WO2023044622A1 - 一种充电系统 - Google Patents

一种充电系统 Download PDF

Info

Publication number
WO2023044622A1
WO2023044622A1 PCT/CN2021/119702 CN2021119702W WO2023044622A1 WO 2023044622 A1 WO2023044622 A1 WO 2023044622A1 CN 2021119702 W CN2021119702 W CN 2021119702W WO 2023044622 A1 WO2023044622 A1 WO 2023044622A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
output device
output
charging module
power converter
Prior art date
Application number
PCT/CN2021/119702
Other languages
English (en)
French (fr)
Inventor
邓子鸣
杨泽洲
何远宁
任展林
郭威
叶万祥
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202180003854.3A priority Critical patent/CN114007896B/zh
Priority to PCT/CN2021/119702 priority patent/WO2023044622A1/zh
Publication of WO2023044622A1 publication Critical patent/WO2023044622A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present application relates to the field of electronic technology, and in particular to a charging system.
  • the charging power provided by the power converter in the charging pile for the electric vehicle is fixed.
  • the fixed charging power provided for electric vehicles is difficult to meet the charging power demand of electric vehicles. It also affects the charging speed of electric vehicles.
  • the power converter In order to increase the power for charging electric vehicles, if a power converter larger or far greater than the power demand of the electric vehicle is installed in the charging pile, the power converter will be vacant and wasteful.
  • the existing main solution provides a full-matrix charging stack with multiple power converters and multiple charging columns.
  • Figure 1 shows a charging system including a full-matrix switch. Each charging column is respectively connected to the positive output bus bar and the negative output bus bar of each power converter through a plurality of switches S.
  • the number of switches S required is 24.
  • a full-matrix charging stack requires more switching switches.
  • the energy transmission path between each power converter and each charging column is complicated, and the utilization rate of the full matrix switch is low.
  • the present application provides a charging system, which can improve the utilization rate of a power converter, use fewer switching devices, support dynamic and flexible power distribution, and have a higher utilization rate of the switching devices.
  • the embodiment of the present application provides a charging system, which may include: n first charging modules, a first switch matrix, a second switch matrix, and m first output devices, where n is a positive integer , the m is a positive integer greater than 1; each of the first charging modules includes a plurality of first power converters, each of the first power converters has an output bus, and the first power converters The output bus bar of the first power converter is connected to the first switch matrix, and the first power converter is used to output electric energy; the first switch matrix is used to connect any two first power converters in the plurality of first power converters The output buses of the converter are connected or disconnected; the second switch matrix is connected to each of the first charging modules through the first switch matrix, and the first output device j is connected to the corresponding charging module through the second switch matrix.
  • the first charging module is connected, 1 ⁇ the j ⁇ the m; the second switch matrix is used for one or more of the n first charging modules to output electric energy provided to the corresponding first output device j.
  • the first output device may be a charging gun or a charging pile.
  • the first switch matrix may be an energy control device consisting of at least one switch.
  • the second switch matrix may be an energy control device composed of a plurality of switches.
  • the charging framework may include n first charging modules, and n may be greater than 1 or equal to 1.
  • Each first charging module may include a plurality of first power converters. Through the first switch matrix, the output buses of the first power converters in each first charging module can be interconnected in pairs. It can be seen that the first switch matrix has the function of bringing together multiple output buses of a first power converter. The ability to output power from the first power converter, that is, the ability to adjust the output power of the first charging module.
  • the first output device j in the charging architecture may have a corresponding at least one first charging module.
  • the first output device j is connected to the corresponding first charging module through the second switch matrix.
  • the second switch matrix enables the first output device j to obtain electric energy output by its corresponding first charging module.
  • the electric energy output by the first charging module can be one or more first power converters in the first charging module to output electric energy.
  • Such a design enables the first output device j to obtain different amounts of power output by the first power converter, making the way the first output device obtains power more flexible, and the first power converter in the first charging module The utilization rate is higher. There is also no need for the first charging module to be connected to the output bus of each first power converter, which greatly reduces the number of switching devices.
  • the first switch matrix includes at least one first switch 101; the output buses of the two first power converters are respectively connected to the same first switch 101, and the first switch 101 When in the on state, the output buses of the two first power converters are connected; when the first switch 101 is in the off state, the output buses of the two first power converters are disconnected.
  • the first switch matrix may include one or more first switches.
  • a first switch is arranged between the output buses of any two first power converters.
  • the two first power converters are the first power converter 1 and the first power converter 2 respectively.
  • a first switch is arranged between the output bus bar of the first power converter 1 and the output bus bar of the first power converter 2, and when the first switch is in the conducting state, the output bus bar of the first power converter 1 and the first The output bus of the power converter 2 is connected.
  • the first switch is in the disconnected state, the output bus bar of the first power converter 1 and the output bus bar of the first power converter 2 are disconnected.
  • the power output by any one of the first power converters in the first charging module is flexibly dispatched to the output bus of any one of the first power converters. And through the second switch matrix, the power on the output bus of any one of the first power converters can be provided to any one of the first output devices corresponding to the first charging module, so that any one of the first output devices can obtain one or Electric energy output by the first power converters in the multiple first charging modules.
  • the second switch matrix includes a plurality of second switches 102; the first output device j corresponds to x first charging modules, and x is a positive integer not greater than n, so
  • the i-th first charging module among the x first charging modules is the first charging module (i, j), 1 ⁇ i ⁇ x; the first charging module corresponding to each of the first output devices
  • the number of groups is the same or different;
  • the first output device j is connected to the corresponding x first charging modules through the x second switches 102, wherein the second of the x second switches 102
  • the switch 102(i, j) is connected to the output bus bar of a first power converter in the first charging module (i, j) and connected to the first output device j; the second switch 102(i , when j) is in a conducting state, transmitting the electric energy on the output bus of a first power converter in the first charging module (i, j) to the first output device j.
  • each first output device may have a corresponding first charging module.
  • the first charging module (i, j), the second switch 102 (i, j) connected to the first output device j, and the first output device j are in a vertical control relationship.
  • the output bus of any first power converter in the first charging module (i, j) can be connected to the second switch 102(i, j), and the second switch 102(i, j) can be connected to the first output device j .
  • the power output by the first power converter in the first charging module (i, j) can be dispatched to the first output device j.
  • the power output by any one or more first power converters in the first charging module connected to the second switch can be dispatched to The second switch is connected to the first output device.
  • each first charging module in the at least one first charging module may be connected to a plurality of first output devices, or each first charging module A group may correspond to a plurality of first output devices.
  • the output bus of each first power converter in each of the first charging modules can communicate with at least one of the corresponding multiple first output devices through the first switch matrix and the second switch matrix. output device connection.
  • each of the n first charging modules in the charging system may have an identification, and the identifications of the n first charging modules may be recorded as identification IDA1, identification IDA2, ..., Identify IDAn.
  • the identifier IDA1 of the first charging module may refer to the first charging module IDA1.
  • the IDAn of the first charging module may refer to the first charging module IDAn.
  • the (or corresponding) first output device connected to the first charging module IDA1 includes the first output device 1 and the first output device 2 .
  • the (or corresponding) first charging module connected to the first output device 1 may include the first charging module IDA1
  • the (or corresponding) first charging module connected to the first output device 2 may include the first charging module IDA1.
  • the output bus of each first power converter passes through at least one of the plurality of first output devices corresponding to the second switch matrix.
  • a first output device is connected.
  • the output bus of each first power converter may be connected to a first output device through the second switch matrix.
  • the output bus bar of each first power converter may be connected to multiple first output devices through the second switch matrix.
  • some of the output buses of the first power converters are connected to one first output device through the second switch matrix, and the output buses of the other part of the first power converters are all connected to multiple first output devices through the second switch matrix.
  • the power output by one or more first power converters in each of the first charging modules can be dispatched to the corresponding Any one of the first output devices increases the utilization rate of the first power converters in each of the first charging modules.
  • the number of the plurality of first power converters included in each of the first charging module groups is a preset number.
  • each first charging module includes the same number of first power converters.
  • the preset number can be 2, 3 or 4, etc.
  • each first charging module may include two first power converters.
  • each first charging module may include three first power converters.
  • each first charging module may include four first power converters.
  • each first charging module may include n first power converters, where n may be any positive integer.
  • the charging system when the charging system includes multiple first charging modules, there may be two first charging modules in the charging system that include different numbers of first power converters. Assuming that the two first charging modules are the first charging module IDA1 and the first charging module IDA2, the first charging module IDA1 may include n1 first power converters, and the first charging module IDA2 may include n2 first power converters A power converter, n1 and n2 are different values.
  • the charging system may further include s second charging modules, where s is a positive integer greater than 1; each of the second charging modules includes at least one second power converter, and each The second power converter has an output busbar, the output busbar of the second power converter is connected to the second switch matrix, and the second power converter is used to output electric energy; the first output device j It is connected to the corresponding second charging module through the second switch matrix; the second switch matrix is also used to output one or more of the second charging modules in the s second charging modules Electric energy is provided to the corresponding first output device j.
  • each second charging module includes at least one second power converter, and the second power converter is only connected to the second switch matrix.
  • the electric energy on the output bus of a second power converter in the second charging module is only the electric energy output by the second power converter. That is, the electric energy on the output bus of each second power converter is electric energy of fixed power.
  • Each first output device may have at least one corresponding second charging module.
  • the first output device j is connected to the corresponding second charging module through the second switch matrix. In such a design, the first output device j can also obtain electric energy output by a second power converter in any one of the corresponding second charging modules.
  • the first output device in the charging system can not only obtain the electric energy output by the second power converter in the second charging module, but also obtain the electric energy output by the first power converter in the first charging module, so that the second
  • the power scheduling path of the first output device is more flexible, which improves the flexibility of the charging system to charge the first output device, and also reflects the better scalability of the charging system.
  • the second switch matrix further includes a plurality of third switches 103;
  • the first output device j corresponds to y second charging modules, and y is a positive integer not greater than s, so
  • the k-th second charging module in the y second charging modules is the second charging module (k, j), 1 ⁇ the k ⁇ the y; each of the first output devices corresponds to The number of the second charging modules is the same or different;
  • the first output device j is connected to the corresponding y second charging modules through the y third switches 103, wherein the y third switches 103
  • the third switch 103 (k, j) in the second charging module (k, j) is connected to the output bus of a second power converter in the second charging module (k, j), and is connected to the first output device j; the third When the switch 103 (k, j) is in a conducting state, it transmits the electric energy on the output bus of a second power converter in the second charging module (k, j) to the first output
  • the second switch matrix includes a plurality of third switches.
  • the switch connected between the output bus of the second power converter in the second charging module and the first output device is marked as the third switch.
  • Each first output device may have a corresponding second charging module.
  • the second charging module (k, j), the third switch 103 (k, j) connected to the first output device j, and the first output device j are in a vertical control relationship.
  • the output bus of any second power converter in the second charging module (k, j) can be connected to the third switch 103(k, j), and the third switch 103(k, j) can be connected to the first output device j .
  • the power output by the second power converter in the second charging module (k, j) can be dispatched to the first output device j.
  • the power output by any one or more second power converters in the second charging module connected to the third switch can be dispatched to the first output device connected to the third switch place.
  • the charging system may have at least one second charging module.
  • Each second charging module in the at least one second charging module can be connected to a plurality of first output devices, or each second charging module can correspond to a plurality of first output devices.
  • the output bus bar of each second power converter is connected to at least one corresponding first output device among the plurality of first output devices through the second switch matrix.
  • Each second charging module can have an identifier, and the identifiers of the s second charging modules can be respectively recorded as an identifier IDB1, an identifier IDB2, . . . , an identifier IDBs. As shown in FIG.
  • the identifier IDB1 of the second charging module may refer to the second charging module IDB1.
  • the identifier IDBs of the second charging module may refer to the second charging module IDBs.
  • There may be at least one second charging module in the charging system for example, the (or corresponding) first output device connected to the second charging module IDB1 may include the first output device 1 and the first output device 2 .
  • the (or corresponding) second charging module connected to the first output device 1 may include the second charging module IDB1
  • the (or corresponding) second charging module connected to the first output device 2 may include the second charging module IDB1.
  • the output bus of each second power converter in each of the second charging modules is connected to at least one first output device of the plurality of corresponding first output devices through the second switch matrix.
  • the output bus bar of each second power converter may be connected to one first output device through the second switch matrix.
  • the output bus bar of each second power converter may be connected to multiple first output devices through the second switch matrix.
  • the output buses of a part of the second power converters are connected to one first output device through the second switch matrix, and the output buses of the other part of the second power converters are connected to multiple first output devices through the second switch matrix.
  • the power output by one or more second power converters in the second charging modules can be dispatched to any one of the first outputs corresponding to the second charging modules A device for increasing the utilization rate of the second power converters in each of the second charging modules.
  • the charging system further includes: s second charging modules and p second output devices, where s is a positive integer greater than 1, and p is a positive integer; the second output device a passes The second switch matrix is connected to the corresponding second charging module, the second output device a is the a-th second output device among the p second output devices, 1 ⁇ the a ⁇ the p; the second switch matrix is also used to provide the output power of one or more of the second charging modules in the s second charging modules to the corresponding second output device a.
  • the charging system has good scalability and compatibility.
  • the first output device j can obtain the electric energy output by the second power converter in the second charging module through the second switch matrix.
  • the second output device a can obtain electric energy output by one or more second charging modules through the second switch matrix.
  • the first output device j can obtain more flexible electric power adjustment methods.
  • the maximum power at which the first output device j can obtain electric energy may be greater than the maximum power at which the second output device can obtain electric energy.
  • Two types of output devices are provided in the charging system, which can meet different power requirements of the devices to be charged.
  • the second switch matrix in the charging system further includes a plurality of fourth switches 104; each second charging module includes a plurality of second power converters; the second output device a corresponds to z second charging modules, z is a positive integer not greater than s, and the rth second charging module among the z second charging modules is the second charging module (r, a), 1 ⁇ the r ⁇ the z; the number of the second charging modules corresponding to each of the second output devices is the same or different; the second output device a is connected to the corresponding The z second charging modules, wherein, the fourth switch 104 (r, a) of the z fourth switches 104 is connected to a second power converter in the second charging module (r, a) The output bus bar of the device, and connected to the second output device a; when the fourth switch 104 (r, a) is in the on state, the second power converter in the second charging module r The electric energy on the output bus is transmitted to the second output device a.
  • each second output device may have a corresponding second charging module.
  • the second charging module (r, a), the fourth switch 104 (r, a) connected to the second output device a, and the second output device a are in a vertical control relationship.
  • An output bus of a second power converter in the second charging module r may be connected to the fourth switch 104(r, a), and the fourth switch 104(r, a) may be connected to the second output device a.
  • the fourth switch 104 (r, a) the power output by a second power converter in the second charging module (r, a) can be dispatched to the second output device a.
  • each second charging module in at least one second charging module can be connected to at least two second charging modules, or each second charging module can correspond to at least two second charging modules.
  • the (or corresponding) second output devices connected to the second charging module IDB1 in the charging system may include the second output device 1 and the second output device 2 .
  • each second charging module may include a plurality of second power converters, and the output bus of each second power converter passes through at least one of the plurality of second output devices corresponding to the second switch matrix.
  • the second output device is connected.
  • the output bus bar of each second power converter may be connected to a second output device through the second switch matrix.
  • each second power converter may be connected to multiple second output devices through the second switch matrix.
  • the output buses of a part of the second power converters are connected to one second output device through the second switch matrix, and the output buses of the other part of the second power converters are connected to multiple second output devices through the second switch matrix.
  • Fig. 1 is a schematic structural diagram of a full-matrix charging stack
  • Fig. 2 (a) is a schematic structural diagram of a charging system provided by the present application.
  • Fig. 2(b) is a schematic diagram of the first output device corresponding to the first charging module
  • Figure 2(c) is a schematic structural diagram of a charging system provided by the present application.
  • Fig. 3 (a) is a specific structural schematic diagram of a charging system provided by the present application.
  • Fig. 3 (b) is a specific structural schematic diagram of a charging system provided by the present application.
  • Fig. 3 (c) is a specific structural schematic diagram of a charging system provided by the present application.
  • Fig. 3(d) is a specific structural schematic diagram of a charging system provided by the present application.
  • Fig. 3 (e) is a specific structural schematic diagram of a charging system provided by the present application.
  • Fig. 3 (f) is a specific structural schematic diagram of a charging system provided by the present application.
  • Fig. 3 (g) is a specific structural schematic diagram of a charging system provided by the present application.
  • Fig. 3 (h) is a specific structural schematic diagram of a charging system provided by the present application.
  • Fig. 3 (i) is a specific structural schematic diagram of a charging system provided by the present application.
  • Fig. 3 (j) is a specific structural schematic diagram of a charging system provided by the present application.
  • Figure 3(k) is a schematic structural diagram of a charging system provided by the present application.
  • Fig. 3 (l) is the concrete structure schematic diagram of a kind of charging system provided by the present application.
  • Fig. 3 (m) is a specific structural schematic diagram of a charging system provided by the present application.
  • Fig. 3 (n) is a specific structural schematic diagram of a charging system provided by the present application.
  • Figure 4(a) is a schematic structural diagram of another charging system provided by the present application.
  • Fig. 4(b) is a schematic diagram of the first output device corresponding to the second charging module
  • Fig. 4(c) is a schematic diagram of the first output device corresponding to the second charging module
  • Figure 4(d) is a schematic structural diagram of a charging system provided by the present application.
  • Figure 5(a) is a schematic structural diagram of another charging system provided by the present application.
  • Fig. 5(b) is a schematic diagram of the second output device corresponding to the second charging module
  • Figure 6(a) is a schematic structural diagram of another charging system provided by the present application.
  • Fig. 6(b) is a schematic diagram of the second output device corresponding to the second charging module
  • Fig. 6(c) is a schematic diagram of the second output device corresponding to the second charging module
  • FIG. 6( d ) is a schematic diagram of the second output device corresponding to the second charging module.
  • the charging power provided by the power converter in the charging pile for the electric vehicle is fixed.
  • the fixed charging power provided for electric vehicles is difficult to meet the charging power demand of electric vehicles. It also affects the charging speed of electric vehicles.
  • the power converter In order to increase the power for charging electric vehicles, if a power converter larger or far greater than the power demand of the electric vehicle is installed in the charging pile, the power converter will be vacant and wasteful.
  • the existing main solution is to provide a full-matrix charging stack with multiple power converters and multiple charging columns.
  • Electric vehicles are connected to the charging columns in the charging stack to obtain electric energy from the charging columns. .
  • the power output by all power converters is dynamically and flexibly allocated to each charging column through the switching of the full matrix switch.
  • a charging system including a full-matrix switch is shown in FIG. 1 .
  • Each charging column is respectively connected to the positive output bus bar and the negative output bus bar of each power converter through a plurality of switches S.
  • the number of switches S required is 24.
  • the full-matrix charging pile requires more switching switches.
  • the energy transmission path between each power converter and each charging column is complicated, and the control of the full matrix switch is also relatively complicated.
  • the present application provides a charging system that uses a small number of switching devices, can dynamically and flexibly distribute power, and has a simple control process.
  • the charging system may include a power supply, n first charging modules, a module interconnection switch matrix (referred to as the first switch matrix), a power distribution switch matrix (referred to as the second switch matrix), and m first output devices.
  • n is a positive integer
  • m is a positive integer greater than 1. It can be seen that the charging system may include at least one first charging module and multiple first output devices.
  • the m first output devices in the charging system can be respectively recorded as the first output device 1, the first output device 2, . . . , the first output device m.
  • the first output device may be a device such as a charging gun or a charging post.
  • the electric device may obtain electric energy through the first output device, and the electric device may be an electric vehicle or the like.
  • the charging system can also include a control module.
  • the control module can control the first switch matrix and the second switch matrix, such as changing the working state of the first switch matrix, changing the working state of the second switch matrix, etc., and performing power on each charging module. dispatched, and dispatched to the first output device.
  • each first charging module can have an identification, and the identification (identification, ID) of the n first charging modules can be recorded as identification IDA1, identification IDA2, ..., identification ID An.
  • the identification of the first charging module may be composed of one or more of numbers, characters, characters and the like. As shown in FIG. 2(a), the identifier IDA1 of the first charging module may refer to the first charging module IDA1. Similarly, the IDAn of the first charging module may refer to the first charging module IDAn.
  • Each first charging module may include a plurality of first power converters.
  • the power supply is connected to the input side of each first power converter, and the power supply is used to provide each first power converter with electric energy, such as direct current electric energy or alternating current electric energy.
  • Each first power converter can process electrical energy provided by the power source.
  • the first power converter may convert direct current to alternating current, direct current to direct current, alternating current to direct current, or alternating current to alternating current.
  • the first power converter may perform step-up processing or step-down processing on the electric energy provided by the power supply.
  • Each first power converter outputs electrical energy, such as power, through an output bus.
  • the output bus of each first power converter is connected to the first switch matrix. As shown in Fig.
  • each first power converter has an output bus.
  • the first power converter has AC to AC or DC to AC capability
  • the first power converter has an output bus.
  • the output bus bar of the first power converter may include a positive bus bar and a negative bus bar.
  • the first switch matrix may be an energy control device consisting of at least one switch.
  • the first switch matrix can connect the output buses of any two first power converters in each first charging module. Such a design can make the output power of any two first power converters converge, and can also make the maximum power that can be obtained by the output bus of one of the two first power converters be equal to that of the two first power converters. The sum of the output powers of the first power converters.
  • the first switch matrix connects the output bus bar of the first power converter 1 in the first charging module 1 with the output bus bar of the first power converter 2, the first power converter 1 or the first power converter
  • the power on the output bus bar of the switch 2 is the sum of the output powers of the two first power converters.
  • the control module can change the electric power at the output bus of the first power converter by controlling the first switch matrix, so as to realize the distribution of the output power of each first power converter, or the control module can control the first switch matrix. Flexible control of power distribution within each first charging module.
  • Each first output device may correspond to at least one first charging module.
  • the j-th first output device among the m first output devices is denoted as the first output device j, where j can range from 1 to m, that is, 1 ⁇ the j ⁇ the m.
  • the first charging module corresponding to the first output device j may refer to the first charging module connected (directly or indirectly) to the first output device j.
  • the second switch matrix may be connected to each first charging module through the first switch matrix, that is, the first switch matrix may be arranged between the second switch matrix and each first charging module.
  • the first output device j may be connected to the corresponding first charging module through the second switch matrix.
  • the second switch matrix may be an energy control device composed of a plurality of switches.
  • the first output device j can be connected to the output bus bar of a first power converter in the corresponding first charging module through the second switch matrix, and the first output device j can receive the first charging through the connected output bus bar. The output power of the module.
  • the number of first charging modules corresponding to the first output device j may be greater than or equal to one. That is, the first output device j may correspond to one first charging module, or may correspond to multiple first charging modules. As shown in FIG. 2( a ), take j as 1 as an example.
  • the first charging module corresponding to the first output device 1 includes a first charging module IDA1 and a first charging module IDAn.
  • the first output device 1 is connected to the output bus of a first power converter in the first charging module IDA1.
  • the first output device 1 is connected to the output bus bar of a first power converter in the first charging module IDAn.
  • the second switch matrix may be connected with each first output device, and be connected with each first charging module through the first switch matrix.
  • the second switch matrix can provide the output electric energy of one or more of the n first charging modules to the corresponding first output device j.
  • the second switch matrix can provide (or transmit) the electric energy on the output bus of a first power converter in any one of the first charging modules corresponding to the first output device j to the first output device j.
  • the first output device j can be obtained on the output bus of a first power converter in the first charging module corresponding to the first output device j (the first power converter connected to the first output device j) power.
  • the function of power distribution in each first charging module can be flexibly realized.
  • the first output device j can obtain the corresponding first charging Power to one or more first power converters in the module.
  • the second switch matrix can enable the first output device j to obtain the power of some or all of the first charging modules among the x first charging modules corresponding to the first output device j.
  • the control module can schedule multiple first charging modules to provide power to the first output device j by controlling the second switch matrix, so as to realize the distribution of the output power of each first charging module, or the control module can control the second switch matrix
  • the matrix can flexibly control the power distribution among each first charging module.
  • the i-th first charging module among the x first charging modules corresponding to the first output device j is denoted as the first charging module (i, j).
  • the first charging module corresponding to the first output device 1 is the first charging module IDA1 and the first charging module IDAn in sequence.
  • the first first charging module corresponding to the first output device 1 is the first charging module (1, 1), and the first charging module (1, 1) is also the first charging module IDA1.
  • the first charging module corresponding to the first output device 2 is the first charging module IDA1.
  • the first first charging module corresponding to the first output device 2 is the first charging module (1, 2), and the first charging module (1, 2) is also the first charging module IDA1.
  • the first charging module (i, j) is used to refer to the i-th first charging module among the first charging modules corresponding to the first output device j, and the first charging module identified as IDAi
  • the charging module IDAi has obvious differences.
  • the first output device 1 is used as an example for introduction.
  • the first charging module corresponding to the first output device 1 includes the first charging module IDA1, the first charging module IDA2 and the first charging module IDAn.
  • the second switch matrix can transmit the electric energy on the output bus of a first power converter in the first charging module IDA1 to the first output device 1 . It is also possible to transmit the electric energy on the output bus of a first power converter in the first charging module IDA2 to the first output device 1 . It is also possible to transmit the electric energy on the output bus of a first power converter in the first charging module IDAn to the first output device 1 .
  • the first output device 1 can obtain the first power converter output bus in the number num1 first charging modules (num1 is a positive integer not greater than the total number of first charging modules corresponding to the first output device 1). electrical energy.
  • the number num1 is 2, and the second switch matrix can connect two first charging modules (such as the first charging module IDA1 and the first charging module IDAn) of the first charging modules corresponding to the first output device 1
  • the electric energy on the output bus of a first power converter in each first charging module in the first charging module is transmitted to the first output device 1 .
  • the second switch matrix can transmit the electric energy on the output bus of the first power converter in the first charging module IDA1 or the first charging module IDAn to the first output device 1 .
  • the charging system architecture provided by the present application including composite matrix switches can improve the utilization rate of the first power converter. Furthermore, by connecting the output buses of the multiple first power converters through the first switch matrix, the power of the electric energy at the output buses of the first power converters can be increased. The electric energy on the output buses of the plurality of power converters is provided to the first output device through the second switch matrix. It can be seen that the charging system architecture provided by the present application including the composite matrix switch can realize flexible (flexible) distribution of power. And the first output device can be connected with a first power converter in the corresponding first charging module, and does not need to be connected with all the first power converters in the charging system, greatly reducing the power switching elements in the charging system (such as number of switches).
  • the first switch matrix may include at least one first switch 101 .
  • a first switch 101 is set between the output buses of any two first power converters, or in other words, the two first power converters The output bus bar of is connected to the same first switch 101.
  • a first switch 101 is connected to output buses of two first power converters.
  • the first charging module IDA1 includes w first power converters (w is an integer greater than 2), and the t-th first power converter among the w first power converters can be recorded as the first power converter t(1 ⁇ t ⁇ w).
  • a first switch 101 is arranged between the output bus bar of the first power converter t and the output bus bars of each first power converter except the first power converter t.
  • a first switch 101 is provided between the output bus bar of the first power converter 1 and the output bus bar of the first power converter 2 .
  • a first switch 101 is arranged between the output bus bar of the first power converter 1 and the output bus bar of the first power converter 3 .
  • a first switch 101 is provided between the output bus bar of the first power converter 1 and the first power converter w.
  • any two first power converters in each first charging module when a first switch 101 provided between the output bus bars of the two first power converters is in a conducting state, the two first The output bus bars of the power converters are connected; when a first switch 101 provided between the output bus bars of the two first power converters is in an open circuit state, the output bus bars of the two first power converters are disconnected.
  • the first switch 101 provided between the output bus bar of the first power converter 1 and the output bus bar of the first power converter 2 is in the conduction state, the output bus bar of the first power converter 1 and the first power The output buses of converter 2 are connected to each other. If it is in the disconnected state, the output bus bar of the first power converter 1 and the output bus bar of the first power converter 2 are disconnected.
  • control module can convert one or more first powers in any one of the first charging modules by controlling the working state (on state or off state) of each first switch 101 in the first switch matrix
  • the power of the device can be allocated flexibly.
  • the second switch matrix may include a plurality of second switches 102 .
  • the first output device j may be connected to x first charging modules corresponding to the first output device j through x second switches.
  • the second switch 102(i, j) among the x second switches may represent the first charging module among the x first charging modules connected to the first output device j and corresponding to the first output device j (i, j) connected to the second switch 102, wherein the second switch 102 (i, j) can be connected to the output bus of a first power converter in the first charging module (i, j).
  • the second switch 102 (i, j) When the second switch 102 (i, j) is in a conducting state, it transmits the electric energy on the output bus of a first power converter in the first charging module (i, j) to the first output device j.
  • the first output device 1 corresponds to two first charging modules, namely the first charging module IDA1 and the first charging module IDAn.
  • the first first charging module is denoted as the first charging module (1, 1), which is also the first charging module IDA1.
  • the second first charging module is denoted as the first charging module (2, 1), which is also the first charging module IDAn.
  • the second switch 102 connected to the first charging module ( 1 , 1 ) and connected to the first output device 1 can be denoted as the second switch 102 ( 1 , 1 ).
  • the second switch 102 connected to the first charging module ( 2 , 1 ) and connected to the first output device 1 can be denoted as the second switch 102 ( 2 , 1 ).
  • the second switch 102 ( 1 , 1 ) When the second switch 102 ( 1 , 1 ) is turned on, it can transmit the electric energy on the output bus of a first power converter in the first charging module IDA1 to the first output device 1 .
  • the second switch 102 ( 2 , 1 ) When the second switch 102 ( 2 , 1 ) is turned on, it can transmit the electric energy on the output bus of a first power converter in the first charging module IDAn to the first output device 1 .
  • control module can control the second switch 102 (1, 1) and the second switch 102 (2, 1) in the second switch matrix, so that the first output device 1 can obtain the first charging module
  • the power of IDA1 and the first charging module IDAn realizes the flexible scheduling of the power of different first charging modules to the same first output device.
  • Each switch in this application may include a positive switch and a negative switch, the positive switch is connected between the positive bus of the power converter output bus and the positive terminal of the output device, and the negative switch is connected between the negative bus of the power converter output bus and the output device between the negative extremes of .
  • each switch may be a bipolar contactor, a solid-state switch, a hybrid switch, etc., which is not limited in this embodiment of the present application.
  • the charging system may include a first charging module. That is, n is equal to 1.
  • Each first output device corresponds to the one first charging module.
  • the first output device j is connected to a second switch 102, and the second switch 102 is connected to an output bus of a first power converter in a first charging module.
  • the output buses of the first power converters to which each first output device is connected through the second switch matrix may be different. That is, the first power converters connected to each first output device are different.
  • the one first charging module includes a first power converter 1 and a first power converter 2
  • the charging system includes a first output device 1 and a first output device 2 .
  • the first output device 1 is connected to the output bus of the first power converter 1 , and the first output device 2 is connected to the output bus of the first power converter 2 .
  • the first output device 1 is connected to the output bus bar of the first power converter 2
  • the first output device 2 is connected to the output bus bar of the first power converter 1 .
  • the output buses of the first power converters to which some of the first output devices are connected through the second switch matrix may be the same, that is, some of the first output devices may be connected to the same first power converter.
  • one first power converter can be connected to multiple first output devices.
  • the first output device 3 and the first output device m are respectively connected to the same output bus of the first power converter through two second switches 102 .
  • the control module can switch any first power converter to The electric power at the output bus bar of the first output device is provided to any one of the first output devices, so that any one of the first output devices can obtain the electric energy output by one or more first power converters.
  • the power output by any one of the first power converters in the first charging module can be provided to any one of the first output devices, that is, the output power of any one of the first power converters can be distributed to any one of the first power converters.
  • the charging system may include multiple first charging modules, that is, n is greater than 1.
  • the first output device j may correspond to x first charging modules, and the first output device j passes through x second switches 102, that is, the second switch 102(1,j) to the second switch 102(x,j), respectively
  • the corresponding x first charging modules are connected.
  • the number of first charging modules corresponding to each first output device may be the same. That is, the number of first charging modules connected to each first output device through the second switch matrix is the same. As shown in Figure 2(a), the number of first charging modules connected to the first output device 1 through the second switch matrix is 2, and the number of first charging modules connected to the first output device 2 through the second switch matrix is 2, the number of first charging modules connected to the first output device 3 through the second switch matrix is 2, and the number of first charging modules connected to the first output device m through the second switch matrix is 2. It can be seen that the number of the first charging modules corresponding to the first output device 1 , the first output device 2 , the first output device 3 and the first output device m is the same.
  • the number of first charging modules corresponding to each first output device may be different, or in other words, there are two first output devices corresponding to different numbers of first charging modules in the charging system.
  • the first output device 1 corresponds to two first charging modules, namely the first charging module IDA1 and the first charging module IDAn.
  • the first output device 3 corresponds to one first charging module, which is the first charging module IDA1 and the first charging module IDAn.
  • the first output device m corresponds to one first charging module, that is, the first charging module IDAn. It can be seen that the number of first charging modules corresponding to the first output device 1 is the same as the number of first charging modules corresponding to the first output device 3 .
  • the number of first charging modules corresponding to the first output device m is different from the number of first charging modules corresponding to the first output device 1 (or first output device 3 ).
  • a first charging module can be connected to multiple first output devices, that is, at least two first output devices can be connected. In other words, there may be multiple first output devices in the charging system, and the first charging modules corresponding to each of the multiple first output devices include at least one identical first charging module. In some examples, the first output device connected to the first charging module may also refer to the corresponding first output device.
  • the first charging modules corresponding to the first output device 1 are the first charging module IDA1 and the first charging module IDAn.
  • the first charging modules corresponding to the first output device 2 are respectively the first charging module IDA1 and the first charging module IDAn.
  • the first charging modules corresponding to the first output device 3 are respectively the first charging module IDA1 and the first charging module IDAn.
  • the first charging modules corresponding to the first output device m are respectively the first charging module IDA1 and the first charging module IDAn. It can be seen that the first charging module IDA1 is connected to a plurality of first output devices, namely the first output device 1 , the first output device 2 , the first output device 3 , and the first output device m.
  • the first output device IDAn can also be connected to a plurality of first output devices, namely the first output device 1 , the first output device 2 , the first output device 3 , and the first output device m.
  • the output bus of each first power converter of the first charging module IDA1 may be connected to at least one first output device through the second switch matrix.
  • the output bus of the first power converter 1 is connected to the first output device 1, the output bus of the first power converter 2 is connected to the first output device 2, and the output bus of the first power converter 3 is connected to the first output device 3 and
  • the first output device m is connected.
  • one first charging module can correspond to multiple first output devices, and the output bus bar of each first power converter in the first charging module can be connected to at least one of the corresponding multiple first output devices. an output device.
  • the power of the first charging module can be provided to any corresponding first output device through the second switch matrix.
  • the number of first output devices connected to the output buses of the first power converters can be the same.
  • the one first charging module is the first charging module IDA1.
  • the output bus of each first power converter in the first charging module IDA1 is connected to a first output device through the second switch matrix.
  • the first output devices connected to different first power converters are different.
  • the first power converter 1 is connected to the first output device 1 through the second switch matrix
  • the first power converter 2 is connected to the first output device 2 through the second switch matrix
  • the first power converter 3 is connected to the first output device 2 through the second switch matrix.
  • the matrix is connected to a first output device 3 .
  • the number of first output devices connected to the output buses of different first power converters can be different.
  • the one first charging module is the first charging module IDA1.
  • the first power converter 3 in the first charging module IDA1 is connected to a plurality of first output devices, such as the first output device 3 and the first output device m, through the second switch matrix.
  • the first power converter 1 in the first charging module IDA1 is connected to a first output device, that is, the first output device 1 through the second switch matrix.
  • the number of first output devices connected to the output buses of any two first power converters may be different.
  • the connection between the first output device in the charging system and the first power converters in each first charging module is relatively flexible, and more first output devices can be added to the charging system.
  • the device improves the utilization rate of the first power converter.
  • the charging system architecture provided by the present application including the composite matrix switch can also have more forms.
  • the number of first power converters in each first charging module is a preset number (such as a positive integer greater than 2) . In other words, the number of first power converters in each first charging module is the same.
  • each first charging module may include 2 first power converters, and the number of all first power converters in the charging system is 2n.
  • the charging system may include m first output devices.
  • the charging system can be called a "2n*m" dual power converter (module) composite matrix charging stack architecture.
  • the charging system includes 6 first output devices and at least one first charging module, and each first charging module includes 2 first power converters.
  • such a charging system can be called a "2n*6" dual-module composite matrix charging stack unit.
  • the charging system can be called a "2n*(2*k-1)" dual-module composite matrix charging stack architecture.
  • each first output device can correspond to all the first charging modules
  • the embodiment of the present application also provides a second switch 102 access concept (or rule),
  • the second switch 102 can be used to connect the newly added first output device.
  • the second switch 102 can also be used to connect the existing first output device in the charging system. Taking the second switch 102 connected to the first charging module IDA1 as an example, on the output bus of the first power converter in the first charging module IDA1, each time a second switch 102 is connected, the first charging module can be queried.
  • the number of second switches 102 connected to the output bus of each first power converter in group IDA1, a newly connected second switch 102 can be connected to the first power converter with the least number of connected second switches 102 converter output bus.
  • the second switch 102 connected to the first output device 4 when the second switch 102 connected to the first output device 4 is switched on, the second switch number connected to the output bus of the first power converter 2 is 1, and the second switch number connected to the output bus of the first power converter 1 For 2, the second switch 102 connected to the first output device 4 may be connected to the output bus of the first power converter 2 .
  • the second switch 102 connected to the first output device 2k-1 when the second switch 102 connected to the first output device 2k-1 is connected, the number of second switches 102 connected to the output buses of the first power converter 1 and the first power converter 2 is the same, and the first output The second switch 102 connected to the device 2 k - 1 may be connected to the output bus of any one of the first power converter 1 and the first power converter 2 .
  • the polling method may be used when the second switch 102 is connected.
  • the first power converter connected to the second switch 102 connected this time is the previous
  • the first power converter to which the second switch 102 is connected is connected to the first power converter in the next order.
  • the first power converter next to the first power converter 1 is the first power converter 2 .
  • the next sequential first power converter of the first power converter 2 is the first power converter 1 .
  • the newly added second switch 102 is connected last time, it is connected to the output bus bar of the first power converter 1 .
  • the newly added second switch 102 is connected this time, it is connected to the output bus bar of the first power converter 2 .
  • the output bus bar of the first power converter 1 is connected. It can be seen that when the second switch 102 in the charging system is connected, the first power converters in the first charging module can be connected to the second switch 102 one by one according to the order of the first power converters in the first charging module.
  • each first output device corresponds to all the first charging modules, and in the scenario where each first charging module includes two first power converters, two The first output device acts as the granularity of the power control.
  • the first output device 2k-1 and the first output device 2k are of one granularity.
  • the charging system includes 2k first output devices, it can be divided into k granularities, and each granularity includes 2 first output devices.
  • the charging system When the charging system includes 2k-1 first output devices, it can also be divided into k granularities, wherein only one first output device is included in the last granularity, that is, the first output device 2k-1, and other granularities Include 2 first output devices.
  • the working conditions of the granularity are different.
  • the granularity is in the second working condition; or the second switch 102 connected to the first output device 2k-1 is in conduction state, and the second switch 102 connected to the first output device 2k is in the off state, the granularity is in the third working condition; or the second switch 102 connected to the first output device 2k is in the on state, and the first output device 2k
  • the third working condition and the fourth working condition may be the same working condition. That is, the working conditions of the same granularity are related to the on-off state of the
  • control module When the control module performs power allocation or scheduling for any first charging module, it can perform scheduling according to the working conditions of each granularity. When the control module performs power allocation or scheduling for the first output device in any granularity, scheduling may be performed according to the working conditions of the granularity.
  • the charging system includes n first charging modules, and each first charging module can include three first power converters, then all the first power converters in the charging system The number of converters is 3n.
  • the charging system may include m first output devices.
  • the charging system can be called "3n*m” three-module composite matrix charging stack architecture.
  • the number m of the first output devices may be 3k-1, where k is a positive integer.
  • the charging system can be called "3n*(3*k-1)" three-module composite matrix charging stack architecture.
  • the number m of the first output devices may be 3k-2, where k is a positive integer.
  • the charging system can be called "3n*(3*k-2)" three-module composite matrix charging stack architecture.
  • each first output device corresponds to all the first charging modules, and in the scenario where each first charging module includes 3 first power converters, 3 A first output device acts as the granularity of power control.
  • the charging system includes 3k first output devices, it can be divided into k granularities, and each granularity includes 3 first output devices.
  • the charging system When the charging system includes 3k-1 first output devices, it can also be divided into k granularities, where only two first output devices are included in the last granularity, that is, the first output device 3k-1 and the first output Device 3k-2, other granularity includes 3 first output devices.
  • the charging system includes 3k-2 first output devices, it can also be divided into k granularities, wherein only one first output device is included in the last granularity, that is, the first output device 3k-1, and other granularities Include 3 first output devices.
  • control module When the control module performs power allocation or scheduling for any first charging module, it can perform scheduling according to the working conditions of each granularity. When the control module performs power allocation or scheduling for the first output device in any granularity, scheduling may be performed according to the working conditions of the granularity.
  • the charging system includes n first charging modules, and each first charging module can include four first power converters, then all the first power converters in the charging system The number of converters is 4n.
  • the charging system may include m first output devices.
  • the charging system can be called "4n*m" three-module composite matrix charging stack architecture.
  • the number m of the first output devices may be 4k-1, where k is a positive integer.
  • the charging system can be called a "4n*(4*k-1)" four-module composite matrix charging stack architecture.
  • the number m of the first output devices may be 4k-2, where k is a positive integer.
  • the charging system can be called a "4n*(4*k-2)" four-module composite matrix charging stack architecture.
  • the number m of the first output devices may be 4k-3, where k is a positive integer.
  • the charging system can be called a "4n*(4*k-3)" four-module composite matrix charging stack architecture.
  • each first output device corresponds to all the first charging modules, and in the scenario where each first charging module includes 4 first power converters, 4 A first output device acts as the granularity of power control.
  • the charging system includes 4k first output devices, it can be divided into k granularities, and each granularity includes 4 first output devices.
  • the charging system When the charging system includes 4k-1 first output devices, it can also be divided into k granularities, wherein only three first output devices are included in the last granularity, that is, the first output device 4k-1, the first output Device 4k-2 and first output device 4k-3, other granularities include 4 first output devices.
  • the charging system includes 4k-2 first output devices, it can also be divided into k granularities, where only two first output devices are included in the last granularity, that is, the first output device 4k-1 and the first output Device 4k-2, other granularity includes 4 first output devices.
  • the charging system When the charging system includes 4k-3 first output devices, it can also be divided into k granularities, where only one first output device is included in the last granularity, that is, the first output device 4k-1, other granularities Including 4 first output devices.
  • control module When the control module performs power allocation or scheduling for any first charging module, it can perform scheduling according to the working conditions of each granularity. When the control module performs power allocation or scheduling for the first output device in any granularity, scheduling may be performed according to the working conditions of the granularity.
  • the charging system may include n first charging modules, and each first charging module may include q first power converters, so the number of all first power converters in the charging system is qn. If the number of all first output devices in the charging system is m, then the charging system can be called “qn*m” q module composite matrix charging stack architecture. It can be seen that the architecture of the composite matrix charging system provided by the present application may include a variety of multi-module composite matrix charging stack architectures, which will not be listed here.
  • each first output device corresponds to all the first charging modules, and each first charging module includes q
  • q first output devices may be used as the granularity of power control.
  • the control module allocates or dispatches power to any first charging module, it can dispatch according to the working conditions of each granularity.
  • scheduling may be performed according to the working conditions of the granularity.
  • the charging system may include n first charging module groups, wherein there are two first charging module groups, and the number of first power converters in each first charging module group may be different.
  • the n first charging modules include the first charging module IDA1 and the first charging module IDA2.
  • the first charging module IDA1 may include q1 first power converters
  • the first charging module IDA2 may include q2 first power converters, where q1 and q2 may be different values.
  • the charging system includes 3 first charging modules, wherein, the first charging module IDA1 includes 3 first power converters, and the first charging module IDA2 includes 3 a first power converter, and the first charging module 3 includes two first power converters.
  • the number of all first power converters in the charging system is eight.
  • a first output device in the charging system may also have a corresponding at least one first charging module, and each first For the connection manner between the output device and the corresponding at least one first charging module through the second switch matrix, reference may be made to the foregoing embodiments, which will not be repeated here.
  • a first charging module can also have at least one corresponding first output device, and the connection method between each first charging module and the corresponding at least one first output device through the second switch matrix can refer to the foregoing embodiments, here No longer.
  • connection relationship between each first charging module and the first switch in the first switch matrix reference may be made to the foregoing embodiments, which will not be repeated here.
  • different charging systems have different numbers of first charging modules, and the total number of first power converters in each charging system may be the same.
  • the charging system 1 may include 4 first charging modules, and each first charging module may include 2 first power converters, and the first power converters in the charging system 1 The total quantity is 8.
  • the charging system 1 can be called an "8*m" two-module composite matrix charging stack architecture.
  • the charging system 2 may include 2 first charging modules, and each first charging module may include 4 first power converters, the first power converters in the charging system 2 The total quantity is 8.
  • the charging system 2 can be called an "8*m" four-module composite matrix charging stack architecture.
  • the charging system shown in Figure 3(k) includes 3 first charging modules, a total of 8 first power converters and 6 first output devices, this charging system can be called "8*6" composite matrix charging stack frame.
  • the total number of first power converters in each charging system can be adjusted by adjusting the number of first charging modules and the number of first power converters in each first charging module. Quantity is the same. It can be seen from this that the charging system architecture provided by the present application is flexible.
  • the charging system includes 3 first charging modules, and each first charging module includes 2 first power converters.
  • the first output device 1 corresponds to two first charging modules, namely the first charging module IDA1 and the first charging module IDA2.
  • the first output device 2 to the first output device 4 correspond to the first charging module IDA1 and the first charging module IDA2 respectively.
  • the first output device 5 corresponds to a first charging module, that is, the first charging module 3 .
  • the first output device 6 corresponds to a first charging module, that is, the first charging module 3 .
  • each first output device can obtain the power of four first power converters at most.
  • each first output device can obtain the power of two first power converters at most.
  • the first output device 1 to the first output device 4 may be referred to as first output devices in the high power region.
  • the first output device 5 and the first output device 6 may be referred to as first output devices of the low power region. It can be seen that, in the charging system, different first output devices can provide different maximum output powers to electric equipment.
  • the first charging module corresponding to each first output device may be determined according to the preset maximum output power of each first output device.
  • a charging module that provides fixed power for the output device can be added, which is denoted as a second charging module.
  • the second charging module may refer to a charging module not connected to the first switch matrix.
  • the charging system may include s second charging modules, where s is a positive integer greater than 1.
  • Each second charging module can have an identification, and the identification IDs of the s second charging modules can be respectively recorded as identification IDB1, identification IDB2, ..., identification IDBs.
  • the identification of the second charging module may be composed of one or more of numbers, characters, characters and the like. As shown in FIG. 4(a), the identifier IDB1 of the second charging module may refer to the second charging module IDB1. Similarly, the identifier IDBs of the second charging module may refer to the second charging module IDBs.
  • Each second charging module may include at least one second power converter.
  • Each of the second power converters has an output busbar, the output busbar of each second power converter is connected to the second switch matrix, and the second power converters are used to output electric energy.
  • the power supply is connected to the input side of each second power converter, and the power supply is used to provide each second power converter with electric energy, such as direct current electric energy or alternating current electric energy.
  • Each second power converter can process the electrical energy provided by the power source.
  • the second power converter may convert direct current to alternating current, direct current to direct current, alternating current to direct current, or alternating current to alternating current.
  • the second power converter may perform step-up processing or step-down processing on the electric energy provided by the power supply.
  • Each second power converter outputs electrical energy, such as power, through an output bus.
  • the output bus of each second power converter is connected to the first switch matrix. As shown in Fig. 4(a), each second power converter has an output bus.
  • the second power converter has AC to AC or DC to AC capability
  • the second power converter has an output bus.
  • the output bus bar of the second power converter may include a positive bus bar and a negative bus bar. For the convenience of introduction, the following takes the second power converter having the capability of converting direct current to direct current or alternating current to direct current as an example for illustration.
  • the first output device j may be connected to the corresponding second charging module through the second switch matrix.
  • the second switch matrix is also used to transmit the electric energy on the output bus of a second power converter in any one of the second charging modules corresponding to the first output device j to the first output device j.
  • the second switch matrix may include a plurality of third switches 103 .
  • the first output device j corresponds to y second charging modules, and y is a positive integer not greater than s.
  • the kth second charging module among the y second charging modules corresponding to the first output device j can be recorded as the second charging module (k, j), 1 ⁇ k ⁇ y.
  • the number of second charging modules corresponding to each first output device is the same or different.
  • the first output device j is connected to the corresponding y second charging modules through y third switches 103, wherein the third switch 103 (k, j) in the y third switches 103 is connected to the second charging module (k , an output bus bar of a second power converter in j), and is connected to the first output device j.
  • the third switch 103 (k, j) When the third switch 103 (k, j) is in a conducting state, it transmits the electric energy on the output bus of a second power converter in the second charging module (k, j) to the first output device j.
  • the second charging module corresponding to the first output device 1 is the second charging module IDB1 and the second charging module IDBs in sequence.
  • the first second charging module corresponding to the first output device 1 is the second charging module (1, 1), and the second charging module (1, 1) is also the second charging module IDB1.
  • the second charging module corresponding to the first output device 2 is the second charging module IDA1 and the second charging module IDBs.
  • the first second charging module corresponding to the first output device 2 is the second charging module (1, 2), and the second charging module (1, 2) is also the second charging module IDB1.
  • the second charging module (k, j) is used to refer to the kth second charging module in the second charging module corresponding to the first output device j, and the second charging module identified as IDBk
  • the charging module IDBk has obvious differences.
  • the first output device 1 corresponds to two second charging modules, namely the second charging module IDB1 and the second charging module IDBs.
  • the first second charging module is denoted as the second charging module (1, 1), which is also the first charging module IDB1.
  • the second second charging module is denoted as the second charging module (2, 1), which is also the second charging module IDBs.
  • the third switch 103 connected to the second charging module ( 1 , 1 ) and connected to the first output device 1 can be denoted as the third switch 103 ( 1 , 1 ).
  • the third switch 103 connected to the second charging module ( 1 , 1 ) and connected to the first output device 1 can be denoted as the third switch 103 ( 2 , 1 ).
  • the third switch 103 ( 1 , 1 ) When the third switch 103 ( 1 , 1 ) is turned on, it can transmit the electric energy on the output bus of a second power converter in the second charging module IDB1 to the first output device 1 .
  • the third switch 103 ( 2 , 1 ) When the third switch 103 ( 2 , 1 ) is turned on, it can transmit the electric energy on the output bus of a second power converter in the second charging module IDBs to the first output device 1 .
  • control module can control the third switch 103 (1, 1) and the third switch 103 (2, 1) in the third switch matrix, so that the first output device 1 can obtain the second charging module
  • the power of IDB1 and the second charging module IDBs can flexibly dispatch the power of different second charging modules to the same first output device.
  • a second charging module is added to the charging system, and the electric energy output by the second power converter in the second charging module can be provided to the first output device by controlling the second switch matrix.
  • the number of second charging modules corresponding to each first output device is the same.
  • the second charging module corresponding to the first output device 1 is the second charging module IDB1
  • the second charging module corresponding to the first output device 2 is the second charging module IDB1
  • the second charging module corresponding to the first output device 2 is the second charging module IDB1.
  • the second charging module corresponding to an output device 3 is the second charging module IDBs
  • the second charging module corresponding to the first output device m is the second charging module IDBs. It can be seen that the number of the second charging module corresponding to each first output device is 1, and is connected to a second power converter in the corresponding second charging module through the second switch matrix. In this example, each first output device can obtain power of a connected second power converter through the second switch matrix.
  • the number of second charging modules corresponding to each first output device is the same and greater than one.
  • the second charging module corresponding to the first output device 1 includes the second charging module IDB1 and the second charging module IDBs
  • the second charging module corresponding to the first output device 2 includes the second charging module IDB1 and the second charging module IDBs.
  • Module IDBs, the second charging module corresponding to the first output device 3 includes the second charging module IDB1 and the second charging module IDBs, the second charging module corresponding to the first output device m includes the second charging module IDB1 and the second charging module IDBs.
  • each first output device can obtain power of two connected second power converters through the second switch matrix.
  • one second charging module can be connected to multiple first output devices, that is, at least two first output devices can be connected.
  • the second charging modules corresponding to each of the multiple first output devices may include at least one identical second charging module.
  • the output bus of each second power converter is connected to at least one first output device among the plurality of first output devices through the second switch matrix.
  • the second charging modules corresponding to the first output device 1 are the second charging module IDB1 and the second charging module IDBs respectively.
  • the second charging modules corresponding to the first output device 2 are respectively the second charging module IDB1 and the second charging module IDBs.
  • the second charging modules corresponding to the first output device 3 are the second charging module IDB1 and the second charging module IDBs respectively.
  • the second charging modules corresponding to the first output device m are respectively the second charging module IDB1 and the second charging module IDBs.
  • the second charging module IDB1 is connected to a plurality of first output devices, namely the first output device 1 , the first output device 2 , the first output device 3 , and the first output device m.
  • the second charging module IDBs is connected to a plurality of first output devices, namely the first output device 1 , the first output device 2 , the first output device 3 , and the first output device m.
  • the output bus of each second power converter of the second charging module IDB1 may be connected to at least one first output device via the second switch matrix.
  • the output bus of the second power converter 1 is connected to the first output device 1
  • the output bus of the second power converter 2 is connected to the first output device 2
  • the output bus of the second power converter 3 is connected to the first output device 3 and
  • the first output device m is connected. It can be seen that one second charging module can correspond to multiple first output devices.
  • the output bus bar of each second power converter in the second charging module can be connected to at least one first output device in the corresponding plurality of first output devices.
  • the power of the second charging module can be provided to any corresponding first output device through the second switch matrix.
  • the number of first output devices connected to the output buses of the second power converters can be the same.
  • the one second charging module is the second charging module IDB1.
  • the output bus of each second power converter in the second charging module IDB1 is connected to two first output devices through the second switch matrix.
  • the first output devices connected to different second power converters are different.
  • the second power converter 1 in the second charging module IDB1 is connected to the first output device 1 and the first output device 3 through the second switch matrix
  • the second power converter 2 is connected to the first output device through the second switch matrix.
  • the device 2 is connected to the first output device m.
  • the number of first output devices connected to the output buses of different second power converters can be different.
  • the second charging module is the second charging module IDB1.
  • the second power converter 1 in the second charging module IDB1 is connected to a plurality of first output devices, such as the first output device 1 and the first output device 3 , through a second switch matrix.
  • the second power converter 2 in the second charging module IDB1 is connected to a first output device, that is, the first output device 2 through the second switch matrix.
  • there may be two second power converters in the second charging module and the numbers of the first output devices connected to the two second power converters are different.
  • the number of first output devices connected to the output buses of any two second power converters in the second charging module may be different.
  • the charging system may include multiple first charging modules and one second charging module.
  • the plurality of first charging modules are respectively the first charging module IDA1 and the first charging module IDA2 .
  • the first charging module IDA1 includes 4 first power converters
  • the first charging module IDA2 includes 2 first power converters.
  • the second charging module is the second charging module IDB1, and the second charging module IDB1 includes a second power converter.
  • Each first output device corresponds to the second charging module IDB1, and each first output device is connected to the output bus of the second power converter 1 through the second switch matrix.
  • the total number of first power converters and second power converters is 8, and the number of first output devices is 6.
  • This charging system can be called an "8*6" composite matrix charging stack structure.
  • the charging system shown in FIG. 3(k), the charging system shown in FIG. 3(l), and the charging system shown in FIG. 3(m) by adjusting the number of the first charging module, Adjusting the quantity of the first power converter in each first charging module, adjusting the quantity of the second charging module, or the quantity of the second power converter in the second charging module can make different charging systems included The total number of power converters is the same.
  • the charging system may include p second output devices, where p is a positive integer, as shown in FIG. 6( a ).
  • the second output device in the charging system can be a device such as a charging gun, a charging column, etc., and the electric device can obtain electric energy through the second output device, and the electric device can be an electric vehicle.
  • the output device that is only connected to the second charging module is recorded as the second output device.
  • the second output device may refer to an output device that is not connected to the first charging module.
  • the a-th second output device among the p second output devices may be denoted as a second output device a, where 1 ⁇ a ⁇ p.
  • the second output device a is connected to the corresponding second charging module through the second switch matrix, and the second switch matrix is also used to output any second charging module corresponding to the second output device a. Electric energy is transmitted to the second output device a.
  • a second charging module can be connected to the first output device and the second output device through the second switch matrix.
  • the second charging module corresponding to the first output device includes the same second charging module as the second charging module corresponding to the second output device.
  • the second charging module IDB1 may correspond to the first output device 1 , the first output device 2 , the first output device m, the second output device 1 , and the second output device p.
  • the output bus of each second power converter in the second charging module can be connected to at least one second output device. As shown in FIG. 5( a ), in each second charging module, the output bus bar of each second power converter is connected to a second output device. As shown in FIG. 5( b ), in each second charging module, the output bus bar of each second power converter is connected to two second output devices.
  • the output bus of the second power converter in the second charging module can be connected only with the second output device through the second switch matrix connection, cannot be connected to the first output device.
  • the switch provided between the second power converter and the second output device in this case is marked as the fourth switch 104 .
  • the second switch matrix may include a plurality of fourth switches 104 .
  • Each second charging module includes a plurality of second power converters.
  • the second output device a corresponds to z second charging modules, z is a positive integer not greater than s, and the rth second charging module among the z second charging modules is the second charging module (r, a ), 1 ⁇ r ⁇ z.
  • the number of second charging modules corresponding to each second output device is the same or different.
  • the second output device a is connected to the corresponding z second charging modules through z fourth switches 104, wherein the fourth switch 104 (r, a) in the z fourth switches 104 is connected to the second charging module (r , an output bus bar of a second power converter in a), and connected to the second output device a; when the fourth switch 104 (r, a) is in the conduction state, the second charging module (r, a) will The electric energy on the output bus of a second power converter is transmitted to the second output device a.
  • the second output device 1 corresponds to two second charging modules, namely the second charging module IDB1 and the second charging module IDBs.
  • the first second charging module among the two second charging modules corresponding to the second output device 1 is denoted as the second charging module (1, 1), which is also the second charging module IDB1.
  • the second second charging module is denoted as the second charging module (2, 1), which is also the second charging module IDBs.
  • the fourth switch 104 connected to the second charging module IDB1 and connected to the second output device 1 can be denoted as a fourth switch 104 ( 1 , 1 ).
  • the fourth switch 104 connected to the first charging module n and connected to the second output device 1 can be denoted as a fourth switch 104 ( 2 , 1 ).
  • a fourth switch 104 ( 2 , 1 ) When the fourth switch 104 ( 1 , 1 ) is turned on, it can transmit the electric energy on the output bus of a second power converter in the second charging module ( 1 , 1 ) to the second output device 1 .
  • the fourth switch 104 ( 2 , 1 ) When the fourth switch 104 ( 2 , 1 ) is turned on, it can transmit the electric energy on the output bus of a second power converter in the second charging module ( 2 , 1 ) to the second output device 1 .
  • control module can control the fourth switch 104 (1, 1) and the fourth switch 104 (2, 1) in the fourth switch matrix, so that the second output device 1 can obtain the second charging module
  • the power of IDB1 and the second charging module IDBs can flexibly dispatch the power of different second charging modules to the same second output device.
  • the number of second charging modules corresponding to each second output device is the same.
  • the second charging module corresponding to the second output device 1 is the second charging module IDB1
  • the second charging module corresponding to the second output device 2 is the second charging module IDB1
  • the second charging module corresponding to the second output device 2 is the second charging module IDB1.
  • the second charging module corresponding to the second output device 3 is the second charging module IDBs
  • the second charging module corresponding to the second output device p is the second charging module IDBs. It can be seen that the number of the second charging module corresponding to each second output device is 1, and is connected to a second power converter in the corresponding second charging module through the second switch matrix. In this example, each second output device can obtain power of a connected second power converter through the second switch matrix.
  • the number of second charging modules corresponding to each second output device is the same and greater than one.
  • the second charging module corresponding to the second output device 1 includes a second charging module IDB1 and a second charging module IDBs
  • the second charging module corresponding to the second output device 2 includes a second charging module
  • the second charging module corresponding to the second output device 3 includes the second charging module IDB1 and the second charging module IDBs
  • the modules include a second charging module IDB1 and a second charging module IDBs.
  • each second output device is 2, and is connected to a second power converter in each corresponding second charging module through a second switch matrix.
  • each second output device can obtain power of two connected second power converters through the second switch matrix.
  • one second charging module can be connected to multiple second output devices, that is, at least two output devices.
  • the second charging modules corresponding to each of the multiple second output devices include at least one identical second charging module.
  • the output bus of each second power converter in the second charging module is connected to at least one second output device among the plurality of second output devices through the second switch matrix.
  • the second charging modules corresponding to the second output device 1 are the second charging module IDB1 and the second charging module IDBs respectively.
  • the second charging modules corresponding to the second output device 2 are the second charging module IDB1 and the second charging module IDBs respectively.
  • the second charging modules corresponding to the second output device 3 are the second charging module IDB1 and the second charging module IDBs respectively.
  • the second charging modules corresponding to the second output device p are the second charging module IDB1 and the second charging module IDBs respectively. It can be seen that the second charging module IDB1 can be connected to the second output device 1 , the second output device 2 , the second output device 3 , and the second output device p.
  • the second charging module IDBs can be connected to the second output device 1 , the second output device 2 , the second output device 3 , and the second output device p.
  • the output bus of each second power converter of the second charging module IDB1 is connected to at least one second output device through the second switch matrix.
  • the output bus of the second power converter 1 is connected to the second output device 1 and the second output device 3
  • the output bus of the second power converter 2 is connected to the second output device 2 and the second output device p.
  • one second charging module can correspond to multiple second output devices, and the output bus bar of each second power converter in the second charging module can be connected to at least one of the corresponding multiple second output devices. Two output devices. The power of the second charging module can be provided to any corresponding second output device through the second switch matrix.
  • the number of second output devices connected to the output buses of the second power converters can be the same.
  • the one second charging module is the second charging module IDB1.
  • the output bus of each second power converter in the second charging module IDB1 is connected to two second output devices through a second switch matrix.
  • the second output devices connected to different second power converters are different.
  • the second power converter 1 is connected to the second output device 1 and the second output device 3 through the second switch matrix
  • the second power converter 2 is connected to the second output device 2 and the second output device p through the second switch matrix connect.
  • the number of second output devices connected to the output buses of different second power converters can be different.
  • the one second charging module is the second charging module IDB1.
  • the second power converter 2 in the second charging module IDB1 is connected to a plurality of second output devices, such as the second output device 2 and the second output device p, through a second switch matrix.
  • the second power converter 1 in the second charging module IDB1 is connected to a second output device, that is, the second output device 1 through a second switch matrix.
  • the second charging modules corresponding to all the second output devices may be the same, and each second power converter in each second charging module communicates with all the second output devices through the second switch matrix. connect.
  • each second charging module includes a second power converter, and the second power converter is connected to a plurality of fourth switches 104, and the plurality of fourth switches 104 are connected to all There is a one-to-one correspondence with the second output devices.
  • all the fourth switches 104 connected to the output buses of all the second power converters may form a full matrix switching switch.
  • the charging system provided in the example of the present application may include a composite switching matrix charging stack and a full matrix switching matrix charging stack, and the charging system may be called a combined matrix charging stack architecture.
  • the second power converter in the second charging module is only connected to the second charging device through the second switch matrix.
  • the output bus of the second power converter in the second charging module is not connected to the first switch matrix.
  • the second charging module is in the default state of the first switch matrix.
  • the electric energy output by the second power converter in the second charging module can be provided to the second output device.
  • the charging system includes a composite charging system comprising a first charging module that can flexibly allocate power and a second charging module that outputs fixed power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电系统,包括:n个第一充电模组、第一开关矩阵、第二开关矩阵及m个第一输出装置;每个第一充电模组包括多个第一功率转换器,每个第一功率转换器具有一个输出母线,第一功率转换器的输出母线与第一开关矩阵连接,第一功率转换器用于输出电能;第一开关矩阵用于将多个第一功率转换器中的任意两个第一功率转换器的输出母线之间连通或断路;将m个第一输出装置中的第j个第一输出装置记为第一输出装置j,第一输出装置j通过第二开关矩阵与对应的第一充电模组连接;第二开关矩阵用于将第一输出装置j对应的任意一个第一充电模组中的一个第一功率转换器的输出母线上的电能,传输至第一输出装置j。

Description

一种充电系统 技术领域
本申请涉及电子技术领域,尤其涉及一种充电系统。
背景技术
通常,充电桩中的功率转换器为电动汽车提供的充电功率是固定的。随着电动汽车充电功率需求的快速增长,为电动汽车提供的固定的充电功率难以满足电动汽车的充电功率需求。同时也影响电动汽车充电速度。为了提高为电动汽车充电的功率,若在充电桩中设置大于或者远大于电动汽车功率需求的功率转换器,造成功率转换器空置浪费。现有主要解决方案提供一种具有多功率转换器多充电柱的全矩阵式充电堆,图1中示出一种包括全矩阵切换开关的充电系统。每一个充电柱均通过多个开关S分别与每个功率转换器的正极输出母线和负极输出母线连接。在充电系统包括三个充电柱和四个功率转换器的情形下,需要开关S的数量为24个。全矩阵式充电堆需要较多的切换开关。并且,在多个充电柱为电动汽车充电的场景中,各功率转换器与各充电柱之间的能量传输路径复杂,并且全矩阵开关的利用率较低。
发明内容
本申请提供一种充电系统,可以提高功率转换器利用率,并且使用较少的开关器件,能够支持动态柔性地功率分配,并且开关器件的利用率较高。
第一方面,本申请实施例提供一种充电系统,可以包括:n个第一充电模组、第一开关矩阵、第二开关矩阵以及m个第一输出装置,其中,所述n为正整数,所述m为大于1的正整数;每个所述第一充电模组包括多个第一功率转换器,每个所述第一功率转换器具有一个输出母线,所述第一功率转换器的输出母线与所述第一开关矩阵连接,所述第一功率转换器用于输出电能;所述第一开关矩阵,用于将所述多个第一功率转换器中的任意两个第一功率转换器的输出母线之间连通或断路;所述第二开关矩阵通过所述第一开关矩阵与每个所述第一充电模组连接,第一输出装置j通过所述第二开关矩阵与对应的第一充电模组连接,1≤所述j≤所述m;所述第二开关矩阵用于所述n个第一充电模组中的一个或多个所述第一充电模组输出电能提供给对应的第一输出装置j。
本申请实施例提供的充电构架中,第一输出装置可以是充电枪或者充电桩。第一开关矩阵可以是由至少一个开关组成的能量控制装置。第二开关矩阵可以是由多个开关组成的能量控制装置。充电构架中可以包括n个第一充电模组,n可以大于1或者等于1。每个第一充电模组中可以包括多个第一功率转换器。通过第一开关矩阵,可以将各第一充电模组中的第一功率转换器的输出母线之间两两互连,可见第一开关矩阵具有使一个第一功率转换器的输出母线上汇集多个第一功率转换器输出的功率的能力,即调整第一充电模块输出电能的能力。此外,充电架构中第一输出装置j可以具有对应的至少一个第一充电模组。第一输出装置j通过第二开关矩阵与对应的第一充电模组连接。第二开关矩阵可以使第一输出装置j获得其对应的第一充电模组输出的电能。第一充电模组输出的电能可以为第一充电模组中的一个或多个第一功率转换器输出电能。这样的设计可使第一输出装置j可以 获得不同数量的第一功率转换器输出的功率,使得第一输出装置获得功率的方式更为灵活,并且第一充电模组中的第一功率转换器的利用率较高。也不需要第一充电模组与每一个第一功率转换器的输出母线连接,极大的降低开关器件的数量。
在一种可能的设计中,所述第一开关矩阵包括至少一个第一开关101;所述两个第一功率转换器的输出母线分别连接同一个所述第一开关101,该第一开关101处于导通状态时,所述两个第一功率转换器的输出母线之间连通;该第一开关101处于断路状态时,所述两个第一功率转换器的输出母线之间断路。
本申请实施例中,第一开关矩阵可以包括一个或多个第一开关。任意两个第一功率转换器的输出母线之间设置有一个第一开关。例如所述两个第一功率转换器分别为第一功率转换器1和第一功率转换器2。第一功率转换器1的输出母线和第一功率转换器2的输出母线之间设置有一个第一开关,该第一开关处于导通状态时,第一功率转换器1的输出母线与第一功率转换器2的输出母线连通。该第一开关处于断路状态时,第一功率转换器1的输出母线与第一功率转换器2的输出母线之间断路。通过对第一开关矩阵中第一开关的控制,可实现第一充电模组中一个或多个第一功率转换器的功率汇集控制。使得第一充电模组中的任意一个第一功率转换器输出的功率被灵活的调度到任意一个第一功率转换器的输出母线上。并通过第二开关矩阵,可以将任意一个第一功率转换器的输出母线上的功率提供给与第一充电模组对应的任意一个第一输出装置,可使任意一个第一输出装置获得一个或多个第一充电模组中的第一功率转换器输出的电能。
在一种可能的设计中,所述第二开关矩阵包括多个第二开关102;所述第一输出装置j对应x个第一充电模组,所述x为不大于n的正整数,所述x个第一充电模组中的第i个第一充电模组为第一充电模组(i,j),1≤i≤x;每个所述第一输出装置对应的第一充电模组的数量相同或不同;所述第一输出装置j通过所述x个第二开关102连接对应的所述x个第一充电模组,其中,所述x个第二开关102中的第二开关102(i,j)连接所述第一充电模组(i,j)中的一个第一功率转换器的输出母线,以及连接所述第一输出装置j;所述第二开关102(i,j)处于导通状态时,将所述第一充电模组(i,j)中的一个第一功率转换器的输出母线上的电能传输至所述第一输出装置j。
本申请实施例中,每个第一输出装置可以具有对应的第一充电模组。第一充电模组(i,j)、第一输出装置j连接的第二开关102(i,j)以及第一输出装置j,三者为垂直控制关系。第一充电模组(i,j)中的任意一个第一功率转换器的输出母线可以连接第二开关102(i,j),第二开关102(i,j)可以连接第一输出装置j。基于对第一开关矩阵的控制,通过第二开关(i,j),第一充电模组(i,j)中的第一功率转换器输出的功率可以调度到第一输出装置j。基于对第一开关矩阵的控制,以及对第二开关矩阵中第二开关的控制,可以使第二开关连接的第一充电模组中任意一个或多个第一功率转换器输出的功率调度到第二开关连接的第一输出装置处。
一种可能的设计中,充电系统中可以存在至少一个第一充电模组,至少一个第一充电模组中各第一充电模组可以连接多个第一输出装置,或者说各第一充电模组可以对应多个第一输出装置。所述各第一充电模组中的每个第一功率转换器的输出母线可以通过所述第一开关矩阵和所述第二开关矩阵与对应的多个第一输出装置中的至少一个第一输出装置连接。本申请实施例中,充电系统中的n个第一充电模组,每个第一充电模组可以具有标识,n个第一充电模组的标识可以分别记为标识IDA1,标识IDA2,…,标识IDAn。如图 2(a)所示,第一充电模组的标识IDA1可以指代第一充电模组IDA1。类似地,第一充电模组的标识IDAn可以指代第一充电模组IDAn。充电系统中,可以存在至少一个第一充电模组,如第一充电模组IDA1连接的(或者对应的)第一输出装置包括第一输出装置1和第一输出装置2。或者说,第一输出装置1连接的(或者对应的)第一充电模组可以包括第一充电模组IDA1,第一输出装置2连接的(或者对应的)第一充电模组中可以包括第一充电模组IDA1。
在一些示例中,所述各第一充电模组中的全部第一功率转换器,每个第一功率转换器的输出母线都通过第二开关矩阵与其对应的多个第一输出装置中的至少一个第一输出装置连接。例如,所述各第一充电模组中,每个第一功率转换器的输出母线可以通过第二开关矩阵连接一个第一输出装置。或者每个第一功率转换器的输出母线可以通过第二开关矩阵连接多个第一输出装置。或者一部分第一功率转换器的输出母线均通过第二开关矩阵连接一个第一输出装置,另一部分第一功率转换器的输出母线均通过第二开关矩阵连接多个第一输出装置。通过对第一开关矩阵和第二开关矩阵的控制,可以使所述各第一充电模组中的一个或多个第一功率转换器输出的功率调度到所述各第一充电模组对应的任意一个第一输出装置,提升所述各第一充电模组中第一功率转换器的利用率。
在一种可能的设计中,所述至少一个第一充电模组中,每个所述第一充电模组包括的所述多个第一功率转换器的数量为预设数量。充电系统所包括的至少一个第一充电模组中,每个第一充电模组所包括的第一功率转换器的数量相同。所述预设数量可以为2,3或者4等。例如,每个第一充电模组中可以包括2个第一功率转换器。或者每个第一充电模组中可以包括3个第一功率转换器。或者每个第一充电模组中可以包括4个第一功率转换器。类似地,每个第一充电模组中可以包括n个第一功率转换器,其中n可以为任意正整数。
在一种可能的设计中,充电系统中包括多个第一充电模组的情形下,充电系统中可以存在两个第一充电模组所包括的第一功率转换器的数量不同。假设两个第一充电模组为第一充电模组IDA1和第一充电模组IDA2,第一充电模组IDA1可以包括n1个第一功率转换器,第一充电模组IDA2可以包括n2个第一功率转换器,n1和n2为不同的数值。
在一种可能的设计中,充电系统还可以包括s个第二充电模组,所述s为大于1的正整数;每个所述第二充电模组包括至少一个第二功率转换器,每个所述第二功率转换器具有一个输出母线,所述第二功率转换器的输出母线与所述第二开关矩阵连接,所述第二功率转换器用于输出电能;所述第一输出装置j通过所述第二开关矩阵与对应的第二充电模组连接;所述第二开关矩阵还用于将所述s个第二充电模组中的一个或多个所述第二充电模组输出电能提供给对应的所述第一输出装置j。
本申请实施例中,每个第二充电模组中包括至少一个第二功率转换器,第二功率转换器仅与第二开关矩阵连接。第二充电模组中的一个第二功率转换器的输出母线上的电能仅为该第二功率转换器输出的电能。即每个第二功率转换器的输出母线上的电能为固定功率的电能。每个第一输出装置可具有至少一个对应的第二充电模组。第一输出装置j通过第二开关矩阵与对应的第二充电模组连接。这样的设计中,第一输出装置j也可以获得其对应的任意一个第二充电模组中的一个第二功率转换器输出的电能。可见,充电系统中第一输出装置既可以获得第二充电模组中的第二功率转换器输出的电能,也可以获得第一充电模组中的第一功率转换器输出的电能,使得给第一输出装置调度功率的路径更为灵活,提升充电系统对第一输出装置充电的灵活性,也反映出充电系统的可扩展性较好。
一种可能的设计中,所述第二开关矩阵还包括多个第三开关103;所述第一输出装置j对应y个第二充电模组,所述y为不大于s的正整数,所述y个第二充电模组中的第k个第二充电模组为第二充电模组(k,j),1≤所述k≤所述y;每个所述第一输出装置对应的第二充电模组的数量相同或不同;所述第一输出装置j通过所述y个第三开关103连接对应的所述y个第二充电模组,其中,所述y个第三开关103中的第三开关103(k,j)连接所述第二充电模组(k,j)中的一个第二功率转换器的输出母线,以及连接所述第一输出装置j;所述第三开关103(k,j)处于导通状态时,将所述第二充电模组(k,j)中的一个第二功率转换器的输出母线上的电能传输至所述第一输出装置j。
本申请实施例中,第二开关矩阵包括多个第三开关。便于区分,将连接在第二充电模组中第二功率转换器输出母线与第一输出装置之间的开关记为第三开关。每个第一输出装置可以具有对应的第二充电模组。第二充电模组(k,j)、第一输出装置j连接的第三开关103(k,j)以及第一输出装置j,三者为垂直控制关系。第二充电模组(k,j)中的任意一个第二功率转换器的输出母线可以连接第三开关103(k,j),第三开关103(k,j)可以连接第一输出装置j。通过对第三开关103(k,j)的控制,第二充电模组(k,j)中的第二功率转换器输出的功率可以调度到第一输出装置j。基于对第二开关矩阵中第三开关的控制,可以使第三开关连接的第二充电模组中任意一个或多个第二功率转换器输出的功率调度到第三开关连接的第一输出装置处。
一种可能的设计中,充电系统可以存在至少一个第二充电模组。至少一个第二充电模组中各第二充电模组可以连接多个第一输出装置,或者说各第二充电模组可以对应多个第一输出装置。所述各第二充电模组中,每个第二功率转换器的输出母线通过所述第二开关矩阵与对应的所述多个第一输出装置中的至少一个第一输出装置连接。本申请实施例中,充电系统中的s个第二充电模组。每个第二充电模组可以具有标识,s个第二充电模组的标识可以分别记为标识IDB1,标识IDB2,…,标识IDBs。如图4(a)所示,第二充电模组的标识IDB1可以指代第二充电模组IDB1。类似地,第二充电模组的标识IDBs可以指代第二充电模组IDBs。充电系统中可以存在至少一个第二充电模组,如第二充电模组IDB1连接的(或者对应的)第一输出装置可以包括第一输出装置1和第一输出装置2。或者说,第一输出装置1连接的(或者对应的)第二充电模组可以包括第二充电模组IDB1,第一输出装置2连接的(或者对应的)第二充电模组中可以包括第二充电模组IDB1。
在一些示例中,所述各第二充电模组中的每个第二功率转换器的输出母线都通过第二开关矩阵与其对应的多个第一输出装置中的至少一个第一输出装置连接。例如,每个第二功率转换器的输出母线可以通过第二开关矩阵连接一个第一输出装置。或者每个第二功率转换器的输出母线可以通过第二开关矩阵连接多个第一输出装置。或者一部分第二功率转换器的输出母线均通过第二开关矩阵连接一个第一输出装置,另一部分第二功率转换器的输出母线均通过第二开关矩阵连接多个第一输出装置。通过对第二开关矩阵的控制,可以使所述各第二充电模组中的一个或多个第二功率转换器输出的功率调度到所述各第二充电模组对应的任意一个第一输出装置,提升所述各第二充电模组中第二功率转换器的利用率。
一种可能的设计中,充电系统还包括:s个第二充电模组和p个第二输出装置,所述s为大于1的正整数,所述p为正整数;第二输出装置a通过所述第二开关矩阵与对应的第二充电模组连接,所述第二输出装置a为所述p个第二输出装置中的第a个第二输出装置, 1≤所述a≤所述p;所述第二开关矩阵还用于将所述s个第二充电模组中的一个或多个所述第二充电模组输出电能提供给对应的所述第二输出装置a。
本申请实施例中,充电系统具有良好的可扩展性和兼容性。第一输出装置j可以通过第二开关矩阵获得第二充电模组中的第二功率转换器输出的电能。第二输出装置a可以通过第二开关矩阵,获得一个或多个第二充电模组输出的电能。相比于第二输出装置a,第一输出装置j可获得的电能功率调整方式更为灵活。第一输出装置j可以获得电能的最大功率可大于第二输出装置可获得电能的最大功率。充电系统中提供两种类型的输出装置,可以满足不同功率需求的待充电设备。
一种可能的设计中,充电系统中所述第二开关矩阵还包括多个第四开关104;每个第二充电模组包括多个第二功率转换器;所述第二输出装置a对应z个第二充电模组,所述z为不大于s的正整数,所述z个第二充电模组中的第r个第二充电模组为第二充电模组(r,a),1≤所述r≤所述z;每个所述第二输出装置对应的第二充电模组的数量相同或不同;所述第二输出装置a通过所述z个第四开关104连接对应的所述z个第二充电模组,其中,所述z个第四开关104中的第四开关104(r,a)连接所述第二充电模组(r,a)中的一个第二功率转换器的输出母线,以及连接所述第二输出装置a;所述第四开关104(r,a)处于导通状态时,将所述第二充电模组r中的一个第二功率转换器的输出母线上的电能传输至所述第二输出装置a。
本申请实施例中,每个第二输出装置可以具有对应的第二充电模组。第二充电模组(r,a)、第二输出装置a连接的第四开关104(r,a)以及第二输出装置a,三者为垂直控制关系。第二充电模组r中的一个第二功率转换器的输出母线可以连接第四开关104(r,a),第四开关104(r,a)可以连接第二输出装置a。通过对第四开关104(r,a)的控制,第二充电模组(r,a)中的一个第二功率转换器输出的功率可以调度到第二输出装置a。
一种可能的设计中,充电系统中可以存在至少一个第二充电模组。至少一个第二充电模组中各第二充电模组可以连接至少两个第二充电模组,或者说各第二充电模组可以对应至少两个第二充电模组。例如,充电系统中存在第二充电模组IDB1连接的(或者对应的)第二输出装置可以包括第二输出装置1和第二输出装置2。在一些示例中,各第二充电模组可以包括多个第二功率转换器,每个第二功率转换器的输出母线都通过第二开关矩阵与其对应的多个第二输出装置中的至少一个第二输出装置连接。例如,每个第二功率转换器的输出母线可以通过第二开关矩阵连接一个第二输出装置。或者每个第二功率转换器的输出母线可以通过第二开关矩阵连接多个第二输出装置。或者一部分第二功率转换器的输出母线均通过第二开关矩阵连接一个第二输出装置,另一部分第二功率转换器的输出母线均通过第二开关矩阵连接多个第二输出装置。
附图说明
图1为一种全矩阵式充电堆的结构示意图;
图2(a)为本申请提供的一种充电系统的结构示意图;
图2(b)为第一输出装置对应第一充电模组情况的示意图;
图2(c)为本申请提供的一种充电系统的结构示意图;
图3(a)为本申请提供的一种充电系统的具体结构示意图;
图3(b)为本申请提供的一种充电系统的具体结构示意图;
图3(c)为本申请提供的一种充电系统的具体结构示意图;
图3(d)为本申请提供的一种充电系统的具体结构示意图;
图3(e)为本申请提供的一种充电系统的具体结构示意图;
图3(f)为本申请提供的一种充电系统的具体结构示意图;
图3(g)为本申请提供的一种充电系统的具体结构示意图;
图3(h)为本申请提供的一种充电系统的具体结构示意图;
图3(i)为本申请提供的一种充电系统的具体结构示意图;
图3(j)为本申请提供的一种充电系统的具体结构示意图;
图3(k)为本申请提供的一种充电系统的具体结构示意图;
图3(l)为本申请提供的一种充电系统的具体结构示意图;
图3(m)为本申请提供的一种充电系统的具体结构示意图;
图3(n)为本申请提供的一种充电系统的具体结构示意图;
图4(a)为本申请提供的又一种充电系统的结构示意图;
图4(b)为第一输出装置对应第二充电模组情况的示意图;
图4(c)为第一输出装置对应第二充电模组情况的示意图;
图4(d)为本申请提供的一种充电系统的具体结构示意图;
图5(a)为本申请提供的又一种充电系统的结构示意图;
图5(b)为第二输出装置对应第二充电模组情况的示意图;
图6(a)为本申请提供的又一种充电系统的结构示意图;
图6(b)为第二输出装置对应第二充电模组情况的示意图;
图6(c)为第二输出装置对应第二充电模组情况的示意图;
图6(d)为第二输出装置对应第二充电模组情况的示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
通常,充电桩中的功率转换器为电动汽车提供的充电功率是固定的。随着电动汽车充电功率需求的快速增长,为电动汽车提供的固定的充电功率难以满足电动汽车的充电功率需求。同时也影响电动汽车充电速度。为了提高为电动汽车充电的功率,若在充电桩中设置大于或者远大于电动汽车功率需求的功率转换器,造成功率转换器空置浪费。
针对提高功率转换器利用率的需求,现有主要解决方案提供一种具有多功率转换器多充电柱的全矩阵式充电堆,电动汽车与充电堆中的充电柱连接,从充电柱处获取电能。该方案中通过全矩阵开关的切换实现所有功率转换器输出的功率动态柔性地分配至每一个充电柱上。图1中示出一种包括全矩阵切换开关的充电系统。每一个充电柱均通过多个开关S分别与每个功率转换器的正极输出母线和负极输出母线连接。在充电系统包括三个充电柱和四个功率转换器的情形下,需要开关S的数量为24个。该全矩阵式充电堆需要较多的切换开关。并且,在多个充电柱为电动汽车充电的场景中,各功率转换器与各充电柱之间的能量传输路径复杂,对全矩阵开关的控制也较为复杂。
有鉴于此,本申请提供一种充电系统,使用较少的开关器件的数量,可以动态柔性地分配功率,并且控制过程简洁。请参见图2(a),充电系统可以包括电源、n个第一充电模组、模块互连开关矩阵(记为第一开关矩阵)、功率分配开关矩阵(记为第二开关矩阵)、以及m个第一输出装置。本申请实施例中,n为正整数,m为大于1的正整数。可见,充电系统可以包括至少一个第一充电模组和多个第一输出装置。
充电系统中的m个第一输出装置,可分别记为第一输出装置1,第一输出装置2,…,第一输出装置m。第一输出装置可以为充电枪、充电柱等装置。用电设备可以通过第一输出装置获取电能,用电设备可以为电动汽车等。充电系统还可以包括控制模块,控制模块可以控制第一开关矩阵和第二开关矩阵,例如改变第一开关矩阵的工作状态,改变第二开关矩阵的工作状态等,对每个充电模组进行功率调度,并调度给第一输出装置。
充电系统中的n个第一充电模组,每个第一充电模组可以具有标识,n个第一充电模组的标识(identification,ID)可以分别记为标识IDA1,标识IDA2,…,标识IDAn。第一充电模组的标识可以由数字、字符、字符等中的一种或多种组成。如图2(a)所示,第一充电模组的标识IDA1可以指代第一充电模组IDA1。类似地,第一充电模组的标识IDAn可以指代第一充电模组IDAn。
每个第一充电模组可以包括多个第一功率转换器。电源与每个第一功率转换器的输入侧连接,电源用于为每个第一功率转换器提供电能,如直流电能或者交流电能。每个第一功率转换器可以对电源提供的电能进行处理。例如,第一功率转换器可以将直流电转换为交流电、直流电转换为直流电、交流电转换为直流电、或者将交流电转换为交流电。又例如,第一功率转换器可以对电源提供的电能进行升压处理或降压处理等。每个第一功率转换器通过输出母线输出电能,如功率。每个第一功率转换器的输出母线与第一开关矩阵连接。如图2(a)所示,每个第一功率转换器具有一个输出母线。在一些示例中,第一功率转换器具有交流电转换为交流电或者直流电转换为交流电的能力的情形下,第一功率转换器具有一个输出母线。在一些示例中,第一功率转换器具有直流电转直流电或者交流电转直流电的能力的情形下,第一功率转换器的输出母线可以包括正极母线和负极母线。便于介绍,下面以第一功率转换器具有直流电转直流电或者交流电转直流电的能力作为举例进行说明。
第一开关矩阵可以是由至少一个开关组成的能量控制装置。第一开关矩阵可以将每个第一充电模组中的,任意两个第一功率转换器的输出母线连通。这样的设计可使任意两个第一功率转换器输出的功率汇集,也可以使所述两个第一功率转换器中的一个第一功率转换器的输出母线可以得到的最大功率为所述两个第一功率转换器输出的功率总和。例如,第一开关矩阵将第一充电模组1中的第一功率转换器1的输出母线和第一功率转换器2的输出母线之间连通时,第一功率转换器1或者第一功率转换器2的输出母线(第一开关矩阵远离第一功率转换器的一侧的输出母线)上的功率为两个第一功率转换器输出的功率总和。控制模块可以通过控制第一开关矩阵,改变第一功率转换器的输出母线处的电能功率,实现对各第一功率转换器输出功率的分配,或者说控制模块可以通过控制第一开关矩阵,可以灵活地控制每个第一充电模组内的功率分配。
每个第一输出装置可以对应至少一个第一充电模组。便于介绍,将m个第一输出装置中的第j个第一输出装置记为第一输出装置j,其中,j可以取遍1至m,即1≤所述j≤所述m。本申请实施例中,第一输出装置j对应的第一充电模组可以指与第一输出装置j连 接(直接或间接连接)的第一充电模组。第二开关矩阵可以通过第一开关矩阵与每个第一充电模组连接,即第一开关矩阵可以设置在第二开关矩阵和每个第一充电模组之间。第一输出装置j可以通过第二开关矩阵与对应的第一充电模组连接。第二开关矩阵可以是由多个开关组成的能量控制装置。例如,第一输出装置j可以通过第二开关矩阵与对应的第一充电模组中的一个第一功率转换器的输出母线连接,第一输出装置j可以通过连接的输出母线接收到第一充电模组输出的电能。
第一输出装置j所对应的第一充电模组的数量可以大于等于1。也即第一输出装置j可以对应一个第一充电模组,也可以对应多个第一充电模组。如图2(a)所示,以j为1作为举例。第一输出装置1所对应的第一充电模组包括第一充电模组IDA1和第一充电模组IDAn。第一输出装置1与第一充电模组IDA1中的一个第一功率转换器的输出母线连接。第一输出装置1与第一充电模组IDAn中的一个第一功率转换器的输出母线连接。
第二开关矩阵可以与每个第一输出装置连接,以及通过第一开关矩阵与每个第一充电模组连接。所述第二开关矩阵可以将所述n个第一充电模组中的一个或多个所述第一充电模组输出电能提供给对应的第一输出装置j。或者说,第二开关矩阵可以将所述第一输出装置j对应的任意一个第一充电模组中的一个第一功率转换器的输出母线上的电能,提供(或传输)至所述第一输出装置j。通过第二开关矩阵可以使第一输出装置j获得第一输出装置j对应的第一充电模组中一个第一功率转换器输出母线上(第一输出装置j所连接的第一功率转换器)的功率。基于对第一开关矩阵控制可以灵活地实现每个第一充电模组内的功率分配的功能,通过第一开关矩阵和第二开关矩阵可使第一输出装置j获得对应的每个第一充电模组中的一个或多个第一功率转换器的功率。
第一输出装置j对应多个第一充电模组的情形下,假设第一输出装置j对应x个第一充电模组,x为不大于n的正整数。第二开关矩阵可以使第一输出装置j获得第一输出装置j对应的x个第一充电模组中的部分或全部的第一充电模组的功率。控制模块可以通过控制第二开关矩阵,调度多个第一充电模组为第一输出装置j提供功率,实现对各第一充电模组输出功率的分配,或者说控制模块可以通过控制第二开关矩阵,可以灵活地控制每个第一充电模组间的功率分配。便于介绍,本申请中将第一输出装置j所对应的x个第一充电模组中的第i个第一充电模组记为第一充电模组(i,j)。如图2(b)所示,第一输出装置1所对应的第一充电模组依次为第一充电模组IDA1和第一充电模组IDAn。第一输出装置1对应的第1个第一充电模组为第一充电模组(1,1),该第一充电模组(1,1)也是第一充电模组IDA1。第一输出装置2所对应的第一充电模组为第一充电模组IDA1。第一输出装置2对应的第1个第一充电模组为第一充电模组(1,2),该第一充电模组(1,2)也是第一充电模组IDA1。显而易见,本申请中第一充电模组(i,j)用于指代第一输出装置j所对应的第一充电模组中的第i个第一充电模组,与标识为IDAi的第一充电模组IDAi具有明显区别。
如图2(a)所示,假设j等于1,以第一输出装置1作为举例进行介绍,第一输出装置1对应的第一充电模组包括第一充电模组IDA1、第一充电模组IDA2和第一充电模组IDAn。第二开关矩阵可以将第一充电模组IDA1中的一个第一功率转换器的输出母线上的电能,传输至第一输出装置1。也可以将第一充电模组IDA2中的一个第一功率转换器的输出母线上的电能,传输至第一输出装置1。也可以将第一充电模组IDAn中的一个第一功率转换器的输出母线上的电能,传输至第一输出装置1。使得第一输出装置1可以获得 数量num1个第一充电模组(num1为不大于第一输出装置1对应的第一充电模组总数量的正整数)中的第一功率转换器输出母线上的电能。例如,数量num1为2,第二开关矩阵可以将第一输出装置1对应的第一充电模组中的2个第一充电模组(如第一充电模组IDA1和第一充电模组IDAn)中的每个第一充电模组中的一个第一功率转换器的输出母线上的电能,传输至第一输出装置1。例如,数量num1为1,第二开关矩阵可以将第一充电模组IDA1或者第一充电模组IDAn中的一个第一功率转换器的输出母线上的电能,传输至第一输出装置1。
相比于现有包括全矩阵开关的充电系统架构。本申请提供的包括复合矩阵开关(即第一开关矩阵和第二开关矩阵)的充电系统架构,可以提高第一功率转换器的利用率。并且,通过第一开关矩阵将多个第一功率转换器的输出母线连通,可以提升第一功率转换器的输出母线处的电能的功率。通过第二开关矩阵将多个功率转换器输出母线上的电能提供给第一输出装置。可见,本申请提供的包括复合矩阵开关的充电系统架构可以实现功率灵活(柔性)分配。并且第一输出装置可以与对应的第一充电模组中的一个第一功率转换器连接,不需要与充电系统中的全部第一功率转换器连接,大幅减少充电系统中的功率切换元件(如开关)的数量。
一种可能的实施方式中,第一开关矩阵可以包括至少一个第一开关101。如图2(a)所示,每个第一充电模组中,任意两个第一功率转换器的输出母线之间设置有一个第一开关101,或者说所述两个第一功率转换器的输出母线与同一个第一开关101连接。一个第一开关101连接两个第一功率转换器的输出母线。例如,第一充电模组IDA1包括w个第一功率转换器(w为大于2的整数),w个第一功率转换器中的第t个第一功率转换器可以记为第一功率转换器t(1≤t≤w)。第一功率转换器t的输出母线和除第一功率转换器t之外的每一个第一功率转换器的输出母线之间均设置有一个第一开关101。以t为1作为举例,第一功率转换器1的输出母线和第一功率转换器2的输出母线之间设置有一个第一开关101。第一功率转换器1的输出母线和第一功率转换器3的输出母线之间设置有一个第一开关101。以此类推,第一功率转换器1的输出母线和第一功率转换器w之间设置有一个第一开关101。
针对各第一充电模组中的任意两个第一功率转换器,该两个第一功率转换器的输出母线之间设置的一个第一开关101处于导通状态时,则该两个第一功率转换器的输出母线之间连通;该两个第一功率转换器的输出母线之间设置的一个第一开关101处于断路状态时,则两个第一功率转换器的输出母线之间断路。例如,第一功率转换器1的输出母线和第一功率转换器2的输出母线之间设置的第一开关101,若处于导通状态时,第一功率转换器1的输出母线和第一功率转换器2的输出母线之间连通。若处于断路状态时,第一功率转换器1的输出母线和第一功率转换器2的输出母线之间断路。
基于上述结构,控制模块可以通过控制第一开关矩阵中的各第一开关101的工作状态(导通状态或者断路状态),对任意一个第一充电模组中的一个或多个第一功率转换器功率进行灵活分配。
在一种可能的实施方式中,第二开关矩阵可以包括多个第二开关102。第一输出装置j可以通过x个第二开关与第一输出装置j对应的x个第一充电模组连接。所述x个第二开关中第二开关102(i,j)可以表示与第一输出装置j连接,且与第一输出装置j对应的x个第一充电模组中的第一充电模组(i,j)连接的第二开关102,其中第二开关102(i,j) 可以与第一充电模组(i,j)中的一个第一功率转换器的输出母线连接。所述第二开关102(i,j)处于导通状态时,将第一充电模组(i,j)中的一个第一功率转换器的输出母线上的电能传输至第一输出装置j。
如图2(a)所示,假设j等于1,第一输出装置1对应2个第一充电模组,分别为第一充电模组IDA1和第一充电模组IDAn。第一输出装置1所对应的第一充电模组中,第1个第一充电模组记为第一充电模组(1,1),也是第一充电模组IDA1。第2个第一充电模组记为第一充电模组(2,1),也是第一充电模组IDAn。与第一充电模组(1,1)连接,以及与第一输出装置1连接的第二开关102可记为第二开关102(1,1)。与第一充电模组(2,1)连接,以及与第一输出装置1连接的第二开关102可记为第二开关102(2,1)。第二开关102(1,1)处于导通状态时,可将第一充电模组IDA1中的一个第一功率转换器的输出母线上的电能传输至第一输出装置1。第二开关102(2,1)处于导通状态时,可将第一充电模组IDAn中的一个第一功率转换器的输出母线上的电能传输至第一输出装置1。可见,充电系统中,控制模块可以通过控制第二开关矩阵中的第二开关102(1,1)以及第二开关102(2,1),使第一输出装置1可以获得第一充电模组IDA1和第一充电模组IDAn的功率,实现将不同第一充电模组的功率灵活调度给同一第一输出装置。
本申请中的各开关可以包括正极开关和负极开关,正极开关连接在功率转换器输出母线的正极母线和输出装置的正极端之间,负极开关连接在功率转换器输出母线的负极母线和输出装置的负极端之间。或者各开关可以为双极接触器、固态开关、混合开关等,本申请实施例对此不做过多限定。
在一些可能的场景中,充电系统可以包括一个第一充电模组。即n等于1。每个第一输出装置均对应所述一个第一充电模组。第一输出装置j连接一个第二开关102,该第二开关102所述一个第一充电模组中的一个第一功率转换器的输出母线连接。在一些示例中,对于所述一个第一充电模组包括的多个第一功率转换器,每个第一输出装置通过第二开关矩阵连接的第一功率转换器的输出母线可以不同。也即每个第一输出装置所连接的第一功率转换器不同。例如,假设所述一个第一充电模组包括第一功率转换器1和第一功率转换器2,充电系统包括第一输出装置1和第一输出装置2。第一输出装置1连接第一功率转换器1的输出母线,第一输出装置2连接第一功率转换器2的输出母线。或者,第一输出装置1连接第一功率转换器2的输出母线,第一输出装置2连接第一功率转换器1的输出母线。
在另一些示例中,部分第一输出装置通过第二开关矩阵连接的第一功率转换器的输出母线可以相同,即部分第一输出装置可以连接同一个第一功率转换器。或者说,一个第一功率转换器可以连接多个第一输出装置。例如,在图2(a),第一输出装置3和第一输出装置m分别通过两个第二开关102连接同一个第一功率转换器的输出母线。
基于本实施例提供的充电架构,控制模块可以通过第一开关矩阵中各第一开关101的工作状态以及第二开关矩阵中的各第二开关102的工作状态,将任意一个第一功率转换器的输出母线处的电能功率提供给任意一个第一输出装置,使任意一个第一输出装置获得一个或者多个第一功率转换器输出的电能。这样的设计中,第一充电模组中的任意一个第一功率转换器输出的功率可以提供给任意一个第一输出装置,也即任意一个第一功率转换器的输出功率可以分配给任意一个第一输出装置,可见本申请提供的充电系统具有智能分配、柔性充电的能力。
在另一些可能的场景中,充电系统可以包括多个第一充电模组,即n大于1。第一输出装置j可以对应x个第一充电模组,第一输出装置j通过x个第二开关102即第二开关102(1,j)至第二开关102(x,j),分别与对应的x个第一充电模组连接。具体连接方式可以参见前述实施例,此处不再赘述。
在一些示例中,每个第一输出装置对应的第一充电模组的数量可以相同。也即每个第一输出装置通过第二开关矩阵连接的第一充电模组的数量相同。如图2(a)所示,第一输出装置1通过第二开关矩阵连接的第一充电模组的数量为2,第一输出装置2通过第二开关矩阵连接的第一充电模组的数量为2,第一输出装置3通过第二开关矩阵连接的第一充电模组的数量为2,第一输出装置m通过第二开关矩阵连接的第一充电模组的数量为2。可见,第一输出装置1、第一输出装置2、第一输出装置3、第一输出装置m对应的第一充电模组的数量相同。
在另一些示例中,每个第一输出装置对应的第一充电模组的数量可以不同,或者说充电系统中存在两个第一输出装置对应的第一充电模组的数量不同。如图2(b)所示,第一输出装置1对应2个第一充电模组,分别为第一充电模组IDA1和第一充电模组IDAn。第一输出装置3对应1个第一充电模组,为第一充电模组IDA1和第一充电模组IDAn。第一输出装置m对应1个第一充电模组,即第一充电模组IDAn。可见,第一输出装置1对应的第一充电模组的数量与第一输出装置3对应的第一充电模组的数量相同。第一输出装置m对应的第一充电模组的数量与第一输出装置1(或者第一输出装置3)对应的第一充电模组的数量不同。充电系统中存在两个第一输出装置对应的第一充电模组的数量不同,可使这两个第一输出装置获得的最大功率不同。
在一些示例中,一个第一充电模组可以连接多个第一输出装置,即可以连接至少两个第一输出装置。或者说,充电系统中可以存在多个第一输出装置,且多个第一输出装置中每个第一输出装置对应的第一充电模组中包括至少一个相同的第一充电模组。在一些示例中,第一充电模组连接的第一输出装置也可以指对应的第一输出装置。
例如,如图2(a)所示,第一输出装置1对应的第一充电模组分别为第一充电模组IDA1和第一充电模组IDAn。第一输出装置2对应的第一充电模组分别为第一充电模组IDA1和第一充电模组IDAn。第一输出装置3对应的第一充电模组分别为第一充电模组IDA1和第一充电模组IDAn。第一输出装置m对应的第一充电模组分别为第一充电模组IDA1和第一充电模组IDAn。可见,第一充电模组IDA1连接多个第一输出装置,分别为第一输出装置1、第一输出装置2、第一输出装置3、第一输出装置m。第一输出装置IDAn也可以连接多个第一输出装置,分别为第一输出装置1、第一输出装置2、第一输出装置3、第一输出装置m。第一充电模组IDA1的每个第一功率转换器的输出母线通过第二开关矩阵可以均连接有至少一个第一输出装置。第一功率转换器1的输出母线与第一输出装置1连接,第一功率转换器2的输出母线与第一输出装置2连接,第一功率转换器3的输出母线与第一输出装置3和第一输出装置m连接。
可见,一个第一充电模组可以对应多个第一输出装置,该第一充电模组中的每个第一功率转换器的输出母线可连接对应的多个第一输出装置中的至少一个第一输出装置。该第一充电模组的功率可以通过第二开关矩阵提供其对应的任意一个第一输出装置。
在一个第一充电模组可以对应多个第一输出装置的场景中,所述一个第一充电模组中,各第一功率转换器的输出母线连接的第一输出装置的数量可以相同。如图2(c)所示,假 设所述一个第一充电模组为第一充电模组IDA1。第一充电模组IDA1中每个第一功率转换器的输出母线均通过第二开关矩阵连接一个第一输出装置。不同第一功率转换器连接的第一输出装置不同。例如,第一功率转换器1通过第二开关矩阵与第一输出装置1连接,第一功率转换器2通过第二开关矩阵与第一输出装置2连接,第一功率转换器3通过第二开关矩阵与第一输出装置3连接。
在一个第一充电模组可以对应多个第一输出装置的场景中,所述一个第一充电模组中,不同第一功率转换器的输出母线连接的第一输出装置的数量可以不同。如图2(a)所示,假设所述一个第一充电模组为第一充电模组IDA1。第一充电模组IDA1中的第一功率转换器3通过第二开关矩阵连接多个第一输出装置,如第一输出装置3和第一输出装置m。第一充电模组IDA1中的第一功率转换器1通过第二开关矩阵连接一个第一输出装置,即第一输出装置1。在一些示例中,所述第一充电模组中可以存在两个第一功率转换器,所述两个第一功率转换器连接的第一输出装置的数量不同。在另一些示例中,任意两个第一功率转换器的输出母线连接的第一输出装置的数量可以不同。
根据上述对充电系统的介绍,充电系统中的第一输出装置与各第一充电模组中的第一功率转换器之间的连接方式较为灵活,可以在充电系统中增设更多的第一输出装置,提升第一功率转换器的利用率。
本申请提供的包括复合矩阵开关的充电系统架构还可以有更多形式。在一种可能的设计中,充电系统所包括的n个第一充电模组中,每个第一充电模组中的第一功率转换器的数量为预设数量(如大于2的正整数)。或者说,每个第一充电模组中的第一功率转换器的数量相同。
在一个示例中,如图3(a)所示,每个第一充电模组可以包括2个第一功率转换器,则充电系统中全部第一功率转换器的数量为2n。充电系统可以包括m个第一输出装置。该充电系统可以称为“2n*m”双功率转换器(模块)复合矩阵式充电堆架构。例如,充电系统包括6个第一输出装置和至少一个第一充电模组,并且每个第一充电模组包括2个第一功率转换器。请参见图3(a),这样的充电系统可以称为“2n*6”双模块复合矩阵式充电堆单元。可选地,请参见图3(b),第一输出装置的数量m可以为2的倍数,如m=2*k,其中k为正整数。可选地,请参见图3(c),第一输出装置的数量m可以为奇数,如m=2*k-1,其中k为正整数。该充电系统可以称为“2n*(2*k-1)”双模块复合矩阵式充电堆架构。
结合图3(a)至(c),每个第一输出装置可以对应全部的第一充电模组的情形下,本申请实施例还提供一种第二开关102接入构思(或者规则),该第二开关102可以用于连接新增设的第一输出装置。该第二开关102也可以用于连接充电系统中已有的第一输出装置。以第二开关102接入第一充电模组IDA1作为举例,第一充电模组IDA1中的第一功率转换器的输出母线上,每接入一个第二开关102时,可以查询第一充电模组IDA1中的每个第一功率转换器的输出母线上连接的第二开关102的数量,新接入的一个第二开关102可以连接在已连接的第二开关102数量最少的那个第一功率转换器的输出母线上。
例如,第一输出装置4连接的第二开关102接入时,第一功率转换器2的输出母线连接的第二开关数量为1,第一功率转换器1的输出母线连接的第二开关数量为2,可以将第一输出装置4连接的第二开关102连接到第一功率转换器2的输出母线上。又例如,第一输出装置2k-1连接的第二开关102接入时,第一功率转换器1和第一功率转换器2的输出母线所连接的第二开关102的数量相同,第一输出装置2k-1连接的第二开关102可以连 接到第一功率转换器1和第一功率转换器2中的任意一个第一功率转换器的输出母线上。
在一些示例中,第二开关102接入时可以采用轮询的方式,本次接入一个第二开关102时,本次接入的第二开关102所连接的第一功率转换器为前一次接入的第二开关102所连接的第一功率转换器的下一个次序的第一功率转换器。例如,第一充电模组IDA1中,第一功率转换器1的下一个次序第一功率转换器为第一功率转换器2。第一功率转换器2的下一个次序第一功率转换器为第一功率转换器1。前一次新增的第二开关102接入时,连接第一功率转换器1的输出母线。则本次新增的第二开关102接入时,连接第一功率转换器2的输出母线。下一次新增的第二开关102接入时,连接第一功率转换器1的输出母线。可见,充电系统中的第二开关102接入时,可以依据第一充电模组中的第一功率转换器的次序,逐个第一功率转换器接入第二开关102。
基于第二开关102接入时可以采用轮询的方式,本申请实施例还提供一种功率分配或调度控制构思。结合图3(a)至(c),每个第一输出装置均对应全部的第一充电模组,每个第一充电模组中包括2个第一功率转换器的场景中,以2个第一输出装置作为功率控制的颗粒度。例如,第一输出装置2k-1和第一输出装置2k为一个颗粒度。在充电系统包括2k个第一输出装置时,可以分为k个颗粒度,每个颗粒度包括2个第一输出装置。在充电系统包括2k-1个第一输出装置时,也可以分为k个颗粒度,其中最后一个颗粒度中仅包括1个第一输出装置,即第一输出装置2k-1,其它颗粒度中包括2个第一输出装置。
每个颗粒度中各第一输出装置连接的第二开关102的通断状态不同时,颗粒度的工况不同,例如各第一输出装置连接的第二开关102全部处于导通状态时,颗粒度处于第一工况;或者各第一输出装置连接的第二开关102全部处断路状态时,颗粒度处于第二工况;或者第一输出装置2k-1连接的第二开关102处于导通状态,且第一输出装置2k连接的第二开关102处于断路状态时,颗粒度处于第三工况;或者第一输出装置2k连接的第二开关102处于导通状态,且第一输出装置2k-1连接的第二开关102处于断路状态时,颗粒度处于第四工况。可选地,第三工况和第四工况可以为同一工况。也即同一颗粒度的工况,与颗粒度中的第一输出装置连接的第二开关102的通断状态相关。
控制模块对任意一个第一充电模组进行功率分配或调度时,可以根据各颗粒度的工况进行调度。控制模块为任意一个颗粒度中的第一输出装置进行功率分配或调度时,可以根据该颗粒度的工况进行调度。
另一个示例中,如图3(d)所示,充电系统包括n个第一充电模组,每个第一充电模组可以包括3个第一功率转换器,则充电系统中全部第一功率转换器的数量为3n。充电系统可以包括m个第一输出装置。该充电系统可以称为“3n*m”三模块复合矩阵式充电堆架构。可选地,第一输出装置的数量m可以为3的倍数,如m=3*k,其中可为正整数。可选地,请参见图3(e),第一输出装置的数量m可以为3k-1,其中k为正整数。该充电系统可以称为“3n*(3*k-1)”三模块复合矩阵式充电堆架构。可选地,请参见图3(f),第一输出装置的数量m可以为3k-2,其中k为正整数。该充电系统可以称为“3n*(3*k-2)”三模块复合矩阵式充电堆架构。
结合前述采用轮询的方式接入第二开关102的构思,以及功率分配或调度控制构思,本申请实施例还提供一种功率分配或调度控制构思。结合图3(d)至(f),每个第一输出装置均对应全部的第一充电模组,每个第一充电模组中包括3个第一功率转换器的场景中,可以以3个第一输出装置作为功率控制的颗粒度。在充电系统包括3k个第一输出装置时, 可以分为k个颗粒度,每个颗粒度包括3个第一输出装置。在充电系统包括3k-1个第一输出装置时,也可以分为k个颗粒度,其中最后一个颗粒度中仅包括2个第一输出装置,即第一输出装置3k-1和第一输出装置3k-2,其它颗粒度中包括3个第一输出装置。在充电系统包括3k-2个第一输出装置时,也可以分为k个颗粒度,其中最后一个颗粒度中仅包括1个第一输出装置,即第一输出装置3k-1,其它颗粒度中包括3个第一输出装置。
控制模块对任意一个第一充电模组进行功率分配或调度时,可以根据各颗粒度的工况进行调度。控制模块为任意一个颗粒度中的第一输出装置进行功率分配或调度时,可以根据该颗粒度的工况进行调度。
又一个示例中,如图3(g)所示,充电系统包括n个第一充电模组,每个第一充电模组可以包括4个第一功率转换器,则充电系统中全部第一功率转换器的数量为4n。充电系统可以包括m个第一输出装置。该充电系统可以称为“4n*m”三模块复合矩阵式充电堆架构。可选地,第一输出装置的数量m可以为4的倍数,如m=4*k,其中可为正整数。可选地,请参见图3(h),第一输出装置的数量m可以为4k-1,其中k为正整数。该充电系统可以称为“4n*(4*k-1)”四模块复合矩阵式充电堆架构。可选地,请参见图3(i),第一输出装置的数量m可以为4k-2,其中k为正整数。该充电系统可以称为“4n*(4*k-2)”四模块复合矩阵式充电堆架构。可选地,请参见图3(j),第一输出装置的数量m可以为4k-3,其中k为正整数。该充电系统可以称为“4n*(4*k-3)”四模块复合矩阵式充电堆架构。
结合前述采用轮询的方式接入第二开关102的构思,以及功率分配或调度控制构思,本申请实施例还提供一种功率分配或调度控制构思。结合图3(g)至(i),每个第一输出装置均对应全部的第一充电模组,每个第一充电模组中包括4个第一功率转换器的场景中,可以以4个第一输出装置作为功率控制的颗粒度。在充电系统包括4k个第一输出装置时,可以分为k个颗粒度,每个颗粒度包括4个第一输出装置。在充电系统包括4k-1个第一输出装置时,也可以分为k个颗粒度,其中最后一个颗粒度中仅包括3个第一输出装置,即第一输出装置4k-1,第一输出装置4k-2和第一输出装置4k-3,其它颗粒度中包括4个第一输出装置。在充电系统包括4k-2个第一输出装置时,也可以分为k个颗粒度,其中最后一个颗粒度中仅包括2个第一输出装置,即第一输出装置4k-1和第一输出装置4k-2,其它颗粒度中包括4个第一输出装置。在充电系统包括4k-3个第一输出装置时,也可以分为k个颗粒度,其中最后一个颗粒度中仅包括1个第一输出装置,即第一输出装置4k-1,其它颗粒度中包括4个第一输出装置。
控制模块对任意一个第一充电模组进行功率分配或调度时,可以根据各颗粒度的工况进行调度。控制模块为任意一个颗粒度中的第一输出装置进行功率分配或调度时,可以根据该颗粒度的工况进行调度。
可见,充电系统可以包括n个第一充电模组,每个第一充电模组中可以包括q个第一功率转换器,则充电系统中全部第一功率转换器的数量为qn。充电系统中全部第一输出装置的数量为m,则该充电系统可以称为“qn*m”q个模块复合矩阵式充电堆架构。由此可见,本申请提供的包括复合矩阵式的充电系统的架构,可以包括多种多个模块复合矩阵式充电堆架构,此处不再一一列举。结合前述采用轮询的方式接入第二开关102的构思,以及功率分配或调度控制构思,每个第一输出装置均对应全部的第一充电模组,每个第一充电模组中包括q个第一功率转换器的场景中,可以以q个第一输出装置作为功率控制的颗粒度。控制模块对任意一个第一充电模组进行功率分配或调度时,可以根据各颗粒度的工况进行 调度。控制模块为任意一个颗粒度中的第一输出装置进行功率分配或调度时,可以根据该颗粒度的工况进行调度。
在一种可能的设计中,充电系统可以包括n个第一充电模组,其中,存在两个第一充电模组,各第一充电模组中的第一功率转换器的数量可以不同。例如,n个第一充电模组中包括第一充电模组IDA1和第一充电模组IDA2。第一充电模组IDA1可以包括q1个第一功率转换器,第一充电模组IDA2可以包括q2个第一功率转换器,其中q1和q2可以为不同的数值。
请参见图3(k),假设n等于3,即充电系统包括3个第一充电模组,其中,第一充电模组IDA1包括3个第一功率转换器,第一充电模组IDA2包括3个第一功率转换器,第一充电模组3包括2个第一功率转换器。本例中,充电系统中全部第一功率转换器的数量为8个。
在每个第一充电模组中的第一功率转换器的数量相同或者不同的情形下,充电系统中的一个第一输出装置也可以具有对应的至少一个第一充电模组,每个第一输出装置通过第二开关矩阵与对应的至少一个第一充电模组的连接方式可以参见前述实施例,此处不再赘述。一个第一充电模组也可以具有对应的至少一个第一输出装置,每个第一充电模组通过第二开关矩阵与对应的至少一个第一输出装置的连接方式可以参见前述实施例,此处不再赘述。每个第一充电模组与第一开关矩阵中的第一开关的连接关系,可以参见前述实施例,此处不再赘述。
在实际应用场景中,不同充电系统中,第一充电模组数量不同,各充电系统中的第一功率转换器的总数量可以相同。
请参见图3(l),充电系统1可以包括4个第一充电模组,每个第一充电模组中可以包括2个第一功率转换器,充电系统1中的第一功率转换器的总数量为8。该充电系统1可以称为“8*m”两模块复合矩阵式充电堆架构。请参见图3(m),充电系统2可以包括2个第一充电模组,每个第一充电模组中可以包括4个第一功率转换器,充电系统2中的第一功率转换器的总数量为8。该充电系统2可以称为“8*m”四模块复合矩阵式充电堆架构。图3(k)所示的充电系统包括3个第一充电模组,共8个第一功率转换器和6个第一输出装置,该充电系统可称为“8*6”复合矩阵式充电堆构架。可见,对于不同的充电系统,可以通过调整第一充电模组的数量,以及调整每个第一充电模组中第一功率转换器的数量,使各充电系统中的第一功率转换器的总数量为相同。由此可见,本申请提供的充电系统构架的灵活性。
本申请实施例提供的充电系统中,一个第一输出装置对应的第一充电模组的数量越多,可以获得的最大功率也越高。请参见图3(n),充电系统包括3个第一充电模组,每个第一充电模组包括2个第一功率转换器。其中,第一输出装置1对应两个第一充电模组,分别为第一充电模组IDA1和第一充电模组IDA2。同样地,第一输出装置2至第一输出装置4均分别对应第一充电模组IDA1和第一充电模组IDA2。第一输出装置5对应一个第一充电模组,即第一充电模组3。第一输出装置6对应一个第一充电模组,即第一充电模组3。
第一输出装置1至第一输出装置4中,每个第一输出装置最多可以获得4个第一功率转换器的功率。第一输出装置5和第一输出装置6中,每个第一输出装置最多可以获得2个第一功率转换器的功率。第一输出装置1至第一输出装置4可以称为高功率区中的第一输出装置。第一输出装置5和第一输出装置6可以称为低功率区的第一输出装置。由此可 见,充电系统中不同第一输出装置可以提供给用电设备的最大输出功率可以不同。每个第一输出装置对应的第一充电模组,可以根据预先设定的每个第一输出装置的最大输出功率确定。
基于上述实施例提供的充电系统构架,可以增设为输出装置提供固定功率的充电模组,记为第二充电模组。区别于第一充电模组,第二充电模组可指不与第一开关矩阵连接的充电模组。充电系统可以包括s个第二充电模组,所述s为大于1的正整数。每个第二充电模组可以具有标识,s个第二充电模组的标识ID可以分别记为标识IDB1,标识IDB2,…,标识IDBs。第二充电模组的标识可以由数字、字符、字符等中的一种或多种组成。如图4(a)所示,第二充电模组的标识IDB1可以指代第二充电模组IDB1。类似地,第二充电模组的标识IDBs可以指代第二充电模组IDBs。
每个第二充电模组可以包括至少一个第二功率转换器。每个所述第二功率转换器具有一个输出母线,每个第二功率转换器的输出母线与第二开关矩阵连接,所述第二功率转换器用于输出电能。电源与每个第二功率转换器的输入侧连接,电源用于为每个第二功率转换器提供电能,如直流电能或者交流电能。每个第二功率转换器可以对电源提供的电能进行处理。例如,第二功率转换器可以将直流电转换为交流电、直流电转换为直流电、交流电转换为直流电、或者将交流电转换为交流电。又例如,第二功率转换器可以对电源提供的电能进行升压处理或降压处理等。每个第二功率转换器通过输出母线输出电能,如功率。每个第二功率转换器的输出母线与第一开关矩阵连接。如图4(a)所示,每个第二功率转换器具有一个输出母线。在一些示例中,第二功率转换器具有交流电转换为交流电或者直流电转换为交流电的能力的情形下,第二功率转换器具有一个输出母线。在一些示例中,第二功率转换器具有直流电转直流电或者交流电转直流电的能力的情形下,第二功率转换器的输出母线可以包括正极母线和负极母线。便于介绍,下面以第二功率转换器具有直流电转直流电或者交流电转直流电的能力作为举例进行说明。
第一输出装置j可以通过所述第二开关矩阵与对应的第二充电模组连接。第二开关矩阵还用于所述第一输出装置j对应的任意一个第二充电模组中的一个第二功率转换器的输出母线上的电能,传输至所述第一输出装置j。
第二开关矩阵可以包括多个第三开关103。第一输出装置j对应y个第二充电模组,y为不大于s的正整数。便于介绍,本申请中将第一输出装置j所对应的y个第二充电模组中的第k个第二充电模组可记为第二充电模组(k,j),1≤k≤y。每个第一输出装置对应的第二充电模组的数量相同或不同。第一输出装置j通过y个第三开关103连接对应的y个第二充电模组,其中,y个第三开关103中的第三开关103(k,j)连接第二充电模组(k,j)中的一个第二功率转换器的输出母线,以及连接第一输出装置j。第三开关103(k,j)处于导通状态时,将第二充电模组(k,j)中的一个第二功率转换器的输出母线上的电能传输至第一输出装置j。
如图4(b)所示,第一输出装置1所对应的第二充电模组依次为第二充电模组IDB1和第二充电模组IDBs。第一输出装置1对应的第1个第二充电模组为第二充电模组(1,1),该第二充电模组(1,1)也是第二充电模组IDB1。第一输出装置2所对应的第二充电模组为第二充电模组IDA1和第二充电模组IDBs。第一输出装置2对应的第1个第二充电模组为第二充电模组(1,2),该第二充电模组(1,2)也是第二充电模组IDB1。显而易见,本申请中第二充电模组(k,j)用于指代第一输出装置j所对应的第二充电模组中的第k 个第二充电模组,与标识为IDBk的第二充电模组IDBk具有明显区别。
如图4(b)所示,假设j等于1,第一输出装置1对应2个第二充电模组,分别为第二充电模组IDB1和第二充电模组IDBs。第一输出装置1所对应的第二充电模组中,第1个第二充电模组记为第二充电模组(1,1),也是第一充电模组IDB1。第2个第二充电模组记为第二充电模组(2,1),也是第二充电模组IDBs。与第二充电模组(1,1)连接,以及与第一输出装置1连接的第三开关103可记为第三开关103(1,1)。与第二充电模组(1,1)连接,以及与第一输出装置1连接的第三开关103可记为第三开关103(2,1)。第三开关103(1,1)处于导通状态时,可将第二充电模组IDB1中的一个第二功率转换器的输出母线上的电能传输至第一输出装置1。第三开关103(2,1)处于导通状态时,可将第二充电模组IDBs中的一个第二功率转换器的输出母线上的电能传输至第一输出装置1。可见,充电系统中,控制模块可以通过控制第三开关矩阵中的第三开关103(1,1)以及第三开关103(2,1),使第一输出装置1可以获得第二充电模组IDB1和第二充电模组IDBs的功率,实现将不同第二充电模组的功率灵活调度给同一第一输出装置。
在充电系统中增加第二充电模组,通过对第二开关矩阵控制可以将第二充电模组中的第二功率转换器输出的电能提供给第一输出装置。这样的设计可以提升充电系统的可拓展性,以及功率分配的灵活性。
一些示例中,充电系统中,每个第一输出装置对应的第二充电模组的数量相同。如图4(a)所示,第一输出装置1对应的第二充电模组为第二充电模组IDB1、第一输出装置2对应的第二充电模组为第二充电模组IDB1、第一输出装置3对应的第二充电模组为第二充电模组IDBs、第一输出装置m对应的第二充电模组为第二充电模组IDBs。可见,每个第一输出装置对应的第二充电模组的数量为1,并通过第二开关矩阵与对应的第二充电模组中的一个第二功率转换器连接。本示例中,每个第一输出装置可以通过第二开关矩阵获得连接的一个第二功率转换器的功率。
如图4(b)所示,每个第一输出装置对应的第二充电模组的数量相同,且大于1。第一输出装置1对应的第二充电模组包括第二充电模组IDB1和第二充电模组IDBs,第一输出装置2对应的第二充电模组包括第二充电模组IDB1和第二充电模组IDBs,第一输出装置3对应的第二充电模组包括第二充电模组IDB1和第二充电模组IDBs,第一输出装置m对应的第二充电模组包括第二充电模组IDB1和第二充电模组IDBs。可见,每个第一输出装置对应的第二充电模组的数量为2,并通过第二开关矩阵与对应的各第二充电模组中的一个第二功率转换器连接。本示例中,每个第一输出装置可以通过第二开关矩阵获得连接的两个第二功率转换器的功率。
另一些示例中,一个第二充电模组可以连接多个第一输出装置,即连接至少两个第一输出装置。或者说,充电系统中可以存在多个第一输出装置,所述多个第一输出装置中每个第一输出装置对应的第二充电模组中可以包括至少一个相同的第二充电模组。所述相同的第二充电模组中,每个第二功率转换器的输出母线通过所述第二开关矩阵与所述多个第一输出装置中的至少一个第一输出装置连接。
例如,如图4(b)所示,第一输出装置1对应的第二充电模组分别为第二充电模组IDB1和第二充电模组IDBs。第一输出装置2对应的第二充电模组分别为第二充电模组IDB1和第二充电模组IDBs。第一输出装置3对应的第二充电模组分别为第二充电模组IDB1和第二充电模组IDBs。第一输出装置m对应的第二充电模组分别为第二充电模组IDB1和第二 充电模组IDBs。可见,第二充电模组IDB1连接多个第一输出装置,分别为第一输出装置1、第一输出装置2、第一输出装置3、第一输出装置m。第二充电模组IDBs连接多个第一输出装置,分别为第一输出装置1、第一输出装置2、第一输出装置3、第一输出装置m。
第二充电模组IDB1的每个第二功率转换器的输出母线通过第二开关矩阵可以均连接有至少一个第一输出装置。第二功率转换器1的输出母线与第一输出装置1连接,第二功率转换器2的输出母线与第一输出装置2连接,第二功率转换器3的输出母线与第一输出装置3和第一输出装置m连接。可见,一个第二充电模组可以对应多个第一输出装置。该第二充电模组中的每个第二功率转换器的输出母线可连接对应的多个第一输出装置中的至少一个第一输出装置。该第二充电模组的功率可以通过第二开关矩阵提供其对应的任意一个第一输出装置。
在一个第二充电模组可以对应多个第一输出装置的场景中,所述一个第二充电模组中,各第二功率转换器的输出母线连接的第一输出装置的数量可以相同。如图4(b)所示,假设所述一个第二充电模组为第二充电模组IDB1。第二充电模组IDB1中每个第二功率转换器的输出母线均通过第二开关矩阵连接两个第一输出装置。不同第二功率转换器连接的第一输出装置不同。例如,第二充电模组IDB1中的第二功率转换器1通过第二开关矩阵与第一输出装置1和第一输出装置3连接,第二功率转换器2通过第二开关矩阵与第一输出装置2和第一输出装置m连接。
在一个第二充电模组可以对应多个第一输出装置的场景中,所述一个第二充电模组中,不同第二功率转换器的输出母线连接的第一输出装置的数量可以不同。如图4(c)所示,假设所述一个第二充电模组为第二充电模组IDB1。第二充电模组IDB1中的第二功率转换器1通过第二开关矩阵连接多个第一输出装置,如第一输出装置1和第一输出装置3。第二充电模组IDB1中的第二功率转换器2通过第二开关矩阵连接一个第一输出装置,即第一输出装置2。在一些示例中,所述第二充电模组中可以存在两个第二功率转换器,所述两个第二功率转换器连接的第一输出装置的数量不同。在另一些示例中,所述第二充电模组中任意两个第二功率转换器的输出母线连接的第一输出装置的数量可以不同。
在一种可能的场景中,充电系统可以包括多个第一充电模组和一个第二充电模组。请参见图4(d),多个第一充电模组分别为第一充电模组IDA1、第一充电模组IDA2。其中,第一充电模组IDA1包括4个第一功率转换器,第一充电模组IDA2包括2个第一功率转换器。第二充电模组为第二充电模组IDB1,第二充电模组IDB1包括1个第二功率转换器。每个第一输出装置均与第二充电模组IDB1对应,每个第一输出装置均通过第二开关矩阵与第二功率转换器1的输出母线连接。在该充电系统中,第一功率转换器和第二功率转换器的总数量为8,第一输出装置的数量为6,该充电系统可称为“8*6”复合矩阵式充电堆构架。结合前述实施例中,图3(k)示出的充电系统、图3(l)示出的充电系统、以及图3(m)示出的充电系统,通过调整第一充电模组的数量,调整每个第一充电模组中第一功率转换器的数量,调整第二充电模组的数量,或者第二充电模组中第二功率转换器的数量,可以使不同充电系统中所包括的功率转换器的总数量为相同。
在一种可能的场景中,充电系统可以包括p个第二输出装置,p为正整数,如图6(a)所示。充电系统中的第二输出装置可以为充电枪、充电柱等装置,用电设备可以通过第二输出装置获取电能,用电设备可以为电动汽车。便于区分,本申请实施例中,将仅与第二充电模组连接的输出装置记为第二输出装置。区别于第一输出装置,第二输出装置可指不 与第一充电模组连接的输出装置。
p个第二输出装置中的第a个第二输出装置可记为第二输出装置a,1≤a≤p。第二输出装置a通过所述第二开关矩阵与对应的第二充电模组连接,所述第二开关矩阵还用于将所述第二输出装置a对应的任意一个第二充电模组输出的电能,传输至所述第二输出装置a。
一种可能的实施方式中,一个第二充电模组可以通过第二开关矩阵连接第一输出装置和第二输出装置。或者说,第一输出装置对应的第二充电模组中与第二输出装置对应的第二充电模组中包括相同的第二充电模组。如图5(a)所示,第二充电模组IDB1可以对应第一输出装置1、第一输出装置2、第一输出装置m、第二输出装置1、以及第二输出装置p。
在一些示例中,一个第二充电模组对应多个第二充电模组的情形下,第二充电模组中的每个第二功率转换器的输出母线可以连接至少一个第二输出装置。如图5(a)所示,各第二充电模组中,每个第二功率转换器的输出母线连接一个第二输出装置。如图5(b)所示,各第二充电模组中,每个第二功率转换器的输出母线连接两个第二输出装置。
另一种可能的实施方式中,在充电系统中,如图6(a)所示,第二充电模组中的第二功率转换器的输出母线可以通过第二开关矩阵仅与第二输出装置连接,不可以与第一输出装置连接。便于区分,将此情形中的第二功率转换器与第二输出装置之间设置的开关记为第四开关104。
第二开关矩阵可以包括多个第四开关104。每个第二充电模组包括多个第二功率转换器。第二输出装置a对应z个第二充电模组,z为不大于s的正整数,z个第二充电模组中的第r个第二充电模组为第二充电模组(r,a),1≤r≤z。每个第二输出装置对应的第二充电模组的数量相同或不同。第二输出装置a通过z个第四开关104连接对应的z个第二充电模组,其中,z个第四开关104中的第四开关104(r,a)连接第二充电模组(r,a)中的一个第二功率转换器的输出母线,以及连接第二输出装置a;第四开关104(r,a)处于导通状态时,将第二充电模组(r,a)中的一个第二功率转换器的输出母线上的电能传输至第二输出装置a。
如图6(b)所示,假设a等于1,第二输出装置1对应2个第二充电模组,分别为第二充电模组IDB1和第二充电模组IDBs。第二输出装置1对应的2个第二充电模组中的第1个第二充电模组记为第二充电模组(1,1),也是第二充电模组IDB1。第2个第二充电模组记为第二充电模组(2,1),也是第二充电模组IDBs。与第二充电模组IDB1连接,以及与第二输出装置1连接的第四开关104可记为第四开关104(1,1)。与第一充电模组n连接,以及与第二输出装置1连接的第四开关104可记为第四开关104(2,1)。第四开关104(1,1)处于导通状态时,可将第二充电模组(1,1)中的一个第二功率转换器的输出母线上的电能传输至第二输出装置1。第四开关104(2,1)处于导通状态时,可将第二充电模组(2,1)中的一个第二功率转换器的输出母线上的电能传输至第二输出装置1。可见,充电系统中,控制模块可以通过控制第四开关矩阵中的第四开关104(1,1)以及第四开关104(2,1),使第二输出装置1可以获得第二充电模组IDB1和第二充电模组IDBs的功率,实现将不同第二充电模组的功率灵活调度给同一第二输出装置。
一些示例中,充电系统中,每个第二输出装置对应的第二充电模组的数量相同。如图6(a)所示,第二输出装置1对应的第二充电模组为第二充电模组IDB1、第二输出装置2对应的第二充电模组为第二充电模组IDB1、第二输出装置3对应的第二充电模组为第二充 电模组IDBs、第二输出装置p对应的第二充电模组为第二充电模组IDBs。可见,每个第二输出装置对应的第二充电模组的数量为1,并通过第二开关矩阵与对应的第二充电模组中的一个第二功率转换器连接。本示例中,每个第二输出装置可以通过第二开关矩阵获得连接的一个第二功率转换器的功率。
每个第二输出装置对应的第二充电模组的数量相同,且大于1。如图6(b)所示,第二输出装置1对应的第二充电模组包括第二充电模组IDB1和第二充电模组IDBs,第二输出装置2对应的第二充电模组包括第二充电模组IDB1和第二充电模组IDBs,第二输出装置3对应的第二充电模组包括第二充电模组IDB1和第二充电模组IDBs,第二输出装置p对应的第二充电模组包括第二充电模组IDB1和第二充电模组IDBs。可见,每个第二输出装置对应的第二充电模组的数量为2,并通过第二开关矩阵与对应的各第二充电模组中的一个第二功率转换器连接。本示例中,每个第二输出装置可以通过第二开关矩阵获得连接的两个第二功率转换器的功率。
另一些示例中,一个第二充电模组可以连接多个第二输出装置,即连接至少两个输出装置。或者说,充电系统中可以存在多个第二输出装置,所述多个第二输出装置中每个第二输出装置对应的第二充电模组中包括至少一个相同的第二充电模组。该第二充电模组中的每个第二功率转换器的输出母线通过所述第二开关矩阵与所述多个第二输出装置中的至少一个第二输出装置连接。
例如,如图6(b)所示,第二输出装置1对应的第二充电模组分别为第二充电模组IDB1和第二充电模组IDBs。第二输出装置2对应的第二充电模组分别为第二充电模组IDB1和第二充电模组IDBs。第二输出装置3对应的第二充电模组分别为第二充电模组IDB1和第二充电模组IDBs。第二输出装置p对应的第二充电模组分别为第二充电模组IDB1和第二充电模组IDBs。可见,第二充电模组IDB1可以连接第二输出装置1、第二输出装置2、第二输出装置3、第二输出装置p。第二充电模组IDBs可以连接第二输出装置1、第二输出装置2、第二输出装置3、第二输出装置p。以第二充电模组IDB1为例,第二充电模组IDB1的每个第二功率转换器的输出母线通过第二开关矩阵均连接有至少一个第二输出装置。第二功率转换器1的输出母线与第二输出装置1和第二输出装置3连接,第二功率转换器2的输出母线与第二输出装置2和第二输出装置p连接。
可见,一个第二充电模组可以对应多个第二输出装置,该第二充电模组中的每个第二功率转换器的输出母线可连接对应的多个第二输出装置中的至少一个第二输出装置。该第二充电模组的功率可以通过第二开关矩阵提供其对应的任意一个第二输出装置。
在一个第二充电模组可以对应多个第二输出装置的场景中,所述一个第二充电模组中,各第二功率转换器的输出母线连接的第二输出装置的数量可以相同。如图6(b)所示,假设所述一个第二充电模组为第二充电模组IDB1。第二充电模组IDB1中每个第二功率转换器的输出母线均通过第二开关矩阵连接两个第二输出装置。不同第二功率转换器连接的第二输出装置不同。例如,第二功率转换器1通过第二开关矩阵与第二输出装置1和第二输出装置3连接,第二功率转换器2通过第二开关矩阵与第二输出装置2和第二输出装置p连接。
在一个第二充电模组可以对应多个第二输出装置的场景中,所述一个第二充电模组中,不同第二功率转换器的输出母线连接的第二输出装置的数量可以不同。如图6(c)所示,假设所述一个第二充电模组为第二充电模组IDB1。第二充电模组IDB1中的第二功率转换 器2通过第二开关矩阵连接多个第二输出装置,如第二输出装置2和第二输出装置p。第二充电模组IDB1中的第二功率转换器1通过第二开关矩阵连接一个第二输出装置,即第二输出装置1。在一些示例中,所述第二充电模组中可以存在两个第二功率转换器,所述两个第二功率转换器连接的第二输出装置的数量不同。在另一些示例中,所述第二充电模组中任意两个第二功率转换器的输出母线连接的第二输出装置的数量可以不同。
一种可能的设计中,全部第二输出装置对应的第二充电模组可以相同,并且各第二充电模组中的每个第二功率转换器通过第二开关矩阵,与全部第二输出装置连接。如图6(d),假设每个第二充电模组包括一个第二功率转换器,并且所述一个第二功率转换器连接多个第四开关104,所述多个第四开关104与全部第二输出装置一一对应。这样的设计中,全部第二功率转换器的输出母线所连接的全部第四开关104可以构成全矩阵切换开关。可见,本申请示例提供的充电系统可以包括复合式切换矩阵充电堆和全矩阵式切换矩阵充电堆,该充电系统可以称为组合矩阵式充电堆架构。
本实施例中,第二充电模组中的第二功率转换器通过第二开关矩阵仅连接第二充电装置。第二充电模组中的第二功率转换器的输出母线不与第一开关矩阵连接。这样的设计中,第二充电模组为第一开关矩阵缺省状态。第二充电模组中的第二功率转换器输出的电能,可以提供给第二输出装置。充电系统包括可以灵活分配功率的第一充电模组和输出固定功率的第二充电模组的复合式充电系统。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (11)

  1. 一种充电系统,其特征在于,包括:n个第一充电模组、第一开关矩阵、第二开关矩阵以及m个第一输出装置,其中,所述n为正整数,所述m为大于1的正整数;
    每个所述第一充电模组包括多个第一功率转换器,每个所述第一功率转换器具有一个输出母线,所述第一功率转换器的输出母线与所述第一开关矩阵连接,所述第一功率转换器用于输出电能;
    所述第一开关矩阵,用于将所述多个第一功率转换器中的任意两个第一功率转换器的输出母线之间连通或断路;
    所述第二开关矩阵通过所述第一开关矩阵与每个所述第一充电模组连接,第一输出装置j通过所述第二开关矩阵与对应的第一充电模组连接,所述第一输出装置j为所述m个第一输出装置中的第j个第一输出装置,1≤所述j≤所述m;
    所述第二开关矩阵用于将所述n个第一充电模组中的一个或多个所述第一充电模组输出电能提供给对应的所述第一输出装置j。
  2. 如权利要求1所述的充电系统,其特征在于,所述第一开关矩阵包括至少一个第一开关101;
    所述两个第一功率转换器的输出母线连接同一个所述第一开关101;
    其中,所述同一个所述第一开关101处于导通状态时,所述两个第一功率转换器的输出母线之间连通;所述一个所述第一开关101处于断路状态时,所述两个第一功率转换器的输出母线之间断路。
  3. 如权利要求1或2所述的充电系统,其特征在于,存在至少一个第一充电模组与至少两个第一输出装置连接。
  4. 如权利要求1-3任一所述的充电系统,其特征在于,所述第二开关矩阵包括多个第二开关102;
    所述第一输出装置j对应x个第一充电模组,所述x为不大于n的正整数,所述x个第一充电模组中的第i个第一充电模组为第一充电模组(i,j),1≤所述i≤所述x;
    所述第一输出装置j通过所述x个第二开关102连接对应的所述x个第一充电模组,其中,所述x个第二开关102中的第二开关102(i,j)连接所述第一充电模组(i,j)中的一个第一功率转换器的输出母线,以及连接所述第一输出装置j;所述第二开关102(i,j)处于导通状态时,将所述第一充电模组(i,j)中的一个第一功率转换器的输出母线上的电能传输至所述第一输出装置j。
  5. 如权利要求1所述的充电系统,其特征在于,每个所述第一充电模组包括的所述多个第一功率转换器的数量为预设数量,所述预设数量为2,3或者4。
  6. 如权利要求1-5任一所述的充电系统,其特征在于,还包括:s个第二充电模组,所述s为大于1的正整数;
    每个所述第二充电模组包括至少一个第二功率转换器,每个所述第二功率转换器具有一个输出母线,所述第二功率转换器的输出母线与所述第二开关矩阵连接,所述第二功率转换器用于输出电能;
    所述第一输出装置j通过所述第二开关矩阵与对应的第二充电模组连接;
    所述第二开关矩阵还用于将所述s个第二充电模组中的一个或多个所述第二充电模组 的第二功率转换器输出电能提供给对应的所述第一输出装置j。
  7. 如权利要求6中所述的充电系统,其特征在于,存在至少一个第二充电模组与至少两个第一输出装置连接。
  8. 如权利要求6或7所述的充电系统,其特征在于,所述第二开关矩阵还包括多个第三开关103;
    所述第一输出装置j对应y个第二充电模组,所述y为不大于s的正整数,所述y个第二充电模组中的第k个第二充电模组为第二充电模组(k,j),1≤所述k≤所述y;
    所述第一输出装置j通过所述y个第三开关103连接对应的所述y个第二充电模组,其中,所述y个第三开关103中的第三开关103(k,j)连接所述第二充电模组(k,j)中的一个第二功率转换器的输出母线,以及连接所述第一输出装置j;所述第三开关103(k,j)处于导通状态时,将所述第二充电模组(k,j)中的一个第二功率转换器的输出母线上的电能传输至所述第一输出装置j。
  9. 如权利要求1-5任一所述的充电系统,其特征在于,还包括:s个第二充电模组和p个第二输出装置,所述s为大于1的正整数,所述p为正整数;
    第二输出装置a通过所述第二开关矩阵与对应的第二充电模组连接,所述第二输出装置a为所述p个第二输出装置中的第a个第二输出装置,1≤所述a≤所述p;
    所述第二开关矩阵还用于将所述s个第二充电模组中的一个或多个所述第二充电模组输出电能提供给对应的所述第二输出装置a。
  10. 如权利要求9所述的充电系统,其特征在于,存在至少一个第二充电模组与至少两个第二输出装置连接。
  11. 如权利要求9或10所述的充电系统,其特征在于,所述第二开关矩阵还包括多个第四开关104;每个第二充电模组包括多个第二功率转换器;
    所述第二输出装置a对应z个第二充电模组,所述z为不大于s的正整数,所述z个第二充电模组中的第r个第二充电模组为第二充电模组(r,a),1≤所述r≤所述z;
    所述第二输出装置a通过所述z个第四开关104连接对应的所述z个第二充电模组,其中,所述z个第四开关104中的第四开关104(r,a)连接所述第二充电模组(r,a)中的一个第二功率转换器的输出母线,以及连接所述第二输出装置a;所述第四开关104(r,a)处于导通状态时,将所述第二充电模组(r,a)中的一个第二功率转换器的输出母线上的电能传输至所述第二输出装置a。
PCT/CN2021/119702 2021-09-22 2021-09-22 一种充电系统 WO2023044622A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003854.3A CN114007896B (zh) 2021-09-22 2021-09-22 一种充电系统
PCT/CN2021/119702 WO2023044622A1 (zh) 2021-09-22 2021-09-22 一种充电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/119702 WO2023044622A1 (zh) 2021-09-22 2021-09-22 一种充电系统

Publications (1)

Publication Number Publication Date
WO2023044622A1 true WO2023044622A1 (zh) 2023-03-30

Family

ID=79932597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119702 WO2023044622A1 (zh) 2021-09-22 2021-09-22 一种充电系统

Country Status (2)

Country Link
CN (1) CN114007896B (zh)
WO (1) WO2023044622A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117022025A (zh) * 2023-10-10 2023-11-10 南京能可瑞科技有限公司 一种充电堆功率均衡分配系统及其方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115871505B (zh) * 2023-02-23 2023-05-30 云南丁旺科技有限公司 功率聚合系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206358021U (zh) * 2017-01-12 2017-07-28 深圳驿普乐氏科技有限公司 一种电动汽车充电系统
CN206850469U (zh) * 2017-04-27 2018-01-05 许继电源有限公司 一种电动汽车智能柔性多充系统
CN207984595U (zh) * 2018-01-30 2018-10-19 西安特锐德智能充电科技有限公司 一种电动汽车充电设备及充电系统
CN111952118A (zh) * 2020-06-22 2020-11-17 深圳市科陆电子科技股份有限公司 矩阵式充电堆接触器互锁系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995011B (zh) * 2017-12-29 2024-04-16 冯良桓 全直流升降压输送电系统及方法
CN109274144B (zh) * 2018-09-13 2021-05-25 深圳市科华恒盛科技有限公司 一种柔性充电系统、充电控制方法、装置及设备
CN112653165A (zh) * 2020-12-23 2021-04-13 国网湖北省电力有限公司电力科学研究院 基于高压直流微网的灵活复用型光储充智慧充电站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206358021U (zh) * 2017-01-12 2017-07-28 深圳驿普乐氏科技有限公司 一种电动汽车充电系统
CN206850469U (zh) * 2017-04-27 2018-01-05 许继电源有限公司 一种电动汽车智能柔性多充系统
CN207984595U (zh) * 2018-01-30 2018-10-19 西安特锐德智能充电科技有限公司 一种电动汽车充电设备及充电系统
CN111952118A (zh) * 2020-06-22 2020-11-17 深圳市科陆电子科技股份有限公司 矩阵式充电堆接触器互锁系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117022025A (zh) * 2023-10-10 2023-11-10 南京能可瑞科技有限公司 一种充电堆功率均衡分配系统及其方法
CN117022025B (zh) * 2023-10-10 2023-12-05 南京能可瑞科技有限公司 一种充电堆功率均衡分配系统及其方法

Also Published As

Publication number Publication date
CN114007896B (zh) 2023-11-17
CN114007896A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2023044622A1 (zh) 一种充电系统
Takahashi et al. Router for power packet distribution network: Design and experimental verification
US11539212B2 (en) Photovoltaic power generation system and photovoltaic power transmission method
WO2017000532A1 (zh) 一种多电平均压谐振零电流软开关dc-dc变换器
CN110474356A (zh) 基于复用双向dcdc变换器的充储一体方法和系统
CN109067218B (zh) 一种基于多电平子模块的固态变压器拓扑构造方法
US9136708B2 (en) Simultaneous distribution of AC and DC power
KR102181321B1 (ko) 전력변환장치
US20180358887A1 (en) Control device and control method for large power conversion
WO2017174799A1 (en) Mimo converter
KR102543641B1 (ko) 전력변환장치
JP7266718B2 (ja) 駆動モジュール及び表示装置
EP2747268B1 (en) Voltage source current controlled multilevel power converter
CA2983789A1 (en) Multi-port converter structure for dc/dc power conversion
Mihai Multiport converters-a brief review
US11356035B2 (en) Power transmitting apparatus for code modulation and power receiving apparatus for code demodulation
CN209982086U (zh) 一种模块化直流储能系统
CN108377007A (zh) 一种电动汽车直流充电系统
CN208112522U (zh) 单组电池多电平级联式逆变输出设备
CN203466764U (zh) 基于级联高压变频器负荷分配的并联控制系统
CN110266028A (zh) 一种模块化直流储能系统
US20240039414A1 (en) Power Conversion Device
CN209982087U (zh) 一种模块化多电平储能系统
Jiya et al. Multiport dc-dc converter for integrating energy systems in all-electric vehicles
CN110266029A (zh) 一种模块化多电平储能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957763

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021957763

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021957763

Country of ref document: EP

Effective date: 20240313

NENP Non-entry into the national phase

Ref country code: DE