WO2023045845A1 - 一种光信号发送装置 - Google Patents

一种光信号发送装置 Download PDF

Info

Publication number
WO2023045845A1
WO2023045845A1 PCT/CN2022/119311 CN2022119311W WO2023045845A1 WO 2023045845 A1 WO2023045845 A1 WO 2023045845A1 CN 2022119311 W CN2022119311 W CN 2022119311W WO 2023045845 A1 WO2023045845 A1 WO 2023045845A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
optical
arm
signal
area
Prior art date
Application number
PCT/CN2022/119311
Other languages
English (en)
French (fr)
Inventor
桂成程
曾成
夏金松
宋小鹿
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111554888.XA external-priority patent/CN115941050A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023045845A1 publication Critical patent/WO2023045845A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters

Definitions

  • the invention relates to the field of optical communication, in particular to an optical signal sending device.
  • the high-speed optical transmitter is the core part of building a high-speed optical network, and it is responsible for completing the modulation of the entire optical network from electrical signals to optical signals. Therefore, the rate and power consumption of the optical transmitter directly determine the transmission capacity and quality of the entire high-speed optical communication field.
  • silicon optical modulators are widely used in 100G and below optical modules due to their low cost and small size.
  • the theoretical bandwidth upper limit of silicon optical modulator is about 70 GHz, which makes it unable to meet the device bandwidth requirements of higher optical communication.
  • coherent communication technology is widely used.
  • the most used high-speed devices in coherent systems are lithium niobate bulk material devices.
  • the lithium niobate bulk material modulator can achieve high bandwidth, due to the large device size of the bulk material itself, it is difficult to achieve low driving voltage and small size to achieve low cost and low power consumption.
  • An embodiment of the present invention provides an optical signal sending device to realize optical signal modulation with low cost and low power consumption.
  • an embodiment of the present invention provides an optical signal transmission device, including an optical modulator, a differential driver, and a phase modulator, wherein: the optical modulator includes an optical input end, a first modulation area, a connection area, a second Modulation area, optical output end; the first modulation area includes a first modulation arm and a second modulation arm, the second modulation area includes a third modulation arm and a fourth modulation arm, and each modulation arm includes an optical waveguide and electrodes on both sides thereof
  • the optical input terminal is used to divide the input continuous light into two paths, which are respectively output to the optical waveguide of the first modulation arm of the first modulation area and the optical waveguide of the second modulation arm; the first modulation arm of the first modulation area and the optical waveguide of the second modulation arm;
  • the second modulation arm is used to form an electric field between the electrodes on both sides of the optical waveguide to modulate the optical signal in the optical waveguide; the connection area is used to connect the first modulation area and the second modulation area
  • the optical signals in the second modulation arm are respectively input to the third modulation arm and the fourth modulation arm; the third modulation arm and the fourth modulation arm of the second modulation area are used to form electric fields between the electrodes on both sides of the optical waveguide respectively , to modulate the optical signal in the optical waveguide; the optical output end is used to combine and output the modulated optical signals in the third modulation arm and the fourth modulation arm; electrodes, including signal electrodes and ground electrodes, are respectively arranged on the optical waveguide Both sides, used to form an electric field to modulate the light in the optical waveguide, the signal electrodes include positive signal electrodes and negative signal electrodes; differential drivers, including positive signal output terminals and negative signal output terminals, are used to generate differential drive signals, differential drive signals are respectively output to the signal electrodes of the first modulation area and the signal electrodes of the second modulation area; the phase modulator is used to adjust the phase difference between the signal in the first modulation area and the signal in the second modulation area .
  • the modulation of the photoelectric signal is
  • connection area includes two U-shaped connection waveguides, a waveguide for connecting the first modulation arm and the third modulation arm, and a waveguide for connecting the second modulation arm and the fourth modulation arm.
  • the optical waveguide and electrodes in the optical modulator are stacked and arranged, and the phase difference generated by the phase modulator is 2 ⁇ .
  • the stacked arrangement of the modulation arms enables the volume of the light modulator to be greatly reduced, thereby facilitating the miniaturization of devices and equipment.
  • connection area includes two U-shaped connection waveguides, two straight waveguides, two U-shaped connection waveguides connected in sequence, waveguides for connecting the first modulator arm and the third modulator arm, and A waveguide connecting the second modulation arm and the fourth modulation arm.
  • the optical waveguide and electrodes in the optical modulator are stacked and arranged, and the phase difference generated by the phase modulator is ⁇ .
  • the stacked arrangement of the modulation arms can greatly reduce the volume of the light modulator, thereby facilitating the miniaturization of devices and equipment. And it provides the flexibility to interface on different sides of the device.
  • the optical waveguide material is a material with Pockels effect
  • the optical waveguide material includes lithium niobate film, organic polymer, lithium tantalate film, barium borate, or gallium arsenide material.
  • Various materials provide flexibility in fabrication.
  • the first modulation arm and the second modulation arm share a positive signal electrode, or the third modulation arm and the fourth modulation arm share a negative signal electrode. Thereby reducing the size of the equipment.
  • the phase modulator is an electrical delay line
  • the differential driver outputs the differential driving signal to the positive signal electrode or the negative signal electrode through at least one electrical delay line.
  • the electric delay line is an adjustable electric delay line. Modulation flexibility is provided through the delay line.
  • the phase modulator is a heater located in the connection area.
  • Heater materials include nickel titanium, or metal. The phase is adjusted by the heater, which improves the flexibility of the equipment.
  • an embodiment of the present invention provides an optical module, including the above-mentioned optical signal sending device and an optical signal receiving device, and the optical signal receiving device is configured to receive an optical signal.
  • an embodiment of the present invention provides an optical communication device, including a laser and an optical signal sending device, and the laser is used to output continuous light.
  • the above solution provided by the embodiment of the present invention realizes the modulation of the photoelectric signal by driving the two modulation regions with a differential driving signal, greatly reduces the driving voltage, improves the modulation efficiency, and reduces the power consumption of the device.
  • FIG. 1 is a schematic structural diagram of an optical communication system provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an optical signal sending device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another optical signal sending device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another optical signal sending device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another optical signal sending device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of another optical signal sending device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another optical signal sending device provided by an embodiment of the present invention.
  • an embodiment of the present invention provides an optical signal sending device 102 .
  • the sending end includes a light source 101 and an optical signal sending device 102 .
  • the optical signal transmission device 102 includes an optical modulator 111 , a differential driver 112 , and a phase modulator 113 .
  • the differential driver 112 is configured to output a differential driving signal to the optical modulator 111 according to the electrical signal to be transmitted.
  • the light modulator 111 is used for modulating the continuous light output by the light source 101 into signal light according to the differential driving signal
  • the phase modulator 113 is used for adjusting the phase difference between the signals.
  • the electrical signal to be transmitted is modulated into an optical signal
  • the modulated optical signal is transmitted to the receiving end through an optical fiber, and is received and processed by the optical signal receiving device 103 .
  • the light source 101 and the optical signal sending apparatus 102 may be located in the same physical device, such as an optical communication device.
  • the laser outputs continuous light
  • the optical signal sending device modulates the continuous light into signal light and outputs it to the receiving side.
  • the optical module of the interface includes the above-mentioned optical signal sending device and optical signal receiving device, and realizes the bidirectional function of sending and receiving.
  • the optical signal sending device includes an optical modulator 201, a differential driver 202, and a phase modulator 203, wherein the optical modulator 201 includes: an optical input terminal 211, a first modulation area including a first modulation arm 212 and a second modulation arm 213 , a connection area 214, a second modulation area including a third modulation arm 215 and a fourth modulation arm 216, and an optical output terminal 217; each modulation arm includes an optical waveguide and electrodes on both sides thereof;
  • the optical input end 211 is used to divide the input continuous light into two paths and output them to the optical waveguide of the first modulation arm and the optical waveguide of the second modulation arm of the first modulation area respectively;
  • the first modulation arm 212 and the second modulation arm 213 of the first modulation area are used to respectively form an electric field between the electrodes on both sides of the optical waveguide to modulate the optical signal in the optical waveguide;
  • connection area 214 is used to connect the first modulation area and the second modulation area, and input the optical signals in the first modulation arm and the second modulation arm to the third modulation arm and the fourth modulation arm respectively; the connection area in Fig. 2 It is two U-shaped waveguides, respectively connecting two modulation arms of the first modulation area and the second modulation area.
  • the third modulation arm 215 and the fourth modulation arm 216 of the second modulation area are used to respectively form an electric field between the electrodes on both sides of the optical waveguide to modulate the optical signal in the optical waveguide;
  • the optical output terminal 217 is used to combine and output the modulated optical signals in the third modulation arm and the fourth modulation arm;
  • the electrodes on both sides of the optical waveguide in each modulation arm including the signal electrode P and the ground electrode G, are respectively arranged on both sides of the optical waveguide to form an electric field to modulate the continuous light in the optical waveguide, and the signal electrodes include the positive signal electrode " P+” and negative signal electrode "P-";
  • the differential driver 202 is used to generate a differential drive signal, including a positive signal output terminal "RF+” and a negative signal output terminal "RF-", and the differential drive signal is respectively output to the positive signal electrode of the first modulation area and the electrode of the second modulation area In the negative signal electrode;
  • the phase modulator 203 is configured to adjust the phase difference between the optical signal in the first modulation area and the optical signal in the second modulation area.
  • the phase modulator in Fig. 2 is an electric delay line, and two electric delay lines connect the differential drive signal output by the differential drive signal to the positive signal electrode and the negative signal electrode of the two modulation areas.
  • the phase difference between the two delay lines is 2 ⁇ , so that the RF+ and RF- signals still retain the original ⁇ phase.
  • at least one of the two delay lines is adjustable, and the adjustment range of the adjustable delay line can be within the range of 0 to 2 ⁇ , thereby flexibly adjusting the phase difference of the two signals.
  • the light input is located on the same side of the device as the light output.
  • the optical waveguides and electrodes of the four modulation arms are arranged in a stacked manner.
  • Optical waveguide materials are materials with Pockels Effect, including lithium niobate thin film materials, organic polymer materials, lithium tantalate thin film materials, barium borate, gallium arsenide, etc. have Pockels effect s material.
  • the modulation of the photoelectric signal is realized by driving the two modulation regions with a differential drive signal.
  • the stacked arrangement of the modulation arms can greatly reduce the volume of the optical modulator, which is beneficial to the development of devices and equipment. Miniaturization, this differential method effectively utilizes the amplitude voltage of the differential drive, improves modulation efficiency, and reduces power consumption.
  • the optical signal transmission device includes an optical modulator 301 , a differential driver 302 , and a phase modulator 303 .
  • the optical modulator 301 includes: an optical input terminal 311, a first modulation area including a first modulation arm 312 and a second modulation arm 313, a connection area 314, a second modulation arm including a third modulation arm 315 and a fourth modulation arm 316. Modulation area, light output port 317.
  • connection area 314 includes two U-shaped curved waveguides and a pair of straight waveguides in the middle, which are used to connect the two modulation areas.
  • the phase modulator 303 is two electrical delay lines connected to the output of the differential driver, and the phase difference is ⁇ .
  • the functions of other parts are the same as those of the corresponding parts in FIG. 2 , and will not be repeated here.
  • the light input is on a different side of the device than said light output.
  • the optical waveguides and electrodes of the four modulation arms, as well as part of the waveguides in the connection area 314, are arranged in a stacked manner.
  • the optical waveguide material can be a linear photoelectric effect material, including lithium niobate thin film material, organic polymer material, or lithium tantalate thin film material.
  • the phase modulator 113 can also be a heater, as shown in Figure 4 and Figure 5, the phase modulator 418 or 518 does not use an electric delay line, but uses a heater, located in the connection area 414 or 514, and the connection area The two waveguides are connected.
  • the adjustment range of the heater is at least within the range of 2 ⁇ .
  • Different phase modulators increase the flexibility of the device.
  • Other components in FIG. 4 are respectively the same as those in FIG. 2 in the same position/function.
  • Other components in FIG. 5 are respectively the same as those in FIG. 3 in the same position/function.
  • optical modulator 401 includes an optical modulator 401, a differential driver 402, and a phase modulator 403, wherein the optical modulator 401, the differential driver 402, and the phase modulator 403 are respectively the same as the optical modulator in FIG. 2 201, the differential driver 202, and the phase modulator 203 are consistent.
  • the optical modulator 401, the differential driver 402, and the phase modulator 403 are respectively the same as the optical modulator in FIG. 2 201, the differential driver 202, and the phase modulator 203 are consistent.
  • FIG. 6 it is a schematic structural diagram of another optical signal sending device provided by an embodiment of the present invention, that is, an adjustable delay is set inside the differential driver.
  • the differential driver 602 is not only used to generate the differential drive signal, but also has the function of adjusting the phase difference between the signal in the first modulation area and the signal in the second modulation area of the phase modulator, which can be made by cables or metal
  • the electrodes are connected to the two signal input ports of the modulator.
  • the functions of other parts are the same as those of the corresponding parts in FIG. 2 , and will not be repeated here.
  • the phase difference between the two signals at the positive signal output terminal "RF+” and the negative signal output terminal “RF-” is adjusted through the phase modulation function of the differential driver 602, and the original ⁇ phase is still retained, so that the electric drive signal The full load is applied to the modulator, and the drive amplitude is maximized, thereby increasing the signal amplitude.
  • FIG. 7 it is a schematic structural diagram of another optical signal sending device provided by an embodiment of the present invention, that is, an adjustable delay is set inside the differential driver.
  • the differential driver 702 is not only used to generate the differential drive signal, but also has the function of adjusting the phase difference between the signal in the first modulation area and the signal in the second modulation area of the phase modulator, which can be made by cables or metal
  • the electrodes are connected to the two signal input ports of the modulator.
  • the functions of other parts are the same as those of the corresponding parts in FIG. 3 , and will not be repeated here.
  • the phase difference between the two signals at the positive signal output terminal "RF+” and the negative signal output terminal “RF-” is adjusted to a 2 ⁇ phase through the phase modulation function of the differential driver 702, so that the electric drive signal is complete. Loaded onto the modulator, the drive amplitude is maximized to increase the signal amplitude.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明实施例公开了一种光信号发送装置,包括光调制器、差分驱动器、以及调相器,其中光调制器包括光输入端、第一调制区、连接区、第二调制区、光输出端;第一调制区包括第一调制臂和第二调制臂,第二调制区包括第三调制臂和第四调制臂,每个调制臂包括光波导及其两侧的电极。通过差分驱动信号驱动两个调制区的方式,实现了光电信号的调制,调制臂层叠排列的方式使得光调制器的体积可大幅减小,从而有利于器件和设备的小型化。

Description

一种光信号发送装置
本申请要求于2021年12月17日提交中国专利局、申请号为202111554888.X、发明名称为“一种光信号发送装置”及2021年09月22日提交中国专利局、申请号为202111107654.0、发明名称为“一种光信号发送装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光通信领域,尤其涉及一种光信号发送装置。
背景技术
在光通信技术领域,高速光发送端是构建高速光网络的核心部分,它负责完成整个光网络的电信号到光信号的调制。故光发送端的速率和功耗直接决定了整个高速光通信领域的传输容量和质量。
目前,在短距光互连场景中,硅光调制器由于其低成本、小尺寸等特点,在100G及以下光模块中应用较为广泛。但是由于自由载流子迁移速率限制,导致硅光调制器的理论带宽上限约为70GHz,使其无法满足更高光通信的器件带宽需求。在长距大容量光通信系统中,相干通信技术被大量采用,目前相干系统中采用最多的高速器件是铌酸锂体材料器件。铌酸锂体材料调制器尽管可以实现高带宽,但是由于体材料本身器件尺寸大,所以难以做到低驱动电压及小尺寸来实现低成本、低功耗。
发明内容
本发明实施例提供一种光信号发送装置,以实现低成本低功耗的光电信号调制。
第一方面,本发明实施例提供了一种光信号发送装置,包括光调制器、差分驱动器、以及调相器,其中:光调制器包括光输入端、第一调制区、连接区、第二调制区、光输出端;第一调制区包括第一调制臂和第二调制臂,第二调制区包括第三调制臂和第四调制臂,每个调制臂包括光波导及其两侧的电极;光输入端,用于将输入的连续光分成两路,分别输出到第一调制区的第一调制臂的光波导和第二调制臂的光波导;第一调制区的第一调制臂和第二调制臂,用于分别在其光波导两侧的电极间形成电场,调制光波导中的光信号;连接区,用于连接第一调制区和第二调制区,将第一调制臂和第二调制臂中的光信号分别输入到第三调制臂和第四调制臂;第二调制区的第三调制臂和第四调制臂,用于分别在其光波导两侧的电极间形成电场,调制光波导中的光信号;光输出端,用于将第三调制臂和第四调制臂中经过调制的光信号合束输出;电极,包括信号电极和接地电极,分别设置在光波导的两侧,用于形成电场以调制光波导中的光,信号电极包括正信号电极和负信号电极;差分驱动器,包括正信号输出端和负信号输出端,用于生成差分驱动信号,差分驱动信号被分别输出到第一调制区的信号电极和第二调制区的信号电极中;调相器,用于对第一调制区中的信号和第二调制区中的信号之间的相位差进行调节。通过差分驱动信号驱动两个调制区的方式,实现了光 电信号的调制,有效的利用差分驱动的幅度电压,提高调制效率,降低功耗。
在一个可能的设计中,连接区包括两个U型连接波导,用于连接第一调制臂和第三调制臂的波导,以及连接第二调制臂和第四调制臂的波导。光调制器中的光波导和电极层叠排列,调相器产生的相位差为2π。调制臂层叠排列的方式使得光调制器的体积可大幅减小,从而有利于器件和设备的小型化。
在又一个可能的设计中,连接区包括依次连接的两个U型连接波导、两个直波导、两个U型连接波导,用于连接第一调制臂和第三调制器臂的波导,以及连接第二调制臂和第四调制臂的波导。光调制器中的光波导和电极层叠排列,调相器产生的相位差为π。调制臂层叠排列的方式使得光调制器的体积可大幅减小,从而有利于器件和设备的小型化。并且提供了接口在装置不同侧面的灵活性。
在又一个可能的设计中,光波导材料为具有泡克尔斯效应的材料,光波导材料包括铌酸锂薄膜、有机高分子聚合物、钽酸锂薄膜、硼酸钡、或者砷化镓材料。各种材料提供了制造的灵活性。
在又一个可能的设计中,第一调制臂与第二调制臂共用一个正信号电极,或者,的第三调制臂与第四调制臂共用一个负信号电极。从而减小设备体积。
在又一个可能的设计中,调相器为电延时线,差分驱动器通过至少一根电延时线将差分驱动信号输出到正信号电极或负信号电极。电延时线为可调电延时线。通过延时线提供了调制的灵活性。
在又一个可能的设计中,调相器为加热器,位于连接区。加热器材料包括钛化镍,或者金属。通过加热器来调相,提高了设备的灵活性。
第二方面,本发明实施例提供一种光模块,包括上述的光信号发送装置和光信号接收装置,光信号接收装置用于接收光信号。
第三方面,本发明实施例提供一种光通信设备,包括激光器、光信号发送装置,激光器用于输出连续光。
本发明实施例提供的上述方案,通过差分驱动信号驱动两个调制区的方式,实现了光电信号的调制,极大地降低了驱动电压,提高了调制效率,降低了设备功耗。
附图说明
图1为本发明实施例提供的一种光通信系统结构示意图;
图2为本发明实施例提供的一种光信号发送装置的结构示意图;
图3为本发明实施例提供的又一种光信号发送装置的结构示意图;
图4为本发明实施例提供的又一种光信号发送装置的结构示意图;
图5为本发明实施例提供的又一种光信号发送装置的结构示意图;
图6为本发明实施例提供的又一种光信号发送装置的结构示意图;
图7为本发明实施例提供的又一种光信号发送装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
如图1所示,本发明实施例提供一种光信号发送装置102。在光传输系统中,发送端包括光源101,光信号发送装置102。光信号发送装置102包括光调制器111、差分驱动器112,以及调相器113。差分驱动器112用于根据待传输的电信号,输出差分驱动信号到光调制器111。光调制器111用于根据差分驱动信号将光源101输出的连续光调制成信号光,调相器113用于调节信号之间的相位差。这样待传输的电信号被调制为光信号,调制后的光信号经过光纤传输到接收端,由光信号接收装置103接收并处理。
光源101和光信号发送装置102可以位于同一个物理设备,如光通信设备中。激光器输出连续光,光信号发送装置,将连续光调制成信号光输出到接收侧。
另外,光通信设备中,接口的光模块,包括上述的光信号发送装置和光信号接收装置,实现收发双向功能。
如图2所示,为本发明实施例提供的一种光信号发送装置的结构示意图。光信号发送装置包括光调制器201、差分驱动器202,以及调相器203,其中,光调制器201包括:光输入端211、包括第一调制臂212和第二调制臂213的第一调制区,连接区214、包括第三调制臂215和第四调制臂216的第二调制区,光输出端217;每个调制臂包括光波导及其两侧的电极;
光输入端211,用于将输入的连续光分成两路,分别输出到第一调制区的第一调制臂的光波导和第二调制臂的光波导;
第一调制区的第一调制臂212和第二调制臂213,用于分别在其光波导两侧的电极间形成电场,调制光波导中的光信号;
连接区214,用于连接第一调制区和第二调制区,将第一调制臂和第二调制臂中的光信号分别输入到第三调制臂和第四调制臂;图2中的连接区为两个U型波导,分别连接第一调制区和第二调制区的两个调制臂。
第二调制区的第三调制臂215和第四调制臂216,用于分别在其光波导两侧的电极间形成电场,调制光波导中的光信号;
光输出端217,用于将第三调制臂和第四调制臂中经过调制的光信号合束输出;
每个调制臂中光波导两侧的电极,包括信号电极P和接地电极G,分别设置在光波导的两侧,用于形成电场以调制光波导中的连续光,信号电极包括正信号电极“P+”和负信号电极“P-”;
差分驱动器202,用于生成差分驱动信号,包括正信号输出端“RF+”和负信号输出端“RF-”,差分驱动信号被分别输出到第一调制区的正信号电极和第二调制区的负信号电极中;
调相器203,用于对第一调制区中的光信号和第二调制区中的光信号之间的相位差进行调节。图2中的调相器为电延时线,两根电延时线将差分驱动信号输出的差分驱动信号连接到两个调制区的正信号电极和负信号电极。两个延时线相位差为2π,使得RF+与RF-两路信号仍然保留原始的π相位。进一步,两根延时线至少一个可调,可调延时线的调节范围可以在0到2π范围以内,从而灵活调节两路信号的相位差。
图2中,光输入端与所述光输出端位于装置的同一侧。4个调制臂的光波导和电极通过层叠的方式排列。光波导材料为具有泡克尔斯效应(Pockels Effect)的材料,包括铌酸锂薄膜材料,有机高分子聚合物材料,钽酸锂薄膜材料、硼酸钡、砷化镓等具有泡克尔斯效应的材料。
图2所示实施例,通过差分驱动信号驱动两个调制区的方式,实现了光电信号的调制, 调制臂层叠排列的方式使得光调制器的体积可大幅减小,从而有利于器件和设备的小型化,这种差分方式,有效的利用差分驱动的幅度电压,提高调制效率,降低功耗。
一些使用场景下,光调制器的输入光和输出光需要分布在装置的两侧。图3所示实施例中,输入光与输出光分别在装置的左右两侧。光信号发送装置包括光调制器301和差分驱动器302,以及调相器303。其中,光调制器301包括:光输入端311、包括第一调制臂312和第二调制臂313的第一调制区,连接区314、包括第三调制臂315和第四调制臂316的第二调制区,光输出端317。
图3中,连接区314包括两次U型弯曲的波导以及中间一对直波导,用于连接两个调制区。调相器303为连接差分驱动器输出的两根电延时线,相位差为π。其它各部分的功能与图2中的相应部分功能相同,不再赘述。
图3中,光输入端与所述光输出端位于装置的不同侧。4个调制臂的光波导和电极,以及连接区314的部分波导,通过层叠的方式排列。同样,光波导材料可以为线性光电效应材料,包括铌酸锂薄膜材料,有机高分子聚合物材料,或者钽酸锂薄膜材料等。这样的实现方式,提高了设备的灵活性,也使得光调制器的体积可大幅减小,从而有利于器件和设备的小型化。
调相器113还可以是加热器,如图4和图5所示,调相器418或518不使用电延时线,而是使用加热器,位于连接区414或514中,与连接区的两个波导相连。加热器的调节范围至少在2π范围以内。不同的调相器提高了设备的灵活性。图4中的其它部件分别与图2中相同位置/功能的部件相同。图5中的其它部件分别与图3中相同位置/功能的部件相同。例如,图4中的光信号发送装置包括光调制器401、差分驱动器402,以及调相器403,其中光调制器401、差分驱动器402,以及调相器403分别与图2中的光调制器201、差分驱动器202,以及调相器203一致。其它部件的介绍参考图2的相关描述,此处不再赘述。
如图6所示,为本发明实施例提供的又一种光信号发送装置的结构示意图,即在差分驱动器内部设置延时可调。其中,差分驱动器602既用于生成差分驱动信号,又具备调相器的对第一调制区中的信号和第二调制区中的信号之间的相位差进行调节功能,可以由线缆或者金属电极连接调制器的两个信号输入端口。其它各部分的功能与图2中的相应部分功能相同,不再赘述。
图6所示实施例,通过差分驱动器602具备的调相功能调节正信号输出端“RF+”和负信号输出端“RF-”两路信号的相位差仍然保留原始的π相位,使得电驱动信号完整的加载到调制器上,驱动幅度最大化使用,从而提高信号幅度。
如图7所示,为本发明实施例提供的又一种光信号发送装置的结构示意图,即在差分驱动器内部设置延时可调。其中,差分驱动器702既用于生成差分驱动信号,又具备调相器的对第一调制区中的信号和第二调制区中的信号之间的相位差进行调节功能,可以由线缆或者金属电极连接调制器的两个信号输入端口。其它各部分的功能与图3中的相应部分功能相同,不再赘述。
图7所示实施例,通过差分驱动器702具备的调相功能调节正信号输出端“RF+”和负 信号输出端“RF-”两路信号的相位差调节到2π相位,使得电驱动信号完整的加载到调制器上,驱动幅度最大化使用,从而提高信号幅度。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (14)

  1. 一种光信号发送装置,其特征在于,包括光调制器、差分驱动器、以及调相器,其中:
    所述光调制器包括光输入端、第一调制区、连接区、第二调制区、光输出端;所述第一调制区包括第一调制臂和第二调制臂,所述第二调制区包括第三调制臂和第四调制臂,每个调制臂包括光波导及其两侧的电极;
    所述光输入端,用于将输入的连续光分成两路,分别输出到第一调制区的第一调制臂的光波导和第二调制臂的光波导;
    所述第一调制区的第一调制臂和第二调制臂,用于分别在其光波导两侧的电极间形成电场,调制光波导中的光信号;
    所述连接区,用于连接第一调制区和第二调制区,将第一调制臂和第二调制臂中的光信号分别输入到第三调制臂和第四调制臂;
    所述第二调制区的第三调制臂和第四调制臂,用于分别在其光波导两侧的电极间形成电场,调制光波导中的光信号;
    所述光输出端,用于将第三调制臂和第四调制臂中经过调制的光信号合束输出;
    所述电极,包括信号电极和接地电极,分别设置在光波导的两侧,用于形成电场以调制光波导中的光,所述信号电极包括正信号电极和负信号电极;
    所述差分驱动器,包括正信号输出端和负信号输出端,用于生成差分驱动信号,所述差分驱动信号被分别输出到所述第一调制区的信号电极和第二调制区的信号电极中;
    所述调相器,用于对第一调制区中的信号和第二调制区中的信号之间的相位差进行调节。
  2. 如权利要求1所述的光信号发送装置,其特征在于,所述连接区包括两个U型连接波导,用于连接第一调制臂和第三调制臂的波导,以及连接第二调制臂和第四调制臂的波导。
  3. 如权利要求2所述的光信号发送装置,其特征在于,所述光调制器中的光波导和电极层叠排列,所述调相器产生的相位差为2π。
  4. 如权利要求1所述的光信号发送装置,其特征在于,所述连接区包括依次连接的两个U型连接波导、两个直波导、两个U型连接波导,所述连接区用于连接第一调制臂和第三调制器臂的波导,以及连接第二调制臂和第四调制臂的波导。
  5. 如权利要求4所述的光信号发送装置,其特征在于,所述光调制器中的光波导和电极层叠排列,所述调相器产生的相位差为π。
  6. 如权利要求1-5任一项所述的光信号发送装置,其特征在于,所述光波导材料为具有泡克尔斯效应的材料。
  7. 如权利要求1-6任一项所述的光信号发送装置,其特征在于,所述光波导材料包括铌 酸锂薄膜、有机高分子聚合物、钽酸锂薄膜、硼酸钡、或者砷化镓材料。
  8. 如权利要求1-7任一项所述的光信号发送装置,其特征在于,所述的第一调制臂与第二调制臂共用一个正信号电极,或者,所述的第三调制臂与第四调制臂共用一个负信号电极。
  9. 如权利要求1-8任一项所述的光信号发送装置,其特征在于,所述调相器为电延时线,所述差分驱动器通过至少一根电延时线将差分驱动信号输出到所述正信号电极或负信号电极。
  10. 如权利要求9所述的光信号发送装置,其特征在于,所述电延时线为可调电延时线。
  11. 如权利要求1-8任一项所述的光信号发送装置,其特征在于,所述调相器为加热器,位于所述连接区。
  12. 如权利要求11所述的光信号发送装置,其特征在于,所述的加热器材料包括钛化镍,或者金属。
  13. 一种光模块,其特征在于,包括如权利要求1-12任一项所述的光信号发送装置和光信号接收装置,所述光信号接收装置用于接收光信号。
  14. 一种光通信设备,其特征在于,包括激光器、如权利要求1-12任一项所述的光信号发送装置,所述激光器用于输出所述连续光。
PCT/CN2022/119311 2021-09-22 2022-09-16 一种光信号发送装置 WO2023045845A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111107654.0 2021-09-22
CN202111107654 2021-09-22
CN202111554888.X 2021-12-17
CN202111554888.XA CN115941050A (zh) 2021-09-22 2021-12-17 一种光信号发送装置

Publications (1)

Publication Number Publication Date
WO2023045845A1 true WO2023045845A1 (zh) 2023-03-30

Family

ID=85720035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119311 WO2023045845A1 (zh) 2021-09-22 2022-09-16 一种光信号发送装置

Country Status (1)

Country Link
WO (1) WO2023045845A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120134619A1 (en) * 2010-11-30 2012-05-31 Sumitomo Electric Industries, Ltd. Optical modulation apparatus, method for controlling optical modulator, and control device for optical modulator
CN104471466A (zh) * 2012-07-26 2015-03-25 富士通光器件株式会社 光调制器以及光发送器
CN110441928A (zh) * 2019-08-05 2019-11-12 华南师范大学 一种折叠式电光调制器及其制备方法
CN110609399A (zh) * 2019-08-05 2019-12-24 华南师范大学 折叠式硅-铌酸锂混合集成电光调制器及其制备方法
CN111458948A (zh) * 2020-04-17 2020-07-28 中国科学院半导体研究所 实现开关消光比提高的电光强度调制器及其应用
CN113359367A (zh) * 2020-03-05 2021-09-07 富士通光器件株式会社 包括光学调制器的光学装置和光学收发器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120134619A1 (en) * 2010-11-30 2012-05-31 Sumitomo Electric Industries, Ltd. Optical modulation apparatus, method for controlling optical modulator, and control device for optical modulator
CN104471466A (zh) * 2012-07-26 2015-03-25 富士通光器件株式会社 光调制器以及光发送器
CN110441928A (zh) * 2019-08-05 2019-11-12 华南师范大学 一种折叠式电光调制器及其制备方法
CN110609399A (zh) * 2019-08-05 2019-12-24 华南师范大学 折叠式硅-铌酸锂混合集成电光调制器及其制备方法
CN113359367A (zh) * 2020-03-05 2021-09-07 富士通光器件株式会社 包括光学调制器的光学装置和光学收发器
CN111458948A (zh) * 2020-04-17 2020-07-28 中国科学院半导体研究所 实现开关消光比提高的电光强度调制器及其应用

Similar Documents

Publication Publication Date Title
US10558104B2 (en) Optical waveguide modulator
US10234705B2 (en) Mach-zehnder modulator driver
CN106575050A (zh) 多区段马赫‑曾德尔调制器驱动器系统
JP5700731B2 (ja) 光変調器
CN110677198A (zh) 超高速相干光信号偏振解复用和波长变换系统及控制方法
WO2020015109A1 (zh) 多调制格式兼容的高速激光信号产生系统与方法
CN108616310B (zh) 基于马赫增德尔调制器进行四级脉冲幅度调制的方法
WO2023045845A1 (zh) 一种光信号发送装置
CN109946790B (zh) 一种光偏振调制器及光偏振调制的方法
CN112383360A (zh) 一种mzm调制器及实现pam-16调制的方法
CN113904731B (zh) 一种调制器及实现pam4调制的方法
CN115941050A (zh) 一种光信号发送装置
CN109856885A (zh) 一种低压负啁啾调制器
CN111399258B (zh) 光调制器芯片及电阻模块的调节方法、光调制器
Higuma et al. A bias condition monitor technique for the nested Mach-Zehnder modulator
CN210720809U (zh) 一种用单光源双nrz调制实现pam4码的光芯片
CN106461985A (zh) 电光调制器
CN109946791B (zh) 一种电光调制器、单偏振iq调制器、双偏振iq调制器
CN105634612B (zh) 基于偏振调制的线性光调制方法及装置
CN114338004B (zh) 用于诱骗态量子密钥分发系统的调制装置及调制方法
CN109936410A (zh) 一种用于mzm调制器单端驱动的驱动器、光发射次模块、光传输模块和dwdm系统
Wang et al. A Reconfigurable Two-tap Microwave Photonic Filter based on A Dual-input Machzehnder Modulator
CN114063321B (zh) 一种双差分电极的硅光子推挽麦克詹达调制器
US11914189B2 (en) Optical device and optical communication apparatus
US20220390776A1 (en) High efficiency electro-optic modulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022871891

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022871891

Country of ref document: EP

Effective date: 20240319

NENP Non-entry into the national phase

Ref country code: DE