WO2023045269A1 - 可实现恒压充电的串联化成、分容电路 - Google Patents

可实现恒压充电的串联化成、分容电路 Download PDF

Info

Publication number
WO2023045269A1
WO2023045269A1 PCT/CN2022/079700 CN2022079700W WO2023045269A1 WO 2023045269 A1 WO2023045269 A1 WO 2023045269A1 CN 2022079700 W CN2022079700 W CN 2022079700W WO 2023045269 A1 WO2023045269 A1 WO 2023045269A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging
circuit
switch
constant voltage
Prior art date
Application number
PCT/CN2022/079700
Other languages
English (en)
French (fr)
Inventor
胡勇
刘俊军
Original Assignee
西安快舟机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安快舟机电科技有限公司 filed Critical 西安快舟机电科技有限公司
Publication of WO2023045269A1 publication Critical patent/WO2023045269A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of battery formation, and in particular relates to a series formation and capacity dividing circuit capable of realizing constant voltage charging.
  • Capacity separation is a necessary process in the process of leaving the factory and grouping batteries. During the factory inspection, the capacity level is determined for the battery by capacity division; when grouped, the capacity division is used to ensure that the individual performance of the group is fully exerted.
  • Both formation and capacity separation require repeated charging and discharging of the battery.
  • the current way is to operate the battery cells or the cells in parallel.
  • the conversion efficiency is only 80%, which is too low compared to the 98% conversion efficiency of the current high-end photovoltaic converter.
  • the current method is to directly consume the electric energy or feed it back to the grid.
  • the way of directly consuming electric energy not only wastes the internal capacity of the battery, but also requires a large number of fans and air conditioners to dissipate heat from the equipment and warehouse due to the severe heat generation of the equipment, resulting in secondary consumption of electric energy and a huge waste of energy.
  • the present invention provides a series formation and capacity separation circuit that can realize constant voltage charging.
  • An object of the present invention is to solve at least the above problems and/or disadvantages and to provide at least the advantages as will be described hereinafter.
  • Another object of the present invention is to provide a series forming and capacity dividing circuit capable of constant voltage charging, which avoids the energy consumption problem existing in the traditional forming and capacity dividing technology.
  • the present invention provides a kind of serial formation and capacity dividing circuit that can realize constant voltage charging, including:
  • a plurality of charging modules connected in series with the bidirectional constant current power supply, the charging module includes a bypass switch and a battery, the bypass switch is connected to the battery, and the bypass switch is used to The battery is in the charging and discharging circuit, or outside the charging and discharging circuit.
  • the charging module further includes a filter circuit, one end of the filter circuit is connected to the battery, the other end of the filter circuit is connected to one end of the bypass switch, and the other end of the bypass switch connected to the battery.
  • a capacitor is further included, one end of the capacitor is connected to the negative pole of the battery, and the other end of the capacitor is connected to the line connecting the bypass switch and the filter circuit.
  • the bypass switch includes a first MOS switch and a second MOS switch, the drain of the first MOS switch is connected to the positive pole of the battery through the filter circuit, and the source of the first MOS switch is connected to the positive pole of the battery.
  • the drain of the second MOS switch is connected, and the source of the second MOS switch is connected to the negative pole of the battery;
  • bypass switch is used to place the battery in the charge-discharge circuit, and charge the battery with constant current or constant voltage; the bypass switch is used to bypass the battery outside the charge-discharge circuit, and the battery is not charged or discharge.
  • the bypass switch is a MOS switch provided with a parasitic diode.
  • the charging module is a constant current charging or discharging circuit, and the charging module is used to charge the battery with a constant current, or to charge the battery discharge.
  • the first MOS switch is turned on
  • the second MOS switch is turned on
  • the first MOS switch and the second MOS switch are turned on complementary
  • the charging module is a constant voltage charging circuit, which uses To charge the battery at a constant voltage.
  • the first MOS switch is turned off, the second MOS switch is turned on, and the charging module is a bypass loop.
  • the series formation and capacity division circuit that can realize constant voltage charging provided by the present invention adopts a series connection to charging modules for charging and discharging, so that the voltage of the battery pack is high, the power conversion efficiency is high, and the energy saving effect is obvious.
  • the invention provides a series formation and capacity division circuit capable of realizing constant voltage charging, which can realize the function of constant voltage charging and meet the technological requirements of actual production.
  • the series formation and capacity division circuit that can realize constant voltage charging provided by the present invention saves a large number of connecting wires between the power supply cabinet and the battery, reduces line loss, and saves wire resources.
  • the series formation and capacity division circuit that can realize constant voltage charging provided by the present invention greatly simplifies the circuit structure of the formation and capacity division equipment, can effectively replace the complicated charge and discharge circuit of traditional equipment, and greatly reduces the cost of equipment while also reducing the cost of the equipment. Indirectly improve the reliability of equipment.
  • serial formation and capacity division circuit provided by the present invention can achieve higher charging efficiency and feedback efficiency than other methods.
  • the series formation and capacity division circuit that can realize constant voltage charging provided by the present invention can realize the cut-in and cut-out control of the battery cells through the battery charge and discharge circuit, so as to ensure that the battery cells that exit the process flow in advance will not affect the system to other normal operation of the battery.
  • Fig. 1 is the schematic diagram of the series formation and capacity dividing circuit that can realize constant voltage charging according to the present invention
  • Fig. 2 is a schematic circuit diagram of the charging module of the present invention.
  • Fig. 3 is a schematic diagram of a constant current charging circuit for the charging module of the present invention.
  • Fig. 4 is a schematic diagram of a constant current discharge circuit of the charging module of the present invention.
  • Fig. 5 is a schematic diagram of a constant voltage charging circuit for the charging module of the present invention.
  • Fig. 6 is a schematic diagram of the charging module of the present invention as a bypass charging circuit
  • Fig. 7 is a schematic diagram of the charging module of the present invention as a bypass discharge circuit
  • B1-battery M1-first MOS switch, M2-second MOS switch, C1-filter capacitor, L1-filter inductor.
  • the present invention provides a series formation and capacity dividing circuit that can realize constant voltage charging, as shown in Figure 1, including a bidirectional constant current power supply; a plurality of charging modules, a plurality of charging modules connected in series with the bidirectional constant current Power connection, the charging module includes a bypass switch and a battery, the bypass switch is connected to the battery, the bypass switch is used to put the battery in the charging and discharging circuit, or outside the charging and discharging circuit, that is, the charging module can Realize the functions of constant current charging and discharging, constant voltage charging and bypass of the battery.
  • one end of the bidirectional constant current power supply is connected to the power grid, and the other end of the bidirectional constant current power supply is connected to the batteries connected in series for charging and discharging the batteries connected in series; it has the function of bidirectional energy transmission and can rectify the alternating current into Direct current can also be converted to alternating current and sent back to the grid.
  • the bidirectional constant current source power supply can adjust the input DC voltage so that the output voltage meets the load voltage requirements.
  • Bidirectional refers to the direction of electric energy flow in it.
  • the internal current can flow from the left port to the right port, or from the right port to the left port. There are many ways to realize it, including step-up, step-down, step-up and step-down, isolation and non-isolation, etc.
  • Multiple charging modules can form a constant-voltage constant-current charge-discharge circuit unit through the opening and closing of the bypass switch, which is used to charge the battery cell at a constant voltage after the constant-current charging of the battery cell is completed.
  • the charging circuit can also be described as a bidirectional circuit, which can be charged one-to-one, and can also be discharged one-to-one, and realize constant voltage through bypass discharge during constant current charging.
  • the specific method is to start the discharge bypass corresponding to the cell that requires constant voltage when other cells are in the constant current charging state, and consume part of the current through the discharge bypass to ensure a constant voltage at both ends of the cell.
  • the discharge bypass can be an isolated switching power supply circuit, or a controllable linear amplifier device, such as allowing MOS and triode to work in the amplification region to consume energy.
  • L1-n is a plurality of filter inductors in a plurality of charging modules
  • Q1-n and Q2-n are a plurality of bypass switches in a plurality of charging modules.
  • the charging module further includes a filter circuit L1, one end of the filter circuit L1 is connected to the battery B1, and the other end of the filter circuit L1 It is connected with one end of the bypass switch, and the other end of the bypass switch is connected with the battery B1.
  • a capacitor C1 is also included, one end of the capacitor C1 is connected to the negative pole of the battery B1, and the other end of the capacitor C1 is connected to the line connecting the bypass switch and the filter circuit.
  • the bypass switch includes a first MOS switch M1 and a second MOS switch M2, the drain of the first MOS switch M1 is connected to the positive pole of the battery through the filter circuit, and the source of the first MOS switch M1 The pole is connected to the drain of the second MOS switch M2, and the source of the second MOS switch M2 is connected to the negative pole of the battery;
  • bypass switch is used to place the battery in the charge-discharge circuit, and charge the battery with constant current or constant voltage; the bypass switch is used to bypass the battery outside the charge-discharge circuit, and the battery is not charged or discharge.
  • bypass switch is a MOS switch provided with a parasitic diode.
  • the current flows into the battery B1 through L1.
  • M1 is turned off, the energy in the inductor L1 continues to flow into the battery B1 after continuing to flow through the capacitor C1.
  • M1 is in the PWM working state, so as to change the current required for the formation of the battery.
  • the first MOS switch M1 is turned on
  • the second MOS switch M2 is turned on
  • the first MOS switch and the second MOS switch The MOS switches are complementary and turned on
  • the charging module is a constant-voltage charging circuit for charging the battery at a constant voltage.
  • the battery B1 is short-circuited, and M1 and M2 will be burned.
  • the drive circuits of M1 and M2 can be protected by corresponding logic protection to prevent M1 and M2 from being driven to conduct at the same time.
  • the first MOS switch M1 is turned off, the second MOS switch M2 is turned on, and the charging module is a bypass loop .
  • the parasitic diode in M1 is in reverse bias state. No current will flow through M1, all current will go through M2.
  • Cell B1 is outside the series circuit, at this time the cell is in a bypass state, and the cell cannot be charged and discharged.
  • M1 and M2 are not connected, such as the battery pack in series is in the charging state.
  • the current will charge B1 through the parasitic diode of M1, and there is no open circuit problem in the series circuit.
  • M1 and M2 will not be burned due to excessive voltage; if the series battery pack is in the discharge state, the current will pass through the parasitic diode of M2, and there is no open circuit problem in the series circuit, and the circuit will not be burned.
  • the M1 and M2 can be relays with diodes connected in parallel, but the relays have high power consumption, large size, slow switching speed, and short life, so this application does not make a choice.
  • the invention enables the continuous transition of the single battery cell (battery) from constant current to constant voltage charging stage, and at the same time can realize cut-in and cut-out control of the battery cell through the bypass switch, so as to ensure that the battery cell that exits the process flow in advance does not affect the system Normal operation for other cells. Realize the same effect as traditional chemical forming equipment.
  • the battery series capacity composition system provided by the present invention has the following working principle:
  • Constant current charging Electric energy is controlled by a bidirectional constant current source and then flows into the battery pack connected in series to charge the cells. After a limited time, some battery cells reach the set voltage, the constant current charging is completed, and the system starts the constant voltage charging process of this group of batteries. The battery cells that reach the set voltage within a limited time are directly eliminated from the formation and capacity division process through the bypass circuit as defective batteries.
  • Constant current discharge The series battery pack discharges to the DC bus with a constant current through a bidirectional constant current source. Release electricity to charge other batteries or feed back to the grid. When the voltage of a battery in the battery pack reaches the limit value, the discharge of the battery is completed, and the battery is directly bypassed to the outside of the discharge circuit through the bypass switch to end the discharge of the battery. Due to the function of the bypass switch, this operation will not affect the normal discharge of other batteries.
  • Constant voltage charging When a single cell enters the constant voltage charging process, the medium voltage of the battery is used as feedback to adjust the PWM work to change the charging current, so that it is in the work process of constant voltage charging.
  • the current of the rechargeable battery branch becomes smaller.
  • the bypass switch is made to work in gaps, so that the total current is the same as the output of the constant current source.
  • the cells are charged one-to-one.
  • the circuit works in the constant current and constant voltage mode.
  • the output current and voltage of the circuit can be controlled by the system.
  • the regulator will adjust the output of the circuit so that at least one of the output current or voltage meets parameter setting requirements.
  • the battery series forming and capacity dividing system provided by the present invention has high power conversion efficiency of equipment during series forming and capacity dividing, can improve capacity utilization rate, and achieve better energy saving effect.
  • discharging the electric energy released by the battery is recovered and used for charging other batteries, or inverting and feeding back to the grid.
  • the series battery capacity system provided by the present invention has small volume, less heat dissipation, and high site utilization rate: due to the high conversion efficiency and not converting the released electric energy into heat energy and releasing it to the environment, the heat generated by the equipment is very small compared to traditional equipment. few. It can greatly reduce the volume of the equipment, reduce the usage of the fan of the equipment, and reduce the noise of the equipment.
  • the present invention adopts low-energy-efficiency equipment, and a large number of air conditioners need to be configured in the factory building, and a large amount of electric energy is consumed to absorb a large amount of heat generated by the forming and capacity-distributing equipment, so as to ensure the constant temperature of the environment in the factory building.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于电池化成的技术领域,具体涉及一种可实现恒压充电的串联化成、分容电路,其包括双向恒流电源;多个充电模块,多个所述充电模块串联后与所述双向恒流电源连接,所述充电模块包括旁路开关和电池,所述旁路开关与电池连接,所述旁路开关用于将所述电池处于充放电回路中,或者充放电回路外。本发明提供可实现恒压充电的串联化成、分容电路,其实现了对串联回路中电池单体充电电流的独立控制,满足了实际生产中化成、分容工艺对恒压充电的需求,使得串联化成、分容技术得以实用化。

Description

可实现恒压充电的串联化成、分容电路 技术领域
本发明属于电池化成的技术领域,具体涉及一种可实现恒压充电的串联化成、分容电路。
背景技术
化成是电池生产过程中的及其重要的工序,该工序对电池的性能和循环寿命具有重要的影响。分容是电池出厂和成组过程的必要工序。出厂检验时靠分容为电池定出容量等级;成组时靠分容保证组内个体性能得到充分发挥。
化成和分容都需要对电池反复充放电。现行方式是对电池单体或单体并联后进行操作。对电池充电时,由于电力转换设备输出电压低,导致转换效率也只有80%,相比于现在高端光伏变流器98%的转换效率,显得实在太低。对电池放电时,现行方式是直接将电能消耗或者回馈电网。直接将电能消耗的方式不仅将电池内部的能力浪费掉,而且由于设备发热严重,需要大量的风机和空调对设备和仓房进行散热,造成了对电能的二次消耗,形成了巨大的能源浪费。
回馈电网的方式,由于输入电压太低只有3-4V,且经过多级变换后才能实现回馈电网,设备整体转换效率只有60%,节能效果不够理想。
为了解决上述传统化成、分容技术存在的能耗问题,本发明提供了一种可实现恒压充电的串联化成、分容电路。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说 明的优点。
本发明还有一个目的是提供可实现恒压充电的串联化成、分容电路,其避免了传统化成、分容技术存在的能耗问题。
为了实现根据本发明的这些目的和其它优点,本发明提供了一种可实现恒压充电的串联化成、分容电路,包括:
双向恒流电源;
多个充电模块,多个所述充电模块串联后与所述双向恒流电源连接,所述充电模块包括旁路开关和电池,所述旁路开关与电池连接,所述旁路开关用于将所述电池处于充放电回路中,或者充放电回路外。
优选的是,所述充电模块还包括滤波电路,所述滤波电路的一端与所述电池连接,所述滤波电路的另一端与所述旁路开关的一端连接,所述旁路开关的另一端与所述电池连接。
优选的是,还包括电容,所述电容的一端与电池负极连接,所述电容的另一端连接至所述旁路开关与所述滤波电路连接的线路上。
优选的是,所述旁路开关包括第一MOS开关和第二MOS开关,所述第一MOS开关的漏极通过所述滤波电路与电池正极连接,所述第一MOS开关的源极与所述第二MOS开关的漏极连接,所述第二MOS开关的源极与电池负极连接;
其中,所述旁路开关用于将电池处于充放电回路中,给电池恒流充放电或者恒压充电;所述旁路开关用于将电池旁路处于充放电回路外,电池不充电也不放电。
优选的是,所述旁路开关为设置寄生二极管的MOS开关。
优选的是,所述第一MOS开关导通,所述第二MOS开关关断时,所述充电模块为恒流充电或者放电回路,所述充电模块用于为电池恒流充电,或者为电池放电。
优选的是,所述第一MOS开关导通,所述第二MOS开关导通,所述第 一MOS开关与所述第二MOS开关互补导通,所述充电模块为恒压充电回路,用于为电池恒压充电。
优选的是,所述第一MOS开关关断,所述第二MOS开关导通,所述充电模块为旁路回路。
本发明至少包括以下有益效果
1、本发明提供的可实现恒压充电的串联化成、分容电路,其采用串联方式连接充电模块来充电和放电,使得电池组电压高,电力转换效率高,节能效果明显。
2、发明提供的可实现恒压充电的串联化成、分容电路,其其能实现恒压充电功能,满足了实际生产的工艺需求。
3、本发明提供的可实现恒压充电的串联化成、分容电路,其省去了电源柜与电池之间的大量连接线,减少了线路损耗,节约了导线资源。
4、本发明提供的可实现恒压充电的串联化成、分容电路,其大大简化了化成分容设备的电路结构,可有效替代传统设备复杂的充放电电路,在大大降低设备成本的同时还间接提高了设备可靠性。
5、本发明提供的可实现恒压充电的串联化成、分容电路,其采用的串联化成电路,相较于其他方式,可以实现更高的充电效率和回馈效率。
6、本发明提供的可实现恒压充电的串联化成、分容电路,其可通过电芯充放电电路对电芯实现切入和切出控制,保证提前退出工艺流程的电芯不影响系统对其它电芯的正常操作。
附图说明
图1为本发明所述可实现恒压充电的串联化成、分容电路的原理图;
图2为本发明所述充电模块的电路原理图;
图3为本发明所述充电模块为恒流充电回路的原理图;
图4为本发明所述充电模块为恒流放电回路的原理图;
图5为本发明所述充电模块为恒压充电回路的原理图;
图6为本发明所述充电模块为旁路充电回路的原理图;
图7为本发明所述充电模块为旁路放电回路的原理图;
其中,B1-电池,M1-第一MOS开关,M2-第二MOS开关,C1-滤波电容,L1-滤波电感。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
在本说明书中,当一个元件被提及为“连接至或耦接至”另一个元件或“设置在另一个元件中”时,其可以“直接”连接至或耦接至另一元件或“直接”设置在另一元件中。或以其他元件介于其间的方式连接至或耦接至另一元件或设置在另一元件中,除非其被体积为“直接耦接至或连接至”另一元件或“直接设置”在另一元件中。此外,应理解,当一个元件被提及为“在另一元件上”、“在另一元件上方”、“在另一元件下”或“在另一元件下方”时,其可与另一元件“直接”接触或以其间介入有其他元件的方式与另一元件接触,除非其被提及为与另一元件直接接触。
本发明提供了一种可实现恒压充电的串联化成、分容电路,如图1所示,包括双向恒流电源;多个充电模块,多个所述充电模块串联后与所述双向恒流电源连接,所述充电模块包括旁路开关和电池,所述旁路开关与电池连接,所述旁路开关用于将所述电池处于充放电回路中,或者充放电回路外,即充电模块可实现电池的恒流充放电、恒压充电及旁路等功能。
其中,双向恒流电源的一端与电网连接,所述双向恒流电源的另一端与串联的电池连接,用于所串联电池的充电和放电;其具有双向能量传输的功 能,可以将交流电整流成直流电,也可以将直流电逆变为交流,回送电网。
双向恒流源电源可对输入的直流电压进行调节,使输出电压符合负载电压要求。双向是指其内的电能流动方向,在控制器的控制下,内部电流即可从其左端口流到右端口,也可从其右端口流到左端口。其实现方式有多种形式,有升压,降压,升降压,隔离与非隔离等。
多个充电模块,通过旁路开关的打开和关闭,可以形成恒压恒流充放电回路单元,作用为在电芯恒流充电结束后,对电芯进行恒压充电。所述充电电路也可谓双向电路,可一对一充电,也可一对一放电,在恒流充电时通过旁路放电来实现恒压。具体方法是,在其它电芯处于恒流充电状态时,启动需要恒压的电芯所对应的放电旁路,通过放电旁路消耗部分电流,从而保证电芯两端电压恒定。所述放电旁路可以为隔离的开关电源电路,也可为可控线性放大器件,如让MOS,三极管工作在放大区,消耗能量。其中,L1-n为多个充电模块中的多个滤波电感,Q1-n和Q2-n为多个充电模块中的多个旁路开关。
在上述情况的基础上,又一个实施例,如图2所示,所述充电模块还包括滤波电路L1,所述滤波电路L1的一端与所述电池B1连接,所述滤波电路L1的另一端与所述旁路开关的一端连接,所述旁路开关的另一端与所述电池B1连接。
具体的,还包括电容C1,所述电容C1的一端与电池B1负极连接,所述电容C1的另一端连接至所述旁路开关与所述滤波电路连接的线路上。
具体的,所述旁路开关包括第一MOS开关M1和第二MOS开关M2,所述第一MOS开关M1的漏极通过所述滤波电路与电池正极连接,所述第一MOS开关M1的源极与所述第二MOS开关M2的漏极连接,所述第二MOS开关M2的源极与电池负极连接;
其中,所述旁路开关用于将电池处于充放电回路中,给电池恒流充放电或者恒压充电;所述旁路开关用于将电池旁路处于充放电回路外,电池不充 电也不放电。
其中,所述旁路开关为设置寄生二极管的MOS开关。
在上述实施例的基础上,又一个实施例,如图3和图4所示,所述第一MOSM1开关导通,所述第二MOS开关M2关断时,所述充电模块为恒流充电或者放电回路,如图3所示,用于为电池恒流充电,或者如图4所示,用于为电池恒流放电。
电流经过L1流入电池B1,M1关断时,电感L1中的能量通过电容C1续流后,继续流入电池B1,M1出于PWM工作状态,依此来改变电池化成时,所需的电流大小。
在上述实施例的基础上,又一个实施例,如图5所示,所述第一MOS开关M1导通,所述第二MOS开关M2导通,所述第一MOS开关与所述第二MOS开关互补导通,所述充电模块为恒压充电回路,用于为电池恒压充电。
此时,电池B1被短路,M1和M2会被烧毁,为了避免此情况发生,M1、M2的驱动电路可做相应的逻辑保护处理,避免M1、M2同时被驱动导通。
在上述实施例的基础上,又一个实施例,如图6和图7所示,所述第一MOS开关M1关断,所述第二MOS开关M2导通,所述充电模块为旁路回路。
M1中寄生二极管处于反偏状态。电流不会流过M1,所有电流都将通过M2。电芯B1处于串联回路外,此时电芯处于旁路状态,无法对芯进行充电和放电.
当控制出现问题或控制电源损坏,M1,M2都不通时,如串联电池组在充电状态。电流会通过M1的寄生二极管为B1充电,串联回路不存在断路的问题。M1,M2不会因电压过高烧毁;如串联电池组在放电状态,电流会通过M2的寄生二极管,串联回路也不存在断路问题,不会烧毁电路。
所述M1,M2可以为并联二极管的继电器,但继电器功耗大,体积大,切换速度慢,寿命短,故本申请不做选择。
本发明使得单体电芯(电池)从恒流到恒压充电的阶段的连续过渡,同时可通过旁路开关对电芯实现切入和切出控制,保证提前退出工艺流程的电芯不影响系统对其它电芯的正常操作。实现与传统化成设备无异的使用效果。
本发明提供的电池串联化成分容系统,其工作原理如下:
恒流充电:电能通过双向恒流源控制后流入串联的电池组,对电芯进行充电。在限定时间后有电芯达到设定电压,恒流充电结束,系统启动本组电池恒压充电流程。在限定时间内达到设定电压的电芯作为次品电芯直接通过旁路电路剔除出本次化成、分容流程。
恒流放电:串联电池组通过双向恒流源向直流母线恒流放电。放出电能为其它电池充电或者回馈电网。当电池组内有电池电压达到限定值时,该电池放电结束,直接通过旁路开关将此电池旁路到放电回路外,结束对此电池的放电。由于旁路开关的作用,此操作不会影响其它电池的正常放电。
恒压充电:当单电芯进入恒压充电流程后,使的电池的中电压作为反馈,调节PWM工作,使其充电电流发生变化,从而使得其出于恒压充电的工作流程。恒压充电时,此充电电池支路电流变小,为了不影响其他支路,则使其旁路开关间隙工作,使得总电流与恒流电流源输出相同。恒压充电时,对电芯是一对一充电,电路工作在恒流恒压工作方式,电路的输出电流、电压都可以被系统控制,调节器会调节电路输出使得输出电流或电压至少一个满足参数设定要求。
本发明提供的电池串联化成分容系统,串联化成、分容时,设备电能转换效率高,可提高能力利用率,实现较好的节能效果。放电时,将电池放出电能回收利用,用于为其它电池充电,或者逆变回馈电网。
另外,本发明提供的电池串联化成分容系统的体积小,散热少,场地利用率高:由于转换效率高同时未将放出电能转换为热能释放到环境,所以设备产生的热量相对于传统设备非常少。可以大大降低设备体积,减少设备风机使用量,降低设备噪音。
再者本发明采用低能效设备,厂房内需要配置大量空调,并消耗大量电能以吸收化成、分容设备产生的大量热量,保证厂房内环境温度的恒定。
显而易见的是,本领域的技术人员可以从根据本发明的实施方式的各种结构中获得根据不麻烦的各个实施方式尚未直接提到的各种效果。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本发明的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (8)

  1. 一种可实现恒压充电的串联化成、分容电路,其特征在于,包括:
    双向恒流电源;
    多个充电模块,多个所述充电模块串联后与所述双向恒流电源连接,所述充电模块包括旁路开关和电池,所述旁路开关与电池连接,所述旁路开关用于将所述电池处于充放电回路中,或者充放电回路外。
  2. 如权利要求1所述的可实现恒压充电的串联化成、分容电路,其特征在于,所述充电模块还包括滤波电路,所述滤波电路的一端与所述电池连接,所述滤波电路的另一端与所述旁路开关的一端连接,所述旁路开关的另一端与所述电池连接。
  3. 如权利要求2所述的可实现恒压充电的串联化成、分容电路,其特征在于,还包括电容,所述电容的一端与电池负极连接,所述电容的另一端连接至所述旁路开关与所述滤波电路连接的线路上。
  4. 如权利要求1所述的可实现恒压充电的串联化成、分容电路,其特征在于,所述旁路开关包括第一MOS开关和第二MOS开关,所述第一MOS开关的漏极通过所述滤波电路与电池正极连接,所述第一MOS开关的源极与所述第二MOS开关的漏极连接,所述第二MOS开关的源极与电池负极连接;
    其中,所述旁路开关用于将电池处于充放电回路中,给电池恒流充放电或者恒压充电;所述旁路开关还用于将电池旁路处于充放电回路外,电池不充电也不放电。
  5. 如权利要求2所述的可实现恒压充电的串联化成、分容电路,其特征在于,所述旁路开关为设置寄生二极管的MOS开关。
  6. 如权利要求4所述的可实现恒压充电的串联化成、分容电路,其特征在于,所述第一MOS开关导通,所述第二MOS开关关断时,所述充电模块为恒流充电或者放电回路,用于为电池恒流充电,或者为电池放电。
  7. 如权利要求4所述的可实现恒压充电的串联化成、分容电路,其特征在于,所述第一MOS开关导通,所述第二MOS开关导通,所述第一MOS开关与所述第二MOS开关互补导通,所述充电模块为恒压充电回路,用于为电池恒压充电。
  8. 如权利要求4所述的可实现恒压充电的串联化成、分容电路,其特征在于,所述第一MOS开关关断,所述第二MOS开关导通,所述充电模块为旁路回路。
PCT/CN2022/079700 2021-09-26 2022-03-08 可实现恒压充电的串联化成、分容电路 WO2023045269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111126375.9 2021-09-26
CN202111126375.9A CN113852161A (zh) 2021-09-26 2021-09-26 可实现恒压充电的串联化成、分容电路

Publications (1)

Publication Number Publication Date
WO2023045269A1 true WO2023045269A1 (zh) 2023-03-30

Family

ID=78980049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079700 WO2023045269A1 (zh) 2021-09-26 2022-03-08 可实现恒压充电的串联化成、分容电路

Country Status (2)

Country Link
CN (1) CN113852161A (zh)
WO (1) WO2023045269A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154240A (zh) * 2023-10-23 2023-12-01 苏州华壹智能装备有限公司 一种电池化成系统及其控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852161A (zh) * 2021-09-26 2021-12-28 西安快舟机电科技有限公司 可实现恒压充电的串联化成、分容电路
CN116094119B (zh) * 2023-02-23 2023-09-05 北京索英电气技术股份有限公司 一种重构的电化学储能系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206442129U (zh) * 2016-11-16 2017-08-25 宁波拜特测控技术股份有限公司 串联型动力电池化成设备的主回路系统及化成设备
CN109273788A (zh) * 2018-10-26 2019-01-25 广州擎天实业有限公司 一种能量回馈型锂动力电池串联化成、分容装置
CN110474118A (zh) * 2019-07-09 2019-11-19 福建星云电子股份有限公司 一种能量回馈型电芯串联化成、分容测试系统及方法
CN112259815A (zh) * 2020-11-09 2021-01-22 深圳鼎阳智能电气有限公司 一种电池串联化成、分容系统中的电池切换电路和装置
WO2021113161A2 (en) * 2019-12-06 2021-06-10 Chaojiong Zhang System for forming and testing batteries in parallel and in series
CN113306450A (zh) * 2021-06-25 2021-08-27 深圳市瑞能实业股份有限公司 一种串联化成恒压充电电路
CN113852161A (zh) * 2021-09-26 2021-12-28 西安快舟机电科技有限公司 可实现恒压充电的串联化成、分容电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206442129U (zh) * 2016-11-16 2017-08-25 宁波拜特测控技术股份有限公司 串联型动力电池化成设备的主回路系统及化成设备
CN109273788A (zh) * 2018-10-26 2019-01-25 广州擎天实业有限公司 一种能量回馈型锂动力电池串联化成、分容装置
CN110474118A (zh) * 2019-07-09 2019-11-19 福建星云电子股份有限公司 一种能量回馈型电芯串联化成、分容测试系统及方法
WO2021113161A2 (en) * 2019-12-06 2021-06-10 Chaojiong Zhang System for forming and testing batteries in parallel and in series
CN112259815A (zh) * 2020-11-09 2021-01-22 深圳鼎阳智能电气有限公司 一种电池串联化成、分容系统中的电池切换电路和装置
CN113306450A (zh) * 2021-06-25 2021-08-27 深圳市瑞能实业股份有限公司 一种串联化成恒压充电电路
CN113852161A (zh) * 2021-09-26 2021-12-28 西安快舟机电科技有限公司 可实现恒压充电的串联化成、分容电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117154240A (zh) * 2023-10-23 2023-12-01 苏州华壹智能装备有限公司 一种电池化成系统及其控制方法
CN117154240B (zh) * 2023-10-23 2024-01-30 苏州华壹智能装备有限公司 一种电池化成系统及其控制方法

Also Published As

Publication number Publication date
CN113852161A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2023045269A1 (zh) 可实现恒压充电的串联化成、分容电路
WO2022188471A1 (zh) 一种储能系统、储能系统的控制方法及光伏发电系统
CN101599721B (zh) 太阳能发电系统及其控制方法
Liao et al. Control strategy of bi-directional DC/DC converter for a novel stand-alone photovoltaic power system
WO2019149118A1 (zh) 光伏发电系统和光伏输电方法
Tomas-Manez et al. High efficiency non-isolated three port DC-DC converter for PV-battery systems
Kaur et al. Arduino based solar powered battery charging system for rural SHS
CN102136586A (zh) 燃料电池系统及其电源管理方法
CN203312826U (zh) 光伏智能全网发电系统
Adam et al. Design of bidirectional converter using fuzzy logic controller to optimize battery performance in Electric Vehicle
CN102088257B (zh) 一种太阳能发电系统及其智能存储控制方法
CN215911932U (zh) 可实现恒压充电的串联化成、分容电路
CN107947637B (zh) 基于半导体温差发电的能量收集装置
CN206461398U (zh) 一种电池组正极端专用的三状态开关
Sabry et al. Battery Backup Power System for Electrical Appliances with Two Options of Primary Power Sources
CN100375365C (zh) 一种电池组智能化管理电路结构
Chen et al. A multiple-winding bidirectional flyback converter used in the solar system
Zha et al. Energy management system applied in DC electric springs
Ruhela et al. A novel boost-sepic based three-port dc-dc converter for solar pv integrated e-boat applications
Philip et al. DC link voltage regulation of a battery integrated solar photo voltaic system
CN202197117U (zh) 蓄电池组的太阳能充电装置
Lin et al. Partly-isolated four-port converter based on bidirectional full-bridge DC/DC converter
CN214314673U (zh) 退役储能电池混合利用电能变换装置
CN113708395B (zh) 一种智慧楼宇多功能储能系统的运行方法
CN115241862A (zh) 铝空电源系统集成非线性优化控制与综合能量管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE