WO2023044981A1 - 一种眼睑接触式眼压测量装置及其测量方法 - Google Patents

一种眼睑接触式眼压测量装置及其测量方法 Download PDF

Info

Publication number
WO2023044981A1
WO2023044981A1 PCT/CN2021/123257 CN2021123257W WO2023044981A1 WO 2023044981 A1 WO2023044981 A1 WO 2023044981A1 CN 2021123257 W CN2021123257 W CN 2021123257W WO 2023044981 A1 WO2023044981 A1 WO 2023044981A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
flexible
eyelid
flexible pressure
capacitance
Prior art date
Application number
PCT/CN2021/123257
Other languages
English (en)
French (fr)
Inventor
聂宝清
陈新建
丰婷婷
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023044981A1 publication Critical patent/WO2023044981A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers

Definitions

  • the invention relates to the technical field of intraocular pressure measurement, in particular to an eyelid contact intraocular pressure measurement device and a measurement method thereof.
  • Glaucoma is the second most common cause of blindness in the world.
  • Intraocular pressure is a key parameter in the diagnosis and treatment of glaucoma.
  • the intraocular pressure of normal people is between 12-22mmHg.
  • High intraocular pressure leads to irreversible loss of peripheral visual field. Therefore, convenient and real-time monitoring of intraocular pressure is the key to preventing glaucoma.
  • Goldmann applanation is a commonly used intraocular pressure measurement method based on the Imbert-Fick principle. This principle states that when the surface of a flexible membrane sphere is flattened, the internal pressure (P) can be measured by the force (F) applied on the plane and the flattened area (A).
  • a tonometer is the primary tool used to measure intraocular pressure.
  • Goldmann applanation tonometer is the global clinical gold standard for evaluating intraocular pressure.
  • the Tono-Pen tonometer consists of a movable piston with a central diameter of 1.02 mm and a surrounding base plate. Insertion of the corneal probe activates the strain gauge, which senses the force exerted by the piston to flatten the central cornea. As the rest of the tonometer comes into contact with the cornea, the force it exerts on the piston is gradually reduced until the piston is flush with the base plate to measure intraocular pressure.
  • Non-contact tonometers use a puff of air to applanate the cornea, with the suction increasing at the beginning of the measurement until the cornea is applanated over a predetermined area. Then convert the applanation force into a measure of IOP to measure the intraocular pressure.
  • Different time periods, body postures, and intensity of exercise can all cause changes in intraocular pressure.
  • the intraocular pressure changes most obviously in different time periods. Therefore, timely intraocular pressure detection is particularly important for glaucoma screening.
  • Irene Sánchez and others have developed a new type of sensor with an all-organic double layer, which can continuously detect intraocular pressure, but wearing contact lenses for 24 hours for a long time will bring discomfort to the eyes, causing dry eyes, resulting in inaccurate measurements. precise.
  • the tonometer probe directly contacts the cornea, which has a high risk factor and requires professional ophthalmology medical personnel to operate; 2. The measurement is uncomfortable and the patient The experience is poor, and it is easy to cause cross infection; 3. For the pressing tonometer, there is also the defect of a single pressing range.
  • the technical problem to be solved by the present invention is to overcome the technical defects of high risk factor and single pressing stroke in the corneal contact IOP measurement in the prior art.
  • an eyelid contact intraocular pressure measuring device comprising:
  • a flexible pressure sensor the flexible pressure sensor includes an upper flexible electrode layer and a lower flexible electrode layer, and conductive liquid droplets are arranged between the upper flexible electrode layer and the lower flexible electrode layer;
  • An adjustment assembly the adjustment assembly includes a cover body, a micrometer screw, a nut and a push piece, a mounting hole is opened through the cover body, the push piece is located in the installation hole, the nut and the cover
  • the body is fixedly arranged, the micrometer screw is threadedly connected to the nut, and the end of the micrometer screw is connected to the pushing member through a rotating shaft;
  • a flexible pressure sensor is provided on the side of the pushing member away from the micrometer screw, and the lower flexible electrode of the flexible pressure sensor is attached to the pushing member;
  • the micrometer screw rotates to drive the pressing member to move linearly, and the pressing member moves linearly to deform the flexible pressure sensor.
  • the flexible pressure sensor also includes an elastic double-sided adhesive layer, the elastic double-sided adhesive layer is located between the upper flexible electrode layer and the lower flexible electrode layer, the elastic double-sided adhesive layer is arranged in a ring, the The conductive liquid droplet is located in the ring of the annular elastic double-sided adhesive layer.
  • an installation groove is opened on the pushing member, and the flexible pressure sensor is arranged at the installation groove.
  • a sealing ring is provided between the outer wall of the pushing member and the cover body.
  • the adjusting assembly further includes a cover plate, and both the nut and the cover body are fixedly arranged with the cover plate.
  • the invention discloses a data collection method of an eyelid contact intraocular pressure measuring device, based on the above-mentioned eyelid contact intraocular pressure measuring device, comprising the following steps:
  • the intraocular pressure to be measured is tested, and the intraocular pressure to be measured is obtained according to the nonlinear relationship equation of ⁇ C/C 0 , d, ⁇ , and IOP.
  • said S1 includes:
  • different reference eyelids correspond to different relative capacitance changes.
  • the invention also discloses an eyelid contact type intraocular pressure detection system, comprising:
  • An initial capacitance acquisition module acquires the initial capacitance of the flexible pressure sensor on the eyelid;
  • test module acquires the capacitance of the flexible pressure sensor and the corresponding pressing distance of the flexible pressure sensor when the flexible sensor is pressed down step by step to a preset depth;
  • Multiple sets of data acquisition modules the multiple sets of data acquisition modules measure different intraocular pressures, cooperate with the initial capacitance acquisition module and the test module to obtain multiple sets of test data;
  • ⁇ C CC 0
  • C the preset
  • the capacitance of the flexible pressure sensor be the depth
  • C 0 the initial capacitance of the flexible pressure sensor
  • d the pressing distance of the flexible pressure sensor
  • IOP the intraocular pressure corresponding to different eyelids
  • a prediction module tests the intraocular pressure to be measured, and obtains the intraocular pressure to be measured according to the nonlinear relationship equation of ⁇ C/C 0 , d, ⁇ and IOP.
  • the eyelid-contact tonometry device of the present invention which contacts the eyelids, avoids the risk of cross-infection.
  • the risk factor of the present invention is low, and patients can operate it by themselves.
  • the present invention is convenient for measurement, adopts the method of adjusting the pressing stroke, and has the characteristics of high precision and high resolution.
  • the present invention can collect multiple sets of data at fixed points, and perform fitting according to the multiple sets of data, so as to obtain an accurate fitting equation, with high measurement accuracy and good stability.
  • Fig. 1 is the structural representation of flexible pressure sensor of the present invention
  • Fig. 2 is a structural schematic diagram of an eyelid contact intraocular pressure measuring device
  • FIG. 3 is a cross-sectional view of an eyelid contact tonometry device
  • Figure 4(a) is a schematic diagram of the experimental calibration system of the tonometer, and Figure 4(b) is a sensor sensitivity curve;
  • Fig. 5(a) is a graph of the relationship between the relative change of capacitance and the pressing distance under different intraocular pressures
  • Fig. 5(b) is a schematic diagram of the fitting surface ⁇
  • Figure 6 is the in vitro verification of the relationship between ⁇ C/C 0 , d and IOP, wherein, figure (a) is the relationship curve between real intraocular pressure (IOPT) and predicted intraocular pressure (IOPP) in the range of 10 to 30 mmHg, and figure (b) ) is the interocular change graph of IOPP measured on three pig eyes, and graph (c) is the IOPP measured by the tonometer when the IOPT is in the range of 26 to 30 mmHg.
  • IOPT real intraocular pressure
  • IOPP predicted intraocular pressure
  • the present invention discloses an eyelid contact tonometry device, including a flexible pressure sensor and an adjustment assembly.
  • the flexible pressure sensor includes an upper flexible electrode layer 10 and a lower flexible electrode layer 11, and conductive liquid droplets are arranged between the upper flexible electrode layer 10 and the lower flexible electrode layer 11.
  • the conductive droplet will be deformed, which will lead to a change in the contact area of the electrode layer-conductive droplet 12, resulting in a change in the capacitance measurement value,
  • the higher the applied pressure the larger the contact area of the droplet-electrode interface, leading to an increase in the interfacial capacitance.
  • the adjustment assembly includes a cover body 30, a micrometer screw 20, a nut and a pusher 21.
  • a mounting hole is formed through the cover body 30, and the pusher 21 is located in the installation hole.
  • the nut and the cover body 30 are fixedly arranged, and the micrometer screw 20 It is threadedly connected with the nut, and the end of the micrometer screw 20 is connected with the thrust member 21 through a rotating shaft.
  • the push member 21 is provided with a flexible pressure sensor away from the side of the micrometer screw 20, and the lower flexible electrode of the flexible pressure sensor is attached to the push member 21; when the flexible pressure sensor is pressed against the eyelid, the micrometer screw 20 The rotation drives the pressing part to move linearly, and the pressing part moves linearly to deform the flexible pressure sensor. In this way, through the rotation of the micrometer screw 20 , since the micrometer screw 20 is threadedly connected with the nut, the steady forward movement of the micrometer screw 20 can be achieved when the micrometer screw 20 rotates, thereby driving the thrust member 21 to move along the inner wall of the installation hole.
  • the push member 21 Since the end of the micrometer screw 20 is connected to the push member 21 through a rotating shaft, the push member 21 will not rotate synchronously with the micrometer screw 20, so that the flexible pressure sensor can press the eyelid, and the flexible pressure sensor The moving distance against the eyelid can be adjusted to facilitate follow-up testing.
  • the flexible pressure sensor also includes an elastic double-sided adhesive layer, the elastic double-sided adhesive layer is located between the upper flexible electrode layer 10 and the lower flexible electrode layer 11, the elastic double-sided adhesive layer is arranged in a ring shape, and the conductive liquid drop is located on the ring-shaped elastic double-sided adhesive layer. layer ring.
  • the ring-shaped elastic double-sided adhesive layer can better fix the upper flexible electrode layer 10 and the lower flexible electrode layer 11 , and, because the elastic double-sided adhesive layer is ring-shaped, it can surround the liquid droplets and have better stability.
  • An installation groove is opened on the thrust member 21, and the flexible pressure sensor is arranged at the installation groove.
  • the flexible pressure sensor can be attached in the installation groove by means of glue.
  • a sealing ring 33 is disposed between the outer wall of the pushing member 21 and the cover body 30 .
  • the adjustment assembly further includes a cover plate 32 , and both the nut and the cover body 30 are fixedly arranged with the cover plate 32 .
  • cover plate 32 By providing the cover plate 32, the stability of the eyelid contact tonometry device can be improved.
  • the present invention also discloses a data acquisition method of an eyelid contact type intraocular pressure measuring device, based on the above-mentioned eyelid contact type intraocular pressure measurement device, comprising the following steps:
  • Step 1 Press the flexible pressure sensor against the reference eyelid to obtain the initial capacitance of the flexible pressure sensor.
  • Step 1 specifically includes: setting the eyelid contact tonometry device on one side of the eyelid, controlling the movement of the flexible pressure sensor by rotating the micrometer screw, and observing the change of the output capacitance of the flexible pressure sensor; when the output capacitance of the flexible pressure sensor starts to When it increases, it means that the flexible pressure sensor has touched the eyelid, and the current capacitance value of the flexible pressure sensor is recorded as the initial capacitance of the flexible pressure touch sensor.
  • Step 2 Rotate the micrometer screw so that the flexible pressure sensor is pressed down step by step to the preset depth, and record the capacitance of the flexible pressure sensor and the corresponding pressing distance of the flexible pressure sensor when the flexible sensor is pressed down to the preset depth each time.
  • Step 3 Measure different reference eyelids, repeat steps 1 to 2, and obtain multiple sets of test data. Wherein, different reference eyelids correspond to different relative capacitance changes.
  • Step 5 Test the intraocular pressure to be measured, and obtain the intraocular pressure to be measured according to the nonlinear relationship equation of ⁇ C/C 0 , d, ⁇ , and IOP.
  • the invention also discloses an eyelid contact intraocular pressure detection system, which includes an initial capacitance acquisition module, a test module, multiple sets of data acquisition modules, a fitting module and a prediction module.
  • the initial capacitance acquisition module acquires the initial capacitance of the flexible pressure sensor on the eyelid.
  • the test module obtains the capacitance of the flexible pressure sensor and the corresponding pressing distance of the flexible pressure sensor when the flexible sensor is pressed down step by step to a preset depth.
  • Multiple sets of data acquisition modules measure different reference eyelids, and cooperate with the initial capacitance acquisition module and the test module to obtain multiple sets of test data.
  • the prediction module tests the intraocular pressure to be measured, and obtains the intraocular pressure to be measured according to the nonlinear relationship equation of ⁇ C/C 0 , d, ⁇ , and IOP.
  • the present invention firstly designs the whole system according to the requirement of IOP measurement.
  • IOP measurement In order to measure IOP with high precision and high pressure resolution, there are several design criteria: 1) Considering the typical IOP range in normal and glaucoma, the tonometer should be able to detect pressures from 10 to 50 mmHg. 2) The device needs to achieve a measurement accuracy of 1 mmHg compared to the accuracy and resolution of clinical measurements; 3) For reliable IOP detection, it is desirable that the tonometer be repeated in different eyes.
  • the intraocular pressure measurement system of the present invention adopts a displacement platform with a step resolution of 0.01mm, and the force sensor adopts a package of 4.5 ⁇ 4.5 ⁇ 0.3mm 3 .
  • the sensor is constructed as a three-layer structure.
  • the top is the upper flexible electrode layer
  • the bottom is the lower flexible electrode layer
  • the middle is supported by elastic annular double-sided adhesive tape.
  • the conductive droplets have good chemical and thermal stability. It is a kind of The relatively stable liquid electrolyte at room temperature is not easy to volatilize, so the sensor made of it is relatively stable and can be reused.
  • the conductive microdroplet has ion conductivity, which makes the sensor have high sensitivity and can meet the requirements of measuring intraocular pressure. .
  • the overall deformation of the sensing cavity (including the bending of the flexible electrode layer and the compression of the elastic annular double-sided adhesive layer) will cause a change in the electrode-droplet contact area, resulting in a change in the capacitance measurement,
  • the higher the applied pressure the larger the contact area of the droplet-electrode interface, leading to an increase in the interfacial capacitance.
  • FIG. 2 it is a schematic structural diagram of the adjustment assembly.
  • the micromeasuring screw of the present invention uses the principle of converting rotary motion into linear motion, which ensures the feasibility of subsequent measurement.
  • the present invention adds a cover to the diameter-type micrometer screw to fix it.
  • an O-ring is added inside the cover to make it contact with the inner wall of the support structure to generate friction. This is used to increase damping to avoid eyeball injury from rapid downward pressure during rotation.
  • the present invention designs a groove body similar to the structure of the sensor at the bottom of the hand-held displacement controller. During the process of measuring intraocular pressure with the tonometer, the flexible electrode layer on one side of the sensor is pasted here, and the flexible electrode layer on the other side directly contacts the eyeball.
  • the length of the entire hand-held displacement controller is 108.5mm, and the maximum outer edge diameter is 69mm.
  • Figure 4a shows the experimental calibration system of the tonometer, which consists of a handheld tonometer platform, a base, an impedance analyzer, a manometer, a three-way valve, and a syringe pump. Place the pig's eye on the base and fix it, and use a three-way valve to control the internal pressure of the pig's eye: one end is connected to the needle tube (0.5mm) and inserted into the anterior chamber of the pig's eye, and the other end is connected to the injection pump to control the normal saline The flow rate is connected to a manometer to detect intraocular pressure. By rotating the knob of the hand-held displacement controller to control the rise and fall of the intraocular pressure, the rise and fall of the sensor is controlled. And connect the wire port of the sensor to the impedance analyzer to record the change of the capacitance output.
  • the present invention uses this system to perform experimental measurements on isolated porcine eyes.
  • the present invention purchased 11 healthy pig eyeballs in a local slaughterhouse, with an age range of 6 to 8 months.
  • ice-water mixture is placed in an incubator (ESKY10L), and the collected eyeballs are placed in the incubator. This ensures the freshness of the eyeballs.
  • the invention will complete the measurement process within 6 hours to maintain the elasticity of eye tissue.
  • the pig's eye is placed on the base and fixed, and a layer of skin (2mm) that is similar in hardness and thickness to the human eyelid is placed on the cornea of the pig's eye to simulate the eyelid.
  • the eyelid thickness of the human eye is 2-4mm, so the eyelid thickness selected in the experiment of the present invention meets the requirements;
  • One end is connected to a syringe pump (BYZ-810S, BEYOND, CHN) to control the flow rate of saline, and the other end is connected to a manometer (CEM, DT-8890) to detect intraocular pressure.
  • CEM manometer
  • the present invention controls the distance to press the pig's eye by turning the knob of the tonometer, and connects the wire port of the sensor to the measuring circuit for recording the change of the capacitance output.
  • inject different intraocular pressures for example, 10-30mmHg
  • the invention calibrates the sensitivity of the pressure sensor in the tonometer.
  • Figure 4b is the sensitivity curve of the sensor. It can be seen from Figure 4b that the contact pressure (F) between the sensor and the cornea has a linear relationship with the relative capacitance change ( ⁇ C/C 0 ) of the sensor, and its sensitivity S is 2.40N -1 .
  • the present invention uses a hand-held tonometer system to measure the intraocular pressure of isolated pig eyes.
  • the output capacitance change ⁇ C/C 0 increases with the increase of the pressing distance d .
  • the output capacitance change ⁇ C/C 0 also increases. This is because the same depressing distance results in the same tonometer-eyelid contact area, and an increase in intraocular pressure leads to an increase in contact pressure, which in turn increases the capacitance change.
  • the present invention fits the original data measured on five groups of pig eyes, namely IOP, d, C/C 0 and ⁇ deal with.
  • the present invention has measured the data ( ⁇ C/C0, d, IOP) of three groups of pig eyes in vitro by the tonometer, and calculated the predicted intraocular pressure (IOPP) according to equation (1) , and compare the real intraocular pressure IOP with the predicted intraocular pressure IOPP.
  • the measurement accuracy (min(IOPT-IOPP) ⁇ max(IOPT-IOPP)) under different intraocular pressure of 10-30mmHg is -0.92 ⁇ +0.14mmHg.
  • Figure 6b shows the interocular changes of IOPP in three pig eyes.
  • the range of IOPT is 10-30mmHg
  • the difference between IOPP and IOPT is within ⁇ 1mmHg (indicated by colored bars)
  • the maximum relative error ((IOPP-IOPT)/IOPT) is 4.2 %, indicating good repeatability of interocular measurement.
  • the tonometer of the present invention can successfully measure the IOP with a change of 1 mmHg, as shown in Figure 6c, the tonometer can accurately distinguish the IOP change of 1 mmHg, and the measurement accuracy is -0.44mmHg ⁇ +0.37mmHg.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

本发明涉及一种眼睑接触式眼压测量装置及其测量方法,包括:柔性压力传感器,柔性压力传感器包括上柔性电极层和下柔性电极层,上柔性电极层和下柔性电极层之间设置有导电液滴;调节组件,调节组件包括罩体、测微螺杆、螺母和抵推件,罩体内贯穿开设有安装孔,抵推件位于安装孔内,螺母与罩体固定设置,测微螺杆与螺母螺纹连接,测微螺杆的端部与抵推件通过转轴连接;其中,抵推件远离测微螺杆的一侧设置有柔性压力传感器,柔性压力传感器的下柔性电极贴设在抵推件上;当柔性压力传感器抵压在眼睑时,测微螺杆转动以带动抵压件做直线移动,抵压件做直线运动以使得柔性压力传感器发生形变。其接触眼睑,避免了交叉感染的风险,危险系数低。

Description

一种眼睑接触式眼压测量装置及其测量方法 技术领域
本发明涉及眼压测量技术领域,尤其是指一种眼睑接触式眼压测量装置及其测量方法。
背景技术
青光眼是世界上第二大常见的致盲疾病。眼内压是青光眼的诊断和治疗的关键参数。正常人的眼压在12-22mmHg之间。较高的眼内压会导致外周视野的丧失并且不可逆转。因此,便捷即时地监测眼内压是预防青光眼的关键。Goldmann压平法是一种基于Imbert-Fick原理的常用的眼压测量法。该原理表明当柔性薄膜球体表面被压平时,内部的压强(P)可以通过施加在平面上的力(F)和压平区域(A)来测量。眼压计是用来测量眼压的主要工具。常见的基于Goldmann压平法的眼压计包括:Goldmann压平眼压计、Tono-pen眼压计、非接触式眼压计。其中Goldmann压平眼压计(GAT)评估眼压是全球临床的金标准。Tono-Pen眼压计是由中心直径为1.02毫米的可移动活塞和环绕的底板组成。装入角膜探针会激活应变仪,该应变仪用于感知活塞压平中央角膜所产生的力。随着眼压计其他部分逐渐与角膜接触,其施加于活塞上的力逐渐减小,直至活塞与底板齐平来测得眼内压。非接触式眼压计是使用一股空气来压平角膜,测量开始时的抽吸力增加,直到角膜在预定区域上被压平。再将压平力转换为IOP的量度来测得眼内压。不同时间段、身体的姿势、运动剧烈程度都会引起眼压的变化。特别是,不同的时间段眼压变化最为明显。所以及时的眼压检测对青光眼的筛查尤为重要。Irene Sánchez等人研究出了全有机双层的新型传感器,其能连续的检测眼内压,但是隐形眼镜24小时长时间的佩戴会给眼睛带来不舒适感,引起眼睛干涩,导致测量的不准确。
现有的眼压测量技术大多采用角膜接触式测量,主要存在的缺陷有:1、眼压计探头直接接触角膜,危险系数较高,需要专业的眼科医护人员操作;2、测量不舒适、患者体验较差,易造成交叉感染;3、对于按压式的眼压计,还存在按压量程单一的缺陷。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中角膜接触式眼压测量危险系数高,按压行程单一的技术缺陷。
为解决上述技术问题,本发明提供了一种眼睑接触式眼压测量装置,包括:
柔性压力传感器,所述柔性压力传感器包括上柔性电极层和下柔性电极层,所述上柔性电极层和所述下柔性电极层之间设置有导电液滴;
调节组件,所述调节组件包括罩体、测微螺杆、螺母和抵推件,所述罩体内贯穿开设有安装孔,所述抵推件位于所述安装孔内,所述螺母与所述罩体固定设置,所述测微螺杆与所述螺母螺纹连接,所述测微螺杆的端部与所述抵推件通过转轴连接;
其中,所述抵推件远离所述测微螺杆的一侧设置有柔性压力传感器,所述柔性压力传感器的下柔性电极贴设在所述抵推件上;
当所述柔性压力传感器抵压在眼睑时,所述测微螺杆转动以带动所述抵压件做直线移动,所述抵压件做直线运动以使得柔性压力传感器发生形变。
作为优选的,所述柔性压力传感器还包括弹性双面胶层,所述弹性双面胶层位于上柔性电极层和下柔性电极层之间,所述弹性双面胶层呈环形设置,所述导电液滴位于环形的弹性双面胶层的环内。
作为优选的,所述抵推件上开设有安装槽,所述柔性压力传感器设置在 所述安装槽处。
作为优选的,所述抵推件的外侧壁与所述罩体间设置有密封圈。
作为优选的,所述调节组件还包括盖板,所述螺母和所述罩体皆与所述盖板固定设置。
本发明公开了一种眼睑接触式眼压测量装置的数据采集方法,基于上述的眼睑接触式眼压测量装置,包括以下步骤:
S1、将所述柔性压力传感器抵压在参考眼睑上,获取柔性压力传感器的初始电容;
S2、旋转测微螺杆以使得柔性压力传感器逐级下压预设深度,记录柔性传感器每次下压预设深度时柔性压力传感器的电容和对应的柔性压力传感器下压距离;
S3、对不同参考眼睑进行测量,重复S1-S2,获得多组测试数据;
S4、对多组测试数据进行拟合,获得ΔC/C 0、d、α和IOP的非线性关系方程,其中,ΔC=C-C 0,C为传感器每次下压预设深度时柔性压力传感器的电容,C 0为柔性压力传感器的初始电容,d为柔性压力传感器下压距离,α为眼睑参数,IOP为不同眼睑对应的眼压;
S5、对待测眼压进行测试,根据ΔC/C 0、d、α和IOP的非线性关系方程,获得待测眼压。
作为优选的,所述S1包括:
将眼睑接触式眼压测量装置设置在眼睑一侧,通过旋转测微螺杆来控制柔性压力传感器移动,并观察柔性压力传感器的输出电容的变化;
当柔性压力传感器的输出电容开始增加时,则表示柔性压力传感器接触到了眼睑,记录当前柔性压力传感器的电容值作为柔性压力触感器的初始电容。
作为优选的,所述S3中,不同参考眼睑对应不同的相对电容变化。
作为优选的,所述S4中,通过cftool对多组测试数据进行拟合。
本发明还公开了一种眼睑接触式眼压检测系统,包括:
初始电容获取模块,所述初始电容获取模块获取柔性压力传感器在眼睑上的的初始电容;
测试模块,所述测试模块获取柔性传感器逐级下压预设深度时柔性压力传感器的电容和对应的柔性压力传感器下压距离;
多组数据采集模块,所述多组数据采集模块对不同眼压进行测量,协同初始电容获取模块和测试模块工作,获得多组测试数据;
拟合模块,所述拟合模块对多组测试数据进行拟合,获得ΔC/C 0、d、α和IOP的非线性关系方程,其中,ΔC=C-C 0,C为传感器每次下压预设深度时柔性压力传感器的电容,C 0为柔性压力传感器的初始电容,d为柔性压力传感器下压距离,IOP为不同眼睑对应的眼压;
预测模块,所述预测模块对待测眼压进行测试,根据ΔC/C 0、d、α和IOP的非线性关系方程,获得待测眼压。
本发明的上述技术方案相比现有技术具有以下优点:
1、本发明中的眼睑接触式眼压测量装置,其接触眼睑,避免了交叉感染的风险。
2、本发明危险系数低,患者可以自己操作。
3、本发明测量方便,同时采用按压行程可调节的方法,具有高精确度以及高分辨率的特点。
本发明眼睑接触式眼压测量装置的数据采集方法具有以下优点:
相对于常规的眼压测量方法,本发明能够定点采集多组数据,根据多组数据进行拟合,从而获得准确的拟合方程,测量精度高,稳定性好。
附图说明
图1为本发明柔性压力传感器的结构示意图;
图2为眼睑接触式眼压测量装置的结构示意图;
图3为眼睑接触式眼压测量装置的剖视图;
图4(a)为眼压计的实验校准系统示意图,图4(b)为传感器灵敏度曲线图;
图5(a)为不同眼压下电容的相对变化与按压距离之间的关系曲线图:图5(b)为拟合面Ω的示意图;
图6为ΔC/C 0、d和IOP关系的体外验证,其中,图(a)为10至30mmHg范围内,真实眼内压(IOPT)和预测眼内压(IOPP)关系曲线,图(b)为三只猪眼上测量的IOPP的眼间变化图,图(c)为眼压计在IOPT为26到30mmHg范围内测得的IOPP。
说明书附图标记说明:10、上柔性电极层;11、下柔性电极层;12、导电微滴;13、弹性环形双面胶层;20、测微螺杆;21、抵推件;211、槽体;30、罩体;31、安装座;32、盖板;33、密封圈。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1-图3所示,本发明的公开了一种眼睑接触式眼压测量装置,包 括柔性压力传感器和调节组件。
柔性压力传感器包括上柔性电极层10和下柔性电极层11,上柔性电极层10和下柔性电极层11之间设置有导电液滴。当上柔性电极层10或下柔性电极层11受到垂直于其表面的压力时,导电液滴会发生形变,进而导致电极层-导电微滴12接触面积的变化,从而导致电容测量值的变化,施加的压力越大,液滴-电极界面的接触面积则会增大,从而导致界面电容的增大。
调节组件包括罩体30、测微螺杆20、螺母和抵推件21,罩体30内贯穿开设有安装孔,抵推件21位于安装孔内,螺母与罩体30固定设置,测微螺杆20与螺母螺纹连接,测微螺杆20的端部与抵推件21通过转轴连接。
其中,抵推件21远离测微螺杆20的一侧设置有柔性压力传感器,柔性压力传感器的下柔性电极贴设在抵推件21上;当柔性压力传感器抵压在眼睑时,测微螺杆20转动以带动抵压件做直线移动,抵压件做直线运动以使得柔性压力传感器发生形变。如此,通过测微螺杆20转动,由于测微螺杆20与螺母螺纹连接,即可实现测微螺杆20转动时稳步前移,从而带动抵推件21沿安装孔内壁移动。而由于测微螺杆20的端部与抵推件21通过转轴连接,即可使得抵推件21不会随测微螺杆20同步转动,从而使得柔性压力传感器能够抵压眼睑,并且,柔性压力传感器抵压眼睑的移动距离可调,方便后续测试。
柔性压力传感器还包括弹性双面胶层,弹性双面胶层位于上柔性电极层10和下柔性电极层11之间,弹性双面胶层呈环形设置,导电液滴位于环形的弹性双面胶层的环内。环形弹性双面胶层可以更好地将上柔性电极层10和下柔性电极层11固定,并且,由于弹性双面胶层呈环状,可将液滴环绕,稳定性更好。
抵推件21上开设有安装槽,柔性压力传感器设置在安装槽处。具体的, 柔性压力传感器可以通过胶粘的方式贴附在安装槽内。
在抵推件21的外侧壁与罩体30间设置有密封圈33。
调节组件还包括盖板32,螺母和罩体30皆与盖板32固定设置。通过设置盖板32,可以提高眼睑接触式眼压测量装置的稳定性。
本发明还公开了一种眼睑接触式眼压测量装置的数据采集方法,基于上述的眼睑接触式眼压测量装置,包括以下步骤:
步骤一、将柔性压力传感器抵压在参考眼睑上,获取柔性压力传感器的初始电容。
步骤一具体包括:将眼睑接触式眼压测量装置设置在眼睑一侧,通过旋转测微螺杆来控制柔性压力传感器移动,并观察柔性压力传感器的输出电容的变化;当柔性压力传感器的输出电容开始增加时,则表示柔性压力传感器接触到了眼睑,记录当前柔性压力传感器的电容值作为柔性压力触感器的初始电容。
步骤二、旋转测微螺杆以使得柔性压力传感器逐级下压预设深度,记录柔性传感器每次下压预设深度时柔性压力传感器的电容和对应的柔性压力传感器下压距离。
步骤三、对不同参考眼睑进行测量,重复步骤一至步骤二,获得多组测试数据。其中,不同参考眼睑对应不同的相对电容变化。
步骤四、对多组测试数据进行拟合,获得ΔC/C 0、d、α和IOP的非线性关系方程,其中,ΔC=C-C 0,C为传感器每次下压预设深度时柔性压力传感器的电容,C 0为柔性压力传感器的初始电容,d为柔性压力传感器下压距离,α为眼睑参数,IOP为不同眼睑对应的眼压。
其中,通过cftool对多组测试数据进行拟合。
步骤五、对待测眼压进行测试,根据ΔC/C 0、d、α和IOP的非线性关系方程,获得待测眼压。
本发明还公开了一种眼睑接触式眼压检测系统,包括初始电容获取模块、测试模块、多组数据采集模块、拟合模块和预测模块。
初始电容获取模块获取柔性压力传感器在眼睑上的的初始电容。
测试模块获取柔性传感器逐级下压预设深度时柔性压力传感器的电容和对应的柔性压力传感器下压距离。
多组数据采集模块对不同参考眼睑进行测量,协同初始电容获取模块和测试模块工作,获得多组测试数据。
拟合模块对多组测试数据进行拟合,获得ΔC/C 0、d、α和IOP的非线性关系方程,其中,ΔC=C-C 0,C为传感器每次下压预设深度时柔性压力传感器的电容,C 0为柔性压力传感器的初始电容,d为柔性压力传感器下压距离,α为眼睑参数,眼睑参数可为眼睑的薄厚,IOP为不同眼睑对应的眼压。
预测模块对待测眼压进行测试,根据ΔC/C 0、d、α和IOP的非线性关系方程,获得待测眼压。
下面,结合具体实施例对本发明的技术方案做进一步说明与解释。
一、材料与方法
(1)系统设计
参照图1所示,本发明首先根据IOP测量的要求设计了整个系统。为了测量高精度和高压分辨率的IOP,有几个设计标准:1)考虑到正常和青光眼的典型眼压范围,眼压计应该能够检测到10到50mmHg的压力。2)与临床测量的准确度和分辨率相比,该装置需要达到1mmHg的测量精度;3)为了可 靠的IOP检测,希望眼压计在不同的眼睛中重复。根据这些要求,本发明的眼压测量系统采用位移平台,步进分辨率为0.01mm,力传感器采用4.5×4.5×0.3mm 3的封装。传感器构造为三层结构。顶部是上柔性电极层,底部是下柔性电极层,中间由弹性环形双面胶支撑,弹性环形双面胶的环形中间有导电液滴,导电微滴的化学和热稳定性好,是一种在室温下较为稳定的液体电解质,不易挥发,所以由它制作的传感器较为稳定且可以重复使用,另外,导电微滴的具有离子导电性,使得传感器的灵敏度较高,能够满足测量眼压的要求。
当给传感器施加压力的时候,传感腔的整体形变(包括柔性电极层的弯曲和弹性环形双面胶层的压缩)将导致电极-微滴接触面积的变化,从而导致电容测量值的变化,施加的压力越大,液滴-电极界面的接触面积则会增大,从而导致界面电容的增大。
参照图2所示,为调节组件的结构示意图。本发明测微螺杆,把旋转运动转变成直线运动的原理,保证了后续测量的可行性。
为了让直径式测微螺杆更好地固定,本发明为直径式测微螺杆添加了罩体加以固定,同时,在罩体内部增加了O型圈,使其和支撑结构内壁接触产生摩擦,以此来增加阻尼避免在旋转过程中快速下压伤害眼球。本发明根据传感器的外形结构在手持位移控制器底部设计了一个类似于传感器结构的槽体。在眼压计测量眼压过程中,传感器一侧柔性电极层粘贴在此处,另外一侧柔性电极层直接接触眼球。整个手持位移控制器长为108.5mm,最大外缘直径为69mm。
(2)体外实验装置
图4a给出了眼压计的实验校准系统,它由手持式眼压计平台、底座、阻抗分析仪、压强计、三通阀门和注射泵组成。将猪眼正放置在底座上固定,使用三通阀门控制猪眼眼内压:一头接在针管上(0.5mm),插入猪眼的前房,一头接在注射泵上,用来控制生理盐水的流速,一头接在压强计上用于检测 眼内压。通过旋转手持式位移控制器的旋钮控制眼压的升降,来控制传感器的升降。并将传感器的导线端口连接到阻抗分析仪上用于记录电容输出的变化。
本发明使用该系统对离体猪眼进行实验测量。本发明在当地的屠宰场购买了11只健康的猪眼眼球,年龄范围为6至8个月。本发明在保温箱(ESKY10L)中放置冰水混合物,并将收集眼球放置在保温箱中。这能够确保眼球的新鲜程度。本发明将在6个小时以内完成测量过程以保持眼组织的弹性。首先将猪眼正放置在底座上固定,将一层与人眼眼睑软硬程度、厚度相近的皮(2mm)放置在猪眼的角膜上,模拟眼睑,为了科学的选择眼睑厚度,在与医学从业人员的沟通中获知:人眼眼睑厚度为2-4mm,因此本发明实验中选择的眼睑厚度符合要求;然后使用三通阀门控制猪眼内压:一头接在针管上,插入猪眼的前房,一头接在注射泵(BYZ-810S,BEYOND,CHN)上,用来控制生理盐水的流速,一头接在压强计(CEM,DT-8890)上用于检测眼内压。接着,本发明通过转动眼压计旋钮来控制按压猪眼的距离,并将传感器的导线端口连接到测量电路用于记录电容输出的变化。给猪眼注射不同的眼内压(例如,10-30mmHg),记录每下降0.1mm时的相对位移量和电容值。
二、结果
(1)传感器灵敏度
本发明对眼压计中的压力传感器的灵敏度进行校准。本实施例使用高分子弹性材料Ecoflex30(A:B=1:1)制作和眼球具有相同尺寸的球体模型,并将固定在测力计上的传感器垂直的压在模型眼球表面,记录传感器电容和接触压力变化。
本发明将传感器的灵敏度定义为S=ΔC/C 0/F,其中ΔC是传感器的电容变化,C 0是传感器没有接触角膜时的初始电容,F是传感器与角膜之间的接触压力。图4b为传感器灵敏度曲线,从图4b可以看出,传感器与角膜的接触压力(F)与传感器相对电容变化(ΔC/C 0)呈线性关系,其灵敏度S为2.40N -1
(2)眼内压测量和数据采集
本发明利用手持式眼压计系统对离体猪眼眼内压进行了测量。实验中总共测量了n=8个猪眼,每个猪眼眼内压IOP控制为10到30mmHg(间隔5mmHg)。
首先,通过注射泵给猪眼注射生理盐水,观察压强计至10mmHg后以较低的注射速度注射以维持眼内压稳定,然后将眼压计垂直地压在固定了猪眼的底座上,通过旋转旋钮来控制传感器的升降,观察传感器的输出变化。当传感器电容开始增加时则表示传感器接触到了猪眼角膜,此时认为该接触位置是初始接触位置,记录下传感器的电容值作为传感器的初始电容(C 0)。
其次,在上述初始位置上,继续顺时针旋转旋钮,每旋转10小格则表示下压0.1mm,记录眼压计每下降d=0.1mm的传感器的电容值C。重复旋转旋钮,直至眼压计下降位移d达到0.8mm,停止记录数据。然后通过逆时针旋转手持眼压计的旋钮将传感器升起远离猪眼,待传感器示数降至初始电容C 0后继续给猪眼注射生理盐水至其他眼内压(IOP=15–30mmHg),重复上述操作并记录传感器的示数C和对应的下压距离d。
图5a总结了其中5个猪眼的测量结果:在相同的眼内压IOP条件下,随着下压距离d的增加,传感器的输出电容变化(ΔC/C 0,ΔC=C-C 0)增大。这是由于随着眼压计的向下下压猪眼,导致眼睑与眼压计的接触面积增加,进而导致接触压力的增加以及电容变化的增大。此外,在相同的下压距离d下,随着眼内压IOP的升高,输出电容变化ΔC/C 0也升高。这是因为相同的下压距离导致相同的眼压计-眼睑接触面积,眼内压增加致使接触压力升高,进而使得电容变化量增大。
(3)数据拟合及其分析
为了准确量化ΔC/C 0、d、IOP以及α的关系,其中α为眼睑厚度参数,本发明对五组猪眼上测量的原始数据,即IOP,d,C/C 0以及α进行拟合处理。
首先,在五组猪眼的数据中,α一定的情况下,选取相同的d和IOP(例如,d=0.1mm,IOP=10mmHg),对电容变化ΔC/C 0取平均值(当d=0.1mm,IOP =10mmHg时,根据图5a可知,该值为0.005)。
其次,重复上述操作,选取所有情况的IOP和d,并计算与之对应的五组ΔC/C 0的平均值。至此,可以得到关于(IOP,d,ΔC/C 0)的数据共40组(α一定的情况下,d的情况有8个,IOP的情况有5个)。
再次,将上述(IOP,d,ΔC/C 0),设置为x、y和z变量并导入到cftool进行拟合。经验证,三阶多项式可以很好地拟合三个参数的非线性关系。
拟合曲面如图5b所示。所有实验数据(黑点,n=40)都位于拟合曲面(Ω)内,表明该模型可以准确预测α一定的情况下,ΔC/C0、d、IOP的非线性关系。提取拟合曲面Ω的拟合公式:
6.3×10 -6×IOPT 3+(0.00018×d-0.0004)×IOPT 2+(-0.014×d 2+0.022×d+0.0065)×IOPT+(-0.16×d 3+0.33×d 2-0.13×d-0.039-ΔC/C 0)=0......(1)
为了进一步验证上式的有效性,本发明又通过眼压计测量了三组体外猪眼的数据(ΔC/C0、d、IOP),并根据方程(1)计算了预测眼内压(IOPP),并将真实眼内压IOP和预测眼内压IOPP进行对比。图6a显示的真实眼内压(IOPT)和预测眼内压(IOPP)关系曲线,二者具有0.999的高相关系数R(=correl(IOPP,IOPT)),这表明了IOP很好地被公式(1)预测。在10–30mmHg不同眼内压下的测量精度(min(IOPT-IOPP)~max(IOPT-IOPP))为-0.92~+0.14mmHg。图6b是三只猪眼的IOPP眼间变化,IOPT范围为10~30mmHg,IOPP与IOPT的差异在±1mmHg以内(用彩色条表示),最大相对误差((IOPP-IOPT)/IOPT)为4.2%,说明眼间测量重复性良好。另外,本发明的眼压计能够成功地测量出1mmHg变化的IOP,如图6c所示,该眼压计能够准确区分1mmHg的IOP变化,测量精度为-0.44mmHg~+0.37mmHg。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘 存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种眼睑接触式眼压测量装置,其特征在于,包括:
    柔性压力传感器,所述柔性压力传感器包括上柔性电极层和下柔性电极层,所述上柔性电极层和所述下柔性电极层之间设置有导电液滴;
    调节组件,所述调节组件包括罩体、测微螺杆、螺母和抵推件,所述罩体内贯穿开设有安装孔,所述抵推件位于所述安装孔内,所述螺母与所述罩体固定设置,所述测微螺杆与所述螺母螺纹连接,所述测微螺杆的端部与所述抵推件通过转轴连接;
    其中,所述抵推件远离所述测微螺杆的一侧设置有柔性压力传感器,所述柔性压力传感器的下柔性电极贴设在所述抵推件上;
    当所述柔性压力传感器抵压在眼睑时,所述测微螺杆转动以带动所述抵压件做直线移动,所述抵压件做直线运动以使得柔性压力传感器发生形变。
  2. 根据权利要求1所述的眼睑接触式眼压测量装置,其特征在于,所述柔性压力传感器还包括弹性双面胶层,所述弹性双面胶层位于上柔性电极层和下柔性电极层之间,所述弹性双面胶层呈环形设置,所述导电液滴位于环形的弹性双面胶层的环内。
  3. 根据权利要求1所述的眼睑接触式眼压测量装置,其特征在于,所述抵推件上开设有安装槽,所述柔性压力传感器设置在所述安装槽处。
  4. 根据权利要求1所述的眼睑接触式眼压测量装置,其特征在于,所述抵推件的外侧壁与所述罩体间设置有密封圈。
  5. 根据权利要求1所述的眼睑接触式眼压测量装置,其特征在于,所述调 节组件还包括盖板,所述螺母和所述罩体皆与所述盖板固定设置。
  6. 一种眼睑接触式眼压测量装置的数据采集方法,基于权利要求1-5任一项所述的眼睑接触式眼压测量装置,其特征在于,包括以下步骤:
    S1、将所述柔性压力传感器抵压在参考眼睑上,获取柔性压力传感器的初始电容;
    S2、旋转测微螺杆以使得柔性压力传感器逐级下压预设深度,记录柔性传感器每次下压预设深度时柔性压力传感器的电容和对应的柔性压力传感器下压距离;
    S3、对不同参考眼睑进行测量,重复S1-S2,获得多组测试数据;
    S4、对多组测试数据进行拟合,获得ΔC/C 0、d、α和IOP的非线性关系方程,其中,ΔC=C-C 0,C为传感器每次下压预设深度时柔性压力传感器的电容,C 0为柔性压力传感器的初始电容,d为柔性压力传感器下压距离,α为眼睑参数,IOP为眼压;
    S5、对待测眼压进行测试,根据ΔC/C 0、d、α和IOP的非线性关系方程,获得待测眼压。
  7. 根据权利要求1所述的眼睑接触式眼压检测方法,其特征在于,所述S1包括:
    将眼睑接触式眼压测量装置设置在眼睑一侧,通过旋转测微螺杆来控制柔性压力传感器移动,并观察柔性压力传感器的输出电容的变化;
    当柔性压力传感器的输出电容开始增加时,则表示柔性压力传感器接触到了眼睑,记录当前柔性压力传感器的电容值作为柔性压力触感器的初始电容。
  8. 根据权利要求1所述的眼睑接触式眼压检测方法,其特征在于,所述S3中,不同参考眼睑对应不同的相对电容变化。
  9. 根据权利要求1所述的眼睑接触式眼压检测方法,其特征在于,所述S4中,通过cftool对多组测试数据进行拟合。
  10. 一种眼睑接触式眼压检测系统,其特征在于,包括:
    初始电容获取模块,所述初始电容获取模块获取柔性压力传感器在眼睑上的的初始电容;
    测试模块,所述测试模块获取柔性传感器逐级下压预设深度时柔性压力传感器的电容和对应的柔性压力传感器下压距离;
    多组数据采集模块,所述多组数据采集模块对不同眼压进行测量,协同初始电容获取模块和测试模块工作,获得多组测试数据;
    拟合模块,所述拟合模块对多组测试数据进行拟合,获得ΔC/C 0、d、α和IOP的非线性关系方程,其中,ΔC=C-C 0,C为传感器每次下压预设深度时柔性压力传感器的电容,C 0为柔性压力传感器的初始电容,d为柔性压力传感器下压距离,α为眼睑参数,IOP为眼压;
    预测模块,所述预测模块对待测眼压进行测试,根据ΔC/C 0、d、α和IOP的非线性关系方程,获得待测眼压。
PCT/CN2021/123257 2021-09-26 2021-10-12 一种眼睑接触式眼压测量装置及其测量方法 WO2023044981A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111131240.1 2021-09-26
CN202111131240.1A CN113827182A (zh) 2021-09-26 2021-09-26 一种眼睑接触式眼压测量装置及其测量方法

Publications (1)

Publication Number Publication Date
WO2023044981A1 true WO2023044981A1 (zh) 2023-03-30

Family

ID=78970271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123257 WO2023044981A1 (zh) 2021-09-26 2021-10-12 一种眼睑接触式眼压测量装置及其测量方法

Country Status (2)

Country Link
CN (1) CN113827182A (zh)
WO (1) WO2023044981A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117426925B (zh) * 2023-12-08 2024-03-12 北京市眼科研究所 一种角膜塑形镜摘戴检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415033A (ja) * 1990-05-08 1992-01-20 Canon Inc 眼圧計
US20100152565A1 (en) * 2008-07-15 2010-06-17 Thomas Gordon A Non-invasive tonometer
CN104422549A (zh) * 2013-08-28 2015-03-18 中芯国际集成电路制造(上海)有限公司 电容式压力传感器及其形成方法
CN106901688A (zh) * 2015-12-23 2017-06-30 财团法人工业技术研究院 眼压检测装置及其检测方法
CN109793496A (zh) * 2018-12-04 2019-05-24 苏州大学 一种结合传感器和ss-oct技术测试眼压的装置及应用
CN112155514A (zh) * 2020-10-14 2021-01-01 太原理工大学 一种基于检测脉搏生物电信息的非接触眼压测量方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203970351U (zh) * 2014-06-06 2014-12-03 曹斌 手持型眼睑接触式眼压计
SG10201806935YA (en) * 2018-08-16 2020-03-30 Nat Univ Hospital Singapore Pte Ltd Method and device for self-measurement of intra-ocular pressure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415033A (ja) * 1990-05-08 1992-01-20 Canon Inc 眼圧計
US20100152565A1 (en) * 2008-07-15 2010-06-17 Thomas Gordon A Non-invasive tonometer
CN104422549A (zh) * 2013-08-28 2015-03-18 中芯国际集成电路制造(上海)有限公司 电容式压力传感器及其形成方法
CN106901688A (zh) * 2015-12-23 2017-06-30 财团法人工业技术研究院 眼压检测装置及其检测方法
CN109793496A (zh) * 2018-12-04 2019-05-24 苏州大学 一种结合传感器和ss-oct技术测试眼压的装置及应用
CN112155514A (zh) * 2020-10-14 2021-01-01 太原理工大学 一种基于检测脉搏生物电信息的非接触眼压测量方法

Also Published As

Publication number Publication date
CN113827182A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
US4951671A (en) Tonometry apparatus
Kniestedt et al. Tonometry through the ages
US5165409A (en) Tonometry apparatus
KR100411363B1 (ko) 편평화 및/또는 인덴테이션에 의해 눈 내부의 압력을 측정하는
Punjabi et al. Dynamic contour tonometry: principle and use
US20100152565A1 (en) Non-invasive tonometer
Zeimer et al. A practical venomanometer: measurement of episcleral venous pressure and assessment of the normal range
CN101065054A (zh) 一种眼压测定的改进装置和方法
Maurice A recording tonometer
WO2023044981A1 (zh) 一种眼睑接触式眼压测量装置及其测量方法
Eklund et al. An applanation resonator sensor for measuring intraocular pressure using combined continuous force and area measurement
Nuyen et al. Suppl 1: M3: Detecting IOP Fluctuations in Glaucoma Patients
CN109793496A (zh) 一种结合传感器和ss-oct技术测试眼压的装置及应用
Wang et al. Measurement of corneal tangent modulus using ultrasound indentation
Polyvás et al. Trans-scleral tactile tonometry: An instrumented approach
Eklund et al. Evaluation of applanation resonator sensors for intra-ocular pressure measurement: results from clinical and in vitro studies
US9155467B1 (en) Contoured facial mask with multiple contact probes for use with tactile tonometer
Polyvás et al. Development of tactile eye stiffness sensor
Luce et al. Design of automated digital eye palpation exam for intraocular pressure measurement
Feng et al. A portable applanation tonometer for accurate intraocular pressure measurements
Hallberg et al. Symmetric sensor for applanation resonance tomometry of the eye
CN216495251U (zh) 一种眼球周围压力检测装置
Sharma et al. Intraocular pressure measurement techniques: Current concepts and a review
Brusini Intraocular Pressure and Its Measurement
Enikov et al. Tactile eye pressure measurement through the eyelid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE