WO2023046968A1 - Procédé de production de dihydrogène gazeux et de sulfate d'ammonium à partir d'un effluent liquide aqueux, tel que la fraction liquide d'un lisier de porcins ou des urines d'êtres humains - Google Patents

Procédé de production de dihydrogène gazeux et de sulfate d'ammonium à partir d'un effluent liquide aqueux, tel que la fraction liquide d'un lisier de porcins ou des urines d'êtres humains Download PDF

Info

Publication number
WO2023046968A1
WO2023046968A1 PCT/EP2022/076729 EP2022076729W WO2023046968A1 WO 2023046968 A1 WO2023046968 A1 WO 2023046968A1 EP 2022076729 W EP2022076729 W EP 2022076729W WO 2023046968 A1 WO2023046968 A1 WO 2023046968A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous liquid
nanofiltration
permeate
effluents
mixture
Prior art date
Application number
PCT/EP2022/076729
Other languages
English (en)
Inventor
Louesdon STÉPHANE
Original Assignee
Sanof'agri
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2110121A external-priority patent/FR3121687A1/fr
Application filed by Sanof'agri filed Critical Sanof'agri
Publication of WO2023046968A1 publication Critical patent/WO2023046968A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/029Multistep processes comprising different kinds of membrane processes selected from reverse osmosis, hyperfiltration or nanofiltration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2684Electrochemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/005Black water originating from toilets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46165Special power supply, e.g. solar energy or batteries

Definitions

  • the field of the invention is that of the recovery of agricultural effluents.
  • the invention relates to a process for the production of gaseous hydrogen and ammonium sulphate from an aqueous liquid effluent containing organic and mineral matter or from a mixture of aqueous liquid effluent containing organic matter and mineral.
  • the invention finds particular application in the recovery of pig slurry, the liquid fraction of a methanizer digestate, the liquid fraction of a digestate of sludge from a treatment plant, waste water and urine from Human being.
  • a disadvantage of seawater is that the chloride ions it contains can corrode the electrolyser anode and can prevent or limit oxidation-reduction reactions.
  • Slurry dehydration techniques are also known which make it possible to obtain a dry organic cake rich in nitrogen, which is more easily recoverable than the liquid fraction of the slurry.
  • a disadvantage of stripping and dehydration techniques is that they consume energy.
  • the object of the invention is therefore in particular to overcome the disadvantages of the prior art mentioned above.
  • the invention aims to provide a technique for producing gaseous dihydrogen and ammonium sulphate from an aqueous liquid effluent, such as a liquid fraction of pig manure, a liquid fraction of a digestate from a methanizer, a liquid fraction of a digestate of sludge from a purification station, waste water, human urine or a mixture of one or more of these effluents, which is reliable.
  • an aqueous liquid effluent such as a liquid fraction of pig manure, a liquid fraction of a digestate from a methanizer, a liquid fraction of a digestate of sludge from a purification station, waste water, human urine or a mixture of one or more of these effluents, which is reliable.
  • a particular objective of the invention is to provide a technique which makes it possible to recover the gaseous ammonia contained in the liquid fraction of a slurry, in the liquid fraction of a methanizer digestate, in the liquid fraction of a digestate sludge from sewage treatment plants, in waste water or in human urine in the form of ammonium sulphate.
  • An object of the invention is also to provide such a technique which consumes little energy.
  • Another object of the invention is to provide such a technique which is simple to implement and has a reduced cost price.
  • the invention therefore relates to the production of gaseous hydrogen and ammonium sulphate from aqueous liquid effluents of agricultural origin, from animal husbandry, or of urban origin.
  • the invention is not limited to a production of gaseous hydrogen and ammonium sulphate from one of the five aforementioned aqueous liquid effluents, but also relates to a production of gaseous hydrogen from a mixture of two, three, four or all of the aforementioned aqueous liquid effluents.
  • this urine may be limed or added with soda, without departing from the scope of the invention.
  • the waste water can be domestic or industrial waste water which may or may not have undergone treatment in a treatment plant.
  • said method comprises the following steps:
  • the permeate resulting from the nanofiltration stage is advantageously used successively to produce ammonium sulphate, then to obtain osmosis water, after treatment by reverse osmosis, in order to produce gaseous dihydrogen.
  • such a method comprises a step of heating to at least 50° C., and preferably between 50 and 65° C., said permeate resulting from the nanofiltration step by means of the heat emitted during said electrolysis step, preceding said ammonia stripping step.
  • the heat recovered from the electrolyser is thus advantageously used to increase the volatility of the ammonia contained in the permeate and consequently the quantity of gaseous ammonia that can be used in the stripping stage.
  • said electrolysis step is implemented in an electrolyser supplied with energy electricity by means of photovoltaic collection and/or by one or more wind turbines.
  • the pore size of the nanofiltration membrane or membranes implemented during said nanofiltration step is between 4 and 9 nm and preferably between 4 and 6 nm.
  • said membrane or membranes are ceramic membranes.
  • the pressure differential between the upstream and the downstream of said nanofiltration membrane or membranes is between 3 and 4 bars.
