WO2023045321A1 - 高湿度情况下的空调控制方法和控制装置 - Google Patents

高湿度情况下的空调控制方法和控制装置 Download PDF

Info

Publication number
WO2023045321A1
WO2023045321A1 PCT/CN2022/089190 CN2022089190W WO2023045321A1 WO 2023045321 A1 WO2023045321 A1 WO 2023045321A1 CN 2022089190 W CN2022089190 W CN 2022089190W WO 2023045321 A1 WO2023045321 A1 WO 2023045321A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity
indoor
initial
conditioning control
air
Prior art date
Application number
PCT/CN2022/089190
Other languages
English (en)
French (fr)
Inventor
李刚
杨芳
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023045321A1 publication Critical patent/WO2023045321A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioning, and in particular to an air conditioning control method, control device, electronic equipment and storage medium under high humidity conditions.
  • Air conditioners adjust and control the temperature, humidity, flow rate and other parameters of the ambient air in buildings or structures. , to meet people's needs for the surrounding environment.
  • the frequency of the compressor will be adjusted according to the ambient temperature of the outdoor unit. After the indoor temperature reaches the set temperature, the compressor will start to reduce the frequency. It can be seen that the air-conditioning control method in the prior art does not target the parameter of reference humidity.
  • This application provides an air conditioner control method, control device, electronic equipment and storage medium under high humidity conditions, which are used to solve the problem of heat exchange at the air outlet or evaporator when the air conditioner operates in a high humidity environment in the prior art.
  • the defects of water droplets in the space can improve the user experience.
  • This application provides an air conditioning control method under high humidity conditions, including:
  • the air-conditioning control method under high-humidity conditions further includes:
  • the opening of the electronic expansion valve is controlled to be the initial opening, and the speed of the indoor unit fan is controlled to be the initial speed.
  • the first opening degree is positively compensated by 20 steps compared with the initial opening degree, and the first rotational speed is increased by 1.2 times compared with the initial rotational speed.
  • the preset humidity is 90%.
  • the initial opening degree is determined according to the initial frequency.
  • the air-conditioning control method under high-humidity conditions further includes:
  • the operating frequency of the compressor is controlled to be reduced to a first frequency.
  • the initial rotational speed of the indoor fan is determined according to the rotational speed signal.
  • the present application also provides an air conditioner control device under high humidity conditions, including:
  • An acquisition unit the acquisition unit is used to acquire the humidity of the indoor environment
  • control unit is used to control the opening of the electronic expansion valve to a first opening based on the initial opening of the electronic expansion valve when determining that the indoor ambient humidity is not less than the preset humidity.
  • the initial speed of the fan of the indoor unit is controlled to increase the speed of the fan of the indoor unit to the first speed.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the program, the high-humidity situation described above is realized. The following steps in the air conditioning control method.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of any one of the above-mentioned air-conditioning control methods under high humidity conditions are implemented.
  • the air-conditioning control method, control device, electronic equipment and storage medium provided by this application under high humidity conditions increase the number of steps of the electronic expansion valve when the indoor ambient humidity is high, and the refrigerant flowing through the throttling tube increases.
  • the evaporation pressure and corresponding evaporation temperature of the refrigerant in the internal unit evaporator are increased, thereby reducing the temperature difference during heat exchange of the evaporator, and increasing the speed of the internal unit fan, improving the The fluid velocity of the air in the internal unit reduces the heat exchange time.
  • it can compensate the heat exchange efficiency reduced by increasing the steps of the electronic expansion valve.
  • the speed of the internal fan increases and the steps of the electronic expansion valve increase.
  • the air-conditioning control method under the condition of high humidity can change the control mode of the air-conditioner for the high-humidity environment to avoid condensation, so that the blown air More comfortable and improve user experience.
  • Fig. 1 is one of the schematic flow charts of the air-conditioning control method under the condition of high humidity provided by the present application;
  • Fig. 2 is the second schematic flow diagram of the air conditioning control method under high humidity conditions provided by the present application.
  • FIG. 3 is a schematic structural view of an air-conditioning control device provided by the present application under high humidity conditions
  • FIG. 4 is a schematic structural diagram of an electronic device provided by the present application.
  • the air conditioner provided in this application includes an indoor unit and an outdoor unit, the inner unit and the outer unit are connected through an on-line pipe, the inner unit is arranged indoors, and the outer unit is arranged outdoors, and the inner unit circulates the indoor air and exchanges heat, thereby Change the temperature in the room.
  • the internal unit can be a hanging body or a vertical body, which can be set according to user requirements without limitation.
  • the air conditioning control method under high humidity conditions includes:
  • the humidity of the indoor environment is very important to the user experience.
  • the humidity of the indoor environment is high, it is very easy to cause discomfort to the user in terms of general air conditioning control methods. Therefore, it is necessary to obtain the indoor ambient humidity first, so as to obtain the indoor environmental conditions, and perform different controls for different environmental conditions.
  • a humidity sensor is installed at the air inlet of the indoor unit.
  • the humidity sensor is connected to the control terminal of the air conditioner, and the control terminal of the air conditioner is also connected to the electronic expansion valve and the fan of the internal unit. Detect the humidity of the indoor environment and transmit the information to the control terminal, and the control terminal can perform corresponding control according to the humidity of the indoor environment.
  • the humidity sensor is arranged at the air inlet of the internal unit, which can accurately detect the condition of the air flowing into the internal unit and about to be blown out from the internal unit, so as to improve the quality of the blown air.
  • the air conditioner when the air conditioner is started, its electronic expansion valve will operate at the initial opening, which does not change with the change of indoor ambient humidity, and the initial speed of the indoor unit fan is selected according to the user's control Yes, the number of steps of the first opening degree increases compared with the initial opening degree, and the first rotational speed increases compared with the initial rotational speed.
  • the number of steps of the electronic expansion valve is increased, and the refrigerant flowing through the throttling tube increases.
  • the refrigerant in the internal unit evaporator is increased.
  • the evaporating pressure and the corresponding evaporating temperature reduce the temperature difference during heat exchange of the evaporator, and increase the speed of the internal fan, increase the fluid velocity of the air in the internal machine, and reduce the heat exchange time.
  • it can compensate The heat exchange efficiency is reduced by increasing the number of steps of the electronic expansion valve.
  • the speed of the internal fan increases and the number of steps of the electronic expansion valve increases, so that the high-humidity air passing through will not cool down quickly, thus avoiding condensation .
  • the dehumidification speed of the air conditioner is reduced, so that the indoor unit blows gently, and the generated water droplets will not damage the wall, and at the same time, the water droplets will not be blown out to cause discomfort to the user.
  • the air-conditioning control method under the condition of high humidity provided by the present application can change the control mode of the air-conditioner for the high-humidity environment to avoid condensation, so that the blown air More comfortable and improve user experience.
  • the air-conditioning control method under the condition of high humidity also includes:
  • the opening of the electronic expansion valve is controlled to be the initial opening, and the speed of the indoor unit fan is controlled to be the initial speed.
  • the air conditioner when the air conditioner operates in an indoor environment with low humidity, it operates in a normal operating mode, which is not affected by ambient humidity, ensures high heat exchange efficiency, and the air blown out is still relatively comfortable.
  • the indoor humidity will slowly decrease until the indoor ambient humidity is lower than the preset humidity, that is, the air conditioner will continue to operate in the above mode, improving the user experience. use experience.
  • a humidification module is also provided in the indoor unit, and the humidification module is connected to the control terminal. After the indoor ambient humidity is detected by the aforementioned humidity sensor, when the indoor ambient humidity is lower than the minimum set humidity, the humidification module can be activated. Humidify the air until the indoor ambient humidity is not lower than the minimum set humidity. In this way, the aforementioned control method of the air conditioner in a high-humidity environment can be combined to ensure that the humidity of the indoor environment is always within a reasonable range, thereby ensuring the comfort of the user.
  • the preset humidity is 90%.
  • the indoor ambient humidity is not less than 90%, it means that the indoor is in a high-humidity environment, and the user experience can be improved through the control method provided in this application.
  • other preset humidity values can be set according to the needs of the user, so details will not be repeated here.
  • the opening of the electronic expansion valve is controlled to increase to the first opening
  • the rotational speed of the indoor fan is controlled to increase to the first rotational speed.
  • the first opening degree is positively compensated by 20 steps compared with the initial opening degree
  • the first rotational speed is increased by 1.2 times compared with the initial rotational speed.
  • the first opening is positively compensated by 20 steps, and the first speed is increased by 1.2 times, which can ensure that the heat exchange efficiency will not decrease, that is, the heat exchange efficiency is basically consistent with the efficiency of the air conditioner operating in a non-high humidity environment, ensuring that the air conditioner Continuous good heat exchange effect improves user experience.
  • the first opening can compensate for 30 steps, and the first rotational speed can be increased by 1.3 times, which will not be repeated here.
  • the step of obtaining the initial opening degree of the air conditioner that is, firstly, the initial frequency is obtained according to the outdoor ambient temperature, and then the initial opening degree is obtained according to the initial frequency, that is, the initial opening degree changes with the external changes, the aforementioned first
  • the opening is enlarged on the basis of the initial opening. Specifically, after the initial frequency is obtained, the exhaust temperature is obtained, and the initial opening is adjusted correspondingly according to the exhaust temperature.
  • the air-conditioning control method under the condition of high humidity also includes:
  • the operating frequency of the compressor is controlled to be reduced to a first frequency.
  • the wind speed of the fan of the indoor unit can be further increased to the second rotation speed, and the second rotation speed is greater than the first rotation speed, so as to ensure the heat exchange efficiency of the air conditioner.
  • the initial rotational speed of the indoor fan is determined according to the rotational speed signal.
  • the initial rotation speed is set according to the needs of the user, but the increased rotation speed in the high-humidity environment is increased on this basis to ensure that the air conditioner always operates under the comfortable conditions required by the user and improve user experience.
  • a flocking cloth is provided at the air outlet of the internal unit, and the flocking cloth can absorb generated condensation to avoid discomfort caused by water droplets.
  • FIG. 3 Please refer to FIG. 3 , the following describes the air-conditioning control device under high humidity conditions provided by the present application.
  • the air-conditioning control device under high humidity conditions described below and the air-conditioning control method under high humidity conditions described above can be referred to each other. .
  • Air conditioning controls for this high humidity situation including:
  • An acquisition unit 10 configured to acquire indoor ambient humidity
  • a control unit 20 configured to control the opening of the electronic expansion valve to a first opening based on the initial opening of the electronic expansion valve when determining that the indoor ambient humidity is not less than a preset humidity, based on The initial speed of the indoor fan is controlled to increase the speed of the indoor fan to a first speed.
  • FIG. 4 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 810, a communication interface (Communications Interface) 820, a memory (memory) 830 and a communication bus 840, Wherein, the processor 810 , the communication interface 820 , and the memory 830 communicate with each other through the communication bus 840 .
  • the processor 810 can call the logic instructions in the memory 830 to execute an air-conditioning control method under high humidity conditions.
  • the method includes: obtaining the indoor ambient humidity; For the initial opening degree, the opening degree of the electronic expansion valve is controlled to increase to a first opening degree, and based on the initial rotational speed of the indoor unit fan, the rotational speed of the internal unit fan is controlled to increase to the first rotational speed.
  • the above logic instructions in the memory 830 may be implemented in the form of software functional units and when sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the present application also provides a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, and when the program instructions are executed by a computer
  • the computer can execute the air-conditioning control method under the condition of high humidity provided by the above-mentioned methods, the method includes: obtaining the indoor ambient humidity; control the opening of the electronic expansion valve to a first opening, and control the speed of the indoor fan to increase to the first speed based on the initial speed of the indoor fan.
  • the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to perform the air-conditioning control methods provided above under high humidity conditions,
  • the method includes: obtaining the indoor ambient humidity; when it is determined that the indoor ambient humidity is not less than a preset humidity, controlling the opening of the electronic expansion valve to a first opening based on the initial opening of the electronic expansion valve, and controlling the opening of the electronic expansion valve to a first opening based on the internal
  • the initial speed of the fan of the indoor unit is controlled to increase the speed of the fan of the indoor unit to the first speed.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及空调技术领域,提供了一种高湿度情况下的空调控制方法和控制装置。其中,高湿度情况下的空调控制方法包括:获取室内环境湿度;确定所述室内环境湿度不小于预设湿度时,基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速。本申请给出的高湿度情况下的空调控制方法,可避免凝露,使得吹出的空气更为舒适,提高用户体验。

Description

高湿度情况下的空调控制方法和控制装置
相关申请的交叉引用
本申请要求于2021年09月22日提交的申请号为202111108032X,发明名称为“高湿度情况下的空调控制方法和控制装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调技术领域,尤其涉及一种高湿度情况下的空调控制方法、控制装置、电子设备以及存储介质。
背景技术
随着社会的发展,人们的生活水平不断提高,空调器已经成为人们日常生活中必不可少的电器设备,空调器通过对建筑或构筑物内环境空气的温度、湿度、流速等参数进行调节和控制,满足了人们对于周围环境的需求。
现在技术中,在使用空调器时,设定好室内温度后,压缩机的频率会根据室外机的环境温度的大小来对应调节,待室内温度达到设定温度后,压缩机才开始降频,可见,现有技术中的空调控制方法没有针参考湿度这个参数。
但是,在湿度较高的环境中,尤其靠近水边和海边居住的人们,空气湿度较大,甚至会超过90%,空调器长期在这种环境下运行,极易在出风口或者蒸发器换热空间内产生水滴,水汽不仅会损坏墙壁,同时还可能吹出水滴,给人不舒服的体验。
发明内容
本申请提供一种高湿度情况下的空调控制方法、控制装置、电子设备以及存储介质,用以解决现有技术中空调器在高湿度环境下运行时,极易在出风口或者蒸发器换热空间内产生水滴的缺陷,实现提高用户的使用体验。
本申请提供一种高湿度情况下的空调控制方法,包括:
获取室内环境湿度;
确定所述室内环境湿度不小于预设湿度时,基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速。
根据本申请提供的一种高湿度情况下的空调控制方法,所述高湿度情况下的空调控制方法还包括:
确定所述室内环境湿度小于所述预设湿度时,控制所述电子膨胀阀的开度为所述初始开度,控制所述内机风扇的转速为所述初始转速。
根据本申请提供的一种高湿度情况下的空调控制方法,所述第一开度较所述初始开度正补偿20步,所述第一转速较所述初始转速增加1.2倍。
根据本申请提供的一种高湿度情况下的空调控制方法,所述预设湿度为90%。
根据本申请提供的一种高湿度情况下的空调控制方法,所述获取室内环境湿度的步骤,之前:
获取室外环境温度;
根据所述室外环境温度确定压缩机运行的初始频率;
根据所述初始频率确定所述初始开度。
根据本申请提供的一种高湿度情况下的空调控制方法,所述高湿度情况下的空调控制方法还包括:
确定所述室内环境湿度不小于预设湿度时,基于所述压缩机的初始频率,控制所述压缩机运行的频率降低至第一频率。
根据本申请提供的一种高湿度情况下的空调控制方法,所述获取室内环境湿度的步骤,之前:
获取用户输入的所述内机风扇的转速信号;
