WO2023042875A1 - Gel formation kit and use thereof - Google Patents

Gel formation kit and use thereof Download PDF

Info

Publication number
WO2023042875A1
WO2023042875A1 PCT/JP2022/034520 JP2022034520W WO2023042875A1 WO 2023042875 A1 WO2023042875 A1 WO 2023042875A1 JP 2022034520 W JP2022034520 W JP 2022034520W WO 2023042875 A1 WO2023042875 A1 WO 2023042875A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
cancer
group
cancer cells
peptide
Prior art date
Application number
PCT/JP2022/034520
Other languages
French (fr)
Japanese (ja)
Inventor
香織 武田
武彦 横堀
遼 村主
高行 浅尾
憲 調
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023548499A priority Critical patent/JPWO2023042875A1/ja
Publication of WO2023042875A1 publication Critical patent/WO2023042875A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2/00Peptides of undefined number of amino acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a gel-forming kit, a gel-forming solution, and a gel composition for use in preparing non-human model animals with cancer.
  • the present invention further relates to a method for producing a gel composition for use in producing non-human model animals with cancer.
  • the present invention further relates to a non-human model animal having cancer and a method for producing a non-human model animal having cancer.
  • the present invention further relates to a method for evaluating a test substance using the non-human model animal having cancer.
  • Non-Patent Document 1 A common method for verifying the effects of cancer treatment is to form a tumor in a non-human animal by the above-mentioned transplantation, and to evaluate suppression of tumor volume when treatment such as drug administration is performed.
  • Non-Patent Document 2 the survival rate of tumors and cells in non-human animals is generally low (Non-Patent Document 2), and the proliferation rate after engraftment often varies between tests, so the time required for tumor growth is not constant. (Non-Patent Document 3). These factors make the generation of tumor-bearing non-model animals a cost and time hurdle in conducting preclinical studies.
  • Patent Document 1 describes a non-human model animal implanted with a cell structure consisting of cells and polymer blocks.
  • a block (mass) made of a biocompatible polymer is used.
  • the problem to be solved by the present invention is that in the production of non-human model animals having cancer, a gel-forming kit for use in producing non-human animals that can form tumors in a short period of time and with high efficiency, To provide a gel-forming solution and a gel composition. Furthermore, the problem to be solved by the present invention is to provide a method for producing a gel composition for use in producing a non-human model animal having cancer. Furthermore, the problem to be solved by the present invention is to provide a non-human model animal having cancer and a method for producing a non-human model animal having cancer. Furthermore, the problem to be solved by the present invention is to provide a method for evaluating a test substance using the non-human model animal having cancer.
  • a non-human model animal having cancer comprising a peptide consisting of only one chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group.
  • Gel forming kit for use in making (2) The gel-forming kit according to (1), wherein the chain containing a functional group capable of covalently bonding with the amino group and a hydrophilic linking group is represented by Formula 1 below.
  • A represents an arbitrary amino acid or amino acid sequence
  • B represents an arbitrary amino acid or amino acid sequence
  • n X's each independently represent any amino acid
  • n Y's each independently represent an amino acid.
  • n represents an integer of 3 to 100
  • m represents an integer of 2 to 10.
  • the n Gly-XY may be the same or different.
  • the gel-forming kit according to (8) wherein the cancer cells are selected from the group consisting of a patient-derived tumor tissue, a suspension of established cancer cells, or a suspension of patient-derived cancer cells. .
  • the cancer cells are selected from the group consisting of liver cancer cells, biliary tract cancer cells, pancreatic cancer cells, colon cancer cells, osteosarcoma cells, chondrosarcoma cells, or angiosarcoma cells, (8 ) or the gel-forming kit according to (9).
  • (11) A non-human model animal having cancer, comprising a peptide consisting of only a single chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding to an amino group and a hydrophilic linking group.
  • a method for producing a non-human model animal having cancer comprising implanting a product or gel-forming solution into a non-human animal.
  • a method for producing a non-human model animal having cancer comprising transplanting a gel-forming solution containing and into the non-human animal.
  • (20) A method for producing a non-human model animal having cancer according to (18) or (19), wherein the gel composition or gel-forming solution is subcutaneously, intraperitoneally, or implanted into an organ or tissue of a non-human animal.
  • (21) A method for evaluating a test substance, comprising administering the test substance to the non-human model animal having cancer according to (17).
  • the tumor formation rate in a short period of time was improved by using a peptide consisting of only a single chain.
  • the gel composition is rapidly degraded by enzymes secreted by cancer cells. Therefore, it is speculated that tumor formation is promoted by securing an appropriate space for cancer cells to proliferate.
  • the gel-forming kit, gel-forming solution, and gel composition of the present invention provide a scaffold that allows tumors to engraft with high efficiency and allows tumor growth to be obtained in a short period of time in the production of non-human model animals having cancer. It can be used as material.
  • the non-human model animal having cancer and the method for evaluating a test substance using the non-human model animal having cancer of the present invention are useful in verifying the effects of cancer treatment.
  • a gel-forming kit for use in preparing a non-human model animal having cancer according to the present invention comprises: (a) a peptide consisting of only one chain (hereinafter also referred to as a single chain peptide); (b) a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group; including.
  • Matrigel® a commonly used scaffolding material, is mainly composed of type IV collagen (which contains a three-stranded structure unique to collagen), and contains MMP (matrix metalloprotease), a process necessary for tumor growth. Scaffold degradation by scaffolds requires two steps: degradation of collagen (collagenase) and degradation of gelatin (gelatinase) (Laronha, H., & Caldeira, J. (2020). Structure and Function of Human Matrix Metalloproteinases. Cells, 9, 1076.p3).
  • the gel composition produced by the gel-forming kit of the present invention consists of a single-chain peptide, it is considered to be rapidly decomposed by MMP in one step, like gelatin.
  • the gel-forming kit By using the gel-forming kit according to the present invention, it is possible to produce a non-human model animal that has a high tumor engraftment rate and allows tumors to grow in a short period of time.
  • the gel composition produced by the gel-forming kit of the present invention forms a homogeneous network structure of single-chain peptides dispersed in the gel composition, and is easily accessible by MMPs, so that it is degraded at an appropriate timing. considered to be easy.
  • the combination of cross-linking agent and single-chain peptide may be a combination that exhibits time-dependent gelling ability.
  • the time-dependent gelling ability means gelation in 1 to 60 minutes after mixing the single-chain peptide and the cross-linking agent at 15 to 40°C, and 3 to 30 minutes. is more preferable.
  • the cross-linking agent and the single-chain peptide preferably gel at 10°C to 50°C, more preferably at 15°C to 40°C, and from the viewpoint of gelation at body temperature of the animal, 30°C. C. to 40.degree. C. is most preferred.
  • the cross-linking agent used in the present invention has at least two chains containing functional groups capable of covalent bonding with amino groups and hydrophilic linking groups. Although the chain may be single-ended with no branching, it is preferred that the chain is branched.
  • the number of chains is not particularly limited as long as it is two or more. 2, 3, 4, 5, 6, 7, 8, 9, 10 or more, preferably 2 to 8, more preferably 2 to 6 book, more preferably four. Since a uniform three-dimensional network structure can be formed, it is most preferable to use a tetra-branched cross-linking agent in which the above four chains are branched at one point.
  • the crosslinker has two or more functional groups capable of covalently bonding with amino groups.
  • the weight average molecular weight of the cross-linking agent is not particularly limited, but is preferably from 5,000 to 40,000, more preferably from 5,000 to 30,000, still more preferably from 10,000 to 30,000, and particularly preferably from the viewpoint of forming a uniform network structure. It is 15000 to 25000, and 20000 can be mentioned as an example.
  • a chain comprising a functional group capable of covalently bonding with an amino group and a hydrophilic linking group is preferably represented by Formula 1 below.
  • Z-(A 1 ) w -(B 1 ) x -(C 1 ) y - Formula 1 wherein Z is a functional group that can covalently bond with an amino group, A 1 is a hydrophobic linking group, B 1 is a hydrophilic linking group, C 1 is a hydrophobic linking group, and w is an integer of 1 or more, x is an integer of 1 or more, and y is an integer of 0 or more.
  • the cross-linking agent is preferably represented by Formula 2 below.
  • [Z-(A 1 ) w -(B 1 ) x -(C 1 ) y -] v -CH n Formula 2 wherein Z is a functional group that can covalently bond with an amino group, A 1 is a hydrophobic linking group, B 1 is a hydrophilic linking group, C 1 is a hydrophobic linking group, and w is an integer of 1 or more, x is an integer of 1 or more, y is an integer of 0 or more, v is an integer of 2 to 4, and n is an integer of 0 to 2. However, v+n is 4.
  • Z, A 1 , B 1 and C 1 may be the same or different in each branch or between branches, and w, x and y may be the same or different between branches.
  • w is preferably an integer of 1-10, more preferably an integer of 1-5.
  • x is preferably an integer of 10-300, more preferably an integer of 20-200.
  • y is preferably an integer of 0-5, more preferably an integer of 0-3.
  • v is preferably 4 and n is preferably 0.
  • Functional groups that can covalently bond with amino groups are functional groups that react with amino groups, such as succinimidyl groups, isocyanates, isothiocyanates, sulfonyl chlorides, aldehydes, acyl azides, acid anhydrides, imidoesters, epoxides, active esters, and the like.
  • a succinimidyl group is preferred, and more preferred from the viewpoint that the reaction proceeds easily at the pH of the body.
  • the cross-linking agent has two or more functional groups capable of covalently bonding with amino groups, and the functional groups may be the same or different.
  • Examples of the hydrophilic linking group represented by B 1 include an ethylene oxide group (--CH 2 CH 2 O--) and a group containing an ethylene oxide unit.
  • the hydrophilic linking group is an ethylene oxide group (--CH 2 CH 2 O--) or a group containing ethylene oxide units
  • the cross-linking agent is also called a polyethylene glycol (PEG) cross-linking agent.
  • the cross-linking agent is preferably a PEG cross-linking agent, more preferably a four-branched PEG cross-linking agent having a succinimidyl group at the terminal.
  • Hydrophobic linking groups represented by A 1 include hydrocarbon groups having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms.
  • the hydrophobic linking group represented by A 1 may have a linking group such as —O—, —CO— or —COO— at its terminal.
  • a 1 may have a connecting group selected from -O-, -CO- and -COO- connecting groups at both ends.
  • the hydrophobic linking group represented by C 1 includes a hydrocarbon group having 1 to 3 carbon atoms, preferably a methylene group or an ethylene group.
  • the hydrophobic linking group represented by C 1 may have a linking group such as —O—, —CO— or —COO— at its terminal.
  • C 1 may have a connecting group selected from -O-, -CO- and -COO- connecting groups at both ends.
  • the cross-linking agent used in the present invention preferably has tissue adhesiveness.
  • Tissue adhesiveness means that the cross-linking agent can chemically bond with the tissue at the site of installation. Preferred is chemical bonding between the cross-linking agent and the amino groups of the tissue surface protein.
  • a peptide consisting of only a single chain used in the present invention means that it is formed of only a single chain and does not contain a three-stranded structure unique to collagen. It is also preferred that the single-chain peptides are non-multimeric.
  • the monomer content of the single-chain peptide is preferably 50-100%, more preferably 80-100%.
  • the single-chain peptide used in the present invention preferably has biocompatibility. Biocompatibility means that it does not cause significant adverse reactions such as long-term and chronic inflammatory reactions when in contact with living organisms.
  • Preferred single-chain peptides are recombinant peptides.
  • the single-chain peptide may be crosslinked between peptide molecules or non-crosslinked, but non-crosslinked peptides are preferable because they are easily degraded in vivo at appropriate timing.
  • the single-chain peptide in an uncrosslinked state preferably contains 40% to 100%, more preferably 60% to 100%, random structure in an aqueous solution.
  • the random structure is a structure (irregular structure) when the polymer chain exists in a solution without forming a specific higher-order structure, and its content is measured by circular dichroism (CD) spectrum measurement, etc. measured by
  • a peptide containing lysine is preferable as the single-chain peptide, and a peptide containing 5% or more of lysine is more preferable as the single-chain peptide from the viewpoint of reaction of functional groups (such as succinimidyl groups) capable of covalently bonding with amino groups.
  • single-chain peptide is not particularly limited, gelatin, elastin, fibronectin, pronectin, tenascin, fibrin, fibroin, entactin, thrombospondin, and retronectin are preferred, and gelatin is more preferred.
  • Gelatin may be a recombinant peptide. Recombinant peptides are described later in this specification.
  • gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen can be used.
  • those described in EP1014176, US Pat. No. 6,992,172, International Publication WO2004/85473, International Publication WO2008/103041, etc. can be used, but are not limited thereto.
  • Preferable recombinant peptides for use in the present invention are peptides of the following aspects.
  • the recombinant peptide is not naturally derived, there is no concern about bovine spongiform encephalopathy (BSE), and it is highly non-infectious.
  • BSE bovine spongiform encephalopathy
  • the recombinant peptide is more uniform than natural gelatin and has a determined sequence, it is possible to precisely design the strength and degradability of the peptide with little variation due to cross-linking or the like.
  • the molecular weight of the recombinant peptide is not particularly limited, but is preferably 2000 or more and 100000 or less (2 kDa or more and 100 kDa or less), more preferably 2500 or more and 95000 or less (2.5 kDa or more and 95 kDa or less), and still more preferably 5000 or more and 90000 or less. (5 kDa or more and 90 kDa or less), most preferably 10000 or more and 90000 or less (10 kDa or more and 90 kDa or less).
  • the molecular weight distribution of the recombinant peptide is not particularly limited, it preferably contains a recombinant peptide in which the area of the maximum molecular weight peak in molecular weight distribution measurement is 70% or more of the total area of all molecular weight peaks, and 90% or more is more. Preferably, 95% or more is most preferred.
  • the molecular weight distribution of recombinant peptides can be measured by the method described in PCT/JP2017/012284.
  • the recombinant peptide preferably has repeats of the Gly-XY sequence characteristic of collagen.
  • a plurality of Gly-XY may be the same or different.
  • Gly-XY Gly represents glycine
  • X and Y represent any amino acid (preferably any amino acid other than glycine).
  • the Gly-XY sequence characteristic of collagen is a very specific partial structure in the amino acid composition and sequence of gelatin-collagen compared to other proteins. Glycine occupies about one-third of the whole in this portion, and in the amino acid sequence, it is repeated one in three.
  • Glycine is the simplest amino acid, is less constrained to the configuration of the molecular chain, and greatly contributes to the regeneration of the helical structure during gelation.
  • the proportion of uncharged amino acids in the polar amino acids is preferably 5% or more and less than 20%, preferably 5% or more and less than 10%.
  • Sequences of IKVAV, LRE, DGEA and HAV sequences are preferred. More preferred are the RGD sequence, YIGSR sequence, PDSGR sequence, LGTIPG sequence, IKVAV sequence and HAV sequence, and particularly preferred is the RGD sequence. Among the RGD sequences, the ERGD sequence is preferred. By using a peptide having a cell adhesion signal, the amount of substrate produced by cells can be improved.
  • the ratio of the RGD motif to the total number of amino acids is preferably at least 0.4%.
  • each stretch of 350 amino acids comprises at least one RGD motif.
  • the ratio of RGD motifs to total amino acids is more preferably at least 0.6%, more preferably at least 0.8%, more preferably at least 1.0%, more preferably at least 1.2%. and most preferably at least 1.5%.
  • the number of RGD motifs in the peptide is preferably at least 4, more preferably at least 6, more preferably at least 8, more preferably 12 to 16 per 250 amino acids.
  • a proportion of 0.4% of RGD motifs corresponds to at least one RGD sequence per 250 amino acids.
  • a recombinant peptide of 251 amino acids must contain at least two RGD sequences to satisfy at least 0.4% of the characteristics.
  • the recombinant peptide comprises at least 2 RGD sequences per 250 amino acids, more preferably at least 3 RGD sequences per 250 amino acids, even more preferably at least 4 RGD sequences per 250 amino acids.
  • a further aspect of the recombinant peptide of the present invention comprises at least 4 RGD motifs, preferably at least 6, more preferably at least 8, even more preferably 12 to 16 RGD motifs.
  • the recombinant peptide may be partially hydrolyzed.
  • the recombinant peptide used in the present invention is represented by A-[(Gly-XY) n ] m -B.
  • Each of n Xs independently represents any amino acid, and each of n Ys independently represents any amino acid.
  • m preferably represents an integer of 2-10, more preferably an integer of 3-5.
  • n is preferably an integer of 3-100, more preferably an integer of 15-70, and most preferably an integer of 50-65.
  • A represents any amino acid or amino acid sequence and B represents any amino acid or amino acid sequence.
  • the n Gly-XY may be the same or different.
  • the recombinant peptide used in the present invention has the formula: Gly-Ala-Pro-[(Gly-XY) 63 ] 3 -Gly (wherein each of the 63 Xs independently represents any amino acid). Each of the 63 Y's independently represents an amino acid, and the 63 Gly-XY's may be the same or different.).
  • naturally occurring collagen may be any naturally occurring collagen, but is preferably type I, II, III, IV, or V collagen. More preferred are type I, type II, or type III collagen. According to another aspect, the origin of said collagen is preferably human, bovine, porcine, mouse or rat, more preferably human.
  • the recombinant peptide is not deaminated.
  • the recombinant peptide does not have a telopeptide.
  • the recombinant peptide is a substantially pure polypeptide prepared by a nucleic acid encoding amino acid sequence.
  • Particularly preferred recombinant peptides used in the present invention are: (1) a peptide consisting of the amino acid sequence set forth in SEQ ID NO: 1; (2) a peptide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence set forth in SEQ ID NO: 1 and having biocompatibility; or (3) a peptide set forth in SEQ ID NO: 1
  • a peptide consisting of an amino acid sequence having a sequence identity of 80% or more (more preferably 90% or more, particularly preferably 95% or more, most preferably 98% or more) with the amino acid sequence, and having biocompatibility; is either
  • amino acid sequence in which one or several amino acids are deleted, substituted or added is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5 number, particularly preferably 1 to 3.
  • Recombinant peptides used in the present invention can be produced by genetic recombination techniques known to those skilled in the art. For example, see EP1014176A2, US Pat. It can be produced according to the described method. Specifically, a gene encoding an amino acid sequence of a given recombinant peptide is obtained, incorporated into an expression vector to prepare a recombinant expression vector, and introduced into an appropriate host to prepare a transformant. . By culturing the resulting transformant in an appropriate medium, the recombinant peptide is produced, and the recombinant peptide used in the present invention can be prepared by recovering the recombinant peptide produced from the culture. .
  • the peptide may be in solution or powder.
  • a solution it can be included in the kit at a concentration of preferably 1-100 mg/mL, more preferably 1-80 mg/mL, even more preferably 5-80 mg/mL.
  • the gel-forming kit of the present invention may further contain cancer cells.
  • cancer cells may include cancer cells.
  • human-derived cancer cells are preferred, and human-derived solid cancer cells are more preferred.
  • Cancer cell states include, but are not limited to, cell suspensions, spheroids, organoids, or tumor tissues.
  • the cancer cells may be patient-derived tumor tissue, established cancer cell lines, or patient-derived cancer cells. Turbidity is preferred.
  • the gel-forming kit of the present invention further includes a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group, and instructions for administering a single-chain peptide to a subject. may be included.
  • the gel-forming kit of the present invention may further contain a solvent for dissolving the powdery peptide or the powdery cross-linking agent.
  • the pH of the solvent is preferably 4.0 to 9.0, particularly preferably 6.0 to 8.0 from the viewpoint of biocompatibility.
  • the gel-forming kit of the present invention may further include instruments such as syringes, filters, containers, gel-shaping jigs, films, and tweezers used from gel formation to implantation.
  • a non-human having cancer comprising a peptide consisting of only a single chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group.
  • Gel-forming solutions for use in making model animals are provided.
  • a gel-forming solution means a solution obtained by mixing a single-chain peptide and a cross-linking agent until gelation occurs. Gelation means that a solution changes from a fluid state to a non-fluid state. Details and preferred embodiments for peptides consisting of only one chain and crosslinkers are as described herein above.
  • the total concentration of the single-chain peptide and the cross-linking agent in the gel-forming solution is preferably 1 mg/mL to 200 mg/mL, more preferably 1.5 mg/mL to 150 mg/mL, still more preferably 20 mg/mL to 100 mg/mL. It is particularly preferred that the total concentration of the single-stranded peptide and the cross-linking agent in the gel-forming solution at the time of implantation is 20 mg/mL to 100 mg/mL.
  • the active terminal molar concentration ratio [amino group (—NH 2 ) of single-chain peptide]:[functional group of crosslinker capable of covalent bonding with amino group] is in the range of 1:2 to 4:1. is preferably 4:1 from the viewpoint of
  • the concentration of the cross-linking agent in the gel-forming solution is preferably in the range of 1 mg/mL to 150 mg/mL, more preferably 3 mg/mL to 100 mg/mL, even more preferably 3 mg/mL to 50 mg/mL, Especially preferred is 9 mg/mL to 50 mg/mL. It is particularly preferred that the concentration of the cross-linking agent in the gel-forming solution at the time of implantation is between 9 mg/mL and 50 mg/mL.
  • the concentration range of the single-chain peptide in the gel-forming solution is 1 mg/mL to 100 mg/mL, preferably 5 mg/mL to 70 mg/mL, and particularly preferably 10 mg/mL to 50 mg/mL. It is particularly preferred that the single-chain peptide concentration of the gel-forming solution at the time of implantation is between 10 mg/mL and 50 mg/mL.
  • the gel-forming solution of the present invention may further contain cells other than cancer cells.
  • cancer is formed from a peptide consisting of only one chain and a cross-linking agent having at least two or more chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group.
  • a gel composition is provided for use in generating a non-human model animal.
  • the gel composition contains a single-chain peptide and a cross-linking agent, and the gel-forming solution undergoes gelation as described above. Details and preferred embodiments for peptides consisting of only one chain and crosslinkers are as described herein above.
  • the gel composition of the present invention can be used for the production of non-human model animals with cancer.
  • the concentration of the cross-linking agent in the gel composition at the time of implantation of the present invention is preferably in the range of 1 mg/mL to 150 mg/mL, more preferably 3 mg/mL to 100 mg/mL, still more preferably 9 mg/mL. ⁇ 50 mg/mL.
  • the gel composition at the time of transplantation of the present invention may contain cells other than cancer cells.
  • the volume of tumor tissue used is preferably 10-1000 mm 3 , more preferably 50-500 mm 3 .
  • the timing of embedding the tumor tissue in the gel-forming solution is preferably immediately to 60 minutes after mixing the single-chain peptide and the cross-linking agent, and more preferably 1 to 60 minutes from the viewpoint of cytotoxicity. preferable.
  • Tumor tissue may be embedded in a gel-forming solution to form a gel, or may be embedded in a gel composition that does not contain cancer cells.
  • a tumor tissue is embedded in a gel-forming solution to gel, it is preferable to allow the tissue to stand at 10 to 40° C. after embedding to gel before implantation.
  • the gel composition of the present invention contains growth factors (e.g., epidermal growth factor (EGF)), basic fibroblast growth factor (bFGF), nerve growth factor (nerve growth factor) , Platelet-Derived Growth Factor (PDGF), Insulin-like Growth Factor 1, Transforming Growth Factor ⁇ (TGF- ⁇ ), etc.), Enzymes (MMPs, etc.), Cells Other components such as culture medium, serum, blood, ascites, and pleural effusion may be included.
  • growth factors e.g., epidermal growth factor (EGF)
  • bFGF basic fibroblast growth factor
  • nerve growth factor nerve growth factor
  • PDGF Platelet-Derived Growth Factor
  • TGF- ⁇ Transforming Growth Factor ⁇
  • Enzymes MMPs, etc.
  • Cells Other components such as culture medium, serum, blood, ascites, and pleural effusion may be included.
  • the non-human model animal having cancer of the present invention comprises a peptide consisting of only one chain, and at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group. It can be produced by implanting a gel composition or gel-forming solution formed from the cross-linking agent having the above and containing cancer cells into a non-human animal.
  • Animals used for non-human model animal production are not particularly limited as long as they are non-human animals, but mammals are preferred.
  • mammals are preferred.
  • rodents such as mice, rats, rabbits and hamsters are preferred from the viewpoint of ease of handling, and mice are particularly preferred.
  • test substance is not particularly limited and can be appropriately selected according to the purpose. cleansing agents, plant extracts, microbial products, and the like. Libraries for compounds, peptides, proteins, and antibodies can also be used. For example, compound libraries prepared using combinatorial chemistry techniques, random peptide libraries or antibody libraries prepared by solid-phase synthesis or phage display methods can be used.
  • the route of administration of the test substance may be oral or parenteral.
  • Parenteral administration includes, for example, systemic administration such as intravenous, intraarterial or intramuscular administration, or local administration.
  • the dose, dosing interval, start time of administration, and dosing period of the test substance are not particularly limited, and can be appropriately selected according to the purpose. It can be selected as appropriate.
  • a test substance that can reduce cancer (tumor) or suppress cancer (tumor) growth is selected as a candidate substance for cancer treatment. can be done. Reduction of cancer (tumor) or inhibition of cancer (tumor) growth can be evaluated by measuring the size (volume, etc.) of cancer (tumor).
  • symptoms caused by cancer or numerical values of cancer-related markers may be used as indicators.
  • evaluation of cancer pathology in a non-human model animal can be performed using a non-human animal to which no test substance is administered as a negative control.
  • a test substance selected as described above can be a candidate for a therapeutic drug for cancer.
  • CBE3 Recombinant Peptide
  • CBE3 Molecular weight: 51.6 kD Structure: GAP[(GXY) 63 ] 3G Number of amino acids: 571 RGD sequence: 12 Imino acid content: 33% Nearly 100% of the amino acids are GXY repeats.
  • the amino acid sequence of CBE3 does not contain serine, threonine, asparagine, tyrosine and cysteine.
  • CBE3 has an ERGD sequence.
  • Examples 1 to 3 Preparation of non-human model animals using human liver cancer-derived cell lines Water for injection (Otsuka Pharmaceutical Co., Ltd.) was mixed to prepare 200 mmol/L phosphate buffer (pH 6.8). PBS for gel preparation (phosphate buffered saline) was prepared. The lyophilized CBE3 was dissolved in PBS at room temperature for 5 hours to the concentration shown in Table 1, and then heated at 37°C for 30 minutes to dissolve completely. Then, it was filtered through a 0.2 ⁇ m filter to prepare a CBE3 solution.
  • Water for injection Otsuka Pharmaceutical Co., Ltd.
  • PBS for gel preparation phosphate buffered saline
  • the tetra-branched PEG cross-linking agent (SUNBRIGHT PTE-200HS, Yuka Sangyo Co., Ltd.) shown in FIG.
  • a PEG solution was prepared by dissolving in PBS and filtering through a 0.2 ⁇ m filter.
  • a PEG solution was added to the resulting CBE3 solution at a volume ratio of 1:1 and vortexed for 30 seconds to obtain a gel-forming solution used as a scaffold as shown in Table 1.
  • the solid content concentration in Table 1 indicates the total concentration of CBE3 and the cross-linking agent.
  • Human liver cancer-derived cell line HuH-7 (1.5 ⁇ 10 7 cells/mL) suspended in PBS (Thermo Fisher Scientific, pH 7.4) was added to each gel-forming solution at a volume ratio of 2 (gel-forming solution): 1 (cell suspension) and mixed well by pipetting to obtain a gel-forming solution for transplantation.
  • 200 ⁇ L/site 1.0 ⁇ 10 6 cells/site
  • NOD SCID mice female, 7-week-old
  • the mean tumor volumes of the groups using each scaffold were 1020 mm 3 , 483 mm 3 and 185 mm 3 respectively.
  • a graph of the tumor volume of each specimen and the average value of each group is shown in FIG.
  • necropsy was performed to collect the tissue, fixation was performed in 10% neutral buffered formalin (Fujifilm Wako Pure Chemical Industries, Ltd.) at room temperature for 48 hours, and then the cell-implanted site was examined on the surface including the long side of the tumor. It was cut out and immersed in 80% ethanol for 24 hours for degreasing.
  • Dispensing console (Sakura Seiki Co., Ltd.) 100% ethanol (Fuji Film Wako Pure Chemical Industries, Ltd.), xylene (Fuji Film Wako Pure Chemical Industries, Ltd.), paraffin (Sakura Fine Tech Japan Co., Ltd.) in this order after solvent substitution, A paraffin section was obtained by embedding in paraffin using a closed automatic fixing and embedding apparatus and slicing with a microtome to a thickness of 3 ⁇ m.
  • a tumor with a tumor area of 10 mm 2 or more was determined to be tumor formation, and the ratio of the number of tumor-formed sites to the number of transplanted sites was calculated as the tumor formation rate. Tumor formation rates were 83%, 83% and 67% in each group. Representative histopathological images taken with an optical microscope are shown in FIGS.
  • Comparative Examples 1-3 Production of non-human model animals using human liver cancer-derived cell lines (using Matrigerl (registered trademark) and PBS) High concentration Matrigel® (Corning, protein concentration 18-22 mg/mL), Matrigel® (Corning, protein concentration 8-12 mg/mL), PBS (Thermo Fisher Scientific, pH 7.4) Using it as a scaffold, non-human model animals were prepared in the same manner as in Examples 1 to 3, and the tumor volume, tumor area, and tumor formation rate were evaluated. The mean tumor volumes of the groups using each scaffold were 134 mm 3 , 35 mm 3 and 111 mm 3 respectively. A graph of the tumor volume of each specimen and the average value of each group is shown in FIG. The tumor formation rate was 0% in all groups.
  • Example 3 A summary of the results of Examples 1-3 and Comparative Examples 1-3 is shown in Table 2.
  • the tumor formation rate was 50% or more, the tumor formation rate was judged as “good”, and when the tumor formation rate was less than 50%, the judgment was made as "poor”. It can be seen that the use of a scaffold made of a peptide consisting of a single chain improves the tumor formation rate in a short period of time (21 days) after transplantation, making it possible to produce a non-human model animal with high efficiency.
  • accumulation of phagocytic cells in the scaffold was confirmed in Example 3.
  • the solid content concentration in the gel is low, it is easy for cells to enter the gel, and the gel is phagocytosed by phagocytic cells.
  • Examples 4-7 Preparation of non-human model animals from human colorectal cancer liver metastases
  • PEG solution was added to CBE3 solution at a volume ratio of 1:1 and vortexed for 30 seconds.
  • a gel-forming solution to be used as a scaffold was prepared by doing so.
  • the concentration of each solution was as shown in Table 3.
  • the solid content concentration in Table 3 indicates the total concentration of CBE3 and the cross-linking agent.
  • Establishment of Human Colorectal Cancer Liver Metastasis Model A tumor tissue collected from a mouse was cut into 5 mm squares. Tumor piece embedding in gel-forming solution and transplantation into mice were performed by two methods (Imbed method or Syringe method).
  • the Imbed method first, a parafilm was laid on a hot plate at 37° C., 200 ⁇ L of a gel-forming solution (before gelation) was dropped, and a tumor piece was embedded and allowed to stand for 10 minutes. After confirming the gelation of the scaffold material, the back of the mouse was incised, and the embedded tumor pieces were subcutaneously implanted with forceps and then sutured.
  • 200 ⁇ L of gel-forming solution was first placed in a truncated 1 mL syringe, and tumor pieces were embedded in the syringe. After standing at room temperature (20° C.) for 60 minutes to confirm gelation of the scaffold material, the back of the mouse was incised, transplanted while being pushed out from the syringe, and sutured.
  • a histopathological specimen was prepared in the same manner as in Examples 1-3. Images of the obtained sections were taken with an optical microscope, the tumor area was measured, and the tumor area and tumor formation rate were evaluated in the same manner as in Examples 1-3. The tumor formation rates were 100%, 100%, 100% and 75% in each group. Representative histopathological images taken with an optical microscope are shown in FIGS.
  • Example 8 Evaluation of Scaffold Decomposition in Collagenase Solution
  • a gel-forming solution having the same composition as in Example 4 (CBE3 concentration: 18.6 mg/mL) was prepared. 150 ⁇ L of the gel-forming solution was allowed to stand at 37° C. for 1 hour on a parafilm for gelation, and then allowed to stand at 37° C. for 1 hour in PBS (Thermo Fisher Scientific, pH 7.4). It was removed from the PBS and allowed to stand at 37° C. for a predetermined time in a 50 U/L Clostridium histolyticum-derived collagenase solution. Degradation in the collagenase solution was evaluated by measuring the weight of the gel and calculating the "weight ratio to the gel left standing in PBS to which no collagenase was added" as % of residual gel. The evaluation results are shown in FIG.
  • Examples 9 to 11 Measurement of storage elastic modulus
  • Gel-forming solutions as shown in Table 4 were obtained with the same formulations as in Examples 5, 6 and 7.
  • the solid content concentration in Table 4 indicates the total concentration of CBE3 and the cross-linking agent.
  • the storage modulus was measured at 37° C. using a rheometer HAAKE MARS40 manufactured by Thermo Scientific.
  • the storage elastic modulus after 60 minutes is shown in Table 4, and the change in storage elastic modulus over time is shown in FIG.
  • Example 12 Structural Analysis of CBE3 by Circular Dichroism (CD) Spectroscopy
  • a lyophilized CBE3 was dissolved in water for injection at 37° C. to prepare a 0.2 mg/mL measurement solution.
  • a measurement solution was placed in a cell with a layer length of 1 mm, and a CD spectrum measurement in the far ultraviolet region (250 to 200 nm) was performed at 25 ° C. using a circular dichroism spectrometer (J-820) manufactured by JASCO Corporation. .
  • Water for injection was used for blank measurement.
  • Table 5 shows the results of secondary structure analysis of the measurement results using JASCO Corporation's software (JWSSE-480).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)

Abstract

The present invention addresses the problem of providing: a gel formation kit which can be used for the production of a non-human animal and enables the formation of a tumor with high efficiency within a short period of time in the production of a non-human model animal with cancer; a gel formation solution; a gel composition; and a method for producing the gel composition. The present invention also addresses the problem of providing: a non-human model animal with cancer; a method for producing the non-human model animal; and a method for evaluating a test substance. According to the present invention, a gel formation kit which can be used for the production of a non-human model animal with cancer is provided, which comprises a peptide composed only of a single strand and a crosslinking agent having at least two chains each having a functional group capable of covalently bonding to an amino group and a hydrophilic linking group.

Description

ゲル形成キット及びその利用Gel forming kit and its use
 本発明は、がんを有する非ヒトモデル動物の作製に用いるための、ゲル形成キット、ゲル形成溶液及びゲル組成物に関する。本発明はさらに、がんを有する非ヒトモデル動物の作製に用いるためのゲル組成物の製造方法に関する。本発明はさらに、がんを有する非ヒトモデル動物、及びがんを有する非ヒトモデル動物の製造方法に関する。本発明はさらに、上記のがんを有する非ヒトモデル動物を用いた被験物質の評価方法に関する。 The present invention relates to a gel-forming kit, a gel-forming solution, and a gel composition for use in preparing non-human model animals with cancer. The present invention further relates to a method for producing a gel composition for use in producing non-human model animals with cancer. The present invention further relates to a non-human model animal having cancer and a method for producing a non-human model animal having cancer. The present invention further relates to a method for evaluating a test substance using the non-human model animal having cancer.
 がん疾患を標的とした新規薬剤の前臨床試験においては、患者由来腫瘍組織や患者由来がん細胞、株化されたがん細胞を免疫不全マウスに移植した、非ヒトモデル動物が用いられている(非特許文献1)。がん疾患治療の効果検証においては、上記移植によって非ヒト動物に腫瘍を形成し、薬剤投与等の治療を施した際の腫瘍体積抑制を評価する方法が一般的である。 In preclinical studies of novel drugs targeting cancer diseases, non-human animal models are used in which patient-derived tumor tissue, patient-derived cancer cells, and established cancer cell lines are transplanted into immunodeficient mice. (Non-Patent Document 1). A common method for verifying the effects of cancer treatment is to form a tumor in a non-human animal by the above-mentioned transplantation, and to evaluate suppression of tumor volume when treatment such as drug administration is performed.
 腫瘍形成においては、移植した腫瘍組織や細胞の生着、および腫瘍組織の成長が必要である。しかしながら、非ヒト動物への腫瘍や細胞の生着率は全般に低く(非特許文献2)、また生着後の増殖速度が試験間で異なる場合が多いため、腫瘍成長に要する期間が一定でない(非特許文献3)。これらの要因により、腫瘍を有する非モデル動物の作製が、前臨床試験実施における費用上、時間上のハードルとなっている。 In tumorigenesis, engraftment of transplanted tumor tissue and cells, and growth of tumor tissue are necessary. However, the survival rate of tumors and cells in non-human animals is generally low (Non-Patent Document 2), and the proliferation rate after engraftment often varies between tests, so the time required for tumor growth is not constant. (Non-Patent Document 3). These factors make the generation of tumor-bearing non-model animals a cost and time hurdle in conducting preclinical studies.
 非モデル動物作製において腫瘍形成を補助する足場材としては、Matrigel(登録商標)等のEngelbreth-Holm-Swarm(EHS)マウス肉腫由来足場材が市販され、広く用いられている。EHS由来の足場材は、主成分であるラミニンおよびIV型コラーゲンのほか、様々な成長因子を含有していることから(非特許文献4)、足場材に懸濁した上での細胞移植や、腫瘍組織移植部位への足場材注入により、腫瘍形成率が向上することが期待されている。しかし、EHS由来の足場材を使用した場合でもなお、試験系によっては腫瘍形成率が10~20%に留まる場合もあり、移植から腫瘍形成までには数か月の期間を要する(非特許文献2)。 Engelbreth-Holm-Swarm (EHS) mouse sarcoma-derived scaffolds such as Matrigel (registered trademark) are commercially available and widely used as scaffolds that assist tumor formation in the production of non-model animals. EHS-derived scaffolds contain laminin and type IV collagen, which are the main components, as well as various growth factors (Non-Patent Document 4). It is expected that scaffold injection into the site of tumor tissue transplantation will improve the tumor formation rate. However, even when EHS-derived scaffolds are used, the tumor formation rate may remain as low as 10 to 20% depending on the test system, and it takes several months from transplantation to tumor formation (non-patent literature 2).
 一方、特許文献1には、細胞と高分子ブロックからなる細胞構造体を移植した非ヒトモデル動物が記載されている。特許文献1においては、生体親和性高分子からなるブロック(塊)を使用している。 On the other hand, Patent Document 1 describes a non-human model animal implanted with a cell structure consisting of cells and polymer blocks. In Patent Literature 1, a block (mass) made of a biocompatible polymer is used.
国際公開WO2017/022613号公報International publication WO2017/022613
 非ヒトモデル動物の作製において腫瘍の生着率を向上させ、かつ移植後に短期間で腫瘍を成長させることができる、新規な足場材の開発が求められている。  There is a demand for the development of new scaffold materials that can improve the survival rate of tumors in the production of non-human model animals and allow tumors to grow in a short period of time after transplantation.
 本発明が解決すべき課題は、がんを有する非ヒトモデル動物の製造において、腫瘍を短期間で高効率に形成することができるような、非ヒト動物の作製に用いるためのゲル形成キット、ゲル形成溶液、及びゲル組成物を提供することである。さらに、本発明が解決すべき課題は、がんを有する非ヒトモデル動物の作製に用いるためのゲル組成物の製造方法を提供することである。さらに、本発明が解決すべき課題は、がんを有する非ヒトモデル動物、及びがんを有する非ヒトモデル動物の製造方法を提供することである。さらに、本発明が解決すべき課題は、上記のがんを有する非ヒトモデル動物を用いた被験物質の評価方法を提供することである。 The problem to be solved by the present invention is that in the production of non-human model animals having cancer, a gel-forming kit for use in producing non-human animals that can form tumors in a short period of time and with high efficiency, To provide a gel-forming solution and a gel composition. Furthermore, the problem to be solved by the present invention is to provide a method for producing a gel composition for use in producing a non-human model animal having cancer. Furthermore, the problem to be solved by the present invention is to provide a non-human model animal having cancer and a method for producing a non-human model animal having cancer. Furthermore, the problem to be solved by the present invention is to provide a method for evaluating a test substance using the non-human model animal having cancer.
 本発明者らは上記課題を解決するために鋭意検討した結果、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤と、1本鎖のみからなるペプチドとを架橋することにより形成されるゲルによって、短期間での腫瘍形成率が向上することを見出した。本発明はこれらの知見に基づいて完成したものである。 As a result of intensive studies by the present inventors in order to solve the above problems, a cross-linking agent having at least two or more chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group, and a single chain We have found that gels formed by cross-linking peptides improve the rate of tumorigenesis in the short term. The present invention has been completed based on these findings.
 即ち、本発明によれば、以下の発明が提供される。
(1) 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを含む、がんを有する非ヒトモデル動物の作製に用いるためのゲル形成キット。
(2) 上記アミノ基と共有結合できる官能基と親水性連結基とを含む鎖が、下記式1で示される、(1)に記載のゲル形成キット。
Z-(A-(B-(C-    式1
式中、Zはアミノ基と共有結合できる官能基であり、Aは疎水性の連結基であり、Bは親水性の連結基であり、Cは疎水性の連結基であり、wは1以上の整数であり、xは1以上の整数であり、yは0以上の整数である。
(3) 上記親水性連結基が、エチレンオキシド単位を含む、(1)または(2)に記載のゲル形成キット。
(4) 上記アミノ基と共有結合できる官能基が、スクシンイミジル基、イソシアネート、イソチオシアネート、スルホニルクロリド、アルデヒド、アシルアジド、酸無水物、イミドエステル、エポキシドおよび活性エステルからなる群より選ばれる、(1)から(3)の何れか一に記載のゲル形成キット。
(5) 上記1本鎖のみからなるペプチドがリコンビナントペプチドである、(1)から(4)の何れか一に記載のゲル形成キット。
(6) 上記リコンビナントペプチドが下記式で示される、(5)に記載のゲル形成キット。
A-[(Gly-X-Y)-B
式中、Aは任意のアミノ酸またはアミノ酸配列を示し、Bは任意のアミノ酸またはアミノ酸配列を示し、n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示し、nは3~100の整数を示し、mは2~10の整数を示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。
(7) 上記リコンビナントペプチドが、
配列番号1に記載のアミノ酸配列からなるペプチド;
配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;または
配列番号1に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである、(5)または(6)に記載のゲル形成キット。
(8) さらにがん細胞を含む、(1)から(7)の何れか一に記載のゲル形成キット。
(9) 上記がん細胞が、患者由来腫瘍組織、株化がん細胞の懸濁液、または患者由来がん細胞の懸濁液からなる群より選ばれる、(8)に記載のゲル形成キット。
(10) 上記がん細胞が、肝臓がん細胞、胆道がん細胞、膵臓がん細胞、大腸がん細胞、骨肉腫細胞、軟骨肉腫細胞、または血管肉腫細胞からなる群より選ばれる、(8)または(9)に記載のゲル形成キット。
(11) 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを含む、がんを有する非ヒトモデル動物の作製に用いるためのゲル形成溶液。
(12) ゲル形成溶液の上記1本鎖のみからなるペプチドと上記架橋剤の合計濃度が、1~200mg/mLである、(11)に記載のゲル形成溶液。
(13) さらにがん細胞を含む、(11)または(12)に記載のゲル形成溶液。
(14) 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とから形成される、がんを有する非ヒトモデル動物の作製に用いるためのゲル組成物。
(15) さらにがん細胞を含む、(14)に記載のゲル組成物。
(16) 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを混合してゲル形成溶液を製造することと、
がん細胞を上記ゲル形成溶液により包埋することとを含む、
がんを有する非ヒトモデル動物の作製に用いるためのゲル組成物の製造方法。
(17) 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とから形成され、がん細胞を含む、ゲル組成物を移植物として有する、がんを有する非ヒトモデル動物。
(18) 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とから形成され、がん細胞を含む、ゲル組成物またはゲル形成溶液を、非ヒト動物に移植することを含む、がんを有する非ヒトモデル動物の製造方法。
(19) がん細胞を非ヒト動物に移植すること、及び
1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを含むゲル形成溶液を、上記非ヒト動物に移植することを含む、がんを有する非ヒトモデル動物の製造方法。
(20) ゲル組成物またはゲル形成溶液を、非ヒト動物の皮下、腹腔内、器官又は組織に移植する、(18)または(19)に記載のがんを有する非ヒトモデル動物の製造方法。
(21) (17)に記載のがんを有する非ヒトモデル動物に被験物質を投与することを含む、被験物質の評価方法。
That is, according to the present invention, the following inventions are provided.
(1) A non-human model animal having cancer, comprising a peptide consisting of only one chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group. Gel forming kit for use in making.
(2) The gel-forming kit according to (1), wherein the chain containing a functional group capable of covalently bonding with the amino group and a hydrophilic linking group is represented by Formula 1 below.
Z-(A 1 ) w -(B 1 ) x -(C 1 ) y - Formula 1
wherein Z is a functional group that can covalently bond with an amino group, A 1 is a hydrophobic linking group, B 1 is a hydrophilic linking group, C 1 is a hydrophobic linking group, and w is an integer of 1 or more, x is an integer of 1 or more, and y is an integer of 0 or more.
(3) The gel-forming kit according to (1) or (2), wherein the hydrophilic linking group contains an ethylene oxide unit.
(4) the functional group capable of covalent bonding with the amino group is selected from the group consisting of succinimidyl group, isocyanate, isothiocyanate, sulfonyl chloride, aldehyde, acylazide, acid anhydride, imidoester, epoxide and active ester; The gel-forming kit according to any one of (3).
(5) The gel-forming kit according to any one of (1) to (4), wherein the peptide consisting of only one chain is a recombinant peptide.
(6) The gel-forming kit according to (5), wherein the recombinant peptide is represented by the following formula.
A-[(Gly-X-Y) n ] m -B
In the formula, A represents an arbitrary amino acid or amino acid sequence, B represents an arbitrary amino acid or amino acid sequence, n X's each independently represent any amino acid, and n Y's each independently represent an amino acid. n represents an integer of 3 to 100, and m represents an integer of 2 to 10. The n Gly-XY may be the same or different.
(7) the recombinant peptide is
A peptide consisting of the amino acid sequence set forth in SEQ ID NO: 1;
A peptide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1 and having biocompatibility; or 80% or more of the amino acid sequence of SEQ ID NO: 1 A peptide consisting of an amino acid sequence having the sequence identity of and having biocompatibility;
The gel-forming kit according to (5) or (6), which is either
(8) The gel-forming kit according to any one of (1) to (7), further comprising cancer cells.
(9) The gel-forming kit according to (8), wherein the cancer cells are selected from the group consisting of a patient-derived tumor tissue, a suspension of established cancer cells, or a suspension of patient-derived cancer cells. .
(10) The cancer cells are selected from the group consisting of liver cancer cells, biliary tract cancer cells, pancreatic cancer cells, colon cancer cells, osteosarcoma cells, chondrosarcoma cells, or angiosarcoma cells, (8 ) or the gel-forming kit according to (9).
(11) A non-human model animal having cancer, comprising a peptide consisting of only a single chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding to an amino group and a hydrophilic linking group. Gel-forming solution for use in making.
(12) The gel-forming solution according to (11), wherein the total concentration of the single-stranded peptide and the cross-linking agent in the gel-forming solution is 1 to 200 mg/mL.
(13) The gel-forming solution according to (11) or (12), further comprising cancer cells.
(14) A non-human cancer model formed from a peptide consisting of only a single chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding to an amino group and a hydrophilic linking group. A gel composition for use in making animals.
(15) The gel composition according to (14), further comprising cancer cells.
(16) Mixing a peptide consisting of only one chain with a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group to produce a gel-forming solution. ,
embedding cancer cells with the gel-forming solution;
A method for producing a gel composition for use in producing a non-human model animal having cancer.
(17) A gel composition formed from a peptide consisting of only one chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group, and containing cancer cells. A non-human model animal having cancer, which has a substance as an implant.
(18) A gel composition formed from a peptide consisting of only one chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group, and containing cancer cells. A method for producing a non-human model animal having cancer, comprising implanting a product or gel-forming solution into a non-human animal.
(19) Transplantation of cancer cells into a non-human animal, and a cross-linking agent having at least two or more chains containing a single-chain peptide, a functional group capable of covalently bonding to an amino group, and a hydrophilic linking group. A method for producing a non-human model animal having cancer, comprising transplanting a gel-forming solution containing and into the non-human animal.
(20) A method for producing a non-human model animal having cancer according to (18) or (19), wherein the gel composition or gel-forming solution is subcutaneously, intraperitoneally, or implanted into an organ or tissue of a non-human animal.
(21) A method for evaluating a test substance, comprising administering the test substance to the non-human model animal having cancer according to (17).
 本発明によれば、1本鎖のみからなるペプチドを用いることにより、短期間での腫瘍形成率が向上した。このような効果を奏する理由は詳細には明らかではないが、本発明者らは、1本鎖のみからなるペプチドを用いることにより、がん細胞が分泌する酵素によってゲル組成物が速やかに分解されるため、がん細胞が増殖する際の適切なスペース確保により腫瘍形成が促進されるものと推測している。また、本発明のゲル形成キット、ゲル形成溶液及びゲル組成物は、がんを有する非ヒトモデル動物の製造において、高効率に腫瘍を生着させ、短期間で腫瘍成長を得ることができる足場材として利用可能である。また、本発明のがんを有する非ヒトモデル動物、並びにがんを有する非ヒトモデル動物を用いた被験物質の評価方法は、がん疾患の治療の効果の検証において有用である。 According to the present invention, the tumor formation rate in a short period of time was improved by using a peptide consisting of only a single chain. Although the reason why such an effect is exhibited is not clear in detail, the present inventors found that by using a peptide consisting of only a single chain, the gel composition is rapidly degraded by enzymes secreted by cancer cells. Therefore, it is speculated that tumor formation is promoted by securing an appropriate space for cancer cells to proliferate. In addition, the gel-forming kit, gel-forming solution, and gel composition of the present invention provide a scaffold that allows tumors to engraft with high efficiency and allows tumor growth to be obtained in a short period of time in the production of non-human model animals having cancer. It can be used as material. In addition, the non-human model animal having cancer and the method for evaluating a test substance using the non-human model animal having cancer of the present invention are useful in verifying the effects of cancer treatment.
図1は、実施例に用いた4分岐のポリエチレングリコール架橋剤の化学構造を示す。FIG. 1 shows the chemical structure of a tetra-branched polyethylene glycol cross-linking agent used in Examples. 図2は、実施例1~3及び比較例1~3の腫瘍体積を示す。FIG. 2 shows the tumor volumes of Examples 1-3 and Comparative Examples 1-3. 図3は、実施例1の代表的病理組織像を示す。3 shows representative histopathological images of Example 1. FIG. 図4は、実施例2の代表的病理組織像を示す。4 shows representative histopathological images of Example 2. FIG. 図5は、実施例3の代表的病理組織像を示す。5 shows representative histopathological images of Example 3. FIG. 図6は、比較例1の代表的病理組織像を示す。6 shows a typical histopathological image of Comparative Example 1. FIG. 図7は、比較例2の代表的病理組織像を示す。7 shows a typical histopathological image of Comparative Example 2. FIG. 図8は、比較例3の代表的病理組織像を示す。8 shows a typical histopathological image of Comparative Example 3. FIG. 図9は、実施例4の代表的病理組織像を示す。9 shows representative histopathological images of Example 4. FIG. 図10は、実施例5の代表的病理組織像を示す。10 shows representative histopathological images of Example 5. FIG. 図11は、実施例6の代表的病理組織像を示す。11 shows a representative histopathological image of Example 6. FIG. 図12は、実施例7の代表的病理組織像を示す。12 shows representative histopathological images of Example 7. FIG. 図13は、コラゲナーゼ溶液中での足場材分解を示す。FIG. 13 shows scaffold degradation in collagenase solution. 図14は、ゲルの貯蔵弾性率の経時変化を示す。FIG. 14 shows the change in storage modulus of the gel over time.
 以下、本発明の実施の形態について詳細に説明する。
[ゲル形成キット]
 本発明によるがんを有する非ヒトモデル動物の作製に用いるためのゲル形成キットは、
(a)1本鎖のみからなるペプチド(以下、1本鎖ペプチドとも称する)と、
(b)アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤、
とを含む。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.
[Gel formation kit]
A gel-forming kit for use in preparing a non-human model animal having cancer according to the present invention comprises:
(a) a peptide consisting of only one chain (hereinafter also referred to as a single chain peptide);
(b) a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group;
including.
 一般に使用されている足場材であるMatrigel(登録商標)は、IV型コラーゲン(コラーゲン特有の3本鎖構造を含む)を主成分としており、腫瘍増殖時に必要なプロセスであるMMP(マトリックスメタロプロテアーゼ)による足場分解において、コラーゲンの分解(コラゲナーゼ)とゼラチンの分解(ゼラチナーゼ)という2ステップが必要である(Laronha, H., & Caldeira, J. (2020). Structure and Function of Human Matrix Metalloproteinases. Cells, 9, 1076.p3)。一方、本発明のゲル形成キットにより製造されるゲル組成物は、1本鎖ペプチドからなるため、ゼラチンと同様、MMPにより1ステップで速やかに分解されると考えられる。これが、細胞増殖時に必要であるスペースの確保に寄与し、細胞増殖を促進すると推測される。本発明によるゲル形成キットを使用することにより、腫瘍の生着率が高く、短期間で腫瘍が成長することができる非ヒトモデル動物を製造することができる。本発明のゲル形成キットにより製造されるゲル組成物は、ゲル組成物中に分散した1本鎖ペプチドによる均質な網目構造を形成し、MMPによるアクセスが容易であるため、適切なタイミングで分解されやすいと考えられる。 Matrigel®, a commonly used scaffolding material, is mainly composed of type IV collagen (which contains a three-stranded structure unique to collagen), and contains MMP (matrix metalloprotease), a process necessary for tumor growth. Scaffold degradation by scaffolds requires two steps: degradation of collagen (collagenase) and degradation of gelatin (gelatinase) (Laronha, H., & Caldeira, J. (2020). Structure and Function of Human Matrix Metalloproteinases. Cells, 9, 1076.p3). On the other hand, since the gel composition produced by the gel-forming kit of the present invention consists of a single-chain peptide, it is considered to be rapidly decomposed by MMP in one step, like gelatin. It is presumed that this contributes to ensuring the space required for cell growth and promotes cell growth. By using the gel-forming kit according to the present invention, it is possible to produce a non-human model animal that has a high tumor engraftment rate and allows tumors to grow in a short period of time. The gel composition produced by the gel-forming kit of the present invention forms a homogeneous network structure of single-chain peptides dispersed in the gel composition, and is easily accessible by MMPs, so that it is degraded at an appropriate timing. considered to be easy.
 本発明のゲル形成キットにおいては、架橋剤および1本鎖ペプチドはそれぞれ、注入可能な形態としてキットに含めることができる。注入可能とはシリンジ針を通過可能な物質であり、好ましくは流動性のある溶液または懸濁液であり、特に好ましくは均質な水溶液である。注入可能な形態としては、溶液、懸濁液、粉末などが挙げられるが、特に限定されない。粉末の場合には、使用時に液体に溶解または懸濁してから使用することができる。一例としては、粉末の架橋剤と、溶液の1本鎖ペプチドとをキットに含めることができる。 In the gel-forming kit of the present invention, each of the cross-linking agent and the single-chain peptide can be included in the kit as an injectable form. Injectables are substances that can be passed through a syringe needle, preferably fluid solutions or suspensions, particularly preferably homogeneous aqueous solutions. Injectable forms include, but are not limited to, solutions, suspensions, powders, and the like. In the case of powder, it can be used after dissolving or suspending in a liquid at the time of use. As an example, a kit can include a cross-linking agent in powder form and a single peptide chain in solution.
 架橋剤および1本鎖ペプチドの組み合わせは、時間依存的なゲル化能を示す組み合わせでもよい。時間依存的なゲル化能とは、15~40℃において一本鎖ペプチドと架橋剤を混合した後、1~60分の間でゲル化することを意味し、3~30分の間であることがより好ましい。
 架橋剤および1本鎖ペプチドは、10℃~50℃でゲル化が進むことが好ましく、15℃~40℃でゲル化が進むことが更に好ましく、動物の体温でゲル化することの観点から30℃~40℃でゲル化が進むことが最も好ましい。
The combination of cross-linking agent and single-chain peptide may be a combination that exhibits time-dependent gelling ability. The time-dependent gelling ability means gelation in 1 to 60 minutes after mixing the single-chain peptide and the cross-linking agent at 15 to 40°C, and 3 to 30 minutes. is more preferable.
The cross-linking agent and the single-chain peptide preferably gel at 10°C to 50°C, more preferably at 15°C to 40°C, and from the viewpoint of gelation at body temperature of the animal, 30°C. C. to 40.degree. C. is most preferred.
(架橋剤)
 本発明で用いる架橋剤は、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する。上記鎖は枝分かれなしで一本でつながっていてもよいが、上記鎖は枝分かれしていることが好ましい。鎖の数は2本以上であれば特に限定されない。2本、3本、4本、5本、6本、7本、8本、9本、10本またはそれ以上でもよいが、好ましくは2本~8本であり、より好ましくは2本~6本、さらに好ましくは4本である。均一な三次元網目構造ができることから、上記鎖4本が1点で分岐している4分岐架橋剤を用いることが最も好ましい。
 上記の鎖を2本以上有することにより、架橋剤は、アミノ基と共有結合できる官能基を2個以上有することになる。
(crosslinking agent)
The cross-linking agent used in the present invention has at least two chains containing functional groups capable of covalent bonding with amino groups and hydrophilic linking groups. Although the chain may be single-ended with no branching, it is preferred that the chain is branched. The number of chains is not particularly limited as long as it is two or more. 2, 3, 4, 5, 6, 7, 8, 9, 10 or more, preferably 2 to 8, more preferably 2 to 6 book, more preferably four. Since a uniform three-dimensional network structure can be formed, it is most preferable to use a tetra-branched cross-linking agent in which the above four chains are branched at one point.
By having two or more of the above chains, the crosslinker has two or more functional groups capable of covalently bonding with amino groups.
 架橋剤の重量平均分子量は特に限定されないが、均一な網目構造を形成できることから、好ましくは5000~40000であり、より好ましくは5000~30000であり、さらに好ましくは10000~30000であり、特に好ましくは15000~25000であり、一例としては20000を挙げることができる。 The weight average molecular weight of the cross-linking agent is not particularly limited, but is preferably from 5,000 to 40,000, more preferably from 5,000 to 30,000, still more preferably from 10,000 to 30,000, and particularly preferably from the viewpoint of forming a uniform network structure. It is 15000 to 25000, and 20000 can be mentioned as an example.
 アミノ基と共有結合できる官能基と親水性連結基とを含む鎖は、好ましくは下記式1で示される。
Z-(A-(B-(C-    式1
式中、Zはアミノ基と共有結合できる官能基であり、Aは疎水性の連結基であり、Bは親水性の連結基であり、Cは疎水性の連結基であり、wは1以上の整数であり、xは1以上の整数であり、yは0以上の整数である。
A chain comprising a functional group capable of covalently bonding with an amino group and a hydrophilic linking group is preferably represented by Formula 1 below.
Z-(A 1 ) w -(B 1 ) x -(C 1 ) y - Formula 1
wherein Z is a functional group that can covalently bond with an amino group, A 1 is a hydrophobic linking group, B 1 is a hydrophilic linking group, C 1 is a hydrophobic linking group, and w is an integer of 1 or more, x is an integer of 1 or more, and y is an integer of 0 or more.
 架橋剤は、好ましくは下記式2で表される。
[Z-(A-(B-(C-]-CH   式2
式中、Zはアミノ基と共有結合できる官能基であり、Aは疎水性の連結基であり、Bは親水性の連結基であり、Cは疎水性の連結基であり、wは1以上の整数であり、xは1以上の整数であり、yは0以上の整数であり、vは2から4の整数であり、nは0から2の整数である。但し、v+nは4である。
The cross-linking agent is preferably represented by Formula 2 below.
[Z-(A 1 ) w -(B 1 ) x -(C 1 ) y -] v -CH n Formula 2
wherein Z is a functional group that can covalently bond with an amino group, A 1 is a hydrophobic linking group, B 1 is a hydrophilic linking group, C 1 is a hydrophobic linking group, and w is an integer of 1 or more, x is an integer of 1 or more, y is an integer of 0 or more, v is an integer of 2 to 4, and n is an integer of 0 to 2. However, v+n is 4.
 Z、A、B、Cは各枝の中、また枝間で同じでも異なっていてもよく、w、x、y同士は枝間で同じでも異なっていてもよい。 Z, A 1 , B 1 and C 1 may be the same or different in each branch or between branches, and w, x and y may be the same or different between branches.
 wは、好ましくは1~10の整数であり、より好ましくは1~5の整数である。
 xは、好ましくは10~300の整数であり、より好ましくは20~200の整数である。
 yは、好ましくは0~5の整数であり、より好ましくは0~3の整数である。
 vは好ましくは4であり、nは好ましくは0である。
w is preferably an integer of 1-10, more preferably an integer of 1-5.
x is preferably an integer of 10-300, more preferably an integer of 20-200.
y is preferably an integer of 0-5, more preferably an integer of 0-3.
v is preferably 4 and n is preferably 0.
 アミノ基と共有結合できる官能基は、アミノ基に反応する官能基であり、それらはスクシンイミジル基、イソシアネート、イソチオシアネート、スルホニルクロリド、アルデヒド、アシルアジド、酸無水物、イミドエステル、エポキシド、活性エステルなどが好ましく、生体pHで容易に反応が進行するという観点から、より好ましくはスクシンイミジル基である。架橋剤は、アミノ基と共有結合できる官能基を2個以上有するが、官能基は同一のものでもよいし、異なるものでもよい。 Functional groups that can covalently bond with amino groups are functional groups that react with amino groups, such as succinimidyl groups, isocyanates, isothiocyanates, sulfonyl chlorides, aldehydes, acyl azides, acid anhydrides, imidoesters, epoxides, active esters, and the like. A succinimidyl group is preferred, and more preferred from the viewpoint that the reaction proceeds easily at the pH of the body. The cross-linking agent has two or more functional groups capable of covalently bonding with amino groups, and the functional groups may be the same or different.
 Bが示す親水性連結基としては、エチレンオキシド基(-CHCHO-)、またはエチレンオキシド単位を含む基を挙げることができる。親水性連結基がエチレンオキシド基(-CHCHO-)、またはエチレンオキシド単位を含む基である場合における架橋剤は、ポリエチレングリコール(PEG)架橋剤とも言う。架橋剤としては、PEG架橋剤が好ましく、さらに好ましくは末端にスクシンイミジル基を有する四分岐型PEG架橋剤である。なお、PEG架橋剤を使用する場合、PEG架橋剤以外の他の架橋剤を併用してもよい。 Examples of the hydrophilic linking group represented by B 1 include an ethylene oxide group (--CH 2 CH 2 O--) and a group containing an ethylene oxide unit. When the hydrophilic linking group is an ethylene oxide group (--CH 2 CH 2 O--) or a group containing ethylene oxide units, the cross-linking agent is also called a polyethylene glycol (PEG) cross-linking agent. The cross-linking agent is preferably a PEG cross-linking agent, more preferably a four-branched PEG cross-linking agent having a succinimidyl group at the terminal. In addition, when using a PEG cross-linking agent, you may use other cross-linking agents other than a PEG cross-linking agent together.
 Aが示す疎水性の連結基としては、炭素数1~10、好ましくは1~5の炭化水素基を挙げることができる。Aが示す疎水性の連結基は、末端に-O-、-CO-または-COO-などの連結基を有していてもよい。また、-O-、-CO-および-COO-の連結基から選ばれる連結基をAは両末端に有していてもよい。
 Cが示す疎水性の連結基としては、炭素数1~3の炭化水素基を挙げることができ、好ましくはメチレン基またはエチレン基である。Cが示す疎水性の連結基は、末端に-O-、-CO-または-COO-などの連結基を有していてもよい。また、-O-、-CO-および-COO-の連結基から選ばれる連結基をCは両末端に有していてもよい。
Hydrophobic linking groups represented by A 1 include hydrocarbon groups having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms. The hydrophobic linking group represented by A 1 may have a linking group such as —O—, —CO— or —COO— at its terminal. In addition, A 1 may have a connecting group selected from -O-, -CO- and -COO- connecting groups at both ends.
The hydrophobic linking group represented by C 1 includes a hydrocarbon group having 1 to 3 carbon atoms, preferably a methylene group or an ethylene group. The hydrophobic linking group represented by C 1 may have a linking group such as —O—, —CO— or —COO— at its terminal. In addition, C 1 may have a connecting group selected from -O-, -CO- and -COO- connecting groups at both ends.
 本発明で用いる架橋剤は、好ましくは、組織接着性を有する。組織接着性とは、設置時に架橋剤が設置部組織との間に化学結合しうることを意味する。好ましくは、架橋剤と組織表面タンパク質のアミノ基との化学結合である。 The cross-linking agent used in the present invention preferably has tissue adhesiveness. Tissue adhesiveness means that the cross-linking agent can chemically bond with the tissue at the site of installation. Preferred is chemical bonding between the cross-linking agent and the amino groups of the tissue surface protein.
(1本鎖ペプチド)
 本発明で用いる1本鎖のみからなるペプチドとは、1本鎖のみで形成されることを意味し、コラーゲン特有の3本鎖構造を含まない。1本鎖ペプチドはさらに多量体でないことが好ましい。1本鎖ペプチドの単量体含有率が50~100%が好ましく、80~100%がより好ましい。
 本発明で用いる1本鎖ペプチドとしては、生体親和性を有するものが好ましい。生体親和性とは、生体に接触した際に、長期的かつ慢性的な炎症反応などのような顕著な有害反応を惹起しないことを意味する。1本鎖ペプチドとしては、リコンビナントペプチドが好ましい。
(single-chain peptide)
A peptide consisting of only a single chain used in the present invention means that it is formed of only a single chain and does not contain a three-stranded structure unique to collagen. It is also preferred that the single-chain peptides are non-multimeric. The monomer content of the single-chain peptide is preferably 50-100%, more preferably 80-100%.
The single-chain peptide used in the present invention preferably has biocompatibility. Biocompatibility means that it does not cause significant adverse reactions such as long-term and chronic inflammatory reactions when in contact with living organisms. Preferred single-chain peptides are recombinant peptides.
 1本鎖ペプチドは、ペプチド分子間で架橋されているものでも良いし、架橋されていないものでも良いが、生体内において適切なタイミングで分解されやすいとの理由から架橋されていないものが好ましい。1本鎖ペプチドは、未架橋状態において、水溶液中でランダム構造を40%~100%含むものがよく、より好ましくは60%~100%含むものがよい。ランダム構造とは、高分子鎖が特定の高次構造を形成せずに溶液中に存在する場合の構造(不規則構造)であり、その含有率は円偏光二色性(CD)スペクトル測定等により測定される。 The single-chain peptide may be crosslinked between peptide molecules or non-crosslinked, but non-crosslinked peptides are preferable because they are easily degraded in vivo at appropriate timing. The single-chain peptide in an uncrosslinked state preferably contains 40% to 100%, more preferably 60% to 100%, random structure in an aqueous solution. The random structure is a structure (irregular structure) when the polymer chain exists in a solution without forming a specific higher-order structure, and its content is measured by circular dichroism (CD) spectrum measurement, etc. measured by
 アミノ基と共有結合できる官能基(スクシンイミジル基など)が反応するとの観点から、1本鎖ペプチドとしては、リジンを含むペプチドが好ましく、リジンを5%以上含むペプチドがさらに好ましい。 A peptide containing lysine is preferable as the single-chain peptide, and a peptide containing 5% or more of lysine is more preferable as the single-chain peptide from the viewpoint of reaction of functional groups (such as succinimidyl groups) capable of covalently bonding with amino groups.
 1本鎖ペプチドの種類は特に限定されないが、例えば、ゼラチン、エラスチン、フィブロネクチン、プロネクチン、テネイシン、フィブリン、フィブロイン、エンタクチン、トロンボスポンジン、レトロネクチンが好ましく、より好ましくはゼラチンである。ゼラチンはリコンビナントペプチドであってもよい。リコンビナントペプチドについては、本明細書中後記する。 Although the type of single-chain peptide is not particularly limited, gelatin, elastin, fibronectin, pronectin, tenascin, fibrin, fibroin, entactin, thrombospondin, and retronectin are preferred, and gelatin is more preferred. Gelatin may be a recombinant peptide. Recombinant peptides are described later in this specification.
(リコンビナントペプチド)
 1本鎖ペプチドとしては、リコンビナントペプチドが好ましい。
 リコンビナントペプチドとは、遺伝子組み換え技術により作られたゼラチン類似のアミノ酸配列を有するポリペプチドもしくは蛋白様物質を意味する。本発明で用いることができるリコンビナントペプチドは、コラーゲンに特徴的なGly-X-Yで示される配列(XおよびYはそれぞれ独立にアミノ酸の何れかを示す)の繰り返しを有するものが好ましい。ここで、複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい。好ましくは、細胞接着シグナルが一分子中に2配列以上含まれているものがよい。本発明で用いるリコンビナントペプチドとしては、コラーゲンの部分アミノ酸配列に由来するアミノ酸配列を有するゼラチンを用いることができる。例えばEP1014176、米国特許第6992172号、国際公開WO2004/85473、国際公開WO2008/103041等に記載のものを用いることができるが、これらに限定されるものではない。本発明で用いるリコンビナントペプチドとして好ましいものは、以下の態様のペプチドである。
(recombinant peptide)
Preferred single-chain peptides are recombinant peptides.
A recombinant peptide means a polypeptide or protein-like substance having an amino acid sequence similar to that of gelatin produced by gene recombination technology. Recombinant peptides that can be used in the present invention preferably have repeats of a collagen-characteristic Gly-XY sequence (X and Y each independently represent an amino acid). Here, a plurality of Gly-XY may be the same or different. Preferably, one molecule contains two or more sequences of cell adhesion signals. As the recombinant peptide used in the present invention, gelatin having an amino acid sequence derived from a partial amino acid sequence of collagen can be used. For example, those described in EP1014176, US Pat. No. 6,992,172, International Publication WO2004/85473, International Publication WO2008/103041, etc. can be used, but are not limited thereto. Preferable recombinant peptides for use in the present invention are peptides of the following aspects.
 リコンビナントペプチドは天然由来ではないことで牛海綿状脳症(BSE)などの懸念がなく、非感染性に優れている。また、リコンビナントペプチドは天然ゼラチンと比べて均一であり、配列が決定されているので、強度および分解性においても架橋等によってブレを少なく精密に設計することが可能である。 Because the recombinant peptide is not naturally derived, there is no concern about bovine spongiform encephalopathy (BSE), and it is highly non-infectious. In addition, since the recombinant peptide is more uniform than natural gelatin and has a determined sequence, it is possible to precisely design the strength and degradability of the peptide with little variation due to cross-linking or the like.
 リコンビナントペプチドの分子量は、特に限定されないが、好ましくは2000以上100000以下(2kDa以上100kDa以下)であり、より好ましくは2500以上95000以下(2.5kDa以上95kDa以下)であり、さらに好ましくは5000以上90000以下(5kDa以上90kDa以下)であり、最も好ましくは10000以上90000以下(10kDa以上90kDa以下)である。
 リコンビナントペプチドの分子量分布は特に限定されないが、分子量分布測定における最大の分子量ピークの面積が、全ての分子量ピークの合計面積の70%以上であるリコンビナントぺプチドを含むことが好ましく、90%以上がより好ましく、95%以上が最も好ましい。リコンビナントペプチドの分子量分布は、PCT/JP2017/012284に記載の方法で測定することができる。
The molecular weight of the recombinant peptide is not particularly limited, but is preferably 2000 or more and 100000 or less (2 kDa or more and 100 kDa or less), more preferably 2500 or more and 95000 or less (2.5 kDa or more and 95 kDa or less), and still more preferably 5000 or more and 90000 or less. (5 kDa or more and 90 kDa or less), most preferably 10000 or more and 90000 or less (10 kDa or more and 90 kDa or less).
Although the molecular weight distribution of the recombinant peptide is not particularly limited, it preferably contains a recombinant peptide in which the area of the maximum molecular weight peak in molecular weight distribution measurement is 70% or more of the total area of all molecular weight peaks, and 90% or more is more. Preferably, 95% or more is most preferred. The molecular weight distribution of recombinant peptides can be measured by the method described in PCT/JP2017/012284.
 リコンビナントペプチドは、コラーゲンに特徴的なGly-X-Yで示される配列の繰り返しを有することが好ましい。ここで、複数個のGly-X-Yはそれぞれ同一でも異なっていてもよい。Gly-X-Y において、Glyはグリシンを表し、XおよびYは、任意のアミノ酸(好ましくは、グリシン以外の任意のアミノ酸)を表す。コラーゲンに特徴的なGly-X-Yで示される配列とは、ゼラチン・コラーゲンのアミノ酸組成および配列における、他のタンパク質と比較して非常に特異的な部分構造である。この部分においてはグリシンが全体の約3分の1を占め、アミノ酸配列では3個に1個の繰り返しとなっている。グリシンは最も簡単なアミノ酸であり、分子鎖の配置への束縛も少なく、ゲル化に際してのヘリックス構造の再生に大きく寄与している。XおよびYで表されるアミノ酸にはイミノ酸(プロリン、オキシプロリン)が多く含まれ、全体の10%~45%を占めることが好ましい。好ましくは、リコンビナントペプチドの配列の80%以上、更に好ましくは95%以上、最も好ましくは99%以上のアミノ酸が、Gly-X-Yの繰り返し構造である。 The recombinant peptide preferably has repeats of the Gly-XY sequence characteristic of collagen. Here, a plurality of Gly-XY may be the same or different. In Gly-XY, Gly represents glycine, and X and Y represent any amino acid (preferably any amino acid other than glycine). The Gly-XY sequence characteristic of collagen is a very specific partial structure in the amino acid composition and sequence of gelatin-collagen compared to other proteins. Glycine occupies about one-third of the whole in this portion, and in the amino acid sequence, it is repeated one in three. Glycine is the simplest amino acid, is less constrained to the configuration of the molecular chain, and greatly contributes to the regeneration of the helical structure during gelation. Amino acids represented by X and Y contain a large amount of imino acids (proline, oxyproline), and preferably account for 10% to 45% of the total. Preferably, 80% or more, more preferably 95% or more, and most preferably 99% or more of the amino acids in the sequence of the recombinant peptide are Gly-XY repeat structures.
 一般的なゼラチンは、極性アミノ酸のうち電荷を持つものと無電荷のものが1:1で存在する。ここで、極性アミノ酸とは具体的にシステイン、アスパラギン酸、グルタミン酸、ヒスチジン、リジン、アスパラギン、グルタミン、セリン、スレオニン、チロシンおよびアルギニンを指し、このうち極性無電荷アミノ酸とはシステイン、アスパラギン、グルタミン、セリン、スレオニンおよびチロシンを指す。本発明で用いるリコンビナントペプチドにおいては、構成する全アミノ酸のうち、極性アミノ酸の割合が10~40%であり、好ましくは20~30%である。且つ上記極性アミノ酸中の無電荷アミノ酸の割合が5%以上20%未満、好ましくは5%以上10%未満であることが好ましい。さらに、セリン、スレオニン、アスパラギン、チロシンおよびシステインのうちいずれか1種のアミノ酸、好ましくは2種以上のアミノ酸を配列上に含まないことが好ましい。 In general gelatin, charged and uncharged polar amino acids are present at a ratio of 1:1. Here, the polar amino acids specifically refer to cysteine, aspartic acid, glutamic acid, histidine, lysine, asparagine, glutamine, serine, threonine, tyrosine and arginine, among which the polar uncharged amino acids are cysteine, asparagine, glutamine and serine. , threonine and tyrosine. In the recombinant peptide used in the present invention, the proportion of polar amino acids in all constituent amino acids is 10-40%, preferably 20-30%. In addition, the proportion of uncharged amino acids in the polar amino acids is preferably 5% or more and less than 20%, preferably 5% or more and less than 10%. Furthermore, it is preferred that any one of serine, threonine, asparagine, tyrosine and cysteine amino acids, preferably two or more amino acids, is not included in the sequence.
 一般にポリペプチドにおいて、細胞接着シグナルとして働く最小アミノ酸配列が知られている(例えば、株式会社永井出版発行「病態生理」Vol.9、No.7(1990年)527頁)。本発明で用いるペプチドは、これらの細胞接着シグナルを1分子中に2以上有することが好ましい。細胞接着シグナルは同一のものでもよいし、異なるものでもよい。具体的な配列としては、接着する細胞の種類が多いという点で、アミノ酸一文字表記で表される、RGD配列、LDV配列、REDV配列、YIGSR配列、PDSGR配列、RYVVLPR配列、LGTIPG配列、RNIAEIIKDI配列、IKVAV配列、LRE配列、DGEA配列、およびHAV配列の配列が好ましい。さらに好ましくはRGD配列、YIGSR配列、PDSGR配列、LGTIPG配列、IKVAV配列およびHAV配列、特に好ましくはRGD配列である。RGD配列のうち、好ましくはERGD配列である。細胞接着シグナルを有するペプチドを用いることにより、細胞の基質産生量を向上させることができる。 Generally, in polypeptides, the minimum amino acid sequence that functions as a cell adhesion signal is known (for example, published by Nagai Publishing Co., Ltd. "Pathophysiology" Vol. 9, No. 7 (1990) p. 527). The peptide used in the present invention preferably has two or more of these cell adhesion signals in one molecule. Cell adhesion signals may be the same or different. Specific sequences include the RGD sequence, LDV sequence, REDV sequence, YIGSR sequence, PDSGR sequence, RYVVLPR sequence, LGTIPG sequence, RNIAEIIKDI sequence, which are represented by amino acid single letter notation, in that there are many types of cells to which it adheres. Sequences of IKVAV, LRE, DGEA and HAV sequences are preferred. More preferred are the RGD sequence, YIGSR sequence, PDSGR sequence, LGTIPG sequence, IKVAV sequence and HAV sequence, and particularly preferred is the RGD sequence. Among the RGD sequences, the ERGD sequence is preferred. By using a peptide having a cell adhesion signal, the amount of substrate produced by cells can be improved.
 本発明で用いるリコンビナントペプチドにおけるRGD配列の配置としては、RGD間のアミノ酸数が0~100の間、好ましくは25~60の間で均一でないことが好ましい。
 この最小アミノ酸配列の含有量は、細胞接着・増殖性の観点から、タンパク質1分子中3~50個が好ましく、さらに好ましくは4~30個、特に好ましくは5~20個である。最も好ましくは12個である。
As for the arrangement of the RGD sequences in the recombinant peptides used in the present invention, the number of amino acids between RGDs is preferably between 0 and 100, preferably between 25 and 60, and is not uniform.
The content of this minimum amino acid sequence is preferably 3 to 50, more preferably 4 to 30, particularly preferably 5 to 20 per protein molecule from the viewpoint of cell adhesion and proliferation. Twelve are most preferred.
 本発明で用いるリコンビナントペプチドにおいて、アミノ酸総数に対するRGDモチーフの割合は少なくとも0.4%であることが好ましい。リコンビナントペプチドが350以上のアミノ酸を含む場合、350のアミノ酸の各ストレッチが少なくとも1つのRGDモチーフを含むことが好ましい。アミノ酸総数に対するRGDモチーフの割合は、更に好ましくは少なくとも0.6%であり、更に好ましくは少なくとも0.8%であり、更に好ましくは少なくとも1.0%であり、更に好ましくは少なくとも1.2%であり、最も好ましくは少なくとも1.5%である。ペプチド内のRGDモチーフの数は、250のアミノ酸あたり、好ましくは少なくとも4、更に好ましくは少なくとも6、更に好ましくは少なくとも8、更に好ましくは12以上16以下である。RGDモチーフの0.4%という割合は、250のアミノ酸あたり、少なくとも1つのRGD配列に対応する。RGDモチーフの数は整数であるので、少なくとも0.4%の特徴を満たすには、251のアミノ酸からなるリコンビナントペプチドは、少なくとも2つのRGD配列を含まなければならない。好ましくは、リコンビナントペプチドは、250のアミノ酸あたり、少なくとも2つのRGD配列を含み、より好ましくは250のアミノ酸あたり、少なくとも3つのRGD配列を含み、さらに好ましくは250のアミノ酸あたり、少なくとも4つのRGD配列を含む。本発明におけるリコンビナントペプチドのさらなる態様としては、少なくとも4つのRGDモチーフ、好ましくは少なくとも6つ、より好ましくは少なくとも8つ、さらに好ましくは12以上16以下のRGDモチーフを含む。 In the recombinant peptide used in the present invention, the ratio of the RGD motif to the total number of amino acids is preferably at least 0.4%. Where the recombinant peptide comprises 350 or more amino acids, it is preferred that each stretch of 350 amino acids comprises at least one RGD motif. The ratio of RGD motifs to total amino acids is more preferably at least 0.6%, more preferably at least 0.8%, more preferably at least 1.0%, more preferably at least 1.2%. and most preferably at least 1.5%. The number of RGD motifs in the peptide is preferably at least 4, more preferably at least 6, more preferably at least 8, more preferably 12 to 16 per 250 amino acids. A proportion of 0.4% of RGD motifs corresponds to at least one RGD sequence per 250 amino acids. Since the number of RGD motifs is an integer, a recombinant peptide of 251 amino acids must contain at least two RGD sequences to satisfy at least 0.4% of the characteristics. Preferably, the recombinant peptide comprises at least 2 RGD sequences per 250 amino acids, more preferably at least 3 RGD sequences per 250 amino acids, even more preferably at least 4 RGD sequences per 250 amino acids. include. A further aspect of the recombinant peptide of the present invention comprises at least 4 RGD motifs, preferably at least 6, more preferably at least 8, even more preferably 12 to 16 RGD motifs.
 リコンビナントペプチドは部分的に加水分解されていてもよい。 The recombinant peptide may be partially hydrolyzed.
 好ましくは、本発明で用いるリコンビナントペプチドは、A-[(Gly-X-Y)-Bで示されるものである。n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示す。mは好ましくは2~10の整数を示し、より好ましくは3~5の整数を示す。nは3~100の整数が好ましく、15~70の整数がさらに好ましく、50~65の整数が最も好ましい。Aは任意のアミノ酸またはアミノ酸配列を示し、Bは任意のアミノ酸またはアミノ酸配列を示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。 Preferably, the recombinant peptide used in the present invention is represented by A-[(Gly-XY) n ] m -B. Each of n Xs independently represents any amino acid, and each of n Ys independently represents any amino acid. m preferably represents an integer of 2-10, more preferably an integer of 3-5. n is preferably an integer of 3-100, more preferably an integer of 15-70, and most preferably an integer of 50-65. A represents any amino acid or amino acid sequence and B represents any amino acid or amino acid sequence. The n Gly-XY may be the same or different.
 より好ましくは、本発明で用いるリコンビナントペプチドは、 式:Gly-Ala-Pro-[(Gly-X-Y)63-Gly(式中、63個のXはそれぞれ独立にアミノ酸の何れかを示し、63個のYはそれぞれ独立にアミノ酸の何れかを示す。なお、63個のGly-X-Yはそれぞれ同一でも異なっていてもよい。)で示されるものである。 More preferably, the recombinant peptide used in the present invention has the formula: Gly-Ala-Pro-[(Gly-XY) 63 ] 3 -Gly (wherein each of the 63 Xs independently represents any amino acid). Each of the 63 Y's independently represents an amino acid, and the 63 Gly-XY's may be the same or different.).
 繰り返し単位には天然に存在するコラーゲンの配列単位を複数結合することが好ましい。ここで言う天然に存在するコラーゲンとは天然に存在するものであればいずれでも構わないが、好ましくはI型、II型、III型、IV型、またはV型コラーゲンである。より好ましくは、I型、II型、またはIII型コラーゲンである。別の形態によると、上記コラーゲンの由来は好ましくは、ヒト、ウシ、ブタ、マウスまたはラットであり、より好ましくはヒトである。 It is preferable to bind multiple naturally occurring collagen sequence units to the repeating unit. The term "naturally occurring collagen" as used herein may be any naturally occurring collagen, but is preferably type I, II, III, IV, or V collagen. More preferred are type I, type II, or type III collagen. According to another aspect, the origin of said collagen is preferably human, bovine, porcine, mouse or rat, more preferably human.
 本発明で用いるリコンビナントペプチドの等電点は、好ましくは5~10であり、より好ましくは6~10であり、さらに好ましくは7~9.5である。リコンビナントペプチドの等電点の測定は、等電点電気泳動法(Maxey,C.R.(1976;Phitogr.Gelatin 2,Editor Cox,P.J.Academic,London,Engl.参照)に従って、1質量%リコンビナントペプチド溶液をカチオンおよびアニオン交換樹脂の混晶カラムに通したあとのpHを測定することで実施することができる。 The isoelectric point of the recombinant peptide used in the present invention is preferably 5-10, more preferably 6-10, still more preferably 7-9.5. The isoelectric point of the recombinant peptide is measured according to isoelectric focusing (Maxey, C. R. (1976; see Phitogr. Gelatin 2, Editor Cox, P. J. Academic, London, Engl.)). % recombinant peptide solution through a mixed crystal column of cation and anion exchange resins and then measuring the pH.
 好ましくは、リコンビナントペプチドは脱アミン化されていない。
 好ましくは、リコンビナントペプチドはテロペプタイドを有さない。
 好ましくは、リコンビナントペプチドは、アミノ酸配列をコードする核酸により調製された実質的に純粋なポリペプチドである。
Preferably, the recombinant peptide is not deaminated.
Preferably, the recombinant peptide does not have a telopeptide.
Preferably, the recombinant peptide is a substantially pure polypeptide prepared by a nucleic acid encoding amino acid sequence.
 本発明で用いるリコンビナントペプチドとして特に好ましくは、
(1)配列番号1に記載のアミノ酸配列からなるペプチド;
(2)配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;または
(3)配列番号1に記載のアミノ酸配列と80%以上(さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは98%以上)の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
の何れかである
Particularly preferred recombinant peptides used in the present invention are:
(1) a peptide consisting of the amino acid sequence set forth in SEQ ID NO: 1;
(2) a peptide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence set forth in SEQ ID NO: 1 and having biocompatibility; or (3) a peptide set forth in SEQ ID NO: 1 A peptide consisting of an amino acid sequence having a sequence identity of 80% or more (more preferably 90% or more, particularly preferably 95% or more, most preferably 98% or more) with the amino acid sequence, and having biocompatibility;
is either
 「1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列」における「1若しくは数個」とは、好ましくは1~20個、より好ましくは1~10個、さらに好ましくは1~5個、特に好ましくは1~3個を意味する。 "One or several" in the "amino acid sequence in which one or several amino acids are deleted, substituted or added" is preferably 1 to 20, more preferably 1 to 10, still more preferably 1 to 5 number, particularly preferably 1 to 3.
 本発明で用いるリコンビナントペプチドは、当業者に公知の遺伝子組み換え技術によって製造することができ、例えばEP1014176A2号公報、米国特許第6992172号公報、国際公開WO2004/85473号、国際公開WO2008/103041号等に記載の方法に準じて製造することができる。具体的には、所定のリコンビナントペプチドのアミノ酸配列をコードする遺伝子を取得し、これを発現ベクターに組み込んで、組み換え発現ベクターを作製し、これを適当な宿主に導入して形質転換体を作製する。得られた形質転換体を適当な培地で培養することにより、リコンビナントペプチドが産生されるので、培養物から産生されたリコンビナントペプチドを回収することにより、本発明で用いるリコンビナントペプチドを調製することができる。 Recombinant peptides used in the present invention can be produced by genetic recombination techniques known to those skilled in the art. For example, see EP1014176A2, US Pat. It can be produced according to the described method. Specifically, a gene encoding an amino acid sequence of a given recombinant peptide is obtained, incorporated into an expression vector to prepare a recombinant expression vector, and introduced into an appropriate host to prepare a transformant. . By culturing the resulting transformant in an appropriate medium, the recombinant peptide is produced, and the recombinant peptide used in the present invention can be prepared by recovering the recombinant peptide produced from the culture. .
 本発明のゲル形成キットにおいて、ペプチドは、溶液でも粉体でもよい。
 溶液の場合は好ましくは1~100mg/mLの濃度、より好ましくは1~80mg/mLの濃度、さらに好ましくは5~80mg/mLの濃度としてキットに含めることができる。
In the gel-forming kit of the present invention, the peptide may be in solution or powder.
In the case of a solution, it can be included in the kit at a concentration of preferably 1-100 mg/mL, more preferably 1-80 mg/mL, even more preferably 5-80 mg/mL.
 本発明のゲル形成キットは、さらにがん細胞を含んでいてもよい。
 がん細胞の種類は問わないが、ヒト由来がん細胞が好ましく、さらに好ましくはヒト由来固形がん細胞である。例えば、悪性黒色腫、悪性リンパ腫、消化器がん、肺がん、食道がん、胃がん、大腸がん、直腸がん、結腸がん、尿管腫瘍、胆嚢がん、胆管がん、胆道がん、乳がん、肝臓がん、膵臓がん、睾丸腫瘍、上顎がん、舌がん、口唇がん、口腔がん、咽頭がん、喉頭がん、卵巣がん、子宮がん、前立腺がん、甲状腺がん、脳腫瘍、カポジ肉腫、血管腫、 白血病、真性多血症、神経芽腫、網膜芽腫、骨髄腫、膀胱腫、肉腫、骨肉腫、筋肉腫、皮膚がん、基底細胞がん、皮膚付属器がん、皮膚転移がんなどが挙げられるが、これらに限定されるものではない。中でも肝臓がん細胞、胆道がん細胞、膵臓がん細胞、大腸がん細胞、骨肉腫細胞、軟骨肉腫細胞、血管肉腫細胞が好ましい。
The gel-forming kit of the present invention may further contain cancer cells.
Although the type of cancer cells does not matter, human-derived cancer cells are preferred, and human-derived solid cancer cells are more preferred. For example, malignant melanoma, malignant lymphoma, gastrointestinal cancer, lung cancer, esophageal cancer, stomach cancer, colon cancer, rectal cancer, colon cancer, ureteral tumor, gallbladder cancer, bile duct cancer, biliary tract cancer, Breast cancer, liver cancer, pancreatic cancer, testicular cancer, maxillary cancer, tongue cancer, lip cancer, oral cavity cancer, pharyngeal cancer, laryngeal cancer, ovarian cancer, uterine cancer, prostate cancer, thyroid cancer Cancer, brain tumor, Kaposi's sarcoma, hemangioma, leukemia, polycythemia vera, neuroblastoma, retinoblastoma, myeloma, cystoma, sarcoma, osteosarcoma, sarcoma, skin cancer, basal cell carcinoma, skin Examples include, but are not limited to, adnexal cancer, skin metastasis cancer, and the like. Among them, liver cancer cells, biliary tract cancer cells, pancreatic cancer cells, colon cancer cells, osteosarcoma cells, chondrosarcoma cells, and angiosarcoma cells are preferred.
 がん細胞の状態として、細胞懸濁液、スフェロイド、オルガノイド、または腫瘍組織が挙げられるが、これらに限定されるものではない。がん細胞は、患者由来腫瘍組織、株化がん細胞、または患者由来がん細胞の何れでもよく、患者由来腫瘍組織、株化がん細胞の懸濁液、または患者由来がん細胞の懸濁液が好ましい。 Cancer cell states include, but are not limited to, cell suspensions, spheroids, organoids, or tumor tissues. The cancer cells may be patient-derived tumor tissue, established cancer cell lines, or patient-derived cancer cells. Turbidity is preferred.
 本発明のゲル形成キットにはさらに、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤、および1本鎖ペプチドを対象に投与するための指示書を含めてもよい。 The gel-forming kit of the present invention further includes a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group, and instructions for administering a single-chain peptide to a subject. may be included.
 本発明のゲル形成キットにはさらに、粉体のペプチドまたは粉体の架橋剤を溶解するための溶媒を含めてもよい。溶媒のpHは4.0~9.0が好ましく、生体適合性の観点より6.0~8.0が特に好ましい。本発明のゲル形成キットにはさらに、ゲル形成から移植までに使用するシリンジ、フィルター、容器、ゲル整形用治具、フィルム、ピンセット等の器具を含めてもよい。 The gel-forming kit of the present invention may further contain a solvent for dissolving the powdery peptide or the powdery cross-linking agent. The pH of the solvent is preferably 4.0 to 9.0, particularly preferably 6.0 to 8.0 from the viewpoint of biocompatibility. The gel-forming kit of the present invention may further include instruments such as syringes, filters, containers, gel-shaping jigs, films, and tweezers used from gel formation to implantation.
[ゲル形成溶液]
 本発明によれば、1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを含む、がんを有する非ヒトモデル動物の作製に用いるためのゲル形成溶液が提供される。ゲル形成溶液は一本鎖ペプチドと架橋剤を混合し、ゲル化するまでの溶液を意味する。ゲル化とは、溶液が流動性を有する状態から流動性がない状態に変化することを意味する。
 1本鎖のみからなるペプチド及び架橋剤についての詳細および好ましい態様は、本明細書中において上記した通りである。
[Gel-forming solution]
According to the present invention, a non-human having cancer comprising a peptide consisting of only a single chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group. Gel-forming solutions for use in making model animals are provided. A gel-forming solution means a solution obtained by mixing a single-chain peptide and a cross-linking agent until gelation occurs. Gelation means that a solution changes from a fluid state to a non-fluid state.
Details and preferred embodiments for peptides consisting of only one chain and crosslinkers are as described herein above.
 ゲル形成溶液の1本鎖ペプチドと架橋剤の合計濃度は、好ましくは1mg/mL~200mg/mLであり、より好ましくは1.5mg/mL~150mg/mLであり、さらに好ましくは20mg/mL~100mg/mLである。移植時におけるゲル形成溶液の1本鎖ぺプチドと架橋剤の合計濃度が20mg/mL~100mg/mLであることが特に好ましい。活性末端モル濃度比である[1本鎖ペプチドのアミノ基(-NH)]:[アミノ基と共有結合できる架橋剤の官能基]は1:2~4:1の範囲であり、細胞毒性の観点から好ましくは4:1である。 The total concentration of the single-chain peptide and the cross-linking agent in the gel-forming solution is preferably 1 mg/mL to 200 mg/mL, more preferably 1.5 mg/mL to 150 mg/mL, still more preferably 20 mg/mL to 100 mg/mL. It is particularly preferred that the total concentration of the single-stranded peptide and the cross-linking agent in the gel-forming solution at the time of implantation is 20 mg/mL to 100 mg/mL. The active terminal molar concentration ratio [amino group (—NH 2 ) of single-chain peptide]:[functional group of crosslinker capable of covalent bonding with amino group] is in the range of 1:2 to 4:1. is preferably 4:1 from the viewpoint of
 ゲル形成溶液における架橋剤の濃度は、好ましくは1mg/mL~150mg/mLの範囲であり、より好ましくは3mg/mL~100mg/mLであり、さらに好ましくは3mg/mL~50mg/mLであり、特に好ましくは9mg/mL~50mg/mLである。移植時におけるゲル形成溶液の架橋剤の濃度が9mg/mL~50mg/mLであることが特に好ましい。 The concentration of the cross-linking agent in the gel-forming solution is preferably in the range of 1 mg/mL to 150 mg/mL, more preferably 3 mg/mL to 100 mg/mL, even more preferably 3 mg/mL to 50 mg/mL, Especially preferred is 9 mg/mL to 50 mg/mL. It is particularly preferred that the concentration of the cross-linking agent in the gel-forming solution at the time of implantation is between 9 mg/mL and 50 mg/mL.
 ゲル形成溶液はおける1本鎖ペプチドの濃度範囲としては、最終濃度1mg/mL~100mg/mLであり、好ましくは5mg/mL~70mg/mLであり、特に10mg/mL~50mg/mLが好ましい。移植時におけるゲル形成溶液の1本鎖ペプチドの濃度が10mg/mL~50mg/mLであることが特に好ましい。 The concentration range of the single-chain peptide in the gel-forming solution is 1 mg/mL to 100 mg/mL, preferably 5 mg/mL to 70 mg/mL, and particularly preferably 10 mg/mL to 50 mg/mL. It is particularly preferred that the single-chain peptide concentration of the gel-forming solution at the time of implantation is between 10 mg/mL and 50 mg/mL.
 本発明のゲル形成溶液は、さらにがん細胞を含んでいてもよい。がん細胞の詳細および好ましい態様は、本明細書中において上記した通りである。 The gel-forming solution of the present invention may further contain cancer cells. Details and preferred embodiments of cancer cells are as described herein above.
 本発明のゲル形成溶液は、さらにがん細胞以外の細胞を含んでいてもよい。 The gel-forming solution of the present invention may further contain cells other than cancer cells.
 本発明のゲル形成溶液は、増殖因子(例えば、上皮成長因子(Epidermal Growth Factor(EGF))、塩基性線維芽細胞成長因子(Basic Fibroblast Growth Factor(bFGF))、神経成長因子(Nerve Growth Factor)、血小板由来成長因子(Platelet-Derived Growth Factor(PDGF))、インスリン様成長因子1(Insulin-like growth factor 1)、トランスフォーミング成長因子β(TGF-β)など)、酵素(MMP等)、細胞培養用培地、血清、血液、腹水、胸水等の他の成分を含んでいてもよい。 The gel-forming solution of the present invention contains growth factors (e.g., epidermal growth factor (EGF)), basic fibroblast growth factor (bFGF), nerve growth factor (nerve growth factor) , Platelet-Derived Growth Factor (PDGF), Insulin-like Growth Factor 1, Transforming Growth Factor β (TGF-β), etc.), Enzymes (MMPs, etc.), Cells Other components such as culture medium, serum, blood, ascites, and pleural effusion may be included.
 ゲル形成溶液は、1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤を混合することによって、製造することができる。
 ゲル形成溶液は、1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤と、がん細胞を含む細胞懸濁液を混合することによって、製造することもできる。
A gel-forming solution can be produced by mixing a peptide consisting of only one chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group. .
The gel-forming solution contains a peptide consisting of only one chain, a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group, and a cell suspension containing cancer cells. It can also be produced by mixing
[ゲル組成物およびゲル組成物の製造方法]
 本発明によれば、1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とから形成される、がんを有する非ヒトモデル動物の作製に用いるためのゲル組成物が提供される。ゲル組成物は1本鎖ペプチドと架橋剤を含み、ゲル形成溶液が、前述するゲル化を経たものである。
 1本鎖のみからなるペプチド及び架橋剤についての詳細および好ましい態様は、本明細書中において上記した通りである。
[Gel composition and method for producing gel composition]
According to the present invention, cancer is formed from a peptide consisting of only one chain and a cross-linking agent having at least two or more chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group. A gel composition is provided for use in generating a non-human model animal. The gel composition contains a single-chain peptide and a cross-linking agent, and the gel-forming solution undergoes gelation as described above.
Details and preferred embodiments for peptides consisting of only one chain and crosslinkers are as described herein above.
 本発明のゲル組成物は、さらにがん細胞を含んでいてもよい。がん細胞の詳細および好ましい態様は、本明細書中において上記した通りである。 The gel composition of the present invention may further contain cancer cells. Details and preferred embodiments of cancer cells are as described herein above.
 本発明のゲル組成物は、がんを有する非ヒトモデル動物の製造のために使用することができる。 The gel composition of the present invention can be used for the production of non-human model animals with cancer.
 本発明の移植時におけるゲル組成物中の1本鎖ペプチドと架橋剤の合計濃度は、好ましくは1mg/mL~200mg/mLであり、より好ましくは1.5mg/mL~150mg/mLであり、さらに好ましくは20mg/mL~100mg/mLである。活性末端モル濃度比である[1本鎖ペプチドのアミノ基(-NH)]:[アミノ基と共有結合できる架橋剤の官能基]は1:2~4:1の範囲であり、好ましくは4:1である。 The total concentration of the single-chain peptide and the cross-linking agent in the gel composition at the time of implantation of the present invention is preferably 1 mg/mL to 200 mg/mL, more preferably 1.5 mg/mL to 150 mg/mL, More preferably 20 mg/mL to 100 mg/mL. The active terminal molar concentration ratio [amino group (—NH 2 ) of single-chain peptide]:[functional group of crosslinker capable of covalent bonding with amino group] is in the range of 1:2 to 4:1, preferably 4:1.
 本発明の移植時におけるゲル組成物中における架橋剤の濃度は、好ましくは1mg/mL~150mg/mLの範囲であり、より好ましくは3mg/mL~100mg/mLであり、さらに好ましくは9mg/mL~50mg/mLである。 The concentration of the cross-linking agent in the gel composition at the time of implantation of the present invention is preferably in the range of 1 mg/mL to 150 mg/mL, more preferably 3 mg/mL to 100 mg/mL, still more preferably 9 mg/mL. ~50 mg/mL.
 本発明の移植時におけるゲル組成物中における1本鎖ペプチドの濃度は、1mg/mL~100mg/mLであり、好ましくは5mg/mL~70mg/mLであり、特に10mg/mL~50mg/mLが好ましい。 The concentration of the single-chain peptide in the gel composition at the time of implantation of the present invention is 1 mg/mL to 100 mg/mL, preferably 5 mg/mL to 70 mg/mL, particularly 10 mg/mL to 50 mg/mL. preferable.
 本発明の移植時におけるゲル組成物は、がん細胞以外の細胞を含んでいてもよい。 The gel composition at the time of transplantation of the present invention may contain cells other than cancer cells.
 本発明のゲル組成物は、1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを混合して架橋反応を行うことにより製造することができる。 The gel composition of the present invention is prepared by mixing a peptide consisting of only one chain and a cross-linking agent having at least two chains each containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group, and causing a cross-linking reaction. It can be manufactured by doing.
 本発明のゲル組成物はまた、1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを混合してゲル形成溶液を製造することと、がん細胞を上記ゲル形成溶液またはがん細胞を含まないゲル組成物により包埋することによって、製造することができる。包埋とは、細胞懸濁液をゲル形成溶液と混合すること、またはスフェロイド、オルガノイド、腫瘍組織をゲル形成溶液またはがん細胞を含まないゲル組成物により包むことである。
 ゲル組成物は溶媒を含んでいても良い。溶媒は水系のものが好ましく、水系緩衝液または細胞培養用培地が好ましく、リン酸緩衝液が最も好ましい。溶媒のpHは4.0~9.0が好ましく、生体適合性の観点より6.0~8.0が特に好ましい。
The gel composition of the present invention can also be prepared by mixing a peptide consisting of only one chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group to form a gel. It can be produced by preparing a solution and embedding cancer cells in the gel-forming solution or a gel composition that does not contain cancer cells. Embedding is the mixing of a cell suspension with a gel-forming solution or the encapsulation of spheroids, organoids, tumor tissue with a gel-forming solution or a gel composition that does not contain cancer cells.
The gel composition may contain a solvent. The solvent is preferably an aqueous one, preferably an aqueous buffer or a cell culture medium, most preferably a phosphate buffer. The pH of the solvent is preferably 4.0 to 9.0, particularly preferably 6.0 to 8.0 from the viewpoint of biocompatibility.
 がん細胞の懸濁液を含むゲル組成物を製造する場合の、ゲル組成物中の細胞濃度としては、5.0×10~5.0×10cells/mLが好ましく、5.0×10~2.5×10cells/mLがより好ましく、5.0×10~5.0×10cells/mLが最も好ましい。
 移植細胞数としては細胞が入っていればよいが、1箇所に移植するゲル組成物あたり、1.0×10~1.0×10cellsが好ましく、1.0×10~5.0×10cellsがより好ましく、1.0×10~1.0×10cellsが最も好ましい。
When a gel composition containing a suspension of cancer cells is produced, the cell concentration in the gel composition is preferably 5.0×10 2 to 5.0×10 8 cells/mL, and 5.0. More preferably 10 4 to 2.5 x 10 8 cells/mL, most preferably 5.0 x 10 5 to 5.0 x 10 7 cells/mL.
The number of cells to be transplanted may be any number as long as the cells are contained, but the number of cells per gel composition to be transplanted to one site is preferably 1.0×10 2 to 1.0×10 8 cells, and 1.0×10 4 to 5.0×10 8 cells. 0×10 7 cells are more preferred, and 1.0×10 5 to 1.0×10 7 cells are most preferred.
 ゲル形成溶液を細胞懸濁液と混合する場合、混合のタイミングは、1本鎖ペプチドと架橋剤を混合した後、即時~60分であることが好ましく、即時~30分であることがより好ましく、細胞毒性および均一な細胞懸濁の観点より、1~10分であることが最も好ましい。 When the gel-forming solution is mixed with the cell suspension, the mixing timing is preferably immediately to 60 minutes, more preferably immediately to 30 minutes, after mixing the single-chain peptide and the cross-linking agent. , from the viewpoint of cytotoxicity and uniform cell suspension, 1 to 10 minutes is most preferred.
 ゲル形成溶液を細胞懸濁液と混合する場合、氷上または室温(10~30℃)で操作することが好ましく、細胞の生存率の観点から、氷上での操作がより好ましい。 When mixing the gel-forming solution with the cell suspension, it is preferable to operate on ice or at room temperature (10 to 30°C), and from the viewpoint of cell viability, operation on ice is more preferable.
 腫瘍組織を含むゲル組成物を製造する場合、使用する腫瘍組織の体積としては、10~1000mmが好ましく、より好ましくは50~500mmである。
 ゲル形成溶液に腫瘍組織を包埋するタイミングは、1本鎖ペプチドと架橋剤を混合した後、即時~60分であることが好ましく、細胞毒性の観点より、1~60分であることがより好ましい。ゲル形成溶液に腫瘍組織を包埋してゲル化させてもよいし、がん細胞を含まないゲル組成物に腫瘍組織を包埋してもよい。
 ゲル形成溶液に腫瘍を包埋する際、氷上または室温(10~30℃)で操作することが好ましい。ゲル形成溶液に腫瘍組織を包埋してゲル化させる場合は、包埋後に10~40℃で静置し、ゲル化させてから移植することが好ましい。
When a gel composition containing tumor tissue is produced, the volume of tumor tissue used is preferably 10-1000 mm 3 , more preferably 50-500 mm 3 .
The timing of embedding the tumor tissue in the gel-forming solution is preferably immediately to 60 minutes after mixing the single-chain peptide and the cross-linking agent, and more preferably 1 to 60 minutes from the viewpoint of cytotoxicity. preferable. Tumor tissue may be embedded in a gel-forming solution to form a gel, or may be embedded in a gel composition that does not contain cancer cells.
When embedding the tumor in the gel-forming solution, it is preferable to operate on ice or at room temperature (10-30° C.). When a tumor tissue is embedded in a gel-forming solution to gel, it is preferable to allow the tissue to stand at 10 to 40° C. after embedding to gel before implantation.
 本発明のゲル組成物は、増殖因子(例えば、上皮成長因子(Epidermal Growth Factor(EGF))、塩基性線維芽細胞成長因子(Basic Fibroblast Growth Factor(bFGF))、神経成長因子(Nerve Growth Factor)、血小板由来成長因子(Platelet-Derived Growth Factor(PDGF))、インスリン様成長因子1(Insulin-like growth factor 1)、トランスフォーミング成長因子β(TGF-β)など)、酵素(MMP等)、細胞培養用培地、血清、血液、腹水、胸水等の他の成分を含んでいてもよい。 The gel composition of the present invention contains growth factors (e.g., epidermal growth factor (EGF)), basic fibroblast growth factor (bFGF), nerve growth factor (nerve growth factor) , Platelet-Derived Growth Factor (PDGF), Insulin-like Growth Factor 1, Transforming Growth Factor β (TGF-β), etc.), Enzymes (MMPs, etc.), Cells Other components such as culture medium, serum, blood, ascites, and pleural effusion may be included.
[がんを有する非ヒトモデル動物及びその製造方法]
 本発明のゲル組成物又はゲル形成溶液は、がんを有する非ヒトモデル動物の製造のために非ヒト動物に移植することができる。
[Non-human model animal having cancer and method for producing the same]
The gel composition or gel-forming solution of the present invention can be implanted in non-human animals for the production of non-human model animals having cancer.
 本発明によれば、1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とから形成され、がん細胞を含むゲル組成物を移植物として有する、がんを有する非ヒトモデル動物が提供される。
 がんは、好ましくはヒトがんである。
According to the present invention, a peptide comprising a single chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group, and containing cancer cells. A non-human model animal having cancer is provided that has the gel composition as an implant.
The cancer is preferably human cancer.
 がん疾患としては、がん細胞が由来するがんの具体例として、本明細書中上記したものが挙げられるが、これらに限定されるものではない。 As for cancer diseases, specific examples of cancers derived from cancer cells include those mentioned above in this specification, but are not limited to these.
 第一の例としては、本発明のがんを有する非ヒトモデル動物は、1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とから形成され、がん細胞を含む、ゲル組成物またはゲル形成溶液を、非ヒト動物に移植することによって製造することができる。 As a first example, the non-human model animal having cancer of the present invention comprises a peptide consisting of only one chain, and at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group. It can be produced by implanting a gel composition or gel-forming solution formed from the cross-linking agent having the above and containing cancer cells into a non-human animal.
 第二の例としては、本発明のがんを有する非ヒトモデル動物は、がん細胞を非ヒト動物に移植すること、及び1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを含むゲル形成溶液を、非ヒト動物に移植することによって製造することができる。 As a second example, the non-human model animal having cancer of the present invention is prepared by transplanting cancer cells into a non-human animal, and a cross-linking agent having at least two chains containing a hydrophilic linking group, and a gel-forming solution can be produced by implanting the gel-forming solution into a non-human animal.
 非ヒトモデル動物におけるゲル組成物又はゲル形成溶液の移植部位は特に限定されないが、例えば、皮下、腹腔内、又は器官又は組織(好ましくは、移植するがん細胞が由来する器官又は組織)などが挙げられ、好ましくは皮下である。 The site of implantation of the gel composition or gel-forming solution in the non-human model animal is not particularly limited. and preferably subcutaneous.
 非ヒトモデル動物作製に用いる動物は、非ヒト動物であれば特に限定されないが、哺乳動物が好ましい。哺乳動物の中では、マウス、ラット、ウサギ又はハムスターなどのげっ歯類が、取り扱いの容易さの観点から好ましく、マウスが特に好ましい。 Animals used for non-human model animal production are not particularly limited as long as they are non-human animals, but mammals are preferred. Among mammals, rodents such as mice, rats, rabbits and hamsters are preferred from the viewpoint of ease of handling, and mice are particularly preferred.
 非ヒトモデル動物としては、免疫力が低下している動物、または免疫不全動物が好ましい。免疫力が低下している非ヒトモデル動物は、細胞構造体が生着可能な程度に免疫力が低下した動物であればよい。例えば、ヌードマウス、ヌードラット、SCID(severe combined immunodeficiency;重度複合免疫不全症)マウス、NOD(non-obese diabetic:非肥満糖尿病)-SCIDマウス、ALY(遺伝性リンパ節欠損)マウスなどの免疫不全動物を挙げることができ、市販品を使用することもできる。免疫力を低下させるために、非ヒト動物にX線などの放射線を照射してもよい。用意する非ヒトモデル動物は例えばマウス又はラットの場合には、4~12週齢のものを使用することができる。非ヒト動物は、免疫力低下の度合いに応じて、感染を防御した環境下で飼育することができる。感染防御の目的で、非ヒト動物に抗生剤を投与してもよい。 As non-human model animals, animals with weakened immunity or immunodeficient animals are preferred. The non-human model animal with weakened immunity may be an animal whose immunity is weakened to the extent that the cell structure can engraft. For example, nude mice, nude rats, SCID (severe combined immunodeficiency) mice, NOD (non-obese diabetic)-SCID mice, immune deficiencies such as ALY (hereditary lymph node deficiency) mice Animals can be mentioned, and commercial products can also be used. Non-human animals may be irradiated with radiation such as X-rays to reduce immunity. Non-human model animals to be prepared can be 4- to 12-week-old mice or rats, for example. Non-human animals can be kept in an infection-protected environment, depending on the degree of immunocompromise. Antibiotics may be administered to non-human animals for the purpose of protection against infection.
 ゲル組成物又はゲル形成溶液を移植する方法としては、ゲル化前の組成物をシリンジによって注入する方法、またはゲル化後の組成物を切開部位に移植する方法が考えられる。細胞懸濁液を移植する場合には、ゲル化前のゲル形成溶液に細胞を懸濁することにより包埋し、シリンジで移植部位に注入する方法が好ましい。スフェロイド、オルガノイド、腫瘍組織を移植する場合には、移植物を切開部位に移植後にゲル化前のゲル形成溶液をシリンジにより同部位に注入しても良いし、ゲルでがん細胞を包埋した組成物を作製の上、切開部位に移植しても良い。切開部位への移植時、組成物をピンセット等で移植部位に直接移植しても良いし、トロッカー等の器具を使用して注入しても良い。 As a method of implanting the gel composition or gel-forming solution, a method of injecting the composition before gelation with a syringe or a method of implanting the composition after gelation into the incision site can be considered. When a cell suspension is to be implanted, it is preferable to embed cells by suspending them in a gel-forming solution prior to gelation and injecting the cells into the implantation site with a syringe. When spheroids, organoids, or tumor tissues are transplanted, the gel-forming solution before gelation may be injected into the same site with a syringe after transplanting the implant into the incision site, or the cancer cells may be embedded in the gel. The composition may be prepared and then transplanted to the incision site. When transplanting to the incision site, the composition may be directly transplanted to the transplant site using tweezers or the like, or may be injected using an instrument such as a trocar.
 ゲル形成溶液による細胞の包埋から移植までの時間は、12時間以下であり、好ましくは3時間以下である。 The time from embedding the cells in the gel-forming solution to transplantation is 12 hours or less, preferably 3 hours or less.
 本発明の非ヒト動物は、がん治療薬の開発、がん治療効果の検証、がん治療による副作用の検証、がんを検出及びイメージングする試薬の開発などに有用である。 The non-human animal of the present invention is useful for the development of cancer therapeutic drugs, verification of cancer therapeutic effects, verification of side effects of cancer therapy, development of reagents for detecting and imaging cancer, and the like.
[被験物質の評価方法]
 本発明によれば、本発明のがんを有する非ヒトモデル動物に被験物質を投与することを含む、被験物質の評価方法が提供される。被験物質として、抗がん剤などのがん治療薬の候補物質を使用する場合には、がん治療薬をスクリーニングすることができる。
[Test substance evaluation method]
According to the present invention, a method for evaluating a test substance is provided, which comprises administering the test substance to the non-human model animal having cancer of the present invention. When candidate substances for cancer therapeutic agents such as anticancer agents are used as test substances, cancer therapeutic agents can be screened.
 本発明による被験物質の評価方法は好ましくは、本発明の非ヒトモデル動物に被験物質を投与する工程、及び上記非ヒトモデル動物におけるがんの病態を評価する工程を含む。 The method for evaluating a test substance according to the present invention preferably includes the steps of administering the test substance to the non-human model animal of the present invention, and evaluating the pathology of cancer in the non-human model animal.
 被験物質は、特に限定されず、目的に応じて適宜選択することができ、例えば、有機低分子化合物などの化合物、ペプチド、タンパク質、抗体、核酸、糖質、脂質、細胞抽出物、細胞培養上清、植物抽出物、微生物産生物等が挙げられる。化合物、ペプチド、タンパク質、抗体はそれぞれのライブラリーを使用することもできる。例えば、コンビナトリアルケミストリー技術を用いて作製された化合物ライブラリー、固相合成やファージディスプレイ法により作製されたランダムペプチドライブラリー又は抗体ライブラリーなどを使用することができる。 The test substance is not particularly limited and can be appropriately selected according to the purpose. cleansing agents, plant extracts, microbial products, and the like. Libraries for compounds, peptides, proteins, and antibodies can also be used. For example, compound libraries prepared using combinatorial chemistry techniques, random peptide libraries or antibody libraries prepared by solid-phase synthesis or phage display methods can be used.
 被験物質の投与経路は、経口投与でも非経口投与でもよい。非経口的投与としては、例えば、静脈内、動脈内又は筋肉内等の全身投与、あるいは局所投与等が挙げられる。被験物質の投与量、投与間隔、投与開始時期、及び投与期間は、特に限定されず、目的に応じて適宜選択することができ、投与対象の非ヒトモデル動物の種類、被験物質の種類等に応じて適宜選択することができる。 The route of administration of the test substance may be oral or parenteral. Parenteral administration includes, for example, systemic administration such as intravenous, intraarterial or intramuscular administration, or local administration. The dose, dosing interval, start time of administration, and dosing period of the test substance are not particularly limited, and can be appropriately selected according to the purpose. It can be selected as appropriate.
 非ヒトモデル動物におけるがんの病態を評価する工程においては、がん(腫瘍)を縮小、又はがん(腫瘍)の増大を抑制できる被験物質を、がん治療薬の候補物質として選択することができる。がん(腫瘍)の縮小、又はがん(腫瘍)の増大の抑制は、がん(腫瘍)の大きさ(体積など)を測定することにより評価することができる。あるいは、非ヒトモデル動物におけるがんの病態を評価する工程においては、がんに起因する症状、又はがん関連マーカーの数値を指標にしてもよい。
 また、非ヒトモデル動物におけるがんの病態の評価は、被験物質を投与しない非ヒト動物を陰性対照として、評価することができる。
 上記のようにして選択された被験物質は、がん治療薬の候補となりうる。
In the process of evaluating cancer pathology in non-human model animals, a test substance that can reduce cancer (tumor) or suppress cancer (tumor) growth is selected as a candidate substance for cancer treatment. can be done. Reduction of cancer (tumor) or inhibition of cancer (tumor) growth can be evaluated by measuring the size (volume, etc.) of cancer (tumor). Alternatively, in the step of evaluating the pathological condition of cancer in a non-human model animal, symptoms caused by cancer or numerical values of cancer-related markers may be used as indicators.
In addition, evaluation of cancer pathology in a non-human model animal can be performed using a non-human animal to which no test substance is administered as a negative control.
A test substance selected as described above can be a candidate for a therapeutic drug for cancer.
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The present invention will be described more specifically with the following examples, but the present invention is not limited by the examples.
参考例1:リコンビナントペプチド
 リコンビナントペプチドとして以下のCBE3を用意した
(国際公開WO2008/103041号公報に記載)。
CBE3:
分子量:51.6kD
構造:GAP[(GXY)63
アミノ酸数:571個
RGD配列:12個
イミノ酸含量:33%
ほぼ100%のアミノ酸がGXYの繰り返し構造である。CBE3のアミノ酸配列には、セリン、スレオニン、アスパラギン、チロシンおよびシステインは含まれていない。CBE3はERGD配列を有している。
等電点:9.34
GRAVY値:-0.682
1/IOB値:0.323
アミノ酸配列(配列表の配列番号1)(国際公開WO2008/103041号公報の配列番号3と同じ。但し末尾のXは「P」に修正)
GAP(GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADG
APGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAA
GLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP)3G
Reference Example 1: Recombinant Peptide The following CBE3 was prepared as a recombinant peptide (described in International Publication WO2008/103041).
CBE3:
Molecular weight: 51.6 kD
Structure: GAP[(GXY) 63 ] 3G
Number of amino acids: 571 RGD sequence: 12 Imino acid content: 33%
Nearly 100% of the amino acids are GXY repeats. The amino acid sequence of CBE3 does not contain serine, threonine, asparagine, tyrosine and cysteine. CBE3 has an ERGD sequence.
Isoelectric point: 9.34
GRAVY value: -0.682
1/IOB value: 0.323
Amino acid sequence (SEQ ID NO: 1 in the sequence listing) (same as SEQ ID NO: 3 in International Publication WO2008/103041, except that X at the end is changed to "P")
GAP(GAPGLQGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADGAPGAPGLQGMPGERGAAGLPGPKGERGDAGPKGADG
APGKDGVRGLAGPIGPPGERGAAGLPGPKGERGDAGPKGADGAPGKDGVRGLAGPIGPPGPAGAPGAPGLQGMPGERGAA
GLPGPKGERGDAGPKGADGAPGKDGVRGLAGPP)3G
実施例1~3:ヒト肝臓がん由来細胞株による非ヒトモデル動物の作製
 リン酸水素二ナトリウム(富士フイルム和光純薬株式会社)、リン酸二水素ナトリウム(富士フイルム和光純薬株式会社)、注射用水(大塚製薬株式会社)を混合し、200mmol/Lリン酸バッファー(pH6.8)を調製した。リン酸バッファーに終濃度150mmol/Lとなる量の塩化ナトリウム(富士フイルム和光純薬株式会社)を添加し、注射水で所定濃度(表1)に希釈することにより、ゲル調製用PBS(リン酸緩衝生理食塩水)を調製した。
 CBE3凍結乾燥体を、表1に示す濃度となるようPBSに室温で5時間溶解の後、37℃にて30分間加温して完全に溶解した。その後、0.2μmフィルターでろ過し、CBE3溶液を調製した。
Examples 1 to 3: Preparation of non-human model animals using human liver cancer-derived cell lines Water for injection (Otsuka Pharmaceutical Co., Ltd.) was mixed to prepare 200 mmol/L phosphate buffer (pH 6.8). PBS for gel preparation (phosphate buffered saline) was prepared.
The lyophilized CBE3 was dissolved in PBS at room temperature for 5 hours to the concentration shown in Table 1, and then heated at 37°C for 30 minutes to dissolve completely. Then, it was filtered through a 0.2 μm filter to prepare a CBE3 solution.
 末端にスクシンイミジル基を有する図1(製造元ウェブサイトより転載、式中のnは114程度)の4分岐PEG架橋剤(SUNBRIGHT PTE-200HS、油化産業株式会社)を、表1に示す濃度となるようPBSに溶解し、0.2μmフィルターでろ過することにより、PEG溶液を調製した。 The tetra-branched PEG cross-linking agent (SUNBRIGHT PTE-200HS, Yuka Sangyo Co., Ltd.) shown in FIG. A PEG solution was prepared by dissolving in PBS and filtering through a 0.2 μm filter.
 得られたCBE3溶液に対し、PEG溶液を体積比1:1の割合で加えて30秒間ボルテックス攪拌することにより、表1の通り足場材として用いるゲル形成溶液を得た。なお表1中の固形分濃度とは、CBE3と架橋剤の合計濃度を示す。 A PEG solution was added to the resulting CBE3 solution at a volume ratio of 1:1 and vortexed for 30 seconds to obtain a gel-forming solution used as a scaffold as shown in Table 1. The solid content concentration in Table 1 indicates the total concentration of CBE3 and the cross-linking agent.
 各ゲル形成溶液に対し、PBS(Thermo Fisher Scientific社、pH7.4)に懸濁したヒト肝臓がん由来細胞株HuH-7(1.5×10cells/mL)を体積比2(ゲル形成溶液):1(細胞懸濁液)の割合で加え、ピペッティングにより充分混合し、移植用ゲル形成溶液とした。その後5分以内にNOD SCIDマウス(メス、7週齢)の背部両側1カ所ずつ(計2カ所)に200μL/箇所(1.0×10cells/箇所)ずつ移植することにより、非ヒトモデル動物を作製した。移植後21日目に、腫瘍の短径、長径、高さをノギスで測定し、(長径)×(短径)×(高さ)×π/6にて腫瘍体積を算出した。各足場材を用いた群の平均腫瘍体積は、それぞれ1020mm、483mm、185mmであった。各検体の腫瘍体積および各群の平均値のグラフを、図2に示す。 Human liver cancer-derived cell line HuH-7 (1.5×10 7 cells/mL) suspended in PBS (Thermo Fisher Scientific, pH 7.4) was added to each gel-forming solution at a volume ratio of 2 (gel-forming solution): 1 (cell suspension) and mixed well by pipetting to obtain a gel-forming solution for transplantation. Within 5 minutes thereafter, 200 μL/site (1.0×10 6 cells/site) were transplanted into NOD SCID mice (female, 7-week-old) on both sides of the back (total of 2 sites), thereby forming a non-human model. animals were produced. Twenty-one days after transplantation, the minor axis, major axis, and height of the tumor were measured with vernier calipers, and the tumor volume was calculated as (long axis)×(short axis)×(height)×π/6. The mean tumor volumes of the groups using each scaffold were 1020 mm 3 , 483 mm 3 and 185 mm 3 respectively. A graph of the tumor volume of each specimen and the average value of each group is shown in FIG.
 腫瘍体積測定後、剖検して組織を採取し、10%中性緩衝ホルマリン(富士フイルム和光純薬株式会社)中で常温にて48時間固定後、腫瘍の長辺を含む面において細胞移植部位を切り出し、80%エタノールに24時間浸漬して脱脂した。ディスペンシング・コンソール(サクラ精機株式会社)により100%エタノール(富士フイルム和光純薬株式会社)、キシレン(富士フイルム和光純薬株式会社)、パラフィン(サクラファインテックジャパン株式会社)の順に溶媒置換後、密閉式自動固定包埋装置を用いてパラフィンに包埋し、ミクロトームを用いて3μmの厚さで薄切することで、パラフィン切片を得た。切片を50℃にて十分に乾燥させた後、ヘマトキシリン(サクラファインテックジャパン株式会社)に1分間浸漬させ、水洗した後に0.1%エオジン(富士フイルム和光純薬株式会社)に1分間浸漬させ、再度水洗することでヘマトキシリン&エオジン(H&E)染色を行った。100%エタノールで脱水、キシレンで透徹した後にマリノールで封入し、病理組織標本を得た。得られた標本の画像を光学顕微鏡で撮影の上、組織中最も大きな腫瘍塊の長径、長径と直行する短径を測定し、(長径/2)×(短径/2)×πにて腫瘍面積を算出した。腫瘍面積が10mm以上のものを腫瘍形成と判定し、移植箇所数のうち腫瘍形成した箇所数の割合を、腫瘍形成率として算出した。腫瘍形成率は各群、83%、83%、67%であった。光学顕微鏡により撮影した代表的病理組織像を、図3~5に示す。 After measurement of the tumor volume, necropsy was performed to collect the tissue, fixation was performed in 10% neutral buffered formalin (Fujifilm Wako Pure Chemical Industries, Ltd.) at room temperature for 48 hours, and then the cell-implanted site was examined on the surface including the long side of the tumor. It was cut out and immersed in 80% ethanol for 24 hours for degreasing. Dispensing console (Sakura Seiki Co., Ltd.) 100% ethanol (Fuji Film Wako Pure Chemical Industries, Ltd.), xylene (Fuji Film Wako Pure Chemical Industries, Ltd.), paraffin (Sakura Fine Tech Japan Co., Ltd.) in this order after solvent substitution, A paraffin section was obtained by embedding in paraffin using a closed automatic fixing and embedding apparatus and slicing with a microtome to a thickness of 3 μm. After sufficiently drying the section at 50°C, it was immersed in hematoxylin (Sakura Fine Tech Japan Co., Ltd.) for 1 minute, washed with water, and then immersed in 0.1% eosin (Fujifilm Wako Pure Chemical Industries, Ltd.) for 1 minute. Hematoxylin and eosin (H&E) staining was performed by washing with water again. After dehydration with 100% ethanol, clearing with xylene, and encapsulation with marinol, a histopathological specimen was obtained. After taking an image of the obtained specimen with an optical microscope, the major axis of the largest tumor mass in the tissue and the minor axis perpendicular to the major axis were measured. Area was calculated. A tumor with a tumor area of 10 mm 2 or more was determined to be tumor formation, and the ratio of the number of tumor-formed sites to the number of transplanted sites was calculated as the tumor formation rate. Tumor formation rates were 83%, 83% and 67% in each group. Representative histopathological images taken with an optical microscope are shown in FIGS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
比較例1~3:ヒト肝臓がん由来細胞株による非ヒトモデル動物の作製(Matrigerl(登録商標)、PBS使用)
 高濃度Matrigel(登録商標)(Corning社、タンパク質濃度18-22mg/mL)、Matrigel(登録商標)(Corning社、タンパク質濃度8-12mg/mL)、PBS(Thermo Fisher Scientific社、pH7.4)を足場材として使用し、実施例1~3と同様に、非ヒトモデル動物を作製し、腫瘍体積、腫瘍面積、および腫瘍形成率を評価した。各足場材を用いた群の平均腫瘍体積は、それぞれ134mm、35mm、111mmであった。各検体の腫瘍体積および各群の平均値のグラフを、図2に示す。腫瘍形成率は、いずれの群も0%であった。ただし、病理組織標本の評価において、0.1~1.0mm程度の面積の細胞の凝集体が観察された検体も存在した。従って、数ヶ月程度の長期間飼育を継続した場合には、腫瘍が形成される可能性もあるが、短期間での腫瘍形成には適さないと考えられる。光学顕微鏡により撮影した代表的病理組織画像を、図6~8に示す。
Comparative Examples 1-3: Production of non-human model animals using human liver cancer-derived cell lines (using Matrigerl (registered trademark) and PBS)
High concentration Matrigel® (Corning, protein concentration 18-22 mg/mL), Matrigel® (Corning, protein concentration 8-12 mg/mL), PBS (Thermo Fisher Scientific, pH 7.4) Using it as a scaffold, non-human model animals were prepared in the same manner as in Examples 1 to 3, and the tumor volume, tumor area, and tumor formation rate were evaluated. The mean tumor volumes of the groups using each scaffold were 134 mm 3 , 35 mm 3 and 111 mm 3 respectively. A graph of the tumor volume of each specimen and the average value of each group is shown in FIG. The tumor formation rate was 0% in all groups. However, in the evaluation of histopathological specimens, there were some specimens in which aggregates of cells with an area of about 0.1 to 1.0 mm 2 were observed. Therefore, if kept for a long period of time, such as several months, tumors may form, but it is considered unsuitable for short-term tumor formation. Representative histopathological images taken by light microscopy are shown in Figures 6-8.
 実施例1~3、および比較例1~3の結果をまとめたものを表2に示す。50%以上の腫瘍形成率の場合、腫瘍形成率の判定を「良好」とし、50%未満の腫瘍形成率の場合、腫瘍形成率の判定を「不良」とした。1本鎖のみからなるペプチドによる足場材を用いることで、移植後短期間(21日間)での腫瘍形成率が向上し、高効率に非ヒトモデル動物を作製可能なことが分かる。なお、病理組織標本の評価において、実施例3では、足場材への食細胞の集積が確認された。ゲル中の固形分濃度が低い場合には、ゲル中への細胞侵入が容易であるため、食細胞によりゲルが貪食される。これにより、ゲルの足場材としての性能が阻害されると考えられる。従って、腫瘍形成率を特に高めるためには、移植時の足場材に含有される1本鎖ペプチドと架橋剤の合計濃度を20mg/mL以上とし、食細胞の浸潤を抑制することが有効である。 A summary of the results of Examples 1-3 and Comparative Examples 1-3 is shown in Table 2. When the tumor formation rate was 50% or more, the tumor formation rate was judged as "good", and when the tumor formation rate was less than 50%, the judgment was made as "poor". It can be seen that the use of a scaffold made of a peptide consisting of a single chain improves the tumor formation rate in a short period of time (21 days) after transplantation, making it possible to produce a non-human model animal with high efficiency. In the evaluation of the histopathological specimen, accumulation of phagocytic cells in the scaffold was confirmed in Example 3. When the solid content concentration in the gel is low, it is easy for cells to enter the gel, and the gel is phagocytosed by phagocytic cells. This is thought to hinder the performance of the gel as a scaffold. Therefore, in order to particularly increase the tumor formation rate, it is effective to suppress the infiltration of phagocytic cells by setting the total concentration of the single-chain peptide and the cross-linking agent contained in the scaffold at the time of transplantation to 20 mg/mL or more. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
実施例4~7:ヒト大腸がん肝転移腫瘍による非ヒトモデル動物の作製
 実施例1~3と同様、CBE3溶液に対し、PEG溶液を体積比1:1の割合で加えて30秒間ボルテックス攪拌することにより、足場材として用いるゲル形成溶液を調製した。各溶液の濃度は、表3に示す通りとした。なお表3中の固形分濃度とは、CBE3と架橋剤の合計濃度を示す。
 ヒト大腸がん肝転移モデルの樹立マウスより採取した腫瘍組織を5mm角に切断した。ゲル形成溶液への腫瘍片包埋およびマウスへの移植は、2種類の方法(Imbed法またはSyringe法)により実施した。Imbed法では、まず、37℃のホットプレート上にパラフィルムを敷いて200μLのゲル形成溶液(ゲル化前)を滴下し、腫瘍片を埋め込んで10分間静置した。足場材のゲル化を確認の上、マウス背部を切開し、ピンセットで包埋済の腫瘍片を皮下に移植後、縫合した。Syringe法ではまず、先端を切断した1mLシリンジ中に200μLのゲル形成溶液を入れ、シリンジ中で腫瘍片を埋め込んだ。室温(20℃)にて60分間静置して足場材のゲル化を確認の上、マウス背部を切開し、シリンジから押し出しながら移植の上、縫合した。
Examples 4-7: Preparation of non-human model animals from human colorectal cancer liver metastases As in Examples 1-3, PEG solution was added to CBE3 solution at a volume ratio of 1:1 and vortexed for 30 seconds. A gel-forming solution to be used as a scaffold was prepared by doing so. The concentration of each solution was as shown in Table 3. The solid content concentration in Table 3 indicates the total concentration of CBE3 and the cross-linking agent.
Establishment of Human Colorectal Cancer Liver Metastasis Model A tumor tissue collected from a mouse was cut into 5 mm squares. Tumor piece embedding in gel-forming solution and transplantation into mice were performed by two methods (Imbed method or Syringe method). In the Imbed method, first, a parafilm was laid on a hot plate at 37° C., 200 μL of a gel-forming solution (before gelation) was dropped, and a tumor piece was embedded and allowed to stand for 10 minutes. After confirming the gelation of the scaffold material, the back of the mouse was incised, and the embedded tumor pieces were subcutaneously implanted with forceps and then sutured. In the Syringe method, 200 μL of gel-forming solution was first placed in a truncated 1 mL syringe, and tumor pieces were embedded in the syringe. After standing at room temperature (20° C.) for 60 minutes to confirm gelation of the scaffold material, the back of the mouse was incised, transplanted while being pushed out from the syringe, and sutured.
 マウスは、NOD SCIDマウス(オス、7週齢)を使用し、背部両側1カ所ずつ(計2カ所)に移植した。移植後43日目に、腫瘍の短径、長径をノギスで測定し、(長径)×(短径)×1/2にて腫瘍体積を算出した。各移植条件における平均腫瘍体積は、それぞれ1339mm、1133mm、824mm、167mmであった。 NOD SCID mice (male, 7 weeks old) were used as mice, and transplanted to one site on each side of the back (2 sites in total). On the 43rd day after transplantation, the minor axis and major axis of the tumor were measured with vernier calipers, and the tumor volume was calculated by (long axis)×(short axis) 2 ×1/2. The mean tumor volumes in each implantation condition were 1339 mm 3 , 1133 mm 3 , 824 mm 3 and 167 mm 3 respectively.
 腫瘍体積測定後、実施例1~3と同様に病理組織標本を作製した。得られた切片の画像を光学顕微鏡で撮影の上、腫瘍面積を測定し、実施例1~3と同様に、腫瘍面積および腫瘍形成率を評価した。腫瘍形成率は各群、100%、100%、100%、75%であった。光学顕微鏡により撮影した代表的病理組織像を、図9~12に示す。 After measuring the tumor volume, a histopathological specimen was prepared in the same manner as in Examples 1-3. Images of the obtained sections were taken with an optical microscope, the tumor area was measured, and the tumor area and tumor formation rate were evaluated in the same manner as in Examples 1-3. The tumor formation rates were 100%, 100%, 100% and 75% in each group. Representative histopathological images taken with an optical microscope are shown in FIGS.
 実施例4~7の結果を表3にまとめて示す。50%以上の腫瘍形成率の場合、腫瘍形成率の判定を「良好」とし、50%未満の腫瘍形成率の場合、腫瘍形成率の判定を「不良」とした。1本鎖のみからなるペプチドによる足場材を用い、高い生着率で腫瘍組織を移植し、高効率に非ヒトモデル動物を作製可能なことが分かる。なお、ゲル形成溶液への腫瘍片包埋およびマウスへの移植の方法は、Imbed法またはSyringe法のいずれとしても、差は生じない。腫瘍形成率が、実施例4、5、6で特に高くなっていることより、腫瘍形成を特に促進するためには、移植時の足場材に含有される1本鎖ペプチドと架橋剤の合計濃度を20mg/mL以上とすることが有効である。 The results of Examples 4 to 7 are summarized in Table 3. When the tumor formation rate was 50% or more, the tumor formation rate was judged as "good", and when the tumor formation rate was less than 50%, the judgment was made as "poor". It can be seen that a non-human model animal can be produced with high efficiency by transplanting tumor tissue with a high engraftment rate using a peptide scaffold consisting of a single chain. There is no difference between the Imbed method and the Syringe method for embedding the tumor piece in the gel-forming solution and transplanting it to the mouse. From the fact that the tumor formation rate was particularly high in Examples 4, 5, and 6, in order to particularly promote tumor formation, the total concentration of the single-chain peptide and the cross-linking agent contained in the scaffold at the time of transplantation is 20 mg/mL or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例8:コラゲナーゼ溶液中での足場材分解の評価
 実施例4と同組成のゲル形成溶液(CBE3濃度:18.6mg/mL)を調製した。ゲル形成溶液150μLを、パラフィルム上で37℃にて1時間静置しゲル化後、PBS(Thermo Fisher Scientific社、pH7.4)中で37℃にて1時間静置した。PBSから取り出し、50U/LのClostridium histolyticum由来コラゲナーゼ溶液中、37℃にて所定時間静置した。ゲル重量を計測し、「コラゲナーゼ未添加のPBS中で静置したゲルに対する重量比」を、残ゲル%として算出することにより、コラゲナーゼ溶液中での分解を評価した。評価結果を、図13に示す。
Example 8 Evaluation of Scaffold Decomposition in Collagenase Solution A gel-forming solution having the same composition as in Example 4 (CBE3 concentration: 18.6 mg/mL) was prepared. 150 μL of the gel-forming solution was allowed to stand at 37° C. for 1 hour on a parafilm for gelation, and then allowed to stand at 37° C. for 1 hour in PBS (Thermo Fisher Scientific, pH 7.4). It was removed from the PBS and allowed to stand at 37° C. for a predetermined time in a 50 U/L Clostridium histolyticum-derived collagenase solution. Degradation in the collagenase solution was evaluated by measuring the weight of the gel and calculating the "weight ratio to the gel left standing in PBS to which no collagenase was added" as % of residual gel. The evaluation results are shown in FIG.
比較例4:コラゲナーゼ溶液中での足場材分解の評価
 実施例8で用いたゲル形成溶液と同様のタンパク濃度である高濃度Matrigel(登録商標)(Corning社、タンパク濃度18-22mg/m)を用い、実施例8と同様に、コラゲナーゼ溶液中での分解を評価した。評価結果を、図13に示す。
Comparative Example 4 Evaluation of Scaffold Degradation in Collagenase Solution was used to evaluate degradation in a collagenase solution in the same manner as in Example 8. The evaluation results are shown in FIG.
 実施例8および比較例4より、1本鎖のみからなるペプチドによる足場材は、分解酵素による分解を受けやすいことが分かる。 From Example 8 and Comparative Example 4, it can be seen that scaffolding materials made of peptides consisting of only a single chain are susceptible to degradation by degrading enzymes.
実施例9~11:貯蔵弾性率測定
 実施例5、6、7と同様の処方にて、表4の通りゲル形成溶液を得た。なお表4中の固形分濃度とは、CBE3と架橋剤の合計濃度を示す。CBE3溶液とPEG溶液を混合した直後より、Thermo Scientific製レオメーターHAAKE MARS40を用い、37℃にて貯蔵弾性率の測定を行った。60分後の貯蔵弾性率を表4に、経時の貯蔵弾性率の経時変化を図14に示す。
Examples 9 to 11: Measurement of storage elastic modulus Gel-forming solutions as shown in Table 4 were obtained with the same formulations as in Examples 5, 6 and 7. The solid content concentration in Table 4 indicates the total concentration of CBE3 and the cross-linking agent. Immediately after mixing the CBE3 solution and the PEG solution, the storage modulus was measured at 37° C. using a rheometer HAAKE MARS40 manufactured by Thermo Scientific. The storage elastic modulus after 60 minutes is shown in Table 4, and the change in storage elastic modulus over time is shown in FIG.
 ゲル形成溶液中の固形分濃度が高いほど、ゲル化後の貯蔵弾性率が高くなる傾向が確認された。上述のように、マウスへの移植時にゲル形成溶液の固形分濃度を20mg/mL以上とすることで、食細胞の浸潤が抑制されるが、これはゲルの貯蔵弾性率が高いことが理由と考えられる。なお、表4中の固形分濃度とは、CBE3と架橋剤の合計濃度を示す。 It was confirmed that the higher the solid content concentration in the gel-forming solution, the higher the storage elastic modulus after gelation. As described above, infiltration of phagocytic cells is suppressed by setting the solid content concentration of the gel-forming solution to 20 mg/mL or more when transplanted into mice. This is because the gel has a high storage elastic modulus. Conceivable. The solid content concentration in Table 4 indicates the total concentration of CBE3 and the cross-linking agent.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例12:CBE3の円偏光二色性(CD)スペクトル測定による構造解析
 CBE3凍結乾燥体を37℃で注射用水に溶解し、0.2mg/mLの測定溶液を調製した。層長1mmのセルに測定溶液を入れ、日本分光株式会社製の円二色性分散計(J-820)を用い、遠紫外領域(250~200nm)のCDスペクトル測定を25℃にて実施した。なおブランク測定には、注射用水を用いた。測定結果について、日本分光株式会社のソフトウェア(JWSSE-480)を用いて二次構造解析を実施した結果を、表5に示す。
Example 12 Structural Analysis of CBE3 by Circular Dichroism (CD) Spectroscopy A lyophilized CBE3 was dissolved in water for injection at 37° C. to prepare a 0.2 mg/mL measurement solution. A measurement solution was placed in a cell with a layer length of 1 mm, and a CD spectrum measurement in the far ultraviolet region (250 to 200 nm) was performed at 25 ° C. using a circular dichroism spectrometer (J-820) manufactured by JASCO Corporation. . Water for injection was used for blank measurement. Table 5 shows the results of secondary structure analysis of the measurement results using JASCO Corporation's software (JWSSE-480).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (21)

  1. 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを含む、がんを有する非ヒトモデル動物の作製に用いるためのゲル形成キット。 Used for preparing a non-human model animal having cancer, comprising a peptide consisting of only a single chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group. Gel Forming Kit for.
  2. 前記アミノ基と共有結合できる官能基と親水性連結基とを含む鎖が、下記式1で示される、請求項1に記載のゲル形成キット。
    Z-(A-(B-(C-    式1
    式中、Zはアミノ基と共有結合できる官能基であり、Aは疎水性の連結基であり、Bは親水性の連結基であり、Cは疎水性の連結基であり、wは1以上の整数であり、xは1以上の整数であり、yは0以上の整数である。
    2. The gel-forming kit according to claim 1, wherein the chain comprising a functional group capable of covalently bonding with the amino group and a hydrophilic linking group is represented by Formula 1 below.
    Z-(A 1 ) w -(B 1 ) x -(C 1 ) y - Formula 1
    wherein Z is a functional group that can covalently bond with an amino group, A 1 is a hydrophobic linking group, B 1 is a hydrophilic linking group, C 1 is a hydrophobic linking group, and w is an integer of 1 or more, x is an integer of 1 or more, and y is an integer of 0 or more.
  3. 前記親水性連結基が、エチレンオキシド単位を含む、請求項1または2に記載のゲル形成キット。 3. A gel-forming kit according to claim 1 or 2, wherein said hydrophilic linking group comprises ethylene oxide units.
  4. 前記アミノ基と共有結合できる官能基が、スクシンイミジル基、イソシアネート、イソチオシアネート、スルホニルクロリド、アルデヒド、アシルアジド、酸無水物、イミドエステル、エポキシドおよび活性エステルからなる群より選ばれる、請求項1または2に記載のゲル形成キット。 3. The method according to claim 1 or 2, wherein said functional group capable of covalently bonding with an amino group is selected from the group consisting of succinimidyl group, isocyanate, isothiocyanate, sulfonyl chloride, aldehyde, acylazide, acid anhydride, imidoester, epoxide and active ester. Gel forming kit as described.
  5. 前記1本鎖のみからなるペプチドがリコンビナントペプチドである、請求項1または2に記載のゲル形成キット。 3. The gel-forming kit according to claim 1 or 2, wherein the peptide consisting of only one chain is a recombinant peptide.
  6. 前記リコンビナントペプチドが下記式で示される、請求項5に記載のゲル形成キット。
    A-[(Gly-X-Y)-B
    式中、Aは任意のアミノ酸またはアミノ酸配列を示し、Bは任意のアミノ酸またはアミノ酸配列を示し、n個のXはそれぞれ独立にアミノ酸の何れかを示し、n個のYはそれぞれ独立にアミノ酸の何れかを示し、nは3~100の整数を示し、mは2~10の整数を示す。なお、n個のGly-X-Yはそれぞれ同一でも異なっていてもよい。
    6. The gel-forming kit according to claim 5, wherein the recombinant peptide is represented by the following formula.
    A-[(Gly-X-Y) n ] m -B
    In the formula, A represents an arbitrary amino acid or amino acid sequence, B represents an arbitrary amino acid or amino acid sequence, n X's each independently represent any amino acid, and n Y's each independently represent an amino acid. n represents an integer of 3 to 100, and m represents an integer of 2 to 10. The n Gly-XY may be the same or different.
  7. 前記リコンビナントペプチドが、
    配列番号1に記載のアミノ酸配列からなるペプチド;
    配列番号1に記載のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ生体親和性を有するペプチド;または
    配列番号1に記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなり、かつ生体親和性を有するペプチド;
    の何れかである、請求項5に記載のゲル形成キット。
    The recombinant peptide is
    A peptide consisting of the amino acid sequence set forth in SEQ ID NO: 1;
    A peptide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 1 and having biocompatibility; or 80% or more of the amino acid sequence of SEQ ID NO: 1 A peptide consisting of an amino acid sequence having the sequence identity of and having biocompatibility;
    The gel-forming kit according to claim 5, which is any one of
  8. さらにがん細胞を含む、請求項1または2に記載のゲル形成キット。 3. The gel-forming kit according to claim 1, further comprising cancer cells.
  9. 前記がん細胞が、患者由来腫瘍組織、株化がん細胞の懸濁液、または患者由来がん細胞の懸濁液からなる群より選ばれる、請求項8に記載のゲル形成キット。 9. The gel-forming kit according to claim 8, wherein the cancer cells are selected from the group consisting of a patient-derived tumor tissue, a suspension of established cancer cells, or a suspension of patient-derived cancer cells.
  10. 前記がん細胞が、肝臓がん細胞、胆道がん細胞、膵臓がん細胞、大腸がん細胞、骨肉腫細胞、軟骨肉腫細胞、または血管肉腫細胞からなる群より選ばれる、請求項8に記載のゲル形成キット。 9. The cancer cells of claim 8, wherein the cancer cells are selected from the group consisting of liver cancer cells, biliary tract cancer cells, pancreatic cancer cells, colon cancer cells, osteosarcoma cells, chondrosarcoma cells, or angiosarcoma cells. gel forming kit.
  11. 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを含む、がんを有する非ヒトモデル動物の作製に用いるためのゲル形成溶液。 Used for preparing a non-human model animal having cancer, comprising a peptide consisting of only a single chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group. gel-forming solution for
  12. ゲル形成溶液の前記1本鎖のみからなるペプチドと前記架橋剤の合計濃度が、1~200mg/mLである、請求項11に記載のゲル形成溶液。 The gel-forming solution according to claim 11, wherein the total concentration of said single chain peptide and said cross-linking agent in the gel-forming solution is 1-200 mg/mL.
  13. さらにがん細胞を含む、請求項11または12に記載のゲル形成溶液。 13. The gel-forming solution according to claim 11 or 12, further comprising cancer cells.
  14. 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とから形成される、がんを有する非ヒトモデル動物の作製に用いるためのゲル組成物。 Preparation of a non-human model animal having cancer, which is formed from a peptide consisting of only a single chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group. A gel composition for use in
  15. さらにがん細胞を含む、請求項14に記載のゲル組成物。 15. The gel composition of claim 14, further comprising cancer cells.
  16. 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを混合してゲル形成溶液を製造することと、
    がん細胞を前記ゲル形成溶液により包埋することとを含む、
    がんを有する非ヒトモデル動物の作製に用いるためのゲル組成物の製造方法。
    preparing a gel-forming solution by mixing a peptide consisting of only one chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group;
    embedding cancer cells with the gel-forming solution;
    A method for producing a gel composition for use in producing a non-human model animal having cancer.
  17. 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とから形成され、がん細胞を含む、ゲル組成物を移植物として有する、がんを有する非ヒトモデル動物。 Implanting a gel composition formed from a peptide consisting of only one chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group, and containing cancer cells. A non-human model animal having cancer as an object.
  18. 1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とから形成され、がん細胞を含む、ゲル組成物またはゲル形成溶液を、非ヒト動物に移植することを含む、がんを有する非ヒトモデル動物の製造方法。 A gel composition or gel formed from a peptide consisting of only a single chain and a cross-linking agent having at least two chains containing a functional group capable of covalently bonding with an amino group and a hydrophilic linking group, and containing cancer cells. A method for producing a non-human model animal having cancer, comprising transplanting a forming solution into a non-human animal.
  19. がん細胞を非ヒト動物に移植すること、及び
    1本鎖のみからなるペプチドと、アミノ基と共有結合できる官能基と親水性連結基とを含む鎖を少なくとも2本以上有する架橋剤とを含むゲル形成溶液を、前記非ヒト動物に移植することを含む、がんを有する非ヒトモデル動物の製造方法。
    Transplanting cancer cells into a non-human animal, and comprising a peptide consisting of only one chain and a cross-linking agent having at least two or more chains containing a functional group capable of covalently bonding to an amino group and a hydrophilic linking group. A method for producing a non-human model animal having cancer, comprising transplanting a gel-forming solution into the non-human animal.
  20. ゲル組成物またはゲル形成溶液を、非ヒト動物の皮下、腹腔内、器官又は組織に移植する、請求項18または19に記載のがんを有する非ヒトモデル動物の製造方法。 20. The method for producing a non-human model animal having cancer according to claim 18 or 19, wherein the gel composition or gel-forming solution is subcutaneously, intraperitoneally, or implanted into an organ or tissue of the non-human animal.
  21. 請求項17に記載のがんを有する非ヒトモデル動物に被験物質を投与することを含む、被験物質の評価方法。 A method for evaluating a test substance, comprising administering the test substance to the non-human model animal having cancer according to claim 17.
PCT/JP2022/034520 2021-09-16 2022-09-15 Gel formation kit and use thereof WO2023042875A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023548499A JPWO2023042875A1 (en) 2021-09-16 2022-09-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-150837 2021-09-16
JP2021150837 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023042875A1 true WO2023042875A1 (en) 2023-03-23

Family

ID=85602961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034520 WO2023042875A1 (en) 2021-09-16 2022-09-15 Gel formation kit and use thereof

Country Status (2)

Country Link
JP (1) JPWO2023042875A1 (en)
WO (1) WO2023042875A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526297A (en) * 2010-05-07 2013-06-24 ユニバーシティー オブ ノース カロライナ アット チャペル ヒル Method for transplanting cells from parenchyma
WO2015172073A1 (en) * 2014-05-08 2015-11-12 Cornell University Bio-adhesive gels and methods of use
WO2017022613A1 (en) * 2015-08-03 2017-02-09 富士フイルム株式会社 Cell structure, non-human model animal, method for producing non-human model animal, and method for evaluating test substance
WO2020050205A1 (en) * 2018-09-03 2020-03-12 富士フイルム株式会社 Gel formation kit, gel, and gel production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526297A (en) * 2010-05-07 2013-06-24 ユニバーシティー オブ ノース カロライナ アット チャペル ヒル Method for transplanting cells from parenchyma
WO2015172073A1 (en) * 2014-05-08 2015-11-12 Cornell University Bio-adhesive gels and methods of use
WO2017022613A1 (en) * 2015-08-03 2017-02-09 富士フイルム株式会社 Cell structure, non-human model animal, method for producing non-human model animal, and method for evaluating test substance
WO2020050205A1 (en) * 2018-09-03 2020-03-12 富士フイルム株式会社 Gel formation kit, gel, and gel production method

Also Published As

Publication number Publication date
JPWO2023042875A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
ES2423798T3 (en) Dissolvable PEG hydrogels sensitive to biofunctionalized stimuli
Rajalekshmi et al. Scaffold for liver tissue engineering: Exploring the potential of fibrin incorporated alginate dialdehyde–gelatin hydrogel
Smithmyer et al. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease
KR101054023B1 (en) Synthetic Matrix to Control Intracellular Proliferation and Tissue Regeneration
You et al. Bioprinting and in vitro characterization of alginate dialdehyde–gelatin hydrogel bio-ink
Lee et al. Mechanically-reinforced and highly adhesive decellularized tissue-derived hydrogel for efficient tissue repair
Schirmer et al. Glycosaminoglycan-based hydrogels with programmable host reactions
Chen et al. An injectable, wound-adapting, self-healing hydrogel for fibroblast growth factor 2 delivery system in tissue repair applications
Chien et al. An in situ poly (carboxybetaine) hydrogel for tissue engineering applications
Yao et al. Polypeptide-engineered physical hydrogels designed from the coiled-coil region of cartilage oligomeric matrix protein for three-dimensional cell culture
Zhang et al. Thermoresponsive dendronized chitosan-based hydrogels as injectable stem cell carriers
US20120177604A1 (en) Formation of hydrogel in the presence of peroxidase and low concentration of hydrogen peroxide
Li et al. Effect of RGD functionalization and stiffness of gellan gum hydrogels on macrophage polarization and function
Wei et al. Hydrogels with tunable mechanical plasticity regulate endothelial cell outgrowth in vasculogenesis and angiogenesis
WO2023042875A1 (en) Gel formation kit and use thereof
US20210260253A1 (en) Gel forming kit, gel, and method for producing gel
Nie et al. Plant Protein‐Peptide Supramolecular Polymers with Reliable Tissue Adhesion for Surgical Sealing
Monferrer et al. Vitronectin-based hydrogels recapitulate neuroblastoma growth conditions
Smith et al. Synthesis of an enzyme-mediated reversible cross-linked hydrogel for cell culture
JP2020124226A (en) Cell structure, non-human model animal, method for producing non-human model animal, and method for evaluating test substance
CN112646202A (en) Functionalized double-network hydrogel and preparation method and application thereof
KR102464966B1 (en) INJECTABLE γ-PGA-BASED HYDROGEL AND METHOD FOR PREPARING THE SAME
Isaac et al. Impact of PEG sensitization on the efficacy of PEG hydrogel-mediated tissue engineering
Godbe Design Rules to Control Mechanical Properties in 3D Hydrogels for Optimal Neuron Growth
Mohammadi Association behavior of hydrophobically modified copolymers in aqueous medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548499

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE