WO2023043256A1 - Leukocyte-derived immunomagnetic particle and use thereof - Google Patents

Leukocyte-derived immunomagnetic particle and use thereof Download PDF

Info

Publication number
WO2023043256A1
WO2023043256A1 PCT/KR2022/013867 KR2022013867W WO2023043256A1 WO 2023043256 A1 WO2023043256 A1 WO 2023043256A1 KR 2022013867 W KR2022013867 W KR 2022013867W WO 2023043256 A1 WO2023043256 A1 WO 2023043256A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
particles
derived
magnetic immune
sample
Prior art date
Application number
PCT/KR2022/013867
Other languages
French (fr)
Korean (ko)
Inventor
강주헌
권세용
박성진
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2023043256A1 publication Critical patent/WO2023043256A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to leukocyte-derived magnetic immune particles and uses thereof.
  • This patent application claims priority to Korean Patent Application No. 10-2021-0125199 filed with the Korean Intellectual Property Office on September 17, 2021, the disclosure of which is incorporated herein by reference.
  • pathogens such as pathogenic microorganisms or antigens derived therefrom infect water systems and humans, causing many diseases.
  • a cell culture method and a polymerase chain reaction method (PCR), a gene detection method are being developed to detect microorganisms (Korean Patent Publication No. 10-2018-0023545).
  • the cell culture method is a method for separating and identifying pathogenic viruses and non-pathogenic viruses, and is judged by whether or not Cytopathic Effect (CPE) occurs. In general, it takes 1 to 4 weeks for the cytopathic effect to be seen. Therefore, the cell culture method is less effective in determining whether harmful microorganisms exist and preparing countermeasures therefor.
  • CPE Cytopathic Effect
  • the polymerase chain reaction method which is one of the genetic diagnosis methods, is a method of amplifying a small amount of DNA or RNA and has excellent sensitivity, specificity, and rapidity compared to the cell culture method, and can overcome the disadvantages of the cell culture method.
  • detection by the polymerase chain reaction method may be judged negative. That is, there is a possibility that microorganisms exist even if they are not detected by the polymerase chain reaction method.
  • quantitative analysis is difficult and the risk of false positives due to contamination is high.
  • the treatment of diseases caused by infection is still mostly dependent on the administration of antibiotics.
  • the antibiotic administration method has fatal disadvantages of causing blood cell reduction, hypersensitivity reaction, and toxicity in the nervous system, heart, kidney, and liver.
  • the success rate of treating infectious diseases based on antibiotic administration is also very low.
  • leukocyte-derived cell membrane and magnetic immune particles including magnetic particles attached to the cell membrane, and the magnetic immune particles can detect, separate, or remove pathogenic substances from samples such as blood, thereby diagnosing and treating infectious diseases.
  • the present invention was completed.
  • One object of the present invention is a cell membrane derived from leukocytes; and magnetic immunization particles comprising magnetic particles attached to the cell membrane.
  • Another object of the present invention is to provide a composition or kit for detecting or removing pathogenic substances including the magnetic immune particles, or a method for detecting or removing pathogenic substances using the magnetic immune particles.
  • Another object of the present invention is to provide a composition or kit for diagnosing an infectious disease comprising the magnetic immune particles, or a method for diagnosing an infectious disease using the magnetic immune particles.
  • Another object of the present invention is to provide a composition for treating an infectious disease containing the magnetic immune particles, or a method or apparatus for treating an infectious disease using the magnetic immune particles.
  • Another object of the present invention is to provide a use of the magnetic immune particles for detecting or removing pathogenic substances, or for diagnosing or treating an infectious disease.
  • Another object of the present invention is a composition or kit for detecting or removing pathogenic substances of the magnetic immune particles; compositions or kits for diagnosis of infectious diseases; Alternatively, it is intended to provide a use for manufacturing a composition or device for treating an infectious disease, or a use for using the magnetic immune particle in a device for treating an infectious disease.
  • One aspect is a cell membrane derived from leukocytes; and magnetic immunization particles comprising magnetic particles attached to the cell membrane.
  • the magnetic immune particles are magnetic particles attached to leukocyte-derived cell membranes capable of capturing pathogenic substances, and can capture various types of pathogenic substances such as microorganisms, viruses, antigenic proteins, and the like.
  • the magnetic immune particles that capture the pathogenic substance may be separated or removed from a sample such as blood by a magnetic field. Accordingly, the magnetic immune particles can be used to detect, separate, or remove pathogenic substances from samples such as blood.
  • the technique proposed in the present specification is: 1) preparing magnetic immune particles attached to leukocyte-derived cell membranes capable of trapping pathogenic substances, and 2) contacting the magnetic immune particles with the sample to inject the magnetic immune particles into the sample. After the existing pathogenic substances are captured, 3) the magnetic immune particles that have captured the pathogenic substances are separated from the sample by a magnetic field to detect the pathogenic substances in the sample or to remove the pathogenic substances from the sample. do.
  • attachment may refer to a form located outside or inside the cell membrane bilayer.
  • it may refer to a form in which magnetic particles are directly bonded to the outside or inside of a cell membrane bilayer or a form in which magnetic particles are absorbed into a cell membrane and trapped (or entrapped or encapsulated), but is not limited thereto.
  • the pathogenic substance may be one or more selected from the group consisting of pathogenic bacteria, fungi, viruses, parasites, prions, and toxins, but includes without limitation any pathogenic substances that can be captured by cell membranes.
  • the pathogenic substance may cause an infectious disease in the body.
  • the pathogenic bacteria may be any kind of gram-positive bacteria or gram-negative bacteria. More specifically, Enterococcus spp, Citrobacter spp, Staphylococcus spp, Klebsiella spp, Pseudomonas spp, Acinetobacter Acinetobacter spp , Salmonella spp, Streptococcus spp, Escherichia spp, Mycobacterium spp, Mycoplasma spp, Vibrio spp ), dysentery bacteria ( Shigella spp ), Campylobacter bacteria ( Campylobacter spp), Chlamydia ( Chlamydia spp), and at least one selected from the group consisting of the above bacteria acquired resistance to antibiotics, but is not limited thereto .
  • the pathogenic fungi are a group consisting of Candida spp, Aspergillus spp, Trichophyton spp, and Cladophialophora spp It may include one or more selected from, but is not limited thereto.
  • the pathogenic virus is Adenoviridae, Picornaviridae, Herpesviridae, Hepadnaviridae, Flaviviridae, Retroviridae , Orthomyxoviridae, Paramyxoviridae, Papovaviridae, Polyomavirus, Rhabdoviridae, and Togaviridae. It may include the above, but is not limited thereto.
  • the pathogenic viruses are RSV (Respiratory syncytial virus), ZIKV (Zika virus), HCov229E (Human Coronavirus 229E), HCoV-OC43 (Human coronavirus OC43), CMV (Cytomegalovirus), SARS-CoV-1 (Severe acute respiratory syndrome coronavirus 1), SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), mutant viruses of SARS-CoV-2 (Alpha mutation, Beta mutation, Delta mutation, etc.), Ebola virus, and dengue It may include one or more selected from the group consisting of viruses (Dengue virus), but is not limited thereto.
  • the parasite may be a malaria larvae.
  • the prions may be infectious protein pathogens that cause infectious diseases including scrapie, mad cow disease, and Critzevelt-Jakob disease.
  • the toxin may include any substance as long as it has pathogenicity such as causing a disease, and may be a pathogenic substance (eg, antigenic protein) derived from the pathogenic bacteria, fungi, viruses, or parasites.
  • a pathogenic substance eg, antigenic protein
  • the toxin is LPS (Lipopolysaccharide), ZIKV (Zika virus) Envelope Protein, SARS-CoV-2 Spike Protein, or SARS-CoV-2 mutant virus Spike Protein (Alpha mutant Spike Protein, Beta mutant Spike Protein, or Delta mutant of Spike Protein) and the like.
  • the term “capture” means that the pathogenic substance is bound to or linked to the magnetic immune particle. Specifically, the term “capture” may mean that the pathogenic substance is bound to or linked to the surface or inside of the cell membrane of the magnetic immune particle. In this specification, the term “entrapment” may be used interchangeably with terms such as “capture”, “adsorption”, and “absorption”.
  • the leukocyte may be at least one selected from the group consisting of neutrophils, eosinophils, basophils, monocytes, lymphocytes, and macrophages, but is not limited thereto.
  • the lymphocytes may include B cells, T cells, natural killer cells (NK cells), or a combination thereof.
  • the magnetic immune particles are separated from a mixture of two or more types of leukocytes, for example, a mixture of two or more leukocytes selected from the group consisting of neutrophils, eosinophils, basophils, monocytes, lymphocytes, and macrophages. It can be made using cell membranes. In this case, the ability to capture, detect, or remove pathogenic substances may be further increased compared to magnetic immune particles prepared using a cell membrane isolated from a single type of leukocyte.
  • the leukocytes or leukocyte-derived cell membranes are primates such as humans and monkeys, rodents such as rats and mice, ungulates such as horses, cows, pigs, sheep, and goats, mammals such as horses, canines, and felines, birds, fish, and reptiles. , amphibians, crustaceans, and may be derived from cells of one or more species selected from the group consisting of insects, but is not limited thereto. Since the leukocyte-derived cell membrane does not cause immune rejection when administered to the body, safety is excellent when administered to a living body.
  • cell membrane refers to a cell membrane present in a cell itself, or a cell membrane separated from a cell (specifically, a cell membrane maintained in its original form) through conventional methods such as ultrasonic treatment, use of osmotic pressure difference, extrusion, and the like. Cell membrane, part or piece of cell membrane, membrane formed by reassembling part or piece of cell membrane, etc.)
  • the leukocyte-derived cell membrane is lectin, toll like receptor (TLR), pattern recognition receptor (PRR), cluster of differentiation (CD) molecule, NET (Neutrophil extracellular) trap), and cytokine receptors, but may express at least one selected from the group consisting of, but is not limited thereto.
  • the cell membrane expresses at least one selected from the group consisting of lectins, toll-like receptors, pattern recognition receptors, differentiation cluster molecules, NETs, and cytokine receptors to capture or absorb magnetic particles or pathogenic substances (uptake, endocytosis), or , can bind or adhere to magnetic particles or pathogenic substances.
  • the leukocyte-derived cell membrane may be overexpressed with CR1 (complement receptor 1), CR3 (complement receptor 3), or a combination thereof.
  • the leukocyte-derived cell membrane may refer to a cell membrane separated from a leukocyte having a cell membrane in which CR1, CR3, or a combination thereof is overexpressed.
  • overexpression may refer to a state in which the expression of CR1, CR3, or a combination thereof is further increased compared to the cell membrane of normal leukocytes.
  • Leukocytes having cell membranes in which CR1, CR3, or a combination thereof are overexpressed can be prepared according to a method known in the art. For example, a method of increasing the expression of CR1, CR3, or a combination thereof in leukocytes using genetic engineering may be used.
  • a method of transfecting a foreign gene encoding CR1, CR3, or a combination thereof into leukocytes to increase the copy number of the gene in leukocytes can be used, and the method can be any method known in the art, such as For example, CR1, CR3, or a gene encoding a combination thereof is operably linked to a vector, independent of the host, or by introducing a vector capable of replicating and functioning in leukocyte cells into leukocyte cells, Not limited to this.
  • leukocytes having a cell membrane in which CR1, CR3, or a combination thereof are overexpressed through the above-described method, etc., and according to the method according to an embodiment of the present invention, the cell membrane is separated from the leukocyte, and the separated cell membrane By attaching the magnetic particles to the surface, it is possible to prepare magnetic immune particles including leukocyte-derived cell membranes in which CR1, CR3, or a combination thereof are overexpressed.
  • magnetic immune particles including leukocyte-derived cell membranes, CR1, CR3, or a combination thereof which are surface molecules of the cell membrane, greatly enhance the ability of the magnetic immune particles to capture (detect or remove) pathogenic substances. contribution was confirmed. Therefore, in the case of magnetic immune particles including leukocyte-derived cell membranes in which CR1, CR3, or a combination thereof are overexpressed, the ability to capture (detection or remove) pathogenic substances can be remarkably increased.
  • magnetic particle refers to a particle capable of responding to a magnetic field, which can be easily absorbed into a cell, or can be bound, attached, introduced, entrapped, encapsulated, or entrapped outside or inside a cell membrane.
  • the magnetic particles include iron (Fe), nickel (Ni), cobalt (Co), manganese (Mn), bismuth (Bi), zinc (Zn), strontium (Sr), lanthanum (La), cerium ( Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho) , Erbium (Er), Thulium (Tm), Ytterbium (Yb), Ruthenium (Lu), Copper (Cu), Silver (Ag), Gold (Au), Cadmium (Cd), Mercury (Hg), Aluminum (Al) At least one magnet selected from the group consisting of gallium (Ga), indium (In), thallium (Tl), calcium (Ca), barium (Ba), radium (Ra), platinum (P
  • the magnetic element may be oxidized or surface modified.
  • iron may be oxidized and included in the magnetic immune particle in the form of iron oxide.
  • the surface modification is surface modification with a metal, surface modification with a functional group such as a carboxy group or an amine group, surface modification with a protein such as an antibody, streptavidin, or avidin, surface modification with a carbohydrate, surface modification with a polymer, It may be surface modification by lipids, but is not limited thereto.
  • the magnetic particles may be stabilized by the modification.
  • the magnetic particles may be prepared and used through a known method, or may be purchased and used commercially.
  • the magnetic particles may be used as is or may be used in a state of being dispersed or suspended in an appropriate solvent (eg, buffer (PBS, saline, Tris-buffered saline, etc.), but is not limited thereto.
  • an appropriate solvent eg, buffer (PBS, saline, Tris-buffered saline, etc.
  • each particle may have a single magnetic domain.
  • superparamagnetism which has magnetic properties, can be exhibited only when an external magnetic field is present.
  • the magnetic immune particles can be simply and easily separated by applying an external magnetic field. Separation by applying a magnetic field is excellent in stability and sensitivity because it is not affected by surrounding environments such as pH, temperature, and ions.
  • the magnetic particles may be selected from all particles having a particle size capable of attaching to, entering, encapsulating, or being encapsulated in a cell membrane capable of trapping the pathogenic substance and being magnetic.
  • the magnetic particles may be included in a solution.
  • the magnetic particles may be attached to the cell membrane while being contained in a solution.
  • the solution may include a medium used for culturing or differentiating cells, a buffer, or a combination thereof, and may be the same as the medium of the magnetic immune particles.
  • the magnetic immune particle may include an outer surface including the cell membrane and an inner core including the magnetic particle.
  • the cell membrane may have a vesicle shape.
  • vesicle refers to a step in which a cell membrane separated by a step of extracting (separating) a cell membrane from a cell by a known technique such as ultrasonic treatment, use of osmotic pressure difference, or extrusion, self-assembly, or reassembling by extrusion It may refer to particles of the form formed by.
  • FIG. 1 An example of a manufacturing process of magnetic immune particles according to one embodiment is schematically shown in FIG. 1 .
  • leukocytes extracted from a subject are administered to a solution (eg, blood, aqueous solution, purified water, buffer, medium, etc.) containing magnetic particles, and cellular uptake
  • a solution eg, blood, aqueous solution, purified water, buffer, medium, etc.
  • leukocyte cells eg, magnetic immune cells
  • leukocyte cell analogues containing the magnetic particles therein can be generated.
  • the leukocyte cells (eg, magnetic immune cells) containing the magnetic particles therein may exhibit magnetism or be affected by a magnetic field by the magnetic particles contained therein while performing the original functions of the leukocyte cells.
  • magnetic immune particles may be formed using cell membranes separated (or purified) from white blood cells.
  • cell membranes are separated (or purified) from leukocyte cells through a conventional method (eg, use of osmotic pressure difference, ultrasonic treatment, extrusion, etc.), and the obtained leukocyte-derived cell membrane and magnetic particles are extruded to obtain magnetic properties.
  • a conventional method eg, use of osmotic pressure difference, ultrasonic treatment, extrusion, etc.
  • magnetic immune particles containing magnetic particles inside the leukocyte-derived cell membrane can be generated.
  • leukocyte cells are administered to a low osmotic solution, so that the low osmotic solution moves into the white blood cells and expands the white blood cells, and at the same time, the organelles within the white blood cells move outside the cells. Pores can be formed in cell membranes that allow escape to the environment. The intracellular organelles that have escaped through the pores are separately removed using centrifugation, only the cell-derived membrane is separated (or purified), and the separated (or purified) leukocyte-derived cell membrane is ultrasonically treated to reduce the cell membrane to a smaller size. can be split into The leukocyte-derived cell membrane and magnetic particles may be mixed and extruded to generate magnetic immune particles containing magnetic particles inside the cell membrane.
  • magnetic immune particles can be formed using a cell membrane isolated (or purified) from leukocyte cells according to the Type 3 method. Specifically, cell membranes are separated (or purified) from leukocyte cells through a conventional method (eg, using osmotic pressure difference, extrusion, etc.), and after mixing the leukocyte-derived cell membrane and magnetic particles obtained therefrom, ultrasonic treatment is performed to obtain the magnetic particles from the leukocytes. Magnetic immune particles containing magnetic particles inside the leukocyte-derived cell membrane can be generated by inclusion in the derived cell membrane.
  • the magnetic immune particles contain cell membrane components (lipid bilayer, membrane proteins, receptors, etc.) of white blood cells in their outer membrane, they can perform functions similar to those of white blood cells.
  • the magnetic immune particles may show magnetism by the magnetic particles contained therein or be affected by a magnetic field.
  • Another aspect provides a composition for detecting pathogenic substances including the magnetic immune particles.
  • Another aspect provides a composition for removing pathogenic substances including the magnetic immune particles.
  • the term "detection of a pathogenic substance” may mean determining whether a pathogenic substance is present in a sample or detecting a pathogenic substance present in a sample.
  • the term "removal of pathogenic substances” means separating and removing pathogenic substances present in a sample from the sample.
  • the magnetic immune particles use a leukocyte-derived cell membrane capable of trapping a pathogenic substance, and may bind to a pathogenic substance or capture the pathogenic substance into the cell membrane according to the characteristics of the leukocyte cell from which the cell membrane is derived.
  • magnetic immune particles that capture pathogenic substances may be collected or concentrated in a magnetic field region by applying a magnetic field, and through this, may be separated from a sample.
  • the composition including the magnetic immune particles can be used to detect pathogenic substances in a sample, remove pathogenic substances from a sample, or diagnose or treat an infectious disease of a subject.
  • the targeting material capable of binding to the pathogenic material is formed on the surface or inside of the magnetic particle to bind to the pathogenic material. Therefore, it is impossible to effectively target a pathogenic substance without accurate information on a specific antigen for the pathogenic substance to be targeted, and it is difficult to target several types of pathogenic substances at the same time. In addition, since an antibody must be used, synthesis is very difficult and expensive.
  • the magnetic immune particles can use leukocyte cells isolated from living organisms or cell membranes derived therefrom, various types of unknown pathogenic substances (microbes or viruses, etc.) are captured at once using the system and characteristics of the leukocyte cells themselves. Since it has the advantage that it can be used for detection or removal of various pathogenic substances.
  • the composition is a contaminant (bacteria, fungi, viruses, other microorganisms, toxins (eg, endotoxins, etc.), contaminants present in extremely small amounts in various foods, sanitary products, environmental samples, etc. including drinking water and beverages. compound) can be detected or removed at high speed, so it can be used for safety evaluation of food, sanitary products, environmental samples, etc.
  • the composition can detect or remove pathogenic substances present in a biological sample.
  • compositions for diagnosing an infectious disease comprising the magnetic immune particles.
  • the composition can be used to diagnose an infectious disease of an individual by detecting a pathogenic substance captured by the magnetic immune particle.
  • compositions for treating an infectious disease comprising the magnetic immune particles.
  • the composition can be used to treat an infectious disease of an individual by detecting and removing pathogenic substances present in the body by the magnetic immune particles included in the composition.
  • the composition for treating an infectious disease can detect and remove the causative agent of the infectious disease in a sample isolated from the subject, and the sample from which the causative agent of the infectious disease has been removed is injected back into the subject, so that the subject Infectious diseases can be cured.
  • diagnosis of an infectious disease may mean determining whether an individual currently or previously has an infectious disease, or determining whether an individual is infected with a pathogenic substance capable of causing an infectious disease.
  • treatment of an infectious disease refers to any activity in which the symptoms caused by an infectious disease are improved or beneficially changed by reducing or removing the causative agent of an infectious disease in a subject.
  • the infectious disease may be at least one selected from the group consisting of systemic or local infection, inflammation, sepsis, and poisoning by toxins, but is not limited thereto.
  • diseases caused by infection with the aforementioned pathogenic substances are included without limitation.
  • the infectious diseases include malaria infection, mycobacterial tuberculosis, pneumonia, food poisoning, tetanus, typhoid fever, diphtheria, syphilis, Hansen's disease, chlamydia infection, smallpox, influenza, mumps, measles, chickenpox, Ebola, rubella, coronavirus infection, It may be at least one selected from the group consisting of scrapie, mad cow disease, and Kritsvelt-Jakob disease, but is not limited thereto.
  • the composition may further include opsonins.
  • the opsonin may be at least one selected from the group consisting of Mannose binding lectin (MBL), Ficolin-1 (FCN-1), and Immunoglobulin G (IgG) antibodies.
  • the IgG antibody is an antibody specific to a target pathogenic substance, and its type may vary depending on the target pathogenic substance.
  • the IgG antibody may include an anti-SARS-SARS-CoV-2 spike protein antibody.
  • the ability of the magnetic immune particles included in the composition to capture pathogenic substances can be further improved by the opsonin.
  • specific opsonins such as MBL, FCN-1, or IgG can further improve the ability to capture (detection or remove) pathogenic substances of the magnetic immune particles.
  • composition may further include solvents, solvents, binders, lubricants, disintegrants, buffers, suspending agents, isotonic agents, viscosity modifiers, carriers, dispersants, lubricants, excipients, stabilizers, pH adjusters, preservatives, and the like. Not limited.
  • Another aspect provides a method for detecting a pathogenic substance comprising mixing the magnetic immune particles and a sample in contact with each other, and applying a magnetic field to the mixed sample.
  • Another aspect provides a method for removing a pathogenic substance, comprising mixing the magnetic immune particles and a sample in contact with each other, and applying a magnetic field to the mixed sample.
  • Another aspect is a method for diagnosing an infectious disease comprising contacting and mixing the magnetic immune particles and a sample, and applying a magnetic field to the mixed sample, or a method for providing information necessary for diagnosing an infectious disease. to provide.
  • Another aspect is the method of contacting and mixing the magnetic immune particles with a sample separated from the individual, and applying a magnetic field to the mixed sample to remove the magnetic immune particles that have captured pathogenic substances from the sample. Methods for treating infectious diseases are provided.
  • the sample is a biological sample (eg, blood (eg, whole blood), body fluid such as plasma, serum, lymph, cerebrospinal fluid, or cells, separated from a living body of an animal (including or not including a human), or tissue), drinking water (e.g., ground water, tap water, bottled water, purified water, mineral water, etc.), various foods, various sanitary products that directly act on the living body, tableware, kitchen utensils, environmental samples (e.g., soil, seawater, river water, etc.), etc. It may be one or more selected from the group consisting of, but is not limited thereto, and may be any subject requiring detection and/or removal of pathogenic substances.
  • the sample may be in the form of a fluid itself or a suspension suspended in an appropriate medium (eg, purified water, sterile buffer, etc.).
  • the contacting and mixing of the magnetic immune particles and the sample may be performed outside the body, and may include culturing the magnetic immune particles and the sample together outside the body.
  • the in vitro culturing step may be performed under conventional conditions using a medium, buffer solution, saline, drinking water, biological sample itself, etc. commonly used for cell culture. For example, 1 second to 96 hours, 1 second to 48 hours, 1 second to 24 hours, for example, 1 second to 12 hours, 1 second to 6 hours, 1 second to 24 hours at a temperature condition of 0 to 40 ° C. or 2 to 38 ° C. It may include incubating for 120 minutes, or 1 second to 60 minutes.
  • the step of applying the magnetic field may be performed outside the body.
  • the method may further include, after applying a magnetic field to the mixed sample, separating (or removing) the magnetic immune particles from the sample using the applied magnetic field (magnetic force). At this time, the separated magnetic immune particles may be bound to the pathogenic substances in the sample or may be in a state of capturing the pathogenic substances in the sample. This step may be performed outside the body, and pathogenic substances may be removed from the sample through this step.
  • the sample from which the magnetic immune particles are removed is treated.
  • a step of injecting the sample into the living body of the individual who provided the sample again outside the body may be further included.
  • the magnetic immune particles removed from the sample may be bound to the pathogenic substance in the sample or may be in a state of trapping the pathogenic substance in the sample. Accordingly, the sample injected back into the body of the individual may be a sample from which pathogenic substances and magnetic immune particles are all removed.
  • the method may further include analyzing pathogenic substances captured by magnetic immune particles separated (or removed) from the sample.
  • the analysis may be performed by means commonly used for analysis of the pathogenic substances (eg, bacteria, fungi, viruses, parasites, prions, toxins (eg, endotoxins), antigenic proteins, etc.) .
  • the magnetic immune particles may be obtained using cells (cell membranes) and/or magnetic particles labeled with a detectable labeling substance.
  • the labeling material may be any material (small molecule compound, protein, poly/oligo peptide, etc.) detectable by a conventional method, and may be, for example, at least one selected from the group consisting of a fluorescent material and a light emitting material.
  • the method may further include injecting at least one selected from the group consisting of opsonin, blood, and plasma before applying the magnetic field.
  • the opsonin may be at least one selected from the group consisting of MBL, FCN-1, and IgG antibodies.
  • the blood or plasma may be blood or plasma separated from an individual who provided the sample or another individual (eg, another person). For example, the blood or plasma was isolated from the individual before or after the individual who provided the sample suffered from a disease, or was isolated from another individual (eg, another person) who had been infected with a specific pathogenic substance, or was isolated from a specific pathogenic substance. It may be isolated from other individuals (eg, other people) who have been vaccinated against. Since the blood or plasma is rich in antibodies or opsonins, the ability to capture (detection or remove) pathogenic substances of the magnetic immune particles can be further improved.
  • the step of injecting at least one selected from the group consisting of opsonin, blood, and plasma may be performed at any stage before applying the magnetic field. For example, prior to mixing the magnetic immune particles and the sample by injecting and mixing at least one selected from the group consisting of opsonin, blood, and plasma into the magnetic immune particle or the sample, or mixing the magnetic immune particle with the magnetic immune particle In the step of contacting and mixing the samples or after mixing, at least one selected from the group consisting of the opsonin, blood, and plasma may be additionally injected and mixed.
  • the subject may be a human or a non-human animal (eg, mammal, etc.).
  • the method may include a kit for detecting or removing pathogenic substances including the magnetic immune particles; kits for diagnosis of infectious diseases; Alternatively, it may be implemented as a device for treating an infectious disease using the magnetic immune particles.
  • FIG. 10 A schematic diagram of the kit or device is shown in FIG. 10, but is not limited thereto.
  • the kit or device may include a reaction unit and a magnetic field forming unit.
  • the reaction part may refer to a part into which a reactant in which the magnetic immune particles and the sample are mixed, cultured, or reacted by contacting each other, or where a reaction occurs by contacting the magnetic immune particle and the sample, is introduced.
  • the magnetic immune particles may be included in the reaction unit, react with the sample in advance and applied to the reaction unit in the form of a reactant, or may be provided separately from the reaction unit, and may be prepared in an appropriate medium ( For example, it may be provided in the form of a dispersion dispersed in a buffer).
  • the magnetic field forming part may refer to a part forming a magnetic field.
  • the magnetic field forming unit may be included in the reaction unit, provided separately from the reaction unit, or integrally provided with all or part of the reaction unit.
  • the reaction unit and the magnetic field forming unit may be connected by a channel through which fluid can move.
  • the magnetic particles attached to the magnetic immune particles are moved to the magnetic field forming unit by the magnetic field formed by the magnetic field forming unit, so that the magnetic immune particles can be separated.
  • the separated magnetic immune particles may capture pathogenic substances.
  • the magnetic field generator may include one or more means capable of applying a magnetic field such as a magnet (eg, an electromagnet by electromagnetic induction, a permanent magnet, etc.).
  • the number of integral or separately provided reaction units and/or magnetic field generators is also not particularly limited, and may be one or more.
  • the reaction unit and the magnetic field forming unit are provided separately, one or more, for example, 1 to 10 reaction units are connected to 1 to 10 magnetic field forming units, or when the reaction unit and the magnetic field forming unit are integrally formed, integral reaction It may be provided with 1 to 10 parts and magnetic field forming parts, but is not limited thereto.
  • the kit or device includes a reaction unit into which a sample (fluid state such as blood), magnetic immune particles (eg dispersion state), other additional components (eg opsonin, blood or plasma other than a sample), or a reaction product thereof are injected. It may include one or more injectors connected thereto. The other side of the injector that is not connected to the reaction unit may be directly connected to an object or connected to a separated sample, and as a result, the sample may be injected through the injector. In addition, magnetic immune particles may be injected through the other side of the injection unit that is not connected to the reaction unit. In addition, additional components such as opsonin and blood or plasma other than the sample may be injected through the other side of the injection unit that is not connected to the reaction unit.
  • a sample fluid state such as blood
  • magnetic immune particles eg dispersion state
  • other additional components eg opsonin, blood or plasma other than a sample
  • the kit or device may further include one or more discharge units connected to the magnetic field forming unit and discharging the magnetic immune particles captured by the magnetic field.
  • the discharge unit may further include a detection unit including a detection means capable of detecting pathogenic substances captured by the discharged magnetic immune particles.
  • the magnetic immune particles may be separated from the sample by the magnetic field and separately collected or concentrated.
  • the magnetic immune particles may include all magnetic immune particles that may or may not capture pathogenic substances.
  • the magnetic immune particles may be filtered, collected, concentrated, or removed in the magnetic field forming unit or in a collecting unit connected to the magnetic field forming unit without being discharged.
  • the kit or device may further include a sample outlet.
  • the sample discharge unit may refer to a portion from which a sample separated by applying a magnetic field to the sample is discharged.
  • the sample outlet may be one or more.
  • the magnetic immune particles may include all magnetic immune particles that may or may not capture pathogenic substances. Accordingly, the sample discharged through the sample outlet may be free of both pathogenic substances and magnetic immune particles.
  • the sample discharge unit may be connected to the injection unit or to the subject. Therefore, by repeating the process of removing the pathogenic substances in the sample by injecting the sample from which the magnetic immune particles are removed, discharged through the sample discharge unit, through the injection unit, the pathogenic substances that are not completely removed can be removed more effectively.
  • the sample from which the magnetic immune particles are removed, discharged through the sample discharge unit may be injected into the subject again.
  • the magnetic immune particles may include all magnetic immune particles that may or may not capture pathogenic substances. Accordingly, the sample injected again into the subject may be a sample from which both pathogenic substances and immune particles have been removed.
  • the kit or device may be implemented in the form of a fluidic device.
  • a device for treating an infectious disease it may be implemented by injecting a sample from which pathogenic substances and magnetic immune particles are removed back into the subject.
  • Another aspect provides a use of the magnetic immune particle for detecting or removing a pathogenic substance, or for diagnosing or treating an infectious disease.
  • compositions or kits for detecting or removing pathogenic substances from the magnetic immune particles compositions or kits for diagnosis of infectious diseases; Alternatively, it provides a use for preparing a composition or device for treating an infectious disease, or a use for using the magnetic immune particles for a device for treating an infectious disease.
  • the magnetic immune particle includes a leukocyte-derived cell membrane, in vivo side effects can be minimized, and various types of pathogenic substances can be detected by characteristics of the leukocyte from which the cell membrane is derived.
  • it contains magnetic particles, it is possible to simply separate magnetic immune particles by applying a magnetic field, so that pathogenic substances can be more effectively detected and removed.
  • the magnetic immune particles when used for treatment, the possibility of injecting the magnetic immune particles into the body can be minimized, and side effects in vivo can be remarkably reduced.
  • FIG. 1 is a schematic diagram showing a method of generating magnetic immune particles according to an embodiment.
  • FIG. 2 is a diagram showing the ability to capture (detection or remove) pathogenic bacteria (MRSA and ESBL-EC) of magnetic immune particles according to an embodiment (HL60(N): neutrophil-derived magnetic immune particles; U937(M) : macrophage-derived magnetic immune particles; hWBC: leukocyte-derived magnetic immune particles).
  • MRSA and ESBL-EC pathogenic bacteria
  • FIG. 3 is a diagram showing the ability (detection or removal) of magnetic immune particles according to an embodiment to capture viruses (CMV and RSV) (HL60(N): neutrophil-derived magnetic immune particles; U937(M): macrophages). derived magnetic immune particles; hWBC: leukocyte-derived magnetic immune particles).
  • CMV and RSV viruses
  • HL60(N) neutrophil-derived magnetic immune particles
  • U937(M) macrophages
  • derived magnetic immune particles hWBC: leukocyte-derived magnetic immune particles.
  • FIG. 4 is a diagram showing the ability to capture (detection or remove) virus-derived antigen proteins (ZIKV E Protein and SARS-CoV-2 S Protein) of magnetic immune particles according to an embodiment (HL60(N): derived from neutrophils).
  • SARS-CoV-2 virus USA-WA1/2020
  • SARS-CoV-2 mutant viruses Alpha, Beta, and Delta
  • WBC-MNVs leukocyte-derived Magnetic immune particles
  • CR1 blocked WBC-MNVs magnetic immune particles derived from leukocytes in which CR1 is inactivated
  • CR3 blocked WBC-MNVs magnetic immune particles derived from white blood cells in which CR3 is inactivated
  • CR1&CR3 blocked WBC-MNVs CR1 and CR3 inactivated white blood cell-derived magnetic immune particles
  • MNPs magnetic particles that do not contain a cell membrane surface
  • FIG. 7 is a graph illustrating the ability of leukocyte-derived magnetic immune particles to capture pathogenic bacteria when the leukocyte-derived magnetic immune particles are injected together with opsonin (MBL or FCN-1) into blood containing pathogenic bacteria according to an embodiment ( It is a diagram showing the results of analyzing the detection or removal ability).
  • FIG. 8 is a diagram illustrating leukocyte-derived magnetic immune particles according to an embodiment when injected together with opsonin (MBL, FCN-1, or C3b) into a TBS buffer containing a virus or virus-derived antigen protein, the leukocyte-derived magnetic immune particles It is a diagram showing the result of analyzing the capture ability (detection or removal ability) for the virus or virus-derived antigen protein.
  • opsonin MBL, FCN-1, or C3b
  • FIG. 9 is a diagram illustrating the opsonization of leukocyte-derived magnetic immune particles (MBL, FCN-1, FCN-2, or IgG), it is a diagram showing the results of analyzing the ability (detection or removal ability) of the leukocyte-derived magnetic immune particles for SARS-CoV-2 S protein.
  • FIG. 10 is a schematic diagram schematically illustrating a method for collecting, concentrating, and removing pathogenic substances in a magnetic immune particle-based sample according to an embodiment.
  • Red blood cells were removed from the separated blood sample to obtain a white blood cell sample.
  • the obtained white blood cells were subjected to low osmotic treatment at 4° C. for 1 hour and then centrifuged at 4° C. for 5 minutes (Centrifuge 5424R, Eppendorf, Germany) to separate and purify only cell membranes from the white blood cells.
  • the obtained leukocyte-derived cell membrane was sonicated (Q700 Ultra-Sonicator, Qsonica, USA) at 4° C., 20 kHz, and 150 W for 10 minutes to break the cell membrane into smaller units.
  • the leukocyte sample is a mixture of various types of leukocytes, it is not limited thereto, and various types of leukocytes or a mixture thereof may be used to prepare the leukocyte-derived magnetic immune particles.
  • leukocyte-derived magnetic immune particles For example, one or more white blood cells selected from among neutrophils, eosinophils, basophils, monocytes, lymphocytes, and macrophages may be used to prepare the white blood cell-derived magnetic immune particles.
  • iron oxide magnetic particles (Carboxyl-Adembeads, Ademtech, France) whose surface is modified with carboxylic acid were used.
  • Magnetic immune particles were prepared by extruding the prepared leukocyte-derived cell membrane with the magnetic particles using an Avanti mini extruder (Avanti Polar Lipids, Alabaster, AL, USA). Specifically, as in the type 2 method shown in FIG. 1, the prepared cell membrane and the magnetic particles were mixed and extruded to prepare magnetic immune particles incorporating the magnetic particles into the cell membrane.
  • Example 1 in order to confirm whether the leukocyte-derived magnetic immune particles prepared in Example 1 can capture (detect or remove) pathogens in blood, human blood samples are randomly inoculated with pathogenic bacteria, and then the leukocyte-derived magnetic immune particles are randomly inoculated. A magnetic field was applied by injecting the particles to measure the change of the inoculated bacteria in the culture medium.
  • the gram-positive bacterium MRSA Metal Resistant Staphylococcus aureus
  • the gram-negative bacterium ESBL-EC Extended-Spectrum Beta-Lactamases Producing Escherichia coli
  • 10 4 CFU / mL concentration was inoculated and incubated for 10 minutes at 37 °C.
  • the leukocyte-derived magnetic immune particles were injected into the cultured blood sample so that the final concentration of the magnetic immune particles reached 150 ⁇ g/mL.
  • the magnetic immune particles in the blood sample are fixed to a specific position using a magnet for 15 minutes to prevent magnetic immune particles from being included in the supernatant, and then the supernatant is collected.
  • the supernatant 100 ⁇ L was diluted in 900 ⁇ L of physiological saline, spread on LB agar medium using a microbial analyzer (EDDY JET2, IUL micro, USA), and incubated at 37 ° C. for 24 hours, CFU of bacteria generated on LB agar medium was measured using a microbial colony counter and zone reader (IUL micro, USA).
  • a sample obtained by inoculating and culturing the bacteria in a blood sample in the same manner as described above a sample in which the leukocyte-derived magnetic immune particles were not injected was used as a control. Based on the CFU value of the bacteria measured in the control group, the reduction level of the CFU value of the bacteria measured in the experimental group is calculated as a percentage (%), and the capture rate (or removal rate, %) was evaluated.
  • neutrophil-derived magnetic immune particles using neutrophil (HL60)-derived cell membranes and macrophage-derived magnetic immune particles using macrophage (U937)-derived cell membranes prepared in the same manner as in Example 1 were used as comparative groups.
  • the leukocyte-derived magnetic immune particles can capture and detect or remove pathogenic bacteria in the blood, and capture remarkably good antibiotic-resistant bacteria such as MRSA and ESBL-EC. rate (about 40 to 70%).
  • the white blood cell-derived magnetic immune particles prepared in Example 1 using cell membranes separated from various types of white blood cell mixtures are MRSA and ESBL-EC. It was confirmed that the capture ability (detection or removal ability) for pathogenic bacteria such as
  • Example 1 in order to check whether the leukocyte-derived magnetic immune particles prepared in Example 1 can capture (detect or remove) pathogens in blood, human blood samples are randomly inoculated with viruses, and then the leukocyte-derived magnetic immune particles was injected and a magnetic field was applied to measure the change of the inoculated virus in the culture medium.
  • the amount of viral RNA in the supernatant was measured.
  • Nucleic acids were extracted from viruses present in the supernatant using the QIAmp viral RNA mini kit (QIAGEN, Germany), and SYBR PCR master mix (Toyobo, Japan) and real time PCR (CFX connect, BIO-RAD, USA) were used. The extracted nucleic acid was amplified and the amount of RNA was measured.
  • a sample cultured by inoculating the virus in a blood sample in the same manner as described above a sample in which the leukocyte-derived magnetic immune particles were not injected was used as a control.
  • the reduction level of the RNA amount of the virus measured in the experimental group is calculated as a percentage (%) to capture the leukocyte-derived magnetic immune particles for the virus (or removal rate, %) was evaluated.
  • neutrophil-derived magnetic immune particles using neutrophil (HL60)-derived cell membranes and macrophage-derived magnetic immune particles using macrophage (U937)-derived cell membranes prepared in the same manner as in Example 1 were used as comparative groups.
  • the leukocyte-derived magnetic immune particles can capture and detect or remove pathogenic viruses in the blood (capture rate: about 45 to 80%).
  • the white blood cell-derived magnetic immune particles prepared in Example 1 using cell membranes separated from various types of white blood cell mixtures have the same characteristics as CMV and RSV. It was confirmed that the ability to capture (detection or remove) pathogenic viruses was more excellent.
  • Example 1 in order to confirm whether the leukocyte-derived magnetic immune particles prepared in Example 1 can remove virus-derived antigens in blood, human blood samples are randomly inoculated with virus-derived antigens, and then the leukocyte-derived magnetic immune particles are After injection, a magnetic field was applied to measure changes in antigens derived from the inoculated virus in the culture medium.
  • ZIKV Zika virus Envelope Protein
  • SARS-CoV-2 Spike Protein SARS-CoV-2 mutant virus Spike Protein (Alpha mutant Spike Protein, Beta-mutated Spike Protein, or Delta-mutated Spike Protein) was inoculated at a concentration of 1 ⁇ g/mL, and the leukocyte-derived magnetic immune particles were injected at a concentration of 150 ⁇ g/mL.
  • the magnetic immune particles in the blood sample are fixed to a specific position using a magnet for 15 minutes to prevent magnetic immune particles from being included in the supernatant, and then the supernatant is collected to determine the concentration of the virus-derived antigen in the supernatant. measured.
  • concentration of the virus-derived antigen was measured by enzyme-linked immunosorbent assay (ELISA), and for measurement, Zika virus (strain Zika SPH2015) Envelope Protein (ZIKV-E) ELISA Kit (Sinobio, China) or SARS-CoV-2 Spike A protein ELISA kit (ab274342, abcam, USA) was used.
  • the reduction level of the virus-derived antigen concentration measured in the supernatant was calculated as a percentage (%), and the leukocyte-derived antigen for the virus-derived antigen The capture rate (or removal rate, %) of the magnetic immune particles was evaluated.
  • neutrophil-derived magnetic immune particles using neutrophil (HL60)-derived cell membranes and macrophage-derived magnetic immune particles using macrophage (U937)-derived cell membranes prepared in the same manner as in Example 1 were used as comparative groups.
  • the leukocyte-derived magnetic immune particles can capture and detect or remove virus-derived antigen proteins in the blood (capture rate: about 30 to 80%).
  • the white blood cell-derived magnetic immune particles prepared in Example 1 using cell membranes separated from various types of white blood cell mixtures have ZIKV E Protein and SARS - It was confirmed that the capture ability (detection or removal ability) for virus-derived antigen proteins such as CoV-2 S Protein was more excellent.
  • the white blood cell-derived magnetic immune particles had a remarkably excellent ability to capture (detection or remove) antigen proteins derived from the SARS-CoV-2 mutant virus (removal rate: about 60 to 80%). %), Through this example, it was confirmed that the leukocyte-derived magnetic immune particles can detect or remove virus-derived antigen proteins with high efficiency regardless of whether or not the virus has mutated.
  • CR1 complement receptor 1
  • CR3 complement receptor 3
  • cell membrane surface molecules were inactivated with appropriate antibodies, respectively, and CR1 and/or The leukocyte-derived magnetic immune particles in which CR3 was inactivated were obtained.
  • human plasma was inoculated with various pathogens (MRSA, ESBL-EC, RSV, CMV, ZIKV E protein, HCoV OC43 ( Human coronavirus OC43 ), or SARS-CoV-2 S protein), respectively, and various types of autoimmune After each particle was injected, the pathogen removal rate (%) of each magnetic immune particle was measured.
  • pathogens MRSA, ESBL-EC, RSV, CMV, ZIKV E protein, HCoV OC43 ( Human coronavirus OC43 ), or SARS-CoV-2 S protein
  • WBC-MNVs Leukocyte-derived magnetic immune particles
  • Example 2 In the leukocyte-derived magnetic immune particles prepared in Example 1, CR1, a cell membrane surface molecule, is inactivated (CR1 blocked WBC-MNVs)
  • Example 3 In the leukocyte-derived magnetic immune particles prepared in Example 1, CR3, a cell membrane surface molecule, is inactivated (CR3 blocked WBC-MNVs)
  • Example 4 In the leukocyte-derived magnetic immune particles prepared in Example 1, the cell membrane surface molecules CR1 and CR3 are inactivated (CR1&CR3 blocked WBC-MNVs)
  • MNPs magnetic particles
  • the pathogen trapping ability (detection or elimination ability) can be remarkably increased in the case of leukocyte-derived magnetic immune particles prepared using the leukocyte-derived cell membrane in which CR1 and/or CR3 are overexpressed. .
  • various pathogens MRSA, ESBL-EC, RSV, CMV, ZIKV E protein, HCoV OC43, or SARS-CoV-2 S protein
  • MRSA mannose binding lectin
  • FCN-1 Ficolin-1
  • FCN-2 FCN-2
  • IgG Immunoglobulin G
  • C3b C3b
  • the specific experimental method is the same as the method performed in Experimental Examples 1 to 3, except that the opsonin was injected into TBS buffer, human blood sample, or human plasma sample.
  • the IgG used above is an anti-SARS-SARS-CoV-2 spike protein antibody.
  • the leukocyte-derived magnetic immune particles prepared in Example 1 were added to the TBS buffer, human blood sample, or human plasma sample containing the pathogen, along with MBL,
  • FCN-1 or IgG opsonin was injected, it was confirmed that the pathogen trapping ability (detection or elimination ability) of the leukocyte-derived magnetic immune particles was remarkably improved.
  • the injection of FCN-2 or C3b opsonin did not significantly increase the pathogen trapping ability (detection or elimination ability) of the leukocyte-derived magnetic immune particles.
  • opsonins such as MBL, FCN-1, or IgG, rather than all types of opsonins, can improve the ability of the leukocyte-derived magnetic immune particles to capture pathogens (detection or removal).
  • the leukocyte-derived magnetic immune particles were injected into human blood samples or human plasma samples containing pathogens.
  • pathogen trapping ability detection or elimination ability
  • a specific opsonin such as MBL, FCN-1, IgG, and/or
  • the pathogen trapping ability detection or elimination ability of the leukocyte-derived magnetic immune particles is further improved, so that the effect of detecting or removing pathogens in the blood of an individual and of diagnosing or treating infectious diseases is further improved. knew it could be.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)

Abstract

The present invention relates to a leukocyte-derived immunomagnetic particle and use thereof. More particularly, the present invention relates to an immunomagnetic particle, a method for detecting a pathogenic substance by using the immunomagnetic particle, and a method for diagnosing and treating an infectious disease, wherein the immunomagnetic particle comprises: a cell membrane derived from leukocytes capable of capturing pathogenic substances; and magnetic particles attached to the cell membrane. The leukocyte-derived immunomagnetic particle according to an aspect includes a cell membrane derived from leukocytes capable of capturing pathogenic substances so that side effects in a living body can be minimized, and due to the characteristics of the leukocytes from which the cell membrane is derived, various types of pathogenic substances can be detected. In addition, by including magnetic particles, the immunomagnetic particle can be simply separated by applying a magnetic field thereto, and thus pathogenic substances can be more effectively detected and removed.