  • said aqueous liquid effluent or said mixture of aqueous liquid effluents is filtered through two and only two nanofiltration membranes.
  • the pressure of said permeate before being treated by reverse osmosis is between 3 and 19 bars.
  • the pressure of said permeate before being treated by reverse osmosis is between 12 and 16 bars.
  • a method as described above comprises a step of heating said aqueous liquid effluent or said mixture of aqueous liquid effluents preceding said nanofiltration step.
  • the viscosity of the aqueous liquid effluent or of the mixture of aqueous liquid effluents penetrating into the nanofiltration membranes is thus reduced.
  • FIG. 1 shows a first example of a system for producing gaseous dihydrogen and ammonium sulphate suitable for implementing an embodiment of a method for producing gaseous dihydrogen according to the invention.
  • Figure 1 An example of a system for producing gaseous dihydrogen and ammonium sulphate in which an embodiment of a process for producing gaseous dihydrogen and ammonium sulphate is implemented according to invention.
  • This system 20 is fed with urine from pigs from several farms equipped with phase separation.
  • This urine is contained in a storage tank 19 located outside a building 21, equipped with a pump connected to the system 20 by the conduit 22.
  • the building 21 is equipped with the TRACK process, which allows the liquid part of the slurry to flow into the tank 19 and thus to separate the liquid fraction from the solid fraction of the slurry.
  • the conduit 22 leads to a nanofiltration system 23 comprising a membrane surface formed of ceramic discs (in titanium dioxide) in rotation, having a pore size of 5 nm, through which the liquid fraction of the slurry is filtered.
  • the intramembrane pressure is 3 bars. This intramembrane pressure is regulated by acting on a retentate extraction control valve.
  • the membrane surface is washed, in order to avoid its clogging.
  • washing with an alkaline solution composed for example of potassium hydroxide, chelating agents and dispersants, and a citric acid solution is carried out every 5 days, in this particular embodiment of the invention, to regenerate the filtration capacities of the membrane surface.
  • the retentates are spread.
  • a significant reduction, of the order of 93%, of the phosphate content is observed through the nanofiltration system, and a reduction of the order of 5% of the nitrogen and potassium contents.
  • the permeate emerging from the nanofiltration system 23 at a pressure of 13.6 bars is injected into an ammonia stripping treatment unit 212 allowing the production of ammonium sulphate stored in the tank 25.
  • the solutes retained in the nanofiltration unit 23 are directed, after having been heated to 50° C. using the heat rejected by the electrolyser 26, towards the reactor of an ammonia stripping installation 212 in which the gaseous ammonia passes through a scrubber sulfuric acid to form ammonium sulfate.
  • the permeate obtained after the stripping step 212 is injected into a reverse osmosis unit 24 equipped with polyamide membranes, making it possible to collect osmosis water at its outlet.
  • the reverse osmosis treatment unit 24 consists of two successive stages of reverse osmosis on a polyamide membrane.
  • the osmosis water obtained or in other words the permeate from the second reverse osmosis stage, has a nitrogen, phosphate and potassium content greatly reduced compared to the liquid fraction of the slurry, respectively of the order of 97-98%, of the order of 97-98% and of the order of 92-23%.
  • COD denotes the Chemical Oxygen Demand
  • MS denotes the Dry Matter content
  • MES denotes the Suspended Solids content
  • P2O5 the phosphate content expressed in mg of phosphoric anhydride per litre
  • N- NH4 the total nitrogen content
  • K2O the potassium content expressed in mg of potassium oxide per litre.
  • This reverse osmosis water is directed by means of a pump to an electrolyser 26 supplied with electricity by a set of wind turbines 210.
  • the osmosis water surplus is transferred to a market gardening surface 213 for the production of vegetables.
  • the system 20 can also be used to produce dihydrogen gas from waste water or the liquid fraction of limed pig manure, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

L'invention concerne un procédé de production de dihydrogène gazeux et de sulfate d'ammonium à partir d'un effluent liquide aqueux contenant des matières organiques et minérales ou d'un mélange d'effluents liquides aqueux, ledit procédé comprenant les étapes suivantes : - nanofiltration dudit effluent liquide aqueux ou dudit mélange d'effluents liquides aqueux de sorte à obtenir un perméat; stripping de l'ammoniac du perméat issu de ladite étape de nanofiltration dans une unité de stripping de l'ammoniac de sorte à obtenir un sulfate d'ammonium; - traitement par osmose inverse d'au moins une partie du perméat extrait de l'unité de stripping de l'ammoniac après ladite étape de stripping de l'ammoniac, de sorte à obtenir une solution aqueuse osmosée; - électrolyse d'au moins une partie de ladite solution aqueuse osmosée de sorte à décomposer ladite partie de ladite solution aqueuse osmosée en au moins du dihydrogène gazeux.

Description

Procédé de production de dihydrogene gazeux et de sulfate d'ammonium à partir d'un effluent liquide aqueux
1. Domaine de l'invention
Le domaine de l'invention est celui de la valorisation des effluents agricoles.
Plus précisément, l'invention concerne un procédé de production d'hydrogène gazeux et de sulfate d'ammonium à partir d'un effluent liquide aqueux contenant des matières organiques et minérales ou d'un mélange d'effluents liquides aqueux contenant des matières organiques et minérales.
L'invention trouve notamment une application dans la valorisation des lisiers de porcs, de la fraction liquide d'un digestat de méthaniseur, de la fraction liquide d'un digestat de boues de station d'épuration, des eaux usées et des urines d'êtres humains.
2. Etat de la technique
En 2019, la France et l'Europe ont exprimé la volonté de développer une filière d'hydrogène « vert » basée sur l'électrolyse de l'eau.
Actuellement, environ 4% de l'hydrogène gazeux au niveau mondial est produit par une technique d'électrolyse de l'eau. Ces techniques de production connues reposent principalement sur l'utilisation d'eau douce.
L'eau douce étant une ressource précieuse et limitée, on a proposé récemment de produire du dihydrogène gazeux à partir d'eau de mer.
Un inconvénient de l'eau de mer est que les ions chlorure qu'elle contient peuvent corroder l'anode de l'électrolyseur et qu'ils peuvent empêcher ou limiter les réactions d'oxydo-réduction.
Dans le domaine agricole, on connait des techniques de production d'hydrogène consistant à méthaniser des déchets végétaux, et des effluents d'élevage, tels que du fumier ou du lisier, afin de produire du biogaz, qui, après avoir été purifié, est mélangé avec de la vapeur d'eau à haute température et à haute pression en présence d'un catalyseur afin d'obtenir de l'hydrogène, par vaporeformage.
FEUILLE DE REMPLACEMENT (RÈGLE 26) Un inconvenient de cette technique connue est que pour 1kg d'hydrogene produit, 9 kg de CO2 est rejeté à l'atmosphère. Il s'agit donc d'une technique qui est peu respectueuse de l'environnement.
On connait d'autres techniques de valorisation des lisiers. Ainsi, il est connu de pratiquer l'épandage du lisier sur des terres agricoles. Les surfaces d'épandage sont toutefois limitées. Par ailleurs, l'épandage est source de pollution azotée des cours d'eau et l'épandage du lisier entraine des émissions d'ammoniac importantes dans l'atmosphère. Pour remédier à ces inconvénients, on a proposé par exemple de traiter la fraction liquide des lisiers par des méthodes de « stripping » permettant d'extraire l'azote ammoniacal de cette fraction liquide et de former un engrais minéral, le sulfate d'ammonium.
On connait également des techniques de déshydratation des lisiers permettant d'obtenir un tourteau organique sec et riche en azote, plus facilement valorisable que la fraction liquide du lisier.
Un inconvénient des techniques de stripping et de déshydratation est qu'elles sont consommatrices d'énergie.
3. Objectifs de l'invention
L'invention a donc notamment pour objectif de pallier les inconvénients de l'état de la technique cités ci-dessus.
Plus précisément l'invention a pour objectif de fournir une technique de production de dihydrogène gazeux et de sulfate d'ammonium à partir d'un effluent liquide aqueux, tel qu'une fraction liquide d'un lisier de porcs, une fraction liquide d'un digestat de méthaniseur, une fraction liquide d'un digestat de boues de station d'épuration, des eaux usées, des urines d'êtres humains ou un mélange d'un ou plusieurs de ces effluents, qui soit fiable.
Notamment un objectif particulier de l'invention est de fournir une technique qui permette de valoriser l'ammoniac gazeux contenu dans la fraction liquide d'un lisier, dans la fraction liquide d'un digestat de méthaniseur, dans la fraction liquide d'un digestat de boues de station d'épuration, dans des eaux usées ou dans des urines d'êtres humains sous forme de sulfate d'ammonium. Un objectif de l'invention est egalement de fournir une telle technique qui soit peu énergivore.
Un autre objectif de l'invention est de fournir une telle technique qui soit simple à mettre en œuvre, et d'un coût de revient réduit.
4. Exposé de l'invention
Ces objectifs, ainsi que d'autres qui apparaitront par la suite sont atteints à l'aide d'un procédé de production de dihydrogène gazeux à partir d'un effluent liquide aqueux contenant des matières organiques et minérales ou d'un mélange d'effluents liquides aqueux contenant des matières organiques et minérales, ledit ou lesdits effluents liquides aqueux étant sélectionné parmi les effluents suivants :
- fraction liquide d'un lisier, tel qu'un lisier de porcins ;
- fraction liquide d'un digestat de méthaniseur ;
- fraction liquide d'un digestat de boues de station d'épuration ;
- eaux usées ;
- urines d'animaux ou d'êtres humains.
L'invention concerne donc la production d'hydrogène gazeux et de sulfate d'ammonium à partir d'effluents liquides aqueux d'origine agricole, issus de l'élevage, ou d'origine urbaine.
Il convient de noter que l'invention ne se limite pas à une production d'hydrogène gazeux et de sulfate d'ammonium à partir d'un des cinq effluents liquides aqueux précités, mais concerne également une production d'hydrogène gazeux à partir d'un mélange de deux, trois, quatre ou de l'ensemble des effluents liquides aqueux précités.
On notera que dans des modes de réalisation particuliers de l'invention dans lesquels du dihydrogène gazeux et le sulfate d'ammonium sont produits essentiellement ou partiellement à partir d'urine de porcs et/ou d'urine d'être humain, cette urine peut être chaulée ou additivée avec de la soude, sans sortir du cadre de l'invention. On notera egalement que les eaux usees peuvent etre des eaux usees domestiques ou d'origine industrielle ayant subi ou non un traitement dans une station d'épuration.
Selon l'invention, ledit procédé comprend les étapes suivantes :
- nanofiltration dudit effluent liquide aqueux ou dudit mélange d'effluents liquides aqueux de sorte à obtenir un perméat ;
- stripping de l'ammoniac du perméat issu de ladite étape de nanofiltration dans une unité de stripping de l'ammoniac de sorte à obtenir du sulfate d'ammonium ;
- traitement par osmose inverse d'au moins une partie du perméat extrait de l'unité de stripping de l'ammoniac après ladite étape de stripping de l'ammoniac, de sorte à obtenir une solution aqueuse osmosée ;
- électrolyse d'au moins une partie de ladite solution aqueuse osmosée de sorte à décomposer ladite partie de ladite solution aqueuse osmosée en au moins du dihydrogène gazeux.
Ainsi le perméat issu de l'étape de nanofiltration est avantageusement utilisé successivement pour produire du sulfate d'ammonium, puis pour obtenir de l'eau osmosée, après traitement par osmose inverse, afin de produire du dihydrogène gazeux.
Dans un mode de réalisation particulièrement avantageux de l'invention, un tel procédé comprend une étape de chauffage à au moins 50°C, et de préférence entre 50 et 65°C, dudit perméat issu de l'étape de nanofiltration au moyen de la chaleur émise lors de ladite étape d'électrolyse, précédant ladite étape de stripping de l'ammoniac.
La chaleur récupérée sur l'électrolyseur est ainsi avantageusement utilisée pour augmenter la volatilité de l'ammoniaque contenu dans le perméat et par conséquent la quantité d'ammoniac gazeux pouvant être exploitée à l'étape de stripping.
Dans un mode de réalisation avantageux de l'invention, ladite étape d'électrolyse est mise en œuvre dans un électrolyseur alimentée en énergie électrique par des moyens de captage photovoltaïque et/ou par une ou plusieurs éoliennes.
Avantageusement, la taille des pores de la ou des membranes de nanofiltration mises en œuvre lors de ladite étape de nanofiltration est comprise entre 4 et 9 nm et de préférence entre 4 et 6 nm.
Dans un mode de réalisation particulier de l'invention, la ou lesdites membranes sont des membranes en céramique.
Selon un aspect particulier de l'invention, lors de ladite étape de nanofiltration, le différentiel de pression entre l'amont et l'aval de ladite ou desdites membranes de nanofiltration est compris entre 3 et 4 bars.
Dans un mode de réalisation particulier de l'invention, lors de ladite étape de nanofiltration, ledit effluent liquide aqueux ou ledit mélange d'effluents liquides aqueux est filtré au travers de deux et seulement deux membranes de nanofiltration.
De préférence, la pression dudit perméat avant d'être traité par osmose inverse est comprise entre 3 et 19 bars.
Selon un mode de réalisation particulier de l'invention, la pression dudit perméat avant d'être traité par osmose inverse est comprise entre 12 et 16 bars.
Dans un mode de réalisation particulier de l'invention, un procédé tel que décrit ci-dessus comprend une étape de chauffage dudit effluent liquide aqueux ou dudit mélange d'effluents liquides aqueux précédant ladite étape de nanofiltration.
On diminue ainsi la viscosité de l'effluent liquide aqueux ou du mélange d'effluents liquides aqueux pénétrant dans les membranes de nanofiltration.
5. Liste des figures
D'autres caractéristiques et avantages de l'invention apparaitront plus clairement à la lecture de la description suivante d'un mode de réalisation de l'invention, donné à titre de simple exemple illustratif et non limitatif, et de l'unique figure annexée : - la figure 1 représente un premier exemple de système de production de dihydrogène gazeux et de sulfate d'ammonium adapté pour mettre en œuvre un mode de réalisation d'un procédé de production de dihydrogène gazeux selon l'invention.
6. Description détaillée de l'invention
On a illustré sur la figure 1 un exemple de système de production de dihydrogène gazeux et de sulfate d'ammonium dans lequel est mis en œuvre un mode de réalisation d'un procédé de production de dihydrogène gazeux et de sulfate d'ammonium selon l'invention.
Ce système 20 est alimenté avec des urines de porcs issues de plusieurs élevages équipés de séparation de phases. Ces urines sont contenues dans une cuve de stockage 19 située à l'extérieur d'un bâtiment 21, équipée d'une pompe raccordée au système 20 par le conduit 22. Pour séparer la fraction liquide de la fraction solide du lisier, le bâtiment 21 est équipé du procédé TRACK, ce qui permet de faire couler la partie liquide du lisier dans la cuve 19 et ainsi de séparer la fraction liquide de la fraction solide du lisier.
Le conduit 22 débouche sur un système de nanofiltration 23 comprenant une surface membranaire formée de disques de céramique (en dioxyde de titane) en rotation, présentant une taille de pores de 5nm, au travers de laquelle la fraction liquide du lisier est filtrée. Dans ce mode de réalisation particulier de l'invention la pression intramembranaire est de 3 bars. Cette pression intramembranaire est régulée en agissant sur une vanne de contrôle de l'extraction des rétentats.
Il convient de noter qu'à intervalles réguliers la surface membranaire est lavée, afin d'éviter son colmataqe. Notamment un lavage avec une solution alcaline, composée par exemple d'hydroxyde de potassium, d'agents chélatants et de dispersants, et une solution d'acide citrique est réalisé tous les 5 jours, dans ce mode réalisation particulier de l'invention, pour régénérer les capacités de filtration de la surface membranaire. Les rétentats sont épandus. On constate une reduction importante, de l'ordre de 93%, de la teneur en phosphate au travers du système de nanofiltration, et une réduction de l'ordre de 5% des teneurs en azote et en potassium.
Le perméat ressortant du système de nanofiltration 23 à une pression de 13,6 bars est injecté dans une unité de traitement de stripping de l'ammoniac 212 permettant la production de sulfate d'ammonium stockée dans la cuve 25. Les solutés retenus dans l'unité de nanofiltration 23 sont dirigés, après avoir été chauffés à 50°C grâce à la chaleur rejetée par l'électrolyseur 26, vers le réacteur d'une installation de stripping de l'ammoniac 212 dans lequel l'ammoniac gazeux passe dans un laveur d'acide sulfurique pour former du sulfate d'ammonium.
Le perméat obtenu après l'étape de stripping 212 est injecté dans une unité par osmose inverse 24 équipée de membranes en polyamide, permettant de recueillir de l'eau osmosée à sa sortie. Dans ce mode réalisation particulier de l'invention, l'unité de traitement par osmose inverse 24 est constituée de deux étages successifs d'osmose inverse sur membrane en polyamide.
Comme on peut le voir dans le tableau [Table 1] ci-dessous, l'eau osmosée obtenue, ou en d'autres termes le perméat issu du deuxième étage d'osmose inverse, présente une teneur en azote, en phosphate et en potassium fortement réduite par rapport à la fraction liquide du lisier, respectivement de l'ordre de de 97-98%, de l'ordre de 97-98% et de l'ordre de 92-23%.
Figure imgf000009_0001
Dans ce tableau et dans les tableaux suivants DCO désigné la Demande Chimique en Oxygène, MS désigne la teneur en Matière Sèche, MES désigne la teneur en Matières En Suspension, P2O5 la teneur en phosphates exprimée en mg d'anhydride phosphorique par litre, N-NH4 la teneur en azote total, K2O la teneur en potassium exprimée en mg d'oxyde de potassium par litre.
Cette eau osmosée est dirigée grâce à un pompe jusqu'à un électrolyseur 26 alimenté en électricité par un ensemble d'éoliennes 210.
Il se produit dans l'électrolyseur 26 une décomposition de l'eau osmosée en dihydrogène gazeux et en oxygène. Le dihydrogène gazeux émis est comprimé et stocké dans une cuve de stockage 28 tandis que l'oxygène émis est rejeté à l'atmosphère.
Le surplus d'eau osmosée est transféré vers une surface d'exploitation maraichère 213 pour la production de légumes.
Le système 20 peut également être utilisé pour produire du dihydrogène gazeux à partir d'eaux usées ou de la fraction liquide d'un lisier de porcs chaulée, par exemple.
Une évolution des propriétés aux différentes étapes de traitement à l'aide du système 20 d'un volume initialement composé d'eaux usées brutes ou d'une fraction liquide d'un lisier de porcs chaulée brute est présentée respectivement dans les tableaux [table 2] et [Table 3] suivants, à titre d'exemples :
Figure imgf000010_0001
Figure imgf000011_0001

Claims

REVENDICATIONS
Procédé de production de dihydrogène gazeux et de sulfate d'ammonium à partir d'un effluent liquide aqueux contenant des matières organiques et minérales ou d'un mélange d'effluents liquides aqueux contenant des matières organiques et minérales, ledit ou lesdits effluents liquides aqueux étant sélectionné parmi les effluents suivants :
- fraction liquide d'un lisier, tel qu'un lisier de porcins ;
- fraction liquide d'un digestat de méthaniseur ;
- fraction liquide d'un digestat de boues de station d'épuration ;
- eaux usées ;
- urines d'animaux ou d'êtres humains, ledit procédé comprenant les étapes suivantes :
- nanofiltration dudit effluent liquide aqueux ou dudit mélange d'effluents liquides aqueux de sorte à obtenir un perméat ;
- stripping de l'ammoniac du perméat issu de ladite étape de nanofiltration dans une unité de stripping de l'ammoniac, de sorte à obtenir du sulfate d'ammonium ;
- traitement par osmose inverse d'au moins une partie du perméat extrait de l'unité de stripping de l'ammoniac après ladite étape de stripping de l'ammoniac, de sorte à obtenir une solution aqueuse osmosée ;
- électrolyse d'au moins une partie de ladite solution aqueuse osmosée de sorte à décomposer ladite partie de ladite solution aqueuse osmosée en au moins du dihydrogène gazeux.
2. Procédé selon la revendication 1, caractérisé en ce qu'il comprend une étape de chauffage à au moins 50°C, et de préférence entre 50 et 65°C, dudit perméat issu de l'étape de nanofiltration au moyen de la chaleur émise lors de ladite étape d'électrolyse, précédant ladite étape de stripping de l'ammoniac.
3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que ladite étape d'électrolyse est mise en œuvre dans un électrolyseur alimentée en energie électrique par des moyens de captage photovoltaïque et/ou par une ou plusieurs éoliennes.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la taille des pores de la ou des membranes de nanofiltration mises en œuvre lors de ladite étape de nanofiltration est comprise entre 4 et 9 nm et de préférence entre 4 et 6 nm.
5. Procédé selon l'une quelconque des revendications 4, caractérisé en ce que la ou lesdites membranes sont des membranes en céramique.
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que lors de ladite étape de nanofiltration, le différentiel de pression entre l'amont et l'aval de ladite ou desdites membranes de nanofiltration est compris entre 3 et 4 bars.
7. Procédé selon l'une quelconque des revendications 4 à 6, caractérisé en ce que lors de ladite étape de nanofiltration ledit effluent liquide aqueux ou ledit mélange d'effluents liquides aqueux est filtré au travers de deux et seulement deux membranes de nanofiltration.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la pression dudit perméat avant d'être traité par osmose inverse est comprise entre 3 et 19 bars.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend une étape de chauffage dudit effluent liquide aqueux ou dudit mélange d'effluents liquides aqueux précédant ladite étape de nanofiltration.
PCT/EP2022/076729 2021-09-27 2022-09-26 Procédé de production de dihydrogène gazeux et de sulfate d'ammonium à partir d'un effluent liquide aqueux, tel que la fraction liquide d'un lisier de porcins ou des urines d'êtres humains WO2023046968A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2110121A FR3121687A1 (fr) 2021-04-09 2021-09-27 Procédé de production de dihydrogène gazeux à partir d’un effluent liquide aqueux, tel que la fraction liquide d’un lisier de porcins ou des urines d’êtres humains
FRFR2110121 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023046968A1 true WO2023046968A1 (fr) 2023-03-30

Family

ID=83899935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/076729 WO2023046968A1 (fr) 2021-09-27 2022-09-26 Procédé de production de dihydrogène gazeux et de sulfate d'ammonium à partir d'un effluent liquide aqueux, tel que la fraction liquide d'un lisier de porcins ou des urines d'êtres humains

Country Status (2)

Country Link
FR (1) FR3127506A1 (fr)
WO (1) WO2023046968A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551536B1 (en) * 2001-07-30 2003-04-22 Saehan Industries Incorporation Reverse osmosis membrane having excellent anti-fouling property and method for manufacturing the same
WO2007132477A1 (fr) * 2006-05-11 2007-11-22 Raman Ahilan Processus de prétraitement des eaux salées alimentant des usines de dessalement
KR20120119270A (ko) * 2011-04-21 2012-10-31 한국에너지기술연구원 백금이 담지된 나노튜브구조의 티타니아 캐소드, 자연해수 및 멤브레인으로부터 제조된 농축해수전해질을 이용한 광전기화학적 수소제조장치 및 그 제조방법
US20150050706A1 (en) * 2012-04-20 2015-02-19 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Dilute chemical reaction process
US20160176768A1 (en) * 2013-07-09 2016-06-23 Renew Energy A/S Method and plant for treatment of organic waste
GB2571413A (en) * 2017-12-20 2019-08-28 Univ Coventry Methods of manufacturing hydrogen
CA3107313A1 (fr) * 2018-08-21 2020-02-27 Evoqua Water Technologies Llc Procedes et systemes de traitement d'eaux contenant du phosphogypse
EP3708698A1 (fr) * 2019-03-13 2020-09-16 Covestro Deutschland AG Procédé de traitement et de valorisation d'une eau de processus salée

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551536B1 (en) * 2001-07-30 2003-04-22 Saehan Industries Incorporation Reverse osmosis membrane having excellent anti-fouling property and method for manufacturing the same
WO2007132477A1 (fr) * 2006-05-11 2007-11-22 Raman Ahilan Processus de prétraitement des eaux salées alimentant des usines de dessalement
KR20120119270A (ko) * 2011-04-21 2012-10-31 한국에너지기술연구원 백금이 담지된 나노튜브구조의 티타니아 캐소드, 자연해수 및 멤브레인으로부터 제조된 농축해수전해질을 이용한 광전기화학적 수소제조장치 및 그 제조방법
US20150050706A1 (en) * 2012-04-20 2015-02-19 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Dilute chemical reaction process
US20160176768A1 (en) * 2013-07-09 2016-06-23 Renew Energy A/S Method and plant for treatment of organic waste
GB2571413A (en) * 2017-12-20 2019-08-28 Univ Coventry Methods of manufacturing hydrogen
CA3107313A1 (fr) * 2018-08-21 2020-02-27 Evoqua Water Technologies Llc Procedes et systemes de traitement d'eaux contenant du phosphogypse
EP3708698A1 (fr) * 2019-03-13 2020-09-16 Covestro Deutschland AG Procédé de traitement et de valorisation d'une eau de processus salée

Also Published As

Publication number Publication date
FR3127506A1 (fr) 2023-03-31

Similar Documents

Publication Publication Date Title
CA2380797A1 (fr) Methode de traitement du lisier
Collivignarelli et al. Minimization of municipal sewage sludge by means of a thermophilic membrane bioreactor with intermittent aeration
EP0877721A1 (fr) Procede de traitement des effluents liquides aqueux contenant des matieres organiques et minerales en vue de leur valorisation
EP3500533B1 (fr) Procédé et installation pour récupérer du phosphore sur une station d'épuration avec traitement avance des boues
EP0817760B1 (fr) Procede de stabilisation de boues
Turker et al. Long term performance of a pilot scale anaerobic membrane bioreactor treating beet molasses based industrial wastewater
EP2807121A1 (fr) Procédé de traitement d'un effluent en vue d'en abattre la teneur en phosphates comprenant une étape de traitement thermique en voie humide optimisé, et installation correspondante
CN104531783B (zh) 硫酸铜联合碱性pH促进剩余污泥厌氧发酵产短链脂肪酸的方法
CN107188365A (zh) 一种深度处理垃圾渗滤液的方法
WO2023046968A1 (fr) Procédé de production de dihydrogène gazeux et de sulfate d'ammonium à partir d'un effluent liquide aqueux, tel que la fraction liquide d'un lisier de porcins ou des urines d'êtres humains
DK2279153T3 (en) METHOD OF TREATING AND / OR PREPARING LIQUID FERTILIZER OR WASTE FROM BIOGAS SYSTEMS TO ELIMINATE HARMFUL SUBSTANCES, PARTICULAR NITROGEN, PHOSPHORES AND AIR MOLECULES
EP1212261A1 (fr) Dispositif et procede de traitement de lisier
Urbanowska et al. Recovery of chemical energy from retentates from cascade membrane filtration of hydrothermal carbonisation effluent
FR3121687A1 (fr) Procédé de production de dihydrogène gazeux à partir d’un effluent liquide aqueux, tel que la fraction liquide d’un lisier de porcins ou des urines d’êtres humains
CN114133087A (zh) 一种高盐废水的资源化处理工艺
CN113800720A (zh) 渗滤液处理方法及渗滤液处理系统
FR2991678A1 (fr) Procede de traitement et de valorisation de digestat issu de procede de methanisation
KR100313455B1 (ko) 분리막공정을 이용한 축산폐수 처리방법
EP2909154B1 (fr) Procede de traitement des digestats, engrais obtenu par ce procede et unite de traitement correspondante
FR2707623A1 (fr) Procédé de traitement d'effluents azotés.
CN103848536A (zh) 生活垃圾渗滤液处理方法
AU2011253905B8 (en) Generation of fresh water
WO2024003249A1 (fr) Systeme de traitement d'une source liquide comprenant de l'ammoniaque et methode associee
BE1006766A3 (fr) Procede de traitement des lisiers de porcherie.
Solomou et al. An integrated solution to wastewater and biodegradable organic waste management by applying anaerobic digestion and membrane bioreactor processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22792822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022792822

Country of ref document: EP

Effective date: 20240429