WO2023045305A1 - Process parameter root cause positioning method and related device - Google Patents

Process parameter root cause positioning method and related device Download PDF

Info

Publication number
WO2023045305A1
WO2023045305A1 PCT/CN2022/086785 CN2022086785W WO2023045305A1 WO 2023045305 A1 WO2023045305 A1 WO 2023045305A1 CN 2022086785 W CN2022086785 W CN 2022086785W WO 2023045305 A1 WO2023045305 A1 WO 2023045305A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
correlation coefficient
subintervals
process parameters
sample
Prior art date
Application number
PCT/CN2022/086785
Other languages
French (fr)
Chinese (zh)
Inventor
方育柯
薛晓明
孙崇敬
Original Assignee
成都数之联科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都数之联科技股份有限公司 filed Critical 成都数之联科技股份有限公司
Publication of WO2023045305A1 publication Critical patent/WO2023045305A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31061Selection of assembly process parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the field of data processing, in particular to a process parameter root cause location method and a related device.
  • one way to determine the root cause is based on the classic Pearson ⁇ Kendall correlation coefficient formula to calculate the correlation between the actual state value of the process parameter of the sample and the label value.
  • the other is to do smooth curve fitting on the parameter time series scatterplot, including exponential smoothing method and smoothing spline interpolation fitting, and calculate the sum of squares of the fitting residuals. If the trend of the scatterplot is smoother, the fitting residuals will be smaller , the stronger the correlation between the fluctuation trend of the parameter and the bad glass, the greater the possibility that the corresponding parameter is the root cause.
  • the purpose of the present invention includes, for example, providing a process parameter root cause location method and a related device, which can take into account the correlation analysis of parameter trend fluctuations and parameter time series trend fluctuations and label fluctuations, and effectively identify suspicious parameters.
  • an embodiment of the present invention provides a method for locating the root cause of a process parameter, the method comprising:
  • the comprehensive index of the process parameter is calculated.
  • the step of dividing the process parameters and sample output time into multiple subintervals to obtain multiple first subintervals and multiple second subintervals includes:
  • the sample production time is divided into a plurality of second subintervals based on the process parameters and the corresponding sample labels.
  • the step of generating the first time data includes:
  • the second median is used as the matching mapping value of the time falling within the range of the second subinterval, and the matching mapping value is used as the transformed first time data.
  • the step of obtaining the correlation coefficient of parameter trend fluctuations includes:
  • the step of performing the second processing on the sample label, the process parameter data and the first time data to obtain the correlation coefficient of parameter time series trend fluctuations includes:
  • the step of calculating the comprehensive index of process parameters based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation includes:
  • TPP max ⁇ P*TP,0 ⁇ 1/2 ;
  • the P1 is the first pearson correlation coefficient
  • P2 is the second pearson correlation coefficient
  • TP1 is the third pearson correlation coefficient
  • TP2 is the fourth pearson correlation coefficient
  • TPP is the comprehensive index of process parameters.
  • the method also includes:
  • the parameter comprehensive index is calculated and sorted. According to the sorting, it is possible to accurately know which types of process parameters are suspicious parameters, and point out the direction for the subsequent correction of the parameters of the process equipment.
  • the method further includes:
  • the embodiment of the present invention also provides a device for locating the root cause of a process parameter, the device comprising:
  • a division module configured to divide the process parameters and the sample output time into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals;
  • a generating module for each of the first subintervals and each of the second subintervals, determine the median of each of the first subintervals, generate first parameter data, and determine the median of each of the second subintervals.
  • the median of the subinterval generating the first time data
  • the first processing module is used to obtain the correlation coefficient of the parameter trend fluctuation after performing the first processing on the sample label and the first parameter data;
  • the second processing module is configured to perform a second processing on the sample label, the process parameter data and the first time data to obtain a correlation coefficient of time series trend fluctuation of parameters;
  • the calculation module is used to calculate the comprehensive index of the process parameter based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation.
  • an embodiment of the present application provides an electronic device, including a memory and a processor, the memory stores a computer program, and the processor implements the steps of the process parameter root cause location method when executing the computer program .
  • the embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the process parameter root cause location method are implemented.
  • the process parameters and the sample output time are divided into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals.
  • determine The median of each first subinterval generates the first parameter data
  • determines the median of each second subinterval generates the first time data
  • performs the first processing on the sample label and the first parameter data performs the first processing on the sample label and the first parameter data
  • obtains the parameter trend The correlation coefficient of fluctuations, the sample label, the process parameter data and the first time data are processed for the second time to obtain the correlation coefficient of the parameter time series trend fluctuation, based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation, the process is calculated Comprehensive index of parameters.
  • This application takes into account the correlation analysis between parameter trend fluctuations and parameter time series trend fluctuations and label fluctuations, so as to effectively identify suspicious parameters.
  • FIG. 1 is a schematic block diagram of an electronic device provided by an embodiment of the present invention.
  • Fig. 2 is one of the schematic flow charts of a process parameter root cause location method provided by an embodiment of the present invention
  • Fig. 3 is the second schematic flow diagram of a process parameter root cause location method provided by an embodiment of the present invention.
  • Fig. 4 is the third schematic flow diagram of a process parameter root cause location method provided by an embodiment of the present invention.
  • Fig. 5 is the fourth schematic flow diagram of a process parameter root cause location method provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a process parameter root cause locating device provided by an embodiment of the present invention.
  • one way to determine the root cause is based on the classic Pearson ⁇ Kendall correlation coefficient formula to calculate the correlation between the actual state value of the process parameter of the sample and the label value.
  • the other is to do smooth curve fitting on the parameter time series scatterplot, including exponential smoothing method and smoothing spline interpolation fitting, and calculate the sum of squares of the fitting residuals. If the trend of the scatterplot is smoother, the fitting residuals will be smaller , the stronger the correlation between the fluctuation trend of the parameter and the bad glass, the greater the possibility that the corresponding parameter is the root cause.
  • this embodiment provides a process parameter root cause location method and related devices, which can take into account the correlation analysis between parameter trend fluctuations and parameter timing trend fluctuations and label fluctuations, and effectively identify suspicious parameters.
  • the scheme provided by the embodiment is described in detail.
  • the electronic device may be a user terminal.
  • the electronic device may be, but not limited to, a server, a smart phone, a personal computer (PersonalComputer, PC), a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), Mobile Internet Device (Mobile Internet Device, MID), etc.
  • the electronic device may have a device capable of locating the root cause of the process parameter, for example, a central processing unit (Central Processing Unit, CPU), a graphics processing unit (Graphic Processing Unit, GPU), etc., so as to execute the process parameter provided in this embodiment Root cause location method.
  • a central processing unit Central Processing Unit, CPU
  • a graphics processing unit Graphic Processing Unit, GPU
  • the electronic device may also be a server capable of communicating with a user terminal.
  • the server can divide the process parameters and sample output time into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals; for each of the first sub-intervals and each of the second sub-intervals respectively Sub-intervals, determining the median of each first sub-interval, generating first parameter data, determining the median of each second sub-interval, and generating first time data; performing a first step on the sample label and the first parameter data After processing, the correlation coefficient of the parameter trend fluctuation is obtained; the second processing is performed on the sample label, the process parameter data and the first time data to obtain the correlation coefficient of the parameter time series trend fluctuation; based on the parameter trend fluctuation The correlation coefficient and the correlation coefficient of the time series trend fluctuation of the parameters are calculated to obtain the comprehensive index of the process parameters.
  • the electronic device 100 includes a process parameter root cause location device 110 , a memory 120 , and a processor 130 .
  • the memory 120, the processor 130, and various components are electrically connected to each other directly or indirectly to realize data transmission or interaction. For example, these components can be electrically connected to each other through one or more communication buses or signal lines.
  • the process parameter root cause location device 110 includes at least one software function module that can be stored in the memory 120 in the form of software or firmware (Firmware) or solidified in the operating system (Operating System, OS) of the service electronic device 100 .
  • the processor 130 is configured to execute executable modules stored in the memory 120 , such as software function modules and computer programs included in the process parameter root cause location device 110 . When the computer-executable instructions in the process parameter root cause locating device 110 are executed by the processor, the process parameter root cause locating method is realized.
  • the memory 120 can be, but not limited to, random access memory (Random Access Memory, RAM), read-only memory (Read Only Memory, ROM), programmable read-only memory (Programmable Read-OnlyMemory, PROM), can Erasable Programmable Read-Only Memory (EPROM), Electric Erasable Programmable Read-Only Memory (EEPROM), etc.
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electric Erasable Programmable Read-Only Memory
  • the processor 130 may be an integrated circuit chip with signal processing capabilities.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (DSP), an application-specific integrated circuit ( ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor can be a microprocessor, or the processor can be any conventional processor.
  • FIG. 2 is a flow chart of a process parameter root cause location method applied to the electronic device 100 shown in FIG.
  • Step 201 Divide the process parameters and the sample output time into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals.
  • Step 202 For each first subinterval and each second subinterval, determine the median of each first subinterval, generate first parameter data, determine the median of each second subinterval, and generate a first time data.
  • Step 203 After the first processing is performed on the sample label and the first parameter data, the correlation coefficient of the parameter trend fluctuation is obtained.
  • Step 204 Perform a second process on the sample label, the process parameter data and the first time data to obtain the correlation coefficient of the time series trend fluctuation of the parameters.
  • Step 205 Based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation, calculate the comprehensive index of the process parameter.
  • the process parameter is that when the process equipment produces samples, the process equipment has different process parameters based on different samples, wherein the process parameters may include temperature, air pressure, oxygen concentration, and the like.
  • the output time of the sample is that when the process equipment produces the sample, each sample corresponds to a different output time.
  • the process parameters are divided into a plurality of first subintervals, and the sample output time is divided into a plurality of second subintervals.
  • the process parameters are divided into intervals, specifically: the process parameters and the sample labels corresponding to the process parameters are extracted; and the process parameters are segmented into intervals through a preset algorithm to obtain multiple first sub-intervals.
  • the sample label represents the quality of the produced sample. For example, when the sample label is 0, it indicates that the quality of the sample is good; when the sample label is 1, it indicates that the quality of the sample is poor.
  • preset algorithms such as optimal binning algorithm for regression number, chi-square binning, and WOE binning, etc.
  • the embodiment of the present invention adopts the optimal binning algorithm for regression number to perform interval analysis on process parameters. divided.
  • the process parameters using different first sub-intervals can be obtained, and samples of different qualities can be obtained.
  • the quality of the samples obtained by the process parameters corresponding to the other first sub-intervals is poor.
  • the process parameters, corresponding sample labels and corresponding sample output time are obtained; based on the process parameters and corresponding sample labels, the sample output time is divided into are multiple second subintervals.
  • process parameters there is a corresponding relationship among process parameters, sample label and sample output time, that is, a sample corresponds to sample label, sample output time and process parameters.
  • Process parameters and corresponding sample labels and sample output time data check whether the time range of sample output time exceeds the first preset time length, if it exceeds, divide the sample output time into multiple A second sub-interval, if it does not exceed the first preset duration, check whether the time range exceeds the second preset duration, if it exceeds the second preset duration, divide the sample output duration into If the multiple second sub-intervals do not exceed the second preset duration, the sample output time is divided into multiple second sub-intervals in minutes.
  • the median of each first subinterval is determined for each first subinterval and each second subinterval respectively , generate the first parameter data, determine the median of each second subinterval, and generate the first time data.
  • a linear correlation coefficient and a nonlinear correlation coefficient of parameter trend fluctuations are obtained.
  • the second processing is performed on the sample label, the process parameter data and the first time data to obtain the linear correlation coefficient and the nonlinear correlation coefficient of the time series trend fluctuation of the parameters.
  • the comprehensive index of the process parameter is determined, so that the suspicious parameters of the process equipment are determined according to the comprehensive index of the process parameter. Further, the correction direction for the process equipment is determined.
  • a process parameter root cause The positioning method specifically includes the following steps:
  • Step 202-1 For each first subinterval, determine the first median in the first subinterval.
  • Step 202-2 Use the first median as the matching mapping value of the parameter value falling within the first subinterval range, and use the matching mapping value as the transformed first parameter data.
  • Step 202-3 For each second subinterval, determine the second median in the second subinterval.
  • Step 202-4 use the second median as the matching mapping value of the time falling within the second subinterval range, and use the matching mapping value as the transformed first time data.
  • the first time data corresponding to the second subinterval is determined in the same manner as above.
  • a method for locating the root cause of process parameters is provided, which specifically includes the following steps: process parameters that need to be explained It includes multiple types, and the types of process parameters can include temperature process parameters, air pressure process parameters, and oxygen concentration process parameters.
  • process parameters that need to be explained It includes multiple types, and the types of process parameters can include temperature process parameters, air pressure process parameters, and oxygen concentration process parameters.
  • the following steps are specific calculation methods for calculating the correlation coefficient of the parameter trend fluctuation of a certain type of process parameter:
  • Step 203-1 Group the first parameter data into groups.
  • Step 203-2 Determine the group value of each group.
  • Step 203-3 Calculate the first average value of the labels corresponding to each group.
  • Step 203-4 Calculate the first pearson correlation coefficient between the first average value and the group value.
  • Step 203-5 Centralize the group values of the first parameter data group.
  • Step 203-6 Obtain the first absolute value group of the first group of values after the centralization process.
  • Step 203-7 Calculate the second pearson correlation coefficient of the first mean value of the first absolute value group and the label corresponding to each group.
  • the first parameter data is (3,3,3,4,4,4,5,5,5)
  • the grouped data is (3,3,3) , (4,4,4), (5,5,5)
  • determine the group value of each group the group value of group (3,3,3) is 3, the group value of group (4,4,4)
  • the group value is 4, and the group value of group (5,5,5) is 5.
  • Each data in the first parameter data corresponds to a sample label
  • the sample label of the first parameter data is the sample label corresponding to the process parameter data before the first parameter data is processed.
  • the first parameter data is (3,3,3,4,4,4,5,5,5)
  • the corresponding sample label is (1,1,1,0,0,0,1,1,1 )
  • the first average value of the sample label corresponding to the group (3,3,3) is 1
  • the first average value of the sample label corresponding to the group (4,4,4) is 0,
  • the group (5,5,5) The first mean value of the corresponding sample label is 1.
  • Pearson Correlation Coefficient (Pearson Correlation Coefficient) is used to measure whether two data sets are on a line, and it is used to measure the linear relationship between fixed-distance variables.
  • a method for locating the root cause of the process parameter is provided, which specifically includes the following steps:
  • the following steps are specific calculation methods for calculating the correlation coefficient of the parameter trend fluctuation of a certain type of process parameter, wherein the type of process parameter involved in the calculation in step 204 is consistent with that in step 203 .
  • Step 204-1 Sort the first time data, process parameters and sample labels in chronological order to obtain sorted second time data, second process parameters and second sample labels.
  • Step 204-2 Group the second process parameters according to the second time data, and determine the second average value of the process parameters and the third average value of the labels of each group.
  • Step 204-3 Calculate the third pearson correlation coefficient of the second average value and the third average value.
  • Step 204-4 Centralize the second average value of the process parameters of each group.
  • Step 204-5 Take the second absolute value group of the second mean value after the centralization process.
  • Step 204-6 Calculate the fourth pearson correlation coefficient of the second absolute value group and the third mean value.
  • the processing method of determining the correlation coefficient of the time series trend fluctuation of parameters is similar to that of steps 203-1 to 203-7, the difference is that the first time data, process parameters and sample labels need to be sorted in chronological order to obtain the sorted The subsequent second time data, second process parameter and second sample label.
  • the comprehensive index of the process parameter is calculated.
  • the comprehensive index of the process parameter is calculated by the following formula:
  • TPP max ⁇ P*TP,0 ⁇ 1/2 ;
  • P1 is the first pearson correlation coefficient
  • P2 is the second pearson correlation coefficient
  • TP1 is the third pearson correlation coefficient
  • TP2 is the fourth pearson correlation coefficient
  • TPP is the comprehensive index of process parameters.
  • the type parameter comprehensive index of each type of process parameter is calculated separately, and the sizes of the multiple type parameter comprehensive indexes are sorted in descending order. Acquiring the first-ranked parameter comprehensive index; determining that the process parameter corresponding to the acquired parameter comprehensive index is suspicious.
  • the process parameters and the sample output time are divided into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals.
  • determine The median of each first subinterval generates the first parameter data
  • determines the median of each second subinterval generates the first time data
  • performs the first processing on the sample label and the first parameter data performs the first processing on the sample label and the first parameter data
  • obtains the parameter trend The correlation coefficient of fluctuations, the sample label, the process parameter data and the first time data are processed for the second time to obtain the correlation coefficient of the parameter time series trend fluctuation, based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation, the process is calculated Comprehensive index of parameters.
  • This application takes into account the correlation analysis between parameter trend fluctuations and parameter time series trend fluctuations and label fluctuations, so as to effectively identify suspicious parameters.
  • this embodiment also provides a process parameter root cause location device 110 applied to the electronic device 100 shown in FIG. 1 , and the process parameter root cause location device 110 includes:
  • Dividing module 111 is used for dividing process parameter and sample output time into a plurality of sub-intervals respectively, obtains a plurality of first sub-intervals and a plurality of second sub-intervals;
  • the generation module 112 is used to determine the median of each of the first subintervals for each of the first subintervals and each of the second subintervals, generate first parameter data, and determine the median of each of the first subintervals. The median of the two sub-intervals to generate the first time data;
  • the first processing module 113 is configured to obtain the correlation coefficient of the parameter trend fluctuation after performing the first processing on the sample label and the first parameter data;
  • the second processing module 114 is configured to perform a second processing on the sample label, the process parameter data and the first time data to obtain a correlation coefficient of time series trend fluctuation of parameters;
  • the calculation module 115 is configured to calculate and obtain the comprehensive index of the process parameter based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation.
  • the dividing module 111 is specifically configured to:
  • the sample production time is divided into a plurality of second subintervals based on the process parameters and the corresponding sample labels.
  • the generating module 112 is specifically configured to:
  • the second median is used as the matching mapping value of the time falling within the range of the second subinterval, and the matching mapping value is used as the transformed first time data.
  • the first processing module 113 is specifically configured to:
  • the second processing module 114 is specifically configured to:
  • the computing module 115 is specifically configured to:
  • TPP max ⁇ P*TP,0 ⁇ 1/2 ;
  • the P1 is the first pearson correlation coefficient
  • P2 is the second pearson correlation coefficient
  • TP1 is the third pearson correlation coefficient
  • TP2 is the fourth pearson correlation coefficient
  • TPP is the comprehensive index of process parameters.
  • the calculation module 115 is further configured to:
  • the calculation module 115 is further configured to:
  • this application divides the process parameters and sample output time into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals, respectively for each first sub-interval and each second sub-interval
  • Two sub-intervals determine the median of each first sub-interval, generate the first parameter data
  • determine the median of each second sub-interval generate the first time data
  • the correlation coefficient of the parameter trend fluctuation is obtained, and the sample label, the process parameter data and the first time data are processed for the second time to obtain the correlation coefficient of the parameter time series trend fluctuation, based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation
  • the coefficient is calculated to obtain the comprehensive index of the process parameters.
  • This application takes into account the correlation analysis between parameter trend fluctuations and parameter time series trend fluctuations and label fluctuations, so as to effectively identify suspicious parameters.
  • the present application also provides an electronic device 100 , and the electronic device 100 includes a processor 130 and a memory 120 .
  • the memory 120 stores computer-executable instructions, and when the computer-executable instructions are executed by the processor 130, the process parameter root cause location method is realized.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the storage medium stores a computer program.
  • the process parameter root cause location method is implemented.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.
  • each functional module in each embodiment of the present application may be integrated to form an independent part, each module may exist independently, or two or more modules may be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Abstract

A process parameter root cause positioning method and a related device. The method comprises: separately dividing a process parameter and a sample output time into multiple subintervals to obtain a plurality of first subintervals and a plurality of second subintervals (step 201); for each first subinterval and each second subinterval, determining the median of each first subinterval to generate first parameter data and determining the median of each second subinterval to generate first time data (step 202); after performing first processing on a sample label and the first parameter data, obtain a correlation coefficient of parameter trend fluctuation (step 203); performing second processing on the sample label, process parameter data and the first time data to obtain a correlation coefficient of parameter time series trend fluctuation (step 204); and on the basis of the correlation coefficient of parameter trend fluctuation and the correlation coefficient of parameter time series trend fluctuation, performing a calculation to obtain a process parameter comprehensive index (step 205). The correlation analysis between parameter trend fluctuation, parameter time series trend fluctuation and label fluctuation is taken into consideration, thereby effectively recognizing the suspicious parameter.

Description

工艺参数根因定位方法和相关装置Process parameter root cause location method and related device
相关申请的交叉引用Cross References to Related Applications
本申请要求于2021年09月22日提交中国专利局的申请号为CN202111104580.5、名称为“工艺参数根因定位方法和相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of the Chinese patent application with the application number CN202111104580.5 and titled "Process Parameter Root Cause Location Method and Related Devices" filed with the China Patent Office on September 22, 2021, the entire contents of which are hereby incorporated by reference In this application.
技术领域technical field
本发明涉及数据处理领域,具体而言,涉及工艺参数根因定位方法和相关装置。The invention relates to the field of data processing, in particular to a process parameter root cause location method and a related device.
背景技术Background technique
在工业场景中,已实现玻璃自动化生产,其生产过程中,制程设备会自动留存其制作玻璃过程中对应的制程参数实际状态值。对于相同工艺的大批量玻璃,制程设备的参数设定值保持一致,但不同程度的波动情况可能会导致产出不良玻璃。In the industrial scene, automatic glass production has been realized. During the production process, the process equipment will automatically save the actual state value of the process parameters corresponding to the glass production process. For large batches of glass with the same process, the parameter settings of the process equipment remain consistent, but fluctuations to varying degrees may lead to poor glass output.
基于生产参数实时状态记录和精心设计的算法,有效挖掘出参数波动与不良的相关关系是定位不良的设备参数根因的关键所在。Based on real-time state records of production parameters and well-designed algorithms, effectively mining the correlation between parameter fluctuations and failures is the key to locating the root cause of poor equipment parameters.
目前对于根因的确定方式,一种为基于经典的Pearson\Kendall相关系数公式,计算样本的制程参数实际状态值与标签值的相关关系。另一种为对参数时序散点图做光滑曲线拟合,包括指数平滑法和平滑样条插值拟合,计算拟合残差平方和,若散点图趋势越平滑,拟合残差越小,参数的波动趋势与玻璃不良相关性越强,说明对应参数是根因的可能性越大。At present, one way to determine the root cause is based on the classic Pearson\Kendall correlation coefficient formula to calculate the correlation between the actual state value of the process parameter of the sample and the label value. The other is to do smooth curve fitting on the parameter time series scatterplot, including exponential smoothing method and smoothing spline interpolation fitting, and calculate the sum of squares of the fitting residuals. If the trend of the scatterplot is smoother, the fitting residuals will be smaller , the stronger the correlation between the fluctuation trend of the parameter and the bad glass, the greater the possibility that the corresponding parameter is the root cause.
上述两种方式考虑影响根因的因素不完全,从而导致最终计算的根因不够准确。The factors affecting the root cause in the above two methods are not fully considered, which leads to the inaccurate root cause of the final calculation.
发明内容Contents of the invention
本发明的目的包括,例如,提供了一种工艺参数根因定位方法和相关装置,其能够兼顾参数趋势波动和参数时序趋势波动与标签波动的相关性分析,有效识别可疑参数。The purpose of the present invention includes, for example, providing a process parameter root cause location method and a related device, which can take into account the correlation analysis of parameter trend fluctuations and parameter time series trend fluctuations and label fluctuations, and effectively identify suspicious parameters.
本发明的实施例可以这样实现:Embodiments of the present invention can be realized like this:
第一方面,本发明实施例提供了一种工艺参数根因定位方法,所述方法包括:In the first aspect, an embodiment of the present invention provides a method for locating the root cause of a process parameter, the method comprising:
分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间;Dividing the process parameters and the sample output time into multiple sub-intervals respectively to obtain multiple first sub-intervals and multiple second sub-intervals;
分别针对每个所述第一子区间和每个所述第二子区间,确定各所述第一子区间的中位数,生成第一参数数据,确定各所述第二子区间的中位数,生成第一时间数据;For each of the first subintervals and each of the second subintervals, determine the median of each of the first subintervals, generate first parameter data, and determine the median of each of the second subintervals Number, generate the first time data;
对样本标签和所述第一参数数据进行第一处理后,得到参数趋势波动的相关系数;After performing the first processing on the sample label and the first parameter data, the correlation coefficient of the parameter trend fluctuation is obtained;
对所述样本标签、所述制程参数数据以及所述第一时间数据进行第二处理,得到参数时序趋势波动的相关系数;performing a second process on the sample label, the process parameter data, and the first time data to obtain a correlation coefficient of time-series trend fluctuation of parameters;
基于所述参数趋势波动的相关系数和所述参数时序趋势波动的相关系数,计算得到制程参数综合指标。Based on the correlation coefficient of the trend fluctuation of the parameter and the correlation coefficient of the time series trend fluctuation of the parameter, the comprehensive index of the process parameter is calculated.
通过上述技术方案,兼顾参数趋势波动和参数时序趋势波动与标签波动的相关性分 析,从而有效识别可疑参数。Through the above technical solution, taking into account the correlation analysis of parameter trend fluctuations and parameter time series trend fluctuations and label fluctuations, thereby effectively identifying suspicious parameters.
在可选的实施方式中,所述分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间的步骤,包括:In an optional implementation manner, the step of dividing the process parameters and sample output time into multiple subintervals to obtain multiple first subintervals and multiple second subintervals includes:
提取制程参数和所述制程参数对应的样本标签;extracting process parameters and sample labels corresponding to the process parameters;
通过回归数最优分箱算法,将所述制程参数进行区间切分,得到多个第一子区间;Using the regression number optimal binning algorithm, segmenting the process parameters into intervals to obtain a plurality of first sub-intervals;
获取所述制程参数、对应的样本标签以及对应的样本产出时间;Obtaining the process parameters, corresponding sample labels and corresponding sample output time;
基于所述制程参数和所述对应的样本标签,将所述样本产出时间划分为多个第二子区间。The sample production time is divided into a plurality of second subintervals based on the process parameters and the corresponding sample labels.
通过上述技术方案,保证将制程参数划分的足够小,从而确保不同第一子区间对应的样本标签足够准确。Through the above technical solution, it is ensured that the process parameters are divided into small enough, so as to ensure that the sample labels corresponding to different first sub-intervals are sufficiently accurate.
在可选的实施方式中,所述分别针对每个所述第一子区间和每个所述第二子区间,确定各所述第一子区间的中位数,生成第一参数数据,确定各所述第二子区间的中位数,生成第一时间数据的步骤,包括:In an optional implementation manner, for each of the first subintervals and each of the second subintervals, determine the median of each of the first subintervals, generate first parameter data, and determine The median of each of the second sub-intervals, the step of generating the first time data includes:
针对每个所述第一子区间,确定所述第一子区间中的第一中位数;for each of said first subintervals, determining a first median in said first subinterval;
将所述第一中位数作为落入所述第一子区间范围参数值的匹配映射值,将匹配映射值作为变换后的第一参数数据;Using the first median as a matching mapping value falling within the range parameter value of the first subinterval, and using the matching mapping value as the transformed first parameter data;
针对每个所述第二子区间,确定所述第二子区间中的第二中位数;for each of said second subintervals, determining a second median in said second subintervals;
将所述第二中位数作为落入所述第二子区间范围时间的匹配映射值,将匹配映射值作为变换后的第一时间数据。The second median is used as the matching mapping value of the time falling within the range of the second subinterval, and the matching mapping value is used as the transformed first time data.
通过上述技术方案,避免第一子区间和第二子区间中存在计算数据,影响最后结果的准确性。Through the above technical solution, it is avoided that calculation data exists in the first sub-interval and the second sub-interval, which affects the accuracy of the final result.
在可选的实施方式中,所述对样本标签和所述第一参数数据进行第一处理后,得到参数趋势波动的相关系数的步骤,包括:In an optional implementation manner, after performing the first processing on the sample label and the first parameter data, the step of obtaining the correlation coefficient of parameter trend fluctuations includes:
将所述第一参数数据进行分组;grouping the first parameter data;
确定每个所述分组的组别值;determining a group value for each of said groupings;
计算每个所述分组对应的标签的第一平均值;calculating the first average value of the labels corresponding to each of the groups;
计算所述第一平均值和所述组别值的第一pearson相关系数;calculating the first pearson correlation coefficient of the first average value and the group value;
将所述第一参数数据分组的所述组别值中心化处理;centralizing the group values of the first parameter data group;
取中心化处理后的第一组别值的第一绝对值组;Take the first absolute value group of the first group value after centralization;
计算所述第一绝对值组和每个组对应的标签的所述第一平均值的第二pearson相关系数。Calculating a second pearson correlation coefficient of the first absolute value group and the first average value of the label corresponding to each group.
通过上述技术方案,通过计算第一平均值和组别值的第一pearson相关系数,以及第一绝对值组和每个组对应的标签的第一平均值的第二pearson相关系数,可以准确判定制程参数取值范围与样本标签的好坏之间的相关强度。Through the above technical solution, by calculating the first pearson correlation coefficient between the first average value and the group value, and the second pearson correlation coefficient between the first absolute value group and the first average value of the label corresponding to each group, it can be accurately determined The strength of the correlation between the value range of the process parameter and the quality of the sample label.
在可选的实施方式中,所述对所述样本标签、所述制程参数数据以及所述第一时间 数据进行第二处理,得到参数时序趋势波动的相关系数的步骤,包括:In an optional implementation manner, the step of performing the second processing on the sample label, the process parameter data and the first time data to obtain the correlation coefficient of parameter time series trend fluctuations includes:
将所述第一时间数据、所述制程参数以及所述样本标签,按照时间顺序排序,得到排序后的第二时间数据、第二制程参数以及第二样本标签;Sorting the first time data, the process parameters, and the sample labels in chronological order to obtain sorted second time data, second process parameters, and second sample labels;
将所述第二制程参数按照所述第二时间数据进行分组,确定每个分组的制程参数的第二平均值和标签的第三平均值;grouping the second process parameter according to the second time data, and determining the second average value of the process parameter and the third average value of the label for each group;
计算所述第二平均值和所述第三平均值的第三pearson相关系数;calculating a third pearson correlation coefficient of said second average value and said third average value;
将每个分组的制程参数的第二平均值中心化处理;centering the second average value of the process parameters for each group;
取中心化处理后的第二平均值的第二绝对值组;Take the second absolute value group of the second mean value after centralization;
计算所述第二绝对值组和所述第三平均值的第四pearson相关系数。Computing a fourth pearson correlation coefficient of the second set of absolute values and the third mean value.
通过上述技术方案,通过计算参数时序趋势波动与样本标签之间的相关强度。Through the above technical solution, the correlation strength between the time series trend fluctuation of the parameter and the sample label is calculated.
在可选的实施方式中,所述基于所述参数趋势波动的相关系数和所述参数时序趋势波动的相关系数,计算得到制程参数综合指标的步骤,包括:In an optional embodiment, the step of calculating the comprehensive index of process parameters based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation includes:
通过以下公式计算制程参数综合指标:The comprehensive index of process parameters is calculated by the following formula:
Figure PCTCN2022086785-appb-000001
Figure PCTCN2022086785-appb-000001
Figure PCTCN2022086785-appb-000002
Figure PCTCN2022086785-appb-000002
TPP=max{P*TP,0} 1/2TPP=max{P*TP,0} 1/2 ;
其中,所述P1为第一pearson相关系数,P2为第二pearson相关系数;TP1为第三pearson相关系数,TP2为第四pearson相关系数,TPP为制程参数综合指标。Wherein, the P1 is the first pearson correlation coefficient, P2 is the second pearson correlation coefficient; TP1 is the third pearson correlation coefficient, TP2 is the fourth pearson correlation coefficient, and TPP is the comprehensive index of process parameters.
通过上述技术方案,兼顾参数趋势波动和参数时序趋势波动与标签波动的相关性分析,有效识别可疑参数。Through the above technical solution, taking into account the correlation analysis of parameter trend fluctuations and parameter time series trend fluctuations and label fluctuations, suspicious parameters can be effectively identified.
在可选的实施方式中,所述方法还包括:In an optional embodiment, the method also includes:
当所述制程参数包括多种类型时,分别计算每种类型的制程参数的类型参数综合指标;When the process parameter includes multiple types, calculate the type parameter comprehensive index of each type of process parameter;
将多个类型参数综合指标的大小降序排序。Sort the size of multiple type parameter comprehensive indicators in descending order.
通过上述技术方案,对不同类型的制程参数,计算参数综合指标,并进行排序,依据排序,可以准确知道那些类型的制程参数是可疑参数,为后续修正制程设备的参数指明方向。Through the above-mentioned technical solution, for different types of process parameters, the parameter comprehensive index is calculated and sorted. According to the sorting, it is possible to accurately know which types of process parameters are suspicious parameters, and point out the direction for the subsequent correction of the parameters of the process equipment.
在可选的实施方式中,在所述将多个类型参数综合指标的大小降序排序的步骤之后,所述方法还包括:In an optional implementation manner, after the step of sorting the sizes of multiple type parameter comprehensive indicators in descending order, the method further includes:
获取排序在前的参数综合指标;Obtain the comprehensive index of parameters sorted first;
确定获取的参数综合指标对应的制程参数可疑。It is determined that the process parameter corresponding to the obtained parameter comprehensive index is suspicious.
通过上述技术方案,确定靠前的参数综合指标对应的制程参数可疑,为后续修正制程设备的参数指明方向。Through the above-mentioned technical solution, it is determined that the process parameters corresponding to the first parameter comprehensive indicators are suspicious, and point out the direction for the subsequent correction of the parameters of the process equipment.
第二方面,本发明实施例还提供了一种工艺参数根因定位装置,所述装置包括:In the second aspect, the embodiment of the present invention also provides a device for locating the root cause of a process parameter, the device comprising:
划分模块,用于分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间;A division module, configured to divide the process parameters and the sample output time into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals;
生成模块,用于分别针对每个所述第一子区间和每个所述第二子区间,确定各所述第一子区间的中位数,生成第一参数数据,确定各所述第二子区间的中位数,生成第一时间数据;A generating module, for each of the first subintervals and each of the second subintervals, determine the median of each of the first subintervals, generate first parameter data, and determine the median of each of the second subintervals. The median of the subinterval, generating the first time data;
第一处理模块,用于对样本标签和所述第一参数数据进行第一处理后,得到参数趋势波动的相关系数;The first processing module is used to obtain the correlation coefficient of the parameter trend fluctuation after performing the first processing on the sample label and the first parameter data;
第二处理模块,用于对所述样本标签、所述制程参数数据以及所述第一时间数据进行第二处理,得到参数时序趋势波动的相关系数;The second processing module is configured to perform a second processing on the sample label, the process parameter data and the first time data to obtain a correlation coefficient of time series trend fluctuation of parameters;
计算模块,用于基于所述参数趋势波动的相关系数和所述参数时序趋势波动的相关系数,计算得到制程参数综合指标。The calculation module is used to calculate the comprehensive index of the process parameter based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation.
第三方面,本申请实施例提供了一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现所述工艺参数根因定位方法的步骤。In a third aspect, an embodiment of the present application provides an electronic device, including a memory and a processor, the memory stores a computer program, and the processor implements the steps of the process parameter root cause location method when executing the computer program .
第四方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现所述工艺参数根因定位方法的步骤。In a fourth aspect, the embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the process parameter root cause location method are implemented.
本申请具有以下有益效果:The application has the following beneficial effects:
本申请通过分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间,分别针对每个第一子区间和每个第二子区间,确定各第一子区间的中位数,生成第一参数数据,确定各第二子区间的中位数,生成第一时间数据,对样本标签和第一参数数据进行第一处理后,得到参数趋势波动的相关系数,对样本标签、制程参数数据以及第一时间数据进行第二处理,得到参数时序趋势波动的相关系数,基于参数趋势波动的相关系数和参数时序趋势波动的相关系数,计算得到制程参数综合指标。本申请兼顾参数趋势波动和参数时序趋势波动与标签波动的相关性分析,从而有效识别可疑参数。In this application, the process parameters and the sample output time are divided into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals. For each first sub-interval and each second sub-interval, determine The median of each first subinterval generates the first parameter data, determines the median of each second subinterval, generates the first time data, performs the first processing on the sample label and the first parameter data, and obtains the parameter trend The correlation coefficient of fluctuations, the sample label, the process parameter data and the first time data are processed for the second time to obtain the correlation coefficient of the parameter time series trend fluctuation, based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation, the process is calculated Comprehensive index of parameters. This application takes into account the correlation analysis between parameter trend fluctuations and parameter time series trend fluctuations and label fluctuations, so as to effectively identify suspicious parameters.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the accompanying drawings used in the embodiments will be briefly introduced below. It should be understood that the following drawings only show some embodiments of the present invention, and thus It should be regarded as a limitation on the scope, and those skilled in the art can also obtain other related drawings based on these drawings without creative work.
图1为本发明实施例提供的电子设备的方框示意图;FIG. 1 is a schematic block diagram of an electronic device provided by an embodiment of the present invention;
图2为本发明实施例提供的一种工艺参数根因定位方法的流程示意图之一;Fig. 2 is one of the schematic flow charts of a process parameter root cause location method provided by an embodiment of the present invention;
图3为本发明实施例提供的一种工艺参数根因定位方法的流程示意图之二;Fig. 3 is the second schematic flow diagram of a process parameter root cause location method provided by an embodiment of the present invention;
图4为本发明实施例提供的一种工艺参数根因定位方法的流程示意图之三;Fig. 4 is the third schematic flow diagram of a process parameter root cause location method provided by an embodiment of the present invention;
图5为本发明实施例提供的一种工艺参数根因定位方法的流程示意图之四;Fig. 5 is the fourth schematic flow diagram of a process parameter root cause location method provided by an embodiment of the present invention;
图6为本发明实施例提供的一种工艺参数根因定位装置的结构示意图。Fig. 6 is a schematic structural diagram of a process parameter root cause locating device provided by an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Accordingly, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the claimed invention, but merely represents selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。It should be noted that like numerals and letters denote similar items in the following figures, therefore, once an item is defined in one figure, it does not require further definition and explanation in subsequent figures.
在本发明的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be noted that if the orientation or positional relationship indicated by the terms "upper", "lower", "inner" and "outer" appear, it is based on the orientation or positional relationship shown in the drawings, or It is the orientation or positional relationship that the invention product is usually placed in use, and it is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation , and therefore cannot be construed as a limitation of the present invention.
此外,若出现术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。In addition, terms such as "first" and "second" are used only for distinguishing descriptions, and should not be understood as indicating or implying relative importance.
需要说明的是,在不冲突的情况下,本发明的实施例中的特征可以相互结合。It should be noted that, in the case of no conflict, the features in the embodiments of the present invention may be combined with each other.
目前对于根因的确定方式,一种为基于经典的Pearson\Kendall相关系数公式,计算样本的制程参数实际状态值与标签值的相关关系。另一种为对参数时序散点图做光滑曲线拟合,包括指数平滑法和平滑样条插值拟合,计算拟合残差平方和,若散点图趋势越平滑,拟合残差越小,参数的波动趋势与玻璃不良相关性越强,说明对应参数是根因的可能性越大。At present, one way to determine the root cause is based on the classic Pearson\Kendall correlation coefficient formula to calculate the correlation between the actual state value of the process parameter of the sample and the label value. The other is to do smooth curve fitting on the parameter time series scatterplot, including exponential smoothing method and smoothing spline interpolation fitting, and calculate the sum of squares of the fitting residuals. If the trend of the scatterplot is smoother, the fitting residuals will be smaller , the stronger the correlation between the fluctuation trend of the parameter and the bad glass, the greater the possibility that the corresponding parameter is the root cause.
但是经过发明人大量研究发现,采用现有技术的方式,考虑影响根因的因素不完全,从而导致最终计算的根因不够准确。However, after a lot of research by the inventors, it is found that the factors affecting the root cause are considered incompletely in the way of the prior art, resulting in inaccurate final calculation of the root cause.
有鉴于对上述问题的发现,本实施例提供了一种工艺参数根因定位方法和相关装置,能够兼顾参数趋势波动和参数时序趋势波动与标签波动的相关性分析,有效识别可疑参数,下面对本实施例提供的方案进行详细阐述。In view of the discovery of the above problems, this embodiment provides a process parameter root cause location method and related devices, which can take into account the correlation analysis between parameter trend fluctuations and parameter timing trend fluctuations and label fluctuations, and effectively identify suspicious parameters. The scheme provided by the embodiment is described in detail.
本实施例提供一种可以对工艺参数根因进行定位的电子设备。在一种可能的实现方式中,所述电子设备可以为用户终端,例如,电子设备可以是,但不限于,服务器、智能手机、个人电脑(PersonalComputer,PC)、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、移动上网设备(Mobile Internet Device,MID)等。This embodiment provides an electronic device capable of locating the root cause of a process parameter. In a possible implementation manner, the electronic device may be a user terminal. For example, the electronic device may be, but not limited to, a server, a smart phone, a personal computer (PersonalComputer, PC), a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), Mobile Internet Device (Mobile Internet Device, MID), etc.
该电子设备可以具有能够对艺参数根因进行定位的器件,例如,中央处理器(Central Processing Unit,CPU)、图形处理器(Graphic Processing Unit,GPU)等,从而执行本实施例提供的工艺参数根因定位方法。The electronic device may have a device capable of locating the root cause of the process parameter, for example, a central processing unit (Central Processing Unit, CPU), a graphics processing unit (Graphic Processing Unit, GPU), etc., so as to execute the process parameter provided in this embodiment Root cause location method.
在另一种可能的实现方式中,所述电子设备也可以为能够与用户终端通信的服务器。该服务器可以分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间;分别针对每个所述第一子区间和每个所述第二子区间,确定各第一子区间的中位数,生成第一参数数据,确定各第二子区间的中位数,生成第一时间数据;对样本标签和所述第一参数数据进行第一处理后,得到参数趋势波动的相关系数;对所 述样本标签、所述制程参数数据以及所述第一时间数据进行第二处理,得到参数时序趋势波动的相关系数;基于所述参数趋势波动的相关系数和所述参数时序趋势波动的相关系数,计算得到制程参数综合指标。In another possible implementation manner, the electronic device may also be a server capable of communicating with a user terminal. The server can divide the process parameters and sample output time into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals; for each of the first sub-intervals and each of the second sub-intervals respectively Sub-intervals, determining the median of each first sub-interval, generating first parameter data, determining the median of each second sub-interval, and generating first time data; performing a first step on the sample label and the first parameter data After processing, the correlation coefficient of the parameter trend fluctuation is obtained; the second processing is performed on the sample label, the process parameter data and the first time data to obtain the correlation coefficient of the parameter time series trend fluctuation; based on the parameter trend fluctuation The correlation coefficient and the correlation coefficient of the time series trend fluctuation of the parameters are calculated to obtain the comprehensive index of the process parameters.
参照图1所示的该电子设备100的结构示意图。该电子设备100包括工艺参数根因定位装置110、存储器120、处理器130。Referring to the schematic structural diagram of the electronic device 100 shown in FIG. 1 . The electronic device 100 includes a process parameter root cause location device 110 , a memory 120 , and a processor 130 .
该存储器120、处理器130,各元件相互之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可通过一条或多条通讯总线或信号线实现电性连接。该工艺参数根因定位装置110包括至少一个可以软件或固件(Firmware)的形式存储于存储器120中或固化在服电子设备100的操作系统(Operating System,OS)中的软件功能模块。处理器130用于执行存储器120中存储的可执行模块,例如工艺参数根因定位装置110所包括的软件功能模块及计算机程序等。该工艺参数根因定位装置110中的计算机可执行指令被处理器执行时,实现该连工艺参数根因定位方法。The memory 120, the processor 130, and various components are electrically connected to each other directly or indirectly to realize data transmission or interaction. For example, these components can be electrically connected to each other through one or more communication buses or signal lines. The process parameter root cause location device 110 includes at least one software function module that can be stored in the memory 120 in the form of software or firmware (Firmware) or solidified in the operating system (Operating System, OS) of the service electronic device 100 . The processor 130 is configured to execute executable modules stored in the memory 120 , such as software function modules and computer programs included in the process parameter root cause location device 110 . When the computer-executable instructions in the process parameter root cause locating device 110 are executed by the processor, the process parameter root cause locating method is realized.
其中,该存储器120可以是,但不限于,随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(Programmable Read-OnlyMemory,PROM),可擦除只读存储器(Erasable Programmable Read-Only Memory,EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory,EEPROM)等。其中,存储器120用于存储程序,该处理器130在接收到执行指令后,执行该程序。Wherein, the memory 120 can be, but not limited to, random access memory (Random Access Memory, RAM), read-only memory (Read Only Memory, ROM), programmable read-only memory (Programmable Read-OnlyMemory, PROM), can Erasable Programmable Read-Only Memory (EPROM), Electric Erasable Programmable Read-Only Memory (EEPROM), etc. Wherein, the memory 120 is used to store a program, and the processor 130 executes the program after receiving an execution instruction.
该处理器130可能是一种集成电路芯片,具有信号的处理能力。上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器。The processor 130 may be an integrated circuit chip with signal processing capabilities. The above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (DSP), an application-specific integrated circuit ( ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components. Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed. A general-purpose processor can be a microprocessor, or the processor can be any conventional processor.
请参照图2,图2为应用于图1所示的电子设备100的一种工艺参数根因定位方法的流程图,以下将对所述方法包括各个步骤进行详细阐述:Please refer to FIG. 2. FIG. 2 is a flow chart of a process parameter root cause location method applied to the electronic device 100 shown in FIG.
步骤201:分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间。Step 201: Divide the process parameters and the sample output time into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals.
步骤202:分别针对每个第一子区间和每个第二子区间,确定各第一子区间的中位数,生成第一参数数据,确定各第二子区间的中位数,生成第一时间数据。Step 202: For each first subinterval and each second subinterval, determine the median of each first subinterval, generate first parameter data, determine the median of each second subinterval, and generate a first time data.
步骤203:对样本标签和第一参数数据进行第一处理后,得到参数趋势波动的相关系数。Step 203: After the first processing is performed on the sample label and the first parameter data, the correlation coefficient of the parameter trend fluctuation is obtained.
步骤204:对样本标签、制程参数数据以及第一时间数据进行第二处理,得到参数时序趋势波动的相关系数。Step 204: Perform a second process on the sample label, the process parameter data and the first time data to obtain the correlation coefficient of the time series trend fluctuation of the parameters.
步骤205:基于参数趋势波动的相关系数和参数时序趋势波动的相关系数,计算得到制程参数综合指标。Step 205: Based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation, calculate the comprehensive index of the process parameter.
制程参数为制程设备对样本进行生产时,制程设备基于不同样本具有不同的制程参数,其中,制程参数可以包括温度、气压、氧气浓度等。样本的产出时间为,制程设备对样本生产时,每个样本对应不同的产出时间。The process parameter is that when the process equipment produces samples, the process equipment has different process parameters based on different samples, wherein the process parameters may include temperature, air pressure, oxygen concentration, and the like. The output time of the sample is that when the process equipment produces the sample, each sample corresponds to a different output time.
将制程参数划分为多个第一子区间,将样本产出时间划分为多个第二子区间。The process parameters are divided into a plurality of first subintervals, and the sample output time is divided into a plurality of second subintervals.
对制程参数进行区间划分,具体为:提取制程参数和制程参数对应的样本标签;通过预设算法,将制程参数进行区间切分,得到多个第一子区间。The process parameters are divided into intervals, specifically: the process parameters and the sample labels corresponding to the process parameters are extracted; and the process parameters are segmented into intervals through a preset algorithm to obtain multiple first sub-intervals.
其中,样本标签表征生产的样本的质量的好坏,例如:当样本标签为0时,表明该样本的质量为好,当样本标签为1时,则表明样本的质量为差。Among them, the sample label represents the quality of the produced sample. For example, when the sample label is 0, it indicates that the quality of the sample is good; when the sample label is 1, it indicates that the quality of the sample is poor.
提取制程参数和制程参数对应的样本标签,基于预设算法,将制程参数进行区间划分。需要说明的是,预设算法有多种,可以为回归数最优分箱算法、卡方分箱以及WOE分箱等,本发明实施例采用回归数最优分箱算法,对制程参数进行区间划分。Extract the process parameters and the sample labels corresponding to the process parameters, and divide the process parameters into intervals based on the preset algorithm. It should be noted that there are many kinds of preset algorithms, such as optimal binning algorithm for regression number, chi-square binning, and WOE binning, etc. The embodiment of the present invention adopts the optimal binning algorithm for regression number to perform interval analysis on process parameters. divided.
基于制程参数和对应的样本标签,进行区间划分后,基于样本标签,可以得到采用不同第一子区间的制程参数,得到不同的质量的样本,一些第一子区间对应的制程参数得到样本质量是好的,另一些第一子区间对应的制程参数得到的样本质量是的差的。Based on the process parameters and the corresponding sample labels, after interval division, based on the sample labels, the process parameters using different first sub-intervals can be obtained, and samples of different qualities can be obtained. Well, the quality of the samples obtained by the process parameters corresponding to the other first sub-intervals is poor.
假设样本足够充分,可设置默认切分的最少第一子区间的数量为20,以保证第一子区间的数量足够,保证将制程参数划分的足够小,从而确保不同第一子区间对应的样本标签足够准确。Assuming that the samples are sufficient, you can set the minimum number of first sub-intervals for default segmentation to 20 to ensure that the number of first sub-intervals is sufficient and that the process parameters are divided small enough to ensure that the samples corresponding to different first sub-intervals Labels are accurate enough.
对样本产出时间进行多个子区间划有多种方式,示例性的,获取制程参数、对应的样本标签以及对应的样本产出时间;基于制程参数和对应的样本标签,将样本产出时间划分为多个第二子区间。There are many ways to divide the sample output time into multiple sub-intervals. For example, the process parameters, corresponding sample labels and corresponding sample output time are obtained; based on the process parameters and corresponding sample labels, the sample output time is divided into are multiple second subintervals.
其中,制程参数、样本标签以及样本产出时间存在对应关系,即一个样本对应样本标签、样本产出时间以及制程参数。Among them, there is a corresponding relationship among process parameters, sample label and sample output time, that is, a sample corresponds to sample label, sample output time and process parameters.
制程参数以及对应的样本标签以及样本产出时间数据,查看样本产出时间的时间范围是否超过第一预设时长,若超过则按时间天为时间区间段,将样本产出时间切分为多个第二子区间,若未超过第一预设时长,则查看时间范围是否超过第二预设时长,若超过第二预时长,则按小时为时间区间段,将样本产出时长切分为多个第二子区间,若未超过第二预设时长,则按分钟为时间区间段,将样本产出时间切分为多个第二子区间。Process parameters and corresponding sample labels and sample output time data, check whether the time range of sample output time exceeds the first preset time length, if it exceeds, divide the sample output time into multiple A second sub-interval, if it does not exceed the first preset duration, check whether the time range exceeds the second preset duration, if it exceeds the second preset duration, divide the sample output duration into If the multiple second sub-intervals do not exceed the second preset duration, the sample output time is divided into multiple second sub-intervals in minutes.
为了避免第一子区间和第二子区间中存在计算数据,影响最后结果的准确性,则分别针对每个第一子区间和每个第二子区间,确定各第一子区间的中位数,生成第一参数数据,确定各第二子区间的中位数,生成第一时间数据。In order to avoid the existence of calculated data in the first subinterval and the second subinterval and affect the accuracy of the final result, the median of each first subinterval is determined for each first subinterval and each second subinterval respectively , generate the first parameter data, determine the median of each second subinterval, and generate the first time data.
对样本标签和第一参数数据进行第一处理后,得到参数趋势波动的线性相关系数和非线性相关系数。对样本标签、制程参数数据以及第一时间数据进行第二处理,得到参数时序趋势波动的线性相关系数和非线性相关系数。最终基于参数趋势波动的线性相关系数和非线性相关系数以及参数时序趋势波动的线性相关系数和非线性相关系数,确定制程参数综合指标,从而依据制程参数的综合指标,确定制程设备的可疑参数,进而确定对制程设备的修正方向。After the first processing is performed on the sample label and the first parameter data, a linear correlation coefficient and a nonlinear correlation coefficient of parameter trend fluctuations are obtained. The second processing is performed on the sample label, the process parameter data and the first time data to obtain the linear correlation coefficient and the nonlinear correlation coefficient of the time series trend fluctuation of the parameters. Finally, based on the linear correlation coefficient and nonlinear correlation coefficient of the parameter trend fluctuation and the linear correlation coefficient and nonlinear correlation coefficient of the parameter time series trend fluctuation, the comprehensive index of the process parameter is determined, so that the suspicious parameters of the process equipment are determined according to the comprehensive index of the process parameter. Further, the correction direction for the process equipment is determined.
为了保证各第一子区间存在的极端数据,不影响后续计算结果的准确性,针对上述步骤202,在本申请的另一实施例中,如图3所示,提供了一种工艺参数根因定位方法,具体包括如下步骤:In order to ensure that the extreme data existing in each first sub-interval does not affect the accuracy of subsequent calculation results, for the above step 202, in another embodiment of the present application, as shown in Figure 3, a process parameter root cause The positioning method specifically includes the following steps:
步骤202-1:针对每个第一子区间,确定第一子区间中的第一中位数。Step 202-1: For each first subinterval, determine the first median in the first subinterval.
步骤202-2:将第一中位数作为落入第一子区间范围参数值的匹配映射值,将匹配映射值作为变换后的第一参数数据。Step 202-2: Use the first median as the matching mapping value of the parameter value falling within the first subinterval range, and use the matching mapping value as the transformed first parameter data.
步骤202-3:针对每个第二子区间,确定第二子区间中的第二中位数。Step 202-3: For each second subinterval, determine the second median in the second subinterval.
步骤202-4:将第二中位数作为落入第二子区间范围时间的匹配映射值,将匹配映射值作为变换后的第一时间数据。Step 202-4: use the second median as the matching mapping value of the time falling within the second subinterval range, and use the matching mapping value as the transformed first time data.
例如:某一第一子区间为(1,2,3,4,5),则取区间中的第一中位数,即为3,将(3,3,3,3,3)作为落入第一子区间范围参数值的匹配映射值,将(3,3,3,3,3)作为变换后的第一参数数据。For example: if a certain first sub-interval is (1, 2, 3, 4, 5), then take the first median in the interval, which is 3, and use (3, 3, 3, 3, 3) as the falling Enter the matching mapping value of the parameter value of the first subinterval range, and use (3, 3, 3, 3, 3) as the transformed first parameter data.
对于第二子区间,采用上述同样的方式,确定第二子区间对应的第一时间数据。For the second subinterval, the first time data corresponding to the second subinterval is determined in the same manner as above.
确定参数趋势波动的相关系数,针对上述步骤203,在本申请的另一实施例中,如图4所示,提供了一种工艺参数根因定位方法,具体包括如下步骤:需要说明的制程参数包括多种类型,制程参数的类型可以包括温度制程参数、气压制程参数、氧气浓度制程参数,以下步骤为针对计算某一类型制程参数的参数趋势波动的相关系数的具体计算方式:To determine the correlation coefficient of parameter trend fluctuations, for the above step 203, in another embodiment of the present application, as shown in Figure 4, a method for locating the root cause of process parameters is provided, which specifically includes the following steps: process parameters that need to be explained It includes multiple types, and the types of process parameters can include temperature process parameters, air pressure process parameters, and oxygen concentration process parameters. The following steps are specific calculation methods for calculating the correlation coefficient of the parameter trend fluctuation of a certain type of process parameter:
步骤203-1:将第一参数数据进行分组。Step 203-1: Group the first parameter data into groups.
步骤203-2:确定每个分组的组别值。Step 203-2: Determine the group value of each group.
步骤203-3:计算每个分组对应的标签的第一平均值。Step 203-3: Calculate the first average value of the labels corresponding to each group.
步骤203-4:计算第一平均值和组别值的第一pearson相关系数。Step 203-4: Calculate the first pearson correlation coefficient between the first average value and the group value.
步骤203-5:将第一参数数据分组的组别值中心化处理。Step 203-5: Centralize the group values of the first parameter data group.
步骤203-6:取中心化处理后的第一组别值的第一绝对值组。Step 203-6: Obtain the first absolute value group of the first group of values after the centralization process.
步骤203-7:计算第一绝对值组和每个组对应的标签的第一平均值的第二pearson相关系数。Step 203-7: Calculate the second pearson correlation coefficient of the first mean value of the first absolute value group and the label corresponding to each group.
示例性的,当第一参数数据为(3,3,3,4,4,4,5,5,5),将第一参数数据分组后,分组后的数据为(3,3,3)、(4,4,4)、(5,5,5),确定每个分组的组别值,分组(3,3,3)的组别值为3,分组(4,4,4)的组别值为4,分组(5,5,5)的组别值为5。Exemplarily, when the first parameter data is (3,3,3,4,4,4,5,5,5), after grouping the first parameter data, the grouped data is (3,3,3) , (4,4,4), (5,5,5), determine the group value of each group, the group value of group (3,3,3) is 3, the group value of group (4,4,4) The group value is 4, and the group value of group (5,5,5) is 5.
第一参数数据中每个数据均对应有样本标签,第一参数数据的样本标签为在第一参数数据未进行处理之前的制程参数数据对应的样本标签。例如:第一参数数据为(3,3,3,4,4,4,5,5,5),对应的样本标签为(1,1,1,0,0,0,1,1,1),分组(3,3,3)对应的样本标签的第一平均值为1,分组(4,4,4)对应的样本标签的第一平均值为0,分组(5,5,5)对应的样本标签的第一平均值为1。Each data in the first parameter data corresponds to a sample label, and the sample label of the first parameter data is the sample label corresponding to the process parameter data before the first parameter data is processed. For example: the first parameter data is (3,3,3,4,4,4,5,5,5), and the corresponding sample label is (1,1,1,0,0,0,1,1,1 ), the first average value of the sample label corresponding to the group (3,3,3) is 1, the first average value of the sample label corresponding to the group (4,4,4) is 0, and the group (5,5,5) The first mean value of the corresponding sample label is 1.
计算
Figure PCTCN2022086785-appb-000003
的第一pearson相关系数。Pearson相关系数(Pearson Correlation Coefficient)是用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系。
calculate
Figure PCTCN2022086785-appb-000003
The first pearson correlation coefficient of . Pearson Correlation Coefficient (Pearson Correlation Coefficient) is used to measure whether two data sets are on a line, and it is used to measure the linear relationship between fixed-distance variables.
将第一参数数据分组的组别值去中心化处理,即为,确定未经过处理前的制程参数的均值,将制程参数的均值分别与不同组别值与进行相减计算,取计算后的绝对值,得到第一绝对值组。计算第一绝对值组和每个组对应的标签的第一平均值的第二pearson相关系数。Decentralize the group value of the first parameter data group, that is, determine the mean value of the process parameter before processing, subtract the mean value of the process parameter from the value of different groups, and take the calculated Absolute value, get the first absolute value group. Compute the second pearson correlation coefficient of the first mean of the first absolute value group and the label corresponding to each group.
确定参数时序趋势波动的相关系数,针对上述步骤204,在本申请的另一实施例中,如图5所示,提供了一种工艺参数根因定位方法,具体包括如下步骤:To determine the correlation coefficient of the time series trend fluctuation of the parameter, for the above step 204, in another embodiment of the present application, as shown in Figure 5, a method for locating the root cause of the process parameter is provided, which specifically includes the following steps:
以下步骤为针对计算某一类型制程参数的参数趋势波动的相关系数的具体计算方式,其中,步骤204与步骤203参与计算的制程参数类型一致。The following steps are specific calculation methods for calculating the correlation coefficient of the parameter trend fluctuation of a certain type of process parameter, wherein the type of process parameter involved in the calculation in step 204 is consistent with that in step 203 .
步骤204-1:将第一时间数据、制程参数以及样本标签,按照时间顺序排序,得到排序后的第二时间数据、第二制程参数以及第二样本标签。Step 204-1: Sort the first time data, process parameters and sample labels in chronological order to obtain sorted second time data, second process parameters and second sample labels.
步骤204-2:将第二制程参数按照第二时间数据进行分组,确定每个分组的制程参数的第二平均值和标签的第三平均值。Step 204-2: Group the second process parameters according to the second time data, and determine the second average value of the process parameters and the third average value of the labels of each group.
步骤204-3:计算第二平均值和第三平均值的第三pearson相关系数。Step 204-3: Calculate the third pearson correlation coefficient of the second average value and the third average value.
步骤204-4:将每个分组的制程参数的第二平均值中心化处理。Step 204-4: Centralize the second average value of the process parameters of each group.
步骤204-5:取中心化处理后的第二平均值的第二绝对值组。Step 204-5: Take the second absolute value group of the second mean value after the centralization process.
步骤204-6:计算第二绝对值组和第三平均值的第四pearson相关系数。Step 204-6: Calculate the fourth pearson correlation coefficient of the second absolute value group and the third mean value.
确定参数时序趋势波动的相关系数的处理方式与步骤203-1至步骤203-7方式类似,不同的为,需要将先将第一时间数据、制程参数以及样本标签,按照时间顺序排序,得到排序后的第二时间数据、第二制程参数以及第二样本标签。The processing method of determining the correlation coefficient of the time series trend fluctuation of parameters is similar to that of steps 203-1 to 203-7, the difference is that the first time data, process parameters and sample labels need to be sorted in chronological order to obtain the sorted The subsequent second time data, second process parameter and second sample label.
具体对于计算第三pearson相关系数和第四pearson相关系数的计算方式再次不再赘述。Specifically, the calculation methods for calculating the third pearson correlation coefficient and the fourth pearson correlation coefficient will not be repeated again.
最终基于参数趋势波动的相关系数和参数时序趋势波动的相关系数,计算得到制程参数综合指标,示例性的,通过以下公式计算制程参数综合指标:Finally, based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation, the comprehensive index of the process parameter is calculated. For example, the comprehensive index of the process parameter is calculated by the following formula:
Figure PCTCN2022086785-appb-000004
Figure PCTCN2022086785-appb-000004
Figure PCTCN2022086785-appb-000005
Figure PCTCN2022086785-appb-000005
TPP=max{P*TP,0} 1/2TPP=max{P*TP,0} 1/2 ;
其中,P1为第一pearson相关系数,P2为第二pearson相关系数;TP1为第三pearson相关系数,TP2为第四pearson相关系数,TPP为制程参数综合指标。Among them, P1 is the first pearson correlation coefficient, P2 is the second pearson correlation coefficient; TP1 is the third pearson correlation coefficient, TP2 is the fourth pearson correlation coefficient, and TPP is the comprehensive index of process parameters.
分别计算每种类型的制程参数的类型参数综合指标,将多个类型参数综合指标的大小降序排序。获取排序在前的参数综合指标;确定获取的参数综合指标对应的制程参数可疑。The type parameter comprehensive index of each type of process parameter is calculated separately, and the sizes of the multiple type parameter comprehensive indexes are sorted in descending order. Acquiring the first-ranked parameter comprehensive index; determining that the process parameter corresponding to the acquired parameter comprehensive index is suspicious.
本申请通过分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间,分别针对每个第一子区间和每个第二子区间,确定各第一子区间的中位数,生成第一参数数据,确定各第二子区间的中位数,生成第一时间数据,对样本标签和第一参数数据进行第一处理后,得到参数趋势波动的相关系数,对样本标签、制程参数数据以及第一时间数据进行第二处理,得到参数时序趋势波动的相关系数,基于参数趋势波动的相关系数和参数时序趋势波动的相关系数,计算得到制程参数综合指标。本申请兼顾参数趋势波动和参数时序趋势波动与标签波动的相关性分析,从而有效识别可疑参数。In this application, the process parameters and the sample output time are divided into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals. For each first sub-interval and each second sub-interval, determine The median of each first subinterval generates the first parameter data, determines the median of each second subinterval, generates the first time data, performs the first processing on the sample label and the first parameter data, and obtains the parameter trend The correlation coefficient of fluctuations, the sample label, the process parameter data and the first time data are processed for the second time to obtain the correlation coefficient of the parameter time series trend fluctuation, based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation, the process is calculated Comprehensive index of parameters. This application takes into account the correlation analysis between parameter trend fluctuations and parameter time series trend fluctuations and label fluctuations, so as to effectively identify suspicious parameters.
请参照图6,本实施例还提供一种应用于图1所述电子设备100的工艺参数根因定位装置110,所述工艺参数根因定位装置110包括:Please refer to FIG. 6 , this embodiment also provides a process parameter root cause location device 110 applied to the electronic device 100 shown in FIG. 1 , and the process parameter root cause location device 110 includes:
划分模块111,用于分别将制程参数和样本产出时间划分为多个子区间,得到多个 第一子区间和多个第二子区间;Dividing module 111, is used for dividing process parameter and sample output time into a plurality of sub-intervals respectively, obtains a plurality of first sub-intervals and a plurality of second sub-intervals;
生成模块112,用于分别针对每个所述第一子区间和每个所述第二子区间,确定各所述第一子区间的中位数,生成第一参数数据,确定各所述第二子区间的中位数,生成第一时间数据;The generation module 112 is used to determine the median of each of the first subintervals for each of the first subintervals and each of the second subintervals, generate first parameter data, and determine the median of each of the first subintervals. The median of the two sub-intervals to generate the first time data;
第一处理模块113,用于对样本标签和所述第一参数数据进行第一处理后,得到参数趋势波动的相关系数;The first processing module 113 is configured to obtain the correlation coefficient of the parameter trend fluctuation after performing the first processing on the sample label and the first parameter data;
第二处理模块114,用于对所述样本标签、所述制程参数数据以及所述第一时间数据进行第二处理,得到参数时序趋势波动的相关系数;The second processing module 114 is configured to perform a second processing on the sample label, the process parameter data and the first time data to obtain a correlation coefficient of time series trend fluctuation of parameters;
计算模块115,用于基于所述参数趋势波动的相关系数和所述参数时序趋势波动的相关系数,计算得到制程参数综合指标。The calculation module 115 is configured to calculate and obtain the comprehensive index of the process parameter based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation.
可选地,在一些可能的实现方式中,所述划分模块111具体用于:Optionally, in some possible implementation manners, the dividing module 111 is specifically configured to:
提取制程参数和所述制程参数对应的样本标签;extracting process parameters and sample labels corresponding to the process parameters;
通过回归数最优分箱算法,将所述制程参数进行区间切分,得到多个第一子区间;Using the regression number optimal binning algorithm, segmenting the process parameters into intervals to obtain a plurality of first sub-intervals;
获取所述制程参数、对应的样本标签以及对应的样本产出时间;Obtaining the process parameters, corresponding sample labels and corresponding sample output time;
基于所述制程参数和所述对应的样本标签,将所述样本产出时间划分为多个第二子区间。The sample production time is divided into a plurality of second subintervals based on the process parameters and the corresponding sample labels.
可选地,在一些可能的实现方式中,所述生成模块112具体用于:Optionally, in some possible implementation manners, the generating module 112 is specifically configured to:
针对每个所述第一子区间,确定所述第一子区间中的第一中位数;for each of said first subintervals, determining a first median in said first subinterval;
将所述第一中位数作为落入所述第一子区间范围参数值的匹配映射值,将匹配映射值作为变换后的第一参数数据;Using the first median as a matching mapping value falling within the range parameter value of the first subinterval, and using the matching mapping value as the transformed first parameter data;
针对每个所述第二子区间,确定所述第二子区间中的第二中位数;for each of said second subintervals, determining a second median in said second subintervals;
将所述第二中位数作为落入所述第二子区间范围时间的匹配映射值,将匹配映射值作为变换后的第一时间数据。The second median is used as the matching mapping value of the time falling within the range of the second subinterval, and the matching mapping value is used as the transformed first time data.
可选地,在一些可能的实现方式中,所述第一处理模块113具体用于:Optionally, in some possible implementation manners, the first processing module 113 is specifically configured to:
将所述第一参数数据进行分组;grouping the first parameter data;
确定每个所述分组的组别值;determining a group value for each of said groupings;
计算每个所述分组对应的标签的第一平均值;calculating the first average value of the labels corresponding to each of the groups;
计算所述第一平均值和所述组别值的第一pearson相关系数;calculating the first pearson correlation coefficient of the first average value and the group value;
将所述第一参数数据分组的所述组别值中心化处理;centralizing the group values of the first parameter data group;
取中心化处理后的第一组别值的第一绝对值组;Take the first absolute value group of the first group value after centralization;
计算所述第一绝对值组和每个组对应的标签的所述第一平均值的第二pearson相关系数。Calculating a second pearson correlation coefficient of the first absolute value group and the first average value of the label corresponding to each group.
可选地,在一些可能的实现方式中,所述第二处理模块114具体用于:Optionally, in some possible implementation manners, the second processing module 114 is specifically configured to:
将所述第一时间数据、所述制程参数以及所述样本标签,按照时间顺序排序,得到排序后的第二时间数据、第二制程参数以及第二样本标签;Sorting the first time data, the process parameters, and the sample labels in chronological order to obtain sorted second time data, second process parameters, and second sample labels;
将所述第二制程参数按照所述第二时间数据进行分组,确定每个分组的制程参数的第二平均值和标签的第三平均值;grouping the second process parameter according to the second time data, and determining the second average value of the process parameter and the third average value of the label for each group;
计算所述第二平均值和所述第三平均值的第三pearson相关系数;calculating a third pearson correlation coefficient of said second average value and said third average value;
将每个分组的制程参数的第二平均值中心化处理;centering the second average value of the process parameters for each group;
取中心化处理后的第二平均值的第二绝对值组;Take the second absolute value group of the second mean value after centralization;
计算所述第二绝对值组和所述第三平均值的第四pearson相关系数。Computing a fourth pearson correlation coefficient of the second set of absolute values and the third mean value.
可选地,在一些可能的实现方式中,所述计算模块115具体用于:Optionally, in some possible implementation manners, the computing module 115 is specifically configured to:
通过以下公式计算制程参数综合指标:The comprehensive index of process parameters is calculated by the following formula:
Figure PCTCN2022086785-appb-000006
Figure PCTCN2022086785-appb-000006
Figure PCTCN2022086785-appb-000007
Figure PCTCN2022086785-appb-000007
TPP=max{P*TP,0} 1/2TPP=max{P*TP,0} 1/2 ;
其中,所述P1为第一pearson相关系数,P2为第二pearson相关系数;TP1为第三pearson相关系数,TP2为第四pearson相关系数,TPP为制程参数综合指标。Wherein, the P1 is the first pearson correlation coefficient, P2 is the second pearson correlation coefficient; TP1 is the third pearson correlation coefficient, TP2 is the fourth pearson correlation coefficient, and TPP is the comprehensive index of process parameters.
可选地,在一些可能的实现方式中,所述计算模块115还用于:Optionally, in some possible implementation manners, the calculation module 115 is further configured to:
当所述制程参数包括多种类型时,分别计算每种类型的制程参数的类型参数综合指标;When the process parameter includes multiple types, calculate the type parameter comprehensive index of each type of process parameter;
将多个类型参数综合指标的大小降序排序。Sort the size of multiple type parameter comprehensive indicators in descending order.
可选地,在一些可能的实现方式中,所述计算模块115还用于:Optionally, in some possible implementation manners, the calculation module 115 is further configured to:
获取排序在前的参数综合指标;Obtain the comprehensive index of parameters sorted first;
确定获取的参数综合指标对应的制程参数可疑。It is determined that the process parameter corresponding to the obtained parameter comprehensive index is suspicious.
综上所述,本申请通过分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间,分别针对每个第一子区间和每个第二子区间,确定各第一子区间的中位数,生成第一参数数据,确定各第二子区间的中位数,生成第一时间数据,对样本标签和第一参数数据进行第一处理后,得到参数趋势波动的相关系数,对样本标签、制程参数数据以及第一时间数据进行第二处理,得到参数时序趋势波动的相关系数,基于参数趋势波动的相关系数和参数时序趋势波动的相关系数,计算得到制程参数综合指标。本申请兼顾参数趋势波动和参数时序趋势波动与标签波动的相关性分析,从而有效识别可疑参数。In summary, this application divides the process parameters and sample output time into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals, respectively for each first sub-interval and each second sub-interval Two sub-intervals, determine the median of each first sub-interval, generate the first parameter data, determine the median of each second sub-interval, generate the first time data, and perform the first processing on the sample label and the first parameter data Finally, the correlation coefficient of the parameter trend fluctuation is obtained, and the sample label, the process parameter data and the first time data are processed for the second time to obtain the correlation coefficient of the parameter time series trend fluctuation, based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation The coefficient is calculated to obtain the comprehensive index of the process parameters. This application takes into account the correlation analysis between parameter trend fluctuations and parameter time series trend fluctuations and label fluctuations, so as to effectively identify suspicious parameters.
本申请还提供一种电子设备100,电子设备100包括处理器130以及存储器120。存储器120存储有计算机可执行指令,计算机可执行指令被处理器130执行时,实现该工艺参数根因定位方法。The present application also provides an electronic device 100 , and the electronic device 100 includes a processor 130 and a memory 120 . The memory 120 stores computer-executable instructions, and when the computer-executable instructions are executed by the processor 130, the process parameter root cause location method is realized.
本申请实施例还提供一种计算机可读存储介质,存储介质存储有计算机程序,计算机程序被处理器130执行时,实现该工艺参数根因定位方法。The embodiment of the present application also provides a computer-readable storage medium. The storage medium stores a computer program. When the computer program is executed by the processor 130, the process parameter root cause location method is implemented.
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图 显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。In the embodiments provided in this application, it should be understood that the disclosed devices and methods may also be implemented in other ways. The device embodiments described above are only illustrative. For example, the flowcharts and block diagrams in the accompanying drawings show the architecture, functions and possible implementations of devices, methods and computer program products according to multiple embodiments of the present application. operate. In this regard, each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved. It should also be noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。In addition, each functional module in each embodiment of the present application may be integrated to form an independent part, each module may exist independently, or two or more modules may be integrated to form an independent part. If the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. There is no such actual relationship or order between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
以上所述,仅为本申请的各种实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。The above are just various implementations of the present application, but the scope of protection of the present application is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present application. All should be covered within the scope of protection of this application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.

Claims (12)

  1. 一种工艺参数根因定位方法,其特征在于,所述方法包括:A process parameter root cause location method is characterized in that the method comprises:
    分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间;Dividing the process parameters and the sample output time into multiple sub-intervals respectively to obtain multiple first sub-intervals and multiple second sub-intervals;
    分别针对每个所述第一子区间和每个所述第二子区间,确定各所述第一子区间的中位数,生成第一参数数据,确定各所述第二子区间的中位数,生成第一时间数据;For each of the first subintervals and each of the second subintervals, determine the median of each of the first subintervals, generate first parameter data, and determine the median of each of the second subintervals Number, generate the first time data;
    对样本标签和所述第一参数数据进行第一处理后,得到参数趋势波动的相关系数;After performing the first processing on the sample label and the first parameter data, the correlation coefficient of the parameter trend fluctuation is obtained;
    对所述样本标签、所述制程参数数据以及所述第一时间数据进行第二处理,得到参数时序趋势波动的相关系数;performing a second process on the sample label, the process parameter data, and the first time data to obtain a correlation coefficient of time-series trend fluctuation of parameters;
    基于所述参数趋势波动的相关系数和所述参数时序趋势波动的相关系数,计算得到制程参数综合指标。Based on the correlation coefficient of the trend fluctuation of the parameter and the correlation coefficient of the time series trend fluctuation of the parameter, the comprehensive index of the process parameter is calculated.
  2. 根据权利要求1所述的方法,其特征在于,所述分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间的步骤,包括:The method according to claim 1, wherein the step of dividing the process parameters and sample output time into a plurality of subintervals to obtain a plurality of first subintervals and a plurality of second subintervals comprises:
    提取制程参数和所述制程参数对应的样本标签;extracting process parameters and sample labels corresponding to the process parameters;
    通过回归数最优分箱算法,将所述制程参数进行区间切分,得到多个第一子区间;Using the regression number optimal binning algorithm, segmenting the process parameters into intervals to obtain a plurality of first sub-intervals;
    获取所述制程参数、对应的样本标签以及对应的样本产出时间;Obtaining the process parameters, corresponding sample labels and corresponding sample output time;
    基于所述制程参数和所述对应的样本标签,将所述样本产出时间划分为多个第二子区间。The sample production time is divided into a plurality of second subintervals based on the process parameters and the corresponding sample labels.
  3. 根据权利要求1所述的方法,其特征在于,所述分别针对每个所述第一子区间和每个所述第二子区间,确定各所述第一子区间的中位数,生成第一参数数据,确定各所述第二子区间的中位数,生成第一时间数据的步骤,包括:The method according to claim 1, characterized in that, for each of the first subintervals and each of the second subintervals, determine the median of each of the first subintervals, and generate the second A parameter data, the step of determining the median of each second sub-interval and generating the first time data includes:
    针对每个所述第一子区间,确定所述第一子区间中的第一中位数;for each of said first subintervals, determining a first median in said first subinterval;
    将所述第一中位数作为落入所述第一子区间范围参数值的匹配映射值,将匹配映射值作为变换后的第一参数数据;Using the first median as a matching mapping value falling within the range parameter value of the first subinterval, and using the matching mapping value as the transformed first parameter data;
    针对每个所述第二子区间,确定所述第二子区间中的第二中位数;for each of said second subintervals, determining a second median in said second subintervals;
    将所述第二中位数作为落入所述第二子区间范围时间的匹配映射值,将匹配映射值作为变换后的第一时间数据。The second median is used as the matching mapping value of the time falling within the range of the second subinterval, and the matching mapping value is used as the transformed first time data.
  4. 根据权利要求1所述的方法,其特征在于,所述对样本标签和所述第一参数数据进行第一处理后,得到参数趋势波动的相关系数的步骤,包括:The method according to claim 1, wherein the step of obtaining the correlation coefficient of parameter trend fluctuation after the first processing of the sample label and the first parameter data includes:
    将所述第一参数数据进行分组;grouping the first parameter data;
    确定每个所述分组的组别值;determining a group value for each of said groupings;
    计算每个所述分组对应的标签的第一平均值;calculating the first average value of the labels corresponding to each of the groups;
    计算所述第一平均值和所述组别值的第一pearson相关系数;calculating the first pearson correlation coefficient of the first average value and the group value;
    将所述第一参数数据的分组的所述组别值中心化处理;centralizing the group values of the groups of the first parameter data;
    取中心化处理后的第一组别值的第一绝对值组;Take the first absolute value group of the first group value after centralization;
    计算所述第一绝对值组和每个组对应的标签的所述第一平均值的第二pearson相关系数。Calculating a second pearson correlation coefficient of the first absolute value group and the first average value of the label corresponding to each group.
  5. 根据权利要求4所述的方法,其特征在于,所述对所述样本标签、所述制程参数数据以及所述第一时间数据进行第二处理,得到参数时序趋势波动的相关系数的步骤,包括:The method according to claim 4, characterized in that the step of performing the second processing on the sample label, the process parameter data and the first time data to obtain the correlation coefficient of parameter time series trend fluctuations includes :
    将所述第一时间数据、所述制程参数以及所述样本标签,按照时间顺序排序,得到排序后的第二时间数据、第二制程参数以及第二样本标签;Sorting the first time data, the process parameters, and the sample labels in chronological order to obtain sorted second time data, second process parameters, and second sample labels;
    将所述第二制程参数按照所述第二时间数据进行分组,确定每个分组的制程参数的第二平均值和标签的第三平均值;grouping the second process parameter according to the second time data, and determining the second average value of the process parameter and the third average value of the label for each group;
    计算所述第二平均值和所述第三平均值的第三pearson相关系数;calculating a third pearson correlation coefficient of said second average value and said third average value;
    将每个分组的制程参数的第二平均值中心化处理;centering the second average value of the process parameters for each group;
    取中心化处理后的第二平均值的第二绝对值组;Take the second absolute value group of the second mean value after centralization;
    计算所述第二绝对值组和所述第三平均值的第四pearson相关系数。Computing a fourth pearson correlation coefficient of the second set of absolute values and the third mean value.
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述参数趋势波动的相关系数和所述参数时序趋势波动的相关系数,计算得到制程参数综合指标的步骤,包括:The method according to claim 5, characterized in that the step of calculating the comprehensive index of process parameters based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation includes:
    通过以下公式计算制程参数综合指标:The comprehensive index of process parameters is calculated by the following formula:
    Figure PCTCN2022086785-appb-100001
    Figure PCTCN2022086785-appb-100001
    Figure PCTCN2022086785-appb-100002
    Figure PCTCN2022086785-appb-100002
    TPP=max{P*TP,0} 1/2TPP=max{P*TP,0} 1/2 ;
    其中,P1为第一pearson相关系数,P2为第二pearson相关系数;TP1为第三pearson相关系数,TP2为第四pearson相关系数,TPP为制程参数综合指标。Among them, P1 is the first pearson correlation coefficient, P2 is the second pearson correlation coefficient; TP1 is the third pearson correlation coefficient, TP2 is the fourth pearson correlation coefficient, and TPP is the comprehensive index of process parameters.
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:The method according to claim 1, further comprising:
    当所述制程参数包括多种类型时,分别计算每种类型的制程参数的类型参数综合指标;When the process parameter includes multiple types, calculate the type parameter comprehensive index of each type of process parameter;
    将多个类型参数综合指标的大小降序排序。Sort the size of multiple type parameter comprehensive indicators in descending order.
  8. 根据权利要求7所述的方法,其特征在于,在所述将多个类型参数综合指标的大小降序排序的步骤之后,所述方法还包括:The method according to claim 7, characterized in that, after the step of sorting the sizes of multiple type parameter comprehensive indicators in descending order, the method further comprises:
    获取排序在前的参数综合指标;Obtain the comprehensive index of parameters sorted first;
    确定获取的参数综合指标对应的制程参数可疑。It is determined that the process parameter corresponding to the obtained parameter comprehensive index is suspicious.
  9. 一种工艺参数根因定位装置,其特征在于,所述装置包括:A process parameter root cause location device, characterized in that the device comprises:
    划分模块,用于分别将制程参数和样本产出时间划分为多个子区间,得到多个第一子区间和多个第二子区间;A division module, configured to divide the process parameters and the sample output time into multiple sub-intervals to obtain multiple first sub-intervals and multiple second sub-intervals;
    生成模块,用于分别针对每个所述第一子区间和每个所述第二子区间,确定各所述 第一子区间的中位数,生成第一参数数据,确定各所述第二子区间的中位数,生成第一时间数据;A generating module, for each of the first subintervals and each of the second subintervals, determine the median of each of the first subintervals, generate first parameter data, and determine the median of each of the second subintervals. The median of the subinterval, generating the first time data;
    第一处理模块,用于对样本标签和所述第一参数数据进行第一处理后,得到参数趋势波动的相关系数;The first processing module is used to obtain the correlation coefficient of the parameter trend fluctuation after performing the first processing on the sample label and the first parameter data;
    第二处理模块,用于对所述样本标签、所述制程参数数据以及所述第一时间数据进行第二处理,得到参数时序趋势波动的相关系数;The second processing module is configured to perform a second processing on the sample label, the process parameter data and the first time data to obtain a correlation coefficient of time series trend fluctuation of parameters;
    计算模块,用于基于所述参数趋势波动的相关系数和所述参数时序趋势波动的相关系数,计算得到制程参数综合指标。The calculation module is used to calculate the comprehensive index of the process parameter based on the correlation coefficient of the parameter trend fluctuation and the correlation coefficient of the parameter time series trend fluctuation.
  10. 根据权利要求9所述的装置,其特征在于,所述划分模块具体用于:The device according to claim 9, wherein the dividing module is specifically used for:
    提取制程参数和所述制程参数对应的样本标签;extracting process parameters and sample labels corresponding to the process parameters;
    通过回归数最优分箱算法,将所述制程参数进行区间切分,得到多个第一子区间;Using the regression number optimal binning algorithm, segmenting the process parameters into intervals to obtain a plurality of first sub-intervals;
    获取所述制程参数、对应的样本标签以及对应的样本产出时间;Obtaining the process parameters, corresponding sample labels and corresponding sample output time;
    基于所述制程参数和所述对应的样本标签,将所述样本产出时间划分为多个第二子区间。The sample production time is divided into a plurality of second subintervals based on the process parameters and the corresponding sample labels.
  11. 一种电子设备,其特征在于,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求1-8任一项所述工艺参数根因定位方法的步骤。An electronic device, characterized in that it includes a memory and a processor, the memory stores a computer program, and when the processor executes the computer program, the process parameter root cause location method described in any one of claims 1-8 is realized A step of.
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1-8中任一项所述工艺参数根因定位方法的步骤。A computer-readable storage medium, on which a computer program is stored, characterized in that, when the computer program is executed by a processor, the steps of the process parameter root cause location method described in any one of claims 1-8 are realized.
PCT/CN2022/086785 2021-09-22 2022-04-14 Process parameter root cause positioning method and related device WO2023045305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111104580.5 2021-09-22
CN202111104580.5A CN113552856B (en) 2021-09-22 2021-09-22 Process parameter root factor positioning method and related device

Publications (1)

Publication Number Publication Date
WO2023045305A1 true WO2023045305A1 (en) 2023-03-30

Family

ID=78106475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086785 WO2023045305A1 (en) 2021-09-22 2022-04-14 Process parameter root cause positioning method and related device

Country Status (2)

Country Link
CN (1) CN113552856B (en)
WO (1) WO2023045305A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552856B (en) * 2021-09-22 2021-12-10 成都数之联科技有限公司 Process parameter root factor positioning method and related device
WO2023245511A1 (en) * 2022-06-22 2023-12-28 重庆康佳光电技术研究院有限公司 Process parameter adjustment method and system, and production system and computer device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109711659A (en) * 2018-11-09 2019-05-03 成都数之联科技有限公司 A kind of industrial Yield lmproved management system and method
CN111159645A (en) * 2019-12-19 2020-05-15 成都数之联科技有限公司 Bad root cause positioning method based on product production record and parameters
EP3705959A1 (en) * 2019-03-04 2020-09-09 ASML Netherlands B.V. Method for determining root causes of events of a semiconductor manufacturing process and for monitoring a semiconductor manufacturing process
CN112269818A (en) * 2020-11-25 2021-01-26 成都数之联科技有限公司 Method, system, device and medium for positioning device parameter root cause
CN113552856A (en) * 2021-09-22 2021-10-26 成都数之联科技有限公司 Process parameter root factor positioning method and related device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738697B2 (en) * 1995-06-07 2004-05-18 Automotive Technologies International Inc. Telematics system for vehicle diagnostics
GB0004194D0 (en) * 2000-02-22 2000-04-12 Nat Power Plc System and method for monitoring a control process in a process plant
JP3555859B2 (en) * 2000-03-27 2004-08-18 広島日本電気株式会社 Semiconductor production system and semiconductor device production method
US7389204B2 (en) * 2001-03-01 2008-06-17 Fisher-Rosemount Systems, Inc. Data presentation system for abnormal situation prevention in a process plant
DE10252613A1 (en) * 2002-11-12 2004-05-27 Infineon Technologies Ag Method, device, computer-readable storage medium and computer program element for monitoring a manufacturing process
US9818136B1 (en) * 2003-02-05 2017-11-14 Steven M. Hoffberg System and method for determining contingent relevance
CN1926489B (en) * 2004-03-03 2012-02-15 费舍-柔斯芒特系统股份有限公司 Data presentation system for abnormal situation prevention in a process plant
JP2008511086A (en) * 2004-10-01 2008-04-10 メンター・グラフィクス・コーポレーション Feature failure correction
US20060095237A1 (en) * 2004-10-28 2006-05-04 Weidong Wang Semiconductor yield management system and method
JP5688203B2 (en) * 2007-11-01 2015-03-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor substrate
CA2720117C (en) * 2008-05-05 2017-11-28 Exxonmobil Upstream Research Company Systems, methods, and computer program products for modeling dynamic systems by visualizing a parameter space and narrowing the parameter space
NL2007770C2 (en) * 2011-11-10 2013-05-13 Spiritit B V Determining a quantity of transported fluid.
US9195566B2 (en) * 2013-01-14 2015-11-24 International Business Machines Corporation Defect analysis system for error impact reduction
US9904579B2 (en) * 2013-03-15 2018-02-27 Advanced Elemental Technologies, Inc. Methods and systems for purposeful computing
CN103605662B (en) * 2013-10-21 2017-02-22 华为技术有限公司 Distributed computation frame parameter optimizing method, device and system
WO2015164879A1 (en) * 2014-04-25 2015-10-29 The Regents Of The University Of California Recognizing predictive patterns in the sequence of superalarm triggers for predicting patient deterioration
FR3029624B1 (en) * 2014-12-05 2019-06-14 Safran Aircraft Engines METHOD FOR MONITORING THE MANUFACTURE OF PARTS BASED ON THE ANALYSIS OF STATISTICAL INDICATORS IN A CONTROL ALLEGATION SITUATION
US10935962B2 (en) * 2015-11-30 2021-03-02 National Cheng Kung University System and method for identifying root causes of yield loss
CN105656693B (en) * 2016-03-15 2019-06-07 南京联成科技发展股份有限公司 A kind of method and system of the information security abnormality detection based on recurrence
CN107037311A (en) * 2016-10-27 2017-08-11 国家电网公司 A kind of Transformer Winding turn-to-turn insulation method for diagnosing faults and device
CN108271191B (en) * 2016-12-30 2021-11-23 中国移动通信集团福建有限公司 Wireless network problem root cause positioning method and device
CN110874086B (en) * 2018-08-31 2021-11-23 长鑫存储技术有限公司 Evaluation method and device based on semiconductor measurement parameters and terminal equipment
CN112306036B (en) * 2019-08-02 2022-07-05 中国石油化工股份有限公司 Method for diagnosing operation fault of chemical process
CN110555119B (en) * 2019-08-27 2022-05-13 成都数之联科技股份有限公司 Unmanned aerial vehicle remote sensing image slicing method and system under real-time scene
US11010222B2 (en) * 2019-08-29 2021-05-18 Sap Se Failure mode specific analytics using parametric models
CN112052151B (en) * 2020-10-09 2022-02-18 腾讯科技(深圳)有限公司 Fault root cause analysis method, device, equipment and storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109711659A (en) * 2018-11-09 2019-05-03 成都数之联科技有限公司 A kind of industrial Yield lmproved management system and method
EP3705959A1 (en) * 2019-03-04 2020-09-09 ASML Netherlands B.V. Method for determining root causes of events of a semiconductor manufacturing process and for monitoring a semiconductor manufacturing process
CN111159645A (en) * 2019-12-19 2020-05-15 成都数之联科技有限公司 Bad root cause positioning method based on product production record and parameters
CN112269818A (en) * 2020-11-25 2021-01-26 成都数之联科技有限公司 Method, system, device and medium for positioning device parameter root cause
CN113552856A (en) * 2021-09-22 2021-10-26 成都数之联科技有限公司 Process parameter root factor positioning method and related device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO, KAIFA: "The Key Techniques of Root Causes Location in Multi-dimensional Time Series Data", CHINA MASTER’S THESES FULL-TEXT DATABASE (MASTER) INFORMATION & TECHNOLOGY, no. 02, 1 April 2020 (2020-04-01), CN, pages 1 - 55, XP009545062, DOI: 10.26991/d.cnki.gdllu.2020.002071 *

Also Published As

Publication number Publication date
CN113552856A (en) 2021-10-26
CN113552856B (en) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023045305A1 (en) Process parameter root cause positioning method and related device
CN111027048B (en) Operating system identification method and device, electronic equipment and storage medium
WO2021068831A1 (en) Service alert method and device, and storage medium
WO2022121218A1 (en) Intelligent image recognition method and apparatus, and computer device and storage medium
CN111240688B (en) excel file analysis method and device, computer equipment and storage medium
CN113590645A (en) Searching method, searching device, electronic equipment and storage medium
WO2023231380A1 (en) Electrode plate defect recognition method and apparatus, and electrode plate defect recognition model training method and apparatus, and electronic device
CN111400126A (en) Network service abnormal data detection method, device, equipment and medium
CN115115005A (en) Canopy protocol identification method based on maximum secret distance
CN116842330B (en) Health care information processing method and device capable of comparing histories
WO2021189845A1 (en) Detection method and apparatus for time series anomaly point, and device and readable storage medium
US20220172086A1 (en) System and method for providing unsupervised model health monitoring
CN116309963A (en) Batch labeling method and device for images, electronic equipment and storage medium
CN114692778B (en) Multi-mode sample set generation method, training method and device for intelligent inspection
CN116206764A (en) Risk classification method, apparatus, electronic device and storage medium
Doğan et al. Automatic identification of highly conserved family regions and relationships in genome wide datasets including remote protein sequences
US10311577B1 (en) Techniques to improve edge detection for images
CN111275466B (en) Method and device for early warning of out-of-date single quantity
CN114265840A (en) Abnormality score calculation device, abnormality score calculation method, and storage medium
CN114866437B (en) Node detection method, device, equipment and medium
CN113553415B (en) Question-answer matching method and device and electronic equipment
CN113344890B (en) Medical image recognition method, recognition model training method and device
CN111523009B (en) Data visualization processing method
US20230038984A1 (en) Utilizing prediction thresholds to facilitate spectroscopic classification
CN114880298A (en) Smart city data sharing method and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871368

Country of ref document: EP

Kind code of ref document: A1