WO2023042844A1 - Transparent electroconductive film - Google Patents

Transparent electroconductive film Download PDF

Info

Publication number
WO2023042844A1
WO2023042844A1 PCT/JP2022/034347 JP2022034347W WO2023042844A1 WO 2023042844 A1 WO2023042844 A1 WO 2023042844A1 JP 2022034347 W JP2022034347 W JP 2022034347W WO 2023042844 A1 WO2023042844 A1 WO 2023042844A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
layer
crystalline
less
Prior art date
Application number
PCT/JP2022/034347
Other languages
French (fr)
Japanese (ja)
Inventor
泰介 鴉田
望 藤野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2023548478A priority Critical patent/JPWO2023042844A1/ja
Priority to CN202280020970.0A priority patent/CN116982123A/en
Priority to KR1020237027044A priority patent/KR20240054221A/en
Publication of WO2023042844A1 publication Critical patent/WO2023042844A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • the present invention relates to transparent conductive films.
  • a transparent conductive film that includes a substrate, a first inorganic oxide layer, a metal layer, and a second inorganic oxide layer in this order on one side in the thickness direction (see, for example, Patent Document 1 below. ).
  • the transparent conductive film may be used for a long period of time under high temperature and high humidity conditions. Even in that case, high corrosion resistance is required.
  • transparent conductive films are required to have higher infrared reflectance.
  • the present invention provides a transparent conductive film with excellent corrosion resistance and high infrared reflectance.
  • the crystalline transparent conductive layer contains a rare gas having an atomic number greater than that of argon, It includes a transparent conductive film, wherein the crystalline transparent conductive layer has a carrier density of 13.0 ⁇ 10 20 (/cm 3 ) or more.
  • this transparent conductive film has a crystalline transparent conductive layer instead of the metal layer described in Patent Document 1, it has excellent corrosion resistance.
  • the carrier density of the crystalline transparent conductive layer is as high as 13.0 ⁇ 10 20 (/cm 3 ) or more, the amount of carriers that can contribute to the reflection of infrared rays is large. Therefore, the reflectance for infrared rays is high.
  • the present invention (2) includes the transparent conductive film according to (1), wherein the crystalline transparent conductive layer is an inorganic oxide layer.
  • the transparent conductive film of the present invention has excellent corrosion resistance and high infrared reflectance.
  • FIG. 1 is a cross-sectional view of a transparent conductive film of Comparative Example 1.
  • Transparent conductive film 1 A transparent conductive film 1 that is one embodiment of the present invention will be described with reference to FIG. This transparent conductive film 1 extends in the plane direction. The plane direction is perpendicular to the thickness direction.
  • the transparent conductive film 1 includes a substrate 2 and a crystalline transparent conductive layer 3 in order toward one side in the thickness direction. That is, in this transparent conductive film 1, the substrate 2 and the crystalline transparent conductive layer 3 are arranged in order toward one side in the thickness direction. In this embodiment, the transparent conductive film 1 includes only the substrate 2 and the crystalline transparent conductive layer 3 .
  • the substrate 2 forms the other surface of the transparent conductive film 1 in the thickness direction.
  • the base material 2 improves the mechanical strength of the transparent conductive film 1 .
  • the base material 2 extends in the surface direction.
  • the base material 2 includes a base sheet 21 and a functional layer 20 in order in the thickness direction.
  • the functional layer 20 is a multilayer.
  • the functional layer 20 contacts one side and the other side of the base sheet 21 in the thickness direction.
  • the functional layer 20 preferably comprises an optical adjustment layer 22 and a hard coat layer 23 .
  • the substrate 2 preferably includes an optical adjustment layer 22, a substrate sheet 21, and a hard coat layer 23 in order toward the other side in the thickness direction.
  • the base sheet 21 has flexibility.
  • Examples of the base sheet 21 include a resin film.
  • the resin in the resin film is not limited.
  • Examples of resins include polyester resins, acrylic resins, olefin resins, polycarbonate resins, polyethersulfone resins, polyarylate resins, melamine resins, polyamide resins, polyimide resins, cellulose resins, polystyrene resins, and norbornene resins.
  • the resin is preferably a polyester resin.
  • Polyester resins include, for example, polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, preferably PET.
  • the thickness of the base sheet 21 is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 30 ⁇ m or more.
  • the thickness of the base sheet 21 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, still more preferably 150 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the ratio of the thickness of the base sheet 21 to the thickness of the base 2 is, for example, 80% or more, preferably 95% or more, and is, for example, 100% or less, preferably 99% or less.
  • the optical adjustment layer 22 makes the pattern shape of the crystalline transparent conductive layer 3 less visible.
  • the optical adjustment layer 22 is arranged on one side of the base sheet 21 in the thickness direction.
  • the optical adjustment layer 22 contacts one side of the base sheet 21 in the thickness direction.
  • the optical adjustment layer 22 is, for example, a cured layer of a curable composition (first curable composition) containing a curable resin.
  • curable resins include acrylic resins, urethane resins, amide resins, silicone resins, epoxy resins, and melamine resins.
  • the cured product layer preferably does not contain particles.
  • the refractive index of the optical adjustment layer 22 is, for example, 1.40 or more, preferably 1.55 or more, and for example, 1.80 or less, preferably 1.70 or less.
  • the thickness of the optical adjustment layer 22 is, for example, 5 nm or more, preferably 10 nm or more, and is, for example, 200 nm or less, preferably 100 nm or less.
  • the ratio of the thickness of the optical adjustment layer 22 to the thickness of the substrate 2 is, for example, 0.01% or more, preferably 0.1% or more, and is, for example, 2% or less, preferably 1% or less. be.
  • the hard coat layer 23 makes it difficult for scratches to be formed on one surface of the crystalline transparent conductive layer 3 in the thickness direction when the transparent conductive film 1 is wound into a roll body.
  • the hard coat layer 23 is arranged on the other side of the base sheet 21 in the thickness direction.
  • the hard coat layer 23 contacts the other surface of the base sheet 21 in the thickness direction.
  • the hard coat layer 23 is, for example, a cured layer of a curable composition (second curable composition) containing particles and a curable resin.
  • Particles include, for example, oxide particles, glass particles, and organic particles.
  • oxide particles include silica particles, alumina particles, titania particles, zirconia particles, calcium oxide particles, tin oxide particles, indium oxide particles, cadmium oxide particles, and antimony oxide particles.
  • Materials for the organic particles include, for example, polymethylmethacrylate particles, polystyrene particles, polyurethane particles, acrylic-styrene copolymer particles, benzoguanamine particles, melamine particles, and polycarbonate particles.
  • the curable resin includes the curable resin contained in the first curable composition.
  • the thickness of the hard coat layer 23 is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and is, for example, 10 ⁇ m or less, preferably 3 ⁇ m or less.
  • the ratio of the thickness of the hard coat layer 23 to the thickness of the base material 2 is, for example, 0.1% or more, preferably 2% or more, and is, for example, 10% or less, preferably 5% or less.
  • the thickness of the functional layer 20 is, for example, 0.15 ⁇ m or more and, for example, 3.5 ⁇ m or less.
  • the thickness of the functional layer 20 is the total thickness of the optical adjustment layer 22 and hard coat layer 23 .
  • the ratio of the thickness of the functional layer 20 to the thickness of the base sheet 21 is, for example, 0.01 or more, preferably 0.02 or more, and is, for example, 0.10 or less, preferably 0.05 or less. be.
  • the ratio of the thickness of the functional layer 20 to the thickness of the base material 2 is, for example, 1% or more, preferably 2% or more, and is, for example, 10% or less, preferably 5% or less.
  • the thickness of the base material 2 is the total thickness of the base material sheet 21 , the optical adjustment layer 22 and the hard coat layer 23 .
  • the total light transmittance of the substrate 2 is, for example, 75% or higher, preferably 80% or higher, more preferably 85% or higher, and still more preferably 90% or higher. .
  • the upper limit of the total light transmittance of the substrate 2 is not limited.
  • the upper limit of the total light transmittance of the substrate 2 is, for example, 100% or less.
  • the total light transmittance of the substrate 2 is obtained based on JIS K 7375-2008.
  • the total light transmittance of the following members is obtained based on the same method as above.
  • a commercially available product can be used for the base material 2 .
  • Commercially available products include, for example, GF-50JBN (manufactured by Mitsubishi Chemical Corporation).
  • the crystalline transparent conductive layer 3 is preferably called an infrared reflective layer (or an infrared cut layer).
  • Infrared radiation includes light (electromagnetic waves) with a wavelength of at least 1500 nm, and specifically includes light with a wavelength of 800 nm or more and 1 mm or less.
  • the crystallinity of the transparent conductive layer can be measured, for example, by immersing the transparent conductive layer in hydrochloric acid (20° C., concentration 5% by mass) for 15 minutes, then washing with water and drying. It is judged by measuring the terminal resistance between the degrees.
  • the transparent conductive layer after immersion, washing with water, and drying when the resistance between terminals (resistance between two terminals) for 15 mm is 10 k ⁇ or less, the transparent conductive layer is crystalline (that is, crystalline transparent conductive layer 3). On the other hand, if the resistance exceeds 10 k ⁇ , the transparent conductive layer is amorphous (that is, amorphous transparent conductive layer 31).
  • the crystalline transparent conductive layer 3 forms one surface of the transparent conductive film 1 in the thickness direction.
  • the crystalline transparent conductive layer 3 is arranged on one surface of the substrate 2 in the thickness direction.
  • the crystalline transparent conductive layer 3 contacts one side of the substrate 2 in the thickness direction.
  • the crystalline transparent conductive layer 3 contacts one surface of the optical adjustment layer 22 (functional layer 20) in the thickness direction.
  • the carrier density of the crystalline transparent conductive layer 3 is 13.0 ⁇ 10 20 (/cm 3 ) or more.
  • the carrier density of the crystalline transparent conductive layer 3 is less than 13.0 ⁇ 10 20 (/cm 3 ), the amount of carriers contributing to infrared reflection in the crystalline transparent conductive layer 3 is insufficient.
  • the crystalline transparent conductive layer 3 does not sufficiently reflect infrared rays, and as a result, the reflectance of the transparent conductive film 1 with respect to infrared rays becomes low.
  • the carrier density of the crystalline transparent conductive layer 3 is 13.0 ⁇ 10 20 (/cm 3 ) or more, the amount of carriers contributing to infrared reflection in the crystalline transparent conductive layer 3 is sufficient. be. Therefore, the crystalline transparent conductive layer 3 sufficiently reflects infrared rays, and as a result, the reflectance of the transparent conductive film 1 with respect to infrared rays increases.
  • the carrier density of the crystalline transparent conductive layer 3 is preferably 13.2 ⁇ 10 20 (/cm 3 ) or more, more preferably 14.0 ⁇ 10 20 (/cm 3 ) or more, still more preferably 15.0 ⁇ 10 20 (/cm 3 ) or more.
  • 0 ⁇ 10 20 (/cm 3 ) or more particularly preferably 16.0 ⁇ 10 20 (/cm 3 ) or more, most preferably 16.7 ⁇ 10 20 (/cm 3 ) or more;
  • the upper limit of the carrier density of the crystalline transparent conductive layer 3 is not limited.
  • the upper limit of the carrier density of the crystalline transparent conductive layer 3 is, for example, 50.0 ⁇ 10 20 (/cm 3 ), further 40.0 ⁇ 10 20 (/cm 3 ), furthermore 30.0 ⁇ 10 20 (/cm 3 ).
  • the carrier density of the crystalline transparent conductive layer 3 is adjusted, for example, by the method of forming the crystalline transparent conductive layer 3 and its conditions.
  • the introduction amount of the reactive gas is reduced and/or the sputtering gas contains a noble gas having an atomic number higher than that of argon. More preferably, the amount of reactive gas introduced is small, and the sputtering gas contains a noble gas with an atomic number higher than that of argon.
  • the carrier density of the crystalline transparent conductive layer 3 is obtained using a Hall effect measurement system.
  • the material of the crystalline transparent conductive layer 3 include inorganic oxides, preferably metal oxides.
  • the metal oxide contains at least one metal selected from the group consisting of In, Sn, Zn, Ga, Sb, Nb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd and W .
  • the material of the crystalline transparent conductive layer 3 is preferably indium zinc composite oxide (IZO), indium gallium zinc composite oxide (IGZO), indium gallium composite oxide (IGO), indium tin composite oxide Oxides (ITO) and antimony-tin composite oxides (ATO) are included, and indium-tin composite oxides (ITO) are preferred from the viewpoint of improving crack resistance.
  • IZO indium zinc composite oxide
  • IGZO indium gallium zinc composite oxide
  • IGO indium gallium composite oxide
  • ITO indium tin composite oxide Oxides
  • ATO antimony-tin composite oxides
  • the content of tin oxide (SnO 2 ) in the indium tin composite oxide is, for example, 0.5% by mass or more, preferably 3% by mass or more, more preferably 6% by mass or more. , less than 50% by mass, preferably 25% by mass or less, more preferably 15% by mass or less.
  • the crystalline transparent conductive layer 3 contains a rare gas with an atomic number greater than that of argon.
  • the crystalline transparent conductive layer 3 preferably contains a noble gas having an atomic number greater than that of argon and does not contain argon.
  • the sputtering gas contains argon
  • a large amount of argon is taken into the crystalline transparent conductive layer 3 .
  • the crystalline transparent conductive layer 3 is suppressed from taking in a large amount of sputtering gas. Therefore, the crystalline transparent conductive layer 3 becomes dense, and as a result, the carrier density of the crystalline transparent conductive layer 3 increases.
  • the crystalline transparent conductive layer 3 is an inorganic oxide (preferably a metal oxide) containing a noble gas with an atomic number greater than that of argon. That is, the crystalline transparent conductive layer 3 is a composition in which an inorganic oxide (preferably a metal oxide) is mixed with a noble gas having an atomic number greater than that of argon.
  • the crystalline transparent conductive layer 3 preferably does not contain an elemental metal.
  • Rare gases with atomic numbers greater than argon include, for example, krypton, xenon, and radon. These can be used alone or in combination.
  • the noble gas having an atomic number greater than that of argon is preferably krypton and xenon, and more preferably krypton (Kr) from the viewpoint of obtaining low cost and excellent electrical conductivity.
  • the method for identifying noble gases is not limited.
  • Rutherford Backscattering Spectrometry, secondary ion mass spectrometry, laser resonance ionization mass spectrometry, and/or X-ray fluorescence spectrometry reveal rare atoms with atomic numbers higher than argon in the crystalline transparent conductive layer 3 . A gas is identified.
  • the content of the rare gas having an atomic number greater than that of argon in the crystalline transparent conductive layer 3 is, for example, 0.0001 atom % or more, preferably 0.001 atom % or more, and, for example, 1.0 atom % or less. , More preferably 0.7 atom% or less, still more preferably 0.5 atom% or less, even more preferably 0.3 atom% or less, particularly preferably 0.2 atom% or less, most preferably 0.15 atom% It is below. If the content of the rare gas having an atomic number greater than that of argon in the crystalline transparent conductive layer 3 is within the above range, the reflectance of the crystalline transparent conductive layer 3 to infrared rays can be increased.
  • the lower limit of the above content is a ratio corresponding to when the presence of a noble gas with an atomic number greater than that of argon can be confirmed by a fluorescent X-ray spectrometer, and is at least 0.0001 atomic % or more.
  • the thickness of the crystalline transparent conductive layer 3 is, for example, 15 nm or more, preferably 35 nm or more, more preferably 50 nm or more, even more preferably 75 nm or more, even more preferably 100 nm or more, and most preferably 120 nm or more. be.
  • the thickness of the crystalline transparent conductive layer 3 is, for example, 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less.
  • the total light transmittance of the crystalline transparent conductive layer 3 is, for example, 75% or more, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more.
  • the upper limit of the total light transmittance of the crystalline transparent conductive layer 3 is not limited.
  • the upper limit of the total light transmittance of the crystalline transparent conductive layer 3 is, for example, 100%.
  • the surface resistance of the crystalline transparent conductive layer 3 is, for example, 300 ⁇ / ⁇ or less, preferably 100 ⁇ / ⁇ or less, more preferably 14 ⁇ / ⁇ or less, even more preferably 10.5 ⁇ / ⁇ or less, and particularly preferably 10.1 ⁇ / ⁇ or less, most preferably 10.0 ⁇ / ⁇ or less.
  • the surface resistance of the crystalline transparent conductive layer 3 is, for example, 0.1 ⁇ / ⁇ or more, preferably 1 ⁇ / ⁇ or more. A specific resistance is measured by the four-probe method.
  • the reflectance of transparent conductive film 1 to light of wavelength 1500 nm is, for example, 40% or more, preferably 45% or more, more preferably 47%. Above, more preferably 50% or more, particularly preferably 51% or more, most preferably 52% or more. If the reflectance of the transparent conductive film 1 to light with a wavelength of 1500 nm is equal to or higher than the lower limit described above, the transparent conductive film 1 has excellent light shielding (cutting) properties against infrared rays, and the transparent conductive film 1 can be used as an infrared cut film. It is preferably used.
  • the upper limit of the reflectance of the transparent conductive film 1 to light with a wavelength of 1500 nm is not limited.
  • the upper limit of the reflectance of the transparent conductive film 1 to light with a wavelength of 1500 nm is, for example, 100%.
  • Thickness of Transparent Conductive Film 1 and Other Physical Properties It is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the total light transmittance of the transparent conductive film 1 is, for example, 75% or more, preferably 80% or more, and is, for example, 100% or less.
  • each layer is arranged by a roll-to-roll method.
  • a long base material 2 is prepared. Specifically, each of the first curable composition and the second curable composition is applied to each of one side and the other side of the long base sheet 21 . After that, the curable resin in each of the first curable composition and the second curable composition is cured by heat or ultraviolet irradiation. Thereby, the optical adjustment layer 22 and the hard coat layer 23 are formed on one side and the other side of the base sheet 21, respectively.
  • the base material 2 is prepared by this.
  • the crystalline transparent conductive layer 3 is formed on one surface of the substrate 2 in the thickness direction. Specifically, first, an amorphous transparent conductive layer 31 (see parentheses in FIG. 1) is formed on one surface of the substrate 2 in the thickness direction, and then the amorphous transparent conductive layer 31 is made crystalline. It is converted to form a crystalline transparent conductive layer 3 .
  • amorphous Transparent Conductive Layer 31 To form the amorphous transparent conductive layer 31, for example, sputtering, preferably reactive sputtering, is performed.
  • a sputtering apparatus is used for sputtering.
  • the sputtering device includes a film-forming roll.
  • the above metal oxide sintered body
  • sputtering preferably, reactive sputtering
  • the above metal oxide sintered body
  • a sputtering gas is used in sputtering.
  • Sputtering gases include noble gases having atomic numbers higher than argon.
  • Noble gases having atomic numbers greater than argon include, for example, krypton, xenon, and radon, preferably krypton (Kr).
  • the sputtering gas preferably does not contain argon.
  • the sputtering gas is preferably mixed with a reactive gas.
  • Reactive gases include, for example, oxygen.
  • the ratio of the introduction amount of the reactive gas to the total introduction amount of the sputtering gas and the reactive gas is, for example, 0.1 flow % or more, preferably 0.5 flow % or more, and for example, 5.0 flow rate. % or less, preferably 3.5 flow % or less, more preferably 3.3 flow % or less, still more preferably 3.1 flow % or less, particularly preferably 3.0 flow % or less, most preferably 2.9 flow rate % or less.
  • the carrier density in the crystalline transparent conductive layer 3 can be increased, and thus the transparent conductive film 1 against infrared rays. can increase the reflectance of
  • the atmospheric pressure in the sputtering apparatus is, for example, 1.0 Pa or less and, for example, 0.01 Pa or more.
  • the crystalline transparent conductive layer 3 (the laminate including it) is heated.
  • the heating temperature is, for example, 80° C. or higher, preferably 110° C. or higher, more preferably 130° C. or higher, particularly preferably 150° C. or higher, and for example, 200° C. or lower, preferably It is 180° C. or lower, more preferably 175° C. or lower, still more preferably 170° C. or lower.
  • the heating time is, for example, 1 minute or longer, preferably 3 minutes or longer, more preferably 5 minutes or longer, and is, for example, 5 hours or shorter, preferably 3 hours or shorter, more preferably 2 hours or shorter. be.
  • Heating is performed, for example, under vacuum or in the atmosphere. From the viewpoint of further increasing the carrier density in the crystalline transparent conductive layer 3 and further increasing the reflectivity of the transparent conductive film 1 to infrared rays, the heating is preferably carried out in a vacuum.
  • the transparent conductive film 1 having the crystalline transparent conductive layer 3 is allowed to stand in the atmosphere at a temperature of 20° C. or more and less than 80° C. for, for example, 10 hours or more, preferably 24 hours or more, to obtain a crystalline film.
  • the transparent conductive layer 3 can also be converted to crystalline.
  • the transparent conductive film 1 is used for articles, for example.
  • Articles include optical articles. More specifically, examples of articles include touch sensors, electromagnetic wave shields, light control elements, photoelectric conversion elements, heat ray control members, light-transmitting antenna members, light-transmitting heater members, image display devices, and lighting.
  • the transparent conductive film 1 is used as an infrared reflective film (or infrared cut film).
  • the transparent conductive film 1 includes the crystalline transparent conductive layer 3 instead of the metal layer described in Patent Document 1, it has excellent corrosion resistance.
  • the transparent conductive film 1 since the carrier density of the crystalline transparent conductive layer 3 is as high as 13.0 ⁇ 10 20 (/cm 3 ) or more, the amount of carriers that can contribute to the reflection of infrared rays is large. Therefore, the transparent conductive film 1 has a high reflectance with respect to infrared rays.
  • the crystalline transparent conductive layer 3 is an inorganic oxide layer and does not contain an elemental metal, so it is excellent in corrosion resistance.
  • the functional layer 20 is arranged on one side or the other side of the base sheet 21 in the thickness direction.
  • the functional layer 20 may be either one of a hard coat layer and an optical adjustment layer. That is, one or more functional layers 20 are arranged on one side and/or the other side of the base sheet 21 in the thickness direction.
  • a long base material 2 was prepared. Specifically, a base sheet 21 made of PET, an optical adjustment layer 22 arranged on one side of the base 2 in the thickness direction, and a hard coat layer 23 arranged on the other side of the base 2 in the thickness direction.
  • a roll body of the base material 2 (manufactured by Mitsubishi Chemical Corporation, product name: GF-50JBN) with a thickness of 52 ⁇ m was prepared.
  • An amorphous transparent conductive layer 31 with a thickness of 145 nm was formed on one surface of the substrate 2 by reactive sputtering.
  • the above-described roll body is set in a DC magnetron sputtering apparatus, and the amorphous transparent conductive layer 31 is continuously formed on one surface of the base material 2 while unrolling the base material 2 from the roll body. Then, a laminate having the substrate 2 and the amorphous transparent conductive layer 31 in order toward one side in the thickness direction was produced.
  • Sputtering conditions are as follows. A sintered body of indium oxide and tin oxide was used as a target. The tin oxide concentration in the sintered body was 10% by mass. A DC power supply was used to apply voltage to the target. The horizontal magnetic field strength on the target was set to 90 mT. Further, the inside of the film forming chamber in the DC magnetron sputtering apparatus was evacuated until the final degree of vacuum in the film forming chamber reached 0.9 ⁇ 10 ⁇ 4 Pa, and the substrate 2 was degassed. After that, Kr as a sputtering gas and oxygen as a reactive gas were introduced into the film forming chamber, and the atmospheric pressure in the film forming chamber was set to 0.2 Pa. The ratio of the oxygen introduction amount to the total introduction amount of Kr and oxygen introduced into the film forming chamber was about 3.1 flow rate %.
  • the laminate was heated in a hot air oven at 160°C in the atmosphere.
  • the amorphous transparent conductive layer 31 was converted into a crystalline one to form the crystalline transparent conductive layer 3 .
  • the transparent conductive film 1 was manufactured, which includes the substrate 2 and the amorphous transparent conductive layer 31 in order toward one side in the thickness direction.
  • Examples 2 to 4 and Comparative Examples 1 to 3> A transparent conductive film 1 was produced in the same manner as in Example 1. However, the type of rare gas in the sputtering gas, the ratio of the amount of oxygen introduced, and/or the atmosphere during heating were changed as shown in Table 1.
  • vacuum in the "atmosphere during heating” column in Examples 2 to 4 means that the laminated body in which the amorphous transparent conductive layer 31 is laminated is not wound into a roll and is heated under vacuum. and conveyed while being in contact with a heating roll at 160°C. That is, the amorphous transparent conductive layer 31 was heated in a sputtering apparatus under vacuum.
  • the transparent conductive layer 32 which includes a first inorganic oxide layer 33, a metal layer 34, and a second inorganic oxide layer 35 in this order on one side in the thickness direction, is a transparent conductive layer. It was prepared for the conductive film 1.
  • a method for forming the transparent conductive layer 32 is as follows.
  • a first inorganic oxide layer 33 made of ITO and having a thickness of 40 nm was formed on one surface of the base material 2 in the thickness direction by a reactive sputtering method.
  • the method for forming the first inorganic oxide layer 33 is the same as the method for forming the amorphous transparent conductive layer 31 of the first embodiment.
  • Ar was used as the sputtering gas, and the ratio of the introduced amount of oxygen to the total introduced amount of Ar and oxygen introduced into the film formation chamber was changed to 3.8 flow rate %.
  • a metal layer 34 made of Ag alloy and having a thickness of 8 nm was formed on one side of the first inorganic oxide layer 33 in the thickness direction by sputtering. Specifically, an Ag alloy target (manufactured by Mitsubishi Materials Corporation, product number “No. 317”) was sputtered in a vacuum atmosphere of 0.4 Pa pressure into which Ar was introduced.
  • a second inorganic oxide layer 35 made of ITO and having a thickness of 38 nm was formed on one side of the metal layer 34 in the thickness direction by a reactive sputtering method.
  • the method for forming the second inorganic oxide layer 35 is the same as the method for forming the amorphous transparent conductive layer 31 of the first embodiment.
  • Ar was used as the sputtering gas, and the ratio of the introduced amount of oxygen to the total introduced amount of Ar and oxygen introduced into the film formation chamber was changed to 3.8 flow rate %.
  • Both the first inorganic oxide layer 33 and the second inorganic oxide layer 35 in the transparent conductive layer 32 are amorphous.
  • Comparative Example 3 the amorphous transparent conductive layer 31 was not converted to crystalline.
  • the transparent conductive film 1 was cut into a size of 10 cm x 10 cm. After that, the transparent conductive film 1 was placed in a high-temperature and high-humidity chamber at 60° C. and 95% RH for 240 hours. After that, the appearance of one side of the transparent conductive film 1 (the surface of the crystalline transparent conductive layer 3) in the thickness direction was observed. Specifically, a center area of 8 cm ⁇ 8 cm was visually observed. Corrosion resistance was evaluated based on the following criteria.
  • No white point-like defect caused by corrosion is observed. In other words, there were 0 defects. ⁇ : 1 or more and 4 or less white dot-like defects caused by corrosion were observed. x: 5 or more white spot defects caused by corrosion were observed.
  • the transparent conductive film is used for optical articles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

A transparent electroconductive film (1) comprising a substrate (2) and a crystalline transparent electroconductive layer (3) in this order toward one thickness-direction surface. The crystalline transparent electroconductive layer (3) contains a rare gas having a larger atomic number than argon. The crystalline transparent electroconductive layer (3) has a carrier density of 13.0×1020 (/cm3) or higher.

Description

透明導電性フィルムtransparent conductive film
 本発明は、透明導電性フィルムに関する。 The present invention relates to transparent conductive films.
 基材と、第1無機酸化物層と、金属層と、第2無機酸化物層とを厚み方向の一方側に順に備える透明導電性フィルムが知られている(例えば、下記特許文献1参照。)。 A transparent conductive film is known that includes a substrate, a first inorganic oxide layer, a metal layer, and a second inorganic oxide layer in this order on one side in the thickness direction (see, for example, Patent Document 1 below. ).
特開平05-334924号公報JP-A-05-334924
 透明導電性フィルムは、高温高湿下において長期間使用する場合がある。その場合でも、高い耐腐食性が求められる。  The transparent conductive film may be used for a long period of time under high temperature and high humidity conditions. Even in that case, high corrosion resistance is required.
 用途および目的によって、透明導電性フィルムには、赤外線に対するより高い反射率が求められる。 Depending on the application and purpose, transparent conductive films are required to have higher infrared reflectance.
 本発明は、耐腐食性に優れ、赤外線に対する反射率が高い透明導電性フィルムを提供する。 The present invention provides a transparent conductive film with excellent corrosion resistance and high infrared reflectance.
 本発明(1)は、基材と、結晶質透明導電層とを、厚み方向の一方側に向かって順に備え、前記結晶質透明導電層は、アルゴンより原子番号の大きい希ガスを含有し、前記結晶質透明導電層のキャリア密度が、13.0×1020(/cm)以上である、透明導電性フィルムを含む。 In the present invention (1), a base material and a crystalline transparent conductive layer are sequentially provided toward one side in the thickness direction, the crystalline transparent conductive layer contains a rare gas having an atomic number greater than that of argon, It includes a transparent conductive film, wherein the crystalline transparent conductive layer has a carrier density of 13.0×10 20 (/cm 3 ) or more.
 この透明導電性フィルムでは、特許文献1に記載される金属層ではなく、結晶質透明導電層を備えるので、耐腐食性に優れる。 Because this transparent conductive film has a crystalline transparent conductive layer instead of the metal layer described in Patent Document 1, it has excellent corrosion resistance.
 また、この透明導電性フィルムでは、結晶質透明導電層のキャリア密度が13.0×1020(/cm)以上と高いので、赤外線の反射に寄与できるキャリア量が多い。そのため、赤外線に対する反射率が高い。 Moreover, in this transparent conductive film, since the carrier density of the crystalline transparent conductive layer is as high as 13.0×10 20 (/cm 3 ) or more, the amount of carriers that can contribute to the reflection of infrared rays is large. Therefore, the reflectance for infrared rays is high.
 本発明(2)は、前記結晶質透明導電層は、無機酸化物層である、(1)に記載の透明導電性フィルムを含む。 The present invention (2) includes the transparent conductive film according to (1), wherein the crystalline transparent conductive layer is an inorganic oxide layer.
 本発明の透明導電性フィルムは、耐腐食性に優れ、赤外線に対する反射率が高い。 The transparent conductive film of the present invention has excellent corrosion resistance and high infrared reflectance.
本発明の透明導電性フィルムの一実施形態の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing of one Embodiment of the transparent conductive film of this invention. 比較例1の透明導電性フィルムの断面図である。1 is a cross-sectional view of a transparent conductive film of Comparative Example 1. FIG.
 1. 透明導電性フィルム1
 本発明の一実施形態である透明導電性フィルム1を、図1を参照して説明する。この透明導電性フィルム1は、面方向に延びる。面方向は、厚み方向に直交する。
1. Transparent conductive film 1
A transparent conductive film 1 that is one embodiment of the present invention will be described with reference to FIG. This transparent conductive film 1 extends in the plane direction. The plane direction is perpendicular to the thickness direction.
 1.1 透明導電性フィルム1の層構成
 透明導電性フィルム1は、基材2と、結晶質透明導電層3とを、厚み方向の一方側に向かって順に備える。つまり、この透明導電性フィルム1では、基材2と、結晶質透明導電層3とが、厚み方向の一方側に向かって順に配置される。本実施形態では、透明導電性フィルム1は、基材2と、結晶質透明導電層3とのみを備える。
1.1 Layer Configuration of Transparent Conductive Film 1 The transparent conductive film 1 includes a substrate 2 and a crystalline transparent conductive layer 3 in order toward one side in the thickness direction. That is, in this transparent conductive film 1, the substrate 2 and the crystalline transparent conductive layer 3 are arranged in order toward one side in the thickness direction. In this embodiment, the transparent conductive film 1 includes only the substrate 2 and the crystalline transparent conductive layer 3 .
 1.2 基材2
 本実施形態では、基材2は、厚み方向における透明導電性フィルム1の他方面を形成する。基材2は、透明導電性フィルム1の機械強度を向上させる。基材2は、面方向に延びる。
1.2 Substrate 2
In this embodiment, the substrate 2 forms the other surface of the transparent conductive film 1 in the thickness direction. The base material 2 improves the mechanical strength of the transparent conductive film 1 . The base material 2 extends in the surface direction.
 1.2.2 基材2の層構成
 本実施形態では、基材2は、基材シート21と、機能層20とを厚み方向に順に備える。本実施形態では、機能層20は、複層である。機能層20は、厚み方向における基材シート21の一方面および他方面に接触する。機能層20は、好ましくは、光学調整層22と、ハードコート層23とを備える。本実施形態では、基材2は、好ましくは、光学調整層22と、基材シート21と、ハードコート層23とを厚み方向の他方側に向かって順に備える。
1.2.2 Layer Configuration of Base Material 2 In the present embodiment, the base material 2 includes a base sheet 21 and a functional layer 20 in order in the thickness direction. In this embodiment, the functional layer 20 is a multilayer. The functional layer 20 contacts one side and the other side of the base sheet 21 in the thickness direction. The functional layer 20 preferably comprises an optical adjustment layer 22 and a hard coat layer 23 . In this embodiment, the substrate 2 preferably includes an optical adjustment layer 22, a substrate sheet 21, and a hard coat layer 23 in order toward the other side in the thickness direction.
 1.2.2.1 基材シート21
 基材シート21は、可撓性を有する。基材シート21としては、例えば、樹脂フィルムが挙げられる。樹脂フィルムにおける樹脂は、限定されない。樹脂としては、例えば、ポリエステル樹脂、アクリル樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ポリスチレン樹脂、および、ノルボルネン樹脂が挙げられる。樹脂として、好ましくは、透明性および機械強度の観点から、ポリエステル樹脂が挙げられる。
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、および、ポリエチレンナフタレートが挙げられ、好ましくは、PETが挙げられる。
1.2.2.1 Base sheet 21
The base sheet 21 has flexibility. Examples of the base sheet 21 include a resin film. The resin in the resin film is not limited. Examples of resins include polyester resins, acrylic resins, olefin resins, polycarbonate resins, polyethersulfone resins, polyarylate resins, melamine resins, polyamide resins, polyimide resins, cellulose resins, polystyrene resins, and norbornene resins. From the viewpoint of transparency and mechanical strength, the resin is preferably a polyester resin.
Polyester resins include, for example, polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate, preferably PET.
 基材シート21の厚みは、好ましくは、1μm以上、より好ましくは、10μm以上、さらに好ましくは、30μm以上である。基材シート21の厚みは、好ましくは、300μm以下、より好ましくは、200μm以下、さらに好ましくは、150μm以下、とりわけ好ましくは、100μm以下である。基材2の厚みに対する基材シート21の厚みの割合は、例えば、80%以上、好ましくは、95%以上であり、また、例えば、100%以下、好ましくは、99%以下である。 The thickness of the base sheet 21 is preferably 1 µm or more, more preferably 10 µm or more, and even more preferably 30 µm or more. The thickness of the base sheet 21 is preferably 300 μm or less, more preferably 200 μm or less, still more preferably 150 μm or less, and particularly preferably 100 μm or less. The ratio of the thickness of the base sheet 21 to the thickness of the base 2 is, for example, 80% or more, preferably 95% or more, and is, for example, 100% or less, preferably 99% or less.
 1.2.2.2 光学調整層22
 光学調整層22は、結晶質透明導電層3のパターン形状が視認されにくくする。光学調整層22は、厚み方向における基材シート21の一方面に配置される。光学調整層22は、厚み方向における基材シート21の一方面に接触する。光学調整層22は、例えば、硬化性樹脂を含む硬化性組成物(第1の硬化性組成物)の硬化物層である。硬化性樹脂としては、例えば、アクリル樹脂、ウレタン樹脂、アミド樹脂、シリコーン樹脂、エポキシ樹脂、および、メラミン樹脂が挙げられる。本実施形態では、硬化物層は、好ましくは、粒子を含有しない。光学調整層22の屈折率は、例えば、1.40以上、好ましくは、1.55以上であり、また、例えば、1.80以下、好ましくは、1.70以下である。光学調整層22の厚みは、例えば、5nm以上、好ましくは、10nm以上であり、また、例えば、200nm以下、好ましくは、100nm以下である。基材2の厚みに対する光学調整層22の厚みの割合は、例えば、0.01%以上、好ましくは、0.1%以上であり、また、例えば、2%以下、好ましくは、1%以下である。
1.2.2.2 Optical adjustment layer 22
The optical adjustment layer 22 makes the pattern shape of the crystalline transparent conductive layer 3 less visible. The optical adjustment layer 22 is arranged on one side of the base sheet 21 in the thickness direction. The optical adjustment layer 22 contacts one side of the base sheet 21 in the thickness direction. The optical adjustment layer 22 is, for example, a cured layer of a curable composition (first curable composition) containing a curable resin. Examples of curable resins include acrylic resins, urethane resins, amide resins, silicone resins, epoxy resins, and melamine resins. In this embodiment, the cured product layer preferably does not contain particles. The refractive index of the optical adjustment layer 22 is, for example, 1.40 or more, preferably 1.55 or more, and for example, 1.80 or less, preferably 1.70 or less. The thickness of the optical adjustment layer 22 is, for example, 5 nm or more, preferably 10 nm or more, and is, for example, 200 nm or less, preferably 100 nm or less. The ratio of the thickness of the optical adjustment layer 22 to the thickness of the substrate 2 is, for example, 0.01% or more, preferably 0.1% or more, and is, for example, 2% or less, preferably 1% or less. be.
 1.2.2.3 ハードコート層23
 ハードコート層23は、透明導電性フィルム1を巻き取ってロール体を作製するときに、厚み方向における結晶質透明導電層3の一方面に擦り傷が形成されにくくする。ハードコート層23は、厚み方向における基材シート21の他方面に配置される。ハードコート層23は、厚み方向における基材シート21の他方面に接触する。ハードコート層23は、例えば、粒子および硬化性樹脂を含有する硬化性組成物(第2の硬化性組成物)の硬化物層である。粒子としては、例えば、酸化物粒子、ガラス粒子、および、有機粒子が挙げられる。酸化物粒子としては、例えば、シリカ粒子、アルミナ粒子、チタニア粒子、ジルコニア粒子、酸化カルシウム粒子、酸化スズ粒子、酸化インジウム粒子、酸化カドミウム粒子、および、酸化アンチモン粒子が挙げられる。有機粒子の材料としては、例えば、ポリメチルメタクリレート粒子、ポリスチレン粒子、ポリウレタン粒子、アクリル-スチレン共重合体粒子、ベンゾグアナミン粒子、メラミン粒子、および、ポリカーボネート粒子が挙げられる。硬化性樹脂としては、第1の硬化性組成物に含まれる硬化性樹脂が挙げられる。ハードコート層23の厚みは、例えば、0.1μm以上、好ましくは、0.5μm以上であり、また、例えば、10μm以下、好ましくは、3μm以下である。基材2の厚みに対するハードコート層23の厚みの割合は、例えば、0.1%以上、好ましくは、2%以上であり、また、例えば、10%以下、好ましくは、5%以下である。
1.2.2.3 Hard coat layer 23
The hard coat layer 23 makes it difficult for scratches to be formed on one surface of the crystalline transparent conductive layer 3 in the thickness direction when the transparent conductive film 1 is wound into a roll body. The hard coat layer 23 is arranged on the other side of the base sheet 21 in the thickness direction. The hard coat layer 23 contacts the other surface of the base sheet 21 in the thickness direction. The hard coat layer 23 is, for example, a cured layer of a curable composition (second curable composition) containing particles and a curable resin. Particles include, for example, oxide particles, glass particles, and organic particles. Examples of oxide particles include silica particles, alumina particles, titania particles, zirconia particles, calcium oxide particles, tin oxide particles, indium oxide particles, cadmium oxide particles, and antimony oxide particles. Materials for the organic particles include, for example, polymethylmethacrylate particles, polystyrene particles, polyurethane particles, acrylic-styrene copolymer particles, benzoguanamine particles, melamine particles, and polycarbonate particles. The curable resin includes the curable resin contained in the first curable composition. The thickness of the hard coat layer 23 is, for example, 0.1 μm or more, preferably 0.5 μm or more, and is, for example, 10 μm or less, preferably 3 μm or less. The ratio of the thickness of the hard coat layer 23 to the thickness of the base material 2 is, for example, 0.1% or more, preferably 2% or more, and is, for example, 10% or less, preferably 5% or less.
 機能層20の厚みは、例えば、0.15μm以上であり、また、例えば、3.5μm以下である。機能層20の厚みは、光学調整層22およびハードコート層23の合計厚みである。基材シート21の厚みに対する機能層20の厚みの割合は、例えば、0.01以上、好ましくは、0.02以上であり、また、例えば、0.10以下、好ましくは、0.05以下である。基材2の厚みに対する機能層20の厚みの割合は、例えば、1%以上、好ましくは、2%以上であり、また、例えば、10%以下、好ましくは、5%以下である。 The thickness of the functional layer 20 is, for example, 0.15 μm or more and, for example, 3.5 μm or less. The thickness of the functional layer 20 is the total thickness of the optical adjustment layer 22 and hard coat layer 23 . The ratio of the thickness of the functional layer 20 to the thickness of the base sheet 21 is, for example, 0.01 or more, preferably 0.02 or more, and is, for example, 0.10 or less, preferably 0.05 or less. be. The ratio of the thickness of the functional layer 20 to the thickness of the base material 2 is, for example, 1% or more, preferably 2% or more, and is, for example, 10% or less, preferably 5% or less.
 1.2.3 基材2の厚み
 基材2の厚みは、例えば、5μm以上、好ましくは、10μm以上、より好ましくは、25μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下、より好ましくは、100μm以下である。基材2の厚みは、基材シート21、光学調整層22およびハードコート層23の合計厚みである。
1.2.3 Thickness of base material 2 More preferably, it is 100 μm or less. The thickness of the base material 2 is the total thickness of the base material sheet 21 , the optical adjustment layer 22 and the hard coat layer 23 .
 1.2.4 基材2の物性
 基材2の全光線透過率は、例えば、75%以上、好ましくは、80%以上、より好ましくは、85%以上、さらに好ましくは、90%以上である。基材2の全光線透過率の上限は、限定されない。基材2の全光線透過率の上限は、例えば、100%以下である。基材2の全光線透過率は、JIS K 7375-2008に基づいて求められる。以下の部材の全光線透過率は、上記と同様の方法に基づいて求められる。
1.2.4 Physical Properties of Substrate 2 The total light transmittance of the substrate 2 is, for example, 75% or higher, preferably 80% or higher, more preferably 85% or higher, and still more preferably 90% or higher. . The upper limit of the total light transmittance of the substrate 2 is not limited. The upper limit of the total light transmittance of the substrate 2 is, for example, 100% or less. The total light transmittance of the substrate 2 is obtained based on JIS K 7375-2008. The total light transmittance of the following members is obtained based on the same method as above.
 基材2は、市販品を用いることができる。市販品としては、例えば、GF-50JBN(三菱ケミカル社製)が挙げられる。 A commercially available product can be used for the base material 2 . Commercially available products include, for example, GF-50JBN (manufactured by Mitsubishi Chemical Corporation).
 1.3 結晶質透明導電層3
 本実施形態では、結晶質透明導電層3は、好ましくは、赤外線反射層(または赤外線カット層)と称呼される。赤外線は、少なくとも波長1500nmの光(電磁波)を含み、具体的には、波長が、800nm以上1mm以下の光を含む。
1.3 Crystalline transparent conductive layer 3
In this embodiment, the crystalline transparent conductive layer 3 is preferably called an infrared reflective layer (or an infrared cut layer). Infrared radiation includes light (electromagnetic waves) with a wavelength of at least 1500 nm, and specifically includes light with a wavelength of 800 nm or more and 1 mm or less.
 透明導電層の結晶質性は、例えば、透明導電層を塩酸(20℃、濃度5質量%)に15分間浸漬し、続いて、水洗および乾燥した後、透明導電層の一方面に対して15mm程度の間の端子間抵抗を測定することにより判断する。上記浸漬・水洗・乾燥後の透明導電層において、15mm間の端子間抵抗(2端子間抵抗)が10kΩ以下である場合、透明導電層が結晶質(つまり、結晶質透明導電層3)であり、一方、上記抵抗が10kΩを超過する場合、透明導電層が非晶質(つまり、非晶質透明導電層31)である。 The crystallinity of the transparent conductive layer can be measured, for example, by immersing the transparent conductive layer in hydrochloric acid (20° C., concentration 5% by mass) for 15 minutes, then washing with water and drying. It is judged by measuring the terminal resistance between the degrees. In the transparent conductive layer after immersion, washing with water, and drying, when the resistance between terminals (resistance between two terminals) for 15 mm is 10 kΩ or less, the transparent conductive layer is crystalline (that is, crystalline transparent conductive layer 3). On the other hand, if the resistance exceeds 10 kΩ, the transparent conductive layer is amorphous (that is, amorphous transparent conductive layer 31).
 本実施形態では、結晶質透明導電層3は、厚み方向における透明導電性フィルム1の一方面を形成する。結晶質透明導電層3は、厚み方向における基材2の一方面に配置される。結晶質透明導電層3は、厚み方向における基材2の一方面に接触する。本実施形態では、結晶質透明導電層3は、厚み方向における光学調整層22(機能層20)の一方面に接触する。 In this embodiment, the crystalline transparent conductive layer 3 forms one surface of the transparent conductive film 1 in the thickness direction. The crystalline transparent conductive layer 3 is arranged on one surface of the substrate 2 in the thickness direction. The crystalline transparent conductive layer 3 contacts one side of the substrate 2 in the thickness direction. In this embodiment, the crystalline transparent conductive layer 3 contacts one surface of the optical adjustment layer 22 (functional layer 20) in the thickness direction.
 1.3.1 結晶質透明導電層3のキャリア密度
 結晶質透明導電層3のキャリア密度は、13.0×1020(/cm)以上である。
1.3.1 Carrier Density of Crystalline Transparent Conductive Layer 3 The carrier density of the crystalline transparent conductive layer 3 is 13.0×10 20 (/cm 3 ) or more.
 一方、結晶質透明導電層3のキャリア密度が13.0×1020(/cm)未満であれば、結晶質透明導電層3において赤外線の反射に寄与するキャリア量が不十分である。 On the other hand, if the carrier density of the crystalline transparent conductive layer 3 is less than 13.0×10 20 (/cm 3 ), the amount of carriers contributing to infrared reflection in the crystalline transparent conductive layer 3 is insufficient.
 そのため、結晶質透明導電層3が赤外線を十分に反射せず、その結果、赤外線に対する透明導電性フィルム1の反射率が低くなる。 Therefore, the crystalline transparent conductive layer 3 does not sufficiently reflect infrared rays, and as a result, the reflectance of the transparent conductive film 1 with respect to infrared rays becomes low.
 他方、本発明では、結晶質透明導電層3のキャリア密度が13.0×1020(/cm)以上であるので、結晶質透明導電層3において赤外線の反射に寄与するキャリア量が十分である。そのため、結晶質透明導電層3が赤外線を十分に反射して、その結果、赤外線に対する透明導電性フィルム1の反射率が高くなる。 On the other hand, in the present invention, since the carrier density of the crystalline transparent conductive layer 3 is 13.0×10 20 (/cm 3 ) or more, the amount of carriers contributing to infrared reflection in the crystalline transparent conductive layer 3 is sufficient. be. Therefore, the crystalline transparent conductive layer 3 sufficiently reflects infrared rays, and as a result, the reflectance of the transparent conductive film 1 with respect to infrared rays increases.
 結晶質透明導電層3のキャリア密度は、好ましくは、13.2×1020(/cm)以上、より好ましくは、14.0×1020(/cm)以上、さらに好ましくは、15.0×1020(/cm)以上、とりわけ好ましくは、16.0×1020(/cm)以上、最も好ましくは、16.7×1020(/cm)以上、さらには、17.0×1020(/cm)以上、さらには、18.0×1020(/cm)以上が好適である。 The carrier density of the crystalline transparent conductive layer 3 is preferably 13.2×10 20 (/cm 3 ) or more, more preferably 14.0×10 20 (/cm 3 ) or more, still more preferably 15.0×10 20 (/cm 3 ) or more. 0×10 20 (/cm 3 ) or more, particularly preferably 16.0×10 20 (/cm 3 ) or more, most preferably 16.7×10 20 (/cm 3 ) or more; 0×10 20 (/cm 3 ) or more, more preferably 18.0×10 20 (/cm 3 ) or more.
 結晶質透明導電層3のキャリア密度の上限は、限定されない。結晶質透明導電層3のキャリア密度の上限は、例えば、50.0×1020(/cm)、さらには、40.0×1020(/cm)、さらには、30.0×1020(/cm)である。 The upper limit of the carrier density of the crystalline transparent conductive layer 3 is not limited. The upper limit of the carrier density of the crystalline transparent conductive layer 3 is, for example, 50.0×10 20 (/cm 3 ), further 40.0×10 20 (/cm 3 ), furthermore 30.0×10 20 (/cm 3 ).
 結晶質透明導電層3のキャリア密度は、例えば、結晶質透明導電層3の形成方法およびその条件によって、調整される。結晶質透明導電層3を反応性スパッタリングで形成する場合に、好ましくは、反応性ガスの導入量を小さくし、および/または、スパッタリングガスにアルゴンより原子番号が大きい希ガスを含ませる。より好ましくは、反応性ガスの導入量を小さくし、および、スパッタリングガスにアルゴンより原子番号が大きい希ガスを含ませる。 The carrier density of the crystalline transparent conductive layer 3 is adjusted, for example, by the method of forming the crystalline transparent conductive layer 3 and its conditions. When the crystalline transparent conductive layer 3 is formed by reactive sputtering, preferably the introduction amount of the reactive gas is reduced and/or the sputtering gas contains a noble gas having an atomic number higher than that of argon. More preferably, the amount of reactive gas introduced is small, and the sputtering gas contains a noble gas with an atomic number higher than that of argon.
 結晶質透明導電層3のキャリア密度は、ホール効果測定システムを用いて求められる。 The carrier density of the crystalline transparent conductive layer 3 is obtained using a Hall effect measurement system.
 1.3.2 結晶質透明導電層3の材料、厚み、他の物性
 結晶質透明導電層3の材料としては、例えば、無機酸化物が挙げられ、好ましくは、金属酸化物が挙げられる。金属酸化物は、In、Sn、Zn、Ga、Sb、Nb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属を含む。具体的には、結晶質透明導電層3の材料としては、好ましくは、インジウム亜鉛複合酸化物(IZO)、インジウムガリウム亜鉛複合酸化物(IGZO)、インジウムガリウム複合酸化物(IGO)、インジウムスズ複合酸化物(ITO)、および、アンチモンスズ複合酸化物(ATO)が挙げられ、好ましくは、耐クラック性を向上する観点から、インジウムスズ複合酸化物(ITO)が挙げられる。
1.3.2 Material, thickness and other physical properties of the crystalline transparent conductive layer 3 Examples of the material of the crystalline transparent conductive layer 3 include inorganic oxides, preferably metal oxides. The metal oxide contains at least one metal selected from the group consisting of In, Sn, Zn, Ga, Sb, Nb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd and W . Specifically, the material of the crystalline transparent conductive layer 3 is preferably indium zinc composite oxide (IZO), indium gallium zinc composite oxide (IGZO), indium gallium composite oxide (IGO), indium tin composite oxide Oxides (ITO) and antimony-tin composite oxides (ATO) are included, and indium-tin composite oxides (ITO) are preferred from the viewpoint of improving crack resistance.
 なお、インジウムスズ複合酸化物における酸化スズ(SnO)の含有量は、例えば、0.5質量%以上、好ましくは、3質量%以上、より好ましくは、6質量%以上であり、また、例えば、50質量%未満、好ましくは、25質量%以下、より好ましくは、15質量%以下である。 The content of tin oxide (SnO 2 ) in the indium tin composite oxide is, for example, 0.5% by mass or more, preferably 3% by mass or more, more preferably 6% by mass or more. , less than 50% by mass, preferably 25% by mass or less, more preferably 15% by mass or less.
 結晶質透明導電層3は、アルゴンより原子番号が大きい希ガスを含有する。本実施形態では、好ましくは、結晶質透明導電層3は、アルゴンより原子番号が大きい希ガスを含有し、アルゴンを含有しない。 The crystalline transparent conductive layer 3 contains a rare gas with an atomic number greater than that of argon. In this embodiment, the crystalline transparent conductive layer 3 preferably contains a noble gas having an atomic number greater than that of argon and does not contain argon.
 後述する第1工程において、スパッタリングガスがアルゴンを含有する場合には、結晶質透明導電層3にアルゴンが、多量に取り込まれる。対して、スパッタリングガスがアルゴンより原子番号が大きい希ガスを含有し、アルゴンを含有しない本実施形態では、結晶質透明導電層3は、スパッタリングガスの多量の取り込みが抑制される。そのため、結晶質透明導電層3が緻密になり、その結果、結晶質透明導電層3のキャリア密度が高くなる。 In the first step described later, when the sputtering gas contains argon, a large amount of argon is taken into the crystalline transparent conductive layer 3 . In contrast, in the present embodiment in which the sputtering gas contains a rare gas having an atomic number greater than that of argon and does not contain argon, the crystalline transparent conductive layer 3 is suppressed from taking in a large amount of sputtering gas. Therefore, the crystalline transparent conductive layer 3 becomes dense, and as a result, the carrier density of the crystalline transparent conductive layer 3 increases.
 具体的には、結晶質透明導電層3は、アルゴンより原子番号が大きい希ガスを含有する無機酸化物(好ましくは、金属酸化物)である。つまり、無機酸化物(好ましくは、金属酸化物)にアルゴンより原子番号が大きい希ガスが混入した組成物が、結晶質透明導電層3である。結晶質透明導電層3は、好ましくは、金属の単体を含まない。 Specifically, the crystalline transparent conductive layer 3 is an inorganic oxide (preferably a metal oxide) containing a noble gas with an atomic number greater than that of argon. That is, the crystalline transparent conductive layer 3 is a composition in which an inorganic oxide (preferably a metal oxide) is mixed with a noble gas having an atomic number greater than that of argon. The crystalline transparent conductive layer 3 preferably does not contain an elemental metal.
 アルゴンより原子番号が大きい希ガスとしては、例えば、クリプトン、キセノン、および、ラドンが挙げられる。これらは、単独または併用できる。アルゴンより原子番号が大きい希ガスとして、好ましくは、クリプトン、および、キセノンが挙げられ、より好ましくは、低価格と優れた電気伝導性とを得る観点から、クリプトン(Kr)が挙げられる。 Rare gases with atomic numbers greater than argon include, for example, krypton, xenon, and radon. These can be used alone or in combination. The noble gas having an atomic number greater than that of argon is preferably krypton and xenon, and more preferably krypton (Kr) from the viewpoint of obtaining low cost and excellent electrical conductivity.
 希ガスの同定方法は、限定されない。例えば、ラザフォード後方散乱分析(Rutherford Backscattering Spectrometry)、二次イオン質量分析法、レーザー共鳴イオン化質量分析法、および/または、蛍光X線分析により、結晶質透明導電層3におけるアルゴンより原子番号が大きい希ガスが同定される。 The method for identifying noble gases is not limited. For example, Rutherford Backscattering Spectrometry, secondary ion mass spectrometry, laser resonance ionization mass spectrometry, and/or X-ray fluorescence spectrometry reveal rare atoms with atomic numbers higher than argon in the crystalline transparent conductive layer 3 . A gas is identified.
 結晶質透明導電層3におけるアルゴンより原子番号が大きい希ガスの含有割合は、例えば、0.0001atom%以上であり、好ましくは、0.001atom%以上であり、また、例えば、1.0atom%以下、より好ましくは、0.7atom%以下、さらに好ましくは、0.5atom%以下、ことさらに好ましくは、0.3atom%以下、とくに好ましくは、0.2atom%以下、もっとも好ましくは、0.15atom%以下である。結晶質透明導電層3におけるアルゴンより原子番号が大きい希ガスの含有割合が、上記範囲であれば、赤外線に対する結晶質透明導電層3の反射率を高くできる。 The content of the rare gas having an atomic number greater than that of argon in the crystalline transparent conductive layer 3 is, for example, 0.0001 atom % or more, preferably 0.001 atom % or more, and, for example, 1.0 atom % or less. , More preferably 0.7 atom% or less, still more preferably 0.5 atom% or less, even more preferably 0.3 atom% or less, particularly preferably 0.2 atom% or less, most preferably 0.15 atom% It is below. If the content of the rare gas having an atomic number greater than that of argon in the crystalline transparent conductive layer 3 is within the above range, the reflectance of the crystalline transparent conductive layer 3 to infrared rays can be increased.
 上記含有量の下限は、蛍光X線分析装置により、アルゴンより原子番号が大きい希ガスの存在を確認できたときに対応する割合であり、少なくとも、0.0001原子%以上である。 The lower limit of the above content is a ratio corresponding to when the presence of a noble gas with an atomic number greater than that of argon can be confirmed by a fluorescent X-ray spectrometer, and is at least 0.0001 atomic % or more.
 結晶質透明導電層3の厚みは、例えば、15nm以上、好ましくは、35nm以上、より好ましくは、50nm以上、さらに好ましくは、75nm以上、ことさらに好ましくは、100nm以上、とりわけ好ましくは、120nm以上である。結晶質透明導電層3の厚みは、例えば、500nm以下、好ましくは、300nm以下、より好ましくは、200nm以下である。 The thickness of the crystalline transparent conductive layer 3 is, for example, 15 nm or more, preferably 35 nm or more, more preferably 50 nm or more, even more preferably 75 nm or more, even more preferably 100 nm or more, and most preferably 120 nm or more. be. The thickness of the crystalline transparent conductive layer 3 is, for example, 500 nm or less, preferably 300 nm or less, more preferably 200 nm or less.
 結晶質透明導電層3の全光線透過率は、例えば、75%以上、好ましくは、80%以上、より好ましくは、85%以上、さらに好ましくは、90%以上である。結晶質透明導電層3の全光線透過率の上限は、限定されない。結晶質透明導電層3の全光線透過率の上限は、例えば、100%である。 The total light transmittance of the crystalline transparent conductive layer 3 is, for example, 75% or more, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more. The upper limit of the total light transmittance of the crystalline transparent conductive layer 3 is not limited. The upper limit of the total light transmittance of the crystalline transparent conductive layer 3 is, for example, 100%.
 結晶質透明導電層3の表面抵抗は、例えば、300Ω/□以下、好ましくは、100Ω/□以下、より好ましくは、14Ω/□以下、さらに好ましくは、10.5Ω/□以下、とりわけ好ましくは、10.1Ω/□以下、最も好ましくは、10.0Ω/□以下である。結晶質透明導電層3の表面抵抗は、例えば、0.1Ω/□以上、好ましくは、1Ω/□以上である。比抵抗は、四端子法により測定される。 The surface resistance of the crystalline transparent conductive layer 3 is, for example, 300 Ω/□ or less, preferably 100 Ω/□ or less, more preferably 14 Ω/□ or less, even more preferably 10.5 Ω/□ or less, and particularly preferably 10.1Ω/□ or less, most preferably 10.0Ω/□ or less. The surface resistance of the crystalline transparent conductive layer 3 is, for example, 0.1 Ω/□ or more, preferably 1 Ω/□ or more. A specific resistance is measured by the four-probe method.
 1.4 波長1500nmの光に対する透明導電性フィルム1の反射率
 波長1500nmの光に対する透明導電性フィルム1の反射率は、例えば、40%以上、好ましくは、45%以上、より好ましくは、47%以上、さらに好ましくは、50%以上、とりわけ好ましくは、51%以上、最も好ましくは、52%以上である。波長1500nmの光に対する透明導電性フィルム1の反射率が上記した下限以上であれば、透明導電性フィルム1は、赤外線に対する遮光(カット)性に優れ、透明導電性フィルム1は、赤外線カットフィルムとして好適に用いられる。
1.4 Reflectance of Transparent Conductive Film 1 to Light of Wavelength 1500 nm The reflectance of transparent conductive film 1 to light of wavelength 1500 nm is, for example, 40% or more, preferably 45% or more, more preferably 47%. Above, more preferably 50% or more, particularly preferably 51% or more, most preferably 52% or more. If the reflectance of the transparent conductive film 1 to light with a wavelength of 1500 nm is equal to or higher than the lower limit described above, the transparent conductive film 1 has excellent light shielding (cutting) properties against infrared rays, and the transparent conductive film 1 can be used as an infrared cut film. It is preferably used.
 波長1500nmの光に対する透明導電性フィルム1の反射率の上限は、限定されない。波長1500nmの光に対する透明導電性フィルム1の反射率の上限は、例えば、100%である。 The upper limit of the reflectance of the transparent conductive film 1 to light with a wavelength of 1500 nm is not limited. The upper limit of the reflectance of the transparent conductive film 1 to light with a wavelength of 1500 nm is, for example, 100%.
 1.5 透明導電性フィルム1の厚み、他の物性
 透明導電性フィルム1の厚みは、例えば、2μm以上、好ましくは、20μm以上、より好ましくは、30μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下、より好ましくは、100μm以下である。
1.5 Thickness of Transparent Conductive Film 1 and Other Physical Properties It is preferably 200 μm or less, more preferably 100 μm or less.
 透明導電性フィルム1の全光線透過率は、例えば、75%以上、好ましくは、80%以上であり、また、例えば、100%以下である。 The total light transmittance of the transparent conductive film 1 is, for example, 75% or more, preferably 80% or more, and is, for example, 100% or less.
 1.6 透明導電性フィルム1の製造方法
 この方法では、例えば、各層のそれぞれをロール-トゥ-ロール法で配置する。
1.6 Method for Manufacturing Transparent Conductive Film 1 In this method, for example, each layer is arranged by a roll-to-roll method.
 1.6.1 基材2の準備
 まず、長尺の基材2を準備する。具体的には、長尺の基材シート21の一方面および他方面のそれぞれに、第1の硬化性組成物および第2の硬化性組成物のそれぞれを塗布する。その後、第1の硬化性組成物および第2の硬化性組成物のそれぞれにおける硬化性樹脂を、熱または紫外線照射によって、硬化させる。これによって、光学調整層22およびハードコート層23のそれぞれを基材シート21の一方面および他方面のそれぞれに形成する。これによって、基材2を準備する。
1.6.1 Preparation of Base Material 2 First, a long base material 2 is prepared. Specifically, each of the first curable composition and the second curable composition is applied to each of one side and the other side of the long base sheet 21 . After that, the curable resin in each of the first curable composition and the second curable composition is cured by heat or ultraviolet irradiation. Thereby, the optical adjustment layer 22 and the hard coat layer 23 are formed on one side and the other side of the base sheet 21, respectively. The base material 2 is prepared by this.
 1.6.2 結晶質透明導電層3の形成
 その後、結晶質透明導電層3を、厚み方向における基材2の一方面に形成する。具体的には、まず、非晶質透明導電層31(図1における括弧書き符号参照)を厚み方向における基材2の一方面に形成し、その後、非晶質透明導電層31を結晶質に転化して、結晶質透明導電層3を形成する。
1.6.2 Formation of Crystalline Transparent Conductive Layer 3 After that, the crystalline transparent conductive layer 3 is formed on one surface of the substrate 2 in the thickness direction. Specifically, first, an amorphous transparent conductive layer 31 (see parentheses in FIG. 1) is formed on one surface of the substrate 2 in the thickness direction, and then the amorphous transparent conductive layer 31 is made crystalline. It is converted to form a crystalline transparent conductive layer 3 .
 1.6.2.1 非晶質透明導電層31の形成
 非晶質透明導電層31を形成するには、例えば、スパッタリング、好ましくは、反応性スパッタリングを実施する。
1.6.2.1 Formation of Amorphous Transparent Conductive Layer 31 To form the amorphous transparent conductive layer 31, for example, sputtering, preferably reactive sputtering, is performed.
 スパッタリングでは、スパッタリング装置が用いられる。スパッタリング装置は、成膜ロールを備える。 A sputtering apparatus is used for sputtering. The sputtering device includes a film-forming roll.
 スパッタリング(好ましくは、反応性スパッタリング)では、上記した金属酸化物(の焼結体)がターゲットとして用いられる。 In sputtering (preferably, reactive sputtering), the above metal oxide (sintered body) is used as a target.
 スパッタリングでは、スパッタリングガスが用いられる。スパッタリングガスとしては、アルゴンより原子番号が大きい希ガスが挙げられる。アルゴンより原子番号が大きい希ガスとしては、例えば、クリプトン、キセノン、および、ラドンが挙げられ、好ましくは、クリプトン(Kr)が挙げられる。スパッタリングガスは、好ましくは、アルゴンを含有しない。 A sputtering gas is used in sputtering. Sputtering gases include noble gases having atomic numbers higher than argon. Noble gases having atomic numbers greater than argon include, for example, krypton, xenon, and radon, preferably krypton (Kr). The sputtering gas preferably does not contain argon.
 スパッタリングガスは、好ましくは、反応性ガスと混合される。反応性ガスとしては、例えば、酸素が挙げられる。スパッタリングガスおよび反応性ガスの合計導入量に対する反応性ガスの導入量の割合は、例えば、0.1流量%以上、好ましくは、0.5流量%以上であり、また、例えば、5.0流量%以下、好ましくは、3.5流量%以下、より好ましくは、3.3流量%以下、さらに好ましくは、3.1流量%以下、とりわけ好ましくは、3.0流量%以下、最も好ましくは、2.9流量%以下である。スパッタリングガスおよび反応性ガスの合計導入量に対する反応性ガスの導入量の割合が上記した上限以下であれば、結晶質透明導電層3におけるキャリア密度を高くでき、ひいては、赤外線に対する透明導電性フィルム1の反射率を高くできる。 The sputtering gas is preferably mixed with a reactive gas. Reactive gases include, for example, oxygen. The ratio of the introduction amount of the reactive gas to the total introduction amount of the sputtering gas and the reactive gas is, for example, 0.1 flow % or more, preferably 0.5 flow % or more, and for example, 5.0 flow rate. % or less, preferably 3.5 flow % or less, more preferably 3.3 flow % or less, still more preferably 3.1 flow % or less, particularly preferably 3.0 flow % or less, most preferably 2.9 flow rate % or less. If the ratio of the introduction amount of the reactive gas to the total introduction amount of the sputtering gas and the reactive gas is equal to or less than the upper limit described above, the carrier density in the crystalline transparent conductive layer 3 can be increased, and thus the transparent conductive film 1 against infrared rays. can increase the reflectance of
 スパッタリング装置内の気圧は、例えば、1.0Pa以下であり、また、例えば、0.01Pa以上である。 The atmospheric pressure in the sputtering apparatus is, for example, 1.0 Pa or less and, for example, 0.01 Pa or more.
 これによって、基材2と、非晶質透明導電層31とを備える積層体が製造される。 Thus, a laminate including the substrate 2 and the amorphous transparent conductive layer 31 is manufactured.
 1.6.2.2 非晶質透明導電層31の結晶質への転化
 その後、非晶質透明導電層31を結晶質に転化して、結晶質透明導電層3を形成する。
1.6.2.2 Conversion of Amorphous Transparent Conductive Layer 31 to Crystalline After that, the amorphous transparent conductive layer 31 is converted to crystalline to form the crystalline transparent conductive layer 3 .
 結晶質透明導電層3を結晶質に転化するには、結晶質透明導電層3(を備える積層体)を加熱する。 In order to convert the crystalline transparent conductive layer 3 to a crystalline state, the crystalline transparent conductive layer 3 (the laminate including it) is heated.
 加熱温度は、例えば、80℃以上、好ましくは、110℃以上、より好ましくは、さらに好ましくは、130℃以上、とりわけ好ましくは、150℃以上であり、また、例えば、200℃以下、好ましくは、180℃以下、より好ましくは、175℃以下、さらに好ましくは、170℃以下である。加熱時間は、例えば、1分間以上、好ましくは、3分間以上、より好ましくは、5分間以上であり、また、例えば、5時間以下、好ましくは、3時間以下、より好ましくは、2時間以下である。 The heating temperature is, for example, 80° C. or higher, preferably 110° C. or higher, more preferably 130° C. or higher, particularly preferably 150° C. or higher, and for example, 200° C. or lower, preferably It is 180° C. or lower, more preferably 175° C. or lower, still more preferably 170° C. or lower. The heating time is, for example, 1 minute or longer, preferably 3 minutes or longer, more preferably 5 minutes or longer, and is, for example, 5 hours or shorter, preferably 3 hours or shorter, more preferably 2 hours or shorter. be.
 加熱は、例えば、真空下、または、大気下で、実施される。結晶質透明導電層3におけるキャリア密度をより一層高め、赤外線に対する透明導電性フィルム1の反射性をより一層高める観点から、好ましくは、加熱は、真空下で実施される。 Heating is performed, for example, under vacuum or in the atmosphere. From the viewpoint of further increasing the carrier density in the crystalline transparent conductive layer 3 and further increasing the reflectivity of the transparent conductive film 1 to infrared rays, the heating is preferably carried out in a vacuum.
 または、結晶質透明導電層3を備える透明導電性フィルム1を、大気下で、20℃以上、80℃未満の範囲で、例えば、10時間以上、好ましくは、24時間以上放置して、結晶質透明導電層3を結晶質に転化することもできる。 Alternatively, the transparent conductive film 1 having the crystalline transparent conductive layer 3 is allowed to stand in the atmosphere at a temperature of 20° C. or more and less than 80° C. for, for example, 10 hours or more, preferably 24 hours or more, to obtain a crystalline film. The transparent conductive layer 3 can also be converted to crystalline.
 1.7 透明導電性フィルム1の用途
 透明導電性フィルム1は、例えば、物品に用いられる。物品としては、光学用の物品が挙げられる。詳しくは、物品としては、例えば、タッチセンサ、電磁波シールド、調光素子、光電変換素子、熱線制御部材、光透過性アンテナ部材、光透過性ヒータ部材、画像表示装置、および、照明が挙げられる。
1.7 Uses of Transparent Conductive Film 1 The transparent conductive film 1 is used for articles, for example. Articles include optical articles. More specifically, examples of articles include touch sensors, electromagnetic wave shields, light control elements, photoelectric conversion elements, heat ray control members, light-transmitting antenna members, light-transmitting heater members, image display devices, and lighting.
 好ましくは、透明導電性フィルム1は、赤外線反射フィルム(または赤外線カットフィルム)として用いられる。 Preferably, the transparent conductive film 1 is used as an infrared reflective film (or infrared cut film).
 2. 一実施形態の作用効果
 この透明導電性フィルム1では、特許文献1に記載される金属層ではなく、結晶質透明導電層3を備えるので、耐腐食性に優れる。
2. Effects of One Embodiment Since the transparent conductive film 1 includes the crystalline transparent conductive layer 3 instead of the metal layer described in Patent Document 1, it has excellent corrosion resistance.
 また、この透明導電性フィルム1では、結晶質透明導電層3のキャリア密度が13.0×1020(/cm)以上と高いので、赤外線の反射に寄与できるキャリア量が多い。
 そのため、透明導電性フィルム1は赤外線に対する反射率が高い。
Further, in this transparent conductive film 1, since the carrier density of the crystalline transparent conductive layer 3 is as high as 13.0×10 20 (/cm 3 ) or more, the amount of carriers that can contribute to the reflection of infrared rays is large.
Therefore, the transparent conductive film 1 has a high reflectance with respect to infrared rays.
 また、この透明導電性フィルム1では、結晶質透明導電層3は、無機酸化物層であり、金属の単体を含まないので、耐腐食性に優れる。 In addition, in this transparent conductive film 1, the crystalline transparent conductive layer 3 is an inorganic oxide layer and does not contain an elemental metal, so it is excellent in corrosion resistance.
 3. 変形例
 以下の各変形例において、上記した一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、各変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態および変形例を適宜組み合わせることができる。
3. Modifications In each modification below, the same reference numerals are given to the same members and steps as in the above-described embodiment, and detailed description thereof will be omitted. Moreover, each modification can have the same effects as the one embodiment, unless otherwise specified. Furthermore, one embodiment and modifications can be combined as appropriate.
 変形例では、図示しないが、機能層20は、厚み方向における基材シート21の一方面または他方面に配置される。機能層20は、ハードコート層および光学調整層のいずれか1つでもよい。つまり、単数または複数の機能層20は、厚み方向の基材シート21の一方面および/または他方面に配置される。 In a modified example, although not shown, the functional layer 20 is arranged on one side or the other side of the base sheet 21 in the thickness direction. The functional layer 20 may be either one of a hard coat layer and an optical adjustment layer. That is, one or more functional layers 20 are arranged on one side and/or the other side of the base sheet 21 in the thickness direction.
 以下に、実施例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。 The present invention will be described more specifically below by showing examples. It should be noted that the present invention is by no means limited to the examples. In addition, specific numerical values such as the mixing ratio (content ratio), physical property values, and parameters used in the following description are the corresponding mixing ratios ( content ratio), physical properties, parameters, etc. can.
  <実施例1>
 長尺の基材2を準備した。具体的には、PETからなる基材シート21と、厚み方向における基材2の一方面に配置される光学調整層22と、厚み方向における基材2の他方面に配置されるハードコート層23とを備える、厚み52μmの基材2(三菱ケミカル社製、品名;GF-50JBN)のロール体を準備した。
<Example 1>
A long base material 2 was prepared. Specifically, a base sheet 21 made of PET, an optical adjustment layer 22 arranged on one side of the base 2 in the thickness direction, and a hard coat layer 23 arranged on the other side of the base 2 in the thickness direction. A roll body of the base material 2 (manufactured by Mitsubishi Chemical Corporation, product name: GF-50JBN) with a thickness of 52 μm was prepared.
 厚み145nmの非晶質透明導電層31を基材2の一方面に、反応性スパッタリング法によって、形成した。反応性スパッタリング法では、上記したロール体を、DCマグネトロンスパッタリング装置にセットして、ロール体から基材2を繰り出しながら、非晶質透明導電層31を基材2の一方面に連続して形成し、基材2と非晶質透明導電層31とを厚み方向の一方側に向かって順に備える積層体を作製した。 An amorphous transparent conductive layer 31 with a thickness of 145 nm was formed on one surface of the substrate 2 by reactive sputtering. In the reactive sputtering method, the above-described roll body is set in a DC magnetron sputtering apparatus, and the amorphous transparent conductive layer 31 is continuously formed on one surface of the base material 2 while unrolling the base material 2 from the roll body. Then, a laminate having the substrate 2 and the amorphous transparent conductive layer 31 in order toward one side in the thickness direction was produced.
 スパッタリングの条件は、次のとおりである。ターゲットとして、酸化インジウムと酸化スズとの焼結体を用いた。焼結体における酸化スズ濃度は10質量%であった。DC電源を用いて、ターゲットに対して電圧を印加した。ターゲット上の水平磁場強度は90mTとした。また、DCマグネトロンスパッタリング装置における成膜室内の到達真空度が0.9×10-4Paに至るまで成膜室内を真空排気して、基材2に対して脱ガス処理を実施した。その後、成膜室内に、スパッタリングガスとしてのKrと、反応性ガスとしての酸素とを導入し、成膜室内の気圧を0.2Paとした。成膜室に導入されるKrおよび酸素の合計導入量に対する酸素導入量の割合は約3.1流量%であった。 Sputtering conditions are as follows. A sintered body of indium oxide and tin oxide was used as a target. The tin oxide concentration in the sintered body was 10% by mass. A DC power supply was used to apply voltage to the target. The horizontal magnetic field strength on the target was set to 90 mT. Further, the inside of the film forming chamber in the DC magnetron sputtering apparatus was evacuated until the final degree of vacuum in the film forming chamber reached 0.9×10 −4 Pa, and the substrate 2 was degassed. After that, Kr as a sputtering gas and oxygen as a reactive gas were introduced into the film forming chamber, and the atmospheric pressure in the film forming chamber was set to 0.2 Pa. The ratio of the oxygen introduction amount to the total introduction amount of Kr and oxygen introduced into the film forming chamber was about 3.1 flow rate %.
 その後、積層体を、大気下、160℃の熱風オーブンで加熱した。これにより、非晶質透明導電層31を結晶質に転化して、結晶質透明導電層3を形成した。 After that, the laminate was heated in a hot air oven at 160°C in the atmosphere. As a result, the amorphous transparent conductive layer 31 was converted into a crystalline one to form the crystalline transparent conductive layer 3 .
 これによって、基材2と、非晶質透明導電層31とを厚み方向の一方側に向かって順に備える透明導電性フィルム1を製造した。 As a result, the transparent conductive film 1 was manufactured, which includes the substrate 2 and the amorphous transparent conductive layer 31 in order toward one side in the thickness direction.
<実施例2から実施例4と比較例1から比較例3>
 実施例1と同様にして透明導電性フィルム1を製造した。ただし、スパッタリングガス中の希ガスの種類、酸素導入量の割合、および/または、加熱時の雰囲気を表1に記載の通りに変更した。
<Examples 2 to 4 and Comparative Examples 1 to 3>
A transparent conductive film 1 was produced in the same manner as in Example 1. However, the type of rare gas in the sputtering gas, the ratio of the amount of oxygen introduced, and/or the atmosphere during heating were changed as shown in Table 1.
 具体的には、実施例2から実施例4における「加熱時の雰囲気」欄の「真空」は、非晶質透明導電層31が積層された積層体を、ロール体に巻き取らず、真空下で、160℃の加熱ロールに接触させながら、搬送した。つまり、スパッタリング装置内で、真空下で、非晶質透明導電層31を加熱した。 Specifically, "vacuum" in the "atmosphere during heating" column in Examples 2 to 4 means that the laminated body in which the amorphous transparent conductive layer 31 is laminated is not wound into a roll and is heated under vacuum. and conveyed while being in contact with a heating roll at 160°C. That is, the amorphous transparent conductive layer 31 was heated in a sputtering apparatus under vacuum.
 図2に示すように、比較例1では、第1無機酸化物層33と、金属層34と、第2無機酸化物層35とを厚み方向の一方側に順に備える透明導電層32を、透明導電性フィルム1に備えた。透明導電層32の形成方法は、以下の通りである。 As shown in FIG. 2, in Comparative Example 1, the transparent conductive layer 32, which includes a first inorganic oxide layer 33, a metal layer 34, and a second inorganic oxide layer 35 in this order on one side in the thickness direction, is a transparent conductive layer. It was prepared for the conductive film 1. A method for forming the transparent conductive layer 32 is as follows.
 ITOからなり、厚みが40nmである第1無機酸化物層33を、反応性スパッタリング法により、厚み方向における基材2の一方面に形成した。第1無機酸化物層33の形成方法は、実施例1の非晶質透明導電層31の形成と同様である。但し、スパッタリングガスとしてArを用い、成膜室に導入されるArおよび酸素の合計導入量に対する酸素導入量の割合を3.8流量%に変更した。 A first inorganic oxide layer 33 made of ITO and having a thickness of 40 nm was formed on one surface of the base material 2 in the thickness direction by a reactive sputtering method. The method for forming the first inorganic oxide layer 33 is the same as the method for forming the amorphous transparent conductive layer 31 of the first embodiment. However, Ar was used as the sputtering gas, and the ratio of the introduced amount of oxygen to the total introduced amount of Ar and oxygen introduced into the film formation chamber was changed to 3.8 flow rate %.
 Ag合金からなり、厚みが8nmである金属層34を、スパッタリングにより、厚み方向における第1無機酸化物層33の一方面に形成した。具体的には、Arを導入した気圧0.4Paの真空雰囲気で、Ag合金ターゲット(三菱マテリアル社製、品番「No.317」)をスパッタリングした。 A metal layer 34 made of Ag alloy and having a thickness of 8 nm was formed on one side of the first inorganic oxide layer 33 in the thickness direction by sputtering. Specifically, an Ag alloy target (manufactured by Mitsubishi Materials Corporation, product number “No. 317”) was sputtered in a vacuum atmosphere of 0.4 Pa pressure into which Ar was introduced.
 ITOからなり、厚みが38nmである第2無機酸化物層35を、反応性スパッタリング法により、厚み方向における金属層34の一方面に形成した。第2無機酸化物層35の形成方法は、実施例1の非晶質透明導電層31の形成と同様である。但し、スパッタリングガスとしてArを用い、成膜室に導入されるArおよび酸素の合計導入量に対する酸素導入量の割合を3.8流量%に変更した。 A second inorganic oxide layer 35 made of ITO and having a thickness of 38 nm was formed on one side of the metal layer 34 in the thickness direction by a reactive sputtering method. The method for forming the second inorganic oxide layer 35 is the same as the method for forming the amorphous transparent conductive layer 31 of the first embodiment. However, Ar was used as the sputtering gas, and the ratio of the introduced amount of oxygen to the total introduced amount of Ar and oxygen introduced into the film formation chamber was changed to 3.8 flow rate %.
 透明導電層32における第1無機酸化物層33および第2無機酸化物層35は、いずれも、非晶質である。 Both the first inorganic oxide layer 33 and the second inorganic oxide layer 35 in the transparent conductive layer 32 are amorphous.
 また、比較例3では、非晶質透明導電層31を結晶質に転化させなかった。 Also, in Comparative Example 3, the amorphous transparent conductive layer 31 was not converted to crystalline.
<評価>
 各実施例および各比較例の透明導電性フィルム1について、下記の項目を評価した。
<Evaluation>
The following items were evaluated for the transparent conductive film 1 of each example and each comparative example.
(1)透明導電層のキャリア密度
 透明導電層のキャリア密度を、ホール効果測定システム(商品名「HL5500PC」,バイオラッド社製)を使用して測定した。
(1) Carrier Density of Transparent Conductive Layer The carrier density of the transparent conductive layer was measured using a Hall effect measurement system (trade name “HL5500PC” manufactured by Bio-Rad).
(2)1500nmにおける光に対する透明導電性フィルムの反射率
 波長1500nmの光に対する透明導電性フィルム1の反射率を、分光光度計U4100(日立製作所製)を用いて測定した。具体的には、厚み方向における透明導電性フィルム1の他方面に粘着層(日東電工社製)を貼り合わせ、厚み方向における粘着面の他方面にさらに黒アクリル板を貼り合わせて、波長1500nmの光に対する透明導電性フィルム1の反射率を測定した。
(2) Reflectance of Transparent Conductive Film to Light at 1500 nm The reflectance of Transparent Conductive Film 1 to light having a wavelength of 1500 nm was measured using a spectrophotometer U4100 (manufactured by Hitachi Ltd.). Specifically, an adhesive layer (manufactured by Nitto Denko Corporation) was attached to the other surface of the transparent conductive film 1 in the thickness direction, and a black acrylic plate was attached to the other surface of the adhesive surface in the thickness direction. The reflectance of the transparent conductive film 1 to light was measured.
(3)耐腐食性
 透明導電性フィルム1を10cm×10cmの寸法に切り出した。その後、透明導電性フィルム1を60℃、95%RHの高温高湿器に240時間投入した。その後、厚み方向における透明導電性フィルム1の一方面(結晶質透明導電層3の表面)の外観を観察した。具体的には、中央8cm×8cmの領域を目視で観察した。以下の基準に基づいて、耐腐食性を評価した。
(3) Corrosion resistance The transparent conductive film 1 was cut into a size of 10 cm x 10 cm. After that, the transparent conductive film 1 was placed in a high-temperature and high-humidity chamber at 60° C. and 95% RH for 240 hours. After that, the appearance of one side of the transparent conductive film 1 (the surface of the crystalline transparent conductive layer 3) in the thickness direction was observed. Specifically, a center area of 8 cm×8 cm was visually observed. Corrosion resistance was evaluated based on the following criteria.
○:腐食に起因する白色の点状の欠点が観察されない。つまり、欠点は、0個であった。
△:腐食に起因する白色の点状の欠点が、1個以上4個以下観察された。
×:腐食に起因する白色の点状の欠点が、5個以上観察された。
◯: No white point-like defect caused by corrosion is observed. In other words, there were 0 defects.
Δ: 1 or more and 4 or less white dot-like defects caused by corrosion were observed.
x: 5 or more white spot defects caused by corrosion were observed.
(4)透明導電層の表面抵抗
 透明導電層の表面抵抗を、JIS K7194(1994年)に準じて四端子法により測定した。
(4) Surface resistance of transparent conductive layer The surface resistance of the transparent conductive layer was measured by a four-probe method according to JIS K7194 (1994).
(5)透明導電層におけるKrの確認
 透明導電層におけるKrの存否を、次のようにして確認した。
(5) Confirmation of Kr in Transparent Conductive Layer The presence or absence of Kr in the transparent conductive layer was confirmed as follows.
 まず、走査型蛍光X線分析装置(商品名「ZSX PrimusIV」,リガク社製)を使用して、下記の測定条件にて蛍光X線分析測定を5回繰り返し、各走査角度の平均値を算出し、X線スペクトルを作成した。そして、作成されたX線スペクトルにおいて、実施例1から実施例4および比較例3では、走査角度28.2°近傍にピークが出ていることを確認した。 First, using a scanning fluorescent X-ray analyzer (trade name "ZSX PrimusIV", manufactured by Rigaku), the fluorescent X-ray analysis measurement was repeated 5 times under the following measurement conditions, and the average value of each scanning angle was calculated. and an X-ray spectrum was created. Then, it was confirmed that in the prepared X-ray spectra, in Examples 1 to 4 and Comparative Example 3, peaks appeared near the scanning angle of 28.2°.
 他方、比較例1および2では、上記したピークが出ていないことを確認した。 On the other hand, in Comparative Examples 1 and 2, it was confirmed that the above peak did not appear.
<測定条件>
 スペクトル;Kr-KA
 測定径:30mm
 雰囲気:真空
 ターゲット:Rh
 管電圧:50kV
 管電流:60mA
 1次フィルタ:Ni40
 走査角度(deg):27.0~29.5
 ステップ(deg):0.020
 速度(deg/分):0.75
 アッテネータ:1/1
 スリット:S2
 分光結晶:LiF(200)
 検出器:SC
 PHA:100~300
<Measurement conditions>
Spectrum; Kr-KA
Measurement diameter: 30mm
Atmosphere: Vacuum Target: Rh
Tube voltage: 50kV
Tube current: 60mA
Primary filter: Ni40
Scanning angle (deg): 27.0 to 29.5
Step (deg): 0.020
Speed (deg/min): 0.75
Attenuator: 1/1
Slit: S2
Analysis crystal: LiF (200)
Detector: SC
PHA: 100-300
(6)透明導電層におけるArの確認
 実施例1から実施例4および比較例3のそれぞれにおける透明導電層がいずれもArを含有しないこと、および、比較例1および比較例2の透明導電層が、いずれもArを含有することを、ラザフォード後方散乱分光法(RBS)によって、確認した。
(6) Confirmation of Ar in Transparent Conductive Layer The transparent conductive layers in each of Examples 1 to 4 and Comparative Example 3 do not contain Ar, and the transparent conductive layers in Comparative Examples 1 and 2 do not contain Ar. , were confirmed to contain Ar by Rutherford backscattering spectroscopy (RBS).
 具体的には、In+Sn(ラザフォード後方散乱分光法では、InとSnを分離しての測定が困難であるため、2元素の合算として評価した)、O、Arの4元素を検出元素として測定を行い、Arの存在の有無を確認した。使用装置および測定条件は、下記のとおりである。 Specifically, four elements, In + Sn (in Rutherford backscattering spectroscopy, it is difficult to separate In and Sn, so the sum of the two elements was evaluated), O, and Ar were measured as elements to be detected. to confirm the presence or absence of Ar. The equipment used and the measurement conditions are as follows.
<使用装置>
 Pelletron 3SDH(National Electrostatics Corporation製)
<Equipment used>
Pelletron 3SDH (manufactured by National Electrostatics Corporation)
<測定条件>
 入射イオン:4He++
 入射エネルギー:2300keV
 入射角:0deg
 散乱角:160deg
 試料電流:6nA
 ビーム径:2mmφ
 面内回転:無
 照射量:75μC
<Measurement conditions>
Incident ions: 4He++
Incident energy: 2300 keV
Incident angle: 0deg
Scattering angle: 160deg
Sample current: 6nA
Beam diameter: 2mmφ
In-plane rotation: None Irradiation: 75 μC
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an illustration and should not be construed as limiting. Variations of the invention that are obvious to those skilled in the art are included in the following claims.
 透明導電性フィルムは、光学用の物品に用いられる。 The transparent conductive film is used for optical articles.
1 透明導電性フィルム
2 基材
3 結晶質透明導電層
1 transparent conductive film 2 substrate 3 crystalline transparent conductive layer

Claims (2)

  1.  基材と、結晶質透明導電層とを、厚み方向の一方側に向かって順に備え、
     前記結晶質透明導電層は、アルゴンより原子番号の大きい希ガスを含有し、
     前記結晶質透明導電層のキャリア密度が、13.0×1020(/cm)以上である、透明導電性フィルム。
    A substrate and a crystalline transparent conductive layer are provided in order toward one side in the thickness direction,
    the crystalline transparent conductive layer contains a rare gas having an atomic number greater than that of argon,
    A transparent conductive film, wherein the crystalline transparent conductive layer has a carrier density of 13.0×10 20 (/cm 3 ) or more.
  2.  前記結晶質透明導電層は、無機酸化物層である、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the crystalline transparent conductive layer is an inorganic oxide layer.
PCT/JP2022/034347 2021-09-17 2022-09-14 Transparent electroconductive film WO2023042844A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023548478A JPWO2023042844A1 (en) 2021-09-17 2022-09-14
CN202280020970.0A CN116982123A (en) 2021-09-17 2022-09-14 Transparent conductive film
KR1020237027044A KR20240054221A (en) 2021-09-17 2022-09-14 transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-152345 2021-09-17
JP2021152345 2021-09-17

Publications (1)

Publication Number Publication Date
WO2023042844A1 true WO2023042844A1 (en) 2023-03-23

Family

ID=85602906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034347 WO2023042844A1 (en) 2021-09-17 2022-09-14 Transparent electroconductive film

Country Status (4)

Country Link
JP (1) JPWO2023042844A1 (en)
KR (1) KR20240054221A (en)
CN (1) CN116982123A (en)
WO (1) WO2023042844A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334924A (en) * 1992-05-29 1993-12-17 Tonen Corp Manufacture of transparent conductive film
WO2017057556A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Light-transmissive conductive film and manufacturing method for annealed light-transmissive conductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05334924A (en) * 1992-05-29 1993-12-17 Tonen Corp Manufacture of transparent conductive film
WO2017057556A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Light-transmissive conductive film and manufacturing method for annealed light-transmissive conductive film

Also Published As

Publication number Publication date
KR20240054221A (en) 2024-04-25
JPWO2023042844A1 (en) 2023-03-23
CN116982123A (en) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2021187588A1 (en) Transparent electroconductive layer and transparent electroconductive sheet
JP2024032742A (en) Light-transmissive electroconductive layer and light-transmissive electroconductive film
WO2023042844A1 (en) Transparent electroconductive film
JP7372995B2 (en) Method for producing a light-transparent conductive layer laminate and light-transparent conductive layer laminate
WO2021187575A1 (en) Light-transmitting conductive film and transparent conductive film
WO2023042843A1 (en) Transparent conductive film
WO2023042846A1 (en) Transparent electroconductive layer, transparent electroconductive film, and article
JP7389940B2 (en) Transparent conductive layers, transparent conductive films and articles
WO2023013734A1 (en) Laminate
WO2021187577A1 (en) Transparent conductive film
WO2021187576A1 (en) Transparent conductive film
WO2023042845A1 (en) Transparent electroconductive layer and transparent electroconductive film
WO2021187574A1 (en) Production method for transparent conductive film
KR20220155280A (en) Light-transmitting conductive film and transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869991

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280020970.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023548478

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE