WO2023045505A1 - 一种柔性传感器三维曲面的激光保形制造方法 - Google Patents

一种柔性传感器三维曲面的激光保形制造方法 Download PDF

Info

Publication number
WO2023045505A1
WO2023045505A1 PCT/CN2022/105096 CN2022105096W WO2023045505A1 WO 2023045505 A1 WO2023045505 A1 WO 2023045505A1 CN 2022105096 W CN2022105096 W CN 2022105096W WO 2023045505 A1 WO2023045505 A1 WO 2023045505A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved surface
sensor
laser
dimensional
processing
Prior art date
Application number
PCT/CN2022/105096
Other languages
English (en)
French (fr)
Inventor
周伟
陈锐
朱鑫宁
罗涛
凌伟淞
肖池牵
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2023045505A1 publication Critical patent/WO2023045505A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment

Definitions

  • the invention belongs to the flexible sensor manufacturing technology, in particular to a laser shape-conserving manufacturing method for a three-dimensional curved surface of a flexible sensor.
  • the present invention provides a 3D curved surface conformal laser manufacturing process for flexible sensors, an in-situ laser conformal processing and manufacturing process for nanomaterials and their composite materials on a new 3D curved surface, and a laser three-dimensional dynamic focusing system to be bonded on a 3D sensor Directly perform laser processing on the curved surface to complete the conformal manufacturing of flexible functional materials and micro-nano functional structures on the 3D curved surface, and finally realize the conformal manufacturing of flexible sensor devices with specific sensing functions on the 3D curved surface, so that it is excellently conformable to The surface to which the sensor will be attached.
  • the present invention adopts the following steps:
  • S1 Use a 3D scanner to scan the surface of the sensor to be bonded, obtain the surface shape data of the sensor to be bonded, and establish an STL model of the sensor to be bonded surface;
  • step S3 performing rapid prototyping processing on the STL model of the fixture containing the fitted curved surface in step S2, to obtain the fixture containing the fitted curved surface;
  • step S5 Installing the fixture with a fitted curved surface coated with the material to be processed in step S4 on the laser equipment processing platform for positioning;
  • the sensor is peeled off from the 3D curved surface, and subsequent processes are performed.
  • the three-dimensional modeling software uses Pro/E, Soildworks, 3DMax or UG to model, the 3D curved surface is placed on the top of the fixture seat, and the area to be processed on the 3D curved surface faces upward, and the connection structure is established so that the 3D curved surface and the fixture seat into one.
  • the rapid prototyping technology is 3D printing technology, 3DP technology, FDM fusion lamination molding technology, SLA stereolithography technology, SLS selective laser sintering technology, DLP laser molding technology, UV ultraviolet molding technology, etc.
  • the coating material to be processed is a nanomaterial and its composite material, as the base layer and functional material layer of the sensor; the material to be processed is coated on the 3D curved surface, and the shape curvature of the material after curing is consistent with the 3D curved surface, Realize the conformal structure of the sensor device;
  • the number of layers of the functional material layer is greater than 1, and the actual number of layers is related to the sensor structure design;
  • the nanomaterial is carbon-based material, quantum dot material, MXene, perovskite material, fullerene, MOF, metal nanomaterial, etc.
  • the composite material is a high molecular polymer, such as: polydimethyl Silicone (PDMS), polymethyl methacrylate (PMMA), silicone rubber (Ecoflex), polycarbonate (PC), etc.
  • the coating process is dip coating, brushing, spraying, etc.
  • the clamp with a fitting curved surface has positioning identification points.
  • the STL model of the processing pattern can be a three-dimensional surface pattern and a three-dimensional three-dimensional pattern, and the curvature of the processing pattern is consistent with the 3D curved surface, so that the shape of the laser processing pattern can be achieved.
  • the laser equipment is composed of parts such as a laser, a vibrating mirror, and a beam expander;
  • the vibrating mirror is a three-dimensional dynamic focusing vibrating mirror
  • the normal focus state is to change the focal length of the focus lens according to the distance from the surface of the object to be processed to the focus mirror, so as to control the focal point to fall entirely on the surface of the object to be processed, and realize the focus processing under different paths.
  • the laser conformal manufacturing method of the three-dimensional curved surface of the flexible sensor provided by the present invention first obtains the 3D surface shape data to be processed and establishes the 3D curved surface STL model; imports the three-dimensional modeling software, and combines the 3D curved surface with the fixture seat to establish the fixture STL model; process the STL model of the fixture with rapid prototyping technology to obtain a fixture with a fitted surface; coat the material to be processed on the 3D surface of the fixture to be processed; install the fixture coated with the material to be processed on the laser equipment processing platform Positioning; based on the 3D surface STL model, use the 3D modeling software to establish the laser pattern model to be processed, establish the processing pattern STL model and import it into the laser equipment, and set the parameters; turn on the laser equipment and run the 3D dynamic focusing system; according to the structural design of the sensor device, Repeat the cycle processing steps to complete the processing of the flexible base layer of the sensor and the flexible functional material layer; after the flexible base layer of the sensor and the flexible functional material layer are processed,
  • the present invention adopts three-dimensional modeling software to firstly model the curved surface through reverse engineering, which can realize the modeling of any complex curved surface without being limited by the curvature of the curved surface, and greatly improves the applicability of the manufacturing process.
  • Fig. 1 is the process flow chart of the laser conformal manufacturing method of a kind of flexible sensor three-dimensional curved surface of the present invention
  • Figure 2 is a structural diagram of the combination of 3D curved surface and fixture seat
  • Figure 3 is an exploded view of the conformal processing sensor structure on the 3D curved surface of the fixture
  • Fig. 4 is a three-dimensional surface pattern model of laser conformal processing
  • Fig. 5 is a three-dimensional pattern model of laser conformal processing.
  • the present invention provides a processing technology that can make The processed flexible sensor fits perfectly to the 3D curved surface to be bonded, and is not limited by the curvature of the curved surface, and does not perform the 3D curved surface splicing and molding process after 2D plane processing.
  • Step 1 Use a 3D scanner to scan the surface of the sensor to be bonded to obtain the shape data of the sensor to be bonded surface and establish an STL model of the sensor to be bonded surface.
  • Step 2 Import the STL model of the sensor fitting surface in the step 1 into the three-dimensional modeling software, and combine the sensor fitting surface with the fixture seat to establish a fixture STL model including the fitting surface, as shown in Figure 2;
  • the 3D modeling software uses Pro/E, Soildworks, 3DMax or UG to model, place the 3D sensor on the surface to be bonded on the fixture seat, and make the area to be processed on the 3D sensor surface to be bonded face up, and establish a connection structure so that the 3D
  • the curved surface to be attached to the sensor is integrated with the fixture seat.
  • Step 3 Perform rapid prototyping processing on the STL model of the fixture containing the fitting curved surface in the step 2, and obtain the fixture including the fitting curved surface;
  • Step rapid prototyping technology is processed into 3D printing technology, 3DP technology, FDM fusion lamination molding technology, SLA stereolithography technology, SLS selective laser sintering technology, DLP laser molding technology, UV ultraviolet molding technology, etc., but not limited to the above processing technologies;
  • Step 4 Coating the material to be processed on the area to be processed on the 3D curved surface containing the fitting curved surface fixture in the step 3;
  • the material to be processed is coated with nanomaterials and their composite materials as the base layer and functional material layer of the sensor; the material to be processed is coated on the 3D curved surface, and the shape curvature of the material after curing is consistent with the 3D curved surface to realize the structure of the sensor device Conformal, as shown in Figure 3; the bottom layer can include easy-to-release components, such as alcohol, stearic acid, etc., to facilitate the peeling of the functional layer.
  • the number of functional material layers can be greater than 1, and the actual number of layers is related to the sensor structure design;
  • Nanomaterials are carbon-based materials, quantum dot materials, MXene, perovskite materials, fullerenes, MOFs, metal nanomaterials, etc.; the composite materials are high molecular polymers, such as: polydimethylsiloxane (PDMS ), polymethyl methacrylate (PMMA), silicone rubber (Ecoflex), polycarbonate (PC), etc., but not limited to the above materials; the coating process is dipping, brushing, spraying, etc., But not limited to the above coating process.
  • Step 5 Install the fixture containing the fitting curved surface coated with the material to be processed in step 4 on the laser equipment processing platform for positioning, so as to ensure the positioning accuracy of the fixture in the X, Y and Z directions;
  • Fixtures with fitted surfaces have positioning identification points, as shown in Figure 2.
  • Step 6 Based on the sensor fit surface STL model in step 1, use 3D modeling software or CAD software to establish a laser pattern model to be processed, establish a processing pattern STL or dwg model, and calculate the model and laser pattern according to the laser processing pattern model.
  • the processing pattern STL model can be a three-dimensional surface pattern or a three-dimensional solid pattern, as shown in Fig. 4 and Fig. 5 .
  • the curvature of the processing pattern is consistent with the surface to be bonded by the 3D sensor, so that the shape of the laser processing pattern can be achieved.
  • Step 7 Import the processing pattern STL or dwg model of the step 6 into the laser equipment, and set the processing parameters such as focal length H, laser power, frequency, speed, scanning path, and precision;
  • Laser equipment consists of lasers, vibrating mirrors, beam expanders and other parts;
  • the laser is an infrared fiber laser with a wavelength of 1064nm, but not limited to an infrared fiber laser; the laser power is 20W, and the laser frequency range is 100kHz-1000kHz, but not limited to this performance parameter;
  • the galvanometer is a three-dimensional dynamic focusing galvanometer
  • the focus state is to change the focal length of the focus lens according to the distance from the surface of the object to be processed to the focus lens, so as to control the focus to fall on the surface of the object to be processed, and realize the focus processing under different paths.
  • Step 8 Turn on the laser equipment, run the 3D dynamic focusing system to continuously change the focus distance, and ensure that the processing paths are all in focus;
  • Step 9 According to the structural design of the sensor device, it is necessary to repeat the process of steps 4 to 8 to complete the processing of the flexible base layer and the flexible functional material layer successively.
  • Step 10 After the flexible base layer and functional material layer of the sensor are processed, the sensor is peeled off from the 3D curved surface for subsequent processes.
  • the actual curved surface is consistent with the processing model in the laser system, which ensures the in-situ bonding state of the sensor on the 3D curved surface.
  • the laser conformal manufacturing method of the three-dimensional curved surface of the flexible sensor provided by the present invention first obtains the 3D surface shape data to be processed and establishes the 3D curved surface STL model; imports the three-dimensional modeling software, and combines the 3D curved surface with the fixture seat to establish the fixture STL model ; Process the fixture STL model with rapid prototyping technology to obtain a fixture with a fitted curved surface; coat the material to be processed on the 3D curved surface of the fixture to be processed; install the fixture coated with the material to be processed on the laser equipment processing platform for positioning; Based on the 3D surface STL model, use the 3D modeling software to establish the laser pattern model to be processed, establish the processing pattern STL model and import it into the laser equipment, set the parameters; turn on the laser equipment, run the 3D dynamic focusing system; repeat the cycle according to the structural design of the sensor device
  • the processing step is to complete the processing of the sensor flexible base layer and the flexible functional material layer; after the sensor flexible base layer and the flexible functional material layer are processed,
  • the present invention adopts three-dimensional modeling software to first model the curved surface through reverse engineering, can realize the modeling of any complex curved surface, is not limited by the curvature of the curved surface, and greatly improves the applicability of the manufacturing process.
  • the present invention proposes a laser conformal manufacturing method for a three-dimensional curved surface of a flexible sensor, comprising: firstly obtaining the shape data of the curved surface to be bonded by the sensor and establishing an STL model of the curved surface to be bonded by the sensor; Combine with the fixture base to establish the STL model of the fixture with the fitted surface; and perform rapid prototyping technology processing to obtain the fixture with the fitted surface; coat the material to be processed on the 3D surface to be processed area of the fixture with the fitted surface and install it on the laser Positioning on the equipment processing platform; based on the sensor fitting surface STL model, establish a processing pattern STL or dwg model; import the laser equipment, turn on the laser equipment, and run the three-dimensional dynamic focusing system; repeat the cyclic processing steps to complete the flexible base layer and flexible functions of the sensor Processing of the material layer; the sensor is peeled off from the 3D curved surface, and the follow-up process is carried out; the real 3D curved surface conformal processing is realized in the present invention

Abstract

一种柔性传感器三维曲面的激光保形制造方法,包括:首先获取传感器待贴合曲面形貌数据并建立传感器贴合曲面STL模型;导入三维建模软件,并将传感器待贴合曲面与夹具座组合,建立含贴合曲面的夹具STL模型;并进行快速成型技术加工,获取含贴合曲面夹具;在含贴合曲面夹具的3D曲面待加工区域涂覆待加工材料并安装到激光设备加工平台上定位;基于传感器贴合曲面STL模型,建立加工图案STL或dwg模型;并导入激光设备,开启激光设备,运行三维动态聚焦系统;重复循环加工步骤,完成传感器柔性基底层和柔性功能材料层的加工;将传感器从3D曲面剥离,进行后续工艺。

Description

一种柔性传感器三维曲面的激光保形制造方法 技术领域
本发明属于柔性传感器制造技术,尤其涉及一种柔性传感器三维曲面的激光保形制造方法。
背景技术
各种制造技术,例如MEMS、反应离子蚀刻、化学气相沉积、纳米压印、软光刻等工艺方法已被广泛应用于2D平面基底上的柔性传感器制造。由于制造技术的特殊性,这些工艺无法直接用于3D曲面上柔性传感器件的保形制造。然而,随着柔性电子的快速发展,人们对于柔性可弯曲变形的传感器的需求越来越大。近些年,科研人员利用各种柔性可拉伸纳米材料及其复合材料进行了柔性传感器件的制造方法探索,使其具备较大的拉伸性能,可将2D平面传感器直接贴附到3D曲面上,但因曲率不同而无法实现完美贴合,进而限制了柔性传感器的实际应用。
为了将传感器尽可能完全贴合于3D曲面上,科研人员大多数采用转印印刷技术,具体采用拓扑方法和共形映射理论对3D曲面图案进行曲率分析,将3D图案拆分为多个2D图案。然后在2D平面上对各个拆分图案分别进行制造,再将其拼接到3D曲面上,实现3D贴合。这种工艺方法繁琐且耗时,并且一些3D图案无法拆分成2D图案,在3D曲面的适应性方面存在技术局限性。同时,将2D平面拼接成3D曲面的工艺过程容易造成传感器精度下降。由此可见,现有制造工艺在加工效率、加工精度以及3D曲面适应性等方面均有待提升。
发明内容
针对上述问题,本发明提供柔性传感器的3D曲面保形激光制造工艺,新型3D曲面上纳米材料及其复合材料的原位激光保形加工制造工艺,通过激光三维动态聚焦系统在3D传感器待贴合曲面上直接进行激光 加工,完成3D曲面上柔性功能材料与微纳功能结构的保形制造,最终实现在3D曲面上保形制造具有特定传感功能的柔性传感器件,从而极好地适形于传感器待贴合的曲面。
为实现上述一种柔性传感器三维曲面的激光保形制造方法,本发明采用以下步骤:
S1:用三维扫描仪对传感器待贴合曲面进行扫描,获取传感器待贴合曲面形貌数据并建立传感器贴合曲面STL模型;
S2:将所述步骤S1的传感器贴合曲面STL模型导入三维建模软件,并将传感器待贴合曲面与夹具座组合,建立含贴合曲面的夹具STL模型;
S3:将所述步骤S2的含贴合曲面的夹具STL模型进行快速成型技术加工,获取含贴合曲面夹具;
S4:在所述步骤S3含贴合曲面夹具的3D曲面待加工区域涂覆待加工材料;
S5:将所述步骤S4涂覆待加工材料的含贴合曲面夹具安装到激光设备加工平台上定位;
S6:基于所述步骤S1的传感器贴合曲面STL模型,用三维建模软件或CAD软件建立激光待加工图案模型,建立加工图案STL或dwg模型;
S7:将所述步骤S6的加工图案STL或dwg模型导入激光设备,并设置参数;
S8:开启激光设备,运行三维动态聚焦系统;
S9:根据传感器件的结构设计,重复循环步骤S4~S8,完成传感器柔性基底层和柔性功能材料层的加工;
S10:传感器柔性基底层和柔性功能材料层加工完成后,将传感器从3D曲面剥离,进行后续工艺。其中,所述三维建模软件使用Pro/E、Soildworks、3DMax或UG进行建模,将3D曲面放置于夹具座上方,并使3D曲面待加工区域朝上,建立连接结构使3D曲面与夹具座合成一体。
其中,所述快速成型技术加工为3D打印技术、3DP技术、FDM熔 融层积成型技术、SLA立体平版印刷技术、SLS选区激光烧结技术、DLP激光成型技术、UV紫外线成型技术等。
其中,所述涂覆待加工材料为纳米材料及其复合材料,作为传感器的基底层和功能材料层;所述待加工材料涂覆到3D曲面上,材料固化后的形状曲率与3D曲面一致,实现传感器件结构保形;
进一步的,所述功能材料层的层数大于1,实际层数与传感器结构设计相关;
进一步的,所述纳米材料为碳基材料、量子点材料、MXene、钙钛矿材料、富勒烯、MOF、金属纳米材料等;所述复合材料为高分子聚合物,如:聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、硅橡胶(Ecoflex)、聚碳酸酯(PC)等;所述涂覆工艺为浸涂法、刷涂法、喷涂法等。
其中,所述含贴合曲面夹具有定位标识点。
其中,所述加工图案STL模型可以是三维面图案三维立体图案,加工图案曲率与3D曲面一致,实现激光加工图案保形。
其中,所述激光设备由激光器、振镜、扩束镜等零件组成;
进一步的,所述振镜为三维动态聚焦振镜;
进一步的,所述正焦状态是根据被加工物体表面到聚焦镜的距离,改变聚焦镜的焦距,从而控制焦点全部落在被加工物体表面,实现不同路径下的正焦加工。
与现有可变形柔性传感器的曲面保形加工工艺相比,本发明的优点和效益在于:
1、本发明提供的柔性传感器三维曲面的激光保形制造方法,首先获取3D待加工曲面形貌数据并建立3D曲面STL模型;导入三维建模软件,并将3D曲面与夹具座组合,建立夹具STL模型;将夹具STL模型进行快速成型技术加工,获得含贴合曲面的夹具;在夹具的3D曲面待加工区域涂覆待加工材料;将涂覆待加工材料的夹具安装到激光设备加工平台上定位;基于3D曲面STL模型,用三维建模软件建立激光待加工图案 模型,建立加工图案STL模型并导入激光设备,设置参数;开启激光设备,运行三维动态聚焦系统;根据传感器件的结构设计,重复循环加工步骤,完成传感器柔性基底层和柔性功能材料层的加工;传感器柔性基底层和柔性功能材料层加工完成后,将传感器从3D曲面剥离,进行后续工艺;本发明通过激光三维动态聚焦系统在3D传感器待贴合曲面上直接进行激光加工,实现真正意义上的3D曲面传感器保形制造,从而能够极好地适形于传感器待贴合的曲面,并非在2D平面加工后再进行3D曲面拼接成型工艺,大大提高了加工效率;而且本发明提供的工艺不需要二次拼接图案或者转印的工艺步骤,大大提高了加工精度。
2、本发明通过逆向工程采用三维建模软件首先对曲面进行建模,可以实现任意复杂曲面的建模,不受曲面曲率的限制,大大提高了制造工艺适用性。
附图说明
图1是本发明一种柔性传感器三维曲面的激光保形制造方法的工艺流程图;
图2是3D曲面与夹具座组合的结构图;
图3是夹具3D曲面上保形加工传感器结构的爆炸图;
图4是激光保形加工三维面图案模型;
图5是激光保形加工三维立体图案模型。
具体实施方式
下面结合附图1、图2、图3、图4、图5及实施例,对本发明做进一步详细说明,具体步骤包括:
不少传感器在监测数据时,需要很好到贴合到待监测区域,但当待监测区域为3D曲面时,传感器并不能很好地进行贴合,本发明就是提供一种加工工艺,能够使加工的柔性传感器极好的贴合到待贴合的3D曲面,且不受曲面曲率的限制,而且并非在2D平面加工后再进行3D曲面 拼接成型工艺。
步骤一:用三维扫描仪对传感器待贴合曲面进行扫描,获取传感器待贴合曲面形貌数据并建立传感器贴合曲面STL模型。
步骤二:将所述步骤一的传感器贴合曲面STL模型导入三维建模软件,并将传感器待贴合曲面与夹具座组合,建立含贴合曲面的夹具STL模型,如图2所示;
三维建模软件使用Pro/E、Soildworks、3DMax或UG进行建模,将3D传感器待贴合曲面放置于夹具座上方,并使3D传感器待贴合曲面待加工区域朝上,建立连接结构使3D传感器待贴合曲面与夹具座合成一体。
步骤三:将所述步骤二的含贴合曲面的夹具STL模型进行快速成型技术加工,获取含贴合曲面夹具;
步骤快速成型技术加工为3D打印技术、3DP技术、FDM熔融层积成型技术、SLA立体平版印刷技术、SLS选区激光烧结技术、DLP激光成型技术、UV紫外线成型技术等,但不限于上述加工技术;
步骤四:在所述步骤三含贴合曲面夹具的3D曲面待加工区域涂覆待加工材料;
涂覆待加工材料为纳米材料及其复合材料,作为传感器的基底层和功能材料层;所述待加工材料涂覆到3D曲面上,材料固化后的形状曲率与3D曲面一致,实现传感器件结构保形,如图3所示;底层可以包括易脱组分,如酒精、硬酯酸等,方便功能层的剥离。
功能材料层的层数可以大于1层,实际层数与传感器结构设计相关;
纳米材料为碳基材料、量子点材料、MXene、钙钛矿材料、富勒烯、MOF、金属纳米材料等;所述复合材料为高分子聚合物,如:聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、硅橡胶(Ecoflex)、聚碳酸酯(PC)等,但不限于上述材料;所述涂覆工艺为浸涂法、刷涂法、喷涂法等,但不限于上述涂覆工艺。
步骤五:将所述步骤四涂覆待加工材料的含贴合曲面夹具安装到激 光设备加工平台上定位,保证夹具在X、Y和Z方向的定位精度;
含贴合曲面的夹具有定位标识点,如图2所示。
步骤六:基于所述步骤一的传感器贴合曲面STL模型,用三维建模软件或CAD软件建立激光待加工图案模型,建立加工图案STL或dwg模型,同时根据激光加工图案模型计算出模型与激光的焦距H;
加工图案STL模型可以是三维面图案或三维立体图案,如图4和图5所示。加工图案曲率与3D传感器待贴合曲面一致,实现激光加工图案保形。
步骤七:将所述步骤六的加工图案STL或dwg模型导入激光设备,并设置焦距H、激光功率、频率、速度、扫描路径、精度等加工参数;
激光设备由激光器、振镜、扩束镜等零件组成;
激光器为波长1064nm的红外光纤激光器,但不限于红外光纤激光器;所述激光功率为20W,所述激光频率范围在100kHz-1000kHz,但不限于该性能参数;
振镜为三维动态聚焦振镜;
正焦状态是根据被加工物体表面到聚焦镜的距离,改变聚焦镜的焦距,从而控制焦点全部落在被加工物体表面,实现不同路径下的正焦加工。
步骤八:开启激光设备,运行三维动态聚焦系统不断改变焦点距离,保证所加工路径都处于正焦状态;
步骤九:根据传感器件的结构设计,需重复循环步骤四到八过程,先后完成柔性基底层和柔性功能材料层加工。
步骤十:传感器柔性基底层和功能材料层加工完成后,将传感器从3D曲面剥离,进行后续工艺。
在3D曲面保形激光制造时,实际曲面与激光系统中加工模型一致,保证了传感器在3D曲面的原位贴合状态。
本发明提供的柔性传感器三维曲面的激光保形制造方法,首先获取3D待加工曲面形貌数据并建立3D曲面STL模型;导入三维建模软件, 并将3D曲面与夹具座组合,建立夹具STL模型;将夹具STL模型进行快速成型技术加工,获得含贴合曲面的夹具;在夹具的3D曲面待加工区域涂覆待加工材料;将涂覆待加工材料的夹具安装到激光设备加工平台上定位;基于3D曲面STL模型,用三维建模软件建立激光待加工图案模型,建立加工图案STL模型并导入激光设备,设置参数;开启激光设备,运行三维动态聚焦系统;根据传感器件的结构设计,重复循环加工步骤,完成传感器柔性基底层和柔性功能材料层的加工;传感器柔性基底层和柔性功能材料层加工完成后,将传感器从3D曲面剥离,进行后续工艺;本发明通过激光三维动态聚焦系统在3D传感器待贴合曲面上直接进行激光加工,实现真正意义上的3D曲面传感器保形制造,从而能够极好地适形于传感器待贴合的曲面,并非在2D平面加工后再进行3D曲面拼接成型工艺,大大提高了加工效率;而且本发明提供的工艺不需要二次拼接图案或者转印的工艺步骤,大大提高了加工精度;
本发明通过逆向工程采用三维建模软件首先对曲面进行建模,可以实现任意复杂曲面的建模,不受曲面曲率的限制,大大提高了制造工艺适用性。
上述实施例为发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
工业实用性
本发明提出一种柔性传感器三维曲面的激光保形制造方法,包括:首先获取传感器待贴合曲面形貌数据并建立传感器贴合曲面STL模型;导入三维建模软件,并将传感器待贴合曲面与夹具座组合,建立含贴合曲面的夹具STL模型;并进行快速成型技术加工,获取含贴合曲面夹具;在含贴合曲面夹具的3D曲面待加工区域涂覆待加工材料并安装到激光设备加工平台上定位;基于传感器贴合曲面STL模型,建立加工图案STL 或dwg模型;并导入激光设备,开启激光设备,运行三维动态聚焦系统;重复循环加工步骤,完成传感器柔性基底层和柔性功能材料层的加工;将传感器从3D曲面剥离,进行后续工艺;本发明中实现真正意义上的3D曲面保形加工,提高了加工精度、效率以及对任意3D曲面的适用性,具有工业实用性。

Claims (10)

  1. 一种柔性传感器三维曲面的激光保形制造方法,其特征在于,所述加工步骤如下:
    S1:用三维扫描仪对传感器待贴合曲面进行扫描,获取传感器待贴合曲面形貌数据并建立传感器贴合曲面STL模型;
    S2:将所述步骤S1的传感器贴合曲面STL模型导入三维建模软件,并将传感器待贴合曲面与夹具座组合,建立含贴合曲面的夹具STL模型;
    S3:将所述步骤S2的含贴合曲面的夹具STL模型进行快速成型技术加工,获取含贴合曲面夹具;
    S4:在所述步骤S3含贴合曲面夹具的3D曲面待加工区域涂覆待加工材料;
    S5:将所述步骤S4涂覆待加工材料的含贴合曲面夹具安装到激光设备加工平台上定位;
    S6:基于所述步骤S1的传感器贴合曲面STL模型,用三维建模软件或CAD软件建立激光待加工图案模型,建立加工图案STL或dwg模型;
    S7:将所述步骤S6的加工图案STL或dwg模型导入激光设备,并设置参数;
    S8:开启激光设备,运行三维动态聚焦系统;
    S9:根据传感器件的结构设计,重复循环步骤S4~S8,完成传感器柔性基底层和柔性功能材料层的加工;
    S10:传感器柔性基底层和柔性功能材料层加工完成后,将传感器从3D曲面剥离。
  2. 根据权利要求1所述的一种柔性传感器三维曲面的激光保形制造方法,其特征在于,所述步骤S2将传感器待贴合曲面与夹具座组合,建立含贴合曲面的夹具STL模型,具体为:
    将3D曲面放置于夹具座上方,并使3D曲面待加工区域朝上,建立 连接结构使得3D曲面与夹具座合成一体。
  3. 根据权利要求1所述的一种柔性传感器三维曲面的激光保形制造方法,其特征在于:所述步骤S3中快速成型技术加工包括3D打印技术、3DP技术、FDM熔融层积成型技术、SLA立体平版印刷技术、SLS选区激光烧结技术、DLP激光成型技术、UV紫外线成型技术。
  4. 根据权利要求1所述的一种柔性传感器三维曲面的激光保形制造方法,其特征在于,所述步骤S4中涂覆待加工材料为纳米材料及其复合材料,作为传感器的柔性基底层和柔性功能材料层,所述涂覆工艺包括浸涂法、刷涂法、喷涂法。
  5. 根据权利要求4所述的一种柔性传感器三维曲面的激光保形制造方法,其特征在于:所述功能材料层的层数大于1。
  6. 根据权利要求4所述的纳米材料及其复合材料,其特征在于:所述纳米材料包括碳基材料、量子点材料、MXene、钙钛矿材料、富勒烯、MOF、金属纳米材料;所述复合材料为高分子聚合物,包括于聚二甲基硅氧烷、聚甲基丙烯酸甲酯、硅橡胶、聚碳酸酯。
  7. 根据权利要求1所述的一种柔性传感器三维曲面的激光保形制造方法,其特征在于:所述步骤S5中含贴合曲面夹具有定位标识点。
  8. 根据权利要求1所述的一种柔性传感器三维曲面的激光保形制造方法,其特征在于:所述步骤S6中加工图案STL或dwg模型为三维面图案或三维立体图案,加工图案曲率与3D曲面一致,实现激光加工图案保形。
  9. 根据权利要求1所述的一种柔性传感器三维曲面的激光保形制造方法,其特征在于:所述步骤S7中的激光设备包含激光器、三维动态聚焦振镜、扩束镜。
  10. 根据权利要求9所述的一种柔性传感器三维曲面的激光保形制造方法,其特征在于:所述激光设备的正焦状态是根据被加工物体表面到聚焦镜的距离,改变聚焦镜的焦距,从而控制焦点全部落在被加工物体表面,实现不同路径下的正焦加工。
PCT/CN2022/105096 2021-09-22 2022-07-12 一种柔性传感器三维曲面的激光保形制造方法 WO2023045505A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111112967.5A CN113843498B (zh) 2021-09-22 2021-09-22 一种柔性传感器三维曲面的激光保形制造方法
CN202111112967.5 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023045505A1 true WO2023045505A1 (zh) 2023-03-30

Family

ID=78979238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105096 WO2023045505A1 (zh) 2021-09-22 2022-07-12 一种柔性传感器三维曲面的激光保形制造方法

Country Status (2)

Country Link
CN (1) CN113843498B (zh)
WO (1) WO2023045505A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11833760B2 (en) 2021-09-22 2023-12-05 Xiamen University Laser conformal manufacturing method of flexible sensor
CN113843498B (zh) * 2021-09-22 2022-06-28 厦门大学 一种柔性传感器三维曲面的激光保形制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170010291A (ko) * 2015-07-15 2017-01-26 주식회사 태양씨앤엘 3차원 곡면 터치 장치
CN107024837A (zh) * 2017-05-19 2017-08-08 深圳市斯普莱特激光科技有限公司 一种高精度三维激光曝光固化工艺
CN108538755A (zh) * 2018-03-22 2018-09-14 华中科技大学 一种复杂曲面电子系统的共形制造设备及方法
CN108555464A (zh) * 2018-06-29 2018-09-21 华中科技大学 一种大型复杂曲面动态聚焦激光加工方法及系统
CN112895433A (zh) * 2021-01-14 2021-06-04 河北工业大学 基于3d打印的柔性传感器装置及其制备方法
CN113843498A (zh) * 2021-09-22 2021-12-28 厦门大学 一种柔性传感器三维曲面的激光保形制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108338848B (zh) * 2018-03-27 2019-05-07 北京大学口腔医学院 剥离式激光牙体预备方法、装置、设备及介质
CN113049167B (zh) * 2021-03-04 2022-03-04 厦门大学 一种柔性多维触觉传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170010291A (ko) * 2015-07-15 2017-01-26 주식회사 태양씨앤엘 3차원 곡면 터치 장치
CN107024837A (zh) * 2017-05-19 2017-08-08 深圳市斯普莱特激光科技有限公司 一种高精度三维激光曝光固化工艺
CN108538755A (zh) * 2018-03-22 2018-09-14 华中科技大学 一种复杂曲面电子系统的共形制造设备及方法
CN108555464A (zh) * 2018-06-29 2018-09-21 华中科技大学 一种大型复杂曲面动态聚焦激光加工方法及系统
CN112895433A (zh) * 2021-01-14 2021-06-04 河北工业大学 基于3d打印的柔性传感器装置及其制备方法
CN113843498A (zh) * 2021-09-22 2021-12-28 厦门大学 一种柔性传感器三维曲面的激光保形制造方法

Also Published As

Publication number Publication date
CN113843498B (zh) 2022-06-28
CN113843498A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2023045505A1 (zh) 一种柔性传感器三维曲面的激光保形制造方法
JP7314240B2 (ja) 正確な3次元印刷
Zhou et al. Digital material fabrication using mask‐image‐projection‐based stereolithography
JP3030853B2 (ja) 三次元物体の形成方法および装置
Bertsch et al. Rapid prototyping of small size objects
US9120270B2 (en) Digital mask-image-projection-based additive manufacturing that applies shearing force to detach each added layer
Hengsbach et al. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies
US10946579B2 (en) Device fabrication using 3D printing
Zhou et al. Fabrication of continuous diffractive optical elements using a fast tool servo diamond turning process
Li et al. Micro-scale feature fabrication using immersed surface accumulation
CN107199700B (zh) 立体打印装置
WO2019173674A1 (en) High-throughput 3d printing of customized aspheric imaging lenses
US20220088873A1 (en) Systems, methods, and materials for ultra-high throughput additive manufacturing
US11833760B2 (en) Laser conformal manufacturing method of flexible sensor
Minev et al. Technologies for rapid prototyping (RP)-basic concepts, quality issues and modern trends
Pan et al. Fast mask image projection-based micro-stereolithography process for complex geometry
CN104708003B (zh) 一种皮秒激光器复合加工slm设备及激光快速成形方法
Stevens et al. Conformal robotic stereolithography
JPH0760844A (ja) 三次元構造体の製造方法
CN112706405A (zh) 自由曲面涂层的3d打印方法及3d打印装置、3d打印设备
Qin et al. Design and optimization of projection stereolithography additive manufacturing system with multi-pass scanning
Singh An overview of three dimensional printing for casting applications
Khodaii et al. Improving the surface roughness in stereolithography by controlling surface angle, hatch spaces, and postcuring time
KR101199496B1 (ko) 소형 디엠디와 유브이-엘이디를 이용한 저가형 광조형 시스템에서 대면적 구조물의 가공방법
CN116765646A (zh) 一种加工周期性微结构的五轴振镜激光精密加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871564

Country of ref document: EP

Kind code of ref document: A1