Description

백혈구 유래 자성 면역 입자 및 그 용도Leukocyte-derived magnetic immune particles and uses thereof
본 발명은 백혈구 유래 자성 면역 입자 및 그 용도에 관한 것이다. 본 특허출원은 2021년 09월 17일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2021-0125199호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.The present invention relates to leukocyte-derived magnetic immune particles and uses thereof. This patent application claims priority to Korean Patent Application No. 10-2021-0125199 filed with the Korean Intellectual Property Office on September 17, 2021, the disclosure of which is incorporated herein by reference.
전세계적으로 병원성 미생물 또는 이로부터 유래된 항원 등의 병원체는 수계 및 인간에 감염되어 많은 질병을 일으킨다.Worldwide, pathogens such as pathogenic microorganisms or antigens derived therefrom infect water systems and humans, causing many diseases.
종래 혈액 내 존재하는 병원체를 검출하기 위해 개발된 방법들은 검출 시간이 오래걸리거나 검출 효율이 낮은 단점이 있었다. 예컨대, 미생물을 검출하기 위해 세포배양법과 유전자 검출법인 중합효소연쇄반응법 (PCR) 등이 개발되고 있다 (대한민국 공개특허 제10-2018-0023545호). 세포배양법은 병원성 바이러스와 비병원성 바이러스를 분리하여 동정하기 위한 방법으로 세포병변효과 (Cytopathic Effect; CPE)가 일어나는 여부에 의해 판단한다. 일반적으로 세포병변효과가 보일 때까지는 1~4주 정도의 오랜 시간이 필요하다. 따라서, 세포배양법은 유해 미생물이 존재하는가를 판단하여 그 대비책을 마련하는 데는 효용가치가 떨어진다. 또한, 유전자 진단법의 하나인 중합효소연쇄반응법은 적은 양의 DNA나 RNA를 증폭시키는 방법으로 민감도, 특이성, 신속성이 세포배양법에 비해 매우 뛰어나 세포배양법의 단점을 극복할 수 있지만, 시료에 미량의 유해 미생물이 존재하거나 핵산 추출과정에서 많은 양이 소실되었을 경우 중합효소연쇄반응법으로 검출하면 음성으로 판단할 수도 있는 단점이 있다. 즉 중합효소연쇄반응법으로 검출되지 않았다 하더라도 미생물이 존재할 가능성이 있다. 또한 중합효소연쇄반응법이 가지는 근본적인 문제점으로 정량분석이 어렵고 오염에 의한 위양성의 위험성이 높은 단점이 있다.Conventional methods developed to detect pathogens present in blood have disadvantages such as long detection time or low detection efficiency. For example, a cell culture method and a polymerase chain reaction method (PCR), a gene detection method, are being developed to detect microorganisms (Korean Patent Publication No. 10-2018-0023545). The cell culture method is a method for separating and identifying pathogenic viruses and non-pathogenic viruses, and is judged by whether or not Cytopathic Effect (CPE) occurs. In general, it takes 1 to 4 weeks for the cytopathic effect to be seen. Therefore, the cell culture method is less effective in determining whether harmful microorganisms exist and preparing countermeasures therefor. In addition, the polymerase chain reaction method, which is one of the genetic diagnosis methods, is a method of amplifying a small amount of DNA or RNA and has excellent sensitivity, specificity, and rapidity compared to the cell culture method, and can overcome the disadvantages of the cell culture method. When harmful microorganisms are present or a large amount is lost during the nucleic acid extraction process, there is a disadvantage in that detection by the polymerase chain reaction method may be judged negative. That is, there is a possibility that microorganisms exist even if they are not detected by the polymerase chain reaction method. In addition, as a fundamental problem of the polymerase chain reaction method, quantitative analysis is difficult and the risk of false positives due to contamination is high.
한편, 감염에 의한 질병의 치료는 현재까지도 대부분 항생제 투여법에 의존하고 있다. 그러나 항생제 투여법은 혈액세포감소, 과민반응, 신경계, 심장, 신장 그리고 간 독성 부작용을 유발하는 치명적인 단점이 있다. 최근에는 항생제에 대한 내성을 갖는 '슈퍼 박테리아'의 출현으로 항생제 투여법 기반의 감염 질병 치료의 성공률도 매우 낮아지고 있다.On the other hand, the treatment of diseases caused by infection is still mostly dependent on the administration of antibiotics. However, the antibiotic administration method has fatal disadvantages of causing blood cell reduction, hypersensitivity reaction, and toxicity in the nervous system, heart, kidney, and liver. Recently, with the emergence of 'super bacteria' that are resistant to antibiotics, the success rate of treating infectious diseases based on antibiotic administration is also very low.
이러한 문제점을 해결하기 위해 병원체 검출 효율이 높으면서도 체내 투여시 부작용이 발생하지 않아 안전한 병원체의 검출 또는 제거 방법에 대한 개발이 요구되고 있다.In order to solve these problems, there is a demand for the development of a method for detecting or removing safe pathogens, which has high pathogen detection efficiency and does not cause side effects when administered to the body.
상기한 바와 같은 문제를 해결하기 위하여, 본 발명의 발명자들은, 백혈구 유래의 세포막; 및 상기 세포막에 부착된 자성 입자를 포함하는 자성 면역 입자를 개발하였고, 상기 자성 면역 입자는 혈액과 같은 시료로부터 병원성 물질을 검출, 분리, 또는 제거할 수 있고, 이로 인해, 감염성 질병의 진단 및 치료에 적용될 수 있음을 확인함으로써, 본 발명을 완성하였다.In order to solve the problems as described above, the inventors of the present invention, leukocyte-derived cell membrane; and magnetic immune particles including magnetic particles attached to the cell membrane, and the magnetic immune particles can detect, separate, or remove pathogenic substances from samples such as blood, thereby diagnosing and treating infectious diseases. By confirming that it can be applied to, the present invention was completed.
본 발명의 일 목적은 백혈구 유래의 세포막; 및 상기 세포막에 부착된 자성 입자를 포함하는 자성 면역 입자를 제공하고자 한다.One object of the present invention is a cell membrane derived from leukocytes; and magnetic immunization particles comprising magnetic particles attached to the cell membrane.
본 발명의 다른 목적은 상기 자성 면역 입자를 포함하는 병원성 물질의 검출 또는 제거용 조성물 또는 키트, 또는 상기 자성 면역 입자를 이용한 병원성 물질을 검출 또는 제거하는 방법을 제공하고자 한다.Another object of the present invention is to provide a composition or kit for detecting or removing pathogenic substances including the magnetic immune particles, or a method for detecting or removing pathogenic substances using the magnetic immune particles.
본 발명의 또 다른 목적은 상기 자성 면역 입자를 포함하는 감염성 질병의 진단용 조성물 또는 키트, 또는 상기 자성 면역 입자를 이용한 감염성 질병을 진단하는 방법을 제공하고자 한다.Another object of the present invention is to provide a composition or kit for diagnosing an infectious disease comprising the magnetic immune particles, or a method for diagnosing an infectious disease using the magnetic immune particles.
본 발명의 또 다른 목적은 상기 자성 면역 입자를 포함하는 감염성 질병의 치료용 조성물, 또는 상기 자성 면역 입자를 이용한 감염성 질병을 치료하는 방법 또는 장치를 제공하고자 한다.Another object of the present invention is to provide a composition for treating an infectious disease containing the magnetic immune particles, or a method or apparatus for treating an infectious disease using the magnetic immune particles.
본 발명의 또 다른 목적은 상기 자성 면역 입자의 병원성 물질의 검출 또는 제거 용도, 또는 감염성 질병의 진단 또는 치료 용도를 제공하고자 한다.Another object of the present invention is to provide a use of the magnetic immune particles for detecting or removing pathogenic substances, or for diagnosing or treating an infectious disease.
본 발명의 또 다른 목적은 상기 자성 면역 입자의, 병원성 물질의 검출 또는 제거용 조성물 또는 키트; 감염성 질병의 진단용 조성물 또는 키트; 또는 감염성 질병의 치료용 조성물 또는 장치를 제조하기 위한 용도, 또는 상기 자성 면역 입자의 감염성 질병의 치료용 장치에 사용되기 위한 용도를 제공하고자 한다.Another object of the present invention is a composition or kit for detecting or removing pathogenic substances of the magnetic immune particles; compositions or kits for diagnosis of infectious diseases; Alternatively, it is intended to provide a use for manufacturing a composition or device for treating an infectious disease, or a use for using the magnetic immune particle in a device for treating an infectious disease.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
일 양상은 백혈구 유래의 세포막; 및 상기 세포막에 부착된 자성 입자를 포함하는 자성 면역 입자를 제공한다.One aspect is a cell membrane derived from leukocytes; and magnetic immunization particles comprising magnetic particles attached to the cell membrane.
상기 자성 면역 입자는, 병원성 물질을 포획할 수 있는 백혈구 유래 세포막에 자성 입자가 부착된 것으로, 병원성 물질인 다양한 종류의 미생물, 바이러스, 항원 단백질 등을 포획할 수 있다. 또한, 상기 병원성 물질을 포획한 자성 면역 입자는, 자기장에 의해 혈액과 같은 시료로부터 분리 또는 제거될 수 있다. 따라서, 상기 자성 면역 입자는 혈액과 같은 시료로부터 병원성 물질을 검출, 분리, 또는 제거하는데 사용될 수 있다.The magnetic immune particles are magnetic particles attached to leukocyte-derived cell membranes capable of capturing pathogenic substances, and can capture various types of pathogenic substances such as microorganisms, viruses, antigenic proteins, and the like. In addition, the magnetic immune particles that capture the pathogenic substance may be separated or removed from a sample such as blood by a magnetic field. Accordingly, the magnetic immune particles can be used to detect, separate, or remove pathogenic substances from samples such as blood.
본 명세서에서 제안되는 기술은, 1) 자성 입자가 병원성 물질을 포획할 수 있는 백혈구 유래 세포막에 부착된 자성 면역 입자를 준비하고, 2) 상기 자성 면역 입자를 시료와 접촉시킴으로써 자성 면역 입자에 시료 내 존재하는 병원성 물질이 포획되도록 한 후, 3) 상기 병원성 물질을 포획한 자성 면역 입자를 자기장에 의해 시료로부터 분리되도록 하여, 시료 내 병원성 물질을 검출하거나, 시료로부터 병원성 물질을 제거하는 것을 주요한 특징으로 한다.The technique proposed in the present specification is: 1) preparing magnetic immune particles attached to leukocyte-derived cell membranes capable of trapping pathogenic substances, and 2) contacting the magnetic immune particles with the sample to inject the magnetic immune particles into the sample. After the existing pathogenic substances are captured, 3) the magnetic immune particles that have captured the pathogenic substances are separated from the sample by a magnetic field to detect the pathogenic substances in the sample or to remove the pathogenic substances from the sample. do.
본 명세서에서 용어 "부착"은 세포막 이중층의 바깥쪽 또는 안쪽에 위치하는 형태를 지칭할 수 있다. 예를 들어, 자성 입자가 세포막 이중층의 바깥쪽 또는 안쪽에 직접적으로 결합한 형태 또는 자성 입자가 세포막 내부로 흡수되어 포집 (또는 함입, 또는 봉입)된 형태를 지칭할 수 있으나, 이에 제한되는 것은 아니다.In this specification, the term "attachment" may refer to a form located outside or inside the cell membrane bilayer. For example, it may refer to a form in which magnetic particles are directly bonded to the outside or inside of a cell membrane bilayer or a form in which magnetic particles are absorbed into a cell membrane and trapped (or entrapped or encapsulated), but is not limited thereto.
상기 병원성 물질은 병원성 박테리아, 진균류, 바이러스, 기생충, 프라이온, 및 독소로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 세포막에 의하여 포획될 수 있는 병원성 물질이라면 제한 없이 포함한다. 상기 병원성 물질은 체내에서 감염성 질병을 유발하는 것일 수 있다.The pathogenic substance may be one or more selected from the group consisting of pathogenic bacteria, fungi, viruses, parasites, prions, and toxins, but includes without limitation any pathogenic substances that can be captured by cell membranes. The pathogenic substance may cause an infectious disease in the body.
일 구체예에서, 상기 병원성 박테리아는 모든 종류의 그람 양성균 또는 그람 음성균일 수 있다. 보다 상세하게는, 엔테로코커스 균계 (Enterococcus spp), 시트로박터 균계 (Citrobacter spp), 스테필로코코스 균계 (Staphylococcus spp), 클렙시엘라 균계 (Klebsiella spp), 슈도모나스 균계 (Pseudomonas spp), 아시네토박터균계 (Acinetobacter spp), 살모넬라 균계 (Salmonella spp), 스트렙토코커스 균계 (streptococcus spp), 대장 균계 (Escherichia spp), 마이코박테륨 균계 (Mycobacterium spp), 마이코플라스마 균계 (Mycoplasma spp), 비브리오 균계 (Vibrio spp), 이질 균계 (Shigella spp), 캄필로박터 균계 (Campylobacter spp), 클라미디아 (Chlamydia spp), 및 항생제 내성을 획득한 상기 박테리아로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 이에 제한되지 않는다.In one embodiment, the pathogenic bacteria may be any kind of gram-positive bacteria or gram-negative bacteria. More specifically, Enterococcus spp, Citrobacter spp, Staphylococcus spp, Klebsiella spp, Pseudomonas spp, Acinetobacter Acinetobacter spp , Salmonella spp, Streptococcus spp, Escherichia spp, Mycobacterium spp, Mycoplasma spp, Vibrio spp ), dysentery bacteria ( Shigella spp ), Campylobacter bacteria ( Campylobacter spp), Chlamydia ( Chlamydia spp), and at least one selected from the group consisting of the above bacteria acquired resistance to antibiotics, but is not limited thereto .
또한, 일 구체예에서, 상기 병원성 진균류는 칸디다 균계 (Candida spp), 아스퍼질러스 균계 (Aspergillus spp), 트라이코파이톤 균계 (Trichophyton spp), 및 클라도피아로포라 균계 (Cladophialophora spp)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 이에 제한되지 않는다.In addition, in one embodiment, the pathogenic fungi are a group consisting of Candida spp, Aspergillus spp, Trichophyton spp, and Cladophialophora spp It may include one or more selected from, but is not limited thereto.
또한, 일 구체예에서, 상기 병원성 바이러스는 아데노바이러스과 (Adenoviridae), 피코르나바이러스과 (Picornaviridae), 헤르페스바이러스과 (Herpesviridae), 헤파드나바이러스과 (Hepadnaviridae), 플라비바이러스과 (Flaviviridae), 레트로바이러스과 (Retroviridae), 오르토믹소바이러스과 (Orthomyxoviridae), 파라믹소바이러스과 (Paramyxoviridae), 파포바바이러스과 (Papovaviridae), 폴리오마바이러스 (Polyomavirus), 랍도바이러스과 (Rhabdoviridae), 및 토가바이러스과 (Togaviridae)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 이에 제한되지 않는다. 더욱 구체적으로는, 상기 병원성 바이러스는 RSV (Respiratory syncytial virus), ZIKV (Zika virus), HCov229E (Human Coronavirus 229E), HCoV-OC43 (Human coronavirus OC43), CMV (Cytomegalovirus), SARS-CoV-1 (Severe acute respiratory syndrome coronavirus 1), SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), SARS-CoV-2의 변이 바이러스 (Alpha 변이, Beta 변이, Delta 변이 등), 에볼라 바이러스 (Ebola Virus), 및 뎅기 바이러스(Dengue virus)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 이에 제한되지 않는다.Also, in one embodiment, the pathogenic virus is Adenoviridae, Picornaviridae, Herpesviridae, Hepadnaviridae, Flaviviridae, Retroviridae , Orthomyxoviridae, Paramyxoviridae, Papovaviridae, Polyomavirus, Rhabdoviridae, and Togaviridae. It may include the above, but is not limited thereto. More specifically, the pathogenic viruses are RSV (Respiratory syncytial virus), ZIKV (Zika virus), HCov229E (Human Coronavirus 229E), HCoV-OC43 (Human coronavirus OC43), CMV (Cytomegalovirus), SARS-CoV-1 (Severe acute respiratory syndrome coronavirus 1), SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2), mutant viruses of SARS-CoV-2 (Alpha mutation, Beta mutation, Delta mutation, etc.), Ebola virus, and dengue It may include one or more selected from the group consisting of viruses (Dengue virus), but is not limited thereto.
또한, 일 구체예에서, 상기 기생충은 말라리아 유충일 수 있다.Also, in one embodiment, the parasite may be a malaria larvae.
또한, 일 구체예에서, 상기 프라이온은 스크래피, 광우병, 크리츠벨트-야콥병 등을 포함하는 감염성 질병을 야기하는 전염성 단백질 병원체일 수 있다.Also, in one embodiment, the prions may be infectious protein pathogens that cause infectious diseases including scrapie, mad cow disease, and Critzevelt-Jakob disease.
또한, 일 구체예에서, 상기 독소는 질병을 야기하는 등의 병원성을 갖는 것이라면 어떠한 것이라도 포함될 수 있으며, 상기 병원성 박테리아, 진균류, 바이러스, 또는 기생충으로부터 유래된 병원성 물질 (예컨대, 항원 단백질)일 수 있다. 예컨대, 상기 독소는 LPS (Lipopolysaccharide), ZIKV (Zika virus) Envelope Protein, SARS-CoV-2 Spike Protein, 또는 SARS-CoV-2 변이 바이러스 Spike Protein (Alpha 변이 Spike Protein, Beta 변이 Spike Protein, 또는 Delta 변이의 Spike Protein) 등일 수 있다.Also, in one embodiment, the toxin may include any substance as long as it has pathogenicity such as causing a disease, and may be a pathogenic substance (eg, antigenic protein) derived from the pathogenic bacteria, fungi, viruses, or parasites. there is. For example, the toxin is LPS (Lipopolysaccharide), ZIKV (Zika virus) Envelope Protein, SARS-CoV-2 Spike Protein, or SARS-CoV-2 mutant virus Spike Protein (Alpha mutant Spike Protein, Beta mutant Spike Protein, or Delta mutant of Spike Protein) and the like.
본 명세서에서 용어 "포획"은 상기 병원성 물질이 상기 자성 면역 입자와 결합 또는 연결되는 것을 의미한다. 구체적으로, 용어 "포획"은 상기 병원성 물질이 상기 자성 면역 입자의 세포막의 표면 또는 내부에 결합 또는 연결되는 것을 의미할 수 있다. 본 명세서에서 용어 "포획"은 "포집", "흡착", "흡수" 등의 용어와 상호교환적으로 사용될 수 있다.In this specification, the term "capture" means that the pathogenic substance is bound to or linked to the magnetic immune particle. Specifically, the term "capture" may mean that the pathogenic substance is bound to or linked to the surface or inside of the cell membrane of the magnetic immune particle. In this specification, the term "entrapment" may be used interchangeably with terms such as "capture", "adsorption", and "absorption".
상기 백혈구는 호중구, 호산구, 호염기구, 단핵구, 림프구, 및 대식세포로 이루어진 군에서 선택된 1종 이상인 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 림프구는 B세포, T세포, 자연살해세포 (natural killer: NK cell), 또는 이의 조합을 포함할 수 있다.The leukocyte may be at least one selected from the group consisting of neutrophils, eosinophils, basophils, monocytes, lymphocytes, and macrophages, but is not limited thereto. The lymphocytes may include B cells, T cells, natural killer cells (NK cells), or a combination thereof.
일 구체예에 따르면, 상기 자성 면역 입자는, 2종류 이상의 여러 타입의 백혈구 혼합물, 예컨대, 호중구, 호산구, 호염기구, 단핵구, 림프구, 및 대식세포로 이루어진 군에서 선택된 2종 이상의 백혈구 혼합물로부터 분리된 세포막을 이용하여 제조될 수 있다. 이 경우, 단일 종류의 백혈구로부터 분리된 세포막을 이용하여 제조된 자성 면역 입자와 비교하여 병원성 물질에 대한 포획, 검출, 또는 제거능이 더욱 증가할 수 있다.According to one embodiment, the magnetic immune particles are separated from a mixture of two or more types of leukocytes, for example, a mixture of two or more leukocytes selected from the group consisting of neutrophils, eosinophils, basophils, monocytes, lymphocytes, and macrophages. It can be made using cell membranes. In this case, the ability to capture, detect, or remove pathogenic substances may be further increased compared to magnetic immune particles prepared using a cell membrane isolated from a single type of leukocyte.
상기 백혈구 또는 백혈구 유래의 세포막은 인간, 원숭이 등의 영장류, 래트, 마우스 등의 설치류, 말, 소, 돼지, 양, 염소 등의 우제류, 말과, 개과, 고양이과 등의 포유류, 조류, 어류, 파충류, 양서류, 갑각류, 및 곤충으로 이루어진 군으로부터 선택된 1종 이상인 개체의 세포로부터 유래할 수 있고, 이에 제한되는 것은 아니다. 상기 백혈구 유래의 세포막은 체내 투여시 면역 거부반응을 일으키기 않기 때문에, 생체 투여시 안전성이 우수하다.The leukocytes or leukocyte-derived cell membranes are primates such as humans and monkeys, rodents such as rats and mice, ungulates such as horses, cows, pigs, sheep, and goats, mammals such as horses, canines, and felines, birds, fish, and reptiles. , amphibians, crustaceans, and may be derived from cells of one or more species selected from the group consisting of insects, but is not limited thereto. Since the leukocyte-derived cell membrane does not cause immune rejection when administered to the body, safety is excellent when administered to a living body.
본 명세서에서 용어 "세포막"은 세포에 존재하는 세포막 자체, 또는 통상적인 방법, 예컨대 초음파 처리, 삼투압 차이 이용, 압출 (extrusion) 등을 통하여 세포로부터 분리된 세포막 (구체적으로, 본연의 형태가 유지된 세포막, 세포막의 일부 또는 조각, 세포막의 일부 또는 조각이 재조립되어 형성된 막 등)을 칭한다.As used herein, the term "cell membrane" refers to a cell membrane present in a cell itself, or a cell membrane separated from a cell (specifically, a cell membrane maintained in its original form) through conventional methods such as ultrasonic treatment, use of osmotic pressure difference, extrusion, and the like. Cell membrane, part or piece of cell membrane, membrane formed by reassembling part or piece of cell membrane, etc.)
상기 백혈구 유래의 세포막은 렉틴 (lectin), 톨 유사 수용체 (Toll like receptor: TLR), 패턴 인식 수용체 (Pattern recognition receptor: PRR), 분화 클러스터 분자 (Cluster of differentiation(CD) molecule), NET (Neutrophil extracellular trap), 및 사이토카인 수용체로 구성된 군에서 선택된 1종 이상을 발현하는 것일 수 있지만 이에 제한되지 않는다. 상기 세포막이 렉틴, 톨 유사 수용체, 패턴 인식 수용체, 분화 클러스터 분자, NET, 및 사이토카인 수용체로 구성된 군에서 선택된 1종 이상을 발현함으로써, 자성 입자 또는 병원성 물질을 포획 또는 흡수 (uptake, endocytosis)하거나, 자성 입자 또는 병원성 물질과 결합 또는 부착할 수 있다.The leukocyte-derived cell membrane is lectin, toll like receptor (TLR), pattern recognition receptor (PRR), cluster of differentiation (CD) molecule, NET (Neutrophil extracellular) trap), and cytokine receptors, but may express at least one selected from the group consisting of, but is not limited thereto. The cell membrane expresses at least one selected from the group consisting of lectins, toll-like receptors, pattern recognition receptors, differentiation cluster molecules, NETs, and cytokine receptors to capture or absorb magnetic particles or pathogenic substances (uptake, endocytosis), or , can bind or adhere to magnetic particles or pathogenic substances.
상기 백혈구 유래의 세포막은 CR1 (complement receptor 1), CR3 (complement receptor 3), 또는 이의 조합이 과발현된 것일 수 있다. 구체적으로, 상기 백혈구 유래의 세포막은, CR1, CR3, 또는 이의 조합이 과발현된 세포막을 가지는 백혈구로부터 분리된 세포막을 의미하는 것일 수 있다. 여기서 과발현은 정상적인 백혈구의 세포막과 비교하여, CR1, CR3, 또는 이의 조합의 발현이 더 증가된 상태를 의미할 수 있다.The leukocyte-derived cell membrane may be overexpressed with CR1 (complement receptor 1), CR3 (complement receptor 3), or a combination thereof. Specifically, the leukocyte-derived cell membrane may refer to a cell membrane separated from a leukocyte having a cell membrane in which CR1, CR3, or a combination thereof is overexpressed. Here, overexpression may refer to a state in which the expression of CR1, CR3, or a combination thereof is further increased compared to the cell membrane of normal leukocytes.
상기 CR1, CR3, 또는 이의 조합이 과발현된 세포막을 가지는 백혈구는 당업계에 공지된 방법에 따라 제조될 수 있다. 예컨대, 유전자 공학을 이용하여 백혈구에서 CR1, CR3, 또는 이의 조합의 발현을 증가시키는 방법을 이용할 수 있다. 구체적으로는, CR1, CR3, 또는 이의 조합을 코딩하는 외래 유전자를 백혈구내로 트렌스펙션시켜 백혈구 내 상기 유전자의 카피수를 증가시키는 방법을 이용할 수 있으며, 상기 방법은 당업계에 알려진 임의의 방법, 예를 들면, CR1, CR3, 또는 이의 조합을 코딩하는 유전자가 작동 가능하게 연결된 벡터로서, 숙주와 무관하게, 또는 백혈구 세포 내에서 복제되고 기능할 수 있는 벡터를 백혈구 세포 내에 도입함으로써 수행될 수 있고, 이에 제한되지 않는다.Leukocytes having cell membranes in which CR1, CR3, or a combination thereof are overexpressed can be prepared according to a method known in the art. For example, a method of increasing the expression of CR1, CR3, or a combination thereof in leukocytes using genetic engineering may be used. Specifically, a method of transfecting a foreign gene encoding CR1, CR3, or a combination thereof into leukocytes to increase the copy number of the gene in leukocytes can be used, and the method can be any method known in the art, such as For example, CR1, CR3, or a gene encoding a combination thereof is operably linked to a vector, independent of the host, or by introducing a vector capable of replicating and functioning in leukocyte cells into leukocyte cells, Not limited to this.
상술한 방법 등을 통해 CR1, CR3, 또는 이의 조합이 과발현된 세포막을 가지는 백혈구를 제조할 수 있고, 본 발명의 일 구체예에 따른 방법에 따라, 상기 백혈구로부터 세포막을 분리하고, 상기 분리된 세포막에 자성 입자를 부착함으로써, CR1, CR3, 또는 이의 조합이 과발현된 백혈구 유래 세포막을 포함하는 자성 면역 입자를 제조할 수 있다.It is possible to prepare leukocytes having a cell membrane in which CR1, CR3, or a combination thereof are overexpressed through the above-described method, etc., and according to the method according to an embodiment of the present invention, the cell membrane is separated from the leukocyte, and the separated cell membrane By attaching the magnetic particles to the surface, it is possible to prepare magnetic immune particles including leukocyte-derived cell membranes in which CR1, CR3, or a combination thereof are overexpressed.
일 구체예에 따르면, 백혈구 유래 세포막을 포함하는 자성 면역 입자의 경우, 상기 세포막의 표면 분자인 CR1, CR3, 또는 이의 조합이 상기 자성 면역 입자의 병원성 물질에 대한 포획능 (검출 또는 제거능)에 크게 기여함을 확인하였다. 따라서, CR1, CR3, 또는 이의 조합이 과발현된 백혈구 유래 세포막을 포함하는 자성 면역 입자의 경우, 병원성 물질에 대한 포획능 (검출 또는 제거능)이 현저히 증가할 수 있다.According to one embodiment, in the case of magnetic immune particles including leukocyte-derived cell membranes, CR1, CR3, or a combination thereof, which are surface molecules of the cell membrane, greatly enhance the ability of the magnetic immune particles to capture (detect or remove) pathogenic substances. contribution was confirmed. Therefore, in the case of magnetic immune particles including leukocyte-derived cell membranes in which CR1, CR3, or a combination thereof are overexpressed, the ability to capture (detection or remove) pathogenic substances can be remarkably increased.
본 명세서에서 용어 "자성 입자 (magnetic particle)"는 자기장에 반응할 수 있는 입자로서, 세포로 용이하게 흡수될 수 있거나, 세포막 외부 또는 내부에 결합, 부착, 유입, 함입, 봉입, 또는 포획될 수 있는 입자를 지칭한다. 구체적으로, 상기 자성 입자는 철 (Fe), 니켈 (Ni), 코발트 (Co), 망간 (Mn), 비스무스 (Bi), 아연 (Zn), 스트론튬 (Sr), 란타넘 (La), 세륨 (Ce), 프라셰오디뮴 (Pr), 네오디뮴 (Nd), 프로메튬 (Pm), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 테르븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 에르븀 (Er), 툴륨 (Tm), 이테르븀 (Yb), 루테늄 (Lu), 구리 (Cu), 은 (Ag), 금 (Au), 카드뮴 (Cd), 수은 (Hg), 알루미늄 (Al), 갈륨 (Ga), 인듐 (In), 탈륨 (Tl), 칼슘 (Ca), 바륨 (Ba), 라듐 (Ra), 백금 (Pt), 및 납 (Pd)으로 구성된 군으로부터 선택된 1종 이상의 자성 원소를 포함할 수 있고, 이에 제한되지 않는다.As used herein, the term "magnetic particle" refers to a particle capable of responding to a magnetic field, which can be easily absorbed into a cell, or can be bound, attached, introduced, entrapped, encapsulated, or entrapped outside or inside a cell membrane. refers to particles in Specifically, the magnetic particles include iron (Fe), nickel (Ni), cobalt (Co), manganese (Mn), bismuth (Bi), zinc (Zn), strontium (Sr), lanthanum (La), cerium ( Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho) , Erbium (Er), Thulium (Tm), Ytterbium (Yb), Ruthenium (Lu), Copper (Cu), Silver (Ag), Gold (Au), Cadmium (Cd), Mercury (Hg), Aluminum (Al) At least one magnet selected from the group consisting of gallium (Ga), indium (In), thallium (Tl), calcium (Ca), barium (Ba), radium (Ra), platinum (Pt), and lead (Pd). It may contain elements, but is not limited thereto.
상기 자성 원소는 산화되거나 표면 개질된 것일 수 있다. 구체적으로, 철은 산화되어 산화철 형태로 자성 면역 입자에 포함될 수 있다. 상기 표면 개질은 금속에 의한 표면 개질, 카르복시기, 또는 아민기와 같은 작용기에 의한 표면 개질, 항체, 스트렙타비딘, 또는 아비딘과 같은 단백질에 의한 표면 개질, 탄수화물에 의한 표면 개질, 폴리머에 의한 표면 개질, 지질에 의한 표면 개질일 수 있으나, 이에 제한되는 것은 아니다. 상기 개질에 의해 자성 입자가 안정화될 수 있다.The magnetic element may be oxidized or surface modified. Specifically, iron may be oxidized and included in the magnetic immune particle in the form of iron oxide. The surface modification is surface modification with a metal, surface modification with a functional group such as a carboxy group or an amine group, surface modification with a protein such as an antibody, streptavidin, or avidin, surface modification with a carbohydrate, surface modification with a polymer, It may be surface modification by lipids, but is not limited thereto. The magnetic particles may be stabilized by the modification.
상기 자성 입자는 공지된 방법을 통해 제조해서 사용할 수 있고, 상업적으로 구입해서 사용할 수도 있다.The magnetic particles may be prepared and used through a known method, or may be purchased and used commercially.
상기 자성 입자는 그대로 사용되거나 적절한 용매 (예컨대, 버퍼 (PBS, saline, Tris-buffered saline 등)에 분산 또는 현탁된 상태로 사용될 수 있으나, 이에 제한되는 것은 아니다.The magnetic particles may be used as is or may be used in a state of being dispersed or suspended in an appropriate solvent (eg, buffer (PBS, saline, Tris-buffered saline, etc.), but is not limited thereto.
상기 자성 입자는 작은 입자 크기를 가짐으로써 입자 하나하나가 단일자기구역을 가질 수 있다. 이로 인해 외부 자기장이 존재 시에만 자성의 특성을 갖는 초상자성 (superparamagnetism)을 나타낼 수 있다. 초상자성을 나타내는 자성 입자로 자성 면역 입자를 만듦으로써, 외부 자기장 인가에 의해 자성 면역 입자를 간단하고도 용이하게 분리할 수 있다. 자기장 인가에 의한 분리는 pH, 온도, 이온 등과 같은 주변 환경에 영향을 받지 않으므로 안정성 및 민감성이 우수하다.Since the magnetic particles have a small particle size, each particle may have a single magnetic domain. As a result, superparamagnetism, which has magnetic properties, can be exhibited only when an external magnetic field is present. By making the magnetic immune particles with magnetic particles exhibiting superparamagnetism, the magnetic immune particles can be simply and easily separated by applying an external magnetic field. Separation by applying a magnetic field is excellent in stability and sensitivity because it is not affected by surrounding environments such as pH, temperature, and ions.
상기 자성 입자는 상기 병원성 물질을 포획할 수 있는 세포막에 부착, 유입, 함입, 또는 봉입될 수 있는 입자 크기를 갖고 자성을 띠는 모든 입자들 중에서 선택될 수 있다.The magnetic particles may be selected from all particles having a particle size capable of attaching to, entering, encapsulating, or being encapsulated in a cell membrane capable of trapping the pathogenic substance and being magnetic.
상기 자성 입자는 용액에 포함된 것일 수 있다. 상기 자성 입자는 용액에 포함된 상태로 상기 세포막에 부착될 수 있다. 일 구체예에서, 상기 용액은 세포를 배양 또는 분화시키는데 사용되는 배지, 버퍼, 또는 이들의 조합을 포함할 수 있고, 자성 면역 입자의 매질과 동일할 수 있다.The magnetic particles may be included in a solution. The magnetic particles may be attached to the cell membrane while being contained in a solution. In one embodiment, the solution may include a medium used for culturing or differentiating cells, a buffer, or a combination thereof, and may be the same as the medium of the magnetic immune particles.
상기 자성 면역 입자는 상기 세포막을 포함하는 외부 표면 (outer surface), 및 자성 입자를 포함하는 내부 코어 (inner core)를 포함할 수 있다.The magnetic immune particle may include an outer surface including the cell membrane and an inner core including the magnetic particle.
상기 자성 면역 입자에서, 상기 세포막은 소낭 (vesicle)의 형태를 가지는 것일 수 있다. 본 명세서에서 용어 "소낭"은 세포로부터 초음파 처리, 삼투압 차이 이용, 또는 압출과 같은 공지된 기술 의해 세포막을 추출 (분리)하는 단계에 의해 분리된 세포막이 자가 조립, 또는 압출에 의해 재조립하는 단계에 의하여 형성되는 형태의 입자를 지칭할 수 있다.In the magnetic immune particle, the cell membrane may have a vesicle shape. As used herein, the term "vesicle" refers to a step in which a cell membrane separated by a step of extracting (separating) a cell membrane from a cell by a known technique such as ultrasonic treatment, use of osmotic pressure difference, or extrusion, self-assembly, or reassembling by extrusion It may refer to particles of the form formed by.
일 구체예에 따른 자성 면역 입자의 제조 과정의 일 예를 도 1에 모식적으로 나타내었다. 구체적으로, 도 1의 Type 1 방식에 따라, 개체에서 추출한 백혈구 세포를 자성 입자가 포함되어 있는 용액 (예컨대, 혈액, 수성용액, 정제수, 버퍼, 배지 등)에 투여하여, 세포 유입 (cellular uptake) 현상에 의하여 자성 입자가 세포 내부에 흡수 (또는 포함, 일체화)되도록 함으로써, 내부에 자성 입자를 함유하는 백혈구 세포 (예컨대, 자성 면역 세포) 혹은 백혈구 세포 유사체를 생성할 수 있다. 상기 내부에 자성 입자를 함유하는 백혈구 세포 (예컨대, 자성 면역 세포)는 백혈구 세포 본래의 기능을 수행함과 동시에 내부에 함유된 자성 입자에 의하여 자성을 나타내거나 자기장의 영향을 받을 수 있다.An example of a manufacturing process of magnetic immune particles according to one embodiment is schematically shown in FIG. 1 . Specifically, according to the Type 1 method of FIG. 1, leukocytes extracted from a subject are administered to a solution (eg, blood, aqueous solution, purified water, buffer, medium, etc.) containing magnetic particles, and cellular uptake By allowing the magnetic particles to be absorbed (or contained or integrated) into cells by development, leukocyte cells (eg, magnetic immune cells) or leukocyte cell analogues containing the magnetic particles therein can be generated. The leukocyte cells (eg, magnetic immune cells) containing the magnetic particles therein may exhibit magnetism or be affected by a magnetic field by the magnetic particles contained therein while performing the original functions of the leukocyte cells.
또한, 도 1의 Type 2 방식에 따라, 백혈구 세포에서 분리 (또는 정제)한 세포막을 이용하여 자성 면역 입자를 형성할 수 있다. 구체적으로, 통상적인 방법 (예컨대, 삼투압 차이 이용, 초음파 처리, 압출 등)을 통하여 백혈구 세포로부터 세포막을 분리 (또는 정제)하고, 그로부터 얻어진 백혈구 유래 세포막과 자성 입자를 압출 (extrusion) 처리하여, 자성 입자를 상기 백혈구 유래 세포막 내부에 포함시킴으로써, 백혈구 유래 세포막 내부에 자성 입자를 함유하는 자성 면역 입자를 생성할 수 있다. 보다 구체적으로, 백혈구로부터 세포막을 분리 (또는 정제)하기 위해, 백혈구 세포를 저삼투압용액에 투여하여, 저삼투압용액이 백혈구 세포 내로 이동하여 백혈구 세포를 팽창하게 함과 동시에 백혈구 세포 내 소기관이 세포 밖 환경으로 빠져나가게 할 수 있는 기공을 세포막에 형성시킬 수 있다. 상기 기공을 통해, 빠져나온 세포 내 소기관을 원심분리를 이용해 따로 제거하고, 세포 유래 막만을 분리 (또는 정제)하여, 분리 (또는 정제)된 백혈구 유래 세포막에 초음파 처리를 이용하여 세포막을 더 작은 크기로 쪼갤 수 있다. 상기 백혈구 유래 세포막과 자성 입자를 섞어 압출과정을 거쳐 세포막 내부에 자성 입자를 함유하는 자성 면역 입자를 생성할 수 있다.In addition, according to the Type 2 method of FIG. 1, magnetic immune particles may be formed using cell membranes separated (or purified) from white blood cells. Specifically, cell membranes are separated (or purified) from leukocyte cells through a conventional method (eg, use of osmotic pressure difference, ultrasonic treatment, extrusion, etc.), and the obtained leukocyte-derived cell membrane and magnetic particles are extruded to obtain magnetic properties. By including the particle inside the leukocyte-derived cell membrane, magnetic immune particles containing magnetic particles inside the leukocyte-derived cell membrane can be generated. More specifically, in order to separate (or purify) cell membranes from leukocytes, leukocyte cells are administered to a low osmotic solution, so that the low osmotic solution moves into the white blood cells and expands the white blood cells, and at the same time, the organelles within the white blood cells move outside the cells. Pores can be formed in cell membranes that allow escape to the environment. The intracellular organelles that have escaped through the pores are separately removed using centrifugation, only the cell-derived membrane is separated (or purified), and the separated (or purified) leukocyte-derived cell membrane is ultrasonically treated to reduce the cell membrane to a smaller size. can be split into The leukocyte-derived cell membrane and magnetic particles may be mixed and extruded to generate magnetic immune particles containing magnetic particles inside the cell membrane.
또한, 도 1에 나타낸 바와 같이, Type 3 방식에 따라, 백혈구 세포에서 분리 (또는 정제)한 세포막을 이용하여 자성 면역 입자를 형성할 수 있다. 구체적으로, 통상적인 방법 (예컨대, 삼투압 차이 이용, 압출 등)을 통하여 백혈구 세포로부터 세포막을 분리 (또는 정제)하고, 그로부터 얻어진 백혈구 유래 세포막과 자성 입자를 혼합한 후 초음파 처리하여 자성 입자를 상기 백혈구 유래 세포막에 포함시킴으로써, 백혈구 유래 세포막 내부에 자성 입자를 함유하는 자성 면역 입자를 생성할 수 있다.In addition, as shown in FIG. 1, magnetic immune particles can be formed using a cell membrane isolated (or purified) from leukocyte cells according to the Type 3 method. Specifically, cell membranes are separated (or purified) from leukocyte cells through a conventional method (eg, using osmotic pressure difference, extrusion, etc.), and after mixing the leukocyte-derived cell membrane and magnetic particles obtained therefrom, ultrasonic treatment is performed to obtain the magnetic particles from the leukocytes. Magnetic immune particles containing magnetic particles inside the leukocyte-derived cell membrane can be generated by inclusion in the derived cell membrane.
상기 자성 면역 입자는, 외막에 백혈구 세포의 세포막 성분 (지질 이중층, 막 단백질, 수용체 등)을 포함하므로, 백혈구 세포와 유사한 기능을 수행할 수 있다. 또한, 상기 자성 면역 입자는 내부에 함유된 자성 입자에 의하여 자성을 나타내거나 자기장의 영향을 받을 수 있다.Since the magnetic immune particles contain cell membrane components (lipid bilayer, membrane proteins, receptors, etc.) of white blood cells in their outer membrane, they can perform functions similar to those of white blood cells. In addition, the magnetic immune particles may show magnetism by the magnetic particles contained therein or be affected by a magnetic field.
다른 양상은 상기 자성 면역 입자를 포함하는 병원성 물질의 검출용 조성물을 제공한다.Another aspect provides a composition for detecting pathogenic substances including the magnetic immune particles.
또 다른 양상은 상기 자성 면역 입자를 포함하는 병원성 물질의 제거용 조성물을 제공한다.Another aspect provides a composition for removing pathogenic substances including the magnetic immune particles.
본 명세서에서 용어 "병원성 물질의 검출"은 시료 내에 병원성 물질이 존재하는지를 결정하거나, 시료 내에 존재하는 병원성 물질을 검출하는 것을 포함하는 의미일 수 있다.As used herein, the term "detection of a pathogenic substance" may mean determining whether a pathogenic substance is present in a sample or detecting a pathogenic substance present in a sample.
본 명세서에서 용어 "병원성 물질의 제거"는 시료 내 존재하는 병원성 물질을 시료로부터 분리하여 제거하는 것을 의미한다.As used herein, the term "removal of pathogenic substances" means separating and removing pathogenic substances present in a sample from the sample.
상기 자성 면역 입자는 병원성 물질을 포획할 수 있는 백혈구 유래 세포막을 이용하여, 상기 세포막이 유래된 백혈구 세포의 특성에 의해 병원성 물질과 결합하거나 병원성 물질을 세포막 내부로 포획할 수 있다. 또한, 병원성 물질을 포획한 자성 면역 입자는 자기장 인가에 의하여 자기장 영역으로 수집 또는 농축될 수 있고, 이를 통해, 시료로부터 분리될 수 있다. 이러한 원리에 의해, 상기 자성 면역 입자를 포함하는 조성물은 시료 내 병원성 물질을 검출하거나, 시료로부터 병원성 물질을 제거하거나, 개체의 감염성 질병을 진단 또는 치료하는데 사용될 수 있다.The magnetic immune particles use a leukocyte-derived cell membrane capable of trapping a pathogenic substance, and may bind to a pathogenic substance or capture the pathogenic substance into the cell membrane according to the characteristics of the leukocyte cell from which the cell membrane is derived. In addition, magnetic immune particles that capture pathogenic substances may be collected or concentrated in a magnetic field region by applying a magnetic field, and through this, may be separated from a sample. According to this principle, the composition including the magnetic immune particles can be used to detect pathogenic substances in a sample, remove pathogenic substances from a sample, or diagnose or treat an infectious disease of a subject.
종래의 타겟팅 물질 (예: 항체)을 이용하는 자성 면역 입자의 경우, 자성 입자의 표면 또는 내부에 병원성 물질과 결합할 수 있는 타겟팅 물질을 형성시킴으로써 병원성 물질에 결합할 수 있었다. 따라서, 타겟팅하고자 하는 병원성 물질에 대한 특정 항원의 정확한 정보 없이는 병원성 물질을 효과적으로 타겟팅할 수 없고, 동시에 여러 종류의 병원성 물질을 타겟팅하기에 큰 어려움이 있다. 또한 항체를 이용해야 하므로 합성이 매우 까다롭고 비용도 많이 소요되는 문제점이 존재하였다.In the case of magnetic immune particles using a conventional targeting material (eg, antibody), the targeting material capable of binding to the pathogenic material is formed on the surface or inside of the magnetic particle to bind to the pathogenic material. Therefore, it is impossible to effectively target a pathogenic substance without accurate information on a specific antigen for the pathogenic substance to be targeted, and it is difficult to target several types of pathogenic substances at the same time. In addition, since an antibody must be used, synthesis is very difficult and expensive.
상기 자성 면역 입자는 생체로부터 분리된 백혈구 세포 또는 이로부터 유래한 세포막을 그대로 사용할 수 있기 때문에, 백혈구 세포 자체의 시스템 및 특성을 이용하여 미지의 다양한 종류의 병원성 물질 (미생물 또는 바이러스 등)을 한번에 포획할 수 있다는 장점을 가지므로, 다양한 병원성 물질의 검출 또는 제거에 사용될 수 있다.Since the magnetic immune particles can use leukocyte cells isolated from living organisms or cell membranes derived therefrom, various types of unknown pathogenic substances (microbes or viruses, etc.) are captured at once using the system and characteristics of the leukocyte cells themselves. Since it has the advantage that it can be used for detection or removal of various pathogenic substances.
상기 조성물은 식수, 음료를 포함하는 다양한 식품, 위생 용품, 환경 시료 등에 극미량으로 존재하는 오염물질 (박테리아류, 진균류, 바이러스류, 기타 미생물, 독소 (예컨대, 내독성 물질(endotoxin) 등), 오염 화합물)을 빠른 속도로 검출 또는 제거할 수 있으므로, 식품, 위생 용품, 환경 시료 등의 안전 평가 등에 사용될 수 있다. 또한, 상기 조성물은 생체 시료 내에 존재하는 병원성 물질을 검출 또는 제거할 수 있다.The composition is a contaminant (bacteria, fungi, viruses, other microorganisms, toxins (eg, endotoxins, etc.), contaminants present in extremely small amounts in various foods, sanitary products, environmental samples, etc. including drinking water and beverages. compound) can be detected or removed at high speed, so it can be used for safety evaluation of food, sanitary products, environmental samples, etc. In addition, the composition can detect or remove pathogenic substances present in a biological sample.
또 다른 양상은 상기 자성 면역 입자를 포함하는 감염성 질병의 진단용 조성물을 제공한다. 상기 조성물은, 상기 자성 면역 입자에 포획된 병원성 물질을 검출함으로써 개체의 감염성 질병을 진단하는데 사용될 수 있다.Another aspect provides a composition for diagnosing an infectious disease comprising the magnetic immune particles. The composition can be used to diagnose an infectious disease of an individual by detecting a pathogenic substance captured by the magnetic immune particle.
또 다른 양상은 상기 자성 면역 입자를 포함하는 감염성 질병의 치료용 조성물을 제공한다. 상기 조성물은, 조성물 내 포함된 자성 면역 입자에 의해 생체 내 존재하는 병원성 물질을 검출 및 제거함으로써 개체의 감염성 질병을 치료하는데 사용될 수 있다. 구체적으로는, 상기 감염성 질병의 치료용 조성물은 개체로부터 분리된 시료 내 감염성 질병의 원인 물질을 검출 및 제거할 수 있고, 감염성 질병의 원인 물질이 제거된 시료는 상기 개체로 다시 주입됨으로써, 개체의 감염성 질병을 치료할 수 있다.Another aspect provides a composition for treating an infectious disease comprising the magnetic immune particles. The composition can be used to treat an infectious disease of an individual by detecting and removing pathogenic substances present in the body by the magnetic immune particles included in the composition. Specifically, the composition for treating an infectious disease can detect and remove the causative agent of the infectious disease in a sample isolated from the subject, and the sample from which the causative agent of the infectious disease has been removed is injected back into the subject, so that the subject Infectious diseases can be cured.
본 명세서에서 용어 "감염성 질병의 진단"은 개체가 현재 또는 이전에 감염성 질병을 가지는지를 결정하거나, 개체가 감염성 질병을 일으킬 수 있는 병원성 물질에 감염되었는지를 결정하는 것을 포함하는 의미일 수 있다.As used herein, the term "diagnosis of an infectious disease" may mean determining whether an individual currently or previously has an infectious disease, or determining whether an individual is infected with a pathogenic substance capable of causing an infectious disease.
본 명세서에서 용어 "감염성 질병의 치료"는 개체 내 감염성 질병의 원인 물질이 감소 또는 제거되어 감염성 질병에 의한 증상이 호전 또는 이롭게 변경되는 모든 행위를 의미한다.As used herein, the term "treatment of an infectious disease" refers to any activity in which the symptoms caused by an infectious disease are improved or beneficially changed by reducing or removing the causative agent of an infectious disease in a subject.
상기 감염성 질병은 전신성 또는 국부성 감염, 염증, 패혈증, 및 독소에 의한 중독으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다. 또한 상술한 병원성 물질에 감염되어 발생하는 질병이라면 제한 없이 포함한다. 구체적으로, 상기 감염성 질병은 말라리아 감염증, 마이코박테리아 결핵증, 폐렴, 식중독, 파상풍, 장티푸스, 디프테리아, 매독, 한센병, 클라미디아 감염증, 천연두, 인플루엔자, 유행성 이하선염, 홍역, 수두, 에볼라, 풍진, 코로나 바이러스 감염증, 스크래피, 광우병, 및 크리츠벨트-야콥병으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다.The infectious disease may be at least one selected from the group consisting of systemic or local infection, inflammation, sepsis, and poisoning by toxins, but is not limited thereto. In addition, diseases caused by infection with the aforementioned pathogenic substances are included without limitation. Specifically, the infectious diseases include malaria infection, mycobacterial tuberculosis, pneumonia, food poisoning, tetanus, typhoid fever, diphtheria, syphilis, Hansen's disease, chlamydia infection, smallpox, influenza, mumps, measles, chickenpox, Ebola, rubella, coronavirus infection, It may be at least one selected from the group consisting of scrapie, mad cow disease, and Kritsvelt-Jakob disease, but is not limited thereto.
상기 조성물은 옵소닌을 더 포함할 수 있다. 상기 옵소닌은 MBL (Mannose binding lectin), FCN-1 (Ficolin-1), 및 IgG (Immunoglobulin G) 항체로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 IgG 항체는 타겟 병원성 물질에 특이적인 항체로서, 타겟 병원성 물질에 따라 그 종류가 달라질 수 있으며, 예컨대, 상기 IgG 항체는 anti-SARS-SARS-CoV-2 spike protein 항체 등을 포함할 수 있다.The composition may further include opsonins. The opsonin may be at least one selected from the group consisting of Mannose binding lectin (MBL), Ficolin-1 (FCN-1), and Immunoglobulin G (IgG) antibodies. The IgG antibody is an antibody specific to a target pathogenic substance, and its type may vary depending on the target pathogenic substance. For example, the IgG antibody may include an anti-SARS-SARS-CoV-2 spike protein antibody.
일 구체예에 따르면, 상기 조성물에 포함된 상기 자성 면역 입자는 상기 옵소닌에 의해 병원성 물질에 대한 포획능 (검출 또는 제거능)이 더욱 향상될 수 있다. 특히, FCN-2, C3b 등의 다른 옵소닌과 비교하여, MBL, FCN-1, 또는 IgG와 같은 특정한 옵소닌은 상기 자성 면역 입자의 병원성 물질에 대한 포획능 (검출 또는 제거능)을 더욱 향상시킬 수 있다.According to one embodiment, the ability of the magnetic immune particles included in the composition to capture pathogenic substances (detection or removal) can be further improved by the opsonin. In particular, compared to other opsonins such as FCN-2 and C3b, specific opsonins such as MBL, FCN-1, or IgG can further improve the ability to capture (detection or remove) pathogenic substances of the magnetic immune particles. can
상기 조성물은 용제, 용매, 결합제, 활탁제, 붕해제, 완충제, 현탁화제, 등장제, 점도 조절제, 담체, 분산제, 윤활제, 부형제, 안정화제, pH 조절제, 보존제 등을 더 포함할 수 있고, 이에 제한되지 않는다.The composition may further include solvents, solvents, binders, lubricants, disintegrants, buffers, suspending agents, isotonic agents, viscosity modifiers, carriers, dispersants, lubricants, excipients, stabilizers, pH adjusters, preservatives, and the like. Not limited.
상기 조성물에서 언급된 용어 또는 요소 중 상기 자성 면역 입자에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 자성 면역 입자에 대한 설명에서 언급된 바와 같은 것으로 이해된다.Of the terms or elements mentioned in the composition, the same ones mentioned in the description of the magnetic immune particles are understood to be the same as those mentioned in the description of the magnetic immune particles above.
또 다른 양상은 상기 자성 면역 입자와 시료를 접촉시켜 혼합하는 단계, 및 상기 혼합된 시료에 자기장을 인가하는 단계를 포함하는 병원성 물질을 검출하는 방법을 제공한다.Another aspect provides a method for detecting a pathogenic substance comprising mixing the magnetic immune particles and a sample in contact with each other, and applying a magnetic field to the mixed sample.
또 다른 양상은 상기 자성 면역 입자와 시료를 접촉시켜 혼합하는 단계, 및 상기 혼합된 시료에 자기장을 인가하는 단계를 포함하는 병원성 물질을 제거하는 방법을 제공한다.Another aspect provides a method for removing a pathogenic substance, comprising mixing the magnetic immune particles and a sample in contact with each other, and applying a magnetic field to the mixed sample.
또 다른 양상은 상기 자성 면역 입자와 시료를 접촉시켜 혼합하는 단계, 및 상기 혼합된 시료에 자기장을 인가하는 단계를 포함하는 감염성 질병을 진단하는 방법 또는 감염성 질병의 진단에 필요한 정보를 제공하는 방법을 제공한다.Another aspect is a method for diagnosing an infectious disease comprising contacting and mixing the magnetic immune particles and a sample, and applying a magnetic field to the mixed sample, or a method for providing information necessary for diagnosing an infectious disease. to provide.
또 다른 양상은 상기 자성 면역 입자와 개체로부터 분리된 시료를 접촉시켜 혼합하는 단계, 및 상기 혼합된 시료에 자기장을 인가하여 병원성 물질을 포획한 자성 면역 입자를 시료로부터 제거하는 단계를 포함하는 개체의 감염성 질병을 치료하는 방법을 제공한다.Another aspect is the method of contacting and mixing the magnetic immune particles with a sample separated from the individual, and applying a magnetic field to the mixed sample to remove the magnetic immune particles that have captured pathogenic substances from the sample. Methods for treating infectious diseases are provided.
상기 방법에 있어서, 상기 시료는 동물 (인간을 포함하거나 포함하지 않음)의 생체로부터 분리된 생물학적 시료 (예컨대, 혈액 (예컨대, 전혈), 혈장, 혈청, 림프액, 뇌척수액 등의 체액, 또는 세포, 또는 조직), 식수 (예컨대, 지하수, 수돗물, 생수, 정수, 약수 등), 각종 식품, 생체에 직접 작용하는 각종 위생 용품, 식기, 주방 용품, 환경 시료 (예컨대, 토양, 해수, 하천수, 등) 등으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되는 것은 아니고, 병원성 물질의 검출 및/또는 제거가 필요한 모든 대상일 수 있다. 상기 시료는 그 자체가 유체이거나, 적절한 매질 (예컨대, 정제수, 멸균 버퍼 등)에 현탁된 현탁액 형태일 수 있다.In the above method, the sample is a biological sample (eg, blood (eg, whole blood), body fluid such as plasma, serum, lymph, cerebrospinal fluid, or cells, separated from a living body of an animal (including or not including a human), or tissue), drinking water (e.g., ground water, tap water, bottled water, purified water, mineral water, etc.), various foods, various sanitary products that directly act on the living body, tableware, kitchen utensils, environmental samples (e.g., soil, seawater, river water, etc.), etc. It may be one or more selected from the group consisting of, but is not limited thereto, and may be any subject requiring detection and/or removal of pathogenic substances. The sample may be in the form of a fluid itself or a suspension suspended in an appropriate medium (eg, purified water, sterile buffer, etc.).
상기 자성 면역 입자와 시료를 접촉시켜 혼합하는 단계는, 체외에서 수행될 수 있으며, 체외에서 상기 자성 면역 입자와 상기 시료를 함께 배양하는 단계를 포함할 수 있다.The contacting and mixing of the magnetic immune particles and the sample may be performed outside the body, and may include culturing the magnetic immune particles and the sample together outside the body.
상기 체외에서 배양하는 단계는 세포 배양에 통상적으로 사용되는 배지, 버퍼액, 식염수, 식수, 생물학적 시료 자체 등을 사용하여 통상적인 조건에서 수행될 수 있다. 예컨대, 0 내지 40℃ 또는 2 내지 38℃의 온도 조건에서 1초 내지 96시간, 1초 내지 48시간, 1초 내지 24시간, 예컨대, 1초 내지 12시간, 1초 내지 6시간, 1초 내지 120분, 또는 1초 내지 60분 동안 배양하는 단계를 포함할 수 있다.The in vitro culturing step may be performed under conventional conditions using a medium, buffer solution, saline, drinking water, biological sample itself, etc. commonly used for cell culture. For example, 1 second to 96 hours, 1 second to 48 hours, 1 second to 24 hours, for example, 1 second to 12 hours, 1 second to 6 hours, 1 second to 24 hours at a temperature condition of 0 to 40 ° C. or 2 to 38 ° C. It may include incubating for 120 minutes, or 1 second to 60 minutes.
또한, 상기 자기장을 인가하는 단계는 체외에서 수행되는 것일 수 있다.Also, the step of applying the magnetic field may be performed outside the body.
상기 방법은, 상기 혼합된 시료에 자기장을 인가하는 단계 이후에, 인가된 자기장 (자기력)을 이용하여 자성 면역 입자를 시료로부터 분리 (또는 제거)하는 단계를 추가로 포함할 수 있다. 이 때 분리된 자성 면역 입자는 시료 내의 병원성 물질과 결합하였거나 시료 내의 병원성 물질을 내부에 포획한 상태일 수 있다. 이 단계는 체외에서 수행되는 것일 수 있고, 이 단계를 통하여, 시료로부터 병원성 물질이 제거될 수 있다.The method may further include, after applying a magnetic field to the mixed sample, separating (or removing) the magnetic immune particles from the sample using the applied magnetic field (magnetic force). At this time, the separated magnetic immune particles may be bound to the pathogenic substances in the sample or may be in a state of capturing the pathogenic substances in the sample. This step may be performed outside the body, and pathogenic substances may be removed from the sample through this step.
상기 치료 방법은, 상기 혼합된 시료에 자기장을 인가하는 단계 또는 인가된 자기장 (자기력)을 이용하여 자성 면역 입자를 시료로부터 분리 (또는 제거)하는 단계 이후에, 상기 자성 면역 입자가 제거된 시료를 체외에서 다시 시료를 제공하였던 개체의 생체 내로 주입하는 단계를 추가로 포함할 수 있다. 이 때 상기 시료로부터 제거된 자성 면역 입자는 시료 내의 병원성 물질과 결합하였거나 시료 내의 병원성 물질을 내부에 포획한 상태일 수 있다. 따라서, 상기 개체의 생체 내로 다시 주입되는 시료는, 병원성 물질 및 자성 면역 입자가 모두 제거된 것일 수 있다.In the treatment method, after the step of applying a magnetic field to the mixed sample or the step of separating (or removing) the magnetic immune particles from the sample using the applied magnetic field (magnetic force), the sample from which the magnetic immune particles are removed is treated. A step of injecting the sample into the living body of the individual who provided the sample again outside the body may be further included. At this time, the magnetic immune particles removed from the sample may be bound to the pathogenic substance in the sample or may be in a state of trapping the pathogenic substance in the sample. Accordingly, the sample injected back into the body of the individual may be a sample from which pathogenic substances and magnetic immune particles are all removed.
상기 방법은 상기 시료로부터 분리 (또는 제거)된 자성 면역 입자에 포획된 병원성 물질을 분석하는 단계를 추가로 포함할 수 있다. 상기 분석은 상기 병원성 물질 (예컨대, 세균, 진균, 바이러스, 기생충, 프라이온, 독소 (예컨대, 내독성 물질 (endotoxin)), 항원 단백질 등)의 분석에 통상적으로 사용되는 수단을 통하여 수행될 수 있다.The method may further include analyzing pathogenic substances captured by magnetic immune particles separated (or removed) from the sample. The analysis may be performed by means commonly used for analysis of the pathogenic substances (eg, bacteria, fungi, viruses, parasites, prions, toxins (eg, endotoxins), antigenic proteins, etc.) .
상기 방법에 있어서, 자성 면역 입자의 측정을 용이하게 하기 위하여, 상기 자성 면역 입자는 검출 가능한 표지 물질로 표지된 세포 (세포막) 및/또는 자성 입자를 사용하여 얻어진 것일 수 있다. 상기 표지 물질은 통상적인 방법으로 검출 가능한 모든 물질 (소분자 화합물 또는 단백질 또는 폴리/올리고 펩타이드 등) 일 수 있으며, 예컨대, 형광 물질, 발광 물질 등으로 이루어진 군에서 선택된 1종 이상일 수 있다.In the above method, in order to facilitate measurement of the magnetic immune particles, the magnetic immune particles may be obtained using cells (cell membranes) and/or magnetic particles labeled with a detectable labeling substance. The labeling material may be any material (small molecule compound, protein, poly/oligo peptide, etc.) detectable by a conventional method, and may be, for example, at least one selected from the group consisting of a fluorescent material and a light emitting material.
상기 방법은, 상기 자기장을 인가하기 전에 옵소닌, 혈액, 및 혈장으로 이루어진 군에서 선택된 1종 이상을 주입하는 단계를 더 포함할 수 있다. 상기 옵소닌은 MBL, FCN-1, 및 IgG 항체로 이루어진 군에서 선택된 1종 이상일 수 있다. 상기 혈액 또는 혈장은, 상기 시료를 제공한 개체 또는 다른 개체 (예컨대 타인)로부터 분리된 혈액 또는 혈장일 수 있다. 예컨대, 상기 혈액 또는 혈장은 상기 시료를 제공한 개체가 질병에 걸리기 전 또는 후에 상기 개체로부터 분리된 것이거나, 특정 병원성 물질에 감염되었던 다른 개체 (예컨대 타인)로부터 분리된 것이거나, 특정 병원성 물질에 대한 백신을 접종받은 다른 개체 (예컨대 타인)로부터 분리된 것일 수 있다. 상기 혈액 또는 혈장에는 항체나 옵소닌이 풍부하여 상기 자성 면역 입자의 병원성 물질에 대한 포획능 (검출 또는 제거능)을 더욱 향상시킬 수 있다.The method may further include injecting at least one selected from the group consisting of opsonin, blood, and plasma before applying the magnetic field. The opsonin may be at least one selected from the group consisting of MBL, FCN-1, and IgG antibodies. The blood or plasma may be blood or plasma separated from an individual who provided the sample or another individual (eg, another person). For example, the blood or plasma was isolated from the individual before or after the individual who provided the sample suffered from a disease, or was isolated from another individual (eg, another person) who had been infected with a specific pathogenic substance, or was isolated from a specific pathogenic substance. It may be isolated from other individuals (eg, other people) who have been vaccinated against. Since the blood or plasma is rich in antibodies or opsonins, the ability to capture (detection or remove) pathogenic substances of the magnetic immune particles can be further improved.
상기 방법에 있어서, 상기 옵소닌, 혈액, 및 혈장으로 이루어진 군에서 선택된 1종 이상을 주입하는 단계는, 자기장을 인가하기 전이라면 어느 단계에서나 수행될 수 있다. 예컨대, 상기 자성 면역 입자와 시료를 접촉시켜 혼합하는 단계 이전에, 자성 면역 입자 또는 시료에 상기 옵소닌, 혈액, 및 혈장으로 이루어진 군에서 선택된 1종 이상을 주입하여 혼합하거나, 상기 자성 면역 입자와 시료를 접촉시켜 혼합하는 단계에서 또는 혼합 후에, 상기 옵소닌, 혈액, 및 혈장으로 이루어진 군에서 선택된 1종 이상을 추가로 주입하여 혼합할 수 있다.In the method, the step of injecting at least one selected from the group consisting of opsonin, blood, and plasma may be performed at any stage before applying the magnetic field. For example, prior to mixing the magnetic immune particles and the sample by injecting and mixing at least one selected from the group consisting of opsonin, blood, and plasma into the magnetic immune particle or the sample, or mixing the magnetic immune particle with the magnetic immune particle In the step of contacting and mixing the samples or after mixing, at least one selected from the group consisting of the opsonin, blood, and plasma may be additionally injected and mixed.
상기 개체는 인간 또는 인간을 제외한 동물 (예컨대, 포유류 등)일 수 있다.The subject may be a human or a non-human animal (eg, mammal, etc.).
상기 방법은, 상기 자성 면역 입자를 포함하는 병원성 물질 검출 또는 제거용 키트; 감염성 질병의 진단용 키트; 또는 상기 자성 면역 입자를 이용한 감염성 질병을 치료하는 장치로 구현될 수 있다.The method may include a kit for detecting or removing pathogenic substances including the magnetic immune particles; kits for diagnosis of infectious diseases; Alternatively, it may be implemented as a device for treating an infectious disease using the magnetic immune particles.
상기 키트 또는 장치의 모식도를 도 10에 나타내었으나, 이에 제한되는 것은 아니다.A schematic diagram of the kit or device is shown in FIG. 10, but is not limited thereto.
구체적으로, 상기 키트 또는 장치는 반응부 및 자기장 형성부를 포함할 수 있다.Specifically, the kit or device may include a reaction unit and a magnetic field forming unit.
상기 반응부는 상기 자성 면역 입자 및 시료를 접촉시켜 혼합, 배양, 또는 반응시키거나 자성 면역 입자와 시료가 접촉하여 반응이 일어난 반응물이 투입되는 부분을 지칭할 수 있다. 상기 키트 또는 장치에 있어서, 상기 자성 면역 입자는 반응부에 포함되어 있거나, 또는 미리 시료와 반응하여 반응물 형태로 반응부에 적용되거나, 또는 반응부와 구분되어 별도로 구비되는 것일 수 있으며, 적절한 매질 (예컨대 버퍼)에 분산된 분산액 형태로 구비될 수 있다.The reaction part may refer to a part into which a reactant in which the magnetic immune particles and the sample are mixed, cultured, or reacted by contacting each other, or where a reaction occurs by contacting the magnetic immune particle and the sample, is introduced. In the kit or device, the magnetic immune particles may be included in the reaction unit, react with the sample in advance and applied to the reaction unit in the form of a reactant, or may be provided separately from the reaction unit, and may be prepared in an appropriate medium ( For example, it may be provided in the form of a dispersion dispersed in a buffer).
상기 자기장 형성부는 자기장을 형성하는 부분을 지칭할 수 있다. 상기 자기장 형성부는 반응부에 포함되어 있거나, 반응부와 구분되어 별도로 구비되거나, 반응부의 전부 또는 일부에 일체로 구비된 것일 수 있다. 상기 자기장 형성부가 반응부와 구분되어 존재하는 경우, 반응부와 자기장 형성부는 유체가 이동할 수 있는 채널로 연결된 것일 수 있다. 자성 면역 입자에 부착된 자성 입자가 자기장 형성부에 의해 형성된 자기장에 의해 자기장 형성부로 이동하게 되어 자성 면역 입자를 분리할 수 있다. 이 때, 상기 분리된 자성 면역 입자는 병원성 물질을 포획한 것일 수 있다. 예컨대, 상기 자기장 형성부는 자석 (예컨대, 전자기 유도에 의한 전자석, 영구자석 등)과 같이 자기장을 인가할 수 있는 수단을 하나 이상 포함할 수 있다.The magnetic field forming part may refer to a part forming a magnetic field. The magnetic field forming unit may be included in the reaction unit, provided separately from the reaction unit, or integrally provided with all or part of the reaction unit. When the magnetic field forming unit exists separately from the reaction unit, the reaction unit and the magnetic field forming unit may be connected by a channel through which fluid can move. The magnetic particles attached to the magnetic immune particles are moved to the magnetic field forming unit by the magnetic field formed by the magnetic field forming unit, so that the magnetic immune particles can be separated. In this case, the separated magnetic immune particles may capture pathogenic substances. For example, the magnetic field generator may include one or more means capable of applying a magnetic field such as a magnet (eg, an electromagnet by electromagnetic induction, a permanent magnet, etc.).
상기 일체형이거나 별도로 구비된 반응부 및/또는 자기장 형성부의 각각의 개수 역시 특별한 제한이 없으며, 각각 하나 이상일 수 있다. 예컨대, 반응부와 자기장 형성부가 별도로 구비된 경우, 하나 이상, 예컨대, 1 내지 10개의 반응부가 1 내지 10개의 자기장 형성부와 연결되거나, 반응부와 자기장 형성부가 일체를 형성하는 경우, 일체의 반응부와 자기장 형성부가 1 내지 10개 구비된 것일 수 있으나, 이에 제한되는 것은 아니다.The number of integral or separately provided reaction units and/or magnetic field generators is also not particularly limited, and may be one or more. For example, when the reaction unit and the magnetic field forming unit are provided separately, one or more, for example, 1 to 10 reaction units are connected to 1 to 10 magnetic field forming units, or when the reaction unit and the magnetic field forming unit are integrally formed, integral reaction It may be provided with 1 to 10 parts and magnetic field forming parts, but is not limited thereto.
상기 키트 또는 장치는 시료 (혈액 등 유체 상태), 자성 면역 입자 (예컨대 분산액 상태), 그 외 추가 성분 (예컨대 옵소닌, 시료 외의 혈액 또는 혈장 등), 또는 이들의 반응물이 주입되는, 반응부와 연결된 하나 이상의 주입부를 포함할 수 있다. 상기 주입부의 반응부와 연결되지 않은 다른 일측은 개체와 직접 연결되거나, 분리된 시료와 연결될 수 있고, 그로 인해 상기 주입부를 통해, 시료가 주입될 수 있다. 또한, 상기 주입부의 반응부와 연결되지 않은 다른 일측을 통해 자성 면역 입자가 주입될 수 있다. 더하여, 상기 주입부의 반응부와 연결되지 않은 다른 일측을 통해 옵소닌, 시료 외의 혈액 또는 혈장 등의 추가 성분이 주입될 수 있다.The kit or device includes a reaction unit into which a sample (fluid state such as blood), magnetic immune particles (eg dispersion state), other additional components (eg opsonin, blood or plasma other than a sample), or a reaction product thereof are injected. It may include one or more injectors connected thereto. The other side of the injector that is not connected to the reaction unit may be directly connected to an object or connected to a separated sample, and as a result, the sample may be injected through the injector. In addition, magnetic immune particles may be injected through the other side of the injection unit that is not connected to the reaction unit. In addition, additional components such as opsonin and blood or plasma other than the sample may be injected through the other side of the injection unit that is not connected to the reaction unit.
상기 키트 또는 장치는 상기 자기장 형성부와 연결된, 자기장에 의하여 포획된 자성 면역 입자를 배출하는 하나 이상의 배출부를 추가로 포함할 수 있다. 상기 배출부는 배출된 자성 면역 입자가 포획한 병원성 물질을 검출할 수 있는 검출 수단을 포함하는 검출부를 추가로 구비할 수 있다.The kit or device may further include one or more discharge units connected to the magnetic field forming unit and discharging the magnetic immune particles captured by the magnetic field. The discharge unit may further include a detection unit including a detection means capable of detecting pathogenic substances captured by the discharged magnetic immune particles.
상기 키트 또는 장치에 있어서, 상기 자기장 형성부에서는 자성 면역 입자가 자기장에 의하여 시료로부터 분리되어 따로 수집 또는 농축될 수 있다. 상기 자성 면역 입자는 병원성 물질을 포획하였거나 포획하지 않은 모든 자성 면역 입자를 포함할 수 있다. 이 경우, 상기 자성 면역 입자는 배출되지 않고, 상기 자기장 형성부 내에서 또는 상기 자기장 형성부와 연결된 포집부에서 여과, 수집, 농축, 또는 제거될 수 있다.In the kit or device, in the magnetic field generator, the magnetic immune particles may be separated from the sample by the magnetic field and separately collected or concentrated. The magnetic immune particles may include all magnetic immune particles that may or may not capture pathogenic substances. In this case, the magnetic immune particles may be filtered, collected, concentrated, or removed in the magnetic field forming unit or in a collecting unit connected to the magnetic field forming unit without being discharged.
상기 키트 또는 장치는 시료 배출부를 더 포함할 수 있다.The kit or device may further include a sample outlet.
상기 시료 배출부는 시료에 자기장을 인가하여 분리된 시료가 배출되는 부분을 지칭할 수 있다. 상기 시료 배출부는 1개 이상일 수 있다. 유체의 흐름이 있는 상태에서 자기장 인가에 의해 한 곳으로 이동하여 분리된 시료, 예컨대 자성 면역 입자가 제거된 시료가 상기 시료 배출부를 통해 배출되어 따로 농축 또는 분리될 수 있다. 상기 자성 면역 입자는 병원성 물질을 포획하였거나 포획하지 않은 모든 자성 면역 입자를 포함할 수 있다. 따라서, 상기 시료 배출부를 통해 배출된 시료는 병원성 물질 및 자성 면역 입자 모두가 제거된 것일 수 있다.The sample discharge unit may refer to a portion from which a sample separated by applying a magnetic field to the sample is discharged. The sample outlet may be one or more. A sample moved to one place by application of a magnetic field in a fluid flow state, for example, a sample from which magnetic immune particles have been removed, is discharged through the sample discharge unit and can be separately concentrated or separated. The magnetic immune particles may include all magnetic immune particles that may or may not capture pathogenic substances. Accordingly, the sample discharged through the sample outlet may be free of both pathogenic substances and magnetic immune particles.
상기 키트 또는 장치에 있어서, 상기 시료 배출부는 상기 주입부와 연결되거나, 개체와 연결될 수 있다. 따라서, 상기 시료 배출부를 통해 배출된, 자성 면역 입자가 제거된 시료를 다시 상기 주입부를 통해 주입하여 시료 내 병원성 물질을 제거하는 과정을 반복하여 완전히 제거되지 않은 병원성 물질을 보다 더 효과적으로 제거할 수 있다. 또한, 상기 시료 배출부를 통해 배출된, 자성 면역 입자가 제거된 시료를 다시 개체에 주입할 수 있다. 상기 자성 면역 입자는 병원성 물질을 포획하였거나 포획하지 않은 모든 자성 면역 입자를 포함할 수 있다. 따라서, 상기 개체에 다시 주입되는 시료는 병원성 물질 및 자성 면역 입자 모두가 제거된 것일 수 있다.In the kit or device, the sample discharge unit may be connected to the injection unit or to the subject. Therefore, by repeating the process of removing the pathogenic substances in the sample by injecting the sample from which the magnetic immune particles are removed, discharged through the sample discharge unit, through the injection unit, the pathogenic substances that are not completely removed can be removed more effectively. . In addition, the sample from which the magnetic immune particles are removed, discharged through the sample discharge unit, may be injected into the subject again. The magnetic immune particles may include all magnetic immune particles that may or may not capture pathogenic substances. Accordingly, the sample injected again into the subject may be a sample from which both pathogenic substances and immune particles have been removed.
일 구체예에 따르면, 상기 키트 또는 장치는 유체 장치의 형태로 구현될 수 있다. 특히 상기 감염성 질병을 치료하는 장치의 경우, 병원성 물질 및 자성 면역 입자가 제거된 시료를 다시 개체에 주입하는 방식에 의해 구현될 수 있다.According to one embodiment, the kit or device may be implemented in the form of a fluidic device. In particular, in the case of a device for treating an infectious disease, it may be implemented by injecting a sample from which pathogenic substances and magnetic immune particles are removed back into the subject.
상기 방법, 키트, 및 장치에서 언급된 용어 또는 요소 중 상기 자성 면역 입자 및 조성물에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 자성 면역 입자 및 조성물에 대한 설명에서 언급된 바와 같은 것으로 이해된다.Among the terms or elements mentioned in the methods, kits, and devices, the same ones mentioned in the description of the magnetic immune particles and compositions are understood to be the same as those mentioned in the description of the magnetic immune particles and compositions above.
또 다른 양상은 상기 자성 면역 입자의 병원성 물질의 검출 또는 제거 용도, 또는 감염성 질병의 진단 또는 치료 용도를 제공한다.Another aspect provides a use of the magnetic immune particle for detecting or removing a pathogenic substance, or for diagnosing or treating an infectious disease.
또 다른 양상은 상기 자성 면역 입자의, 병원성 물질의 검출 또는 제거용 조성물 또는 키트; 감염성 질병의 진단용 조성물 또는 키트; 또는 감염성 질병의 치료용 조성물 또는 장치를 제조하기 위한 용도, 또는 상기 자성 면역 입자의 감염성 질병의 치료용 장치에 사용되기 위한 용도를 제공한다.Another aspect is a composition or kit for detecting or removing pathogenic substances from the magnetic immune particles; compositions or kits for diagnosis of infectious diseases; Alternatively, it provides a use for preparing a composition or device for treating an infectious disease, or a use for using the magnetic immune particles for a device for treating an infectious disease.
상기 용도에서 언급된 용어 또는 요소 중 상기 자성 면역 입자, 조성물, 방법, 키트, 및 장치에 대한 설명에서 언급된 것과 같은 것은, 앞에서 상기 자성 면역 입자, 조성물, 방법, 키트, 및 장치에 대한 설명에서 언급된 바와 같은 것으로 이해된다.Among the terms or elements mentioned in the above use, the same ones mentioned in the description of the magnetic immune particles, compositions, methods, kits, and devices are the same as those mentioned in the description of the magnetic immune particles, compositions, methods, kits, and devices above. It is understood that as mentioned.
일 양상에 따른 자성 면역 입자는, 백혈구 유래의 세포막을 포함하므로 생체 내 부작용이 최소화될 수 있고, 상기 세포막이 유래된 백혈구의 특성에 의해 다양한 종류의 병원성 물질을 검출할 수 있다. 또한 자성 입자를 포함하므로 자기장을 인가함으로써 자성 면역 입자를 간단하게 분리해낼 수 있어, 병원성 물질을 더욱 효과적으로 검출하고 제거할 수 있다. 또한 상기 자성 면역 입자를 치료에 사용하는 경우, 체내로의 자성 면역 입자의 주입 가능성을 최소화할 수 있어, 생체 내 부작용을 현저히 감소시킬 수 있다.Since the magnetic immune particle according to one aspect includes a leukocyte-derived cell membrane, in vivo side effects can be minimized, and various types of pathogenic substances can be detected by characteristics of the leukocyte from which the cell membrane is derived. In addition, since it contains magnetic particles, it is possible to simply separate magnetic immune particles by applying a magnetic field, so that pathogenic substances can be more effectively detected and removed. In addition, when the magnetic immune particles are used for treatment, the possibility of injecting the magnetic immune particles into the body can be minimized, and side effects in vivo can be remarkably reduced.
도 1은 일 실시예에 따른 자성 면역 입자의 생성 방법을 나타낸 모식도이다.1 is a schematic diagram showing a method of generating magnetic immune particles according to an embodiment.
도 2는 일 실시예에 따른 자성 면역 입자의 병원성 박테리아 (MRSA 및 ESBL-EC)에 대한 포획능 (검출 또는 제거능)을 나타낸 도이다 (HL60(N): 호중구 유래 자성 면역 입자; U937(M): 대식세포 유래 자성 면역 입자; hWBC: 백혈구 유래 자성 면역 입자).2 is a diagram showing the ability to capture (detection or remove) pathogenic bacteria (MRSA and ESBL-EC) of magnetic immune particles according to an embodiment (HL60(N): neutrophil-derived magnetic immune particles; U937(M) : macrophage-derived magnetic immune particles; hWBC: leukocyte-derived magnetic immune particles).
도 3은 일 실시예에 따른 자성 면역 입자의 바이러스 (CMV 및 RSV)에 대한 포획능 (검출 또는 제거능)을 나타낸 도이다 (HL60(N): 호중구 유래 자성 면역 입자; U937(M): 대식세포 유래 자성 면역 입자; hWBC: 백혈구 유래 자성 면역 입자).3 is a diagram showing the ability (detection or removal) of magnetic immune particles according to an embodiment to capture viruses (CMV and RSV) (HL60(N): neutrophil-derived magnetic immune particles; U937(M): macrophages). derived magnetic immune particles; hWBC: leukocyte-derived magnetic immune particles).
도 4는 일 실시예에 따른 자성 면역 입자의 바이러스 유래 항원 단백질 (ZIKV E Protein 및 SARS-CoV-2 S Protein)에 대한 포획능 (검출 또는 제거능)을 나타낸 도이다 (HL60(N): 호중구 유래 자성 면역 입자; U937(M): 대식세포 유래 자성 면역 입자; hWBC: 백혈구 유래 자성 면역 입자).4 is a diagram showing the ability to capture (detection or remove) virus-derived antigen proteins (ZIKV E Protein and SARS-CoV-2 S Protein) of magnetic immune particles according to an embodiment (HL60(N): derived from neutrophils). magnetic immune particles; U937(M): macrophage-derived magnetic immune particles; hWBC: leukocyte-derived magnetic immune particles).
도 5는 일 실시예에 따른 백혈구 유래 자성 면역 입자의 SARS-CoV-2 바이러스 (USA-WA1/2020) 유래 항원 단백질 및 SARS-CoV-2 변이 바이러스 (Alpha, Beta, 및 Delta) 유래 항원 단백질에 대한 포획능 (검출 또는 제거능)을 나타낸 도이다.5 shows the antigenic proteins derived from SARS-CoV-2 virus (USA-WA1/2020) and SARS-CoV-2 mutant viruses (Alpha, Beta, and Delta) of leukocyte-derived magnetic immune particles according to an embodiment. It is a diagram showing the capture ability (detection or removal ability) for
도 6은 일 실시예에 따른 세포막 표면 분자 (CR1, CR3)가 불활성화된 백혈구 유래 자성 면역 입자의 각종 병원체에 대한 포획능 (검출 또는 제거능) 감소 양상을 나타낸 도이다 (WBC-MNVs: 백혈구 유래 자성 면역 입자; CR1 blocked WBC-MNVs: CR1이 불활성화된 백혈구 유래 자성 면역 입자; CR3 blocked WBC-MNVs: CR3이 불활성화된 백혈구 유래 자성 면역 입자; CR1&CR3 blocked WBC-MNVs: CR1 및 CR3이 불활성화된 백혈구 유래 자성 면역 입자; MNPs: 세포막 표면을 포함하지 않는 자성 입자).6 is a diagram showing the decrease in the ability to capture (detection or remove) various pathogens of leukocyte-derived magnetic immune particles in which cell membrane surface molecules (CR1, CR3) are inactivated according to an embodiment (WBC-MNVs: leukocyte-derived Magnetic immune particles; CR1 blocked WBC-MNVs: magnetic immune particles derived from leukocytes in which CR1 is inactivated; CR3 blocked WBC-MNVs: magnetic immune particles derived from white blood cells in which CR3 is inactivated; CR1&CR3 blocked WBC-MNVs: CR1 and CR3 inactivated white blood cell-derived magnetic immune particles; MNPs: magnetic particles that do not contain a cell membrane surface).
도 7은 일 실시예에 따른 백혈구 유래 자성 면역 입자를 병원성 박테리아를 포함하는 혈액에 옵소닌 (MBL 또는 FCN-1)과 함께 주입한 경우, 상기 백혈구 유래 자성 면역 입자의 병원성 박테리아에 대한 포획능 (검출 또는 제거능)을 분석한 결과를 나타낸 도이다.7 is a graph illustrating the ability of leukocyte-derived magnetic immune particles to capture pathogenic bacteria when the leukocyte-derived magnetic immune particles are injected together with opsonin (MBL or FCN-1) into blood containing pathogenic bacteria according to an embodiment ( It is a diagram showing the results of analyzing the detection or removal ability).
도 8은 일 실시예에 따른 백혈구 유래 자성 면역 입자를 바이러스 또는 바이러스 유래 항원 단백질을 포함하는 TBS 버퍼에 옵소닌 (MBL, FCN-1, 또는 C3b)과 함께 주입한 경우, 상기 백혈구 유래 자성 면역 입자의 바이러스 또는 바이러스 유래 항원 단백질에 대한 포획능 (검출 또는 제거능)을 분석한 결과를 나타낸 도이다.8 is a diagram illustrating leukocyte-derived magnetic immune particles according to an embodiment when injected together with opsonin (MBL, FCN-1, or C3b) into a TBS buffer containing a virus or virus-derived antigen protein, the leukocyte-derived magnetic immune particles It is a diagram showing the result of analyzing the capture ability (detection or removal ability) for the virus or virus-derived antigen protein.
도 9는 일 실시예에 따른 백혈구 유래 자성 면역 입자를 SARS-CoV-2 S protein을 포함하는 TBS 버퍼, 인간 혈액 샘플, 또는 인간 혈장 샘플에 옵소닌 (MBL, FCN-1, FCN-2, 또는 IgG)과 함께 주입한 경우, 상기 백혈구 유래 자성 면역 입자의 SARS-CoV-2 S protein에 대한 포획능 (검출 또는 제거능)을 분석한 결과를 나타낸 도이다.9 is a diagram illustrating the opsonization of leukocyte-derived magnetic immune particles (MBL, FCN-1, FCN-2, or IgG), it is a diagram showing the results of analyzing the ability (detection or removal ability) of the leukocyte-derived magnetic immune particles for SARS-CoV-2 S protein.
도 10은 일 실시예에 따른 자성 면역 입자 기반의 시료 내 병원성 물질 수집, 농축, 및 제거 방법을 개략적으로 나타낸 모식도이다.10 is a schematic diagram schematically illustrating a method for collecting, concentrating, and removing pathogenic substances in a magnetic immune particle-based sample according to an embodiment.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are intended to illustrate the present invention by way of example, and the scope of the present invention is not limited to these examples.
실시예 1: 백혈구 유래 자성 면역 입자의 준비 Example 1: Preparation of leukocyte-derived magnetic immune particles
분리된 혈액 시료에서 적혈구를 제거하여, 백혈구 시료를 획득하였다. 상기 획득된 백혈구를 1시간 동안 4℃에서 저삼투압처리 후 5분간 4℃에서 원심분리 (Centrifuge 5424R, Eppendorf, Germany)하여, 백혈구로부터 세포막만을 분리하고 정제하였다. 상기 수득된 백혈구 유래 세포막을 4℃, 20 kHz, 150 W로 10분간 초음파 처리 (Q700 Ultra-Sonicator, Qsonica, USA)하여, 세포막을 더 작은 단위로 쪼개는 과정을 실시하였다. 상기 백혈구 시료는 여러 타입의 백혈구가 혼합된 상태의 시료를 사용하였으나, 이제 제한되지 않고, 백혈구 유래 자성 면역 입자를 제조하기 위해 다양한 종류의 백혈구, 또는 그들의 혼합물이 사용될 수 있다. 예컨대, 백혈구 유래 자성 면역 입자를 제조하기 위해 호중구, 호산구, 호염기구, 단핵구, 림프구, 및 대식세포 중 선택된 하나 이상의 백혈구가 사용될 수 있다.Red blood cells were removed from the separated blood sample to obtain a white blood cell sample. The obtained white blood cells were subjected to low osmotic treatment at 4° C. for 1 hour and then centrifuged at 4° C. for 5 minutes (Centrifuge 5424R, Eppendorf, Germany) to separate and purify only cell membranes from the white blood cells. The obtained leukocyte-derived cell membrane was sonicated (Q700 Ultra-Sonicator, Qsonica, USA) at 4° C., 20 kHz, and 150 W for 10 minutes to break the cell membrane into smaller units. Although the leukocyte sample is a mixture of various types of leukocytes, it is not limited thereto, and various types of leukocytes or a mixture thereof may be used to prepare the leukocyte-derived magnetic immune particles. For example, one or more white blood cells selected from among neutrophils, eosinophils, basophils, monocytes, lymphocytes, and macrophages may be used to prepare the white blood cell-derived magnetic immune particles.
한편, 자성 입자로는 표면이 카르복시산 개질된 산화철 자성 입자 (Carboxyl-Adembeads, Ademtech, France)를 사용하였다.Meanwhile, as the magnetic particles, iron oxide magnetic particles (Carboxyl-Adembeads, Ademtech, France) whose surface is modified with carboxylic acid were used.
상기와 같이 준비된 백혈구 유래 세포막을 Avanti mini extruder (Avanti Polar Lipids, Alabaster, AL, USA)에서 상기 자성 입자와 압출하여, 자성 면역 입자를 준비하였다. 구체적으로, 도 1에 나타낸 타입 2 방식과 같이, 상기 준비된 세포막과 상기 자성 입자를 혼합하고 압출하여, 상기 세포막 내부에 상기 자성 입자를 함입시킨 자성 면역 입자를 준비하였다.Magnetic immune particles were prepared by extruding the prepared leukocyte-derived cell membrane with the magnetic particles using an Avanti mini extruder (Avanti Polar Lipids, Alabaster, AL, USA). Specifically, as in the type 2 method shown in FIG. 1, the prepared cell membrane and the magnetic particles were mixed and extruded to prepare magnetic immune particles incorporating the magnetic particles into the cell membrane.
실험예 1: 병원성 박테리아에 대한 백혈구 유래 자성 면역 입자의 포획능 (검출 또는 제거능) 평가Experimental Example 1: Evaluation of capture ability (detection or removal ability) of leukocyte-derived magnetic immune particles for pathogenic bacteria
본 실험예에서는 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자가 혈액 내 병원체를 포획 (검출 또는 제거)할 수 있는지 확인하기 위하여, 인간 혈액 샘플에 병원성 박테리아를 임의로 접종한 후 상기 백혈구 유래 자성 면역 입자를 주입하여 자기장을 가해 배양액 내의 상기 접종된 박테리아의 변화를 측정하였다.In this experimental example, in order to confirm whether the leukocyte-derived magnetic immune particles prepared in Example 1 can capture (detect or remove) pathogens in blood, human blood samples are randomly inoculated with pathogenic bacteria, and then the leukocyte-derived magnetic immune particles are randomly inoculated. A magnetic field was applied by injecting the particles to measure the change of the inoculated bacteria in the culture medium.
구체적으로, 항응고 처리된 인간 혈액 (적십자, South Korea) 샘플 1 mL에 그람 양성 박테리아인 MRSA (Methicillin Resistant Staphylococcus aureus) 또는 그람 음성 박테리아인 ESBL-EC (Extended-Spectrum Beta-Lactamases Producing Escherichia coli)를, 104 CFU/mL 농도가 되도록 접종하고 37℃에서 10분 동안 배양하였다. 배양이 끝난 혈액 샘플에 상기 백혈구 유래 자성 면역 입자를 주입하여, 상기 자성 면역 입자의 농도가 최종적으로 150 μg/mL가 되도록 하였다. 그 후, 37℃에서 20분의 반응을 거친 후, 15분 동안 자석을 이용하여 혈액 샘플 내의 자성 면역 입자를 특정 위치에 고정하여 자성 면역 입자가 상층액에 포함되지 않도록 한 후, 상층액을 채취하여 상층액 내의 박테리아의 CFU (colony forming unit)를 확인하였다. 구체적으로, 상기 상층액 (100 μL)을 900 μL의 생리 식염수에 희석하여 미생물 분석기 (EDDY JET2, IUL micro, USA)를 이용하여 LB agar 배지에 도말하고, 37℃에서 24시간 동안 배양한 후, 미생물 콜로니 카운터 (Sphereflash colony counter and zone reader, IUL micro, USA)를 이용하여 LB agar 배지상에 생성된 박테리아의 CFU를 측정하였다. 상술한 바와 동일한 방법으로 혈액 샘플에 상기 박테리아를 접종하여 배양한 시료로서, 상기 백혈구 유래 자성 면역 입자는 주입되지 않은 시료를 대조군으로 사용하였다. 상기 대조군에서 측정된 박테리아의 CFU 값을 기준으로 상기 실험군에서 측정된 박테리아의 CFU 값의 감소 수준을 백분율 (%)로 계산하여, 상기 박테리아에 대한 상기 백혈구 유래 자성 면역 입자의 포획율 (또는 제거율, %)을 평가하였다. 또한, 실시예 1의 방법과 동일한 방법으로 제조된, 호중구 (HL60) 유래 세포막을 이용하는 호중구 유래 자성 면역 입자 및 대식세포 (U937) 유래 세포막을 이용하는 대식세포 유래 자성 면역 입자를 비교군으로 사용하였다.Specifically, the gram-positive bacterium MRSA (Methicillin Resistant Staphylococcus aureus) or the gram-negative bacterium ESBL-EC (Extended-Spectrum Beta-Lactamases Producing Escherichia coli) was added to 1 mL of anticoagulated human blood (Red Cross, South Korea) sample. , 10 4 CFU / mL concentration was inoculated and incubated for 10 minutes at 37 ℃. The leukocyte-derived magnetic immune particles were injected into the cultured blood sample so that the final concentration of the magnetic immune particles reached 150 μg/mL. Then, after 20 minutes of reaction at 37 ° C., the magnetic immune particles in the blood sample are fixed to a specific position using a magnet for 15 minutes to prevent magnetic immune particles from being included in the supernatant, and then the supernatant is collected. to confirm the CFU (colony forming unit) of bacteria in the supernatant. Specifically, the supernatant (100 μL) was diluted in 900 μL of physiological saline, spread on LB agar medium using a microbial analyzer (EDDY JET2, IUL micro, USA), and incubated at 37 ° C. for 24 hours, CFU of bacteria generated on LB agar medium was measured using a microbial colony counter and zone reader (IUL micro, USA). As a sample obtained by inoculating and culturing the bacteria in a blood sample in the same manner as described above, a sample in which the leukocyte-derived magnetic immune particles were not injected was used as a control. Based on the CFU value of the bacteria measured in the control group, the reduction level of the CFU value of the bacteria measured in the experimental group is calculated as a percentage (%), and the capture rate (or removal rate, %) was evaluated. In addition, neutrophil-derived magnetic immune particles using neutrophil (HL60)-derived cell membranes and macrophage-derived magnetic immune particles using macrophage (U937)-derived cell membranes prepared in the same manner as in Example 1 were used as comparative groups.
그 결과, 도 2에 나타낸 바와 같이, 백혈구 유래 자성 면역 입자는 혈액 내 병원성 박테리아를 포획하여 검출 또는 제거할 수 있음을 확인하였고, MRSA 및 ESBL-EC와 같은 항생제 내성을 가지는 박테리아에 대해서도 현저히 우수한 포획율 (약 40 내지 70 %)을 나타냄을 확인하였다.As a result, as shown in FIG. 2, it was confirmed that the leukocyte-derived magnetic immune particles can capture and detect or remove pathogenic bacteria in the blood, and capture remarkably good antibiotic-resistant bacteria such as MRSA and ESBL-EC. rate (about 40 to 70%).
특히, 상기 호중구 유래 자성 면역 입자 및 상기 대식세포 유래 자성 면역 입자와 비교하여, 상기 실시예 1에서 제조된, 여러 타입의 백혈구 혼합물로부터 분리된 세포막을 이용하는 백혈구 유래 자성 면역 입자는 MRSA 및 ESBL-EC와 같은 병원성 박테리아에 대한 포획능 (검출 또는 제거능)이 더욱 우수함을 확인하였다.In particular, compared to the neutrophil-derived magnetic immune particles and the macrophage-derived magnetic immune particles, the white blood cell-derived magnetic immune particles prepared in Example 1 using cell membranes separated from various types of white blood cell mixtures are MRSA and ESBL-EC. It was confirmed that the capture ability (detection or removal ability) for pathogenic bacteria such as
실험예 2: 바이러스에 대한 백혈구 유래 자성 면역 입자의 포획능 (검출 또는 제거능) 평가Experimental Example 2: Evaluation of virus capture ability (detection or removal ability) of leukocyte-derived magnetic immune particles
본 실험예에서는 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자가 혈액 내 병원체를 포획 (검출 또는 제거)할 수 있는지 확인하기 위하여, 인간 혈액 샘플에 바이러스를 임의로 접종한 후 상기 백혈구 유래 자성 면역 입자를 주입하여 자기장을 가해 배양액 내의 상기 접종된 바이러스의 변화를 측정하였다.In this experimental example, in order to check whether the leukocyte-derived magnetic immune particles prepared in Example 1 can capture (detect or remove) pathogens in blood, human blood samples are randomly inoculated with viruses, and then the leukocyte-derived magnetic immune particles was injected and a magnetic field was applied to measure the change of the inoculated virus in the culture medium.
구체적으로, 항응고 처리된 인간 혈액 (적십자, South Korea) 샘플 1 mL에 CMV (cytomegalovirus) 또는 RSV (respiratory syncytial virus)를, 104 PFU/mL 농도가 되도록 접종하고 37℃에서 10분 동안 배양하였다. 배양이 끝난 혈액 샘플에 상기 백혈구 유래 자성 면역 입자를 주입하여, 상기 자성 면역 입자의 농도가 최종적으로 150 μg/mL가 되도록 하였다. 그 후, 37℃에서 20분의 반응을 거친 후, 15분 동안 자석을 이용하여 혈액 샘플 내의 자성 면역 입자를 특정 위치에 고정하여 자성 면역 입자가 상층액에 포함되지 않도록 한 후, 상층액을 채취하여 상층액 내의 바이러스의 RNA 양을 측정하였다. QIAmp viral RNA mini kit (QIAGEN, Germany)를 이용하여 상층액 내에 존재하는 바이러스로부터 핵산을 추출하였고, SYBR PCR master mix (Toyobo, Japan)와 Real time PCR (CFX connect, BIO-RAD, USA)을 이용하여 추출된 핵산을 증폭하여 RNA 양을 측정하였다. 상술한 바와 동일한 방법으로 혈액 샘플에 상기 바이러스를 접종하여 배양한 시료로서, 상기 백혈구 유래 자성 면역 입자는 주입되지 않은 시료를 대조군으로 사용하였다. 상기 대조군에서 측정된 바이러스의 RNA 양을 기준으로 상기 실험군에서 측정된 바이러스의 RNA 양의 감소 수준을 백분율 (%)로 계산하여, 상기 바이러스에 대한 상기 백혈구 유래 자성 면역 입자의 포획율 (또는 제거율, %)을 평가하였다. 또한, 실시예 1의 방법과 동일한 방법으로 제조된, 호중구 (HL60) 유래 세포막을 이용하는 호중구 유래 자성 면역 입자 및 대식세포 (U937) 유래 세포막을 이용하는 대식세포 유래 자성 면역 입자를 비교군으로 사용하였다.Specifically, 1 mL of anticoagulated human blood (Red Cross, South Korea) sample was inoculated with CMV (cytomegalovirus) or RSV (respiratory syncytial virus) at a concentration of 10 4 PFU/mL and incubated at 37° C. for 10 minutes. . The leukocyte-derived magnetic immune particles were injected into the cultured blood sample so that the final concentration of the magnetic immune particles reached 150 μg/mL. Then, after 20 minutes of reaction at 37 ° C., the magnetic immune particles in the blood sample are fixed to a specific position using a magnet for 15 minutes to prevent magnetic immune particles from being included in the supernatant, and then the supernatant is collected. The amount of viral RNA in the supernatant was measured. Nucleic acids were extracted from viruses present in the supernatant using the QIAmp viral RNA mini kit (QIAGEN, Germany), and SYBR PCR master mix (Toyobo, Japan) and real time PCR (CFX connect, BIO-RAD, USA) were used. The extracted nucleic acid was amplified and the amount of RNA was measured. As a sample cultured by inoculating the virus in a blood sample in the same manner as described above, a sample in which the leukocyte-derived magnetic immune particles were not injected was used as a control. Based on the RNA amount of the virus measured in the control group, the reduction level of the RNA amount of the virus measured in the experimental group is calculated as a percentage (%) to capture the leukocyte-derived magnetic immune particles for the virus (or removal rate, %) was evaluated. In addition, neutrophil-derived magnetic immune particles using neutrophil (HL60)-derived cell membranes and macrophage-derived magnetic immune particles using macrophage (U937)-derived cell membranes prepared in the same manner as in Example 1 were used as comparative groups.
그 결과, 도 3에 나타낸 바와 같이, 백혈구 유래 자성 면역 입자는 혈액 내 병원성 바이러스를 포획하여 검출 또는 제거할 수 있음을 확인하였다 (포획율: 약 45 내지 80%). 특히, 상기 호중구 유래 자성 면역 입자 및 상기 대식세포 유래 자성 면역 입자와 비교하여, 상기 실시예 1에서 제조된, 여러 타입의 백혈구 혼합물로부터 분리된 세포막을 이용하는 백혈구 유래 자성 면역 입자는 CMV 및 RSV와 같은 병원성 바이러스에 대한 포획능 (검출 또는 제거능)이 더욱 우수함을 확인하였다.As a result, as shown in FIG. 3, it was confirmed that the leukocyte-derived magnetic immune particles can capture and detect or remove pathogenic viruses in the blood (capture rate: about 45 to 80%). In particular, compared to the neutrophil-derived magnetic immune particles and the macrophage-derived magnetic immune particles, the white blood cell-derived magnetic immune particles prepared in Example 1 using cell membranes separated from various types of white blood cell mixtures have the same characteristics as CMV and RSV. It was confirmed that the ability to capture (detection or remove) pathogenic viruses was more excellent.
실험예 3: 바이러스 유래 항원에 대한 백혈구 유래 자성 면역 입자의 포획능 (검출 또는 제거능) 평가Experimental Example 3: Evaluation of capture ability (detection or removal ability) of leukocyte-derived magnetic immune particles for virus-derived antigens
본 실험예에서는 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자가 혈액 내 바이러스 유래 항원을 제거할 수 있는지 확인하기 위하여, 인간 혈액 샘플에 바이러스 유래 항원을 임의로 접종한 후 상기 백혈구 유래 자성 면역 입자를 주입하여 자기장을 가해 배양액 내의 상기 접종된 바이러스 유래 항원의 변화를 측정하였다.In this experimental example, in order to confirm whether the leukocyte-derived magnetic immune particles prepared in Example 1 can remove virus-derived antigens in blood, human blood samples are randomly inoculated with virus-derived antigens, and then the leukocyte-derived magnetic immune particles are After injection, a magnetic field was applied to measure changes in antigens derived from the inoculated virus in the culture medium.
구체적으로, 항응고 처리된 인간 혈액 (적십자, South Korea) 샘플 1 mL에, ZIKV (Zika virus) Envelope Protein, SARS-CoV-2 Spike Protein, 또는 SARS-CoV-2 변이 바이러스 Spike Protein (Alpha 변이 Spike Protein, Beta 변이 Spike Protein, 또는 Delta 변이의 Spike Protein)을 1 μg/mL의 농도로 접종하고, 상기 백혈구 유래 자성 면역 입자를 150 μg/mL의 농도로 주입하였다. 그 후, 15분 동안 자석을 이용하여 혈액 샘플 내의 자성 면역 입자를 특정 위치에 고정하여 자성 면역 입자가 상층액에 포함되지 않도록 한 후, 상층액을 채취하여 상층액 내의 상기 바이러스 유래 항원의 농도를 측정하였다. 상기 바이러스 유래 항원의 농도는 효소결합면역흡착검사법 (ELISA)으로 측정하였으며, 측정을 위해 Zika virus (strain Zika SPH2015) Envelope Protein (ZIKV-E) ELISA Kit(Sinobio, China) 또는 SARS-CoV-2 Spike protein ELISA kit (ab274342, abcam, USA)를 사용하였다. 상기 자성 면역 입자를 주입하기 전의 혈액 샘플 내 바이러스 유래 항원 농도를 기준으로, 상기 상층액에서 측정된 바이러스 유래 항원 농도의 감소 수준을 백분율 (%)로 계산하여, 상기 바이러스 유래 항원에 대한 상기 백혈구 유래 자성 면역 입자의 포획율 (또는 제거율, %)을 평가하였다. 또한, 실시예 1의 방법과 동일한 방법으로 제조된, 호중구 (HL60) 유래 세포막을 이용하는 호중구 유래 자성 면역 입자 및 대식세포 (U937) 유래 세포막을 이용하는 대식세포 유래 자성 면역 입자를 비교군으로 사용하였다.Specifically, in 1 mL of anticoagulated human blood (Red Cross, South Korea) sample, ZIKV (Zika virus) Envelope Protein, SARS-CoV-2 Spike Protein, or SARS-CoV-2 mutant virus Spike Protein (Alpha mutant Spike Protein, Beta-mutated Spike Protein, or Delta-mutated Spike Protein) was inoculated at a concentration of 1 μg/mL, and the leukocyte-derived magnetic immune particles were injected at a concentration of 150 μg/mL. Thereafter, the magnetic immune particles in the blood sample are fixed to a specific position using a magnet for 15 minutes to prevent magnetic immune particles from being included in the supernatant, and then the supernatant is collected to determine the concentration of the virus-derived antigen in the supernatant. measured. The concentration of the virus-derived antigen was measured by enzyme-linked immunosorbent assay (ELISA), and for measurement, Zika virus (strain Zika SPH2015) Envelope Protein (ZIKV-E) ELISA Kit (Sinobio, China) or SARS-CoV-2 Spike A protein ELISA kit (ab274342, abcam, USA) was used. Based on the concentration of the virus-derived antigen in the blood sample before injecting the magnetic immune particles, the reduction level of the virus-derived antigen concentration measured in the supernatant was calculated as a percentage (%), and the leukocyte-derived antigen for the virus-derived antigen The capture rate (or removal rate, %) of the magnetic immune particles was evaluated. In addition, neutrophil-derived magnetic immune particles using neutrophil (HL60)-derived cell membranes and macrophage-derived magnetic immune particles using macrophage (U937)-derived cell membranes prepared in the same manner as in Example 1 were used as comparative groups.
그 결과, 도 4에 나타낸 바와 같이, 백혈구 유래 자성 면역 입자는 혈액 내 바이러스 유래 항원 단백질을 포획하여 검출 또는 제거할 수 있음을 확인하였다 (포획율: 약 30 내지 80%). 특히, 상기 호중구 유래 자성 면역 입자 및 상기 대식세포 유래 자성 면역 입자와 비교하여, 상기 실시예 1에서 제조된, 여러 타입의 백혈구 혼합물로부터 분리된 세포막을 이용하는 백혈구 유래 자성 면역 입자는 ZIKV E Protein 및 SARS-CoV-2 S Protein과 같은 바이러스 유래 항원 단백질에 대한 포획능 (검출 또는 제거능)이 더욱 우수함을 확인하였다.As a result, as shown in FIG. 4, it was confirmed that the leukocyte-derived magnetic immune particles can capture and detect or remove virus-derived antigen proteins in the blood (capture rate: about 30 to 80%). In particular, compared to the neutrophil-derived magnetic immune particles and the macrophage-derived magnetic immune particles, the white blood cell-derived magnetic immune particles prepared in Example 1 using cell membranes separated from various types of white blood cell mixtures have ZIKV E Protein and SARS - It was confirmed that the capture ability (detection or removal ability) for virus-derived antigen proteins such as CoV-2 S Protein was more excellent.
더하여, 도 5에 나타낸 바와 같이, 상기 백혈구 유래 자성 면역 입자는, SARS-CoV-2 변이 바이러스 유래 항원 단백질에 대한 포획능 (검출 또는 제거능) 또한 현저히 우수함을 확인하였는 바 (제거율: 약 60 내지 80 %), 본 실시예를 통해, 상기 백혈구 유래 자성 면역 입자는 바이러스 변이 여부에 관계없이 고효율로 바이러스 유래 항원 단백질을 검출 또는 제거할 수 있음을 확인하였다.In addition, as shown in FIG. 5, it was confirmed that the white blood cell-derived magnetic immune particles had a remarkably excellent ability to capture (detection or remove) antigen proteins derived from the SARS-CoV-2 mutant virus (removal rate: about 60 to 80%). %), Through this example, it was confirmed that the leukocyte-derived magnetic immune particles can detect or remove virus-derived antigen proteins with high efficiency regardless of whether or not the virus has mutated.
실험예 4: 백혈구 유래 자성 면역 입자 표면에 존재하여 병원체 포획에 기여 하는 분자의 확인Experimental Example 4: Identification of Molecules Contributing to Pathogen Capture Present on the Surface of Leukocyte-Derived Magnetic Immune Particles
본 실험예에서는 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자의 세포막 표면에 존재하는 각종 수용체를 포함하는 다양한 표면 분자들 중, 상기 백혈구 유래 자성 면역 입자의 병원체 포획에 기여하는 분자가 무엇인지 규명하기 위하여, 세포막 표면에서 특정 표면 분자가 불활성화된 백혈구 유래 자성 면역 입자를 제조하여 병원체 제거율을 분석하였다.In this experimental example, among various surface molecules including various receptors present on the surface of the cell membrane of the leukocyte-derived magnetic immune particles prepared in Example 1, which molecules contribute to pathogen capture of the leukocyte-derived magnetic immune particles are identified. To do this, leukocyte-derived magnetic immune particles in which specific surface molecules are inactivated on the surface of cell membranes were prepared and pathogen removal rates were analyzed.
구체적으로, 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자에서, 세포막 표면 분자인 CR1 (complement receptor 1) 및/또는 CR3 (complement receptor 3)을 각각 그에 맞는 항체로 불활성화시켜, CR1 및/또는 CR3이 불활성화된 백혈구 유래 자성 면역 입자를 수득하였다.Specifically, in the leukocyte-derived magnetic immune particles prepared in Example 1, CR1 (complement receptor 1) and/or CR3 (complement receptor 3), cell membrane surface molecules, were inactivated with appropriate antibodies, respectively, and CR1 and/or The leukocyte-derived magnetic immune particles in which CR3 was inactivated were obtained.
또한, 인간 혈장에, 각종 병원체 (MRSA, ESBL-EC, RSV, CMV, ZIKV E protein, HCoV OC43 (Human coronavirus OC43), 또는 SARS-CoV-2 S protein)를 각각 접종하고, 여러 종류의 자성 면역 입자를 각각 주입한 후, 각 자성 면역 입자의 병원체 제거율 (%)을 측정하였다. 구체적인 실험 방법은 실험예 1 내지 3에서 수행된 방법과 동일하고, 상기 주입된 자성 면역 입자의 종류는 하기와 같다:In addition, human plasma was inoculated with various pathogens (MRSA, ESBL-EC, RSV, CMV, ZIKV E protein, HCoV OC43 ( Human coronavirus OC43 ), or SARS-CoV-2 S protein), respectively, and various types of autoimmune After each particle was injected, the pathogen removal rate (%) of each magnetic immune particle was measured. The specific experimental method is the same as the method performed in Experimental Examples 1 to 3, and the types of injected magnetic immune particles are as follows:
1) 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자 (WBC-MNVs)1) Leukocyte-derived magnetic immune particles (WBC-MNVs) prepared in Example 1 above
2) 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자에서 세포막 표면 분자인 CR1이 불활성화된 자성 면역 입자 (CR1 blocked WBC-MNVs)2) In the leukocyte-derived magnetic immune particles prepared in Example 1, CR1, a cell membrane surface molecule, is inactivated (CR1 blocked WBC-MNVs)
3) 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자에서 세포막 표면 분자인 CR3이 불활성화된 자성 면역 입자 (CR3 blocked WBC-MNVs)3) In the leukocyte-derived magnetic immune particles prepared in Example 1, CR3, a cell membrane surface molecule, is inactivated (CR3 blocked WBC-MNVs)
4) 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자에서 세포막 표면 분자인 CR1 및 CR3이 불활성화된 자성 면역 입자 (CR1&CR3 blocked WBC-MNVs)4) In the leukocyte-derived magnetic immune particles prepared in Example 1, the cell membrane surface molecules CR1 and CR3 are inactivated (CR1&CR3 blocked WBC-MNVs)
5) 세포막 표면을 포함하지 않는 자성 입자 (MNPs).5) magnetic particles (MNPs) that do not contain cell membrane surfaces.
그 결과, 도 6에 나타낸 바와 같이, 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자에서 세포막 표면 분자인 CR1 또는 CR3이 불활성화되는 경우, 상기 백혈구 유래 자성 면역 입자의 병원체 제거율이 현저히 감소함을 확인하였고, 특히, 세포막 표면 분자인 CR1 및 CR3이 모두 불활성화되는 경우, 상기 백혈구 유래 자성 면역 입자의 병원체 제거율이 가장 감소함을 확인하였다. 이를 통해, 상기 백혈구 유래 자성 면역 입자에 있어서, 세포막 표면에 존재하는 CR1 및/또는 CR3이 병원체 포획에 크게 기여함을 알 수 있었다.As a result, as shown in FIG. 6, when CR1 or CR3, which is a cell membrane surface molecule, in the leukocyte-derived magnetic immune particles prepared in Example 1 is inactivated, the pathogen removal rate of the leukocyte-derived magnetic immune particles is significantly reduced. It was confirmed that, in particular, when both CR1 and CR3, which are cell membrane surface molecules, were inactivated, the pathogen removal rate of the leukocyte-derived magnetic immune particles was the most reduced. Through this, it was found that in the leukocyte-derived magnetic immune particles, CR1 and/or CR3 present on the cell membrane surface greatly contributed to the capture of pathogens.
따라서, 본 실시예를 통해, CR1 및/또는 CR3이 과발현된 백혈구 유래 세포막을 이용하여 제조된 백혈구 유래 자성 면역 입자의 경우, 병원체 포획능 (검출 또는 제거능)이 현저히 증가될 수 있음을 알 수 있었다.Therefore, through this Example, it was found that the pathogen trapping ability (detection or elimination ability) can be remarkably increased in the case of leukocyte-derived magnetic immune particles prepared using the leukocyte-derived cell membrane in which CR1 and/or CR3 are overexpressed. .
실험예 5: 옵소닌 추가로 인한 백혈구 유래 자성 면역 입자의 병원체 포획능 (검출 또는 제거능) 향상 효과 확인Experimental Example 5: Confirmation of enhancement of pathogen trapping ability (detection or removal ability) of leukocyte-derived magnetic immune particles due to the addition of opsonin
본 실험예에서는 옵소닌 추가로 인한 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자의 병원체 포획능 (검출 또는 제거능) 향상 효과를 확인하였다.In this experimental example, the effect of improving the pathogen trapping ability (detection or removal ability) of the leukocyte-derived magnetic immune particles prepared in Example 1 due to the addition of opsonin was confirmed.
구체적으로, TBS 버퍼, 인간 혈액 샘플, 또는 인간 혈장 샘플에, 각종 병원체 (MRSA, ESBL-EC, RSV, CMV, ZIKV E protein, HCoV OC43, 또는 SARS-CoV-2 S protein)를 각각 접종하고, 더하여 각종 옵소닌 (MBL (mannose binding lectin), FCN-1 (Ficolin-1), FCN-2, IgG (Immunoglobulin G), 또는 C3b)을 각각 주입한 후, 상기 백혈구 유래 자성 면역 입자를 주입하여, 상기 자성 면역 입자의 병원체 포획율 (또는 제거율, %)을 측정하였다. 구체적인 실험 방법은 TBS 버퍼, 인간 혈액 샘플, 또는 인간 혈장 샘플에, 상기 옵소닌을 주입한 것을 제외하고는, 실험예 1 내지 3에서 수행된 방법과 동일하다. 상기 사용된 IgG는 anti-SARS-SARS-CoV-2 spike protein 항체이다.Specifically, various pathogens (MRSA, ESBL-EC, RSV, CMV, ZIKV E protein, HCoV OC43, or SARS-CoV-2 S protein) are inoculated into TBS buffer, human blood sample, or human plasma sample, respectively, In addition, after injecting various opsonins (MBL (mannose binding lectin), FCN-1 (Ficolin-1), FCN-2, IgG (Immunoglobulin G), or C3b), respectively, the leukocyte-derived magnetic immune particles are injected, The pathogen capture rate (or removal rate, %) of the magnetic immune particles was measured. The specific experimental method is the same as the method performed in Experimental Examples 1 to 3, except that the opsonin was injected into TBS buffer, human blood sample, or human plasma sample. The IgG used above is an anti-SARS-SARS-CoV-2 spike protein antibody.
그 결과, 도 7, 도 8, 및 도 9에 나타낸 바와 같이, 병원체를 포함하는 TBS 버퍼, 인간 혈액 샘플, 또는 인간 혈장 샘플에, 상기 실시예 1에서 제조된 백혈구 유래 자성 면역 입자와 함께 MBL, FCN-1, 또는 IgG의 옵소닌을 주입하는 경우, 상기 백혈구 유래 자성 면역 입자의 병원체 포획능 (검출 또는 제거능)이 현저히 향상됨을 확인하였다. 다만, FCN-2 또는 C3b의 옵소닌을 주입하는 경우에는, 상기 백혈구 유래 자성 면역 입자의 병원체 포획능 (검출 또는 제거능)을 유의미하게 증가시키지 못함을 확인하였다. 이를 통해, 모든 종류의 옵소닌이 아닌, MBL, FCN-1, 또는 IgG와 같은 특정한 옵소닌이 상기 백혈구 유래 자성 면역 입자의 병원체 포획능 (검출 또는 제거능)을 향상시킬 수 있음을 알 수 있었다.As a result, as shown in FIGS. 7, 8, and 9, the leukocyte-derived magnetic immune particles prepared in Example 1 were added to the TBS buffer, human blood sample, or human plasma sample containing the pathogen, along with MBL, When FCN-1 or IgG opsonin was injected, it was confirmed that the pathogen trapping ability (detection or elimination ability) of the leukocyte-derived magnetic immune particles was remarkably improved. However, it was confirmed that the injection of FCN-2 or C3b opsonin did not significantly increase the pathogen trapping ability (detection or elimination ability) of the leukocyte-derived magnetic immune particles. From this, it was found that specific opsonins such as MBL, FCN-1, or IgG, rather than all types of opsonins, can improve the ability of the leukocyte-derived magnetic immune particles to capture pathogens (detection or removal).
더하여, 도 9에 나타낸 바와 같이, 병원체를 포함하는 TBS에 상기 백혈구 유래 자성 면역 입자를 주입한 경우와 비교하여, 병원체를 포함하는 인간 혈액 샘플 또는 인간 혈장 샘플에 상기 백혈구 유래 자성 면역 입자를 주입한 경우, 상기 백혈구 유래 자성 면역 입자의 병원체 포획능 (검출 또는 제거능)이 더욱 향상됨을 확인하였고, 이러한 결과는 MBL, FCN-1, 또는 IgG와 같은 특정한 옵소닌을 추가로 주입하는 경우에도 동일하게 유지됨을 확인하였다. 이러한 결과는 혈액 또는 혈장에 항체나 옵소닌이 풍부하게 존재하는 것에 기인한 것으로 이해된다.In addition, as shown in FIG. 9, compared to the case where the leukocyte-derived magnetic immune particles were injected into TBS containing pathogens, the leukocyte-derived magnetic immune particles were injected into human blood samples or human plasma samples containing pathogens. case, it was confirmed that the pathogen trapping ability (detection or elimination ability) of the leukocyte-derived magnetic immune particles was further improved, and this result remained the same even when a specific opsonin such as MBL, FCN-1, or IgG was additionally injected. confirmed. It is understood that these results are due to the abundant presence of antibodies or opsonics in blood or plasma.
본 실시예를 통해, 상기 백혈구 유래 자성 면역 입자를 이용하여 개체의 혈액 내 병원체를 검출 또는 제거하여 감염성 질병을 진단 또는 치료함에 있어서, MBL, FCN-1, IgG 등의 특정한 옵소닌, 및/또는 혈액 또는 혈장을 추가로 주입하는 경우, 상기 백혈구 유래 자성 면역 입자의 병원체 포획능 (검출 또는 제거능)이 더욱 향상되어, 개체의 혈액 내 병원체 검출 또는 제거 효과 및 감염성 질병의 진단 또는 치료 효과가 더욱 향상될 수 있음을 알 수 있었다.Through this embodiment, in diagnosing or treating an infectious disease by detecting or removing pathogens in the blood of an individual using the leukocyte-derived magnetic immune particles, a specific opsonin such as MBL, FCN-1, IgG, and/or When blood or plasma is additionally injected, the pathogen trapping ability (detection or elimination ability) of the leukocyte-derived magnetic immune particles is further improved, so that the effect of detecting or removing pathogens in the blood of an individual and of diagnosing or treating infectious diseases is further improved. knew it could be.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.Having described specific parts of the present invention in detail above, it is clear that these specific techniques are merely preferred embodiments for those skilled in the art, and the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

Claims (20)

  1. 백혈구 유래의 세포막; 및cell membranes derived from leukocytes; and
    상기 세포막에 부착된 자성 입자를 포함하는 자성 면역 입자.Magnetic immunization particles comprising magnetic particles attached to the cell membrane.
  2. 제1항에 있어서, 상기 백혈구는 호중구, 호산구, 호염기구, 단핵구, 림프구, 및 대식세포로 이루어진 군에서 선택된 1종 이상인 것인, 자성 면역 입자.The magnetic immune particles according to claim 1, wherein the leukocyte is at least one selected from the group consisting of neutrophils, eosinophils, basophils, monocytes, lymphocytes, and macrophages.
  3. 제1항에 있어서, 상기 자성 입자는 철 (Fe), 니켈 (Ni), 코발트 (Co), 망간 (Mn), 비스무스 (Bi), 아연 (Zn), 스트론튬 (Sr), 란타넘 (La), 세륨 (Ce), 프라셰오디뮴 (Pr), 네오디뮴 (Nd), 프로메튬 (Pm), 사마륨 (Sm), 유로퓸 (Eu), 가돌리늄 (Gd), 테르븀 (Tb), 디스프로슘 (Dy), 홀뮴 (Ho), 에르븀 (Er), 툴륨 (Tm), 이테르븀 (Yb), 루테늄 (Lu), 구리 (Cu), 은 (Ag), 금 (Au), 카드뮴 (Cd), 수은 (Hg), 알루미늄 (Al), 갈륨 (Ga), 인듐 (In), 탈륨 (Tl), 칼슘 (Ca), 바륨 (Ba), 라듐 (Ra), 백금 (Pt), 및 납 (Pd)으로 구성된 군으로부터 선택된 1종 이상의 자성 원소를 포함하는 것인, 자성 면역 입자.The method of claim 1, wherein the magnetic particle is iron (Fe), nickel (Ni), cobalt (Co), manganese (Mn), bismuth (Bi), zinc (Zn), strontium (Sr), lanthanum (La) , cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb), Ruthenium (Lu), Copper (Cu), Silver (Ag), Gold (Au), Cadmium (Cd), Mercury (Hg), Aluminum 1 selected from the group consisting of (Al), gallium (Ga), indium (In), thallium (Tl), calcium (Ca), barium (Ba), radium (Ra), platinum (Pt), and lead (Pd) A magnetic immune particle comprising more than one kind of magnetic element.
  4. 제3항에 있어서, 상기 자성 원소는 산화되거나 금속, 작용기, 단백질, 탄수화물, 폴리머, 또는 지질에 의해 표면 개질된 것인, 자성 면역 입자.The magnetic immune particle according to claim 3, wherein the magnetic element is oxidized or surface-modified with a metal, functional group, protein, carbohydrate, polymer, or lipid.
  5. 제1항에 있어서, 상기 자성 입자는 용액에 포함된 것인, 자성 면역 입자.The magnetic immune particle according to claim 1, wherein the magnetic particle is contained in a solution.
  6. 제1항에 있어서, 상기 자성 면역 입자는 상기 세포막을 포함하는 외부 표면 및 상기 자성 입자를 포함하는 내부 코어를 포함하는 것인, 자성 면역 입자.The magnetic immune particle according to claim 1, wherein the magnetic immune particle includes an outer surface including the cell membrane and an inner core including the magnetic particle.
  7. 제1항에 있어서, 상기 세포막은 소낭 (vesicle)의 형태를 가지는 것인, 자성 면역 입자.The magnetic immune particle according to claim 1, wherein the cell membrane has a vesicle shape.
  8. 제1항에 있어서, 상기 세포막은 렉틴 (lectin), 톨 유사 수용체 (Toll like receptor: TLR), 패턴 인식 수용체 (Pattern recognition receptor: PRR), 분화 클러스터 분자 (Cluster of differentiation(CD) molecule), NET (Neutrophil extracellular trap), 및 사이토카인 수용체로 구성된 군에서 선택된 1종 이상이 발현된 것인, 자성 면역 입자.The method of claim 1, wherein the cell membrane is lectin, toll like receptor (TLR), pattern recognition receptor (PRR), cluster of differentiation (CD) molecule, NET (Neutrophil extracellular trap), and magnetic immune particles expressing at least one selected from the group consisting of cytokine receptors.
  9. 제1항에 있어서, 상기 세포막은 CR1 (complement receptor 1), CR3 (complement receptor 3), 또는 이의 조합이 과발현된 것인, 자성 면역 입자.The magnetic immune particle according to claim 1, wherein the cell membrane is overexpressed with CR1 (complement receptor 1), CR3 (complement receptor 3), or a combination thereof.
  10. 제1항에 있어서, 상기 자성 면역 입자는 병원성 물질을 검출 또는 제거하기 위한 것인, 자성 면역 입자.The magnetic immune particle according to claim 1, wherein the magnetic immune particle is for detecting or removing pathogenic substances.
  11. 제10항에 있어서, 상기 병원성 물질은 병원성 박테리아, 진균류, 바이러스, 기생충, 프라이온, 및 독소로 이루어진 군에서 선택된 1종 이상인 것인, 자성 면역 입자.The magnetic immune particle according to claim 10, wherein the pathogenic substance is one or more selected from the group consisting of pathogenic bacteria, fungi, viruses, parasites, prions, and toxins.
  12. 제1항 내지 제11항 중 어느 한 항의 자성 면역 입자를 포함하는 병원성 물질의 검출 또는 제거용 조성물.A composition for detecting or removing pathogenic substances comprising the magnetic immune particles of any one of claims 1 to 11.
  13. 제1항 내지 제11항 중 어느 한 항의 자성 면역 입자를 포함하는 감염성 질병의 진단용 조성물.A composition for diagnosis of an infectious disease comprising the magnetic immune particles of any one of claims 1 to 11.
  14. 제13항에 있어서, 상기 감염성 질병은 전신성 또는 국부성 감염, 염증, 패혈증, 및 독소에 의한 중독으로 이루어진 군에서 선택된 1종 이상인 것인, 감염성 질병의 진단용 조성물.14. The method of claim 13, wherein the infectious disease is systemic or local infection, inflammation, sepsis, and at least one member selected from the group consisting of toxin poisoning, infectious disease diagnostic composition.
  15. 제1항 내지 제11항 중 어느 한 항의 자성 면역 입자와 시료를 접촉시켜 혼합하는 단계, 및 상기 혼합된 시료에 자기장을 인가하는 단계를 포함하는 병원성 물질을 검출 또는 제거하는 방법.A method for detecting or removing pathogenic substances, comprising the steps of contacting and mixing the magnetic immune particles of any one of claims 1 to 11 with a sample, and applying a magnetic field to the mixed sample.
  16. 제15항에 있어서, 상기 방법은, 상기 자기장을 인가하는 단계 이전에 옵소닌을 주입하는 단계를 더 포함하고,16. The method of claim 15, further comprising injecting opsonin prior to applying the magnetic field,
    상기 옵소닌은 MBL (Mannose binding lectin), FCN-1 (Ficolin-1), 및 IgG (Immunoglobulin G) 항체로 이루어진 군에서 선택된 1종 이상인 것인, 병원성 물질을 검출 또는 제거하는 방법.The opsonin is MBL (Mannose binding lectin), FCN-1 (Ficolin-1), and IgG (Immunoglobulin G) at least one selected from the group consisting of antibodies, a method for detecting or removing pathogenic substances.
  17. 제1항 내지 제11항 중 어느 한 항의 자성 면역 입자와 개체로부터 분리된 시료를 접촉시켜 혼합하는 단계, 및 상기 혼합된 시료에 자기장을 인가하는 단계를 포함하는 감염성 질병의 진단에 필요한 정보를 제공하는 방법.Providing information necessary for diagnosing an infectious disease, comprising mixing the magnetic immune particles of any one of claims 1 to 11 in contact with a sample separated from an individual, and applying a magnetic field to the mixed sample. How to.
  18. 제17항에 있어서, 상기 방법은, 상기 자기장을 인가하는 단계 이전에 옵소닌을 주입하는 단계를 더 포함하고,18. The method of claim 17, further comprising injecting opsonin prior to applying the magnetic field,
    상기 옵소닌은 MBL (Mannose binding lectin), FCN-1 (Ficolin-1), 및 IgG (Immunoglobulin G) 항체로 이루어진 군에서 선택된 1종 이상인 것인, 감염성 질병의 진단에 필요한 정보를 제공하는 방법.The opsonin is one or more selected from the group consisting of Mannose binding lectin (MBL), Ficolin-1 (FCN-1), and Immunoglobulin G (IgG) antibodies.
  19. 제1항 내지 제11항 중 어느 한 항의 자성 면역 입자와 개체로부터 분리된 시료를 접촉시켜 혼합하는 단계; 상기 혼합된 시료에 자기장을 인가하여 병원성 물질을 포획한 자성 면역 입자를 시료로부터 제거하는 단계; 및 상기 병원성 물질을 포획한 자성 면역 입자가 제거된 시료를 상기 개체로 다시 주입하는 단계를 포함하는 개체의 감염성 질병을 치료하는 방법.Contacting and mixing the magnetic immune particle according to any one of claims 1 to 11 with a sample separated from the subject; applying a magnetic field to the mixed sample to remove the magnetic immune particles that have captured the pathogenic substance from the sample; and injecting the sample from which the magnetic immune particles capturing the pathogenic material are removed back into the subject.
  20. 제19항에 있어서, 상기 방법은, 상기 자기장을 인가하기 전에 옵소닌, 혈액, 및 혈장으로 이루어진 군에서 선택된 1종 이상을 주입하는 단계를 더 포함하고,The method of claim 19, further comprising injecting at least one selected from the group consisting of opsonin, blood, and plasma before applying the magnetic field,
    상기 옵소닌은 MBL (Mannose binding lectin), FCN-1 (Ficolin-1), 및 IgG (Immunoglobulin G) 항체로 이루어진 군에서 선택된 1종 이상인 것인, 감염성 질병을 치료하는 방법.Wherein the opsonin is at least one selected from the group consisting of Mannose binding lectin (MBL), Ficolin-1 (FCN-1), and Immunoglobulin G (IgG) antibodies.
PCT/KR2022/013867 2021-09-17 2022-09-16 Leukocyte-derived immunomagnetic particle and use thereof WO2023043256A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210125199 2021-09-17
KR10-2021-0125199 2021-09-17

Publications (1)

Publication Number Publication Date
WO2023043256A1 true WO2023043256A1 (en) 2023-03-23

Family

ID=85603278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013867 WO2023043256A1 (en) 2021-09-17 2022-09-16 Leukocyte-derived immunomagnetic particle and use thereof

Country Status (2)

Country Link
KR (1) KR20230041638A (en)
WO (1) WO2023043256A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109507418A (en) * 2018-10-26 2019-03-22 四川大学 With imitating cyto-architectural magnetic nano-particle, immune magnetic nano particle and the preparation method and application thereof
KR20190103819A (en) * 2018-02-28 2019-09-05 울산과학기술원 Magnetic Immuno-Particle and Use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190103819A (en) * 2018-02-28 2019-09-05 울산과학기술원 Magnetic Immuno-Particle and Use thereof
CN109507418A (en) * 2018-10-26 2019-03-22 四川大学 With imitating cyto-architectural magnetic nano-particle, immune magnetic nano particle and the preparation method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KE XIONG, WEI WEI, YONGJIE JIN, SHUMIN WANG, DONGXU ZHAO, SHUANG WANG, XIAOYONG GAO, CHENMENG QIAO, HUA YUE, GUANGHUI MA, HAI-YAN : "Biomimetic Immuno-Magnetosomes for High-Performance Enrichment of Circulating Tumor Cells", ADVANCED MATERIALS, VCH PUBLISHERS, DE, vol. 28, no. 36, 1 September 2016 (2016-09-01), DE , pages 7929 - 7935, XP055534821, ISSN: 0935-9648, DOI: 10.1002/adma.201601643 *
RAVENHILL BENJAMIN J., SODAY LIOR, HOUGHTON JACK, ANTROBUS ROBIN, WEEKES MICHAEL P.: "Comprehensive cell surface proteomics defines markers of classical, intermediate and non-classical monocytes", SCIENTIFIC REPORTS, vol. 10, no. 1, 1 January 2020 (2020-01-01), pages 4560, XP093047862, DOI: 10.1038/s41598-020-61356-w *
WANG ZIXIANG, CHENG LIN, SUN YUE, WEI XIAOYUN, CAI BO, LIAO LEI, ZHANG YUANZHEN, ZHAO XING-ZHONG: "Enhanced Isolation of Fetal Nucleated Red Blood Cells by Enythrocyte-Leukocyte Hybrid Membrane-Coated Magnetic Nanoparticles for Noninvasive Pregnant Diagnostics", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 93, no. 2, 19 January 2021 (2021-01-19), US , pages 1033 - 1042, XP093047863, ISSN: 0003-2700, DOI: 10.1021/acs.analchem.0c03933 *

Also Published As

Publication number Publication date
KR20230041638A (en) 2023-03-24

Similar Documents

Publication Publication Date Title
Groebel et al. Mycoplasma suis invades porcine erythrocytes
KR102078787B1 (en) Magnetic Immuno-Particle and Use thereof
US8691522B2 (en) Composition comprising extracellular membrane vesicles derived from indoor air, and use thereof
Bakkemo et al. Intracellular localisation and innate immune responses following Francisella noatunensis infection of Atlantic cod (Gadus morhua) macrophages
EP2322932A2 (en) Detection of tuberculosis and infection by mycobacterium tuberculosis using HBHA
WO2011065747A2 (en) Rapid detection method for microorganisms using nanoparticles
Wang et al. Prevalence and characteristics of Aeromonas species isolated from processed channel catfish
Hirano et al. Accumulation of regulatory T cells and chronic inflammation in the middle ear in a mouse model of chronic otitis media with effusion induced by combined eustachian tube blockage and nontypeable Haemophilus influenzae infection
US20090041808A1 (en) Detection/Measurement Of Malaria Infection Disease Utilizing Natural Immunity By Hemozoin Induction, Screening Of Preventative Or Therapeutic Medicine For Malaria Infection Disease, And Regulation Of Natural Immunity Induction
Ooyama et al. Cell-surface properties of Lactococcus garvieae strains and their immunogenicity in the yellowtail Seriola quinqueradiata
WO2023043256A1 (en) Leukocyte-derived immunomagnetic particle and use thereof
Gelgie et al. Mycoplasma bovis mastitis
Choi et al. Porphyromonas gingivalis and dextran sulfate sodium induce periodontitis through the disruption of physical barriers in mice
Zhu et al. Luminescent detection of the lipopolysaccharide endotoxin and rapid discrimination of bacterial pathogens using cationic platinum (ii) complexes
Yatsomboon et al. Development of an immunomagnetic separation-ELISA for the detection of Burkholderia pseudomallei in blood samples
Nishi et al. Invasion of Mycoplasma bovis into bovine synovial cells utilizing the clathrin-dependent endocytosis pathway
Wilson-Welder et al. Interaction of bovine peripheral blood polymorphonuclear cells and Leptospira species; innate responses in the natural bovine reservoir host
Lohr et al. A bovine model of a respiratory Parachlamydia acanthamoebae infection
Yap et al. In vitro treatment of lipopolysaccharide increases invasion of Pasteurella multocida serotype B: 2 into bovine aortic endothelial cells
WO2024091064A1 (en) Red blood cell-derived magnetic immunoparticle and use thereof
CN102781468A (en) Method for the identification of animals vaccinated against brucella
US20220072047A1 (en) Magnetic immuno-particle and use thereof
US7731937B2 (en) Diagnostic method for paratuberculosis
Isogai et al. Fimbria‐specific immune response in various inbred mice inoculated with Porphyromonas gingivalis 381
WO2018212612A1 (en) Method and device for evaluating immune cells using magnetic particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE