WO2023042667A1 - Treatment agent for water-repellent fiber and use thereof - Google Patents

Treatment agent for water-repellent fiber and use thereof Download PDF

Info

Publication number
WO2023042667A1
WO2023042667A1 PCT/JP2022/032898 JP2022032898W WO2023042667A1 WO 2023042667 A1 WO2023042667 A1 WO 2023042667A1 JP 2022032898 W JP2022032898 W JP 2022032898W WO 2023042667 A1 WO2023042667 A1 WO 2023042667A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
water
treatment agent
repellent
phosphate
Prior art date
Application number
PCT/JP2022/032898
Other languages
French (fr)
Japanese (ja)
Inventor
幸男 酒井
裕志 小南
充宏 多田
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021197423A external-priority patent/JP7025594B1/en
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Publication of WO2023042667A1 publication Critical patent/WO2023042667A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof

Definitions

  • the present invention relates to a treatment agent for water-repellent fibers and its use.
  • absorbent articles such as sanitary products such as disposable diapers and synthetic napkins are made of various nonwoven fabrics mainly composed of fibers containing at least one thermoplastic resin (polyolefin fibers, polyester fibers, etc.). It has a three-layer structure consisting of a top sheet to which water repellency is imparted, a back sheet to which water repellency is imparted, and a material such as flocculent pulp or high-molecular absorber disposed between the top sheet and the back sheet.
  • the backsheet is required to have strong water repellency in order to prevent leakage of urine and blood.
  • the formation of the nonwoven fabric deteriorates when static electricity is generated, so antistatic properties (antistatic properties) are required, but water-repellent treated fibers tend to generate static electricity and are repellent. Both aqueous and antistatic properties are required.
  • the inventors of the present invention have found that a treatment agent for water-repellent fibers containing a specific amount of a specific phosphoric acid compound and exhibiting a constant acid value can solve the problems. I pinpointed it. That is, the treatment agent for water-repellent fibers of the present invention is represented by the compound (A) represented by the following general formula (1), the compound (B) represented by the following general formula (2), and the following general formula (3).
  • a treatment agent for water-repellent fibers comprising a compound (C), at least one selected from the following compound (D) and an inorganic phosphate (IN), and essentially comprising the compound (A) and the compound (B)
  • the non-volatile acid value of the water-repellent fiber treatment agent is 0.5 to 680 (KOHmg / g)
  • the compound (A), the compound (B), the compound (C), the compound (D ) and the ratio of the P-nuclear NMR integral value (A) attributed to the compound (A) to the total P-nuclear NMR integral value (A + B + C + D + IN) attributed to each of the inorganic phosphate (IN) [A / (A + B + C + D + IN )] is 20 to 100%.
  • R 1 is a hydrocarbon group having 3 to 5 carbon atoms.
  • R 1 may be linear or branched.
  • AO is an oxyalkylene group having 2 to 4 carbon atoms.
  • m is an integer of 0 to 15.
  • M 1 and M 2 are each independently a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt.
  • R 2 and R 3 are hydrocarbon groups having 3 to 5 carbon atoms.
  • R 2 and R 3 may be linear or branched.
  • AO is a hydrocarbon group having 2 to 4 carbon atoms.
  • m is an integer of 0 to 15.
  • M 1 is a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt, and (AO) m is present in the molecule If there are two, they may be the same or different.
  • R 4 is a hydrocarbon group having 3 to 5 carbon atoms.
  • R 4 may be linear or branched.
  • AO is an oxyalkylene group having 2 to 4 carbon atoms.
  • m is an integer of 0 to 15.
  • M 1 and M 2 are each independently a hydrogen atom, an alkali metal, ammonium, phosphonium, an organic amine salt or a quaternary ammonium salt, Q is M 2 or R 5 (OA) m
  • R 5 is a hydrocarbon group having 3 to 5 carbon atoms, R 5 may be linear or branched
  • Y is 1 or 2, molecule When there are two or more M 2 or (AO) m within, they may be the same or different.
  • Compound (D) at least one selected from tripentyl phosphate, tributyl phosphate, tripropyl phosphate and tri(polyoxyalkylene monoalkyl ether) phosphate
  • the water-repellent fiber treatment agent has a non-volatile moisture absorption rate of 10 to 75%. It is preferable to further contain a nonionic surfactant (E). It is preferable that the ratio (A/B) between the P-nuclear NMR integral value attributed to the compound (A) and the P-nuclear NMR integral value attributed to the compound (B) is 1-50.
  • the water-repellent fiber of the present invention is obtained by applying the above water-repellent fiber treatment agent to the raw material water-repellent fiber.
  • the treatment agent for water-repellent fibers of the present invention is excellent in durable antistatic properties and water repellency at high temperature and high humidity.
  • the treatment agent for water-repellent fibers of the present invention contains at least one selected from the compound (A), the compound (B), the compound (C), the compound (D) and inorganic phosphate (IN). Details will be described below.
  • the compound (A) is a component that is essential in the water-repellent fiber treatment agent of the present invention, and is a component that contributes to water repellency and antistatic properties.
  • the compound (A) is represented by the above general formula (1).
  • R 1 is a hydrocarbon group having 3-5 carbon atoms.
  • R 1 may be linear or branched.
  • Hydrocarbon groups include alkyl groups.
  • R 1 is a hydrocarbon group having 4 carbon atoms.
  • AO is an oxyalkylene group having 2 to 4 carbon atoms.
  • the repeating number m of the oxyalkylene unit is an integer of 0 to 15, preferably 0 to 10, more preferably 0 to 3, and when m is 0 and does not contain a polyoxyalkylene group, at high temperature and high humidity It is particularly preferred from the viewpoint of durable antistatic properties and water repellency.
  • (AO)m is preferably a polyoxyalkylene group having 50 mol % or more of oxyethylene units as oxyalkylene units.
  • M 1 is a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt.
  • alkali metals include potassium, sodium, lithium, etc. Potassium or sodium is preferable from the viewpoint of water repellency and antistatic properties.
  • organic amine salts include alkanolamine salts such as ethanolamine salts, diethanolamine salts and triethanolamine salts, and triethylamine salts.
  • M2 is the same as M1 .
  • the compound (A) include, but are not limited to, monobutyl phosphate monopotassium salt, monobutyl phosphate dipotassium salt, monobutyl phosphate monosodium salt, monobutyl phosphate disodium salt, polyoxyethylene 3 mol added monobutyl Phosphate monopotassium salt, polyoxyethylene 3-mol added monobutyl phosphate monopotassium salt, and the like.
  • monobutyl phosphate monopotassium salt, monobutyl phosphate dipotassium salt, monobutyl phosphate monosodium salt and monobutyl phosphate disodium salt are preferable.
  • Compound (A) can be detected by a 31 P-NMR method. About 30 mg of the non-volatile content of the measurement sample was weighed into an NMR sample tube with a diameter of 5 mm, and about 0.5 ml of heavy water (D 2 O) or deuterated chloroform (CDCl 3 ) as a deuterated solvent was added and dissolved to obtain 31 P-. It was measured with an NMR measurement device (BRUKER AVANCE400, 162 MHz and JEOL JNM-ECZ400R, 162 MHz). A peak of elemental phosphorus originating from compound (A) is detected at +4 to -1 ppm.
  • D 2 O heavy water
  • CDCl 3 deuterated chloroform
  • the non-volatile matter in the present invention refers to the absolute dry content when the treating agent is heat-treated at 105° C. to remove the solvent and the like and reaches a constant weight.
  • the compound (B) is an essential component in the water-repellent fiber treatment agent of the present invention, and has the ability to enhance the water repellency and antistatic effects when used in combination with the compound (A).
  • Compound (B) has water repellency.
  • the compound (B) is represented by the above general formula (2).
  • R 2 and R 3 are hydrocarbon groups having 3 to 5 carbon atoms.
  • R2 and R3 may be linear or branched.
  • Hydrocarbon groups include alkyl groups. Most preferably, R 2 and R 3 are hydrocarbon groups having 4 carbon atoms.
  • AO is an oxyalkylene group having 2 to 4 carbon atoms.
  • the repeating number m of the oxyalkylene unit is an integer of 0 to 15, preferably 0 to 10, more preferably 0 to 3, and when m is 0 and does not contain a polyoxyalkylene group, water repellency and antistatic From the point of view of sexuality, it is particularly preferred.
  • (AO)m is preferably a polyoxyalkylene group having 50 mol % or more of oxyethylene units as oxyalkylene units. When there are two (AO) m in the molecule, they may be the same or different.
  • M 1 is a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt.
  • alkali metals include potassium, sodium, lithium, etc. Potassium or sodium is preferable from the viewpoint of water repellency and antistatic properties.
  • organic amine salts include alkanolamine salts such as ethanolamine salts, diethanolamine salts and triethanolamine salts, and triethylamine salts.
  • compound (B) examples include, but are not limited to, dibutyl phosphate potassium salt, dibutyl phosphate sodium salt, dibutyl phosphate triethanolamine salt, and the like.
  • Compound (B) can be detected by the method of 31 P-NMR, like compound (A). A peak of elemental phosphorus derived from compound (B) is detected at +4 to -1 ppm. Phosphorus element peaks derived from compound (A), compound (B), and inorganic phosphoric acid are all detected at +4 to -1 ppm. ) is determined in the order of
  • the compound (C) is a component optionally contained in the treatment agent for water-repellent fibers of the present invention. It is preferable that the treatment agent for water-repellent fibers of the present invention contains the compound (C) because the antistatic property is improved.
  • the compound (C) is represented by the above general formula (3).
  • R 4 and R 5 are hydrocarbon groups having 3-5 carbon atoms.
  • R 4 and R 5 may be linear or branched.
  • AO is an oxyalkylene group having 2 to 4 carbon atoms
  • m is an integer of 0 to 15, preferably 0 to 10, more preferably 0 to 3, when m is 0 and does not contain a polyoxyalkylene group is particularly preferred from the viewpoint of water repellency.
  • M 1 and M 2 are each independently a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt.
  • Q is M2 or R5O (AO) m .
  • Y is 1 or 2; When there are two M 2 and (AO) m in the molecule, they may be the same or different.
  • the compound (C) are not particularly limited, but include pyrobutyl phosphate potassium salt, pyrobutyl phosphate sodium salt, pyrobutyl phosphate triethanolamine salt, and the like. Among them, pyrobutyl phosphate sodium salt is preferred.
  • Compound (C) can be detected as follows. [ 31 P-NMR method] About 30 mg of the non-volatile content of the measurement sample was weighed into an NMR sample tube with a diameter of 5 mm, and about 0.5 ml of heavy water (D 2 O) or deuterated chloroform (CDCl 3 ) as a deuterated solvent was added and dissolved to obtain 31 P-. It was measured with an NMR measurement device (BRUKER AVANCE400, 162 MHz and JEOL JNM-ECZ400R, 162 MHz). A peak of phosphorus element derived from compound (C) is detected at ⁇ 5 to ⁇ 15 ppm.
  • Compound (D) is a component optionally contained in the treatment agent for water-repellent fibers of the present invention.
  • Compound (D) is at least one selected from tripentyl phosphate, tributyl phosphate, tripropyl phosphate and tri(polyoxyalkylene monoalkyl ether) phosphate.
  • Tri(polyoxyalkylene monoalkyl ether) phosphate has an alkyl group having 3 to 5 carbon atoms, the oxyalkylene group has 2 to 4 carbon atoms, and the number of repeating oxyalkylene units is 0 to 15. is an integer.
  • the treatment agent for water-repellent fibers of the present invention preferably contains a triphosphate compound (D) because the water repellency is improved.
  • triphosphate compounds include tributyl phosphate, tripropyl phosphate, tri(monoethylene glycol monobutyl ether) phosphate, and the like. Among them, tributyl phosphate is preferred.
  • Inorganic phosphate (IN) is a component optionally contained in the treatment agent for water-repellent fibers of the present invention.
  • the inorganic phosphate (IN) is at least one selected from phosphoric acid, dihydrogen metal phosphate, hydrogen dimetal phosphate and trimetal phosphate.
  • Specific examples of the monometallic dihydrogen phosphate include monopotassium dihydrogen phosphate and monosodium dihydrogen phosphate.
  • Examples of the dimetallic hydrogen phosphate include dipotassium hydrogen phosphate and phosphoric acid. Examples thereof include disodium hydrogen salts, and trimetallic phosphates include tripotassium phosphate, trisodium phosphate, and the like.
  • the treatment agent for water-repellent fibers of the present invention preferably contains an inorganic phosphate (IN) because the water-repellency is improved.
  • Nonionic surfactant (E) The treatment agent for water-repellent fibers of the present invention preferably contains a nonionic surfactant (E) because it can assist emulsification of the compounds (A) to (D) and improve antistatic properties.
  • the nonionic surfactant (E) include an ester compound (E1) having a structure in which a polyhydric alcohol and a fatty acid are ester-bonded and having one or more hydroxyl groups in the molecule, a polyoxyalkylene castor oil ether (E2), Polyoxyalkylene hydrogenated castor oil ether (E3), polyoxyalkylene aliphatic alcohol ether (E4), PEG ester (E5) and the like.
  • the ester compound (E1) is a compound having a structure in which a polyhydric alcohol and a fatty acid are ester-bonded and has one or more hydroxyl groups in the molecule. It is a different compound from the later-described ester compound (F1-2) in that it has one or more hydroxyl groups.
  • the ester compound (E1) having a structure in which a polyhydric alcohol and a fatty acid are ester-bonded and has one or more hydroxyl groups in the molecule is not particularly limited, but sorbitan monoester (sorbitan monostearate, sorbitan monooleate, sorbitan monopalmitate, sorbitan monolaurate), sorbitan diesters (sorbitan distearate, sorbitan dioleate, sorbitan dipalmitate, sorbitan dilaurate), sorbitan triesters (sorbitan tristearate, sorbitan trioleate) , Sorbitan Tripalmitate, Sorbitan Trilaurate), Glycerin Monoester (Glycerin Monostearate, Glycerin Monooleate), Glycerin Diesters (Glycerin Distearate, Glycerin Dioleate, Glycerin Dipalmitate, Glycerin Dilaurate), Castor oils, hydrogen
  • the polyoxyalkylene castor oil ether (E2) is a compound having a structure in which alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide are added to castor oil.
  • Polyoxyalkylene castor oil ethers (E2) include, but are not limited to, polyoxyethylene castor oil ethers (polyoxyethylene (1 to 25 mol) castor oil ethers).
  • Polyoxyalkylene hydrogenated castor oil ether is a compound having a structure in which alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide are added to hydrogenated castor oil.
  • the polyoxyethylene hydrogenated castor oil ether (E3) is not particularly limited, but includes polyoxyethylene hydrogenated castor oil ether (polyoxyethylene (1 to 25 mol) hydrogenated castor oil ether).
  • the polyoxyalkylene aliphatic alcohol ether (E4) is a compound having a structure in which an alkylene oxide such as ethylene oxide, propylene oxide or butylene oxide is added to an aliphatic monohydric alcohol and/or an aliphatic polyhydric alcohol.
  • polyoxyalkylene aliphatic alcohol ethers examples include octyl alcohol, 2-ethylhexyl alcohol, decyl alcohol, lauryl alcohol, tridecyl alcohol, myristyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, glycerin, sorbitol, sorbitan, tri Alkylene oxide adducts of fatty alcohols such as methylolpropane can be mentioned.
  • the number of moles of alkylene oxide to be added is preferably 1 to 100 mol, more preferably 2 to 70 mol, and even more preferably 3 to 50 mol.
  • the ratio of ethylene oxide to the total alkylene oxide is preferably 20 mol % or more, more preferably 30 mol % or more, and even more preferably 40 mol % or more.
  • the polyoxyalkylene aliphatic alcohol ether (E4) is not particularly limited, but polyoxyalkylene aliphatic alcohol ether (polyoxyethylene (1 to 20 mol) stearyl ether, polyoxyethylene (1 to 20 mol ) Oleyl ether, polyoxyethylene (1 to 20 mol) palmityl ether, polyoxyethylene (1 to 20 mol) lauryl ether, polyoxyethylene (1 to 20 mol) octyl ether, polyoxyethylene (1 to 20 mol) 2-ethylhexyl ether, polyoxyethylene (1-20 mol) hexyl ether, polyoxyethylene (1-20 mol) butyl ether), polyoxyalkylene fatty acid ester (polyoxyethylene (1-20 mol) stearyl ester, polyoxyethylene (1 to 20 mol) oleyl ester, polyoxyethylene (1 to 20 mol) palmityl ester, polyoxyethylene (1 to 20 mol) lauryl ester).
  • PEG means polyethylene glycol, and means an ester of polyethylene glycol having a structure in which a hydroxyl group of PEG and a monovalent fatty acid are esterified (hereinafter referred to as PEG ester).
  • PEG ester an ester of polyethylene glycol having a structure in which a hydroxyl group of PEG and a monovalent fatty acid are esterified
  • the number of carbon atoms in the monovalent fatty acid is not particularly limited, it is preferably 4-24, more preferably 10-22, still more preferably 12-20.
  • Fatty acids may be saturated or unsaturated.
  • the weight average molecular weight of PEG is not particularly limited, but is preferably 200-600.
  • Compound (F) The compound (F), when used in combination with the nonionic surfactant (E) and the compounds (A) to (D), has the effect of imparting more water repellency to the water-repellent fiber than before imparting it.
  • Compound (F) is selected from (poly)oxyalkylene group and hydroxyl group-free ester compound (F1), alcohol having 6 to 22 carbon atoms (F2) and hydrocarbon compound having 7 to 70 carbon atoms (F3). is at least one
  • the ester compound (F1) is a compound containing neither a (poly)oxyalkylene group nor a hydroxyl group.
  • the ester compound (F1) containing no (poly)oxyalkylene group and hydroxyl group is an ester of a monohydric alcohol having a hydrocarbon group of 6 to 22 carbon atoms and a fatty acid having a hydrocarbon group of 6 to 22 carbon atoms.
  • the ester compound (F1-2) has a structure in which all the hydroxyl groups of the polyhydric alcohol are ester-bonded to fatty acids, and is a so-called fully blocked ester.
  • ester compound (F1-1) of a monohydric alcohol having a hydrocarbon group of 6 to 22 carbon atoms and a fatty acid having a hydrocarbon group of 6 to 22 carbon atoms examples include stearyl stearate, 2-ethylhexyl stearate, and oleyl. Stearate, lauryl stearate, oleyl stearate, oleyl stearate and the like.
  • Ester compounds (F1-2) of polyhydric alcohols and fatty acids include glycerin tristearate, pentaerythritol tetracaprylate, pentaerythritol tetralaurate, coconut oil, sunflower oil, palm oil, rapeseed oil, fish oil, beef tallow, and the like. mentioned.
  • Alcohol having 6 to 22 carbon atoms examples include hexanol, heptanol, octanol, nonaol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, straight-chain alkanols such as nonadecanol, eicosanol, heneicosanol, docosanol; branched alkanols such as isotridecanol and 3,5,5-trimethylhexanol; hexenol, heptenol, octenol, nonenol, decenol, undecenol, dodecenol, tridecenol, tetradecen
  • Hydrocarbon compounds having 7 to 70 carbon atoms include paraffinic hydrocarbons such as heptane, octane, nonane, decane and dodecane, naphthenic hydrocarbons such as decalin, aromatic hydrocarbons such as benzene and naphthalene, and separated from petroleum. Refined spindle oil, kerosene oil, liquid paraffin. These hydrocarbon compounds can be used singly or as a mixture of two or more.
  • the treatment agent for water-repellent fibers of the present invention contains, as other components, a fatty acid, a fatty acid metal salt, an alkanesulfonate salt other than the compounds (A) to (D), a dialkylsulfosuccinate salt, and an alkyl ether carboxylate. , alkane sulfate salts, alkyl ether sulfate salts, anionic surfactants, and the like. It can also contain ethylene glycol, 1,3 propanediol, alkylenediol, polyoxyalkylene ether, glycerin, polyglycerin. In addition, if necessary, appropriate antiseptics, rust inhibitors and antifoaming agents may be added.
  • the non-volatile acid value of the water-repellent fiber treatment agent of the present invention is 0.5-680. If the acid number is less than 0.5, the fibers will turn yellow. If the acid value exceeds 680, the antistatic properties will be insufficient. From the viewpoint of water repellency and antistatic properties, the lower limit of the acid value of the non-volatile content of the water-repellent fiber treatment agent of the present invention is preferably 2.0, more preferably 4.0, and even more preferably 8.0. The upper limit of the acid value of the nonvolatile content of the water-repellent fiber treatment agent of the present invention is preferably 300, more preferably 250, and even more preferably 200, from the viewpoint of water repellency and antistatic properties.
  • [A/(A+B+C+D+IN)] is the P nuclear NMR integral value attributed to the compound (A) represented by the general formula (1), the P attributed to the compound (B) represented by the general formula (2) Nuclear NMR integral value, P-nuclear NMR integral value attributed to the compound (C) represented by the general formula (3), P-nuclear NMR integral value attributed to the compound (D) and the inorganic phosphate (IN)
  • the ratio of the P-nuclear NMR integral value (A) attributed to the compound (A) represented by the following general formula (1) to the total (A + B + C + D + IN) hereinafter referred to as the total P-nuclear NMR integral value (A + B + C + D + IN) show.
  • [A/(A+B+C+D+IN)] is 20 to 100%, preferably 22 to 98%, more preferably 25 to 95%, even more preferably 30 to 92%. If it is less than 20%, water repellency and durable antistatic properties are insufficient.
  • [B/(A+B+C+D+IN)] indicates the ratio of the P-nuclear NMR integral value (B) attributed to the compound (B) to the total P-nuclear NMR integral value (A+B+C+D+IN).
  • [B/(A+B+C+D+IN)] is preferably 1 to 65%, more preferably 3 to 50%, even more preferably 5 to 40%.
  • [C/(A+B+C+D+IN)] indicates the ratio of the P-nuclear NMR integral value (C) attributed to the compound (C) to the total P-nuclear NMR integral value (A+B+C+D+IN).
  • the lower limit of [C/(A+B+C+D+IN)] is preferably 0%, more preferably 4%, and even more preferably 8%, from the viewpoint of achieving the effect of the present application.
  • the upper limit of [C/(A+B+C+D+IN)] is preferably 40%, more preferably 30%, and even more preferably 20%, from the viewpoint of achieving the effects of the present application.
  • [D/(A+B+C+D+IN)] indicates the ratio of the P-nuclear NMR integral value (D) attributed to the compound (D) to the total P-nuclear NMR integral value (A+B+C+D+IN).
  • [D/(A+B+C+D+IN)] is preferably 0 to 10%, more preferably 1 to 5%, and even more preferably 2 to 4%, from the viewpoint of achieving the effect of the present application.
  • [IN/(A+B+C+D+IN)] indicates the ratio of the P-nuclear NMR integral value (D) attributed to the inorganic phosphate (IN) to the total P-nuclear NMR integral value (A+B+C+D+IN). 0 to 20% is preferred, 0.5 to 18% is more preferred, and 1 to 16% is even more preferred.
  • the ratio (A/B) between the P-nuclear NMR integral value attributed to the compound (A) and the P-nuclear NMR integral value attributed to the compound (B) is preferably 1 to 50 from the viewpoint of achieving the effect of the present application. 2 to 40 are more preferred, and 4 to 20 are even more preferred.
  • the non-volatile moisture absorption rate of the treatment agent for water-repellent fibers of the present invention is preferably 5 to 75%, more preferably 10 to 75%, and further preferably 15 to 70%, from the viewpoint of durable antistatic properties at high temperatures. Preferably, 20-60% is particularly preferred. Moisture absorption refers to the value obtained under the conditions and methods described in Examples.
  • the total weight ratio of the compound (A), the compound (B), the compound (C), the compound (D) and the inorganic phosphate (IN) to the non-volatile content of the water-repellent fiber treatment agent of the present invention is preferably in the order of 50% by weight, 60% by weight, 70% by weight, and 80% by weight, from the viewpoint of excellent water repellency and antistatic properties even with a small amount of oil agent adhered.
  • the total weight ratio of the compound (A), the compound (B), the compound (C), the compound (D) and the inorganic phosphate (IN) to the non-volatile content of the water-repellent fiber treatment agent of the present invention is preferably 100% by weight, 98% by weight, 95% by weight, and 90% by weight in this order from the viewpoint of excellent water repellency and antistatic properties even with a small amount of oil agent adhered.
  • the low oil adhesion amount referred to here is preferably 0.03 to 0.10%, more preferably 0.03 to 0.09% by weight, more preferably 0.06 to 0.06% by weight of the non-volatile content of the treatment agent to the fiber. 0.08% by weight is more preferred.
  • the amount of oil adhered to the short fibers of the short fiber treatment agent is about 0.11 to 0.3% (hereinafter referred to as general oil adhered amount).
  • the water-repellent fiber treatment agent of the present invention contains the above compound (E) or compound (F), from the viewpoint of excellent water repellency and antistatic properties with a general oil agent adhesion amount, the above compound (A),
  • the lower limits of the total weight ratio of the compound (B), the compound (C), the compound (D), and the inorganic phosphate (IN) are 8% by weight, 10% by weight, 15% by weight, and 20% by weight. preferred in order.
  • the total weight ratio of the compound (A), the compound (B), the compound (C), the compound (D) and the inorganic phosphate (IN) to the non-volatile content of the water-repellent fiber treatment agent of the present invention is preferably 100% by weight, 98% by weight, 95% by weight, and 90% by weight in this order from the viewpoint of excellent water repellency and antistatic properties with a general oil agent adhesion amount.
  • the lower limit of the weight ratio of the compound (E) to the non-volatile matter of the water-repellent fiber treatment agent of the present invention is a general oil agent
  • the amount is preferably 5% by weight, 10% by weight, and 20% by weight, in that order.
  • the upper limit of the weight ratio of the compound (E) to the non-volatile content of the treatment agent for water-repellent fibers of the present invention is a general oil agent. From the standpoint of excellent water repellency and antistatic properties, the preferred order is 92% by weight, 82% by weight, 72% by weight, 50% by weight, 40% by weight, and 30% by weight.
  • the lower limit of the weight ratio of the compound (F) to the non-volatile matter of the water-repellent fiber treatment agent of the present invention is a general oil agent
  • the amount is preferably 10% by weight, 20% by weight, and 30% by weight, in that order.
  • the upper limit of the weight ratio of the compound (F) to the non-volatile matter of the treatment agent for water-repellent fibers of the present invention is a general oil agent. From the viewpoint of excellent water repellency and antistatic properties, the amount is preferably 85% by weight, 75% by weight, and 65% by weight, in that order.
  • the water-repellent fiber treatment agent of the present invention may contain polyorganosiloxane, but from the viewpoint of water repellency and antistatic properties, the content is less than 20% by weight, 10% by weight or less, and 5% by weight. It is preferable in the order of weight % or less.
  • the water-repellent fiber of the present invention is a water-repellent fiber composed of a synthetic fiber for nonwoven fabric production (fiber main body) and the above water-repellent fiber treatment agent attached thereto, and is generally cut into a predetermined length. short fibers.
  • the treatment agent for water-repellent fibers for water-repellent fibers means that imparting a treatment agent to synthetic fibers for manufacturing nonwoven fabrics (fiber main body) results in imparting a water-repellent function to the fibers.
  • the non-volatile content adhesion rate of the water-repellent fiber treatment agent is preferably 0.03 to 2% by weight, and 0.1 to 1% by weight, relative to the water-repellent fiber. More preferred.
  • Synthetic fibers (fiber main body) for nonwoven fabric production include, for example, polyolefin fibers, polyester fibers, nylon fibers, vinyl chloride fibers, composite fibers made of two or more types of thermoplastic resins, and the like.
  • resin/polyolefin resin for example, high-density polyethylene/polypropylene, linear high-density polyethylene/polypropylene, low-density polyethylene/polypropylene, binary or terpolymer of propylene and other ⁇ -olefins coalesced/polypropylene, linear high-density polyethylene/high-density polyethylene, low-density polyethylene/high-density polyethylene, and the like.
  • polyolefin resin/polyester resin examples include polypropylene/polyethylene terephthalate, high density polyethylene/polyethylene terephthalate, linear high density polyethylene/polyethylene terephthalate, and low density polyethylene/polyethylene terephthalate.
  • polyester resin/polyester resin for example, copolymer polyester/polyethylene terephthalate can be used.
  • Further examples include fibers made of polyamide resin/polyester resin, polyolefin resin/polyamide resin, and the like.
  • polyolefin fibers for manufacturing nonwoven fabrics polyolefin fibers and composite fibers containing polyolefin fibers
  • polyester fibers for manufacturing nonwoven fabrics polyester fibers
  • the treatment agent for water-repellent fibers of the present invention is suitable for hydrophobic synthetic fibers such as composite fibers including polyester fibers), and the treatment agent for water-repellent fibers of the present invention is suitable for polyolefin fibers for manufacturing nonwoven fabrics. be.
  • the cross-sectional structure of the fiber can be exemplified by a sheath-core type, parallel type, eccentric sheath-core type, multi-layer type, radial type, or sea-island type.
  • a core type or side-by-side type is preferred.
  • the cross-sectional shape can be circular or irregular. In the case of an irregular shape, for example, any shape such as a flat shape, a polygonal shape such as a triangle to an octagon, a T shape, a hollow shape, and a multi-leaf shape can be used.
  • the water-repellent fiber treatment agent of the present invention may be applied directly to the fiber body without dilution or the like. It may be applied to the fiber body as an emulsion.
  • the step of attaching the water-repellent fiber treatment agent to the fiber body may be any of a spinning step, a drawing step, a crimping step, and the like.
  • the means for applying the water-repellent fiber treatment agent of the present invention to the fiber body is not particularly limited, and means such as roller lubrication, nozzle spray lubrication, and dip lubrication may be used.
  • a method that can more uniformly and efficiently obtain the desired adhesion amount may be adopted in accordance with the manufacturing process and characteristics of the fiber.
  • As a drying method a method of drying with hot air and infrared rays, a method of drying by contact with a heat source, and the like may be used.
  • Method for producing nonwoven fabric A known method can be adopted as the method for producing the nonwoven fabric without any particular limitation.
  • Short fibers and long fibers can be used as raw material fibers.
  • Methods for forming a web using staple fibers as raw materials include dry methods such as a card method and an airlaid method, and wet methods such as a papermaking method.
  • Examples of the method of forming a web using long fibers as raw materials include a spunbond method, a melt blow method, a flash spinning method, and the like.
  • the interfiber bonding method includes a chemical bond method, a thermal bond method, a needle punch method, a spunlace method, a stitch bond method, and the like.
  • the method for producing the nonwoven fabric of the present invention preferably includes a step of passing the water-repellent fibers (for example, short fibers) of the present invention through a carding machine or the like to prepare a fibrous web, and heat-treating the obtained fibrous web. That is, the treatment agent for water-repellent fibers of the present invention is particularly suitable for use in the production of nonwoven fabrics, when the process of heat-treating a fiber web is included. Examples of the method of heat-treating and bonding the fiber web include heat-sealing methods such as heat-sealing using hot rolls or ultrasonic waves, heat-sealing using heated air, and heat-sealing point bonding.
  • heat-sealing methods such as heat-sealing using hot rolls or ultrasonic waves, heat-sealing using heated air, and heat-sealing point bonding.
  • heat-treating and joining fiber webs in the case of sheath-core composite fibers in which a high-melting resin is used for the core and a low-melting resin is used for the sheath, heat treatment is performed near the melting point of the low-melting resin. , the fiber intersections can be easily thermally bonded.
  • a method for producing a nonwoven fabric a method in which short fibers to which a water-repellent fiber treatment agent is applied is passed through a carding machine or the like to form a web, which is then heat-treated as described above to join and integrate, pulp or the like is combined by an airlaid method.
  • a method of blending with the water-repellent fibers (short fibers) of the present invention at the time of lamination, heat-treating them as described above, and bonding them may also be used.
  • the water-repellent fiber treatment agent of the present invention is attached to a fiber molded body obtained by a spunbond method, a melt blow method, a flash spinning method, etc., and then heat-treated with a heated roll or heated air, etc.
  • a nonwoven fabric can be produced by attaching the treatment agent for water-repellent fibers of the present invention to a material that has been heat-treated with a heating roll or heated air.
  • a composite fiber resin is spun, then the spun composite long fiber filaments are cooled with a cooling fluid, and tension is applied to the filaments by drawing air to achieve a desired fineness. After that, the spun filaments are collected on a collection belt and subjected to bonding treatment to obtain a spunbond nonwoven fabric.
  • a bonding means there are a thermocompression bonding method using a heating roll or ultrasonic waves, a thermal fusion bonding method using heated air, a thermocompression point (point bonding) method, and the like.
  • a method for applying the treatment agent for water-repellent fibers of the present invention to the obtained spunbond nonwoven fabric it can be carried out by a gravure method, a flexographic method, a roll coating method such as a gate roll method, a spray coating method, or the like. It is not particularly limited as long as the coating amount to the surface can be adjusted one by one.
  • a drying method a method of drying with hot air and infrared rays, a method of drying by contact with a heat source, and the like may be used.
  • Examples 1 to 70 and Comparative Examples 1 to 25 Each component shown in Tables 1 to 12 and water are mixed, and the weight ratio of non-volatile matter in the entire water-repellent fiber treatment agent is 25% by weight.
  • Example 1 to 70 and Comparative Examples 1-24 Each treatment was prepared.
  • Each of the obtained water-repellent fiber treatment agents was diluted with warm water of about 60° C. so that the weight ratio of non-volatile matter was 0.9% by weight to obtain a diluted solution.
  • the main body of the fiber is a polypropylene (core)-polyethylene (sheath) composite fiber to which no fiber treatment agent such as a water-repellent fiber treatment agent is attached, and has a single fiber fineness of 2.2 Dtex and a fiber length of 38 mm. Met.
  • the fibers to which the diluent of each water-repellent fiber treatment agent has been applied are placed in a hot air dryer at 80°C for 2 hours, and then left to dry at room temperature for 8 hours or more to dry the water-repellent fibers. Obtained.
  • the resulting water-repellent fibers were each passed through a fiber opening process and a carding process using a card tester to produce a web having a basis weight of 25 g/m 2 .
  • the physical properties (antistatic properties) in the carding process were evaluated by the evaluation method shown below.
  • the resulting web was used to evaluate discoloration resistance.
  • the obtained web was heat-treated at 140° C. in an air-through type hot air circulating dryer to fix the web to obtain a nonwoven fabric.
  • the physical properties (water repellency) of the obtained nonwoven fabrics were evaluated by the following evaluation methods. The results are shown in Tables 1-8.
  • the treatment agent for water-repellent fibers was air-dried on a Petri dish for 4 days.
  • the lidded weighing bottle was dried at 105° C. for 30 minutes with the lid open.
  • the lid of the weighing bottle was closed, and after standing to cool in a desiccator for 30 minutes, the weight was accurately weighed (X).
  • About 1 g of each air-dried sample was placed in a weighing bottle, dried at 60° C. for 8 hours at a degree of vacuum of 760 mmHg, and the weight of the weighing bottle containing the sample was accurately weighed (Y). After the precise weighing, the lid of the weighing bottle was opened, and the sample was allowed to absorb moisture at room temperature of 20° C.
  • Moisture absorption rate ((Z) - (Y)) / ((Y) - (X)) x 100 [Water repellency]
  • a nonwoven fabric 25 g/m 2 ) was cut into 15 cm squares, and the water pressure resistance was measured according to JIS L1092 6.1 Water resistance A method (low water pressure method) (a) hydrostatic pressure method and evaluated according to the following criteria. bottom. In addition, (double-circle) is the best evaluation.
  • ⁇ to ⁇ can be put to practical use. ⁇ ... 30 mm or more ⁇ ... 20 mm or more to less than 30 mm ⁇ ... less than 20 mm
  • Nonwoven fabric water repellency evaluation The resulting water-repellent fibers were each passed through a fiber opening process and a carding process using a card tester to produce a web having a basis weight of 25 g/m 2 . At that time, for each water-repellent fiber, the physical properties (antistatic properties) in the carding process were evaluated by the evaluation method shown below. The resulting web was used to evaluate discoloration resistance. The obtained web was heat-treated at 140° C. in an air-through type hot air circulating dryer to fix the web to obtain a nonwoven fabric. The physical properties (water repellency) of the obtained nonwoven fabrics were evaluated by the following evaluation methods. The results are shown in Tables 1-8.
  • the water-repellent fiber treatment agents of Examples 1 to 70 consist of a compound (A) represented by the following general formula (1), a compound (B) represented by the following general formula (2), A water-repellent fiber treatment agent containing at least one selected from a compound (C) represented by the following general formula (3), a compound (D) below, and an inorganic phosphate (IN), wherein the compound (A) and The water-repellent fiber treatment agent essentially contains the compound (B), and the acid value of the non-volatile matter of the water-repellent fiber treatment agent is 0.5 to 680 (KOHmg/g), and the compound (A), the compound (B), the The P-nuclear NMR integral value attributed to the compound (A) with respect to the sum of the P-nuclear NMR integral values (A + B + C + D + IN) attributed to each of the compound (C), the compound (D), and the inorganic phosphate (IN) ( Since the ratio of A
  • each of the treatment agents P-1 to P-16 was evaluated in the same manner as in Examples 1 to 10, except that the non-volatile content of the water-repellent fiber treatment agent was set to 0.03% by weight. In all cases, water repellency ⁇ , antistatic ⁇ , and durable antistatic ⁇ were obtained.
  • the water-repellent fibers and non-woven fabrics treated with the water-repellent fiber treatment agent of the present invention are used for the back sheets of absorbent articles such as sanitary products typified by disposable diapers and napkins. In addition, it can also be used in food applications, medical applications, and industrial applications where a water-repellent sheet is required.

Abstract

Provided is an oil agent for water-repellent fibers which has excellent long-lasting antistatic properties under high-temperature, high-humidity conditions. The oil agent is a treatment agent for water-repellent fibers which comprises a compound (A) represented by a specific chemical formula, a compound (B) represented by a specific chemical formula, a compound (C) represented by a specific chemical formula, a specific compound (D), and at least one salt selected from among inorganic phosphoric acid salts (IN), wherein the compound (A) and the compound (B) are essentially contained, a nonvolatile component of the treatment agent for water-repellent fibers has an acid value of 0.5-680 (KOHmg/g), and the proportion of the integral of a P-NMR signal attributable to the compound (A) to the sum (A+B+C+D+IN) of the integrals of P-NMR signals respectively attributable to the compound (A), compound (B), compound (C), compound (D), and inorganic phosphoric acid salt (IN), A/(A+B+C+D+IN), is 20-100%.

Description

撥水繊維用処理剤及びその利用Treatment agent for water-repellent fibers and its use
 本発明は、撥水繊維用処理剤及びその利用に関する。 The present invention relates to a treatment agent for water-repellent fibers and its use.
 一般に、紙おむつや合成ナプキンを代表とする生理用品等の吸収性物品は、少なくとも1種の熱可塑性樹脂を含む繊維(ポリオレフィン系繊維、ポリエステル系繊維等)を主材とする各種不織布に親水性を付与したトップシートと、撥水性を付与したバックシートと、トップシートとバックシートの間に綿状パルプや高分子吸収体等からなる材料とを配置した3層から形成される構造になっていることが多い。バックシートは、尿や血液の漏れを防ぐために強い撥水性が求められる。またバックシート不織布を製造する工程において、静電気が発生すると不織布の地合が悪くなる事から静電気防止性(制電性)が求められるが、撥水化処理された繊維は静電気が発生しやすく撥水性と制電性の両立が求められる。 In general, absorbent articles such as sanitary products such as disposable diapers and synthetic napkins are made of various nonwoven fabrics mainly composed of fibers containing at least one thermoplastic resin (polyolefin fibers, polyester fibers, etc.). It has a three-layer structure consisting of a top sheet to which water repellency is imparted, a back sheet to which water repellency is imparted, and a material such as flocculent pulp or high-molecular absorber disposed between the top sheet and the back sheet. There are many things. The backsheet is required to have strong water repellency in order to prevent leakage of urine and blood. In addition, in the process of manufacturing the back sheet nonwoven fabric, the formation of the nonwoven fabric deteriorates when static electricity is generated, so antistatic properties (antistatic properties) are required, but water-repellent treated fibers tend to generate static electricity and are repellent. Both aqueous and antistatic properties are required.
 そこで、繊維表面にアルキル基の炭素数が14~18で、且つカリウム塩の割合が50~90重量%、ナトリウム塩の割合が10~50重量%であるアルキルホスフェート塩を用いることで撥水性と制電性を両立させる提案(特許文献1)がなされているが、撥水性と制電性の両立の程度がまだ不十分であった。 Therefore, by using an alkyl phosphate salt having an alkyl group with a carbon number of 14 to 18, a potassium salt ratio of 50 to 90% by weight, and a sodium salt ratio of 10 to 50% by weight on the surface of the fiber, water repellency is obtained. A proposal has been made to achieve both antistatic properties (Patent Document 1), but the degree of compatibility between water repellency and antistatic properties was still insufficient.
日本国特開平8-325937号公報Japanese Patent Laid-Open No. 8-325937
 そこで、本発明の目的は、高温高湿での耐久制電性と撥水性とに優れる撥水繊維用油剤を提供することである。又、該処理剤が付着した繊維および不織布を提供することである。 Therefore, an object of the present invention is to provide an oil agent for water-repellent fibers that is excellent in durable antistatic properties and water repellency at high temperature and high humidity. Another object of the present invention is to provide fibers and nonwoven fabrics to which the treatment agent is attached.
 本発明者等は、前記課題を解決するために鋭意検討した結果、特定の燐酸化合物を特定量含有し、その酸価が一定の値を示す撥水繊維用処理剤であれば、解決できることを突き止めた。
 すなわち、本発明の撥水繊維用処理剤は、下記一般式(1)で示される化合物(A)、下記一般式(2)で示される化合物(B)、下記一般式(3)で示される化合物(C)、下記化合物(D)及び無機燐酸塩(IN)から選ばれる少なくとも1種を含む撥水繊維用処理剤であって、前記化合物(A)及び前記化合物(B)を必須に含み、前記撥水繊維用処理剤の不揮発分の酸価が0.5~680(KOHmg/g)であり、前記化合物(A)、前記化合物(B)、前記化合物(C)、前記化合物(D)及び前記無機燐酸塩(IN)のそれぞれに帰属されるP核NMR積分値の合計(A+B+C+D+IN)に対する前記化合物(A)に帰属されるP核NMR積分値(A)の比率〔A/(A+B+C+D+IN)〕が20~100%である。
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have found that a treatment agent for water-repellent fibers containing a specific amount of a specific phosphoric acid compound and exhibiting a constant acid value can solve the problems. I pinpointed it.
That is, the treatment agent for water-repellent fibers of the present invention is represented by the compound (A) represented by the following general formula (1), the compound (B) represented by the following general formula (2), and the following general formula (3). A treatment agent for water-repellent fibers comprising a compound (C), at least one selected from the following compound (D) and an inorganic phosphate (IN), and essentially comprising the compound (A) and the compound (B) , the non-volatile acid value of the water-repellent fiber treatment agent is 0.5 to 680 (KOHmg / g), the compound (A), the compound (B), the compound (C), the compound (D ) and the ratio of the P-nuclear NMR integral value (A) attributed to the compound (A) to the total P-nuclear NMR integral value (A + B + C + D + IN) attributed to each of the inorganic phosphate (IN) [A / (A + B + C + D + IN )] is 20 to 100%.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Rは炭素数3~5の炭化水素基である。Rは直鎖であっても分岐鎖であってもよい。AOは炭素数2~4のオキシアルキレン基であって、mは0~15の整数である。M及びMは、それぞれ独立して、水素原子、アルカリ金属、アンモニウム、ホスホニウム、有機アミン塩又は4級アンモニウム塩である。) (In the formula, R 1 is a hydrocarbon group having 3 to 5 carbon atoms. R 1 may be linear or branched. AO is an oxyalkylene group having 2 to 4 carbon atoms. , m is an integer of 0 to 15. M 1 and M 2 are each independently a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRは炭素数3~5の炭化水素基である。R及びRは直鎖であっても分岐鎖であってもよい。AOは炭素数2~4のオキシアルキレン基であって、mは0~15の整数である。Mは、水素原子、アルカリ金属、アンモニウム、ホスホニウム、有機アミン塩又は4級アンモニウム塩である。分子内に(AO)が2つある場合には、お互いに同じでも異なっていてもよい。) (In the formula, R 2 and R 3 are hydrocarbon groups having 3 to 5 carbon atoms. R 2 and R 3 may be linear or branched. AO is a hydrocarbon group having 2 to 4 carbon atoms. an oxyalkylene group, m is an integer of 0 to 15. M 1 is a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt, and (AO) m is present in the molecule If there are two, they may be the same or different.)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式中、Rは炭素数3~5の炭化水素基である。Rは直鎖であっても分岐鎖であってもよい。AOは炭素数2~4のオキシアルキレン基であって、mは0~15の整数である。M及びMは、それぞれ独立して、水素原子、アルカリ金属、アンモニウム、ホスホニウム又は有機アミン塩又は4級アンモニウム塩である。Qは、M又はR(OA)である。Rは炭素数3~5の炭化水素基である。Rは直鎖であっても分岐鎖であってもよい。Yは1又は2である。分子内にM又は(AO)が2つ以上ある場合には、お互いに同じでも異なっていてもよい。)
化合物(D):トリペンチルホスフェート、トリブチルホスフェート、トリプロピルホスフェート及びトリ(ポリオキシアルキレンモノアルキルエーテル)ホスフェートから選ばれる少なくとも1種
(In the formula, R 4 is a hydrocarbon group having 3 to 5 carbon atoms. R 4 may be linear or branched. AO is an oxyalkylene group having 2 to 4 carbon atoms. , m is an integer of 0 to 15. M 1 and M 2 are each independently a hydrogen atom, an alkali metal, ammonium, phosphonium, an organic amine salt or a quaternary ammonium salt, Q is M 2 or R 5 (OA) m , R 5 is a hydrocarbon group having 3 to 5 carbon atoms, R 5 may be linear or branched, Y is 1 or 2, molecule When there are two or more M 2 or (AO) m within, they may be the same or different.)
Compound (D): at least one selected from tripentyl phosphate, tributyl phosphate, tripropyl phosphate and tri(polyoxyalkylene monoalkyl ether) phosphate
 前記撥水繊維用処理剤の不揮発分の吸湿率が10~75%であると好ましい。
 ノニオン界面活性剤(E)をさらに含むと好ましい。
 前記化合物(A)に帰属されるP核NMR積分値と前記化合物(B)に帰属されるP核NMR積分値との比率(A/B)が1~50である、と好ましい。
It is preferable that the water-repellent fiber treatment agent has a non-volatile moisture absorption rate of 10 to 75%.
It is preferable to further contain a nonionic surfactant (E).
It is preferable that the ratio (A/B) between the P-nuclear NMR integral value attributed to the compound (A) and the P-nuclear NMR integral value attributed to the compound (B) is 1-50.
 本発明の撥水性繊維は、原料撥水繊維に対して、上記撥水繊維用処理剤が付与されてなる。 The water-repellent fiber of the present invention is obtained by applying the above water-repellent fiber treatment agent to the raw material water-repellent fiber.
 本発明の撥水繊維用処理剤は、高温高湿での耐久制電性と撥水性に優れる。 The treatment agent for water-repellent fibers of the present invention is excellent in durable antistatic properties and water repellency at high temperature and high humidity.
 本発明の撥水繊維用処理剤は、上記化合物(A)、上記化合物(B)、上記化合物(C)、上記化合物(D)及び無機燐酸塩(IN)から選ばれる少なくとも1種を含む。以下に詳細に説明する。 The treatment agent for water-repellent fibers of the present invention contains at least one selected from the compound (A), the compound (B), the compound (C), the compound (D) and inorganic phosphate (IN). Details will be described below.
〔化合物(A)〕
 化合物(A)は、本願発明の撥水繊維用処理剤に必須に含まれる成分であり、撥水性及び制電性に寄与する成分である。
 化合物(A)は、上記一般式(1)で示される。
 式中、Rは炭素数3~5の炭化水素基である。Rは直鎖でも分岐鎖でもよい。炭化水素基としては、アルキル基が挙げられる。Rは炭素数4の炭化水素基が最も好ましい。
[Compound (A)]
The compound (A) is a component that is essential in the water-repellent fiber treatment agent of the present invention, and is a component that contributes to water repellency and antistatic properties.
The compound (A) is represented by the above general formula (1).
In the formula, R 1 is a hydrocarbon group having 3-5 carbon atoms. R 1 may be linear or branched. Hydrocarbon groups include alkyl groups. Most preferably, R 1 is a hydrocarbon group having 4 carbon atoms.
 AOは炭素数2~4のオキシアルキレン基である。オキシアルキレン単位の繰り返し数であるmは0~15の整数であり、0~10が好ましく、0~3がさらに好ましく、mが0でポリオキシアルキレン基を含有しない場合が、高温高湿での耐久制電性と撥水性の観点から、特に好ましい。(AO)mは、オキシアルキレン単位としてオキシエチレン単位を50モル%以上有するポリオキシアルキレン基が好ましい。 AO is an oxyalkylene group having 2 to 4 carbon atoms. The repeating number m of the oxyalkylene unit is an integer of 0 to 15, preferably 0 to 10, more preferably 0 to 3, and when m is 0 and does not contain a polyoxyalkylene group, at high temperature and high humidity It is particularly preferred from the viewpoint of durable antistatic properties and water repellency. (AO)m is preferably a polyoxyalkylene group having 50 mol % or more of oxyethylene units as oxyalkylene units.
 Mは、水素原子、アルカリ金属、アンモニウム、ホスホニウム、有機アミン塩又は4級アンモニウム塩である。
 アルカリ金属としては、カリウム、ナトリウム、リチウム等が挙げられ、撥水性及び制電性の観点から、カリウム又はナトリウムが好ましい。
 有機アミン塩としては、例えば、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩等のアルカノールアミン塩や、トリエチルアミン塩が挙げられる。
 Mは、Mと同様である。
M 1 is a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt.
Examples of alkali metals include potassium, sodium, lithium, etc. Potassium or sodium is preferable from the viewpoint of water repellency and antistatic properties.
Examples of organic amine salts include alkanolamine salts such as ethanolamine salts, diethanolamine salts and triethanolamine salts, and triethylamine salts.
M2 is the same as M1 .
 化合物(A)の具体例としては、特に限定されないが、モノブチルホスフェートモノカリウム塩、モノブチルホスフェートジカリウム塩、モノブチルホスフェートモノナトリウム塩、モノブチルホスフェートジナトリウム塩、ポリオキシエチレン3モル付加モノブチルホスフェートモノカリウム塩、ポリオキシエチレン3モル付加モノブチルホスフェートモノカリウム塩等が挙げられる。中でも、モノブチルホスフェートモノカリウム塩、モノブチルホスフェートジカリウム塩、モノブチルホスフェートモノナトリウム塩、モノブチルホスフェートジナトリウム塩が好ましい。 Specific examples of the compound (A) include, but are not limited to, monobutyl phosphate monopotassium salt, monobutyl phosphate dipotassium salt, monobutyl phosphate monosodium salt, monobutyl phosphate disodium salt, polyoxyethylene 3 mol added monobutyl Phosphate monopotassium salt, polyoxyethylene 3-mol added monobutyl phosphate monopotassium salt, and the like. Among them, monobutyl phosphate monopotassium salt, monobutyl phosphate dipotassium salt, monobutyl phosphate monosodium salt and monobutyl phosphate disodium salt are preferable.
 化合物(A)は、31P-NMRの方法で検出することができる。
 測定試料不揮発分約30mgを直径5mmのNMR用試料管に秤量し、重水素化溶媒として約0.5mlの重水(DO)あるいは重クロロホルム(CDCl)を加え溶解させて、31P-NMR測定装置(BRUKER社製AVANCE400,162MHzおよび日本電子株式会社製JNM-ECZ400R,162MHz)で測定した。
 化合物(A)に由来する燐元素のピークは、+4~-1ppmにて検出される。化合物(A)、後述する化合物(B)及び後述する無機燐酸に由来する燐元素のピークは、いずれも+4~-1ppmにて検出されるが、低磁場側から、無機燐酸、化合物(A)、化合物(B)の順に帰属が決定される。
 なお、本発明における不揮発分とは、処理剤を105℃で熱処理して溶媒等を除去し、恒量に達した時の絶乾成分をいう。
Compound (A) can be detected by a 31 P-NMR method.
About 30 mg of the non-volatile content of the measurement sample was weighed into an NMR sample tube with a diameter of 5 mm, and about 0.5 ml of heavy water (D 2 O) or deuterated chloroform (CDCl 3 ) as a deuterated solvent was added and dissolved to obtain 31 P-. It was measured with an NMR measurement device (BRUKER AVANCE400, 162 MHz and JEOL JNM-ECZ400R, 162 MHz).
A peak of elemental phosphorus originating from compound (A) is detected at +4 to -1 ppm. Phosphorus element peaks derived from compound (A), compound (B) to be described later, and inorganic phosphoric acid to be described later are all detected at +4 to −1 ppm. , the assignment is determined in the order of compound (B).
In addition, the non-volatile matter in the present invention refers to the absolute dry content when the treating agent is heat-treated at 105° C. to remove the solvent and the like and reaches a constant weight.
〔化合物(B)〕
 化合物(B)は、本願発明の撥水繊維用処理剤に必須に含まれる成分であり、化合物(A)と併用することにより、撥水性及び制電性の効果を高める性能を有する。化合物(B)は、撥水性を有する。
 化合物(B)は、上記一般式(2)で示される。
 式中、R及びRは炭素数3~5の炭化水素基である。R及びRは直鎖でも分岐鎖でもよい。炭化水素基としては、アルキル基が挙げられる。R及びRは炭素数4の炭化水素基が最も好ましい。
[Compound (B)]
The compound (B) is an essential component in the water-repellent fiber treatment agent of the present invention, and has the ability to enhance the water repellency and antistatic effects when used in combination with the compound (A). Compound (B) has water repellency.
The compound (B) is represented by the above general formula (2).
In the formula, R 2 and R 3 are hydrocarbon groups having 3 to 5 carbon atoms. R2 and R3 may be linear or branched. Hydrocarbon groups include alkyl groups. Most preferably, R 2 and R 3 are hydrocarbon groups having 4 carbon atoms.
 AOは炭素数2~4のオキシアルキレン基である。オキシアルキレン単位の繰り返し数であるmは0~15の整数であり、0~10が好ましく、0~3がさらに好ましく、mが0でポリオキシアルキレン基を含有しない場合が、撥水性及び制電性の観点から、特に好ましい。(AO)mは、オキシアルキレン単位としてオキシエチレン単位を50モル%以上有するポリオキシアルキレン基が好ましい。分子内に(AO)が2つある場合には、お互いに同じでも異なっていてもよい。 AO is an oxyalkylene group having 2 to 4 carbon atoms. The repeating number m of the oxyalkylene unit is an integer of 0 to 15, preferably 0 to 10, more preferably 0 to 3, and when m is 0 and does not contain a polyoxyalkylene group, water repellency and antistatic From the point of view of sexuality, it is particularly preferred. (AO)m is preferably a polyoxyalkylene group having 50 mol % or more of oxyethylene units as oxyalkylene units. When there are two (AO) m in the molecule, they may be the same or different.
 Mは、水素原子、アルカリ金属、アンモニウム、ホスホニウム、有機アミン塩又は4級アンモニウム塩である。
 アルカリ金属としては、カリウム、ナトリウム、リチウム等が挙げられ、撥水性及び制電性の観点から、カリウム又はナトリウムが好ましい。
 有機アミン塩としては、例えば、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩等のアルカノールアミン塩や、トリエチルアミン塩が挙げられる。
M 1 is a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt.
Examples of alkali metals include potassium, sodium, lithium, etc. Potassium or sodium is preferable from the viewpoint of water repellency and antistatic properties.
Examples of organic amine salts include alkanolamine salts such as ethanolamine salts, diethanolamine salts and triethanolamine salts, and triethylamine salts.
 化合物(B)の具体例としては、特に限定されないが、ジブチルホスフェートカリウム塩、ジブチルホスフェートナトリウム塩、ジブチルホスフェートトリエタノールアミン塩等が挙げられる。 Specific examples of the compound (B) include, but are not limited to, dibutyl phosphate potassium salt, dibutyl phosphate sodium salt, dibutyl phosphate triethanolamine salt, and the like.
 化合物(B)は、化合物(A)と同様に、31P-NMRの方法で検出することができる。
 化合物(B)に由来する燐元素のピークは、+4~-1ppmにて検出される。化合物(A)、化合物(B)及び無機燐酸に由来する燐元素のピークは、いずれも+4~-1ppmにて検出されるが、低磁場側から、無機燐酸、化合物(A)、化合物(B)の順に帰属が決定される。
Compound (B) can be detected by the method of 31 P-NMR, like compound (A).
A peak of elemental phosphorus derived from compound (B) is detected at +4 to -1 ppm. Phosphorus element peaks derived from compound (A), compound (B), and inorganic phosphoric acid are all detected at +4 to -1 ppm. ) is determined in the order of
[化合物(C)]
 化合物(C)は、本願発明の撥水繊維用処理剤に任意に含まれる成分である。
 本願発明の撥水繊維用処理剤は化合物(C)を含むと、制電性が向上するため好ましい。
[Compound (C)]
The compound (C) is a component optionally contained in the treatment agent for water-repellent fibers of the present invention.
It is preferable that the treatment agent for water-repellent fibers of the present invention contains the compound (C) because the antistatic property is improved.
 化合物(C)は、上記一般式(3)で示される。
 式中、R及びRは炭素数3~5の炭化水素基である。R及びRは直鎖状であっても分岐を有していてもよい。AOは炭素数2~4のオキシアルキレン基であって、mは0~15の整数であり、0~10が好ましく、0~3がさらに好ましく、mが0でポリオキシアルキレン基を含有しない場合が、撥水性の観点から、特に好ましい。
 M及びMは、それぞれ独立して、水素原子、アルカリ金属、アンモニウム、ホスホニウム、有機アミン塩又は4級アンモニウム塩である。Qは、M又はRO(AO)である。Yは1又は2である。分子内にM、(AO)が2つある場合には、お互いに同じでも異なっていてもよい。
The compound (C) is represented by the above general formula (3).
In the formula, R 4 and R 5 are hydrocarbon groups having 3-5 carbon atoms. R 4 and R 5 may be linear or branched. AO is an oxyalkylene group having 2 to 4 carbon atoms, m is an integer of 0 to 15, preferably 0 to 10, more preferably 0 to 3, when m is 0 and does not contain a polyoxyalkylene group is particularly preferred from the viewpoint of water repellency.
M 1 and M 2 are each independently a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt. Q is M2 or R5O (AO) m . Y is 1 or 2; When there are two M 2 and (AO) m in the molecule, they may be the same or different.
 化合物(C)の具体例としては、特に限定されないが、ピロブチルホスフェートカリウム塩、ピロブチルホスフェートナトリウム塩、ピロブチルホスフェートトリエタノールアミン塩等が挙げられる。中でも、ピロブチルホスフェートナトリウム塩が好ましい。 Specific examples of the compound (C) are not particularly limited, but include pyrobutyl phosphate potassium salt, pyrobutyl phosphate sodium salt, pyrobutyl phosphate triethanolamine salt, and the like. Among them, pyrobutyl phosphate sodium salt is preferred.
 化合物(C)は、次のようにして検出することができる。
31P-NMR法〕
 測定試料不揮発分約30mgを直径5mmのNMR用試料管に秤量し、重水素化溶媒として約0.5mlの重水(DO)あるいは重クロロホルム(CDCl)を加え溶解させて、31P-NMR測定装置(BRUKER社製AVANCE400,162MHzおよび日本電子株式会社製JNM-ECZ400R,162MHz)で測定した。
 化合物(C)に由来する燐元素のピークは、-5~-15ppmにて検出される。
Compound (C) can be detected as follows.
[ 31 P-NMR method]
About 30 mg of the non-volatile content of the measurement sample was weighed into an NMR sample tube with a diameter of 5 mm, and about 0.5 ml of heavy water (D 2 O) or deuterated chloroform (CDCl 3 ) as a deuterated solvent was added and dissolved to obtain 31 P-. It was measured with an NMR measurement device (BRUKER AVANCE400, 162 MHz and JEOL JNM-ECZ400R, 162 MHz).
A peak of phosphorus element derived from compound (C) is detected at −5 to −15 ppm.
〔化合物(D)〕
 化合物(D)は、本願発明の撥水繊維用処理剤に任意に含まれる成分である。
 化合物(D)は、トリペンチルホスフェート、トリブチルホスフェート、トリプロピルホスフェート及びトリ(ポリオキシアルキレンモノアルキルエーテル)ホスフェートから選ばれる少なくとも1種である。
 トリ(ポリオキシアルキレンモノアルキルエーテル)ホスフェートは、炭素数3~5のアルキル基を有して且つ、オキシアルキレン基の炭素数は2~4であり、オキシアルキレン単位の繰り返し数は0~15の整数である。
 本願発明の撥水繊維用処理剤は、トリホスフェート化合物(D)を含むと、撥水性が向上するため好ましい。
 トリホスフェート化合物としては、トリブチルホスフェート、トリプロピルホスフェート、トリ(モノエチレングリコールモノブチルエーテル)ホスフェート、等が挙げられる。中でも、トリブチルホスフェートが好ましい。
[Compound (D)]
Compound (D) is a component optionally contained in the treatment agent for water-repellent fibers of the present invention.
Compound (D) is at least one selected from tripentyl phosphate, tributyl phosphate, tripropyl phosphate and tri(polyoxyalkylene monoalkyl ether) phosphate.
Tri(polyoxyalkylene monoalkyl ether) phosphate has an alkyl group having 3 to 5 carbon atoms, the oxyalkylene group has 2 to 4 carbon atoms, and the number of repeating oxyalkylene units is 0 to 15. is an integer.
The treatment agent for water-repellent fibers of the present invention preferably contains a triphosphate compound (D) because the water repellency is improved.
Examples of triphosphate compounds include tributyl phosphate, tripropyl phosphate, tri(monoethylene glycol monobutyl ether) phosphate, and the like. Among them, tributyl phosphate is preferred.
〔無機燐酸塩(IN)〕
 無機燐酸塩(IN)は、本願発明の撥水繊維用処理剤に任意に含まれる成分である。無機燐酸塩(IN)は、リン酸、リン酸二水素金属塩、リン酸水素二金属塩及びリン酸三金属塩から選ばれる少なくとも一つである。具体的に、リン酸二水素一金属塩としてはリン酸二水素一カリウム塩、リン酸二水素一ナトリウム塩等が挙げられ、リン酸水素二金属塩としてはリン酸水素二カリウム塩、リン酸水素二ナトリウム塩等が挙げられ、リン酸三金属塩としてはリン酸三カリウム塩、リン酸三ナトリウム塩等が挙げられる。
 本願発明の撥水繊維用処理剤は、無機燐酸塩(IN)を含むと、撥水性が向上するため好ましい。
[Inorganic phosphate (IN)]
Inorganic phosphate (IN) is a component optionally contained in the treatment agent for water-repellent fibers of the present invention. The inorganic phosphate (IN) is at least one selected from phosphoric acid, dihydrogen metal phosphate, hydrogen dimetal phosphate and trimetal phosphate. Specific examples of the monometallic dihydrogen phosphate include monopotassium dihydrogen phosphate and monosodium dihydrogen phosphate. Examples of the dimetallic hydrogen phosphate include dipotassium hydrogen phosphate and phosphoric acid. Examples thereof include disodium hydrogen salts, and trimetallic phosphates include tripotassium phosphate, trisodium phosphate, and the like.
The treatment agent for water-repellent fibers of the present invention preferably contains an inorganic phosphate (IN) because the water-repellency is improved.
〔ノニオン界面活性剤(E)〕
 本発明の撥水繊維用処理剤は、ノニオン界面活性剤(E)を含むと前記化合物(A)~(D)の乳化を補助し、制電性を向上できるため、好ましい。
 ノニオン界面活性剤(E)としては、多価アルコールと脂肪酸とがエステル結合した構造を有し、分子中に水酸基が1つ以上有するエステル化合物(E1)、ポリオキシアルキレンヒマシ油エーテル(E2)、ポリオキシアルキレン硬化ヒマシ油エーテル(E3)、ポリオキシアルキレン脂肪族アルコールエーテル(E4)及びPEGエステル(E5)等が挙げられる。
[Nonionic surfactant (E)]
The treatment agent for water-repellent fibers of the present invention preferably contains a nonionic surfactant (E) because it can assist emulsification of the compounds (A) to (D) and improve antistatic properties.
Examples of the nonionic surfactant (E) include an ester compound (E1) having a structure in which a polyhydric alcohol and a fatty acid are ester-bonded and having one or more hydroxyl groups in the molecule, a polyoxyalkylene castor oil ether (E2), Polyoxyalkylene hydrogenated castor oil ether (E3), polyoxyalkylene aliphatic alcohol ether (E4), PEG ester (E5) and the like.
 エステル化合物(E1)は、多価アルコールと脂肪酸とがエステル結合した構造を有し、分子中に水酸基が1つ以上有する化合物である。後述するエステル化合物(F1-2)とは水酸基が1つ以上有する点で別の化合物である。 The ester compound (E1) is a compound having a structure in which a polyhydric alcohol and a fatty acid are ester-bonded and has one or more hydroxyl groups in the molecule. It is a different compound from the later-described ester compound (F1-2) in that it has one or more hydroxyl groups.
 多価アルコールと脂肪酸とがエステル結合した構造を有し、分子中に水酸基が1つ以上有するエステル化合物(E1)としては、特に限定されるものではないが、ソルビタンモノエステル(ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタンモノパルミテート、ソルビタンモノラウレート)、ソルビタンジエステル(ソルビタンジステアレート、ソルビタンジオレエート、ソルビタンジパルミテート、ソルビタンジラウレート)、ソルビタントリエステル(ソルビタントリステアレート、ソルビタントリオレエート、ソルビタントリパルミテート、ソルビタントリラウレート)、グリセリンモノエステル(グリセリンモノステアレート、グリセリンモノオレエート)、グリセリンジエステル(グリセリンジステアレート、グリセリンジオレエート、グリセリンジパルミテート、グリセリンジラウレート)、ヒマシ油、硬化ヒマシ油等が挙げられる。 The ester compound (E1) having a structure in which a polyhydric alcohol and a fatty acid are ester-bonded and has one or more hydroxyl groups in the molecule is not particularly limited, but sorbitan monoester (sorbitan monostearate, sorbitan monooleate, sorbitan monopalmitate, sorbitan monolaurate), sorbitan diesters (sorbitan distearate, sorbitan dioleate, sorbitan dipalmitate, sorbitan dilaurate), sorbitan triesters (sorbitan tristearate, sorbitan trioleate) , Sorbitan Tripalmitate, Sorbitan Trilaurate), Glycerin Monoester (Glycerin Monostearate, Glycerin Monooleate), Glycerin Diesters (Glycerin Distearate, Glycerin Dioleate, Glycerin Dipalmitate, Glycerin Dilaurate), Castor oils, hydrogenated castor oil, and the like.
 ポリオキシアルキレンヒマシ油エーテル(E2)は、ヒマシ油に対し、エチレンオキシド、プロピレンオキシド、ブチレンオキシドなどのアルキレンオキシドを付加した構造を持つ化合物である。
 ポリオキシアルキレンヒマシ油エーテル(E2)としては、特に限定されるものではないが、ポリオキシエチレンヒマシ油エーテル(ポリオキシエチレン(1~25モル)ヒマシ油エーテル)が挙げられる。
The polyoxyalkylene castor oil ether (E2) is a compound having a structure in which alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide are added to castor oil.
Polyoxyalkylene castor oil ethers (E2) include, but are not limited to, polyoxyethylene castor oil ethers (polyoxyethylene (1 to 25 mol) castor oil ethers).
 ポリオキシアルキレン硬化ヒマシ油エーテル(E3)は、硬化ヒマシ油に対し、エチレンオキシド、プロピレンオキシド、ブチレンオキシドなどのアルキレンオキシドを付加した構造を持つ化合物である。ポリオキシエチレン硬化ヒマシ油エーテル(E3)としては、特に限定されるものではないが、ポリオキシエチレン硬化ヒマシ油エーテル(ポリオキシエチレン(1~25モル)硬化ヒマシ油エーテル)が挙げられる。 Polyoxyalkylene hydrogenated castor oil ether (E3) is a compound having a structure in which alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide are added to hydrogenated castor oil. The polyoxyethylene hydrogenated castor oil ether (E3) is not particularly limited, but includes polyoxyethylene hydrogenated castor oil ether (polyoxyethylene (1 to 25 mol) hydrogenated castor oil ether).
 ポリオキシアルキレン脂肪族アルコールエーテル(E4)とは、脂肪族一価アルコール及び/又は脂肪族多価アルコールに対し、エチレンオキシド、プロピレンオキシド、ブチレンオキシドなどのアルキレンオキシドを付加した構造を持つ化合物である。
 ポリオキシアルキレン脂肪族アルコールエーテルとしては、例えば、オクチルアルコール、2-エチルヘキシルアルコール、デシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、ステアリルアルコール、イソステアリルアルコール、オレイルアルコール、グリセリン、ソルビトール、ソルビタン、トリメチロールプロパン等の脂肪族アルコールのアルキレンオキシド付加物が挙げられる。
 アルキレンオキシドの付加モル数としては、1~100モルが好ましく、2~70モルがより好ましく、3~50モルがさらに好ましい。また、アルキレンオキシド全体に対するエチレンンオキシドの割合は、20モル%以上が好ましく、30モル%以上がより好ましく、40モル%以上がさらに好ましい。
The polyoxyalkylene aliphatic alcohol ether (E4) is a compound having a structure in which an alkylene oxide such as ethylene oxide, propylene oxide or butylene oxide is added to an aliphatic monohydric alcohol and/or an aliphatic polyhydric alcohol.
Examples of polyoxyalkylene aliphatic alcohol ethers include octyl alcohol, 2-ethylhexyl alcohol, decyl alcohol, lauryl alcohol, tridecyl alcohol, myristyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, glycerin, sorbitol, sorbitan, tri Alkylene oxide adducts of fatty alcohols such as methylolpropane can be mentioned.
The number of moles of alkylene oxide to be added is preferably 1 to 100 mol, more preferably 2 to 70 mol, and even more preferably 3 to 50 mol. Also, the ratio of ethylene oxide to the total alkylene oxide is preferably 20 mol % or more, more preferably 30 mol % or more, and even more preferably 40 mol % or more.
 ポリオキシアルキレン脂肪族アルコールエーテル(E4)としては、特に限定されるものではないが、ポリオキシアルキレン脂肪族アルコールエーテル(ポリオキシエチレン(1~20モル)ステアリルエーテル、ポリオキシエチレン(1~20モル)オレイルエーテル、ポリオキシエチレン(1~20モル)パルミチルエーテル、ポリオキシエチレン(1~20モル)ラウリルエーテル、ポリオキシエチレン(1~20モル)オクチルエーテル、ポリオキシエチレン(1~20モル)2-エチルヘキシルエーテル、ポリオキシエチレン(1~20モル)ヘキシルエーテル、ポリオキシエチレン(1~20モル)ブチルエーテル)、ポリオキシアルキレン脂肪酸エステル(ポリオキシエチレン(1~20モル)ステアリルエステル、ポリオキシエチレン(1~20モル)オレイルエステル、ポリオキシエチレン(1~20モル)パルミチルエステル、ポリオキシエチレン(1~20モル)ラウリルエステル)が挙げられる。 The polyoxyalkylene aliphatic alcohol ether (E4) is not particularly limited, but polyoxyalkylene aliphatic alcohol ether (polyoxyethylene (1 to 20 mol) stearyl ether, polyoxyethylene (1 to 20 mol ) Oleyl ether, polyoxyethylene (1 to 20 mol) palmityl ether, polyoxyethylene (1 to 20 mol) lauryl ether, polyoxyethylene (1 to 20 mol) octyl ether, polyoxyethylene (1 to 20 mol) 2-ethylhexyl ether, polyoxyethylene (1-20 mol) hexyl ether, polyoxyethylene (1-20 mol) butyl ether), polyoxyalkylene fatty acid ester (polyoxyethylene (1-20 mol) stearyl ester, polyoxyethylene (1 to 20 mol) oleyl ester, polyoxyethylene (1 to 20 mol) palmityl ester, polyoxyethylene (1 to 20 mol) lauryl ester).
 PEGエステル(E5)について、PEGとは、ポリエチレングリコールを意味し、PEGの水酸基と1価の脂肪酸とがエステル化した構造を有するポリエチレングリコールのエステル(以下、PEGエステル)を意味する。
 1価の脂肪酸の炭素数については、特に限定されるものではないが、好ましくは4~24、より好ましくは10~22、さらに好ましくは12~20である。脂肪酸は、飽和と不飽和とを問わない。
 PEGの重量平均分子量については、特に限定されるものではないが、200~600が好ましい。
Regarding the PEG ester (E5), PEG means polyethylene glycol, and means an ester of polyethylene glycol having a structure in which a hydroxyl group of PEG and a monovalent fatty acid are esterified (hereinafter referred to as PEG ester).
Although the number of carbon atoms in the monovalent fatty acid is not particularly limited, it is preferably 4-24, more preferably 10-22, still more preferably 12-20. Fatty acids may be saturated or unsaturated.
The weight average molecular weight of PEG is not particularly limited, but is preferably 200-600.
〔化合物(F)〕
 化合物(F)は、前記ノニオン界面活性剤(E)及び前記化合物(A)~(D)と併用されることにより、撥水繊維に対して、付与前よりも撥水性を付与する効果がある。
 化合物(F)は、(ポリ)オキシアルキレン基及びヒドロキシル基を含まないエステル化合物(F1)及び炭素数が6~22のアルコール(F2)及び炭素数7~70の炭化水素化合物(F3)から選ばれる少なくとも1種である。
[Compound (F)]
The compound (F), when used in combination with the nonionic surfactant (E) and the compounds (A) to (D), has the effect of imparting more water repellency to the water-repellent fiber than before imparting it. .
Compound (F) is selected from (poly)oxyalkylene group and hydroxyl group-free ester compound (F1), alcohol having 6 to 22 carbon atoms (F2) and hydrocarbon compound having 7 to 70 carbon atoms (F3). is at least one
((ポリ)オキシアルキレン基及びヒドロキシル基を含まないエステル化合物(F1))
 エステル化合物(F1)は、(ポリ)オキシアルキレン基及びヒドロキシル基のいずれも含まない化合物である。
 (ポリ)オキシアルキレン基及びヒドロキシル基を含まないエステル化合物(F1)としては、炭素数6~22の炭化水素基を有する1価アルコールと炭素数6~22の炭化水素基を有する脂肪酸とのエステル化合物(F1-1)、多価アルコールと脂肪酸とのエステル化合物(F1-2)等が挙げられる。
 エステル化合物(F1-2)は、多価アルコールの水酸基の全てが脂肪酸とエステル結合された構造を有し、いわゆる完全封鎖エステルである。
(Ester compound (F1) containing no (poly)oxyalkylene group and hydroxyl group)
The ester compound (F1) is a compound containing neither a (poly)oxyalkylene group nor a hydroxyl group.
The ester compound (F1) containing no (poly)oxyalkylene group and hydroxyl group is an ester of a monohydric alcohol having a hydrocarbon group of 6 to 22 carbon atoms and a fatty acid having a hydrocarbon group of 6 to 22 carbon atoms. Compound (F1-1), ester compound (F1-2) of polyhydric alcohol and fatty acid, and the like.
The ester compound (F1-2) has a structure in which all the hydroxyl groups of the polyhydric alcohol are ester-bonded to fatty acids, and is a so-called fully blocked ester.
 炭素数6~22の炭化水素基を有する1価アルコールと炭素数6~22の炭化水素基を有する脂肪酸とのエステル化合物(F1-1)としては、ステアリルステアレート、2-エチルヘキシルステアレート、オレイルステアレート、ラウリルステアレート、オレイルオレエート、オレイルステアレート等が挙げられる。 Examples of the ester compound (F1-1) of a monohydric alcohol having a hydrocarbon group of 6 to 22 carbon atoms and a fatty acid having a hydrocarbon group of 6 to 22 carbon atoms include stearyl stearate, 2-ethylhexyl stearate, and oleyl. Stearate, lauryl stearate, oleyl stearate, oleyl stearate and the like.
 多価アルコールと脂肪酸とのエステル化合物(F1-2)としては、グリセリントリステアレート、ペンタエリスリトールテトラカプリレート、ペンタエリスリトールテトララウレート、ヤシ油、ひまわり油、パーム油、菜種油、魚油、牛脂等が挙げられる。 Ester compounds (F1-2) of polyhydric alcohols and fatty acids include glycerin tristearate, pentaerythritol tetracaprylate, pentaerythritol tetralaurate, coconut oil, sunflower oil, palm oil, rapeseed oil, fish oil, beef tallow, and the like. mentioned.
(炭素数が6~22のアルコール(F2))
 炭素数が6~22のアルコール(F2)としては、へキサノール、ヘプタノール、オクタノール、ノナオール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、へキサデカノール、ヘプタデカノール、オクタデカノール、ノナデカノール、エイコサノール、ヘネイコサノール、ドコサノール等の直鎖アルカノール;2-エチルへキサノール、2-プロピルヘプタノール、2-ブチルオクタノール、1-メチルヘプタデカノール、2-ヘキシルオクタノール、1-ヘキシルヘプタノール、イソデカノール、イソトリデカノール、3,5,5-トリメチルヘキサノール等の分岐アルカノール;ヘキセノール、ヘプテノール、オクテノール、ノネノール、デセノール、ウンデセノール、ドデセノール、トリデセノール、テトラデセノール、ペンタデセノール、へキサデセノール、ペンタデセノール、ヘキサデセノール、ヘプタデセノール、オクタデセノール、ノナデセノール、エイセノール、ドコセノール、等の直鎖アルケノール;イソヘキセノール、2-エチルへキセノール、イソトリデセノール、1-メチルヘプタデセノール、1-ヘキシルヘプテノール、イソトリデセノールおよびイソオクタデセノール等の分岐アルケノール等が挙げられる。これらのアルコールは、1種または2種以上を併用してもよい。
(Alcohol having 6 to 22 carbon atoms (F2))
Examples of alcohols having 6 to 22 carbon atoms (F2) include hexanol, heptanol, octanol, nonaol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, straight-chain alkanols such as nonadecanol, eicosanol, heneicosanol, docosanol; branched alkanols such as isotridecanol and 3,5,5-trimethylhexanol; hexenol, heptenol, octenol, nonenol, decenol, undecenol, dodecenol, tridecenol, tetradecenol, pentadecenol, hexadecenol, pentadecenol, hexadecenol, heptadecenol, octadecenol, nonadecenol , eisenol, docosenol, etc.; Branched alkenols and the like can be mentioned. These alcohols may be used singly or in combination of two or more.
(炭素数7~70の炭化水素化合物(F3))
 炭素数7~70の炭化水素化合物としては、ヘプタン、オクタン、ノナン、デカン、ドデカン等のパラフィン系炭化水素やデカリン等のナフテン系炭化水素、またベンゼンやナフタリン等の芳香族炭化水素、石油から分離精製されたスピンドル油、ケロシン油、流動パラフィンが挙げられる。これら炭化水素化合物は単体又は2種類以上の混合物として使用することが出来る。
(Hydrocarbon compound (F3) having 7 to 70 carbon atoms)
Hydrocarbon compounds having 7 to 70 carbon atoms include paraffinic hydrocarbons such as heptane, octane, nonane, decane and dodecane, naphthenic hydrocarbons such as decalin, aromatic hydrocarbons such as benzene and naphthalene, and separated from petroleum. Refined spindle oil, kerosene oil, liquid paraffin. These hydrocarbon compounds can be used singly or as a mixture of two or more.
〔その他成分〕
 本発明の撥水繊維用処理剤は、その他成分として、脂肪酸、脂肪酸金属塩、化合物(A)~化合物(D)以外のアルカンスルフォネート塩、ジアルキルスルフォサクシネート塩、アルキルエーテルカルボン酸塩、アルカンサルフェート塩、アルキルエーテルサルフェート塩、などのアニオン界面活性剤等を含むことができる。また、エチレングリコール、1,3プロパンジオール、アルキレンジオール、ポリオキシアルキレンエーテル、グリセリン、ポリグリセリンを含むことができる。また、必要があれば適切な防腐剤、防錆剤、消泡剤を添加してもよい。
[Other ingredients]
The treatment agent for water-repellent fibers of the present invention contains, as other components, a fatty acid, a fatty acid metal salt, an alkanesulfonate salt other than the compounds (A) to (D), a dialkylsulfosuccinate salt, and an alkyl ether carboxylate. , alkane sulfate salts, alkyl ether sulfate salts, anionic surfactants, and the like. It can also contain ethylene glycol, 1,3 propanediol, alkylenediol, polyoxyalkylene ether, glycerin, polyglycerin. In addition, if necessary, appropriate antiseptics, rust inhibitors and antifoaming agents may be added.
〔撥水繊維用処理剤〕
 本発明の撥水繊維用処理剤の不揮発分の酸価は、0.5~680である。酸価が0.5未満では、繊維が黄変する。酸価が680を超えると、制電性が不足する。
 本発明の撥水繊維用処理剤の不揮発分の酸価の下限値は、撥水性及び制電性の観点から、2.0が好ましく、4.0がより好ましく、8.0がさらに好ましい。
 本発明の撥水繊維用処理剤の不揮発分の酸価の上限値は、撥水性及び制電性の観点から、300が好ましく、250がより好ましく、200がさらに好ましい。
[Treatment agent for water-repellent fibers]
The non-volatile acid value of the water-repellent fiber treatment agent of the present invention is 0.5-680. If the acid number is less than 0.5, the fibers will turn yellow. If the acid value exceeds 680, the antistatic properties will be insufficient.
From the viewpoint of water repellency and antistatic properties, the lower limit of the acid value of the non-volatile content of the water-repellent fiber treatment agent of the present invention is preferably 2.0, more preferably 4.0, and even more preferably 8.0.
The upper limit of the acid value of the nonvolatile content of the water-repellent fiber treatment agent of the present invention is preferably 300, more preferably 250, and even more preferably 200, from the viewpoint of water repellency and antistatic properties.
〔A/(A+B+C+D+IN)〕
 〔A/(A+B+C+D+IN)〕は、上記一般式(1)で示される化合物(A)に帰属されるP核NMR積分値、上記一般式(2)で示される化合物(B)に帰属されるP核NMR積分値、上記一般式(3)で示される化合物(C)に帰属されるP核NMR積分値、上記化合物(D)及び上記無機燐酸塩(IN)に帰属されるP核NMR積分値の合計(A+B+C+D+IN)(以下、P核NMR積分値の合計(A+B+C+D+IN)という。)に対する下記一般式(1)で示される化合物(A)に帰属されるP核NMR積分値(A)の比率を示す。
 〔A/(A+B+C+D+IN)〕は、20~100%であり、22~98%が好ましく、25~95%がより好ましく、30~92%がさらに好ましい。20%未満では、撥水性及び耐久制電性が不足する。
[A/(A+B+C+D+IN)]
[A / (A + B + C + D + IN)] is the P nuclear NMR integral value attributed to the compound (A) represented by the general formula (1), the P attributed to the compound (B) represented by the general formula (2) Nuclear NMR integral value, P-nuclear NMR integral value attributed to the compound (C) represented by the general formula (3), P-nuclear NMR integral value attributed to the compound (D) and the inorganic phosphate (IN) The ratio of the P-nuclear NMR integral value (A) attributed to the compound (A) represented by the following general formula (1) to the total (A + B + C + D + IN) (hereinafter referred to as the total P-nuclear NMR integral value (A + B + C + D + IN)) show.
[A/(A+B+C+D+IN)] is 20 to 100%, preferably 22 to 98%, more preferably 25 to 95%, even more preferably 30 to 92%. If it is less than 20%, water repellency and durable antistatic properties are insufficient.
 〔B/(A+B+C+D+IN)〕は、P核NMR積分値の合計(A+B+C+D+IN)に対する上記化合物(B)に帰属されるP核NMR積分値(B)の比率を示す。〔B/(A+B+C+D+IN)〕は、1~65%が好ましく、3~50%がより好ましく、5~40%がさらに好ましい。 [B/(A+B+C+D+IN)] indicates the ratio of the P-nuclear NMR integral value (B) attributed to the compound (B) to the total P-nuclear NMR integral value (A+B+C+D+IN). [B/(A+B+C+D+IN)] is preferably 1 to 65%, more preferably 3 to 50%, even more preferably 5 to 40%.
 〔C/(A+B+C+D+IN)〕は、P核NMR積分値の合計(A+B+C+D+IN)に対する上記化合物(C)に帰属されるP核NMR積分値(C)の比率を示す。〔C/(A+B+C+D+IN)〕の下限値は、本願効果を奏する観点から、0%が好ましく、4%がより好ましく、8%がさらに好ましい。〔C/(A+B+C+D+IN)〕の上限値は、本願効果を奏する観点から、40%が好ましく、30%がより好ましく、20%がさらに好ましい。 [C/(A+B+C+D+IN)] indicates the ratio of the P-nuclear NMR integral value (C) attributed to the compound (C) to the total P-nuclear NMR integral value (A+B+C+D+IN). The lower limit of [C/(A+B+C+D+IN)] is preferably 0%, more preferably 4%, and even more preferably 8%, from the viewpoint of achieving the effect of the present application. The upper limit of [C/(A+B+C+D+IN)] is preferably 40%, more preferably 30%, and even more preferably 20%, from the viewpoint of achieving the effects of the present application.
 〔D/(A+B+C+D+IN)〕は、P核NMR積分値の合計(A+B+C+D+IN)に対する上記化合物(D)に帰属されるP核NMR積分値(D)の比率を示す。〔D/(A+B+C+D+IN)〕は、本願効果を奏する観点から、0~10%が好ましく、1~5%がより好ましく、2~4%がさらに好ましい。 [D/(A+B+C+D+IN)] indicates the ratio of the P-nuclear NMR integral value (D) attributed to the compound (D) to the total P-nuclear NMR integral value (A+B+C+D+IN). [D/(A+B+C+D+IN)] is preferably 0 to 10%, more preferably 1 to 5%, and even more preferably 2 to 4%, from the viewpoint of achieving the effect of the present application.
 〔IN/(A+B+C+D+IN)〕は、P核NMR積分値の合計(A+B+C+D+IN)に対する上記無機燐酸塩(IN)に帰属されるP核NMR積分値(D)の比率を示す。0~20%が好ましく、0.5~18%がより好ましく、1~16%がさらに好ましい。 [IN/(A+B+C+D+IN)] indicates the ratio of the P-nuclear NMR integral value (D) attributed to the inorganic phosphate (IN) to the total P-nuclear NMR integral value (A+B+C+D+IN). 0 to 20% is preferred, 0.5 to 18% is more preferred, and 1 to 16% is even more preferred.
 化合物(A)に帰属されるP核NMR積分値と化合物(B)に帰属されるP核NMR積分値との比率(A/B)は、本願効果を奏する観点から、1~50が好ましく、2~40がより好ましく、4~20がさらに好ましい。 The ratio (A/B) between the P-nuclear NMR integral value attributed to the compound (A) and the P-nuclear NMR integral value attributed to the compound (B) is preferably 1 to 50 from the viewpoint of achieving the effect of the present application. 2 to 40 are more preferred, and 4 to 20 are even more preferred.
〔吸湿率〕
 本発明の撥水繊維用処理剤の不揮発分の吸湿率は、高温下での耐久制電性の観点から、5~75%が好ましく、10~75%がより好ましく、15~70%がさらに好ましく、20~60%が特に好ましい。
 吸湿率は、実施例に記載された条件、方法で実施した値をいう。
[Moisture absorption rate]
The non-volatile moisture absorption rate of the treatment agent for water-repellent fibers of the present invention is preferably 5 to 75%, more preferably 10 to 75%, and further preferably 15 to 70%, from the viewpoint of durable antistatic properties at high temperatures. Preferably, 20-60% is particularly preferred.
Moisture absorption refers to the value obtained under the conditions and methods described in Examples.
 本発明の撥水繊維用処理剤の不揮発分に対する、上記化合物(A)、上記化合物(B)、上記化合物(C)、上記化合物(D)及び上記無機燐酸塩(IN)の合計の重量割合の下限値は、低油剤付着量でも撥水性及び制電性に優れる観点から、50重量%、60重量%、70重量、80重量%の順で好ましい。
 本発明の撥水繊維用処理剤の不揮発分に対する、上記化合物(A)、上記化合物(B)、上記化合物(C)、上記化合物(D)及び上記無機燐酸塩(IN)の合計の重量割合の上限値は、低油剤付着量でも撥水性及び制電性に優れる観点から、100重量%、98重量%、95重量%、90重量%がこの順で好ましい。
 なお、ここでいう低油剤付着量は、繊維に対する処理剤の不揮発分の重量が0.03~0.10%が好ましく、0.03~0.09重量%がより好ましく、0.06~0.08重量%がさらに好ましい。一般的に、短繊維処理剤の短繊維に対する油剤付着量は、0.11~0.3%程度である(以下、一般的な油剤付着量という。)。
The total weight ratio of the compound (A), the compound (B), the compound (C), the compound (D) and the inorganic phosphate (IN) to the non-volatile content of the water-repellent fiber treatment agent of the present invention is preferably in the order of 50% by weight, 60% by weight, 70% by weight, and 80% by weight, from the viewpoint of excellent water repellency and antistatic properties even with a small amount of oil agent adhered.
The total weight ratio of the compound (A), the compound (B), the compound (C), the compound (D) and the inorganic phosphate (IN) to the non-volatile content of the water-repellent fiber treatment agent of the present invention is preferably 100% by weight, 98% by weight, 95% by weight, and 90% by weight in this order from the viewpoint of excellent water repellency and antistatic properties even with a small amount of oil agent adhered.
The low oil adhesion amount referred to here is preferably 0.03 to 0.10%, more preferably 0.03 to 0.09% by weight, more preferably 0.06 to 0.06% by weight of the non-volatile content of the treatment agent to the fiber. 0.08% by weight is more preferred. In general, the amount of oil adhered to the short fibers of the short fiber treatment agent is about 0.11 to 0.3% (hereinafter referred to as general oil adhered amount).
(化合物(E)又は化合物(F)を含有する場合)
 本発明の撥水繊維用処理剤が、上記化合物(E)又は化合物(F)を含有する場合、一般的な油剤付着量で撥水性及び制電性に優れる観点から、上記化合物(A)、上記化合物(B)、上記化合物(C)、上記化合物(D)及び上記無機燐酸塩(IN)の合計の重量割合の下限値は、8重量%、10重量%、15重量%、20重量の順で好ましい。本発明の撥水繊維用処理剤の不揮発分に対する、上記化合物(A)、上記化合物(B)、上記化合物(C)、上記化合物(D)及び上記無機燐酸塩(IN)の合計の重量割合の上限値は、一般的な油剤付着量で撥水性及び制電性に優れる観点から、100重量%、98重量%、95重量%、90重量%がこの順で好ましい。
(When compound (E) or compound (F) is contained)
When the water-repellent fiber treatment agent of the present invention contains the above compound (E) or compound (F), from the viewpoint of excellent water repellency and antistatic properties with a general oil agent adhesion amount, the above compound (A), The lower limits of the total weight ratio of the compound (B), the compound (C), the compound (D), and the inorganic phosphate (IN) are 8% by weight, 10% by weight, 15% by weight, and 20% by weight. preferred in order. The total weight ratio of the compound (A), the compound (B), the compound (C), the compound (D) and the inorganic phosphate (IN) to the non-volatile content of the water-repellent fiber treatment agent of the present invention is preferably 100% by weight, 98% by weight, 95% by weight, and 90% by weight in this order from the viewpoint of excellent water repellency and antistatic properties with a general oil agent adhesion amount.
 本発明の撥水繊維用処理剤が、上記化合物(E)を含有する場合、本発明の撥水繊維用処理剤の不揮発分に対する化合物(E)の重量割合の下限値は、一般的な油剤付着量で撥水性及び制電性に優れる観点から、5重量%、10重量%、20重量%の順で好ましい。
 本発明の撥水繊維用処理剤が、上記化合物(E)を含有する場合、本発明の撥水繊維用処理剤の不揮発分に対する化合物(E)の重量割合の上限値は、一般的な油剤付着量で撥水性及び制電性に優れる観点から、92重量%、82重量%、72重量%、50重量%、40重量%、30重量%の順で好ましい。
When the water-repellent fiber treatment agent of the present invention contains the compound (E), the lower limit of the weight ratio of the compound (E) to the non-volatile matter of the water-repellent fiber treatment agent of the present invention is a general oil agent From the viewpoint of excellent water repellency and antistatic properties, the amount is preferably 5% by weight, 10% by weight, and 20% by weight, in that order.
When the treatment agent for water-repellent fibers of the present invention contains the compound (E), the upper limit of the weight ratio of the compound (E) to the non-volatile content of the treatment agent for water-repellent fibers of the present invention is a general oil agent. From the standpoint of excellent water repellency and antistatic properties, the preferred order is 92% by weight, 82% by weight, 72% by weight, 50% by weight, 40% by weight, and 30% by weight.
 本発明の撥水繊維用処理剤が、上記化合物(F)を含有する場合、本発明の撥水繊維用処理剤の不揮発分に対する化合物(F)の重量割合の下限値は、一般的な油剤付着量で撥水性及び制電性に優れる観点から、10重量%、20重量%、30重量%の順で好ましい。
 本発明の撥水繊維用処理剤が、上記化合物(F)を含有する場合、本発明の撥水繊維用処理剤の不揮発分に対する化合物(F)の重量割合の上限値は、一般的な油剤付着量で撥水性及び制電性に優れる観点から、85重量%、75重量%、65重量%の順で好ましい。
When the water-repellent fiber treatment agent of the present invention contains the above compound (F), the lower limit of the weight ratio of the compound (F) to the non-volatile matter of the water-repellent fiber treatment agent of the present invention is a general oil agent From the viewpoint of excellent water repellency and antistatic properties, the amount is preferably 10% by weight, 20% by weight, and 30% by weight, in that order.
When the treatment agent for water-repellent fibers of the present invention contains the compound (F), the upper limit of the weight ratio of the compound (F) to the non-volatile matter of the treatment agent for water-repellent fibers of the present invention is a general oil agent. From the viewpoint of excellent water repellency and antistatic properties, the amount is preferably 85% by weight, 75% by weight, and 65% by weight, in that order.
 本発明の撥水繊維用処理剤は、ポリオルガノシロキサンは、含有していてもよいが、撥水性及び制電性の観点から、その含有量は、20重量%未満、10重量%以下、5重量%以下の順で好ましい。 The water-repellent fiber treatment agent of the present invention may contain polyorganosiloxane, but from the viewpoint of water repellency and antistatic properties, the content is less than 20% by weight, 10% by weight or less, and 5% by weight. It is preferable in the order of weight % or less.
〔撥水性繊維〕
 本発明の撥水性繊維は、不織布製造用合成繊維(繊維本体)とこれに付着した上記撥水繊維用処理剤とから構成される撥水性繊維であり、一般的には所定の長さに切断した短繊維である。撥水繊維用処理剤の撥水繊維用とは、不織布製造用合成繊維(繊維本体)に処理剤を付与することで結果的に、繊維に撥水機能を付与することを意味する。
 撥水繊維用処理剤の不揮発分の付着率は、撥水性及び制電性が優れる観点から、前記撥水性繊維に対して0.03~2重量%が好ましく、0.1~1重量%がさらに好ましい。
[Water repellent fiber]
The water-repellent fiber of the present invention is a water-repellent fiber composed of a synthetic fiber for nonwoven fabric production (fiber main body) and the above water-repellent fiber treatment agent attached thereto, and is generally cut into a predetermined length. short fibers. The treatment agent for water-repellent fibers for water-repellent fibers means that imparting a treatment agent to synthetic fibers for manufacturing nonwoven fabrics (fiber main body) results in imparting a water-repellent function to the fibers.
From the viewpoint of excellent water repellency and antistatic properties, the non-volatile content adhesion rate of the water-repellent fiber treatment agent is preferably 0.03 to 2% by weight, and 0.1 to 1% by weight, relative to the water-repellent fiber. More preferred.
 不織布製造用合成繊維(繊維本体)としては、たとえば、ポリオレフィン繊維、ポリエステル繊維、ナイロン繊維、塩ビ繊維、2種類以上の熱可塑性樹脂からなる複合繊維等であり、複合繊維の組み合わせとしては、ポリオレフィン系樹脂/ポリオレフィン系樹脂の場合、例えば、高密度ポリエチレン/ポリプロピレン、直鎖状高密度ポリエチレン/ポリプロピレン、低密度ポリエチレン/ポリプロピレン、プロピレンと他のα-オレフィンとの二元共重合体または三元共重合体/ポリプロピレン、直鎖状高密度ポリエチレン/高密度ポリエチレン、低密度ポリエチレン/高密度ポリエチレン等が挙げられる。また、ポリオレフィン系樹脂/ポリエステル系樹脂の場合、例えば、ポリプロピレン/ポリエチレンテレフタレート、高密度ポリエチレン/ポリエチレンテレフタレート、直鎖状高密度ポリエチレン/ポリエチレンテレフタレート、低密度ポリエチレン/ポリエチレンテレフタレート等が挙げられる。また、ポリエステル系樹脂/ポリエステル系樹脂の場合、例えば、共重合ポリエステル/ポリエチレンテレフタレート等が挙げられる。さらにポリアミド系樹脂/ポリエステル系樹脂、ポリオレフィン系樹脂/ポリアミド系樹脂等からなる繊維も例示することができる。これら不織布製造用合成繊維(繊維本体)のなかでも、柔らかな肌触りが好まれる理由から、不織布製造用ポリオレフィン系繊維(ポリオレフィン繊維やポリオレフィン繊維を含む複合繊維)、不織布製造用ポリエステル系繊維(ポリエステル繊維やポリエステル繊維を含む複合繊維)等の疎水性合成繊維に本発明の撥水繊維用処理剤は好適であり、さらには不織布製造用ポリオレフィン系繊維に本発明の撥水繊維用処理剤は好適である。 Synthetic fibers (fiber main body) for nonwoven fabric production include, for example, polyolefin fibers, polyester fibers, nylon fibers, vinyl chloride fibers, composite fibers made of two or more types of thermoplastic resins, and the like. In the case of resin/polyolefin resin, for example, high-density polyethylene/polypropylene, linear high-density polyethylene/polypropylene, low-density polyethylene/polypropylene, binary or terpolymer of propylene and other α-olefins coalesced/polypropylene, linear high-density polyethylene/high-density polyethylene, low-density polyethylene/high-density polyethylene, and the like. In the case of polyolefin resin/polyester resin, examples include polypropylene/polyethylene terephthalate, high density polyethylene/polyethylene terephthalate, linear high density polyethylene/polyethylene terephthalate, and low density polyethylene/polyethylene terephthalate. In the case of polyester resin/polyester resin, for example, copolymer polyester/polyethylene terephthalate can be used. Further examples include fibers made of polyamide resin/polyester resin, polyolefin resin/polyamide resin, and the like. Among these synthetic fibers for manufacturing nonwoven fabrics (fiber main body), polyolefin fibers for manufacturing nonwoven fabrics (polyolefin fibers and composite fibers containing polyolefin fibers) and polyester fibers for manufacturing nonwoven fabrics (polyester fibers) are preferred because of their soft touch. The treatment agent for water-repellent fibers of the present invention is suitable for hydrophobic synthetic fibers such as composite fibers including polyester fibers), and the treatment agent for water-repellent fibers of the present invention is suitable for polyolefin fibers for manufacturing nonwoven fabrics. be.
 繊維の断面構造は鞘芯型、並列型、偏心鞘芯型、多層型、放射型あるいは海島型が例示できるが、繊維製造工程での生産性や、不織布加工の容易さから、偏心を含む鞘芯型または並列型が好ましい。また、断面形状は円形または異形形状とすることができる。異形形状の場合、例えば扁平型、三角形~八角形等の多角型、T字型、中空型、多葉型等の任意の形状とすることができる。 The cross-sectional structure of the fiber can be exemplified by a sheath-core type, parallel type, eccentric sheath-core type, multi-layer type, radial type, or sea-island type. A core type or side-by-side type is preferred. Also, the cross-sectional shape can be circular or irregular. In the case of an irregular shape, for example, any shape such as a flat shape, a polygonal shape such as a triangle to an octagon, a T shape, a hollow shape, and a multi-leaf shape can be used.
 本発明の撥水繊維用処理剤は、そのまま希釈等せずに繊維本体に付着させてもよく、水等で不揮発分全体の重量割合が0.5~5重量%となる濃度に希釈してエマルジョンとして繊維本体に付着させてもよい。撥水繊維用処理剤を繊維本体へ付着させる工程は、繊維本体の紡糸工程、延伸工程、捲縮工程等のいずれであってもよい。本発明の撥水繊維用処理剤を繊維本体に付着させる手段については、特に限定はなく、ローラー給油、ノズルスプレー給油、ディップ給油等の手段を使用してもよい。繊維の製造工程やその特性に合わせ、より均一に効率よく目的の付着量が得られる方法を採用すればよい。また、乾燥の方法としては、熱風および赤外線により乾燥させる方法、熱源に接触させて乾燥させる方法等を用いてよい。 The water-repellent fiber treatment agent of the present invention may be applied directly to the fiber body without dilution or the like. It may be applied to the fiber body as an emulsion. The step of attaching the water-repellent fiber treatment agent to the fiber body may be any of a spinning step, a drawing step, a crimping step, and the like. The means for applying the water-repellent fiber treatment agent of the present invention to the fiber body is not particularly limited, and means such as roller lubrication, nozzle spray lubrication, and dip lubrication may be used. A method that can more uniformly and efficiently obtain the desired adhesion amount may be adopted in accordance with the manufacturing process and characteristics of the fiber. As a drying method, a method of drying with hot air and infrared rays, a method of drying by contact with a heat source, and the like may be used.
〔不織布の製造方法〕
 不織布の製造方法として、特に限定なく、公知の方法を採用できる。原料繊維としては短繊維や長繊維を用いることができる。原料繊維が短繊維のウェブ形成方式としては、カード方式やエアレイド方式等の乾式法や抄紙方式等の湿式法が挙げられる。また原料繊維が長繊維のウェブ形成方式としては、スパンボンド法、メルトブロー法、フラッシュ紡糸法等が挙げられる。また、繊維間結合方式としては、ケミカルボンド法、サーマルボンド法、ニードルパンチ法、スパンレース法、スティッチボンド法等が挙げられる。
 本発明の不織布の製造方法は、本発明の撥水性繊維(例えば短繊維)をカード機等に通し繊維ウェブを作製し、得られた繊維ウェブを熱処理する工程を含むものが好ましい。すなわち、本発明の撥水繊維用処理剤は、不織布の製造において繊維ウェブを熱処理する工程を有する場合に、特に好適に使用されるものである。
 繊維ウェブを熱処理して接合させる方法としては、加熱ロールまたは超音波によるによる熱圧着、加熱空気による熱融着、熱圧着点(ポイントボンディング)法等の熱融着法が挙げられる。繊維ウェブを熱処理して接合させる一例としては、芯に高融点の樹脂を使用し鞘に低融点の樹脂を使用する鞘芯型の複合繊維の場合、低融点の樹脂の融点付近で熱処理することで、繊維交点の熱接着を容易に行なうことができる。
 不織布の製造方法としては、撥水繊維用処理剤が付与された短繊維をカード機等に通しウェブとしたものを上述のように熱処理して接合させ一体化する方法、エアレイド法でパルプ等を積層する際に本発明の撥水性繊維(短繊維)と混綿して、上述のように熱処理して接合させる方法等も挙げられる。その他、スパンボンド法、メルトブロー法、フラッシュ紡糸法等により得られた繊維成形体に対して、本発明の撥水繊維用処理剤を付着させたものを加熱ロールまたは加熱空気等で熱処理して、または加熱ロールまたは加熱空気等で熱処理したものに本発明の撥水繊維用処理剤を付着させて、不織布を製造する方法も挙げられる。
[Method for producing nonwoven fabric]
A known method can be adopted as the method for producing the nonwoven fabric without any particular limitation. Short fibers and long fibers can be used as raw material fibers. Methods for forming a web using staple fibers as raw materials include dry methods such as a card method and an airlaid method, and wet methods such as a papermaking method. Examples of the method of forming a web using long fibers as raw materials include a spunbond method, a melt blow method, a flash spinning method, and the like. Further, the interfiber bonding method includes a chemical bond method, a thermal bond method, a needle punch method, a spunlace method, a stitch bond method, and the like.
The method for producing the nonwoven fabric of the present invention preferably includes a step of passing the water-repellent fibers (for example, short fibers) of the present invention through a carding machine or the like to prepare a fibrous web, and heat-treating the obtained fibrous web. That is, the treatment agent for water-repellent fibers of the present invention is particularly suitable for use in the production of nonwoven fabrics, when the process of heat-treating a fiber web is included.
Examples of the method of heat-treating and bonding the fiber web include heat-sealing methods such as heat-sealing using hot rolls or ultrasonic waves, heat-sealing using heated air, and heat-sealing point bonding. As an example of heat-treating and joining fiber webs, in the case of sheath-core composite fibers in which a high-melting resin is used for the core and a low-melting resin is used for the sheath, heat treatment is performed near the melting point of the low-melting resin. , the fiber intersections can be easily thermally bonded.
As a method for producing a nonwoven fabric, a method in which short fibers to which a water-repellent fiber treatment agent is applied is passed through a carding machine or the like to form a web, which is then heat-treated as described above to join and integrate, pulp or the like is combined by an airlaid method. A method of blending with the water-repellent fibers (short fibers) of the present invention at the time of lamination, heat-treating them as described above, and bonding them may also be used. In addition, the water-repellent fiber treatment agent of the present invention is attached to a fiber molded body obtained by a spunbond method, a melt blow method, a flash spinning method, etc., and then heat-treated with a heated roll or heated air, etc. Alternatively, a nonwoven fabric can be produced by attaching the treatment agent for water-repellent fibers of the present invention to a material that has been heat-treated with a heating roll or heated air.
 スパンボンド法の一例としては、複合繊維樹脂を紡糸し、次に、紡出された複合長繊維フィラメントを冷却流体により冷却し、延伸空気によってフィラメントに張力を加えて所期の繊度とする。その後、紡糸されたフィラメントを捕集ベルト上に捕集し、接合処理を行ってスパンボンド不織布を得る。接合手段としては、加熱ロールまたは超音波によるによる熱圧着、加熱空気による熱融着、熱圧着点(ポイントボンディング)法等がある。
 得られたスパンボンド不織布に本発明の撥水繊維用処理剤を付与する方法としては、グラビア法、フレキソ法、ゲートロール法等のロールコーティング法、スプレーコーティング法等で行うことができるが、不織布への塗布量を片面ずつ調節できるものであれば特に限定されるものではない。また、乾燥の方法としては、熱風および赤外線により乾燥させる方法、熱源に接触させて乾燥させる方法等を用いてよい。
As an example of the spunbond method, a composite fiber resin is spun, then the spun composite long fiber filaments are cooled with a cooling fluid, and tension is applied to the filaments by drawing air to achieve a desired fineness. After that, the spun filaments are collected on a collection belt and subjected to bonding treatment to obtain a spunbond nonwoven fabric. As a bonding means, there are a thermocompression bonding method using a heating roll or ultrasonic waves, a thermal fusion bonding method using heated air, a thermocompression point (point bonding) method, and the like.
As a method for applying the treatment agent for water-repellent fibers of the present invention to the obtained spunbond nonwoven fabric, it can be carried out by a gravure method, a flexographic method, a roll coating method such as a gate roll method, a spray coating method, or the like. It is not particularly limited as long as the coating amount to the surface can be adjusted one by one. As a drying method, a method of drying with hot air and infrared rays, a method of drying by contact with a heat source, and the like may be used.
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はここに記載した実施例に限定されるものではない。なお、以下の実施例に示される「パーセント(%)」及び「部」は、特に限定しない限り、「重量%」及び「重量部」を示す。なお、実施例及び比較例において、撥水繊維用処理剤の各特性の評価は次の方法に従って行った。 The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to the examples described here. "Percent (%)" and "parts" shown in the following examples indicate "% by weight" and "parts by weight" unless otherwise specified. In the examples and comparative examples, the properties of the treatment agent for water-repellent fibers were evaluated according to the following methods.
(実施例1~70及び比較例1~25)
 表1~12に示す各成分及び水を混合して、撥水繊維用処理剤全体に占める不揮発分の重量割合が25重量%の実施例1~70、比較例1~24の撥水繊維用処理剤をそれぞれ調製した。得られた撥水繊維用処理剤をそれぞれ約60℃の温水で不揮発分の重量割合が0.9重量%の濃度になるよう希釈して希釈液を得た。
 次に、繊維本体300gに対しそれぞれの撥水繊維用処理剤の希釈液150gをディップ給油法で付着させ、撥水性繊維に付着する撥水繊維用処理剤の不揮発分の付着量を0.45重量%にした。繊維本体は、撥水繊維用処理剤等の繊維処理剤が付着していない、ポリプロピレン(芯)-ポリエチレン(鞘)系複合繊維であり、単繊維繊度が2.2Dtex、繊維長が38mmのものであった。それぞれの撥水繊維用処理剤の希釈液を付着させた繊維を、80℃の温風乾燥機の中に2時間入れた後、室温で8時間以上放置して乾燥させて、撥水性繊維を得た。
(Examples 1 to 70 and Comparative Examples 1 to 25)
Each component shown in Tables 1 to 12 and water are mixed, and the weight ratio of non-volatile matter in the entire water-repellent fiber treatment agent is 25% by weight. For water-repellent fibers of Examples 1-70 and Comparative Examples 1-24. Each treatment was prepared. Each of the obtained water-repellent fiber treatment agents was diluted with warm water of about 60° C. so that the weight ratio of non-volatile matter was 0.9% by weight to obtain a diluted solution.
Next, 150 g of a diluted solution of each water-repellent fiber treatment agent was applied to 300 g of the fiber body by a dip oiling method, and the non-volatile content of the water-repellent fiber treatment agent adhering to the water-repellent fiber was 0.45. % by weight. The main body of the fiber is a polypropylene (core)-polyethylene (sheath) composite fiber to which no fiber treatment agent such as a water-repellent fiber treatment agent is attached, and has a single fiber fineness of 2.2 Dtex and a fiber length of 38 mm. Met. The fibers to which the diluent of each water-repellent fiber treatment agent has been applied are placed in a hot air dryer at 80°C for 2 hours, and then left to dry at room temperature for 8 hours or more to dry the water-repellent fibers. Obtained.
 得られた撥水性繊維をそれぞれ開繊工程およびカード試験機を用いたカード工程に通し、目付25g/mのウェブを作製した。その際、それぞれの撥水性繊維について、下記に示す評価方法でカード工程における物性(制電性)を評価した。得られたウェブを用いて変色防止性を評価した。得られたウェブをエアースルー型熱風循環乾燥機中140℃で熱処理してウェブを固定し、不織布を得た。得られた不織布について、下記に示す評価方法で物性(撥水性)をそれぞれ評価した。その結果を表1~8に示す。 The resulting water-repellent fibers were each passed through a fiber opening process and a carding process using a card tester to produce a web having a basis weight of 25 g/m 2 . At that time, for each water-repellent fiber, the physical properties (antistatic properties) in the carding process were evaluated by the evaluation method shown below. The resulting web was used to evaluate discoloration resistance. The obtained web was heat-treated at 140° C. in an air-through type hot air circulating dryer to fix the web to obtain a nonwoven fabric. The physical properties (water repellency) of the obtained nonwoven fabrics were evaluated by the following evaluation methods. The results are shown in Tables 1-8.
[吸湿率]
 撥水繊維用処理剤をシャーレ上で4日間風乾した。蓋付秤量瓶を105℃で30分間、蓋を開けた状態で乾燥させた。秤量瓶の蓋を閉め30分間、デシケーター内で放冷後、重量を精秤した(X)。風乾した試料を約1gずつ秤量瓶に入れ、60℃で8時間、真空度を760mmHgで真空乾燥後、サンプル入りの秤量瓶の重量を精秤した(Y)。精秤後、秤量瓶の蓋を開け、室温20℃、湿度65%で3日間吸湿させた。吸湿後、サンプル入り秤量瓶の重量を精秤した(Z)。吸湿率は下記式に従い算出した。
吸湿率=((Z)-(Y))/((Y)-(X))×100
[撥水性]
 不織布(25g/m)を15cm角に切断し、JIS L1092の6.1 耐水度A法(低水圧法)による(a)静水圧法に準拠して耐水圧を測定し以下の基準で評価した。なお、◎が最も良い評価である。〇~◎が実用に供し得る。
◎  …  30mm以上
〇  …  20mm以上~30mm未満
×  …  20mm未満
[Moisture absorption rate]
The treatment agent for water-repellent fibers was air-dried on a Petri dish for 4 days. The lidded weighing bottle was dried at 105° C. for 30 minutes with the lid open. The lid of the weighing bottle was closed, and after standing to cool in a desiccator for 30 minutes, the weight was accurately weighed (X). About 1 g of each air-dried sample was placed in a weighing bottle, dried at 60° C. for 8 hours at a degree of vacuum of 760 mmHg, and the weight of the weighing bottle containing the sample was accurately weighed (Y). After the precise weighing, the lid of the weighing bottle was opened, and the sample was allowed to absorb moisture at room temperature of 20° C. and humidity of 65% for 3 days. After absorbing moisture, the weighing bottle containing the sample was accurately weighed (Z). The moisture absorption rate was calculated according to the following formula.
Moisture absorption rate = ((Z) - (Y)) / ((Y) - (X)) x 100
[Water repellency]
A nonwoven fabric (25 g/m 2 ) was cut into 15 cm squares, and the water pressure resistance was measured according to JIS L1092 6.1 Water resistance A method (low water pressure method) (a) hydrostatic pressure method and evaluated according to the following criteria. bottom. In addition, (double-circle) is the best evaluation. ◯ to ⊚ can be put to practical use.
◎ ... 30 mm or more ○ ... 20 mm or more to less than 30 mm × ... less than 20 mm
[カード工程評価]
 (制電性)
 カード試験機を用いて20℃×45%RH(RHは、相対湿度を意味する。)の条件で試料撥水性繊維40gをシリンダー回転数970rpm(設定可能な最高回転数)でミニチュアカード機に通す。発生した静電気の電圧を測定し、以下の基準で評価する。なお、◎が最も良い評価であり、〇~◎が実用に供し得る。
 ◎  …  0.1kV未満、
 〇  …  0.1kV~1.0kV、
 ×  …  1.0kVより大
[Card process evaluation]
(antistatic)
Using a card tester, pass 40 g of water-repellent fiber sample through a miniature carding machine at a cylinder rotation speed of 970 rpm (maximum settable rotation speed) under the conditions of 20 ° C. and 45% RH (RH means relative humidity). . The generated static voltage is measured and evaluated according to the following criteria. In addition, ⊚ is the best evaluation, and ◯ to ⊚ are practical.
◎ ... less than 0.1 kV,
○ … 0.1 kV to 1.0 kV,
× … greater than 1.0 kV
[経時変化綿カード工程評価]
(経時綿制電性)
 本明細書でいう「耐久制電性」の評価方法である。
 50℃×65%RH×2週間の条件下で経時変化させた試料撥水性繊維40gをカード試験機を用いて20℃×45%RHの条件でシリンダー回転数970rpm(設定可能な最高回転数)でミニチュアカード機に通す。
 発生した静電気の電圧を測定し、以下の基準で評価する。なお、◎が最も良い評価であり、〇~◎が実用に供し得る。
 ◎  …  0.1kV未満、
 〇  …  0.1kV~1.0kV、
 ×  …  1.0kVより大
[Evaluation of aging cotton carding process]
(Antistatic properties of cotton over time)
This is a method for evaluating the "durable antistatic property" referred to in this specification.
A 40 g sample of water-repellent fiber that has been aged under the conditions of 50°C x 65% RH x 2 weeks is tested using a card tester at 20°C x 45% RH at a cylinder rotation speed of 970 rpm (maximum settable rotation speed). to pass through the miniature card machine.
The generated static voltage is measured and evaluated according to the following criteria. In addition, ⊚ is the best evaluation, and ◯ to ⊚ are practical.
◎ ... less than 0.1 kV,
○ … 0.1 kV to 1.0 kV,
× … greater than 1.0 kV
[不織布撥水性評価]
 得られた撥水性繊維をそれぞれ開繊工程およびカード試験機を用いたカード工程に通し、目付25g/mのウェブを作製した。その際、それぞれの撥水性繊維について、下記に示す評価方法でカード工程における物性(制電性)を評価した。得られたウェブを用いて変色防止性を評価した。得られたウェブをエアースルー型熱風循環乾燥機中140℃で熱処理してウェブを固定し、不織布を得た。得られた不織布について、下記に示す評価方法で物性(撥水性)をそれぞれ評価した。その結果を表1~8に示す。
[Nonwoven fabric water repellency evaluation]
The resulting water-repellent fibers were each passed through a fiber opening process and a carding process using a card tester to produce a web having a basis weight of 25 g/m 2 . At that time, for each water-repellent fiber, the physical properties (antistatic properties) in the carding process were evaluated by the evaluation method shown below. The resulting web was used to evaluate discoloration resistance. The obtained web was heat-treated at 140° C. in an air-through type hot air circulating dryer to fix the web to obtain a nonwoven fabric. The physical properties (water repellency) of the obtained nonwoven fabrics were evaluated by the following evaluation methods. The results are shown in Tables 1-8.
(P-1~2、8~10、13~16、24の製造方法)
 500mL四つ口フラスコにn-ブタノールあるいはモノエチレングリコールモノブチルエーテルを250g及び水を10g加えて撹拌しながら、10酸化4リンを総量200gになるように徐々に加えて反応させた。得られた未中和物の酸価を測定した。
 その後、未中和物の酸価及び目標酸価から算出した必要な水酸化ナトリウム水溶液又は水酸化カリウム水溶液に未中和物をを滴下し、得られた反応物の酸価を測定した。P核NMR積分値を測定し、化合物(A)、化合物(B)、化合物(C)、及び無機燐酸塩(IN)の帰属を行った。
 なお、後述する(A-1)~(C-4)、(a-1)~(c-2)のM、Mに係る「H又はNa」は、水酸化ナトリウム水溶液の添加により、未中和物と中和物との混合物であることを意味する。
(Manufacturing method of P-1 to 2, 8 to 10, 13 to 16, 24)
250 g of n-butanol or monoethylene glycol monobutyl ether and 10 g of water were added to a 500 mL four-necked flask, and while stirring, tetraphosphorus 10 oxide was gradually added to a total amount of 200 g for reaction. The acid value of the obtained unneutralized product was measured.
After that, the unneutralized product was added dropwise to the required aqueous sodium hydroxide solution or potassium hydroxide solution calculated from the acid value of the unneutralized product and the target acid value, and the acid value of the obtained reactant was measured. P-nuclear NMR integral values were measured to assign compound (A), compound (B), compound (C), and inorganic phosphate (IN).
In addition, "H or Na" for M 1 and M 2 in (A-1) to (C-4) and (a-1) to (c- 2 ) described later is It means a mixture of unneutralized and neutralized materials.
(酸価の測定方法)
 なお、本発明でいう酸価(x KOHmg/g)は次の方法で測定した。
 各サンプルを絶乾させ、0.01%フェノールフタレインを溶かしたキシレン/エタノール=1/1溶液50mLに各サンプル1gを溶解させた。当該溶液に0.1mol/L水酸化カリウムエタノール溶液を滴下し、微紅色に呈色するまでの液量(y mL)を測定し、下記計算式より算出した。
 x=y×5.61
(Method for measuring acid value)
The acid value (x KOHmg/g) referred to in the present invention was measured by the following method.
Each sample was completely dried, and 1 g of each sample was dissolved in 50 mL of xylene/ethanol=1/1 solution in which 0.01% phenolphthalein was dissolved. A 0.1 mol/L potassium hydroxide ethanol solution was added dropwise to the solution, and the liquid volume (y mL) until the color turned slightly red was measured and calculated from the following formula.
x = y x 5.61
(P-3~5、11~12、25の製造方法)
 500mL四つ口フラスコにn-ブタノールあるいはモノエチレングリコールモノブチルエーテル250gを加えて撹拌しながら、10酸化4リンを総量200gになるように徐々に加えて反応させ、未中和物を得た。未中和物の酸価及び目標酸価から算出した必要な量の水酸化ナトリウム水溶液又は水酸化カリウム水溶液に未中和物を滴下し、得られた反応物の酸価を測定した。
(Manufacturing method of P-3 to 5, 11 to 12, 25)
250 g of n-butanol or monoethylene glycol monobutyl ether was added to a 500 mL four-necked flask, and while stirring, tetraphosphorus dodecadioxide was gradually added to bring the total amount to 200 g and reacted to obtain an unneutralized product. The unneutralized product was added dropwise to a required amount of aqueous sodium hydroxide solution or aqueous potassium hydroxide solution calculated from the acid value of the unneutralized product and the target acid value, and the acid value of the resulting reactant was measured.
(P-6~7、17~23、26の製造方法)
 モノブチルホスフェート、モノエチレングリコールモノブチルエーテルホスフェート、ジブチルホスフェート、ジ(モノエチレングリコールモノブチルエーテル)ホスフェート、トリブチルホスフェート、トリ(モノエチレングリコールモノブチルエーテル)ホスフェート及び無機燐酸(これは、各成分を試薬購入後配合して、配合物の酸価を測定した。測定酸価及び目標酸価から算出した必要な量の水酸化ナトリウム水溶液又は水酸化カリウム水溶液に配合物を滴下し、得られた反応物の酸価を測定した。
(Manufacturing method of P-6 to 7, 17 to 23, 26)
Monobutyl phosphate, monoethylene glycol monobutyl ether phosphate, dibutyl phosphate, di(monoethylene glycol monobutyl ether) phosphate, tributyl phosphate, tri(monoethylene glycol monobutyl ether) phosphate and inorganic phosphoric acid The acid value of the formulation was measured by adding the formulation dropwise to the required amount of aqueous sodium hydroxide or potassium hydroxide solution calculated from the measured acid value and the target acid value, and the acid value of the resulting reaction product was was measured.
(p-1及びp-2の製造方法)
 500mL四つ口フラスコにn-ヘキサノールを250g及び水を10g加えて撹拌しながら、10酸化4リンを総量150gになるように徐々に加えて反応させた。得られた未中和物の酸価を測定した。未中和物の酸価及び目標酸価から算出した必要な量の水酸化カリウム水溶液に未中和物を滴下し、得られた反応物の酸価を測定した。
(p-3及びp-4の製造方法)
 500mL四つ口フラスコにn-ヘキサノールを250gを加えて撹拌しながら、10酸化4リンを総量150gになるように徐々に加えて反応させた。得られた未中和物の酸価を測定した。未中和物の酸価及び目標酸価から算出した必要な量の水酸化カリウム水溶液に未中和物を滴下し、得られた反応物の酸価を測定した。
(p-5の製造方法)
 500mL四つ口フラスコにステアリルアルコールを250g及び水を5g加えて、液温を60℃で撹拌しながら、10酸化4リンを総量50gになるように徐々に加えて反応させた。得られた未中和物の酸価を測定した。未中和物の酸価及び目標酸価から算出した必要な量の水酸化カリウム水溶液に未中和物を滴下し、得られた反応物の酸価を測定した。
(p-6及びp-7の製造方法)
 500mL四つ口フラスコにステアリルアルコール250gを加えて60℃で撹拌しながら、10酸化4リンを総量50gになるように徐々に加えて反応させた。得られた未中和物の酸価を測定した。未中和物の酸価及び目標酸価から算出した必要な量の水酸化カリウム水溶液に未中和物を滴下し、得られた反応物の酸価を測定した。
(p-8~p-12の製造方法)
 モノブチルホスフェート、ジブチルホスフェート、ポリ-ブチルホスフェート及び無機燐酸を試薬購入後配合して、配合物の酸価を測定した。測定酸価及び目標酸価から算出した必要な量の水酸化ナトリウム水溶液又は水酸化カリウム水溶液に配合物を滴下し、得られた反応物の酸価を測定した。
 なお、P-1~P-26、p-1~12は、表11~表12に示す。
(Manufacturing method of p-1 and p-2)
250 g of n-hexanol and 10 g of water were added to a 500 mL four-necked flask, and while stirring, tetraphosphorus 10 oxide was gradually added to bring the total amount to 150 g for reaction. The acid value of the obtained unneutralized product was measured. The unneutralized product was added dropwise to a required amount of aqueous potassium hydroxide solution calculated from the acid value of the unneutralized product and the target acid value, and the acid value of the obtained reactant was measured.
(Manufacturing method of p-3 and p-4)
250 g of n-hexanol was added to a 500 mL four-necked flask, and while stirring, tetraphosphorus 10 oxide was gradually added to bring the total amount to 150 g for reaction. The acid value of the obtained unneutralized product was measured. The unneutralized product was added dropwise to a required amount of aqueous potassium hydroxide solution calculated from the acid value of the unneutralized product and the target acid value, and the acid value of the obtained reactant was measured.
(Manufacturing method of p-5)
250 g of stearyl alcohol and 5 g of water were added to a 500 mL four-necked flask, and the mixture was stirred at a liquid temperature of 60° C., and tetraphosphorus 10 oxide was gradually added to a total amount of 50 g for reaction. The acid value of the obtained unneutralized product was measured. The unneutralized product was added dropwise to a required amount of aqueous potassium hydroxide solution calculated from the acid value of the unneutralized product and the target acid value, and the acid value of the obtained reactant was measured.
(Manufacturing method of p-6 and p-7)
250 g of stearyl alcohol was added to a 500 mL four-necked flask, and while stirring at 60° C., tetraphosphorus 10 oxide was gradually added to bring the total amount to 50 g for reaction. The acid value of the obtained unneutralized product was measured. The unneutralized product was added dropwise to a required amount of aqueous potassium hydroxide solution calculated from the acid value of the unneutralized product and the target acid value, and the acid value of the obtained reactant was measured.
(Manufacturing method of p-8 to p-12)
Monobutyl phosphate, dibutyl phosphate, poly-butyl phosphate and inorganic phosphoric acid were blended after purchasing the reagents and the acid number of the blend was measured. The formulation was added dropwise to the required amount of aqueous sodium hydroxide or potassium hydroxide solution calculated from the measured acid value and the target acid value, and the acid value of the resulting reaction product was measured.
P-1 to P-26 and p-1 to 12 are shown in Tables 11 and 12.
 なお、表1~11中に示す成分は次の通りである。なお、表3~9に示すP-1~P-7及びp1~p-6は、表9及び10に示す積分比率で含有する。
A-1 一般式(1)化合物、R=n-ブチル基、m=0、M:H又はNa、M:H又はNa
A-2 一般式(1)化合物、R=n-ブチル基、m=0、M:H又はK、M:H又はK
A-3 一般式(1)化合物、R=n-ブチル基、m=1、AO=炭素数2のオキシアルキレン基、M:H又はNa、M:H又はNa
A-4 一般式(1)化合物、R=n-ブチル基、m=1、AO=炭素数2のオキシアルキレン基、M:H又はK、M:H又はK
a-1 一般式(1)中、R=n-ヘキシル基、m=0、M:H又はK、M:H又はK
a-2 一般式(1)中、R=ステアリル基、m=0、M:H又はK、M:H又はK
B-1 一般式(2)化合物、R=n-ブチル基、R=n-ブチル基、m=0、M:H又はNa
B-2 一般式(2)化合物、R=n-ブチル基、R=n-ブチル基、m=0、M:H又はK
B-3 一般式(2)化合物、R=n-ブチル基、R=n-ブチル基、AO=炭素数2のオキシアルキレン基、m=1、M:H又はNa
B-4 一般式(2)化合物、R=n-ブチル基、R=n-ブチル基、AO=炭素数2のオキシアルキレン基、m=1、M:H又はK
b-1 一般式(2)中、R=n-ヘキシル基、R=n-ヘキシル基、m=0、M:H又はK
b-2 一般式(2)中、R=ステアリル基、R=ステアリル基、m=0、M:H又はK
C-1 一般式(3)化合物、R=n-ブチル基、m=0、M:H又はNa、M:H又はNa、Y=1、Q=M
C-2 一般式(3)化合物、R=n-ブチル基、m=0、M:H又はK、M:H又はK、Y=1、Q=M
C-3 一般式(3)化合物、R=n-ブチル基、m=1、AO=炭素数2のオキシアルキレン基、M:H又はNa、M:H又はNa、Y=1、Q=M
C-4 一般式(3)化合物、R=n-ブチル基、m=1、AO=炭素数2のオキシアルキレン基、M:H又はK、M:H又はK、Y=1、Q=M
c-1 一般式(3)中、R=n-ヘキシル基、m=0、M:H又はK、M:H又はK、Y=1、Q=M
c-2 一般式(3)中、R=ステアリル基、m=0、M:H又はK、M:H又はK、Y=1、Q=M
D-1 トリブチルホスフェート
D-2 トリ(モノエチレングリコールモノブチルエーテル)ホスフェート
d-1 トリヘキシルホスフェート
d-2 トリステアリルホスフェート
E-1 ソルビタンモノステアレート
E-2 グリセリンモノステアレート
E-3  ポリオキシエチレン(10モル)硬化ヒマシ油エーテル
E-4 ポリオキシエチレン(7モル)ステアリルエーテル
E-5 ポリオキシエチレン(20モル)オレイルエーテル
E-6 ヒマシ油
E-7 ポリオキシエチレン(5モル)2-エチルヘキシルエーテル
E-8 ポリオキシエチレン(3モル)ブチルエーテル
F1-1-1 ステアリルステアレート
F1-1-2 2-エチルヘキシルステアレート
F1-1-3 セチルパルミテート
F1-2-1 ペンタエリスリトールテトラカプリレート
F2-1 ステアリルアルコール
F2-2 セチルアルコール
F3-1 パラフィンワックス
F3-2 オクタン
G-1 オレイン酸カリウム塩
H-1 オレイン酸
H-2 クエン酸
H-3 ダイマー酸
H-4 ポリエチレングリコール(15モル)
H-5 グリセリン
H-6 1,3-プロパンジオール
I-1 ジメチルシリコーン
The components shown in Tables 1 to 11 are as follows. P-1 to P-7 and p1 to p-6 shown in Tables 3 to 9 are contained at the integral ratios shown in Tables 9 and 10.
A-1 compound of general formula (1), R 1 = n-butyl group, m = 0, M 1 : H or Na, M 2 : H or Na
A-2 compound of general formula (1), R 1 = n-butyl group, m = 0, M 1 : H or K, M 2 : H or K
A-3 compound of general formula (1), R 1 = n-butyl group, m = 1, AO = oxyalkylene group having 2 carbon atoms, M 1 : H or Na, M 2 : H or Na
A-4 compound of general formula (1), R 1 = n-butyl group, m = 1, AO = oxyalkylene group having 2 carbon atoms, M 1 : H or K, M 2 : H or K
a-1 In general formula (1), R 1 = n-hexyl group, m = 0, M 1 : H or K, M 2 : H or K
a-2 In general formula (1), R 1 = stearyl group, m = 0, M 1 : H or K, M 2 : H or K
B-1 compound of general formula (2), R 2 = n-butyl group, R 3 = n-butyl group, m = 0, M 1 : H or Na
B-2 compound of general formula (2), R 2 = n-butyl group, R 3 = n-butyl group, m = 0, M 1 : H or K
B-3 compound of general formula (2), R 2 = n-butyl group, R 3 = n-butyl group, AO = oxyalkylene group having 2 carbon atoms, m = 1, M 1 : H or Na
B-4 compound of general formula (2), R 2 = n-butyl group, R 3 = n-butyl group, AO = oxyalkylene group having 2 carbon atoms, m = 1, M 1 : H or K
b-1 In general formula (2), R 2 = n-hexyl group, R 3 = n-hexyl group, m = 0, M 1 : H or K
b-2 In general formula (2), R 2 = stearyl group, R 3 = stearyl group, m = 0, M 1 : H or K
C-1 compound of general formula (3), R 4 = n-butyl group, m = 0, M 1 : H or Na, M 2 : H or Na, Y = 1, Q = M 2
C-2 compound of general formula (3), R 4 = n-butyl group, m = 0, M 1 : H or K, M 2 : H or K, Y = 1, Q = M 2
C-3 compound of general formula (3), R 4 = n-butyl group, m = 1, AO = oxyalkylene group having 2 carbon atoms, M 1 : H or Na, M 2 : H or Na, Y = 1, Q = M2
C-4 compound of general formula (3), R 4 = n-butyl group, m = 1, AO = oxyalkylene group having 2 carbon atoms, M 1 : H or K, M 2 : H or K, Y = 1, Q = M2
c-1 In general formula (3), R 4 =n-hexyl group, m = 0, M 1 : H or K, M 2 : H or K, Y = 1, Q = M 2
c-2 In general formula (3), R 4 = stearyl group, m = 0, M 1 : H or K, M 2 : H or K, Y = 1, Q = M 2
D-1 tributyl phosphate D-2 tri(monoethylene glycol monobutyl ether) phosphate d-1 trihexyl phosphate d-2 tristearyl phosphate E-1 sorbitan monostearate E-2 glycerin monostearate E-3 polyoxyethylene ( 10 mol) hydrogenated castor oil ether E-4 polyoxyethylene (7 mol) stearyl ether E-5 polyoxyethylene (20 mol) oleyl ether E-6 castor oil E-7 polyoxyethylene (5 mol) 2-ethylhexyl ether E-8 Polyoxyethylene (3 mol) butyl ether F1-1-1 Stearyl stearate F1-1-2 2-Ethylhexyl stearate F1-1-3 Cetyl palmitate F1-2-1 Pentaerythritol tetracaprylate F2-1 Stearyl alcohol F2-2 Cetyl alcohol F3-1 Paraffin wax F3-2 Octane G-1 Potassium oleate H-1 Oleic acid H-2 Citric acid H-3 Dimer acid H-4 Polyethylene glycol (15 mol)
H-5 glycerin H-6 1,3-propanediol I-1 dimethyl silicone
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1~7から分かる通り、実施例1~70の撥水繊維用処理剤は、下記一般式(1)で示される化合物(A)、下記一般式(2)で示される化合物(B)、下記一般式(3)で示される化合物(C)、下記化合物(D)及び無機燐酸塩(IN)から選ばれる少なくとも1種を含む撥水繊維用処理剤であって、前記化合物(A)及び前記化合物(B)を必須に含み、前記撥水繊維用処理剤の不揮発分の酸価が0.5~680(KOHmg/g)であり、前記化合物(A)、前記化合物(B)、前記化合物(C)、前記化合物(D)及び前記無機燐酸塩(IN)のそれぞれに帰属されるP核NMR積分値の合計(A+B+C+D+IN)に対する前記化合物(A)に帰属されるP核NMR積分値(A)の比率〔A/(A+B+C+D+IN)〕が20~100%であるため、本願課題を解決できている。
 また、P-1~P-16の各処理剤について、撥水繊維用処理剤の不揮発分の付着量を0.03重量%にした以外は実施例1~10と同様にして評価した結果、いずれも、撥水性◎、制電性◎、耐久制電性○という結果が得られた。
 一方、表8~10から分かる通り、化合物(A)及び化合物(B)のうち少なくともいずれか一方を含まない場合(比較例1~7、12~24)、〔A/(A+B+C+D+IN)〕が20~100%でない場合(比較例8、10、11、25)、酸価が0.5~680(KOHmg/g)の範囲にない場合(比較例9~11)、本願の課題である撥水性又は耐久制電性のいずれかを解決できていない。
As can be seen from Tables 1 to 7, the water-repellent fiber treatment agents of Examples 1 to 70 consist of a compound (A) represented by the following general formula (1), a compound (B) represented by the following general formula (2), A water-repellent fiber treatment agent containing at least one selected from a compound (C) represented by the following general formula (3), a compound (D) below, and an inorganic phosphate (IN), wherein the compound (A) and The water-repellent fiber treatment agent essentially contains the compound (B), and the acid value of the non-volatile matter of the water-repellent fiber treatment agent is 0.5 to 680 (KOHmg/g), and the compound (A), the compound (B), the The P-nuclear NMR integral value attributed to the compound (A) with respect to the sum of the P-nuclear NMR integral values (A + B + C + D + IN) attributed to each of the compound (C), the compound (D), and the inorganic phosphate (IN) ( Since the ratio of A) [A/(A+B+C+D+IN)] is 20 to 100%, the problem of the present application can be solved.
In addition, each of the treatment agents P-1 to P-16 was evaluated in the same manner as in Examples 1 to 10, except that the non-volatile content of the water-repellent fiber treatment agent was set to 0.03% by weight. In all cases, water repellency ⊚, antistatic ⊚, and durable antistatic ∘ were obtained.
On the other hand, as can be seen from Tables 8 to 10, when at least one of compound (A) and compound (B) is not included (Comparative Examples 1 to 7, 12 to 24), [A / (A + B + C + D + IN)] is 20 When not ~100% (Comparative Examples 8, 10, 11, 25), when the acid value is not in the range of 0.5 to 680 (KOHmg / g) (Comparative Examples 9 to 11), the water repellency which is the subject of the present application Or we have not been able to solve either of the durable antistatic properties.
 本発明の撥水繊維用処理剤を用いて処理した撥水繊維及び不織布は、紙おむつやナプキンを代表とする生理用品等の吸収性物品のバックシートに用いられる。その他、食品用途、医療用途、及び工業用途での撥水シートを必要とする場面で使用することもできる。 The water-repellent fibers and non-woven fabrics treated with the water-repellent fiber treatment agent of the present invention are used for the back sheets of absorbent articles such as sanitary products typified by disposable diapers and napkins. In addition, it can also be used in food applications, medical applications, and industrial applications where a water-repellent sheet is required.

Claims (5)

  1.  下記一般式(1)で示される化合物(A)、下記一般式(2)で示される化合物(B)、下記一般式(3)で示される化合物(C)、下記化合物(D)及び無機燐酸塩(IN)から選ばれる少なくとも1種を含む撥水繊維用処理剤であって、前記化合物(A)及び前記化合物(B)を必須に含み、
     前記撥水繊維用処理剤の不揮発分の酸価が0.5~680(KOHmg/g)であり、
    前記化合物(A)、前記化合物(B)、前記化合物(C)、前記化合物(D)及び前記無機燐酸塩(IN)のそれぞれに帰属されるP核NMR積分値の合計(A+B+C+D+IN)に対する前記化合物(A)に帰属されるP核NMR積分値(A)の比率〔A/(A+B+C+D+IN)〕が20~100%である、撥水繊維用処理剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素数3~5の炭化水素基である。Rは直鎖であっても分岐鎖であってもよい。AOは炭素数2~4のオキシアルキレン基であって、mは0~15の整数である。M及びMは、それぞれ独立して、水素原子、アルカリ金属、アンモニウム、ホスホニウム、有機アミン塩又は4級アンモニウム塩である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは炭素数3~5の炭化水素基である。R及びRは直鎖であっても分岐鎖であってもよい。AOは炭素数2~4のオキシアルキレン基であって、mは0~15の整数である。Mは、水素原子、アルカリ金属、アンモニウム、ホスホニウム、有機アミン塩又は4級アンモニウム塩である。分子内に(AO)が2つある場合には、お互いに同じでも異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは炭素数3~5の炭化水素基である。Rは直鎖であっても分岐鎖であってもよい。AOは炭素数2~4のオキシアルキレン基であって、mは0~15の整数である。M及びMは、それぞれ独立して、水素原子、アルカリ金属、アンモニウム、ホスホニウム又は有機アミン塩又は4級アンモニウム塩である。Qは、M又はR(OA)である。Rは炭素数3~5の炭化水素基である。Rは直鎖であっても分岐鎖であってもよい。Yは1又は2である。分子内にM又は(AO)が2つ以上ある場合には、お互いに同じでも異なっていてもよい。)
    化合物(D):トリペンチルホスフェート、トリブチルホスフェート、トリプロピルホスフェート及びトリ(ポリオキシアルキレンモノアルキルエーテル)ホスフェートから選ばれる少なくとも1種
    The compound (A) represented by the following general formula (1), the compound (B) represented by the following general formula (2), the compound (C) represented by the following general formula (3), the following compound (D) and inorganic phosphoric acid A water-repellent fiber treatment agent containing at least one selected from salts (IN), essentially containing the compound (A) and the compound (B),
    The water-repellent fiber treatment agent has an acid value of non-volatile matter of 0.5 to 680 (KOHmg/g),
    The compounds relative to the sum (A+B+C+D+IN) of P-nuclear NMR integral values attributed to each of the compound (A), the compound (B), the compound (C), the compound (D), and the inorganic phosphate (IN) A treatment agent for water-repellent fibers, wherein the ratio [A/(A+B+C+D+IN)] of the P-nuclear NMR integral value (A) attributed to (A) is 20 to 100%.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 is a hydrocarbon group having 3 to 5 carbon atoms. R 1 may be linear or branched. AO is an oxyalkylene group having 2 to 4 carbon atoms. , m is an integer of 0 to 15. M 1 and M 2 are each independently a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 2 and R 3 are hydrocarbon groups having 3 to 5 carbon atoms. R 2 and R 3 may be linear or branched. AO is a hydrocarbon group having 2 to 4 carbon atoms. an oxyalkylene group, m is an integer of 0 to 15. M 1 is a hydrogen atom, alkali metal, ammonium, phosphonium, organic amine salt or quaternary ammonium salt, and (AO) m is present in the molecule If there are two, they may be the same or different.)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 4 is a hydrocarbon group having 3 to 5 carbon atoms. R 4 may be linear or branched. AO is an oxyalkylene group having 2 to 4 carbon atoms. , m is an integer of 0 to 15. M 1 and M 2 are each independently a hydrogen atom, an alkali metal, ammonium, phosphonium, an organic amine salt or a quaternary ammonium salt, Q is M 2 or R 5 (OA) m , R 5 is a hydrocarbon group having 3 to 5 carbon atoms, R 5 may be linear or branched, Y is 1 or 2, molecule When there are two or more M 2 or (AO) m within, they may be the same or different.)
    Compound (D): at least one selected from tripentyl phosphate, tributyl phosphate, tripropyl phosphate and tri(polyoxyalkylene monoalkyl ether) phosphate
  2.  前記撥水繊維用処理剤の不揮発分の吸湿率が10~75%である、請求項1に記載の撥水繊維用処理剤。 The treatment agent for water-repellent fibers according to claim 1, wherein the water-repellent treatment agent for water-repellent fibers has a non-volatile moisture absorption rate of 10 to 75%.
  3.  ノニオン界面活性剤(E)をさらに含む、請求項1又は2に記載の撥水繊維用処理剤。 The treatment agent for water-repellent fibers according to claim 1 or 2, further comprising a nonionic surfactant (E).
  4.  前記化合物(A)に帰属されるP核NMR積分値と前記化合物(B)に帰属されるP核NMR積分値との比率(A/B)が1~50である、請求項1~3のいずれかに記載の撥水繊維用処理剤。 Claims 1 to 3, wherein the ratio (A/B) between the P-nuclear NMR integral value attributed to the compound (A) and the P-nuclear NMR integral value attributed to the compound (B) is 1 to 50. The treatment agent for water-repellent fibers according to any one of the above.
  5.  原料撥水繊維に対して、請求項1~4のいずれかに記載の撥水繊維用処理剤が付与されてなる、撥水性繊維。 A water-repellent fiber obtained by applying the treatment agent for water-repellent fiber according to any one of claims 1 to 4 to the raw material water-repellent fiber.
PCT/JP2022/032898 2021-09-17 2022-09-01 Treatment agent for water-repellent fiber and use thereof WO2023042667A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021151634 2021-09-17
JP2021-151634 2021-09-17
JP2021-197423 2021-12-06
JP2021197423A JP7025594B1 (en) 2021-09-17 2021-12-06 Treatment agent for water-repellent fiber and its use
JP2022017584 2022-02-08
JP2022-017584 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023042667A1 true WO2023042667A1 (en) 2023-03-23

Family

ID=85602799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032898 WO2023042667A1 (en) 2021-09-17 2022-09-01 Treatment agent for water-repellent fiber and use thereof

Country Status (1)

Country Link
WO (1) WO2023042667A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551068B2 (en) * 1972-02-29 1980-12-22
JPH0364575A (en) * 1989-08-03 1991-03-19 Asahi Chem Ind Co Ltd Nonwoven polyolefin sheet
JPH0424286A (en) * 1990-05-14 1992-01-28 Asahi Chem Ind Co Ltd Nonwoven polyolefin sheet
JPH07279047A (en) * 1994-04-14 1995-10-24 Chisso Corp Yarn
JP2002516929A (en) * 1997-10-31 2002-06-11 キンバリー クラーク ワールドワイド インコーポレイテッド Sterilization wrap, its application and sterilization method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551068B2 (en) * 1972-02-29 1980-12-22
JPH0364575A (en) * 1989-08-03 1991-03-19 Asahi Chem Ind Co Ltd Nonwoven polyolefin sheet
JPH0424286A (en) * 1990-05-14 1992-01-28 Asahi Chem Ind Co Ltd Nonwoven polyolefin sheet
JPH07279047A (en) * 1994-04-14 1995-10-24 Chisso Corp Yarn
JP2002516929A (en) * 1997-10-31 2002-06-11 キンバリー クラーク ワールドワイド インコーポレイテッド Sterilization wrap, its application and sterilization method

Similar Documents

Publication Publication Date Title
KR101978950B1 (en) Treating agent for polyolefin-based synthetic fiber, aqueous solution thereof, treatment method of polyolefin-based synthetic fiber, polyolefin-based synthetic fiber and thermal bond nonwoven fabric
CN109154131B (en) Fiber treatment agent for short fibers and use thereof
DK2917398T3 (en) Composition for permanent hydrophilization of polyolefin fibers and their use
KR102202559B1 (en) Polyolefin synthetic fiber treatment agent and polyolefin synthetic fiber
JP6818384B2 (en) Fiber treatment agent, method of manufacturing water-permeable fiber and non-woven fabric to which it is attached
JP2011074500A (en) Water penetrability-imparting agent, water-penetrating fiber and method for producing nonwoven fabric
WO2016002476A1 (en) Fiber-treating agent, water-permeable fiber having same attached thereto, and method for producing non-woven fabric
JP6291617B1 (en) Non-woven fabric fiber treatment agent and non-woven fabric using the same
JP2023044596A (en) Treatment agent for water-repellent fiber and use thereof
WO2023042667A1 (en) Treatment agent for water-repellent fiber and use thereof
WO2012148001A1 (en) Fibers having improved color fastness and fibrous formed body constituted thereof
JP3057521B2 (en) Polyolefin fiber durable hydrophilizing agent
KR101427192B1 (en) Durable hydrophilic fiber having excellent color fastness, and molded fiber and absorbent article comprising same
JP2022186001A (en) Treatment agent for water-repellent fibers and use thereof
CN117957346A (en) Treatment agent for water-repellent fiber and use thereof
JP6837524B2 (en) Fiber treatment agent for non-woven fabric
JP6841464B1 (en) Polyolefin-based synthetic fiber non-woven fabric treatment agent, polyolefin-based synthetic fiber, and polyolefin-based synthetic fiber spunbonded non-woven fabric
JP2023130314A (en) Water permeability enhancer for textile, fiber, nonwoven fabric, and water-absorbent article
WO2023149326A1 (en) Fiber treatment agent for nonwoven fabric production and use therefor
JP2022135964A (en) Permeability imparting agent for fiber, fiber, nonwoven fabric and water-absorbing article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869814

Country of ref document: EP

Kind code of ref document: A1