根据所述转速信号确定所述内机风扇的初始转速。
本申请还提供一种高湿度情况下的空调控制装置,包括:
获取单元,所述获取单元用于获取室内环境湿度;
控制单元,所述控制单元用于确定所述室内环境湿度不小于预设湿度时,基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一 开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述高湿度情况下的空调控制方法的步骤。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述高湿度情况下的空调控制方法的步骤。
本申请提供的高湿度情况下的空调控制方法、控制装置、电子设备以及存储介质,在室内环境湿度较高时,增加电子膨胀阀的步数,节流管流经的冷媒增加,在稳定压缩机的排气温度的情况下,提高了内机蒸发器中冷媒的蒸发压力和对应的蒸发温度,因而缩小了蒸发器换热时的温度差,并且,增加了内机风扇的转速,提高了内机空气的流体速度,减少了换热时间,一方面可补偿因增加电子膨胀阀步数而降低的换热效率,另一方面,内机风扇的转速增加、电子膨胀阀的步数增加,使得流经的高湿度空气不会迅速降温,因而避免了凝露,降低了空调的除湿速度,使得内机吹风时平缓,不会因产生的水滴损坏墙壁,同时也不会吹出水滴而对用户造成不适。相较于现有技术中的空调的控制方法而言,本申请给出的高湿度情况下的空调控制方法,可针对高湿度环境改变空调器的控制模式,以避免凝露,使得吹出的空气更为舒适,提高用户体验。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的高湿度情况下的空调控制方法的流程示意图之一;
图2是本申请提供的高湿度情况下的空调控制方法的流程示意图之二;
图3是本申请提供的高湿度情况下的空调控制装置的结构示意图;
图4是本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请给出的空调器包括内机和外机,内机与外机通过联机管相连接,内机设于室内,外机设于室外,内机使室内的空气进行循环并换热,从而改变室内的气温。本实施例中,内机可以为挂式机体也可为立设机体,可根据用户需求进行设置,不作限制。
下面结合图1-图4描述本申请的高湿度情况下的空调控制方法、控制装置、电子设备以及存储介质。
请结合参阅图1,其中,高湿度情况下的空调控制方法,包括:
400,获取室内环境湿度;
由于内机是用作对室内空气进行循环的,因此室内环境湿度对于用户体验至关重要,室内环境湿度较高时,以一般的空调控制方法而言,极容易对用户造成不适。因此,此处需要先获取室内环境湿度,以便于获取室内的环境状况,针对不同的环境状况来进行不同的控制。
此处,为了获取室内环境湿度,在内机的进风口处设置湿度传感器,湿度传感器与空调器的控制端连接,空调的控制端还与电子膨胀阀、内机风扇等结构连接,通过湿度传感器检测室内环境湿度,并将该信息传输给控制端,控制端即可根据室内环境湿度,进行相应的控制。本实施例中,将湿度传感器设置在内机的进风口处,可准确的检测流入内机并即将从内机吹出的空气情况,以提高吹出的空气的质量。
500,确定所述室内环境湿度不小于预设湿度时,基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速。
需知的是,空调器在启动时,其电子膨胀阀会以初始开度运行,该初始开度不以室内环境湿度的变化而变化,内机风扇的初始速度则是根据用 户的控制自行选择的,第一开度较初始开度的步数增加,第一转速较初始转速的转速增加。
本实施例中,在室内环境湿度较高时,增加电子膨胀阀的步数,节流管流经的冷媒增加,在稳定压缩机的排气温度的情况下,提高了内机蒸发器中冷媒的蒸发压力和对应的蒸发温度,因而缩小了蒸发器换热时的温度差,并且,增加了内机风扇的转速,提高了内机空气的流体速度,减少了换热时间,一方面可补偿因增加电子膨胀阀步数而降低的换热效率,另一方面,内机风扇的转速增加、电子膨胀阀的步数增加,使得流经的高湿度空气不会迅速降温,因而避免了凝露,降低了空调的除湿速度,使得内机吹风时平缓,不会因产生的水滴损坏墙壁,同时也不会吹出水滴而对用户造成不适。相较于现有技术中的空调的控制方法而言,本申请给出的高湿度情况下的空调控制方法,可针对高湿度环境改变空调器的控制模式,以避免凝露,使得吹出的空气更为舒适,提高用户体验。
请结合参阅图1,另外,承接上述方法,所述高湿度情况下的空调控制方法还包括:
确定所述室内环境湿度小于所述预设湿度时,控制所述电子膨胀阀的开度为所述初始开度,控制所述内机风扇的转速为所述初始转速。
即,空调器在湿度较低的室内环境下运行时,则是按通常的运行模式运行,不受环境湿度的影响,保证高效的换热效率,且吹出的空气仍然较为舒适。
需知的是,本实施例中,空调器在高湿度环境下持续运行时,室内的湿度会缓慢降低,直至室内环境湿度小于预设湿度,即空调器会按上述模式持续运行,提高可用户的使用体验。
进一步的,在室内机内还设有加湿模块,加湿模块与控制端连接,通过前述的湿度传感器检测得到的室内环境湿度后,当室内环境湿度低于最低设定湿度时,可启动加湿模块,对空气进行加湿,直至室内环境湿度不低于最低设定湿度。这样,可结合前述空调器在高湿度环境下的控制方法,保证室内环境湿度始终在一个合理的范围内,保证用户的舒适度。
请结合参阅图1,本申请一实施例中,所述预设湿度为90%。
即,在室内环境湿度不小于90%时,就意味着室内处于高湿度环境, 通过本申请给出的控制方法,可提高用户的使用体验。当然,在其他实施例中,根据可根据用户的需求设定其他数字的预设湿度,此处不再赘述。
在前述基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速的步骤中,所述第一开度较所述初始开度正补偿20步,所述第一转速较所述初始转速增加1.2倍。
将第一开度正补偿20步,第一转速增加1.2倍,可保证换热效率不会降低,即,换热效率基本与空调器在非高湿度环境下运行的效率一致,保证了空调器持续性的良好换热效果,提高用户体验。当然,在其他实施例中,第一开度正可补偿30步,第一转速可增加1.3倍,此处不再赘述。
请结合参阅图2,本申请一实施例中,所述获取室内环境湿度的步骤,之前:
100,获取室外环境温度;
200,根据所述室外环境温度确定压缩机运行的初始频率;
300,根据所述初始频率确定所述初始开度。
此处为空调器得到初始开度的步骤,即首先根据室外环境温度来得到初始频率,再根据初始频率得到初始开度,也即,初始开度是随着外界变化而变化的,前述第一开度即是在该初始开度的基础上开大的。具体的,在得到初始频率后,会得到排气温度,根据排气温度来对应调节初始开度。
进一步的,所述高湿度情况下的空调控制方法还包括:
确定所述室内环境湿度不小于预设湿度时,基于所述压缩机的初始频率,控制所述压缩机运行的频率降低至第一频率。
这样,在室内环境湿度较高时,降低压缩机的运行频率,同样可避免迅速降温,避免凝露,降低了空调的除湿速度,提高用户体验。这样,在一实施例中,可进一步增加内机风扇的风速至第二转速,第二转速大于第一转速,以保证空调器的换热效率。
请结合参阅图1,此外,本申请一实施例中,为了获得内机风扇的初始转速,所述获取室内环境湿度的步骤,之前:
获取用户输入的所述内机风扇的转速信号;
根据所述转速信号确定所述内机风扇的初始转速。
即,该初始转速是根据用户需求自行设定的,但在高湿环境下增加的转速是在此基础上增加的,以保证空调器始终处于用户需求的舒适条件下运行的,提高用户体验。
另外,为了进一步避免凝露影响用户体验,在一实施例中,在内机的出风口处设置有植绒布,通过该植绒布可吸收产生的凝露,避免因水滴造成的不适。
请结合参阅图3,下面对本申请提供的高湿度情况下的空调控制装置进行描述,下文描述的高湿度情况下的空调控制装置与上文描述的高湿度情况下的空调控制方法可相互对应参照。
该高湿度情况下的空调控制装置,包括:
获取单元10,所述获取单元用于获取室内环境湿度;
控制单元20,所述控制单元用于确定所述室内环境湿度不小于预设湿度时,基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速。
图4示例了一种电子设备的实体结构示意图,如图4所示,该电子设备可以包括:处理器(processor)810、通信接口(Communications Interface)820、存储器(memory)830和通信总线840,其中,处理器810,通信接口820,存储器830通过通信总线840完成相互间的通信。处理器810可以调用存储器830中的逻辑指令,以执行高湿度情况下的空调控制方法,该方法包括:获取室内环境湿度;确定所述室内环境湿度不小于预设湿度时,基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速。
此外,上述的存储器830中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动 硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的高湿度情况下的空调控制方法,该方法包括:获取室内环境湿度;确定所述室内环境湿度不小于预设湿度时,基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的高湿度情况下的空调控制方法,该方法包括:获取室内环境湿度;确定所述室内环境湿度不小于预设湿度时,基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种高湿度情况下的空调控制方法,包括:
    获取室内环境湿度;
    确定所述室内环境湿度不小于预设湿度时,基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速。
  2. 根据权利要求1所述的高湿度情况下的空调控制方法,其中,还包括:
    确定所述室内环境湿度小于所述预设湿度时,控制所述电子膨胀阀的开度为所述初始开度,控制所述内机风扇的转速为所述初始转速。
  3. 根据权利要求2所述的高湿度情况下的空调控制方法,其中,所述第一开度较所述初始开度正补偿20步,所述第一转速较所述初始转速增加1.2倍。
  4. 根据权利要求1至3任意一项所述的高湿度情况下的空调控制方法,其中,所述预设湿度为90%。
  5. 根据权利要求1至3任意一项所述的高湿度情况下的空调控制方法,其中,所述获取室内环境湿度的步骤,之前:
    获取室外环境温度;
    根据所述室外环境温度确定压缩机运行的初始频率;
    根据所述初始频率确定所述初始开度。
  6. 根据权利要求5所述的高湿度情况下的空调控制方法,其中,还包括:
    确定所述室内环境湿度不小于预设湿度时,基于所述压缩机的初始频率,控制所述压缩机运行的频率降低至第一频率。
  7. 根据权利要求1至3任意一项所述的高湿度情况下的空调控制方法,其中,所述获取室内环境湿度的步骤,之前:
    获取用户输入的所述内机风扇的转速信号;
    根据所述转速信号确定所述内机风扇的初始转速。
  8. 一种高湿度情况下的空调控制装置,包括:
    获取单元,所述获取单元用于获取室内环境湿度;
    控制单元,所述控制单元用于确定所述室内环境湿度不小于预设湿度时,基于电子膨胀阀的初始开度,控制所述电子膨胀阀的开度开大至第一开度,基于内机风扇的初始转速,控制所述内机风扇的转速增加至第一转速。
  9. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1至7任一项所述高湿度情况下的空调控制方法的步骤。
  10. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述高湿度情况下的空调控制方法的步骤。
PCT/CN2022/089190 2021-09-22 2022-04-26 高湿度情况下的空调控制方法和控制装置 WO2023045321A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111108032.XA CN113932407A (zh) 2021-09-22 2021-09-22 高湿度情况下的空调控制方法和控制装置
CN202111108032.X 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023045321A1 true WO2023045321A1 (zh) 2023-03-30

Family

ID=79276349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089190 WO2023045321A1 (zh) 2021-09-22 2022-04-26 高湿度情况下的空调控制方法和控制装置

Country Status (2)

Country Link
CN (1) CN113932407A (zh)
WO (1) WO2023045321A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932407A (zh) * 2021-09-22 2022-01-14 青岛海尔空调器有限总公司 高湿度情况下的空调控制方法和控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914726A (ja) * 1995-06-28 1997-01-17 Toshiba Corp 空気調和機
CN108088041A (zh) * 2017-12-06 2018-05-29 广东美的制冷设备有限公司 电子膨胀阀的控制方法、辐射空调、及存储介质
CN108195053A (zh) * 2018-01-31 2018-06-22 青岛海尔空调器有限总公司 空调防凝露控制的方法、装置及计算机存储介质
CN108444033A (zh) * 2018-02-14 2018-08-24 青岛海尔空调器有限总公司 用于空调器的防凝露控制方法
CN111102726A (zh) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 一种空调及其防凝露的方法
CN113932407A (zh) * 2021-09-22 2022-01-14 青岛海尔空调器有限总公司 高湿度情况下的空调控制方法和控制装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203204A (ja) * 1992-01-24 1993-08-10 Matsushita Electric Ind Co Ltd 空気調和機の加湿運転制御装置
CN107366990A (zh) * 2017-08-25 2017-11-21 广东美的制冷设备有限公司 加湿空调及加湿空调的加湿盘水温控制方法
CN108043367A (zh) * 2018-01-08 2018-05-18 海信(山东)空调有限公司 一种防凝露材料及其制备方法和应用
CN111059621A (zh) * 2019-12-31 2020-04-24 海信(山东)空调有限公司 一种防止空调出风口凝露的方法及空调室内机和空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914726A (ja) * 1995-06-28 1997-01-17 Toshiba Corp 空気調和機
CN108088041A (zh) * 2017-12-06 2018-05-29 广东美的制冷设备有限公司 电子膨胀阀的控制方法、辐射空调、及存储介质
CN108195053A (zh) * 2018-01-31 2018-06-22 青岛海尔空调器有限总公司 空调防凝露控制的方法、装置及计算机存储介质
CN108444033A (zh) * 2018-02-14 2018-08-24 青岛海尔空调器有限总公司 用于空调器的防凝露控制方法
CN111102726A (zh) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 一种空调及其防凝露的方法
CN113932407A (zh) * 2021-09-22 2022-01-14 青岛海尔空调器有限总公司 高湿度情况下的空调控制方法和控制装置

Also Published As

Publication number Publication date
CN113932407A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US11181287B2 (en) Control method for heating operation of air-conditioner based on coil temperature and indoor fan speed
WO2018126755A1 (zh) 空调器控制方法及装置
CA3089968C (en) Peak demand response operation of hvac systems
WO2019104789A1 (zh) 空调器及其控制方法和装置
CN109724202B (zh) 空调器及其控制方法
CN109764414A (zh) 空调器的加湿方法、装置、空调器及计算机可读存储介质
US11879658B2 (en) Air-conditioning ventilation system
CN111023512A (zh) 一种空调温湿度控制方法、装置及空调器
US11480353B2 (en) Peak demand response operation of HVAC system with face-split evaporator
CN105157167A (zh) 空调制冷控制方法及装置
CN109780674A (zh) 空调器的控制方法、空调器及计算机存储介质
JP5370452B2 (ja) 空調システム
US11802705B2 (en) Peak demand response operation with improved sensible capacity
WO2019104790A1 (zh) 空调器及其控制方法和装置
WO2023045321A1 (zh) 高湿度情况下的空调控制方法和控制装置
CN114562790A (zh) 制热模式新风控制方法及其装置、空调器及可读存储介质
WO2022127108A1 (zh) 空调器及其温湿度调控方法、计算机可读存储介质
WO2023279850A1 (zh) 空调器的控制方法、空调器、存储介质及程序产品
CN107401801A (zh) 空调的运行参数控制方法及空调
CN114963426A (zh) 一种空调器恒温除湿方法、系统、存储介质及空调器
WO2023202156A1 (zh) 空调器、空调器控制方法、电子设备及存储介质
WO2023138059A1 (zh) 空调防凝露的控制方法、控制系统、电子设备和储存介质
WO2023087690A1 (zh) 空调送风的控制方法、控制系统、电子设备和储存介质
CN109140727A (zh) 空调器的控制方法、空调器及计算机可读存储介质
CN114963429A (zh) 一种空调器除湿控制方法、系统、存储介质及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE