部22は、輸液が充填された輸液バッグを内部に収容する。充填口23、管受け部24、及び輸液チューブ30は、輸液カートリッジ20がポンプ本体10に装着された場合に、収容部22の、ポンプ本体10と対向する側に設けられる。充填口23は、収容部22の内部に収容された輸液バッグと接続され、収容部22の外側から輸液チューブ30が接続される。管受け部24は、ポンプ本体10との間で輸液チューブ30を挟み込んで輸液チューブ30を保持する。管受け部24は、例えば、輸液チューブ30を嵌め込む溝を含んでもよい。このような構成により、収容部22に収容された輸液バッグ内の輸液が輸液チューブ30を介して外部に送液することができる。 The storage unit 22 accommodates an infusion bag filled with an infusion. The filling port 23 , the tube receiving portion 24 , and the infusion tube 30 are provided on the side of the housing portion 22 facing the pump body 10 when the infusion cartridge 20 is attached to the pump body 10 . The filling port 23 is connected to an infusion bag housed inside the housing portion 22 and connected to an infusion tube 30 from the outside of the housing portion 22 . The tube receiving portion 24 holds the infusion tube 30 by sandwiching the infusion tube 30 with the pump main body 10 . The tube receiving portion 24 may include, for example, a groove into which the infusion tube 30 is fitted. With such a configuration, the infusion solution in the infusion bag stored in the storage part 22 can be delivered to the outside through the infusion tube 30 .
 (投与量補正の概要)
 次に、輸液ポンプ1が輸液の投与量を補正する処理の概要を説明する。図3A~図3Cは、図1の輸液チューブ30を流れる輸液の気泡を模式的に示す図である。図3A~図3Cは、いずれも輸液チューブ30の中を輸液35が流れている様子を示している。図3Aでは、輸液チューブ30内において、輸液チューブ30の長手方向に長さLだけ空気だけが占めている気泡31が存在する。輸液チューブ30内の流路の半径をrとすると、気泡31の体積V1は、次の式1により表される。
 [式1]
   V1=π×r2×L
そこで、輸液ポンプ1は、気泡検出部13により気泡31を検出した場合は、体積V1だけ輸液の投与量を補正してもよい。
(Summary of dose correction)
Next, the outline of the process of correcting the dose of the infusion by the infusion pump 1 will be described. 3A to 3C are diagrams schematically showing air bubbles in the infusion solution flowing through the infusion tube 30 of FIG. 1. FIG. 3A to 3C all show how the infusion 35 flows through the infusion tube 30. FIG. In FIG. 3A , in the infusion tube 30 , there is a bubble 31 that is occupied only by air for a length L in the longitudinal direction of the infusion tube 30 . Assuming that the radius of the channel in the infusion tube 30 is r, the volume V 1 of the air bubble 31 is expressed by the following equation (1).
[Formula 1]
V 1 =π×r 2 ×L
Therefore, when the bubble detector 13 detects the bubble 31, the infusion pump 1 may correct the dose of the infusion by the volume V1 .
 図3Bでは、輸液チューブ30内において、半径sの空気が占める球形の気泡32が存在する。気泡32の体積V2は、次の式2により表される。
 [式2]
   V2=4/3×π×s3
そこで、輸液ポンプ1は、気泡検出部13により気泡32を検出した場合は、体積V2だけ輸液の投与量を補正してもよい。
In FIG. 3B, within the infusion tube 30 there is a spherical bubble 32 filled with air of radius s. The volume V 2 of the bubble 32 is represented by the following Equation 2.
[Formula 2]
V 2 = 4/3 x π x s 3
Therefore, when the air bubble detector 13 detects the air bubble 32, the infusion pump 1 may correct the dose of the infusion liquid by the volume V2 .
 図3A及び図3Bのように、撮影画像の輸液チューブ30が占める領域において、輸液35と気泡との境界を明瞭に取得できる場合、輸液ポンプ1は、前述のように、その境界を示す画像に基づき、輸液35に含まれる気泡の気泡量を検出してもよい。一方で、輸液35と気泡との境界を明瞭に取得できない場合、輸液ポンプ1は、撮影画像において輸液チューブ30が占める領域における光強度(例えば、輝度、照度等)に基づき、輸液35に含まれる気泡の気泡量を検出してもよい。図3Cでは、輸液チューブ30内において、気泡検出部13の二次元センサによっては半径を検出することができない多数の微小な気泡33が存在している。一般に、輸液チューブ30の撮影画像において、気泡33が混入した輸液35が存在する部分の光強度は、輸液35のみが存在する部分の光強度と有意に相違する。そこで、本実施形態では光強度として平均輝度を用いることとし、輸液ポンプ1は、輸液チューブ30が占める領域における平均輝度に基づき輸液35に混入した気泡33の量を特定することができる。例えば、輸液ポンプ1は、撮影画像の輸液チューブ30が占める領域における平均輝度と、単位量の輸液35に含まれる気泡33の体積との対応関係を示す情報を例えば機械学習により予め取得し、テーブル等の形式で保持しておいてもよい。輸液ポンプ1は、このような対応関係の情報を基に、輸液チューブ30の撮影画像から、輸液35に混入した気泡33の体積V3を求め、体積V3だけ輸液の投与量を補正してもよい。このように、輸液ポンプ1は、撮影画像において輸液35と気泡との境界が明瞭でない場合、撮影画像において輸液チューブ30が占める領域の平均輝度に基づき輸液35に混入している気泡の気泡量を取得して、輸液35の投与量を補正することができる。 3A and 3B, in the region occupied by the infusion tube 30 in the captured image, when the boundary between the infusion 35 and the bubbles can be clearly obtained, the infusion pump 1 displays the image showing the boundary as described above. Based on this, the amount of air bubbles contained in the infusion solution 35 may be detected. On the other hand, if the boundary between the infusion 35 and the bubbles cannot be clearly obtained, the infusion pump 1 is included in the infusion 35 based on the light intensity (for example, luminance, illuminance, etc.) in the area occupied by the infusion tube 30 in the captured image. The bubble volume of bubbles may be detected. In FIG. 3C , in the infusion tube 30 , there are many minute bubbles 33 whose radii cannot be detected by the two-dimensional sensor of the bubble detection section 13 . Generally, in the photographed image of the infusion tube 30, the light intensity of the portion where the infusion 35 containing the air bubbles 33 is present is significantly different from the light intensity of the portion where only the infusion 35 is present. Therefore, in this embodiment, the average brightness is used as the light intensity, and the infusion pump 1 can specify the amount of air bubbles 33 mixed in the infusion 35 based on the average brightness in the area occupied by the infusion tube 30 . For example, the infusion pump 1 obtains in advance, for example, by machine learning, information indicating the correspondence relationship between the average brightness in the area occupied by the infusion tube 30 in the captured image and the volume of the air bubbles 33 contained in the unit amount of the infusion 35, and stores the information in a table. It may be stored in a format such as The infusion pump 1 obtains the volume V3 of the air bubbles 33 mixed in the infusion 35 from the photographed image of the infusion tube 30 based on the information of such a correspondence relationship, and corrects the dose of the infusion by the volume V3 . good too. As described above, when the boundary between the infusion 35 and the bubbles is not clear in the captured image, the infusion pump 1 calculates the amount of bubbles mixed in the infusion 35 based on the average brightness of the area occupied by the infusion tube 30 in the captured image. Obtained, the dose of the infusion 35 can be corrected.
 (実施例1)
 次に、輸液ポンプ1が輸液の投与量を補正する実施例1に係る処理を説明する。図4は、実施例1に係る輸液ポンプ1が輸液の投与量を補正する動作を模式的に示す棒グラフである。図4において、期間T1~T6は、輸液の投与が行われる期間を示す。期間T1~T6におけるグラフの高さは各期間における輸液の投与量を示す。ここで、一回の投与は、例えば、5分~30分等の、一定の時間をかけて行われる。期間T1~T6の各々は、例えば、13:00~13:30のような、一定の幅を持った時間である。
(Example 1)
Next, the process according to the first embodiment, in which the infusion pump 1 corrects the dose of the infusion, will be described. FIG. 4 is a bar graph schematically showing the operation of the infusion pump 1 according to Example 1 for correcting the dose of the infusion. In FIG. 4, periods T1 to T6 indicate periods during which the infusion is administered. The height of the graph in periods T1 to T6 indicates the dose of the infusion solution in each period. Here, one administration is performed over a certain period of time, for example, 5 to 30 minutes. Each of the periods T1 to T6 is a time with a certain width, such as 13:00 to 13:30.
 図4の例では、期間T1、及び期間T4~T6の各々においては、気泡が混入せずに、ユーザにより予め設定された投与量の輸液が投与されている。期間T2においては、気泡が混入し、気泡量の分だけ輸液が投与されていない。そこで、期間T3において、期間T2に輸液に混入した気泡と同じ体積の輸液が追加して投与されている。このように、輸液ポンプ1は、ある期間に投与すべき輸液を気泡混入等により投与することができなかった場合は、混入した気泡と同じ体積の輸液を次の期間に追加して投与する。したがって、輸液ポンプ1は、仮に送液中に気泡が生じたとしても、全体としてユーザにより予め設定された投与量の輸液を患者の体内に投与することが可能である。また、輸液ポンプ1は、気泡を検出すると直ちに発生した気泡の体積分を補正するため、輸液の投与量の補正を迅速に行うことが可能である。 In the example of FIG. 4, in each of the period T1 and the periods T4 to T6, the infusion solution is administered in a dose preset by the user without air bubbles. During the period T2, air bubbles are mixed in, and the infusion solution is not administered for the amount of the air bubbles. Therefore, in the period T3, the same volume of the infusion liquid as the bubbles mixed in the infusion liquid in the period T2 is additionally administered. In this way, when the infusion pump 1 fails to administer the infusion solution to be administered in a certain period due to air bubbles, etc., the infusion pump 1 additionally administers the same volume of the infusion solution as the entrained air bubbles in the next period. Therefore, the infusion pump 1 can inject into the patient's body an amount of infusion set in advance by the user as a whole, even if air bubbles occur during the liquid transfer. In addition, since the infusion pump 1 immediately corrects the volume of the generated air bubbles upon detection of the air bubbles, it is possible to quickly correct the dose of the infusion solution.
 輸液ポンプ1は、1回の処理で投与可能な量の上限値(制限値)が設けられている輸液については、気泡が検出された期間の次の期間において、上限値を超えない範囲で輸液の投与量の補正を行ってもよい。それでも追加投与量の輸液の投与が完了しない場合は、輸液ポンプ1は、さらに次の期間以降に上限値を超えない範囲で輸液の投与量の補正を行ってもよい。このようにして、輸液ポンプ1は、検出した気泡の気泡量と同一の追加投与量に相当する輸液の投与が完了するまで、投与量の上限値を超えない範囲で輸液の投与量の補正を行ってもよい。したがって、輸液ポンプ1は、仮に投与量に上限値が設けられている場合であっても、各期間の投与量の上限値を超えずに、ユーザにより予め設定された投与量の輸液を患者の体内に投与することが可能である。また、輸液ポンプ1は、例えば、期間T2の投与中に気泡を発見した場合は、直ちに追加投与量を取得し、期間T2に投与可能な量の上限値を超えない範囲で、期間T2において追加投与量の輸液を追加投与してもよい。これにより、輸液ポンプ1は、仮に送液中に気泡が生じたとしても、ユーザにより予め設定された投与量の輸液を直ちに投与することが可能である。また、図4は、各期間T1~T6について予め設定された輸液の投与量が同一である例を示しているが、期間によって輸液の投与量が異なってもよい。 The infusion pump 1 supplies the infusion solution for which an upper limit value (limit value) of the amount that can be administered in one process is set, within a range not exceeding the upper limit value, in the period following the period in which air bubbles are detected. Dosage corrections may be made. If administration of the additional dose of infusion is still not completed, the infusion pump 1 may further correct the dose of the infusion within the range not exceeding the upper limit value in the next period and thereafter. In this way, the infusion pump 1 corrects the dose of the infusion within a range not exceeding the upper limit of the dose until the administration of the additional dose corresponding to the amount of the detected air bubbles is completed. you can go Therefore, even if an upper limit is set for the dose, the infusion pump 1 supplies the patient with the dose preset by the user without exceeding the upper limit of the dose for each period. It can be administered into the body. In addition, for example, when the infusion pump 1 discovers air bubbles during administration during the period T2, the infusion pump 1 immediately acquires an additional dose, and does not exceed the upper limit of the amount that can be administered during the period T2. Additional doses of fluid may be administered. As a result, the infusion pump 1 can immediately administer the dose of the infusion set in advance by the user even if air bubbles occur during the liquid transfer. Also, FIG. 4 shows an example in which the dosage of the infusion solution preset for each of the periods T1 to T6 is the same, but the dosage of the infusion solution may differ depending on the period.
 図5は、実施例1に係る輸液ポンプ1により補正された投与量の累積値(目標投与量、実投与量)の推移の一例を示すグラフである。目標投与量とは、ユーザにより予め設定された目標とする輸液の投与量の累積値である。実投与量とは、実際に患者に投与された輸液の投与量の累積値である。図5において、横軸は時間を示し、縦軸は患者に投与された輸液の投与量の累積値を示している。図5の時刻t0~t1の期間は、例えば、図4の期間T1に対応してもよい。時刻t2~t3の期間は、例えば、期間T2に対応してもよい。時刻t4~t5の期間は、例えば、期間T3に対応してもよい。時刻t6~t7の期間は、例えば、期間T4に対応してもよい。図4の期間T1,T2,・・・T6,・・・は、一定の時間的間隔を空けて設けられるが、図5は、理解の促進のために、時刻t1及びt2、時刻t3及びt4、時刻t5及びt6、並びに時刻t7及びt8が連続した、すなわち、時刻t1~t2、時刻t3~t4、時刻t5~t6、時刻t7~t8の期間を省略したグラフを示している。 FIG. 5 is a graph showing an example of changes in cumulative values of doses (target dose, actual dose) corrected by the infusion pump 1 according to Example 1. FIG. The target dose is a target cumulative value of the dose of the infusion solution preset by the user. The actual dose is the cumulative value of the dose of the infusion solution actually administered to the patient. In FIG. 5, the horizontal axis indicates time, and the vertical axis indicates the cumulative amount of the infusion administered to the patient. The period from time t0 to t1 in FIG. 5 may correspond to period T1 in FIG. 4, for example. The period from time t2 to t3 may correspond to period T2, for example. The period from time t4 to t5 may correspond to period T3, for example. The period from time t6 to t7 may correspond to period T4, for example. The periods T1, T2, . . . T6, . , times t5 and t6, and times t7 and t8 are continuous, that is, the graph omits the periods of times t1 to t2, times t3 to t4, times t5 to t6, and times t7 to t8.
 図5の例では、時刻t0~t1の期間は気泡が発生せず、一定の流量で輸液が投与されている。流量とは、輸液ポンプ1によって送り出される輸液の単位時間あたりの投与量である。時刻t2~t3の期間の途中で気泡が発生し、輸液の投与が一時的に中断している。そこで、輸液ポンプ1は、時刻t4~t5の期間において、当初は通常の流量で輸液を投与し、時刻t5において、時刻t2~t3の期間に発生した気泡と同じ体積である追加投与量の輸液を送り出している。輸液ポンプ1は、時刻t4~t5の期間の最後にまとめて追加投与量の輸液を送り出すのではなく、時刻t4~t5の期間の全体にわたって、通常の流量よりも大きな流量で輸液を送り出すことによって、追加投与量だけ増分した輸液を送り出すようにしてもよい。これにより、単位時間当たりの輸液の総量の変動を小さくなり、患者の負担を低減することが可能である。時刻t6~t7の期間は気泡が発生せず、輸液ポンプ1は、一定の流量で輸液を投与している。 In the example of FIG. 5, no air bubbles are generated during the period from time t0 to t1, and the infusion is administered at a constant flow rate. The flow rate is the amount of infusion delivered by the infusion pump 1 per unit time. During the period from time t2 to t3, air bubbles are generated and the administration of the infusion solution is temporarily interrupted. Therefore, in the period from time t4 to t5, the infusion pump 1 initially administers the infusion at a normal flow rate, and at time t5, an additional dose of the infusion having the same volume as the bubbles generated in the period from time t2 to t3. are sending out. The infusion pump 1 pumps the infusion at a higher than normal flow rate throughout the period of time t4-t5, rather than pumping an additional dose of infusion in bulk at the end of the period of time t4-t5. , the infusion may be delivered in increments of additional doses. This makes it possible to reduce fluctuations in the total amount of infusion per unit time and reduce the burden on the patient. During the period from time t6 to t7, no bubbles are generated, and the infusion pump 1 administers the infusion at a constant flow rate.
 図6は、実施例1に係る輸液ポンプ1が実行する補正処理の一例を示すフローチャートである。図6を参照して説明する輸液ポンプ1の動作は実施例1に係る輸液ポンプ1の制御方法の一つに相当する。図6の各ステップの動作は、ポンプ本体10の制御部11による制御に基づき実行される。以下の処理の前提として、収容部22の内部に収容された輸液バッグと接続された輸液チューブ30を輸液で満たすプライミング動作が予め行われ、プライミング済みの輸液チューブ30及び輸液カートリッジ20がポンプ本体10に正しく装着されている。 FIG. 6 is a flow chart showing an example of correction processing executed by the infusion pump 1 according to the first embodiment. The operation of the infusion pump 1 described with reference to FIG. 6 corresponds to one control method of the infusion pump 1 according to the first embodiment. The operation of each step in FIG. 6 is executed under the control of the control section 11 of the pump main body 10 . As a premise for the following processing, a priming operation is performed in advance to fill the infusion tube 30 connected to the infusion bag housed inside the storage section 22 with the infusion liquid, and the primed infusion tube 30 and the infusion cartridge 20 are connected to the pump main body 10. is properly attached to the
 図6のステップS1において、制御部11は、気泡検出部13により輸液チューブ30内の気泡の検出を開始する。具体的には、制御部11は、気泡検出部13の2次元センサを起動して、気泡を検出可能な状態とする。 At step S1 in FIG. 6, the control unit 11 causes the air bubble detection unit 13 to start detecting air bubbles in the infusion tube 30 . Specifically, the control unit 11 activates the two-dimensional sensor of the air bubble detection unit 13 so that air bubbles can be detected.
 ステップS2において、制御部11は、送液を開始する。入力部14を介して予め送液量が設定されており、制御部11は、送液の設定量の輸液を送り出すように送液部15を制御する。以下、制御部11は、ステップS3~ステップS7の処理を一定の時間的間隔(例えば、1秒~30分等)で繰り返す。 In step S2, the control unit 11 starts liquid feeding. A liquid feeding amount is set in advance via the input unit 14, and the control unit 11 controls the liquid feeding unit 15 so as to feed the set amount of the infusion liquid. Thereafter, the control unit 11 repeats the processing of steps S3 to S7 at regular time intervals (for example, 1 second to 30 minutes).
 ステップS3において、制御部11は、設定量の輸液を投与済みであるか否かを判定する。制御部11は、投与済みの場合(ステップS3でYes)はフローチャートの処理を終了し、そうでない場合(ステップS3でNo)はステップS4へ進む。 In step S3, the control unit 11 determines whether or not the set amount of infusion has been administered. If the administration has been completed (Yes in step S3), the control unit 11 ends the processing of the flowchart, otherwise (No in step S3), the process proceeds to step S4.
 ステップS4において、制御部11は、気泡検出部13において気泡が検出されたか否かを判定する。制御部11は、気泡が検出された場合(ステップS4でYes)はステップS5へ進み、そうでない場合(ステップS4でNo)はステップS3へ進んで送液を継続する。 In step S4, the control unit 11 determines whether or not the air bubble detection unit 13 has detected air bubbles. If an air bubble is detected (Yes in step S4), the controller 11 proceeds to step S5, otherwise (No in step S4), it proceeds to step S3 to continue liquid transfer.
 ステップS5において、制御部11は、検出した気泡の量を測定する。例えば、制御部11は、図3Aのように、輸液チューブ30の長手方向に長さLの気泡を検出した場合は、式1により気泡量を測定してもよい。例えば、制御部11は、図3Bのように、半径sの球形の気泡を検出した場合は、式2により気泡量を測定してもよい。例えば、制御部11は、図3Cのように、多数の微小な気泡33を検出した場合は、撮影画像における輸液チューブ30内の部分の平均輝度に基づいて気泡量を測定してもよい。 In step S5, the control unit 11 measures the amount of air bubbles detected. For example, when the controller 11 detects an air bubble having a length L in the longitudinal direction of the infusion tube 30 as shown in FIG. For example, as shown in FIG. 3B, the control unit 11 may measure the amount of air bubbles using Equation 2 when spherical air bubbles having a radius of s are detected. For example, when a large number of minute bubbles 33 are detected as shown in FIG. 3C, the controller 11 may measure the amount of bubbles based on the average brightness of the portion inside the infusion tube 30 in the captured image.
 ステップS6において、制御部11は、ステップS5で検出した気泡量が予め定められた閾値である所定量を超えるか否かを判定する。所定量は、予めユーザにより輸液ポンプ1に設定される。制御部11は、所定量を超える場合(ステップS6でYes)はステップS8へ進み、そうでない場合(ステップS6でNo)はステップS7へ進む。 In step S6, the control unit 11 determines whether or not the amount of air bubbles detected in step S5 exceeds a predetermined amount, which is a predetermined threshold. The predetermined amount is set in the infusion pump 1 in advance by the user. If it exceeds the predetermined amount (Yes in step S6), the controller 11 proceeds to step S8, otherwise (No in step S6), it proceeds to step S7.
 ステップS7において、制御部11は、ステップS5で測定された気泡量と同じ追加投与量の輸液を投与する。図6は、気泡が検出されると、同じ期間において直ちに、検出した気泡量と同じ量の輸液を投与するような処理を表示しているが、図4及び図5を参照して説明したように、輸液ポンプ1は、次の期間以降に追加投与量の輸液を投与してもよい。次の期間以降に追加投与量の輸液を投与する場合、輸液ポンプ1は、検出した気泡量を記憶部12に記憶しておき、次の期間において、記憶部12に記憶した気泡量を読み出して、投与量を補正してもよい。そして、制御部11は、ステップ3に戻る。 In step S7, the control unit 11 administers an additional dose of the transfusion that is the same as the amount of air bubbles measured in step S5. FIG. 6 shows the process of administering the same amount of infusion fluid as the amount of detected air bubbles in the same period immediately after air bubbles are detected, as described with reference to FIGS. Then, the infusion pump 1 may administer additional doses of infusion after the next period. When administering an additional dose of infusion solution after the next period, the infusion pump 1 stores the detected bubble amount in the storage unit 12, and reads out the bubble amount stored in the storage unit 12 in the next period. , the dosage may be corrected. Then, the control unit 11 returns to step 3.
 ステップS8において、制御部11は、出力部16から警報を発信して、所定量を超える気泡が発信したことをユーザに通知する。具体的には、制御部11は、図1に例示したディスプレイに警告を表示したり、警報音をスピーカから出力したりしてもよい。そして、制御部11は、フローチャートの処理を終了する。 In step S8, the control unit 11 issues an alarm from the output unit 16 to notify the user that bubbles exceeding a predetermined amount have been issued. Specifically, the control unit 11 may display a warning on the display illustrated in FIG. 1 or output a warning sound from a speaker. Then, the control unit 11 ends the processing of the flowchart.
 以上のように、輸液ポンプ1は、予め設定された投与量の輸液を、輸液チューブ30を介して送り出す。ここで、輸液ポンプ1は、2次元センサを備えた気泡検出部13により撮影された輸液チューブ30の撮影画像を取得し、撮影画像を解析して、輸液に含まれる気泡の気泡量を検出し、検出された気泡の気泡量に基づいて、輸液の投与量を補正する。したがって、輸液ポンプ1は、送液中に輸液に気泡が紛れ込んだとしても、気泡量に応じて輸液の投与量を補正するため、予め設定された投与量の輸液を投与することができる。よって、輸液ポンプ1によれば、輸液の投与量をより高い精度で制御することが可能である。 As described above, the infusion pump 1 delivers a preset dose of infusion via the infusion tube 30 . Here, the infusion pump 1 acquires a photographed image of the infusion tube 30 photographed by the air bubble detection unit 13 having a two-dimensional sensor, analyzes the photographed image, and detects the amount of air bubbles contained in the infusion. , corrects the dose of the infusion solution based on the bubble volume of the detected bubbles. Therefore, even if air bubbles enter the infusion solution during feeding, the infusion pump 1 corrects the dose of the infusion solution according to the amount of air bubbles, so that a preset dose of the infusion solution can be administered. Therefore, according to the infusion pump 1, it is possible to control the dose of the infusion with higher accuracy.
 また、輸液ポンプ1は、検出された気泡の気泡量と同一の追加投与量だけ、送り出す輸液を増分するように投与量を補正する。したがって、送液中に輸液に気泡が紛れ込んだとしても、気泡量に応じて輸液の投与量を増分するため、輸液の投与量が減少することなく、予め設定された投与量の輸液を投与することができる。 In addition, the infusion pump 1 corrects the dose so as to increase the delivered infusion by the same additional dose as the amount of air bubbles detected. Therefore, even if air bubbles are mixed into the infusion solution during feeding, the dose of the infusion solution is increased according to the amount of air bubbles, so that the preset dose of the infusion solution can be administered without decreasing the dose of the infusion solution. be able to.
 また、輸液ポンプ1は、第1の期間(例えば、図4のT2)において輸液を送り出す際に第1の気泡量の気泡が検出された場合、第1の期間に後続する第2の期間(例えば、図4のT3)において、その第2の期間について予め設定された輸液の投与量を、第1の気泡量と同一の追加投与量だけ増分して補正する。例えば、輸液ポンプ1は、気泡が検出された期間の次の期間の投与量を補正することで、輸液の不足分を迅速に補うことが可能である。また、輸液ポンプ1は、第1の期間で気泡が検出されたことに応じて第2の期間の投与量を補正する場合、同一の期間において投与可能な輸液の投与量の予め設定された上限値を超えない範囲で、第2の期間について予め設定された輸液の投与量を増分してもよい。このようにすることで、輸液ポンプ1は、患者の安全を守りつつ、輸液の不足分を迅速に補うことが可能である。 Further, when the infusion pump 1 detects the first amount of air bubbles when pumping out the infusion in the first period (for example, T2 in FIG. 4), the infusion pump 1 performs the second period ( For example, at T3) in FIG. 4, the pre-set infusion dose for the second period is corrected by incrementing it by the same additional dose as the first bubble volume. For example, the infusion pump 1 can quickly make up for the shortage of the infusion by correcting the dose for the period following the period in which air bubbles are detected. Further, when the infusion pump 1 corrects the dose in the second period in response to the detection of air bubbles in the first period, the infusion pump 1 sets a preset upper limit of the dose of the infusion that can be administered in the same period. The preset infusion dose for the second time period may be incremented without exceeding the value. By doing so, the infusion pump 1 can quickly compensate for the shortage of the infusion while protecting the safety of the patient.
 (実施例2)
 図4~図6を参照して説明した実施例1に係る輸液ポンプ1は、ある期間において気泡を検出すると、その期間又は次の期間に直ちに投与量を補正したが、追加投与量の輸液を複数の期間に分散して投与してもよい。実施例2に係る輸液ポンプ1は、追加投与量の輸液の投与を複数回の期間に分散して投与することで、投与量の変動を小さく抑えることができる。
(Example 2)
In the infusion pump 1 according to Example 1 described with reference to FIGS. 4 to 6, when air bubbles are detected in a certain period, the dose is corrected immediately during that period or the next period, but an additional dose of infusion is added. The administration may be spread out over multiple periods. The infusion pump 1 according to the second embodiment can suppress fluctuations in the dose by dispersing the administration of the additional dose of the infusion over a plurality of periods.
 図7は、実施例2に係る輸液ポンプ1が輸液の投与量を補正する動作を模式的に示す棒グラフである。図4と同様に、期間T1~T6は、輸液の投与が行われる期間を示す。期間T1~T6におけるグラフの高さは各期間における輸液の投与量を示す。図4と同様に、期間T1~T6の各々は、例えば、13:00~13:30のような、一定の幅を持った時間である。 FIG. 7 is a bar graph schematically showing how the infusion pump 1 according to Example 2 corrects the dose of the infusion. As in FIG. 4, periods T1 to T6 indicate periods during which the infusion is administered. The height of the graph in periods T1 to T6 indicates the dose of the infusion solution in each period. As in FIG. 4, each of the periods T1 to T6 is a time with a certain width, such as 13:00 to 13:30.
 図7の例では、期間T1の投与では一部気泡が混入している。期間T2の投与では、気泡しか発生せず、輸液の投与が全く行われていない。そこで、期間T3~T6において、通常の投与量に加えて、期間T1及びT2に輸液に混入した気泡と同じ体積の輸液の追加投与量が分散して追加投与されている。このように、輸液ポンプ1は、ある期間に投与すべき輸液を気泡混入等により投与することができなかった場合は、混入した気泡と同じ体積の輸液を次の期間以降に分散して追加投与する。したがって、輸液ポンプ1は、仮に送液中に気泡が生じたとしても、気泡により投与できなかった量の輸液を投与することで、全体として、ユーザにより予め設定された投与量の輸液を患者の体内に投与することが可能である。また、輸液ポンプ1は、追加投与量の輸液を複数の期間に分散して投与するため、投与量の変動を小さく抑えることができ、患者の負担を低減することが可能である。追加投与量の輸液を複数の期間に分散して追加投与する場合、各期間において追加投与する輸液の量は、全ての期間において同一でもよいし、あるいは、期間によって異なってもよい。 In the example of FIG. 7, some air bubbles are mixed in the administration during period T1. In the administration of period T2, only air bubbles were generated and no infusion was administered. Therefore, in the periods T3 to T6, in addition to the normal dose, an additional dose of the infusion solution having the same volume as the air bubbles mixed in the infusion solution in the periods T1 and T2 is dispersed and additionally administered. As described above, when the infusion pump 1 cannot administer the infusion to be administered in a certain period due to air bubbles or the like, the infusion pump 1 disperses and additionally administers the infusion of the same volume as the entrained air in the next period or later. do. Therefore, even if air bubbles are generated during liquid feeding, the infusion pump 1 will administer the amount of the infusion liquid that could not be administered due to the air bubbles. It can be administered into the body. In addition, since the infusion pump 1 distributes and administers additional doses of the infusion over a plurality of periods, fluctuations in the dose can be suppressed, and the burden on the patient can be reduced. When additional doses of the infusion solution are administered separately over a plurality of periods, the amount of the additional infusion solution administered in each period may be the same in all periods, or may vary depending on the period.
 図8は、実施例2に係る輸液ポンプ1により補正された投与量の累積値(目標投与量、実投与量)の推移の一例を示すグラフである。図8において、図5と同様に、横軸は時間を示し、縦軸は患者に投与された輸液の投与量の累積値を示している。図5と同様に、図8の時刻t0~t1の期間は、例えば、図7の期間T1に対応してもよい。時刻t2~t3の期間は、例えば、期間T2に対応してもよい。時刻t4~t5の期間は、例えば、期間T3に対応してもよい。時刻t6~t7の期間は、例えば、期間T4に対応してもよい。図7の期間T1,T2,・・・T6,・・・は、一定の時間的間隔を空けて設けられるが、図8は、理解の促進のために、時刻t1及びt2、時刻t3及びt4、時刻t5及びt6、並びに時刻t7及びt8が連続した、すなわち、時刻t1~t2、時刻t3~t4、時刻t5~t6、時刻t7~t8の期間を省略したグラフを示している。 FIG. 8 is a graph showing an example of changes in cumulative values of doses (target dose, actual dose) corrected by the infusion pump 1 according to the second embodiment. In FIG. 8, as in FIG. 5, the horizontal axis indicates time, and the vertical axis indicates the cumulative amount of infusion administered to the patient. As in FIG. 5, the period from time t0 to t1 in FIG. 8 may correspond to period T1 in FIG. 7, for example. The period from time t2 to t3 may correspond to period T2, for example. The period from time t4 to t5 may correspond to period T3, for example. The period from time t6 to t7 may correspond to period T4, for example. The periods T1, T2, . . . T6, . , times t5 and t6, and times t7 and t8 are continuous, that is, the graph omits the periods of times t1 to t2, times t3 to t4, times t5 to t6, and times t7 to t8.
 図8の例では、時刻t0~t1の期間は気泡が発生せず、一定の流量で輸液が投与されている。時刻t2~t3の期間の途中で気泡が発生し、輸液の投与が一時的に停止している。そこで、輸液ポンプ1は、時刻t4~t5の期間において、当初は通常の流量で輸液を投与し、時刻t5において、時刻t2~t3の期間に発生した気泡の約半分の体積の輸液を送り出している。さらに、輸液ポンプ1は、時刻t6~t7の期間において、当初は通常の流量で輸液を投与し、時刻t7において、時刻t2~t3の期間に発生した気泡の体積から時刻t5に投与した輸液の体積を減算した体積の輸液を送り出している。輸液ポンプ1は、時刻t4~t5及び時刻t6~t7の各期間の最後にまとめて輸液を追加投与するのではなく、時刻t4~t5及び時刻t6~t7の各期間の全体にわたって、通常の流量よりも大きな流量で輸液を送り出してもよい。これにより、単位時間当たりの輸液の投与量の変動が小さくなり、患者の負担を低減することが可能である。 In the example of FIG. 8, no bubbles are generated during the period from time t0 to t1, and the infusion is administered at a constant flow rate. During the period from time t2 to t3, air bubbles are generated and the administration of the infusion solution is temporarily stopped. Therefore, the infusion pump 1 initially administers the infusion at a normal flow rate during the period from time t4 to t5, and at time t5, pumps out the infusion with a volume that is about half the volume of the bubbles generated during the period from time t2 to t3. there is Further, the infusion pump 1 initially administers the infusion at a normal flow rate during the period from time t6 to t7, and at time t7, the amount of the infusion administered at time t5 is reduced due to the volume of air bubbles generated during the period from time t2 to t3. You are delivering the volume of the infusion minus the volume. The infusion pump 1 maintains its normal flow rate throughout the periods t4-t5 and t6-t7, rather than bulking up at the end of the periods t4-t5 and t6-t7. The infusion may be delivered at a flow rate greater than . As a result, fluctuations in the dose of the infusion solution per unit time can be reduced, and the burden on the patient can be reduced.
 図9は、実施例2に係る輸液ポンプ1が実行する補正処理の一例を示すフローチャートである。図9を参照して説明する輸液ポンプ1の動作は実施例2に係る輸液ポンプ1の制御方法の一つに相当する。図9の各ステップの動作は、ポンプ本体10の制御部11による制御に基づき実行される。以下の処理の前提として、収容部22の内部に収容された輸液バッグと接続された輸液チューブ30を輸液で満たすプライミング動作が予め行われ、プライミング済みの輸液チューブ30及び輸液カートリッジ20がポンプ本体10に正しく装着されている。 FIG. 9 is a flowchart showing an example of correction processing executed by the infusion pump 1 according to the second embodiment. The operation of the infusion pump 1 described with reference to FIG. 9 corresponds to one control method of the infusion pump 1 according to the second embodiment. The operation of each step in FIG. 9 is executed under the control of the control section 11 of the pump main body 10 . As a premise for the following processing, a priming operation is performed in advance to fill the infusion tube 30 connected to the infusion bag housed inside the storage section 22 with the infusion liquid, and the primed infusion tube 30 and the infusion cartridge 20 are connected to the pump main body 10. is properly attached to the
 図9のステップS11において、制御部11は、気泡検出部13により輸液チューブ30内の気泡の検出を開始する。ステップS11の処理は、図6のステップS1と同様である。 In step S11 of FIG. 9, the controller 11 causes the bubble detector 13 to start detecting bubbles in the infusion tube 30. The processing of step S11 is the same as that of step S1 in FIG.
 ステップS12において、制御部11は、送液を開始する。ステップS12の処理は、図6のステップS2と同様である。以下、制御部11は、ステップS13~ステップS19の処理を一定の時間的間隔(例えば、1秒から30分等)で繰り返す。 In step S12, the control unit 11 starts liquid feeding. The processing of step S12 is the same as that of step S2 in FIG. Thereafter, the control unit 11 repeats the processing of steps S13 to S19 at regular time intervals (for example, 1 second to 30 minutes).
 ステップS13において、制御部11は、設定量の輸液を投与済みであるか否かを判定する。制御部11は、投与済みの場合(ステップS13でYes)はフローチャートの処理を終了し、そうでない場合(ステップS13でNo)はステップS14へ進む。 In step S13, the control unit 11 determines whether or not the set amount of infusion has been administered. If administration has been completed (Yes in step S13), the control unit 11 ends the processing of the flowchart, otherwise (No in step S13), the process proceeds to step S14.
 ステップS14において、制御部11は、気泡検出部13において気泡が検出されたか否かを判定する。制御部11は、気泡が検出された場合(ステップS14でYes)はステップS15へ進み、そうでない場合(ステップS14でNo)はステップS13へ進んで送液を継続する。 In step S14, the control unit 11 determines whether or not the air bubble detection unit 13 has detected air bubbles. If bubbles are detected (Yes in step S14), the controller 11 proceeds to step S15; otherwise (No in step S14), the controller 11 proceeds to step S13 to continue liquid feeding.
 ステップS15において、制御部11は、検出した気泡の量を測定する。ステップS15の処理は、図6のステップS5と同様である。 In step S15, the control unit 11 measures the amount of air bubbles detected. The processing of step S15 is the same as that of step S5 in FIG.
 ステップS16において、制御部11は、ステップS15で検出した気泡量が予め定められた閾値である所定量を超えるか否かを判定する。ステップS16の処理は、図6のステップS6と同様である。制御部11は、所定量を超える場合(ステップS16でYes)はステップS20へ進み、そうでない場合(ステップS16でNo)はステップS17へ進む。 In step S16, the control unit 11 determines whether or not the amount of air bubbles detected in step S15 exceeds a predetermined amount, which is a predetermined threshold. The processing of step S16 is the same as that of step S6 in FIG. If it exceeds the predetermined amount (Yes in step S16), the control section 11 proceeds to step S20, otherwise (No in step S16), it proceeds to step S17.
 ステップS17において、制御部11は、ステップS15で測定した気泡量に基づいて、補正投与回数Nを計算する。制御部11は、例えば、各期間における輸液の投与量の上限値と、各期間について予め設定された投与量とに基づいて、複数の期間にわたって追加投与量の輸液を投与した場合に各期間の総投与量が上限値を超えないような最小の投与回数を補正投与回数Nとして決定してもよい。 In step S17, the control unit 11 calculates the corrected number of injections N based on the amount of air bubbles measured in step S15. For example, based on the upper limit of the dose of the infusion in each period and the dose set in advance for each period, the control unit 11 determines the amount of the infusion in each period when an additional dose of the infusion is administered over a plurality of periods. The minimum number of administrations such that the total dose does not exceed the upper limit may be determined as the corrected number of administrations N.
 ステップS18において、制御部11は、補正投与を行った回数が補正投与回数N以下であるか否かを判定する。制御部11は、N以下である場合(ステップS18でYes)はステップS19へ進み、そうでない場合(ステップS18でNo)はステップS13へ戻る。 In step S18, the control unit 11 determines whether or not the number of times correction administration has been performed is equal to or less than the number N of correction administrations. If the number is equal to or less than N (Yes in step S18), the control unit 11 proceeds to step S19, otherwise (No in step S18), returns to step S13.
 ステップS19において、制御部11は、ステップS15で測定された気泡量をN回に分けて補正する場合の量の輸液を投与する。なお、図9は、気泡が検出されると、同じ期間において直ちに、N回に分けて追加投与量の輸液を投与するような処理を表示しているが、図7及び図8を参照して説明したように、輸液ポンプ1は、次の期間以降の複数の期間にわたって追加投与量の輸液を投与してもよい。次の期間以降に投与量を補正する場合、輸液ポンプ1は、検出した気泡量及び投与済みの輸液の量を記憶部12に記憶しておき、次の期間において、記憶部12に記憶した気泡量及び投与済みの輸液の量を読み出して、投与量を補正してもよい。N回に分けた補正を終えると(ステップS18でNo)、制御部11は、ステップ13に戻る。 In step S19, the control unit 11 administers an amount of infusion solution for correcting the amount of air bubbles measured in step S15 in N batches. FIG. 9 shows the process of administering additional doses of transfusion in N separate doses immediately during the same period when air bubbles are detected, but please refer to FIGS. As explained, the infusion pump 1 may administer additional doses of the infusion over multiple subsequent periods. When correcting the dose after the next period, the infusion pump 1 stores the detected amount of air bubbles and the amount of the infusion solution that has been administered in the storage unit 12. The volume and amount of infusion administered may be read to correct the dose. After finishing the correction divided into N times (No in step S18), the control unit 11 returns to step S13.
 ステップS20において、制御部11は、出力部16から警報を発信して、所定量を超える気泡が発信したことをユーザに通知する。ステップS20の処理は、図6のステップS8と同様である。そして、制御部11は、フローチャートの処理を終了する。 In step S20, the control unit 11 issues an alarm from the output unit 16 to notify the user that bubbles exceeding a predetermined amount have been issued. The processing of step S20 is the same as that of step S8 in FIG. Then, the control unit 11 ends the processing of the flowchart.
 以上のように、輸液ポンプ1は、第1の期間(例えば、図7のT1、T2)において輸液を送り出す際に第1の気泡量の気泡が検出された場合、第1の期間に後続する複数の第2の期間(例えば、図7のT3~T6)において、複数の第2の期間の各々について予め設定された輸液の投与量を、第1の気泡量を複数の第2の期間の個数で分けた追加投与量だけ増分して補正する。このように、輸液ポンプ1は、追加投与量の輸液を複数の第2の期間に分散して投与する。したがって、輸液ポンプ1は、予め設定された投与量の輸液を投与しつつ、投与量の変動を小さく抑えることができ、患者の負担を低減することが可能である。 As described above, when the infusion pump 1 detects the first amount of air bubbles during the first period (for example, T1 and T2 in FIG. 7) while pumping out the infusion, the infusion pump 1 continues the first period. In a plurality of second periods (for example, T3 to T6 in FIG. 7), the amount of infusion solution set in advance for each of the plurality of second periods is Correct by incrementing by the number of additional doses divided. In this way, the infusion pump 1 distributes and administers additional doses of the infusion over a plurality of second periods. Therefore, the infusion pump 1 can keep fluctuations in the dose small while administering a preset dose of the infusion solution, thereby reducing the burden on the patient.
 本開示は上述の実施形態に限定されない。例えば、ブロック図に記載の複数のブロックは統合されてもよいし、又は1つのブロックは分割されてもよい。フローチャートに記載の複数のステップは、記述に従って時系列に実行する代わりに、各ステップを実行する装置の処理能力に応じて、又は必要に応じて、並列的に又は異なる順序で実行されてもよい。その他、本開示の趣旨を逸脱しない範囲での変更が可能である。 The present disclosure is not limited to the above-described embodiments. For example, multiple blocks shown in the block diagrams may be combined, or a single block may be divided. Instead of being performed in chronological order according to the description, multiple steps described in the flowcharts may be performed in parallel or in different orders, depending on the processing power of the device performing each step or as required. . Other modifications are possible without departing from the scope of the present disclosure.
 1   輸液ポンプ
 10  ポンプ本体
 11  制御部
 12  記憶部
 13  気泡検出部
 14  入力部
 15  送液部
 16  出力部
 17  バッテリ
 20  輸液カートリッジ
 22  収容部
 23  充填口
 24  管受け部
 30  輸液チューブ
 
 
1 infusion pump 10 pump main body 11 control unit 12 storage unit 13 air bubble detection unit 14 input unit 15 liquid delivery unit 16 output unit 17 battery 20 infusion cartridge 22 storage unit 23 filling port 24 tube receiving unit 30 infusion tube

Claims (8)

  1.  予め設定された投与量の輸液を、輸液チューブを介して送り出す輸液ポンプであって、
     2次元センサにより撮影された前記輸液チューブの撮影画像を取得し、
     前記撮影画像を解析して、前記輸液に含まれる気泡の気泡量を検出し、
     検出された前記気泡の気泡量に基づいて、前記投与量を補正する、
     制御部を備える、輸液ポンプ。
    An infusion pump that delivers a preset dose of infusion through an infusion tube,
    Acquiring a photographed image of the infusion tube photographed by a two-dimensional sensor,
    analyzing the captured image to detect the amount of air bubbles contained in the infusion;
    correcting the dosage based on the amount of the detected air bubbles;
    An infusion pump comprising a controller.
  2.  前記制御部は、検出された前記気泡の気泡量と同一の追加投与量だけ送り出す前記輸液を増分するように前記投与量を補正する、請求項1に記載の輸液ポンプ。 The infusion pump according to claim 1, wherein the control unit corrects the dose so as to increase the infusion delivered by an additional dose equal to the amount of air bubbles detected.
  3.  前記制御部は、第1の期間において前記輸液を送り出す際に第1の気泡量の気泡が検出された場合、前記第1の期間に後続する第2の期間において、当該第2の期間について予め設定された前記輸液の投与量を、前記第1の気泡量と同一の追加投与量だけ増分して補正する、請求項1又は2に記載の輸液ポンプ。 When a first amount of air bubbles is detected when the infusion solution is delivered during the first period, the control unit preliminarily controls the second period during the second period subsequent to the first period. 3. The infusion pump according to claim 1 or 2, wherein the set dose of the infusion is corrected by increasing it by an additional dose equal to the first bubble volume.
  4.  前記制御部は、前記第1の期間において前記輸液を送り出す際に前記第1の気泡量の気泡が検出された場合、同一の期間において投与可能な前記輸液の投与量の予め設定された上限値を超えない範囲で、前記第2の期間について予め設定された前記輸液の投与量を増分する、請求項3に記載の輸液ポンプ。 The control unit sets a preset upper limit value of a dose of the infusion solution that can be administered in the same period when bubbles of the first bubble volume are detected when the infusion solution is delivered during the first period. 4. The infusion pump of claim 3, which increments the preset dose of the infusion for the second time period by no more than .
  5.  前記制御部は、第1の期間において前記輸液を送り出す際に第1の気泡量の気泡が検出された場合、前記第1の期間に後続する複数の第2の期間において、当該複数の第2の期間の各々について予め設定された前記輸液の投与量を、前記第1の気泡量を前記複数の第2の期間の個数で分けた追加投与量だけ増分して補正する、請求項3又は4に記載の輸液ポンプ。 When a first amount of air bubbles is detected when the infusion solution is delivered in the first period, the control unit performs the plurality of second periods in a plurality of second periods subsequent to the first period. wherein the dose of the infusion solution preset for each of the periods is corrected by incrementing the additional dose obtained by dividing the first bubble volume by the number of the plurality of second periods. An infusion pump as described in .
  6.  前記制御部は、前記撮影画像において前記輸液チューブが占める領域における光強度に基づき、前記輸液に含まれる気泡の気泡量を検出する、請求項1から5のいずれか1項に記載の輸液ポンプ。 The infusion pump according to any one of claims 1 to 5, wherein the controller detects the amount of air bubbles contained in the infusion based on the light intensity in the region occupied by the infusion tube in the captured image.
  7.  前記制御部は、前記撮影画像において前記輸液チューブが占める領域における、前記輸液と前記気泡との境界に基づき、前記輸液に含まれる気泡の気泡量を検出する、請求項1から6のいずれか1項に記載の輸液ポンプ。 7. Any one of claims 1 to 6, wherein the controller detects the amount of bubbles contained in the infusion solution based on a boundary between the infusion solution and the air bubbles in a region occupied by the infusion tube in the captured image. 10. An infusion pump according to any one of the preceding paragraphs.
  8.  予め設定された投与量の輸液を、輸液チューブを介して送り出す、制御部を備えた輸液ポンプの制御方法であって、
     前記制御部が、
     2次元センサにより撮影された前記輸液チューブの撮影画像を取得する工程と、
     前記撮影画像を解析して、前記輸液に含まれる気泡の気泡量を検出する工程と、
     検出された前記気泡の気泡量に基づいて、前記投与量を補正する工程と、
     を含む、輸液ポンプの制御方法。
     
     
    A control method for an infusion pump equipped with a controller for delivering a preset dose of infusion through an infusion tube, comprising:
    The control unit
    obtaining a photographed image of the infusion tube photographed by a two-dimensional sensor;
    analyzing the photographed image to detect the amount of air bubbles contained in the infusion solution;
    correcting the dosage based on the amount of the detected air bubbles;
    A method of controlling an infusion pump, comprising:

PCT/JP2022/012093 2021-09-24 2022-03-16 Infusion pump and infusion pump control method WO2023047656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021156159 2021-09-24
JP2021-156159 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023047656A1 true WO2023047656A1 (en) 2023-03-30

Family

ID=85720376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012093 WO2023047656A1 (en) 2021-09-24 2022-03-16 Infusion pump and infusion pump control method

Country Status (1)

Country Link
WO (1) WO2023047656A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508637A (en) * 2007-12-31 2011-03-17 デカ・プロダクツ・リミテッド・パートナーシップ Infusion pump assembly
US20140046288A1 (en) * 2011-04-12 2014-02-13 Roche Diagnostics International Ag Infusion Pump Device and Method for Improved Dosing
JP2015510407A (en) * 2011-12-21 2015-04-09 デカ・プロダクツ・リミテッド・パートナーシップ System, method and apparatus for injecting fluid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508637A (en) * 2007-12-31 2011-03-17 デカ・プロダクツ・リミテッド・パートナーシップ Infusion pump assembly
US20140046288A1 (en) * 2011-04-12 2014-02-13 Roche Diagnostics International Ag Infusion Pump Device and Method for Improved Dosing
JP2015510407A (en) * 2011-12-21 2015-04-09 デカ・プロダクツ・リミテッド・パートナーシップ System, method and apparatus for injecting fluid

Similar Documents

Publication Publication Date Title
US20220305200A1 (en) Infusion pump system and method with common line auto flush
US11701464B2 (en) Drawing drug from a vial
ES2376031T3 (en) A METHOD FOR DETERMINING THE AMOUNT OF MEDICINAL PRODUCT CONTAINED IN A MEDICATION CONTAINER.
RU2138302C1 (en) Method and device for infusion of medicine to patient
US5256157A (en) Automated infusion pump with replaceable memory cartridges
JP5044625B2 (en) Improvements related to drug injection devices
PT1885413E (en) Medication delivery device
US20220151877A1 (en) Medical pump
US20220409809A1 (en) Drug delivery device with an improved mechanism for controlling the delivery rate
WO2023047656A1 (en) Infusion pump and infusion pump control method
CN110141721B (en) Infusion device, infusion method, computer device and computer-readable storage medium
CN210904395U (en) Infusion assembly and infusion device
JP2023047201A (en) Infusion pump and control method of infusion pump
JP2019180785A (en) Transfusion device
US10898640B2 (en) Visual detection for IV pump tube calibration
JP7161023B2 (en) Drug delivery system and method of operating drug delivery system
EP4261833A1 (en) Guidance for a drug delivery process
US11712518B2 (en) Infusion set with capability of controlling quantity of an injection infused to a limb and system for detecting and controlling drip rate of an infusion device
WO2006109777A1 (en) Medical fluid infusing device
US20240009366A1 (en) System and Method for Pressure Sensor Based Gas Bubble Detection for a Drug Delivery Device
US20220401640A1 (en) Intravenous infusion pumps with system and pharmacodynamic model adjustment for display and operation
US20230004256A1 (en) Detection device and infusion pump
US20230178205A1 (en) Administration systems and methods for using same
ANUAR et al. IOT SYRINGE INFUSION PUMP
WO2024042324A1 (en) System and method for monitoring drug delivery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872415

Country of ref document: EP

Kind code of ref document: A1