WO2023045520A1 - 用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用 - Google Patents

用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用 Download PDF

Info

Publication number
WO2023045520A1
WO2023045520A1 PCT/CN2022/106644 CN2022106644W WO2023045520A1 WO 2023045520 A1 WO2023045520 A1 WO 2023045520A1 CN 2022106644 W CN2022106644 W CN 2022106644W WO 2023045520 A1 WO2023045520 A1 WO 2023045520A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
cancer cells
sensitive
nanomaterial
efficiently capturing
Prior art date
Application number
PCT/CN2022/106644
Other languages
English (en)
French (fr)
Inventor
陈炳地
乐文俊
崔征
林晨昱
Original Assignee
致慧医疗科技(上海)有限公司
上海市东方医院(同济大学附属东方医院)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 致慧医疗科技(上海)有限公司, 上海市东方医院(同济大学附属东方医院) filed Critical 致慧医疗科技(上海)有限公司
Publication of WO2023045520A1 publication Critical patent/WO2023045520A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Definitions

  • the invention belongs to the technical field of nanometer materials, and in particular relates to an enzyme-sensitive nanometer material for efficiently capturing cancer cells, a preparation method and an application thereof.
  • Circulating tumor cells have very high potential research value in cancer treatment because of their non-invasive detection method, convenient and timely sampling, and their homology with the primary lesion site.
  • magnetic nanoparticles can tightly bind to cancer cells in the blood through antigen-antibody reactions or the attraction of opposite charges.
  • the researchers expect to be able to achieve the release of captured circulating tumor cells, so as to conduct in-depth follow-up studies on patient-derived circulating tumor cells. Therefore, it is of great significance to invent an enzyme-sensitive nanomaterial that efficiently captures cancer cells.
  • Chinese patent application CN1822254A discloses a preparation of magnetic nanoparticles coated with hydrophilic organic polymer substances, which are used in biomedical fields such as cell separation, tumor hyperthermia, magnetic resonance imaging, and targeted drug delivery.
  • Chinese patent application CN1993469A discloses a nanoparticle composed of a magnetic iron oxide core and a natural polymer material shell, which includes dissolving the polymer material in an acidic solution, adding ⁇ -Fe 2 O 3 particles as the water phase, paraffin, The surfactant and the co-surfactant are mixed to form an oil phase, and the two are mixed to obtain a water-in-oil reverse microemulsion, and then a crosslinking agent is added to stir, and then the product can be obtained by washing and removing impurities.
  • Both of the above two existing technologies consider the application in vivo, which greatly limits the possibility of surface modification of magnetic nanoparticles. For example, if it is necessary to modify positively charged polymers on the surface, it is difficult to apply them in vivo.
  • the present invention provides enzyme-sensitive nanomaterials and preparations for efficiently capturing cancer cells methods and applications.
  • the enzyme-sensitive nanomaterials are positively charged magnetic nanoparticles with a three-layer structure.
  • the three-layer structure is as follows: the outermost layer is to identify and capture cancer cells The effect polymer layer, the middle layer is an enzyme-sensitive polymer layer, and the core is ferric oxide.
  • the outermost layer is an antibody or a positively charged polymer
  • the middle layer is amylose.
  • the electropositive polymer is polyethyleneimine, chitosan or aminopolyethylene glycol.
  • the Mw of the polyethyleneimine is 10000.
  • any one of the above methods for preparing enzyme-sensitive nanomaterials for efficiently capturing cancer cells the method first wraps amylose on the surface of ferroferric oxide magnetic particles to make it negatively charged, and then adsorbs by positive and negative charges
  • the principle is to modify the surface of antibodies or positively charged polymers outside the amylose layer to prepare enzyme-sensitive nanomaterials with positive charges on the surface.
  • the method specifically includes the following steps:
  • S2 dissolving amylose in the solution prepared in S1, the volume ratio of the amylose mass to the solution is 1-5:1, bathing in water at 90°C until the starch is fully gelatinized, and cooling to room temperature;
  • S4 Disperse the amylose-wrapped magnetic nanoparticles in anhydrous methanol, and add 0.8-1 mg/mL PEI methanol solution dropwise; or add 0.5-1 mg/mL chitosan acetic acid dropwise thereto solution, wherein the concentration of acetic acid is 1%; or 0.5-1 mg/mL PEG-NH 2 aqueous solution is added dropwise therein, and the enzyme-sensitive nanometer material can be obtained by separating after ultrasonic stirring evenly.
  • the mass ratio of PEI to magnetic nanoparticles in S4 is 1:1 ⁇ 1.5.
  • any of the above-mentioned enzyme-sensitive nanomaterials for efficiently capturing cancer cells or the enzyme-sensitive nanomaterials for efficiently capturing cancer cells prepared by any of the above-mentioned preparation methods are used in the preparation of a kit for capturing cancer cells in isolated blood samples in the application.
  • the principle of the enzyme-sensitive nanomaterial of the present invention to efficiently capture cancer cells is that the enzyme-sensitive nanomaterial of the present invention has a three-layer structure, specifically a magnetic core of ferric oxide, an enzyme-sensitive polymer intermediate layer, and recognition and capture of cancer cells
  • the outermost layer of the nanomaterial with a three-layer core-shell structure of the present invention quickly and efficiently recognizes and captures circulating tumor cells in isolated blood through the outermost layer, and then realizes non-destructive and low-damage release of cancer cells through amylase hydrolysis , so that circulating tumor cells were used in subsequent studies.
  • the enzyme-sensitive nanomaterials of the present invention can efficiently capture circulating tumor cells in isolated blood samples, and realize non-destructive and low-damage release without considering the biological safety in vivo and the size limitation of nanomaterials;
  • the release of tumor cells can be achieved only by amylase hydrolysis, so the released circulating tumor cells can be directly used in subsequent studies.
  • Fig. 1 is the three-layer structure simulation diagram of the enzyme-sensitive nanomaterial of the present invention.
  • Figure 2 is a simulation diagram of the enzymatic release of circulating tumor cells captured by the enzyme-sensitive nanomaterial
  • Fig. 3 is the transmission electron microscope picture of the magnetic nanoparticle after starch modification
  • Fig. 4 is the electric potential diagram of the nanomaterial after modifying the upper electropositive polymer layer
  • Figure 5 is a graph of capture rate versus release rate.
  • Figure 3 shows that after starch modification, there is film-like adhesion between the nanoparticles after starch modification. And further modified PEI, the charge changed from negative to positive.
  • step (7) The difference from Example 1 is: in step (7), 2.5-5 mg of chitosan was weighed and dissolved in 5 mL of 1% acetic acid, added dropwise to the solution, and ultrasonically stirred for 2 hours; thereby preparing a positively charged polymer It is a three-layer chitosan nanoparticle with positive electromagnetic properties.
  • step (7) The difference from Example 1 is that in step (7), 2.5-5 mg of PEG-NH 2 was weighed and dissolved in 5 mL of deionized water, added dropwise to the solution, and stirred ultrasonically for 2 hours; thus the positively charged polymer was prepared as Aminopolyethylene glycol three-layer structure nanoparticles with positive electromagnetic properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Medical Informatics (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用,纳米材料为具有三层结构且带正电的磁性纳米颗粒,三层结构依次是:最外层为识别并捕获癌细胞的效应高分子层,中间层为酶敏感高分子层,内核为四氧化三铁。与现有技术相比,具有以下优点:(1)酶敏感纳米材料能够高效捕获离体血样中的循环肿瘤细胞,并实现无损、低损释放,且无需考虑体内生物安全性及纳米材料尺寸的限制;(2)仅通过淀粉酶水解即可实现肿瘤细胞的释放,因此释放的循环肿瘤细胞可直接用于后续研究。

Description

用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用
本申请要求于2021年09月24日提交中国专利局、申请号为CN202111120391.7、发明名称为“用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于纳米材料技术领域,具体涉及用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用。
背景技术
循环肿瘤细胞在癌症治疗中,因其检测方式的非介入性、采样的便捷和及时、以及其与原发病灶部位的同源性,具有非常高的潜在研究价值。磁性纳米颗粒在通过表面修饰抗体或带电高分子材料后,能够通过抗原抗体反应或异性电荷相吸的作用与血液中的癌细胞紧密结合。研究者们期望能够实现对捕获到的循环肿瘤细胞的释放,从而能够对患者来源的循环肿瘤细胞进行深入的后续研究。因此,发明一种高效捕获癌细胞的酶敏感纳米材料具有重要意义。
现有技术中关于生物医药用的纳米材料种类繁多,其中针对肿瘤细胞检测的多为体内应用。如中国专利申请CN1822254A公开了一种制备亲水性有机高分子物质包裹的磁性纳米颗粒,用于细胞分离、肿瘤热疗、磁共振造影和靶向给药等生物医学领域,它包括磁流体的制备和表面醛基化,通过将铁盐溶液加入淀粉溶液中在氮气保护下搅拌,调节溶液的pH至10~11后60~80℃搅拌1~2h,除杂后得到表面富含羟基的磁性淀粉复合纳米颗粒,均匀分散于水相后得到该磁流体;而后在磁流体样品中加入高碘酸钠,在氮气保护下避光发生氧化反应,得到表面富含醛基的磁性淀粉复合纳米颗粒。中国专利申请CN1993469A公开了一种由磁性氧化铁内核和天然高分子材料外壳组成的纳米颗粒,它包括将高分子材料在酸性溶液中溶解,加入γ-Fe 2O 3粒子作为水相,石蜡、表面活性剂、助表面活性剂混合为油相,二者混合得到油包水型反向微乳液,而后加入交联剂搅 拌后洗涤除杂即可得到产物。以上两个现有技术均是考虑体内应用,极大地限制了磁性纳米颗粒表面修饰的可能性。例如,若要在表面修饰带正电性的高分子,就很难应用于体内。
发明内容
解决的技术问题:为了克服现有技术的不足,获得用于捕获循环肿瘤细胞的磁性纳米颗粒,且专门针对离体血样检测,本发明提供了用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用。
技术方案:用于高效捕获癌细胞的酶敏感纳米材料,所述酶敏感纳米材料为具有三层结构且带正电的磁性纳米颗粒,三层结构依次是:最外层为识别并捕获癌细胞的效应高分子层,中间层为酶敏感高分子层,内核为四氧化三铁。
优选的,所述最外层为抗体或正电性高分子,所述中间层为直链淀粉。
优选的,所述正电性高分子为聚乙烯亚胺,壳聚糖或氨基聚乙二醇。
优选的,所述聚乙烯亚胺的M w为10000。
以上任一所述用于高效捕获癌细胞的酶敏感纳米材料的制备方法,所述方法首先将直链淀粉包裹于四氧化三铁磁颗粒表面使其带有负电荷,然后通过正负电荷吸附的原理在直链淀粉层外进行抗体或正电性高分子的表面修饰,从而制备获得表面带正电荷的酶敏感纳米材料。
优选的,所述方法具体包括以下步骤:
S1:量取二甲亚砜(DMSO)加入去离子水中,二甲亚砜(DMSO)与去离子水的体积比为9:1;
S2:将直链淀粉溶于S1制得的溶液中,直链淀粉质量与溶液的体积比为1~5:1,90℃水浴直至淀粉充分糊化,冷却至室温;
S3:向S2糊化后的淀粉中加入四氧化三铁纳米颗粒超声分散均匀,逐滴加入无水乙醇,继续超声分散均匀,然后进行磁分离、洗涤得到直链淀粉包裹的磁性纳米颗粒,其中四氧化三铁纳米颗粒与直链淀粉的质量比为1:25,无水乙醇与糊化后淀粉的体积比为1~2.5:1;
S4:将所述直链淀粉包裹的磁性纳米颗粒分散于无水甲醇中,并向其中滴加0.8~1mg/mL的PEI甲醇溶液;或向其中滴加0.5~1mg/mL的壳聚糖乙酸溶液,其中乙酸浓度为1%;或向其中滴加0.5~1mg/mL的 PEG-NH 2水溶液,超声搅拌均匀后分离即可获得酶敏感纳米材料。
优选的,S4中PEI与磁性纳米颗粒的质量比为1:1~1.5。
以上任一所述用于高效捕获癌细胞的酶敏感纳米材料或上述任一所述的制备方法制备得到的用于高效捕获癌细胞的酶敏感纳米材料在制备捕获离体血样中癌细胞试剂盒中的应用。
本发明所述酶敏感纳米材料高效捕获癌细胞的原理在于:本发明的酶敏感纳米材料为三层结构,具体为四氧化三铁磁性内核、酶敏感的高分子中间层、识别并捕获癌细胞的最外层,本发明具有三层核壳结构的纳米材料通过最外层快速、高效的识别并捕获离体血液中的循环肿瘤细胞,然后经淀粉酶水解实现癌细胞的无损、低损释放,从而将循环肿瘤细胞用于后续研究。
有益效果:(1)本发明所述酶敏感纳米材料能够高效捕获离体血样中的循环肿瘤细胞,并实现无损、低损释放,且无需考虑其体内生物安全性及纳米材料尺寸的限制;(2)仅通过淀粉酶水解即可实现肿瘤细胞的释放,因此释放的循环肿瘤细胞可直接用于后续研究。
说明书附图
图1是本发明所述酶敏感纳米材料的三层结构模拟图;
图2是所述酶敏感纳米材料捕获循环肿瘤细胞并酶解释放的模拟图;
图3是淀粉修饰后的磁性纳米颗粒透射电镜图;
图4是修饰上正电性高分子层后纳米材料的电位图;
图5是捕获率与释放率图。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。
实施例1
本实施例所述酶敏感纳米材料由以下方法制得:
(1)量取45mL DMSO,加入5mL去离子水,使DMSO:水(体积比)=9:1;
(2)称取100mg直链淀粉溶于上述溶液中,直链淀粉的质量与溶液体积 的比例为5:1至1:1,90℃条件下水浴,使淀粉充分糊化;
(3)冷却至室温后,加入4mg四氧化三铁纳米颗粒,充分超声分散均匀;
(4)逐滴滴加无水乙醇,继续超声,无水乙醇的体积50~125mL;
(5)磁分离,洗涤可得淀粉包裹的磁性纳米颗粒;
(6)将上述产物溶于25mL无水甲醇中,超声搅拌15分钟使得纳米颗粒分散均匀;
(7)称取PEI(Mw=10000)3~5mg溶于5mL无水甲醇中,逐滴加入到溶液中。超声搅拌2小时;
(8)磁分离,洗涤可得三层结构的带正电磁性纳米颗粒。
结果分析:图3淀粉修饰后可看出,淀粉修饰后的纳米颗粒间呈现出膜状粘连。且进一步修饰PEI,电荷从负电变成了正电。
实施例2
与实施例1的区别在于:步骤(7)中称取壳聚糖2.5~5mg溶于5mL的1%乙酸中,逐滴加入到溶液中,超声搅拌2小时;从而制备获得正电性高分子为壳聚糖的三层结构的带正电磁性纳米颗粒。
结果分析:如图4所示,修饰壳聚糖后,表面电荷从负电变成了正电。
实施例3
与实施例1的区别在于:步骤(7)中称取PEG-NH 22.5~5mg溶于5mL去离子水中,逐滴加入到溶液中,超声搅拌2小时;从而制备获得正电性高分子为氨基聚乙二醇的三层结构的带正电磁性纳米颗粒。
结果分析:如图4所示,修饰PEG-HN 2后,表面电荷从负电变成了正电。
实施例4
采用实施例1制得的酶敏感纳米材料进行癌细胞捕获:
(1)将已知量的癌细胞加入定量PBS中,可得到初始癌细胞浓度;
(2)将本发明的酶敏感纳米材料以40μg/mL的浓度加入(1)中,4℃条件下孵育10分钟;
(3)用磁铁或磁力架对(2)进行磁分离,取上清计数用于计算脱靶率;
(4)取沉淀加入4mg/mL低温α-淀粉酶,调节pH值为6,37℃条件下共孵育10~30分钟;
(5)用磁铁或磁力架对(4)进行磁分离,取上清计数用于计算释放率。结果分析:如图5所示,经过脱靶率计算,捕获率90%以上;释放率80%。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 用于高效捕获癌细胞的酶敏感纳米材料,其特征在于,所述酶敏感纳米材料为具有三层结构且带正电的磁性纳米颗粒,三层结构依次是:最外层为识别并捕获癌细胞的效应高分子层,中间层为酶敏感高分子层,内核为四氧化三铁。
  2. 根据权利要求1所述的用于高效捕获癌细胞的酶敏感纳米材料,其特征在于,所述最外层为抗体或正电性高分子,所述中间层为直链淀粉。
  3. 根据权利要求2所述的用于高效捕获癌细胞的酶敏感纳米材料,其特征在于,所述正电性高分子为聚乙烯亚胺、壳聚糖或氨基聚乙二醇。
  4. 根据权利要求3所述的用于高效捕获癌细胞的酶敏感纳米材料,其特征在于,所述聚乙烯亚胺的M w为10000。
  5. 权利要求2~4任一所述用于高效捕获癌细胞的酶敏感纳米材料的制备方法,其特征在于,所述方法首先将直链淀粉包裹于四氧化三铁磁颗粒表面使其带有负电荷,然后通过正负电荷吸附的原理在直链淀粉层外进行抗体或正电性高分子的表面修饰,从而制备获得表面带正电荷的酶敏感纳米材料。
  6. 根据权利要求5所述用于高效捕获癌细胞的酶敏感纳米材料的制备方法,其特征在于,所述方法具体包括以下步骤:
    S1:量取DMSO加入去离子水中,DMSO与去离子水的体积比为9:1;
    S2:将直链淀粉溶于S1制得的溶液中,直链淀粉质量与溶液的体积比为1~5:1,90℃水浴直至淀粉充分糊化,冷却至室温;
    S3:向S2糊化后的淀粉中加入四氧化三铁纳米颗粒超声分散均匀,逐滴加入无水乙醇,继续超声分散均匀,然后进行磁分离、洗涤得到直链淀粉包裹的磁性纳米颗粒,其中四氧化三铁纳米颗粒与直链淀粉的质量比为1:25,无水乙醇与糊化后淀粉的体积比为1~2.5:1;
    S4:将所述直链淀粉包裹的磁性纳米颗粒分散于无水甲醇中,并向其中滴加0.8~1mg/mL的PEI甲醇溶液;或向其中滴加0.5~1mg/mL的壳聚糖乙酸溶液,其中乙酸浓度为1%;或向其中滴加0.5~1mg/mL的PEG-NH 2水溶液,超声搅拌均匀后分离即可获得酶敏感纳米材料。
  7. 根据权利要求6所述的用于高效捕获癌细胞的酶敏感纳米材料的制备方法,其特征在于,所述步骤S4中PEI与磁性纳米颗粒的质量比为1:1~1.5。
  8. 权利要求1~4任一所述用于高效捕获癌细胞的酶敏感纳米材料或权利要求5~7任一项所述的制备方法得到的高效捕获癌细胞的酶敏感纳米材料在制备捕获离体血样中癌细胞试剂盒中的应用。
  9. 权利要求1~4任一所述用于高效捕获癌细胞的酶敏感纳米材料或权利要求5~7任一项所述的制备方法制备得到的用于高效捕获癌细胞的酶敏感纳米材料在离体样本癌细胞捕获中的应用。
PCT/CN2022/106644 2021-09-24 2022-07-20 用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用 WO2023045520A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111120391.7A CN113866073A (zh) 2021-09-24 2021-09-24 用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用
CN202111120391.7 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023045520A1 true WO2023045520A1 (zh) 2023-03-30

Family

ID=78993772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106644 WO2023045520A1 (zh) 2021-09-24 2022-07-20 用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用

Country Status (2)

Country Link
CN (1) CN113866073A (zh)
WO (1) WO2023045520A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866073A (zh) * 2021-09-24 2021-12-31 致慧医疗科技(上海)有限公司 用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822254A (zh) * 2006-03-22 2006-08-23 华东师范大学 生物医药用磁流体及其制备方法
CN1994469A (zh) * 2006-09-13 2007-07-11 上海师范大学 生物降解磁性纳米颗粒及其制法和应用
CN102010525A (zh) * 2010-11-18 2011-04-13 华侨大学 一种超顺磁性微米淀粉的制备方法
US20110098623A1 (en) * 2008-06-17 2011-04-28 Georgia Tech Research Corporation Device and method of using superparamagnetic nanoparticles in treatment and removal of cells
US20140288398A1 (en) * 2011-08-19 2014-09-25 The Regents Of The University Of California Compositions and devices for the detection of biomarkers in the gastrointestinal tract and methods for making and using them
CN108888767A (zh) * 2018-08-10 2018-11-27 中国科学院宁波材料技术与工程研究所 一种纳米复合材料、其制备方法及应用
CN111337328A (zh) * 2020-04-14 2020-06-26 厦门大学 一种全血中循环肿瘤细胞无损伤快速捕捉和释放的方法
CN113866073A (zh) * 2021-09-24 2021-12-31 致慧医疗科技(上海)有限公司 用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822254A (zh) * 2006-03-22 2006-08-23 华东师范大学 生物医药用磁流体及其制备方法
CN1994469A (zh) * 2006-09-13 2007-07-11 上海师范大学 生物降解磁性纳米颗粒及其制法和应用
US20110098623A1 (en) * 2008-06-17 2011-04-28 Georgia Tech Research Corporation Device and method of using superparamagnetic nanoparticles in treatment and removal of cells
CN102010525A (zh) * 2010-11-18 2011-04-13 华侨大学 一种超顺磁性微米淀粉的制备方法
US20140288398A1 (en) * 2011-08-19 2014-09-25 The Regents Of The University Of California Compositions and devices for the detection of biomarkers in the gastrointestinal tract and methods for making and using them
CN108888767A (zh) * 2018-08-10 2018-11-27 中国科学院宁波材料技术与工程研究所 一种纳米复合材料、其制备方法及应用
CN111337328A (zh) * 2020-04-14 2020-06-26 厦门大学 一种全血中循环肿瘤细胞无损伤快速捕捉和释放的方法
CN113866073A (zh) * 2021-09-24 2021-12-31 致慧医疗科技(上海)有限公司 用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用

Also Published As

Publication number Publication date
CN113866073A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
Zhang et al. Multivalency interface and g-C3N4 coated liquid metal nanoprobe signal amplification for sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins
Zhang et al. Fe3O4/polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties
Zhou et al. NIR photothermal therapy using polyaniline nanoparticles
Mukhopadhyay et al. A facile synthesis of PEG-coated magnetite (Fe3O4) nanoparticles and their prevention of the reduction of cytochrome C
Wang et al. Copper-doped terbium luminescent metal organic framework as an emitter and a co-reaction promoter for amplified electrochemiluminescence immunoassay
Papa et al. Titanate nanotubes: towards a novel and safer nanovector for cardiomyocytes
Lu et al. Bifunctional magnetic-fluorescent nanoparticles: synthesis, characterization, and cell imaging
WO2023045520A1 (zh) 用于高效捕获癌细胞的酶敏感纳米材料及制备方法和应用
Peng et al. Fluorescent-magnetic-catalytic nanospheres for dual-modality detection of H9N2 avian influenza virus
Yang et al. Intramolecular self-enhanced nanochains functionalized by an electrochemiluminescence reagent and its immunosensing application for the detection of urinary β2-microglobulin
Xu et al. Fabrication of magnetic porous pseudo-carbon paste electrode electrochemical biosensor and its application in detection of schistosoma egg antigen
CN108469524A (zh) 一种检测ca125的光电化学免疫传感器及其制备方法和应用
CN111337328A (zh) 一种全血中循环肿瘤细胞无损伤快速捕捉和释放的方法
Zhou et al. Quantum dots-hydrogel composites for biomedical applications
WO2023274252A1 (zh) 一种聚合物修饰的磁性纳米材料、其制备方法及应用
Zhu et al. Preparation of well-dispersed superparamagnetic iron oxide nanoparticles in aqueous solution with biocompatible N-succinyl-O-carboxymethylchitosan
CN108896636A (zh) 一种超氧化物歧化酶修饰氮化钒糊电极传感器的制备
Zhao et al. Label-free amperometric immunosensor based on graphene oxide and ferrocene-chitosan nanocomposites for detection of hepatis B virus antigen
Wang et al. Selective capture of circulating tumor cells by antifouling nanostructure substrate made of hydrogel nanoparticles
JPH09328438A (ja) 医療用粉体
Liu et al. Capture and separation of circulating tumor cells using functionalized magnetic nanocomposites with simultaneous in situ chemotherapy
Qin et al. Construction of broom-like Ag@ N, OC sensing interface for electrochemical detection of circulating tumor DNA using entropy-driven DNA walker
Zhao et al. Functionalized polyaniline based on protonic acid doping as a direct electron mediator to amplify sensor signals
Wotschadlo et al. Magnetic nanoparticles coated with carboxymethylated polysaccharide shells—Interaction with human cells
Zhao et al. 3D DNAzyme walker based electrochemical biosensor for attomolar level microRNA-155 detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE