WO2023042631A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023042631A1
WO2023042631A1 PCT/JP2022/032002 JP2022032002W WO2023042631A1 WO 2023042631 A1 WO2023042631 A1 WO 2023042631A1 JP 2022032002 W JP2022032002 W JP 2022032002W WO 2023042631 A1 WO2023042631 A1 WO 2023042631A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
control unit
control
outdoor air
outdoor
Prior art date
Application number
PCT/JP2022/032002
Other languages
French (fr)
Japanese (ja)
Inventor
悠二 渡邉
優生 大西
啓司 山際
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280061469.9A priority Critical patent/CN117940717A/en
Publication of WO2023042631A1 publication Critical patent/WO2023042631A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0087Indoor units, e.g. fan coil units with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to air conditioners.
  • an air conditioner that is composed of an indoor unit arranged inside a room to be air-conditioned and an outdoor unit arranged outdoors.
  • This air conditioner is configured to supply humidified outdoor air from the outdoor unit to the indoor unit.
  • the present disclosure provides an air conditioner capable of suppressing condensation within the air conditioner.
  • An air conditioner according to one aspect of the present disclosure is an air conditioner that includes an indoor unit and an outdoor unit.
  • An air conditioner according to one aspect of the present disclosure is provided in an outdoor unit and includes an absorbent that absorbs moisture in outdoor air, a first flow path through which the outdoor air flows through the absorbent, and a first flow path. and a first fan for generating a flow of outdoor air to.
  • an air conditioner according to one aspect of the present disclosure includes a ventilation conduit that connects a first flow path and an indoor unit, and a damper device that distributes outdoor air flowing through the first flow path into the outdoor air and the ventilation conduit. , and a control unit for controlling the first fan and damper device. The control unit controls the damper device to distribute outdoor air to the ventilation conduit, rotationally drive the first fan, and send dry outdoor air from the first flow path to the ventilation conduit.
  • the air conditioner according to one aspect of the present disclosure can suppress the occurrence of dew condensation inside the air conditioner.
  • Schematic diagram showing the configuration of an air conditioner according to an embodiment of the present disclosure Schematic diagram showing the configuration of the ventilation system Schematic diagram showing the operating state of the ventilator during ventilation operation Schematic diagram showing the operating state of the ventilator during humidification operation Schematic diagram showing the operating state of the ventilation system during dehumidification operation
  • Block diagram showing a configuration for controlling an air conditioner Flowchart showing overall operation from ON to OFF of humidification operation
  • Flowchart showing operation of clean control of modified example Timing chart showing the state of each part in the clean control of the modified example Block diagram showing the configuration around the damper device
  • Schematic diagram showing a state in which the damper device is normally closed Schematic diagram showing a state in which the damper device is normally opened
  • Schematic diagram showing a state in which the damper device is not operating normally Flowchart showing operation of damper control when the damper device is opened Timing chart showing the state of each part in damper control when the damper
  • Block diagram showing the configuration for controlling the fan speed Flowchart showing operation of setting control of fan rotation speed Timing chart showing the state of each part in setting control of fan rotation speed
  • a diagram showing a data configuration and an example of a command rotation speed table of a modified example Flowchart showing operation of fan speed setting control according to a modification
  • Block diagram showing a configuration for controlling the fan speed based on the outdoor temperature Flowchart showing operation of fan speed control based on outdoor temperature
  • An air conditioner is an air conditioner that includes an indoor unit and an outdoor unit.
  • An air conditioner is provided in an outdoor unit and includes an absorbent that absorbs moisture in outdoor air, a first flow path through which outdoor air flows through the absorbent, and a flow of outdoor air in the first flow path. and a first fan to generate.
  • the air conditioner includes a ventilation conduit connecting the first flow path and the indoor unit, a damper device for dividing the outdoor air flowing through the first flow path into the outdoor air and the ventilation conduit, a first fan and a control unit that controls the damper device.
  • the control unit controls the damper device to distribute outdoor air to the ventilation conduit, rotationally drive the first fan, and send dry outdoor air from the first flow path to the ventilation conduit.
  • Such an air conditioner of one aspect of the present disclosure can suppress the occurrence of dew condensation inside the air conditioner.
  • the air conditioner further includes a heater that heats the outdoor air upstream of the absorbent in the first flow path, and the control unit turns on the heater to heat the outdoor air flowing through the first flow path.
  • the air conditioner may further include a motor that rotates the absorbent, and the control unit may drive the motor to rotate the absorbent.
  • control unit may acquire humidity information inside the ventilation conduit, and determine whether to turn on the heater based on the acquired humidity information inside the ventilation conduit.
  • control unit may acquire information related to the humidity within the ventilation conduit, and determine whether to turn on the heater based on the acquired information related to the humidity within the ventilation conduit.
  • the air conditioner further includes a second flow path through which the outdoor air passes through the absorbent material and flows from the outdoor to the outdoor, and a second fan that generates the flow of the outdoor air in the second flow path.
  • the controller may stop the second fan.
  • control unit acquires information related to humidity in the ventilation conduit, controls the damper device and the first fan based on the acquired information related to humidity in the ventilation conduit, and ventilates dry outdoor air. Can be sent to conduit.
  • the air conditioner further includes a humidity sensor that acquires humidity information inside the ventilation conduit, and the controller controls the damper device and the first fan based on the humidity information inside the ventilation conduit acquired by the humidity sensor.
  • dry outdoor air may be sent to the ventilation conduit.
  • control unit may control the damper device and the first fan to send dry outdoor air to the ventilation conduit after the humidification operation ends.
  • FIG. 1 is a schematic diagram showing the configuration of an air conditioner 10 according to an embodiment of the present disclosure.
  • the air conditioner 10 has an indoor unit 20 arranged in the indoor Rin to be air-conditioned, and an outdoor unit 30 arranged in the outdoor Rout.
  • the indoor unit 20 includes an indoor heat exchanger 22 that exchanges heat with the indoor air A1, and invites the indoor air A1 into the indoor unit 20, and the indoor air A1 after heat exchange with the indoor heat exchanger 22 is introduced into the room.
  • a fan 24 that blows to Rin is provided.
  • the outdoor unit 30 includes an outdoor heat exchanger 32 that exchanges heat with the outdoor air A2, and invites the outdoor air A2 into the outdoor unit 30.
  • a fan 34 blowing to Rout is provided.
  • the outdoor unit 30 is provided with a compressor 36, an expansion valve 38, and a four-way valve 40 for executing a refrigerating cycle with the indoor heat exchanger 22 and the outdoor heat exchanger 32.
  • the indoor heat exchanger 22, the outdoor heat exchanger 32, the compressor 36, the expansion valve 38, and the four-way valve 40 are connected by refrigerant pipes through which refrigerant flows.
  • the air conditioner 10 is configured such that the refrigerant flows from the compressor 36 through the four-way valve 40, the outdoor heat exchanger 32, the expansion valve 38, and the indoor heat exchanger 22 in order. Execute the freeze cycle back to 36.
  • the air conditioner 10 executes a refrigeration cycle in which refrigerant flows from the compressor 36 through the four-way valve 40, the indoor heat exchanger 22, the expansion valve 38, the outdoor heat exchanger 32 in order, and then returns to the compressor 36. .
  • the air conditioner 10 performs an air-conditioning operation that introduces the outdoor air A3 into the room Rin in addition to the air-conditioning operation using the refrigeration cycle. Therefore, the air conditioner 10 has a ventilator 50 .
  • a ventilation device 50 is provided in the outdoor unit 30 . That is, the outdoor unit 30 has a ventilator 50 .
  • FIG. 2 is a schematic diagram showing the configuration of the ventilation device 50.
  • FIG. 2 is a schematic diagram showing the configuration of the ventilation device 50.
  • the ventilator 50 includes an absorbent 52 through which outdoor air A3 and A4 pass.
  • the absorbent material 52 is a member through which air can pass, and is a member that collects moisture from the passing air or gives moisture to the passing air.
  • the absorber 52 is disc-shaped and rotates around a rotation center line C1 passing through the center thereof.
  • the absorbing material 52 is rotationally driven by a motor 54 .
  • the absorbent material 52 is preferably a polymer sorbent material that sorbs moisture in the air.
  • the polymeric sorbent material is composed of, for example, a crosslinked sodium polyacrylate. Compared to adsorbents such as silica gel and zeolite, polymer sorbents absorb more water per unit volume, can desorb water at low heating temperatures, and can retain water for a long time. can be done.
  • first flow path P1 and a second flow path P2 through which the outdoor air A3 and A4 respectively pass through the absorbent material 52.
  • the first flow path P1 and the second flow path P2 pass through the absorbent material 52 at different positions.
  • the first flow path P1 is a flow path through which the outdoor air A3 flows toward the inside of the indoor unit 20.
  • the outdoor air A3 flowing through the first flow path P1 is supplied into the indoor unit 20 via the ventilation conduit 56. As shown in FIG.
  • the first flow path P1 includes a plurality of branch flow paths P1a and P1b on the upstream side with respect to the absorbent 52. It should be noted that “upstream” and “downstream” are used herein with respect to air flow.
  • the plurality of tributaries P1a and P1b merge with the absorbent 52 on the upstream side.
  • First and second heaters 58 and 60 for heating the outdoor air A3 are provided in the plurality of branch passages P1a and P1b, respectively.
  • the first and second heaters 58, 60 may be heaters with the same heating capacity, or may be heaters with different heating capacities. Moreover, the first and second heaters 58 and 60 are preferably PTC (Positive Temperature Coefficient) heaters, which increase electrical resistance when current flows and the temperature rises, that is, can suppress excessive heating temperature rises. .
  • PTC Physical Temperature Coefficient
  • a heater using a nichrome wire, carbon fiber, or the like may be used, but in this case, if the current continues to flow, the heating temperature (surface temperature) will continue to rise, so it is necessary to monitor the temperature.
  • the PTC heater eliminates the need to monitor the heating temperature because the heater itself regulates the heating temperature within a certain temperature range. In this respect, the PTC heater is more preferable.
  • first and second heaters 58 and 60 correspond to the "heaters” of the present disclosure, but the number of “heaters” of the present disclosure may not be plural, that is, the first and second heaters One of 58, 60 may correspond to the "heater” of the present disclosure.
  • a first fan 62 that generates a flow of the outdoor air A3 toward the inside of the indoor unit 20 is provided in the first flow path P1.
  • the first fan 62 is arranged downstream with respect to the absorbent 52 .
  • the outdoor air A 3 flows from the outdoor Rout into the first flow path P 1 and passes through the absorbent 52 .
  • the first flow path P1 is provided with a damper device 64 that distributes the outdoor air A3 flowing through the first flow path P1 to the indoor Rin (that is, the indoor unit 20) or the outdoor Rout.
  • the damper device 64 is arranged downstream of the first fan 62 .
  • the outdoor air A3 distributed to the indoor unit 20 by the damper device 64 enters the indoor unit 20 via the ventilation conduit 56 and is blown out by the fan 24 to the indoor unit Rin.
  • the second flow path P2 is a flow path through which the outdoor air A4 flows. Unlike the outdoor air A3 flowing through the first flow path P1, the outdoor air A4 flowing through the second flow path P2 does not go to the indoor unit 20. The outdoor air A4 flowing through the second flow path P2 flows out to the outdoor Rout after passing through the absorbent 52 .
  • a second fan 66 that generates a flow of outdoor air A4 is provided in the second flow path P2.
  • the second fan 66 is arranged downstream with respect to the absorbent 52 .
  • the outdoor air A4 flows from the outdoor Rout into the second flow path P2, passes through the absorbent 52, and then flows out to the outdoor Rout.
  • the ventilator 50 selectively uses the absorber 52, the motor 54, the first heater 58, the second heater 60, the first fan 62, the damper device 64, and the second fan 66 for ventilation operation; Humidification operation and dehumidification operation are selectively executed.
  • FIG. 3 is a schematic diagram showing the operating state of the ventilator 50 during ventilation operation.
  • the ventilation operation is an air conditioning operation in which the outdoor air A3 is directly supplied to the indoor Rin (that is, the indoor unit 20) via the ventilation conduit 56.
  • motor 54 continues to rotate absorbent material 52 during ventilation operation.
  • the first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60.
  • the outdoor air A3 that has passed through the absorbent 52 is distributed to the indoor units 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the outdoor air A3 is supplied to the room Rin as it is, and the room Rin is ventilated.
  • FIG. 4 is a schematic diagram showing the operating state of the ventilator 50 during humidification operation.
  • the humidification operation is an air conditioning operation that humidifies the outdoor air A3 and supplies the humidified outdoor air A3 to the indoor Rin (that is, the indoor unit 20).
  • the motor 54 continues to rotate the absorbent 52 during the humidification operation.
  • the first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in the ON state, thereby causing the outdoor air A4 to flow through the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52. At this time, the heated outdoor air A3 can deprive the absorbent 52 of a larger amount of moisture than when it is not heated. As a result, the outdoor air A3 carries a large amount of moisture.
  • the outdoor air A3 that has passed through the absorbent 52 and carries a large amount of moisture is distributed to the indoor unit 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the outdoor air A3 carrying a large amount of moisture is supplied to the room Rin, and the room Rin is humidified.
  • the amount of moisture taken from the absorbent 52 by the outdoor air A3 is reduced. may be performed.
  • the water retention capacity of the absorbent 52 decreases, that is, the absorbent 52 dries.
  • the absorbent 52 deprives the outdoor air A4 flowing through the second flow path P2 of water.
  • the amount of water retained in the absorbent material 52 is kept substantially constant, and the humidification operation can be continued.
  • FIG. 5 is a schematic diagram showing the operating state of the ventilation device 50 during dehumidification operation.
  • the dehumidification operation is an air conditioning operation in which the outdoor air A3 is dehumidified and the dehumidified outdoor air A3 is supplied to the indoor Rin (that is, the indoor unit 20). As shown in FIG. 5, in the dehumidifying operation, the adsorption operation and the regeneration operation are alternately performed.
  • the adsorption operation is an operation in which the moisture carried in the outdoor air A3 is adsorbed by the absorbent material 52, thereby dehumidifying the outdoor air A3.
  • the motor 54 continues to rotate the absorbent 52 during the adsorption operation.
  • the first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60. At this time, the moisture carried in the outdoor air A3 is absorbed by the absorbent 52 . As a result, the amount of moisture carried by the outdoor air A3 is reduced, that is, the outdoor air A3 is dried.
  • the outdoor air A3 dried by passing through the absorbent 52 is distributed to the indoor unit 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the dry outdoor air A3 is supplied to the room Rin, and the room Rin is dehumidified.
  • a regeneration operation is performed to regenerate the absorbent 52 in order to recover its adsorption capacity.
  • the motor 54 continues to rotate the absorbent 52 during the regeneration operation.
  • the first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 not to the indoor unit 20 but to the outdoor Rout.
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52.
  • the heated outdoor air A3 deprives the absorbent 52 of a large amount of moisture.
  • a large amount of moisture is carried in the outdoor air A3.
  • the water retention capacity of the absorbent 52 decreases, that is, the absorbent 52 dries and its adsorption capacity is regenerated.
  • the outdoor air A3 that passes through the absorbent 52 and carries a large amount of moisture is distributed to the outdoor route by the damper device 64 and is discharged to the outdoor route.
  • the outdoor air A3 carrying a large amount of moisture due to the regeneration of the absorbent 52 is not supplied to the indoor Rin.
  • the adsorption capacity of the absorbent 52 is maintained, and the dehumidification operation can be continuously performed.
  • the air-conditioning operation (cooling operation, dehumidifying operation (weak cooling operation), heating operation) by the above-described refrigeration cycle and the air-conditioning operation (ventilation operation, humidification operation, dehumidification operation) by the ventilation device 50 can be performed separately, and at the same time It is also possible to execute For example, if the dehumidification operation by the refrigeration cycle and the dehumidification operation by the ventilation device 50 are simultaneously executed, it is possible to dehumidify the room Rin while maintaining the room temperature constant.
  • the air conditioning operation performed by the air conditioner 10 is selected by the user. For example, when a user selects the remote controller 70 shown in FIG. 1, the air conditioner 10 performs the air conditioning operation corresponding to the operation.
  • FIG. 6 is a block diagram showing a configuration for controlling the air conditioner 10. As shown in FIG.
  • the components of the air conditioner 10 are controlled by a control unit 90.
  • the control unit 90 includes, for example, a memory storing a program and a processing circuit corresponding to a processor such as a CPU (Central Processing Unit).
  • the functions of the control unit 90 may be configured only by hardware, or may be realized by combining hardware and software.
  • the control unit 90 reads data and programs stored in the memory and performs various arithmetic processing, thereby realizing a predetermined function.
  • the program executed by the processor is pre-recorded in the memory here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through an electric communication line such as the Internet. may be provided.
  • the controller 90 controls the motor 54 , first heater 58 , second heater 60 , first fan 62 , damper device 64 and second fan 66 .
  • FIG. 7 is a flow chart showing the entire operation from ON to OFF of the humidification operation. Note that the processing shown in FIG. 7 is performed by controlling the components of the air conditioner 10 by the control unit 90 . Note that the processing shown in FIG. 7 is an example, and the present embodiment is not limited to the processing shown in FIG. For example, each process shown in FIG. 7 can also be applied to a dehumidifying operation.
  • the processing shown in FIG. 7 is started, for example, when the humidification operation is turned ON by the user's selection operation on the remote controller 70 shown in FIG.
  • step S10 the control unit 90 determines whether or not the start condition is satisfied.
  • step S10: YES the process proceeds to step S20. While the control unit 90 determines that the start condition is not satisfied (step S10: NO), the process repeats step S10.
  • the start condition is a condition for starting humidification operation, and may include, for example, at least one of operation mode, humidity, humidity control, operation frequency, inverter current, temperature, and presence/absence of abnormality.
  • control unit 90 may perform control to satisfy the start condition. For example, when condensation occurs in the ventilation conduit 56, hose drying control (step S60), which will be described later, may be performed.
  • the control unit 90 performs clean control.
  • Clean control is control for removing foreign matter in the air conditioner 10 .
  • foreign matter may accumulate in the ventilator 50 .
  • By executing the clean control it is possible to remove the foreign matter in the ventilation device 50 and suppress the foreign matter from flowing into the room Rin.
  • Foreign substances include, for example, dust, pollen, allergens, mold, bacteria, viruses, PM2.5, NOx, SOx, harmful substances, pests, and the like.
  • the control unit 90 performs damper "open” control.
  • the damper “open” control is control to open the damper device 64 and distribute the outdoor air A3 flowing through the first flow path P1 to the indoor units 20 .
  • the outdoor air A3 flows into the indoor unit 20 through the ventilation conduit 56 .
  • step S40 the control unit 90 performs humidification operation control.
  • step S50 the control unit 90 determines whether or not to end the humidification operation control.
  • step S50: YES the process proceeds to step S60.
  • step S50: NO the process returns to step S40.
  • the humidification operation control ends, for example, when the humidification operation is turned off by the user's selection operation on the remote controller 70 shown in FIG.
  • the end of humidification operation control may be determined based on the same condition as the start condition.
  • Hose drying control is control for drying the inside of the ventilation conduit 56, which is a hose.
  • the ventilation conduit 56 is sometimes referred to herein as a "hose.”
  • the control unit 90 performs damper "close” control.
  • the damper “close” control is control to close the damper device 64 and distribute the outdoor air A3 flowing through the first flow path P1 to the outdoor Rout.
  • control unit 90 performs steps S10 to S70 from when the humidification operation is turned ON to when it is turned OFF.
  • processing shown in FIG. 7 is an example, and the overall operation from ON to OFF of the humidification operation is not limited to this.
  • the process shown in FIG. 7 may further include additional steps, or steps may be deleted, integrated, or divided.
  • FIG. 8 is a flow chart showing the operation of clean control
  • FIG. 9 is a timing chart showing the state of each part in clean control.
  • 9A shows the opening/closing control of the damper device 64
  • FIG. 9B shows the ON/OFF control of the first fan 62
  • FIG. 9C shows the ON/OFF control of the second fan 66.
  • FIG. 9(d) shows on/off control of the motor 54 that drives the absorber 52 to rotate.
  • step S21 the control unit 90 performs damper "close” control. That is, the control unit 90 closes the damper device 64 and distributes the outdoor air A3 flowing through the first flow path P1 to the outdoor Rout.
  • step S21 If the damper device 64 has been closed before step S21, the damper device 64 remains closed in step S21.
  • the control unit 90 rotates the first fan 62. That is, the controller 90 turns on the first fan 62 to blow the outdoor air A3 to the first flow path P1. That is, the controller 90 rotates the first fan 62 to discharge the outdoor air A3 from the first flow path P1 to the outdoor Rout. As a result, foreign matter such as dust and insects accumulated in the first flow path P1 and the absorbent 52 is discharged to the outdoor Rout by the outdoor air A3 blown by the first fan 62 .
  • the first fan 62 is rotationally driven by a fan motor 62A, which will be described later.
  • the controller 90 rotates the first fan 62 by driving the fan motor 62A.
  • step S23 the control unit 90 rotates the second fan 66. That is, the controller 90 turns on the second fan 66 to blow the outdoor air A4 to the second flow path P2. That is, the controller 90 rotates the second fan 66 to discharge the outdoor air A4 from the second flow path P2 to the outdoor Rout. As a result, foreign matter such as dust and insects accumulated in the second flow path P2 and the absorbent 52 is discharged to the outdoor Rout by the outdoor air A4 blown by the second fan 66 .
  • the second fan 66 is rotationally driven by a fan motor (not shown). The control unit 90 rotates the second fan 66 by driving this fan motor.
  • the control unit 90 rotates the absorbent 52. That is, the control unit 90 drives the motor 54 that rotates the absorbent 52 to rotate the absorbent 52 .
  • the outdoor air A3 and A4 are blown by the first fan 62 and the second fan 66 while the absorbent 52 is being rotated, so foreign matter attached to the absorbent 52 can be easily removed.
  • the direction of the outdoor air A3 blown by the first fan 62 and the direction of the outdoor air A4 blown by the second fan 66 are different.
  • the outdoor air A3 and the outdoor air A4 flow in opposite directions. As a result, the outdoor air A3, A4 can pass through the absorbent 52 from two directions, and foreign matter such as dust adhering to the absorbent 52 can be removed.
  • step S25 the control unit 90 determines whether or not a predetermined time t21 has elapsed.
  • the controller 90 determines that the predetermined time t21 has elapsed (step S25: YES)
  • the clean control ends.
  • the control unit 90 determines that the predetermined time t21 has not elapsed (step S25: NO)
  • the process returns to step S22.
  • the predetermined time t21 is, for example, 30 seconds or more and 90 seconds or less.
  • the predetermined time t21 is 60 seconds.
  • the control unit 90 performs steps S21 to S25.
  • foreign matter such as dust and insects accumulated in the ventilation device 50 can be removed.
  • foreign matter accumulated in the first flow path P1, the second flow path P2, and the absorbent 52 can be removed. As a result, it is possible to prevent foreign matter from entering the indoor unit 20 .
  • the fan speed of the first fan 62 may be greater than the fan speed of the second fan 66. That is, the rotation speed of the first fan 62 may be higher than the rotation speed of the second fan 66 . Thereby, the air volume of the outdoor air A3 blown by the first fan 62 can be made larger than the air volume of the outdoor air A4 blown by the second fan 66 . As a result, the foreign matter accumulated in the first flow path P1 can be preferentially removed, so that the inflow of the foreign matter into the indoor unit 20 can be further suppressed.
  • the fan speed of the first fan 62 may be higher than the fan speed of the first fan 62 in humidification operation. That is, the number of revolutions of the first fan 62 in the clean control may be higher than the number of revolutions of the first fan 62 in the humidification operation.
  • the air volume of the outdoor air A3 blown by the first fan 62 in the clean control can be made larger than that in the humidification operation.
  • foreign substances accumulated in the first flow path P1 and the absorbent 52 can be more easily removed.
  • FIG. 10 is a flow chart showing the clean control operation of the modification
  • FIG. 11 is a timing chart showing the state of each part in the clean control of the modification.
  • 11A shows the opening/closing control of the damper device 64
  • FIG. 11B shows the ON/OFF control of the first fan 62
  • FIG. 11C shows the ON/OFF control of the second fan 66.
  • 11(d) shows on/off control of the motor 54 for rotating the absorbent 52
  • FIG. 11(e) shows on/off control of the heaters 58 and 60.
  • the first and second heaters 58, 60 may be simply referred to as "heaters 58, 60".
  • the clean control of the modified example differs from the clean control described above (see FIG. 8) in that it includes a step S24A of turning on the heaters 58 and 60.
  • Other processing in the modified example is the same as the clean control described above. Therefore, step S24A will be described.
  • the control unit 90 related to the clean control of the modified example turns on the heaters 58 and 60. That is, the control unit 90 related to the clean control of the modified example turns on the first heater 58 and the second heater 60 that heat the outdoor air A3 on the upstream side of the absorbent 52 in the first flow path P1, and turns on the second heater 60.
  • the outdoor air A3 flowing through the first flow path P1 is heated. As a result, when the heated outdoor air A3 passes through the absorbent 52, NOx and SOx adhering to the absorbent 52 can be removed.
  • control unit 90 of this modified example further performs step S24A.
  • step S24A by turning on the heaters 58 and 60 to heat the outdoor air A3 flowing through the first flow path P1, NOx and SOx attached to the absorbent 52 can be removed.
  • clean control has been described as being performed before the humidification operation as shown in FIG. 7, it is not limited to this.
  • clean control may be performed after the humidification operation.
  • the ventilation device 50 may include a sensor that detects foreign matter, and clean control may be performed when the sensor detects the foreign matter.
  • clean control may be performed at predetermined time intervals.
  • control unit 90 performs clean control by rotationally driving the first fan 62, the second fan 66 and the absorbent 52 has been described.
  • the controller 90 may perform clean control by rotating one of the first fan 62 and the second fan 66 .
  • the control unit 90 may close the damper device 64 to rotate the first fan 62 and not rotate the second fan 66 .
  • the control unit 90 may close the damper device 64 to rotate the second fan 66 without driving the first fan 62 to rotate.
  • the control unit 90 does not have to rotate the absorbent 52 .
  • the motors of the first fan 62, the second fan 66 and the absorbent 52 are 54 are turned off, but they may remain on.
  • the air conditioner 10 may have an ion generator at the outlet (nozzle outlet) of the ventilation conduit 56 located in the indoor unit 20 . Even if pollen, viruses, and the like flow into the indoor unit 20 from the ventilation conduit 56, the ion generator can remove the pollen and viruses.
  • FIG. 12 is a block diagram showing the configuration around the damper device 64. As shown in FIG. 12
  • the damper device 64 includes a valve body 80 and a damper motor 82 that rotates the valve body 80 .
  • the air conditioner 10 also includes a detector 84 that detects opening and closing of the damper device 64 .
  • the valve body 80 has a plate shape, one end of which is connected to a damper motor 82 and rotates around the damper motor 82 .
  • the valve body 80 is opened and closed by being rotated by a damper motor 82 .
  • the damper motor 82 supports the end of the valve body 80 and rotates the valve body 80 .
  • the damper motor 82 is, for example, a stepping motor.
  • the damper motor 82 receives a control command from the controller 90 and rotates the valve body 80 based on the control command.
  • control commands include commands for opening and closing the valve body 80.
  • control commands include a damper "open” command and a damper "close” command.
  • a damper “open” command is a command to open the valve body 80 .
  • the outdoor air A3 is distributed from the first flow path P1 to the ventilation conduit 56 by opening the valve body 80 .
  • a damper “close” command is a command to close the valve body 80 .
  • By closing the valve body 80 the outdoor air A3 is distributed from the first flow path P1 to the outdoor Rout.
  • the control command also includes a command for controlling the torque of the damper motor 82.
  • a command for controlling torque is, for example, a pulse rate (PPS: Pulse Per Second).
  • PPS Pulse Per Second
  • the controller 90 can adjust the torque of the damper motor 82 by adjusting the pulse rate. For example, the controller 90 can increase the torque of the damper motor 82 by decreasing the pulse rate.
  • the detection unit 84 is a sensor that detects opening and closing of the valve body 80 .
  • the detector 84 is, for example, a limit sensor.
  • the limit sensor detects opening and closing of the valve body 80 by contact with the valve body 80 .
  • the detection unit 84 transmits the detection result of the valve body 80 to the control unit 90 .
  • the control unit 90 receives the detection result of the detection unit 84 and determines whether the valve body 80 is normally opened and closed based on the detection result. Specifically, the control unit 90 determines whether the valve body 80 is normally opened and closed based on the detection result of the detection unit 84 and the control command.
  • FIG. 13 is a schematic diagram showing a state in which the damper device 64 is normally closed
  • FIG. 14 is a schematic diagram showing a state in which the damper device 64 is normally open.
  • the valve body 80 blocks the inlet 56a of the ventilation conduit 56 when the damper device 64 is normally closed.
  • the inlet 56a of the ventilation conduit 56 is an opening through which the ventilation conduit 56 and the first flow path P1 communicate.
  • the valve body 80 is arranged along the direction in which the first flow path P1 extends and closes the inlet 56a of the ventilation conduit 56 . Therefore, the outdoor air A3 flowing through the first flow path P1 is discharged to the outdoor Rout.
  • the valve body 80 opens the inlet 56a of the ventilation conduit 56 and blocks the first flow path P1.
  • the valve body 80 is arranged in a direction intersecting the direction in which the first flow path P1 extends, opening the inlet 56a of the ventilation conduit 56, and opening the first flow path P1. 1 flow path P1 is blocked. Therefore, the outdoor air A3 flowing through the first flow path P1 flows through the ventilation conduit 56 into the room Rin.
  • the valve body 80 contacts the detection section 84 .
  • the detector 84 sends a signal to the controller 90 indicating that the valve body 80 is open when the valve body 80 is in contact.
  • the detection unit 84 transmits a signal with an output value of "1" to the control unit 90 when the valve body 80 is in contact.
  • the detection unit 84 transmits a signal with an output value of "0" to the control unit 90 when the valve body 80 is not in contact.
  • control unit 90 when the control unit 90 transmits a damper "open” command as a control command and receives an output value of "1" from the detection unit 84, it determines that the valve body 80 is normally open. If the output value from the detection unit 84 is "0" even after a predetermined time has passed since the damper "open" command was transmitted as the control command, the control unit 90 does not normally open the valve body 80. I judge.
  • FIG. 15 is a schematic diagram showing a state in which the damper device 64 is not operating normally.
  • Foreign matter G1 includes, for example, at least one of dust, insects, water, and ice.
  • the detector 84 detects that the valve body 80 is not open.
  • the damper device 64 when the damper device 64 has the foreign matter G1 attached thereto, the damper device 64 cannot be opened and closed normally.
  • the control unit 90 detects that the valve body 80 of the damper device 64 is not normally opened and closed, and if the valve body 80 is not normally opened and closed, the first fan Air is blown by 62 . Thereby, the control unit 90 removes the foreign matter G1 adhering to the damper device 64 .
  • FIG. 16 is a flowchart showing the damper control operation when the damper device 64 is opened
  • FIG. 17 is a timing chart showing the state of each part in the damper control when the damper device 64 is opened.
  • 17(a) shows the control command
  • FIG. 17(b) shows the opening/closing control of the damper device 64 (valve body 80)
  • FIG. 17(c) shows the detection state of the detection unit 84.
  • (d) of FIG. 17 shows on/off control of the first fan 62
  • (e) of FIG. 17 shows on/off control of the damper motor 82. As shown in FIG.
  • step S31 the control unit 90 controls the damper device 64 to open. That is, the control unit 90 transmits a damper “open” command to the damper motor 82 of the damper device 64 .
  • the damper motor 82 Upon receiving a damper "open” command from the control unit 90, the damper motor 82 starts rotating. Thereby, the valve body 80 starts to open.
  • the detection unit 84 detects opening and closing of the damper device 64. That is, the detector 84 detects opening and closing of the valve body 80 .
  • the detector 84 is a limit sensor. Therefore, the detection unit 84 detects opening and closing of the valve body 80 based on whether the valve body 80 is in contact. For example, the detector 84 detects that the valve body 80 is open when the valve body 80 is in contact.
  • the detection unit 84 transmits a signal with an output value of "1" to the control unit 90 when the valve body 80 is in contact.
  • the detection unit 84 transmits a signal with an output value of "0" to the control unit 90 when the valve body 80 is not in contact.
  • step S33 the control unit 90 determines whether the damper device 64 is open. If the control unit 90 determines that the damper device 64 is open (step S33: YES), the process ends. When the control unit 90 determines that the damper device 64 is not open (step S33: NO), the process proceeds to step S34.
  • step S33 The determination in step S33 is performed as follows. That is, the control section 90 determines whether or not the valve body 80 is normally opened based on the detection result of the detection section 84 . Specifically, the control unit 90 determines whether the valve body 80 is normally opened based on the detection result of the detection unit 84 and the control command transmitted in step S31.
  • control unit 90 determines that the valve body 80 is normally opened when the control command is the damper “open” command and the signal with the output value “1" is received from the detection unit 84.
  • control unit 90 determines that the valve body 80 is normally opened when the control command is the damper “open” command and the signal of the output value “1” is received from the detection unit 84 for a predetermined time. good too.
  • the control unit 90 determines that the valve body 80 is not normally opened.
  • step S34 the control unit 90 rotates the first fan 62.
  • the control unit 90 determines that the valve body 80 is not open (step S33: NO)
  • it drives the first fan 62 to rotate.
  • the controller 90 turns on the first fan 62 to blow the outdoor air A3 to the first flow path P1.
  • the foreign matter G1 adhering to the damper device 64 is removed by the outdoor air A3 blown by the first fan 62 .
  • the control unit 90 After rotating the first fan 62 for a predetermined time, the control unit 90 stops the first fan 62 . After rotating the first fan 62, the process returns to step S33.
  • the control unit 90 performs steps S31 to S34.
  • the first fan 62 is driven to blow the outdoor air A3 when the foreign matter G1 adheres to the damper device 64 and the damper device 64 cannot be opened normally. can remove the foreign matter G1.
  • damper control for opening the damper device 64 has been described in the above control, similar processing is performed for damper control for closing the damper device 64 (for example, step S70 shown in FIG. 7).
  • FIG. 18 is a flowchart showing the damper control operation when the damper device 64 is closed.
  • step S31A the control unit 90 controls the damper device 64 to close. That is, the control unit 90 transmits a damper “close” command to the damper motor 82 of the damper device 64 .
  • the damper motor 82 Upon receiving a damper "close” command from the control unit 90, the damper motor 82 starts rotating. Thereby, the valve body 80 begins to close.
  • the detection unit 84 detects opening and closing of the damper device 64. If the detector 84 is a limit sensor, the detector 84 may be arranged at the inlet 56 a of the ventilation conduit 56 . The detector 84 detects whether the valve body 80 is closed based on whether the valve body 80 is in contact with the inlet 56 a of the ventilation conduit 56 . For example, the detector 84 detects that the valve body 80 is closed when the valve body 80 is in contact with the inlet 56 a of the ventilation conduit 56 .
  • the detection unit 84 transmits a signal with an output value of "1" to the control unit 90 when the valve body 80 is in contact.
  • the detection unit 84 transmits a signal with an output value of "0" to the control unit 90 when the valve body 80 is not in contact.
  • step S33A the control unit 90 determines whether the damper device 64 is closed. If the control unit 90 determines that the damper device 64 is closed (step S33A: YES), the process ends. When the control unit 90 determines that the damper device 64 is not closed (step S33A: NO), the process proceeds to step S34.
  • step S33A The determination in step S33A is performed as follows. That is, the control section 90 determines whether or not the valve body 80 is normally closed based on the detection result of the detection section 84 . Specifically, the control unit 90 determines whether the valve body 80 is normally closed based on the detection result of the detection unit 84 and the control command transmitted in step S31A.
  • control unit 90 determines that the valve body 80 is normally closed when the control command is the damper “close” command and the signal with the output value “1" is received from the detection unit 84.
  • control unit 90 determines that the valve body 80 is normally closed when the control command is the damper “close” command and the signal of the output value “1” is received from the detection unit 84 for a predetermined time. good too.
  • the control unit 90 determines that the valve body 80 is not normally closed.
  • step S34 the control unit 90 rotates the first fan 62.
  • the foreign matter G1 adhering to the damper device 64 is removed by the outdoor air A3 blown by the first fan 62 .
  • the control unit 90 After rotating the first fan 62 for a predetermined time, the control unit 90 stops the first fan 62 . After rotating the first fan 62, the process returns to step S33A.
  • the control unit 90 performs steps S31A to S34.
  • the damper device 64 is unable to open and close normally due to the foreign matter G1 adhering to it, the first fan 62 can be driven to remove the foreign matter G1. .
  • damper control described above has been described as being performed when the damper device 64 is opened and closed, it is not limited to this.
  • the damper control described above may be performed when it is detected that the damper device 64 is not normally opened and closed during normal operation including humidification operation and dehumidification operation.
  • the damper motor 82 is a stepping motor
  • the damper motor 82 may be an actuator capable of opening and closing the valve body 80 .
  • the detection unit 84 may be any sensor capable of detecting opening and closing of the valve body 80 .
  • the detection unit 84 may be a ranging sensor such as an infrared sensor.
  • the control unit 90 may determine whether or not the valve body 80 is normally opened and closed based on distance information measured by the distance measuring sensor.
  • FIG. 19 is a flowchart showing the damper control operation of the modification
  • FIG. 20 is a timing chart showing the state of each part in the damper control of the modification.
  • 20(a) shows the control command
  • FIG. 20(b) shows the opening/closing control of the damper device 64 (valve body 80)
  • FIG. 20(c) shows the detection state of the detector 84.
  • 20(d) shows the on/off control of the first fan 62
  • FIG. 20(e) shows the on/off control and torque of the damper motor 82. As shown in FIG.
  • the modified damper control differs from the damper control described above (see FIG. 16) in that it includes a step S35 of increasing the torque of the damper motor 82.
  • FIG. Other processing in the modified example is the same as the damper control described above. Therefore, step S35 will be described.
  • step S ⁇ b>35 the control unit 90 related to the damper control of the modified example increases the torque of the damper motor 82 . That is, the control unit 90 related to the damper control of the modified example reduces the pulse rate (PPS) of the damper motor 82 . Since the damper motor 82 is a stepping motor, the torque can be increased by decreasing the pulse rate.
  • PPS pulse rate
  • control unit 90 related to the damper control of the modified example transmits a command to decrease the pulse rate to the damper motor 82 as a control command.
  • the damper motor 82 reduces the pulse rate upon receiving a control command from the control unit 90 relating to the damper control of the modified example. Thereby, the torque of the damper motor 82 can be increased.
  • the force of the damper motor 82 that rotates the valve body 80 is increased. Therefore, by increasing the torque of the damper motor 82, the force for opening and closing the valve body 80 can be increased. As a result, the valve body 80 can be opened normally even when the foreign matter G1 adheres to the damper device 64 .
  • the control unit 90 of this modified example performs steps S31 to S35.
  • the opening force of the valve body 80 can be increased.
  • the valve body 80 can be opened normally.
  • step S34 of rotating the first fan 62 is not an essential process.
  • the control unit 90 of this modified example does not have to perform step S34.
  • damper control of another modified example will be described.
  • Another modification of the damper control involves turning on the heaters 58 and 60 and rotating the absorber 52 .
  • FIG. 21 is a flowchart showing the damper control operation of another modified example
  • FIG. 22 is a timing chart showing the states of each part in the damper control of another modified example.
  • 22(a) shows control commands
  • FIG. 22(b) shows opening/closing control of the damper device 64 (valve body 80)
  • FIG. , (d) of FIG. 22 shows on/off control of the first fan 62
  • FIG. 22(e) shows on/off control of the heaters 58 and 60
  • FIG. 22(f) shows on/off control of the motor 54 that drives the absorbent 52 to rotate.
  • the damper control of another modification includes the step S36 of turning on the heaters 58 and 60 and the step S37 of rotating the absorbing material 52. , see FIG. 19).
  • Other processing in another modification is the same as the damper control described above. Therefore, steps S36 and S37 will be described.
  • step S36 the control unit 90 related to damper control of another modified example turns on the heaters 58 and 60. That is, the control unit 90 related to damper control in another modification turns on the first heater 58 and the second heater 60 that heat the outdoor air A3 on the upstream side of the absorbent 52 in the first flow path P1. , heats the outdoor air A3 flowing through the first flow path P1. As a result, when the heated outdoor air A3 passes through the damper device 64, it is possible to remove the foreign matter G1 such as ice adhering to the damper device 64 and melted by heat.
  • step S ⁇ b>37 the control unit 90 related to damper control of another modified example rotates the absorber 52 .
  • the control unit 90 related to damper control in another modified example drives the motor 54 that rotationally drives the absorbing material 52 to rotate the absorbing material 52 .
  • concentration of heat from the heaters 58 and 60 on a portion of the absorbent 52 can be suppressed. That is, it is possible to prevent the absorbent 52 from being locally heated by the heaters 58 and 60 .
  • the control unit 90 of this modified example performs steps S31 to S34 and S36 to S37.
  • the air warmed by the heaters 58 and 60 is sent to the damper device 64 by turning on the heaters 58 and 60 .
  • the foreign matter G1 adhering to the damper device 64 can be removed by melting the foreign matter G1.
  • step S37 of rotating the absorber 52 is not an essential process. That is, in the damper control of another modified example, step S37 may not be performed.
  • the control unit 90 of this modified example acquires the temperature information of the outdoor route and determines whether to turn on the heaters 58 and 60 based on the temperature information of the outdoor route. may decide.
  • the outdoor unit 30 may include a temperature sensor that acquires temperature information on the outdoor Rout.
  • the control unit 90 of this modification may determine whether to turn on the heaters 58 and 60 based on the temperature information of the outdoor Rout acquired by the temperature sensor.
  • the air conditioner 10 may include a communication device that communicates with an external device such as a server.
  • the control unit 90 of this modification acquires the temperature information of the outdoor route from the external device via the communication device, and whether or not to turn on the heaters 58 and 60 based on the temperature information of the outdoor route acquired from the external device. You may decide whether
  • the damper control of another modified example may include step S35 of increasing the torque of the damper motor 82 in the damper control of the modified example.
  • damper control when the damper device 64 is opened has been described in Figs. 19 to 22, the same control can be performed when the damper device 64 is closed. That is, the damper control of the modified example shown in FIG. 19 may be applied to the damper control when closing the damper device 64 shown in FIG. 18, or the damper control of another modified example shown in FIG. good.
  • FIG. 23 is a flowchart showing the operation of hose drying control
  • FIG. 24 is a timing chart showing the state of each part in hose drying control.
  • 24A shows the opening/closing control of the damper device 64
  • FIG. 24B shows the ON/OFF control of the first fan 62
  • FIG. 24C shows the ON/OFF control of the second fan 66. Indicates control.
  • step S61 the control unit 90 performs damper "open" control. That is, the control unit 90 opens the damper device 64 to distribute the outdoor air A3 flowing through the first flow path P1 to the ventilation conduit 56 .
  • the ventilation conduit 56 connects the first flow path P1 and the indoor unit 20 via the damper device 64 . Therefore, the controller 90 can control the damper device 64 to distribute the outdoor air A3 to the ventilation conduit 56 .
  • step S61 If the damper device 64 has been opened before step S61, the controller 90 keeps the damper device 64 open in step S61.
  • the control unit 90 causes the first fan 62 to rotate. That is, the controller 90 turns on the first fan 62 to blow the outdoor air A3 to the first flow path P1. That is, the controller 90 rotates the first fan 62 to send the dry outdoor air A3 to the ventilation conduit 56 from the first flow path P1. As a result, the inside of the ventilation conduit 56 is dried by the dry outdoor air A3 blown by the first fan 62 .
  • the dry outdoor air A3 means, for example, the outdoor air A3 that is not in a saturated air state.
  • door air that is not saturated air is meant that the outdoor air is maximally free of moisture.
  • the humidity of the outdoor air A3 may be 70% or less, preferably 50% or less, more preferably 30% or less.
  • control unit 90 maintains the state in which the first fan 62 is rotating in step S62.
  • the control unit 90 stops the second fan 66. That is, the control unit 90 turns off the second fan 66 to stop blowing the outdoor air A4 to the second flow path P2. That is, the control unit 90 stops the rotation of the second fan 66 and stops blowing the outdoor air A4 to the second flow path P2. As a result, the absorbent 52 does not absorb moisture, so the outdoor air A3 blown by the first fan 62 can be dried.
  • step S64 the control unit 90 determines whether or not a predetermined time t61 has elapsed.
  • step S64: YES the control unit 90 determines that the predetermined time t61 has elapsed
  • step S64: NO the control unit 90 determines that the predetermined time t61 has not elapsed
  • the predetermined time t61 is 3 minutes or more and 30 minutes or less.
  • the predetermined time t61 is 10 minutes.
  • the control unit 90 performs steps S61 to S64.
  • the inside of the hose that is, the inside of the ventilation conduit 56 can be dried by performing the hose drying control.
  • the inside of the ventilation conduit 56 can be dried to suppress the occurrence of dew condensation.
  • hose drying control is not limited to being performed after the humidification operation ends.
  • hose drying control may be performed based on the humidity or the amount of condensation in ventilation conduit 56, or hose drying control may be performed at predetermined time intervals.
  • step S64 the example in which the hose drying control ends after the predetermined time t61 has elapsed has been described, but the present invention is not limited to this.
  • hose dry control may be terminated based on the amount of humidity or condensation within ventilation conduit 56 .
  • FIG. 25 is a flowchart showing the operation of the hose drying control of the modification
  • FIG. 26 is a timing chart showing the states of each part in the hose drying control of the modification.
  • 26(a) shows the opening/closing control of the damper device 64
  • FIG. 26(b) shows the on/off control of the first fan 62
  • FIG. 26(c) shows the on/off control of the second fan 66.
  • 26(d) shows on/off control of the motor 54 for rotating the absorbent 52
  • FIG. 26(e) shows on/off control of the heaters 58 and 60.
  • the modified hose drying control includes a step S63A of rotating the absorbent 52 and a step S63B of turning on the heaters 58 and 60. (see FIG. 23).
  • Other processing in the modified example is the same as the hose drying control described above. Therefore, steps S63A and S63B will be described.
  • the control unit 90 related to the modified hose drying control rotates the absorbent 52. That is, the control unit 90 related to the hose drying control of the modified example drives the motor 54 that rotationally drives the absorbent 52 to rotate the absorbent 52 .
  • the control unit 90 related to the hose drying control of the modified example drives the motor 54 that rotationally drives the absorbent 52 to rotate the absorbent 52 .
  • the control unit 90 related to the hose drying control of the modified example turns on the heaters 58 and 60.
  • the control unit 90 turns on the first heater 58 and the second heater 60 that heat the outdoor air A3 on the upstream side of the absorbent 52 in the first flow path P1, and heats the outdoor air flowing through the first flow path P1. Heat A3. This allows the outdoor air A3 to be dried and the dry outdoor air A3 to be sent into the ventilation conduit 56 .
  • the control unit 90 of this modified example further performs steps S63A and S63B.
  • the outdoor air A3 flowing through the first flow path P1 can be dried. This makes it easier to dry the inside of the ventilation conduit 56 .
  • the humidity of the outdoor air A3 is high, the humidity of the outdoor air A3 can be lowered by heating with the heaters 58 and 60 .
  • the absorbent 52 it is possible to prevent the absorbent 52 from being damaged by the heating of the heaters 58 and 60.
  • a control unit 90 associated with another modified hose drying control determines whether the heaters 58 , 60 are turned on or off based on humidity information in the ventilation conduit 56 .
  • FIG. 27 is a block diagram showing the configuration of the air conditioner 10 of another modified example.
  • the air conditioner 10 includes a humidity sensor 86 that acquires humidity information inside the ventilation conduit 56 .
  • the humidity sensor 86 is arranged, for example, at a nozzle on the outlet side of the ventilation conduit 56 connected to the indoor unit 20 .
  • the control unit 90 controls the damper device 64 and the first fan 62 based on humidity information acquired by the humidity sensor 86 . For example, when the humidity inside the ventilation conduit 56 obtained by the humidity sensor 86 reaches or exceeds a threshold value, the controller 90 distributes the dry outdoor air A3 to the ventilation conduit 56 and drives the first fan 62 to rotate. This forces dry outdoor air A3 into the ventilation conduit 56 .
  • FIG. 28 is a flow chart showing the operation of hose drying control in another modified example.
  • a step S63C of acquiring humidity information in the ventilation conduit 56 and a step S63D of determining whether the humidity in the ventilation conduit 56 is equal to or higher than a threshold value are performed. It is different from the hose drying control of the modification (see FIG. 25) described above in that it includes. Other processing in another modification is the same as the hose drying control of the modification described above. Therefore, steps S63C and S63D will be described.
  • step S63C the humidity sensor 86 acquires humidity information within the ventilation conduit 56.
  • Humidity information is the humidity within the ventilation conduit 56 .
  • the humidity sensor 86 acquires humidity information and transmits it to the control unit 90 related to hose drying control of another modified example.
  • step S63D the control unit 90 related to the hose drying control of another modified example determines whether to turn on the heaters 58, 60 based on the humidity information.
  • step S63D: YES the process proceeds to step S63A.
  • step S63D: NO the process proceeds to step S64.
  • step S63D the control unit 90 related to the hose drying control of another modified example determines whether the humidity obtained by the humidity sensor 86 is equal to or higher than the threshold.
  • the threshold is set at 90%. Note that the threshold is not limited to 90% and may be set to any value.
  • the hose drying control of another modified example further implements steps S63C and S63D. This allows a decision to turn on or not the heaters 58 , 60 depending on the humidity information in the ventilation conduit 56 . As a result, hose drying control can be performed efficiently.
  • step S63C an example in which the humidity sensor 86 acquires the humidity inside the ventilation conduit 56 has been described, but the present invention is not limited to this.
  • another alternative hose drying control controller 90 may obtain information related to the humidity within the ventilation conduit 56 .
  • Information related to humidity includes, for example, the amount of condensation, the temperature difference between the inlet 56a and the outlet of the ventilation conduit 56, and the like.
  • the controller 90 of this variation may acquire the amount of condensation within the ventilation conduit 56 and determine to turn on the heaters 58, 60 based on the amount of condensation.
  • the air conditioner 10 of this modification includes a plurality of temperature sensors arranged at the inlet 56a and the outlet of the ventilation conduit 56, and the controller 90 of this modification controls the temperature of the inlet 56a and the outlet of the ventilation conduit 56.
  • the decision to turn on the heaters 58, 60 may be based on the difference.
  • steps S63C and S63D may be performed before step S61.
  • the control unit 90 of this modified example may determine whether to perform steps S61 to S64 based on the humidity information acquired by the humidity sensor 86.
  • the control unit 90 may control the damper device 64 and the first fan 62 based on the humidity information acquired by the humidity sensor 86 to send the dry outdoor air A3 to the ventilation conduit 56.
  • damper device 64 and first fan 62 may be controlled to send dry outdoor air A3 to ventilation conduit 56 when the humidity obtained by humidity sensor 86 is 70% or higher.
  • control unit 90 related to the hose drying control of another modification acquires information related to the humidity in the ventilation conduit 56, and controls the damper device 64 and the first fan 62 based on this information. good. For example, when the amount of condensation in the ventilation conduit 56 is greater than or equal to a predetermined threshold, the controller 90 of this variant controls the damper device 64 and the first fan 62 to direct dry outdoor air A3 to the ventilation conduit 56. You can send Alternatively, when the temperature difference between the inlet 56a and the outlet of the ventilation conduit 56 is 10° C. or more, the control unit 90 of this modification controls the damper device 64 and the first fan 62 to ventilate the dry outdoor air A3. It may be sent to conduit 56 .
  • FIG. 29 is a flowchart showing the entire operation from ON to OFF of the humidification operation in the modified example.
  • the process includes heater residual heat elimination control as step S80.
  • Heater residual heat elimination control is control for eliminating residual heat of the heaters 58 and 60 .
  • the control unit 90 according to the modification performs control to cool the heaters 58 and 60 .
  • step S80 is performed after steps S10 to S70 are performed.
  • FIG. 30 is a flow chart showing the operation of the heater residual heat elimination control
  • FIG. 31 is a timing chart showing the states of each part in the heater residual heat elimination control.
  • 31(a) shows open/close control of the damper device 64
  • FIG. 31(b) shows on/off control of the first fan 62
  • FIG. 31(c) shows on/off control of the second fan 66.
  • 31(d) shows on/off control of the motor 54 for rotating the absorbent 52
  • FIG. 31(e) shows on/off control of the heaters 58 and 60.
  • FIG. 31 shows an example in which the heater residual heat removal control is performed after the hose drying control is performed.
  • step S81 the control unit 90 according to the modification controls the damper device 64 to close. Specifically, the control unit 90 according to the modification transmits a damper “close” command to the damper motor 82 of the damper device 64 . As a result, the damper device 64 is closed, and the outdoor air A3 flowing through the first flow path P1 is discharged to the outdoor Rout.
  • step S82 the control unit 90 according to the modification turns off the heaters 58, 60. Heating by the heaters 58 and 60 is thereby stopped.
  • step S83 the control unit 90 according to the modification rotates the first fan 62. That is, the control unit 90 according to the modification turns on the first fan 62 to blow the outdoor air A3 to the first flow path P1. That is, the control unit 90 according to the modification rotates the first fan 62 to discharge the outdoor air A3 from the first flow path P1 to the outdoor Rout. As a result, the outdoor air A3 blown by the first fan 62 cools the heaters 58 and 60 .
  • step S84 the control unit 90 according to the modification causes the second fan 66 to rotate. That is, the control unit 90 according to the modification turns on the second fan 66 to blow the outdoor air A4 to the second flow path P2. That is, the control unit 90 according to the modification rotates the second fan 66 to discharge the outdoor air A4 from the second flow path P2 to the outdoor Rout. This prevents the absorbent 52 from being dried by the outdoor air A4 blown by the second fan 66 .
  • step S85 the control unit 90 according to the modification rotates the absorbent 52.
  • the control unit 90 according to the modification drives the motor 54 that rotationally drives the absorbing material 52 to rotate the absorbing material 52 .
  • the absorbent 52 it is possible to prevent the absorbent 52 from being locally heated by the residual heat of the heaters 58 and 60 .
  • step S86 the control unit 90 according to the modification determines whether or not a predetermined time t81 has elapsed.
  • step S86: YES the control unit 90 according to the modification determines that the predetermined time t81 has elapsed.
  • step S86: NO the control unit 90 according to the modification determines that the predetermined time t81 has not elapsed.
  • step S86: NO the process returns to step S82.
  • the predetermined time t81 is, for example, 30 seconds or more and 2 minutes or less.
  • the predetermined time t81 is 1 minute.
  • the control unit 90 performs steps S81 to S86.
  • the heater residual heat removal control By performing the heater residual heat removal control in this way, the residual heat of the heaters 58 and 60 can be removed.
  • steps S84 and S85 are not essential processes.
  • at least one of step S84 and step S85 may not be performed. That is, the control unit 90 according to the modified example only needs to rotate the first fan 62 and does not have to rotate the second fan 66 and the absorber 52 .
  • heater residual heat removal control is performed after the hose drying control has been described, but the present invention is not limited to this.
  • heater residual heat elimination control may be performed.
  • the air conditioner 10 controls the fan rotation speed of the first fan 62 according to the hose length L.
  • hose length L means the length of ventilation conduit 56 .
  • FIG. 32 is a diagram showing a data configuration and an example of the instructed rotation speed table 94 in which the instructed rotation speed R1 is assigned according to the hose length L.
  • the hose length L increases from L1 to L6, and the indicated rotation speed R1 of the first fan 62 increases from R11 to R16.
  • "Instructed number of rotations R1" means the maximum number of rotations of the first fan 62 that is set according to the length L of the hose.
  • the indicated rotation speed R1 of the first fan 62 is assigned according to the hose length L.
  • the indicated rotation speed R1 of the first fan 62 is set during initial setting when the air conditioner 10 is installed.
  • the controller 90 refers to the instructed rotation speed table 94 and sets the instructed rotation speed R1 of the first fan 62 according to the hose length L.
  • the control unit 90 refers to the instructed rotation speed table 94 and sets the instructed rotation speed R11 corresponding to the hose length L ⁇ L1.
  • the control unit 90 refers to the instructed rotation speed table 94 and sets the instructed rotation speed R14 corresponding to the hose length L3 ⁇ L ⁇ L4.
  • the control unit 90 sets the indicated rotation speed R1 of the first fan 62 according to the hose length L, thereby adjusting the fan rotation speed to the optimum.
  • the longer the hose length L the greater the blowing resistance. Therefore, in the air conditioner 10, a sufficient amount of outdoor air A3 is blown to the indoor unit 20 by increasing the fan rotation speed of the first fan 62 as the hose length L increases. As a result, deterioration in performance such as humidification ability can be suppressed.
  • the rotation speed limit value means a rotation speed limit value that does not significantly reduce the durability of the first fan 62, and is determined according to fan specifications and the like.
  • FIG. 33 is a block diagram showing the configuration for controlling the fan speed.
  • the first fan 62 is rotationally driven by a fan motor 62A.
  • Fan motor 62A is controlled by control unit 90 .
  • the fan motor 62A receives a control command from the control unit 90 and rotates the first fan 62 based on the control command.
  • the control unit 90 blows the outdoor air A3 into the ventilation conduit 56 by rotating the first fan 62 with the damper device 64 open.
  • the control command includes the indicated rotation speed R1.
  • the instructed rotation speed R1 is stored in the storage unit 92 .
  • the control unit 90 reads the instructed rotation speed R1 from the storage unit 92 and transmits a control command to the fan motor 62A.
  • the storage unit 92 stores a command rotation speed table 94 shown in FIG.
  • the operator inputs the hose length L via the input interface to set the indicated rotation speed R1 of the first fan 62 .
  • the instructed rotation speed R1 that has been set is stored in the storage unit 92 .
  • the control unit 90 reads the instructed rotation speed R1 from the storage unit 92 .
  • the first fan 62 is no longer rotationally driven at the optimum rotational speed, and a discrepancy may occur between the indicated rotational speed R1 and the actual rotational speed of the first fan 62 .
  • the predetermined threshold is set to 240V DC.
  • the actual rotation speed of the first fan 62 falls below the indicated rotation speed R1.
  • the predetermined threshold value a discrepancy occurs between the indicated rotation speed R1 and the actual rotation speed of the first fan 62.
  • the indicated rotation speed R1 of the first fan 62 is set to R15.
  • the actual hose length is "L ⁇ L1”
  • the resistance of the hose is small, so the air volume tends to be relatively large.
  • the torque of the fan motor 62A tends to increase.
  • the actual rotation speed of the first fan 62 is smaller than the indicated rotation speed R15.
  • the control unit 90 acquires the actual rotation speed of the first fan 62 and corrects the instructed rotation speed R1 based on the instructed rotation speed R1 and the actual rotation speed. For example, when the controller 90 determines that there is a discrepancy between the indicated rotation speed R1 and the actual rotation speed, it determines whether the voltage applied to the fan motor 62A is equal to or higher than a predetermined threshold. When the voltage applied to the fan motor 62A is equal to or higher than the predetermined threshold, the controller 90 corrects the commanded rotation speed R1 based on the commanded rotation speed R1 and the actual rotation speed.
  • FIG. 34 is a flow chart showing the operation of setting control of the fan rotation speed
  • FIG. 35 is a timing chart showing the state of each part in the setting control of the fan rotation speed.
  • FIG. 35(a) shows the indicated rotation speed R1 of the first fan 62
  • FIG. 35(b) shows the actual rotation speed of the first fan 62.
  • An example of correcting the command rotation speed R1 based on is shown.
  • step S91 the control unit 90 acquires the indicated rotation speed R1 of the first fan 62.
  • the control unit 90 reads the instructed rotation speed R1 of the first fan 62 from the storage unit 92 .
  • the indicated rotation speed R1 is set to the indicated rotation speed R14 corresponding to the hose length L3 ⁇ L ⁇ L4 input at the time of initialization.
  • step S93 the control unit 90 acquires the actual rotation speed Rs of the first fan 62.
  • the actual rotation speed Rs is the actual rotation speed of the first fan 62 .
  • the control unit 90 acquires the actual rotational speed Rs of the first fan 62 from the fan motor 62A.
  • step S94 the control unit 90 determines whether or not a predetermined time t91 has passed since the first fan 62 started rotating.
  • step S94: YES the process proceeds to step S95.
  • step S94: NO the process returns to step S92.
  • the predetermined time t91 is, for example, 5 minutes or more and 30 minutes or less.
  • step S95 the control unit 90 determines whether or not there is a discrepancy between the actual rotation speed Rs and the command rotation speed R1. If the control unit 90 determines that there is a deviation (step S95: YES), the process proceeds to step S96. If the control unit 90 determines that there is no deviation (step S95: NO), the process ends. In the present embodiment, when the controller 90 determines that there is a deviation between the commanded rotation speed R1 and the actual rotation speed (step S95: YES), the voltage applied to the fan motor 62A is equal to or higher than the predetermined threshold. Determine whether or not If the voltage applied to the fan motor 62A is greater than or equal to the predetermined threshold, the process proceeds to step S96.
  • the control unit 90 calculates the difference between the command rotation speed R1 and the actual rotation speed Rs after performing step S93 and before the determination in step S94.
  • step S95 when the calculated difference exceeds the threshold for a predetermined time t91, the control unit 90 determines that there is a deviation between the actual rotation speed Rs and the command rotation speed R1.
  • the threshold is set at 400 rpm. Note that the threshold is not limited to 400 rpm, and may be set to any value.
  • step S96 the control unit 90 corrects the indicated rotation speed R1 of the first fan 62.
  • the control unit 90 corrects the indicated rotation speed R1 to be close to the actual rotation speed Rs.
  • the control unit 90 corrects the instructed rotation speed R1 to within a predetermined range from the actual rotation speed Rs.
  • "Within a predetermined range from the actual number of revolutions Rs” is within ⁇ 5% of the actual number of revolutions Rs.
  • "within a predetermined range from the actual number of revolutions Rs” is within ⁇ 200 rpm of the actual number of revolutions Rs.
  • the control unit 90 corrects the indicated rotation speed R1 to be equal to or lower than the actual rotation speed Rs.
  • the control unit 90 reads the instructed rotation speed table 94 from the storage unit 92, and corrects the instructed rotation speed R1 based on the instructed rotation speed table 94 and the actual rotation speed Rs. Specifically, the control unit 90 selects the indicated rotation speed R1 near the actual rotation speed Rs from the indicated rotation speeds R11 to R16 of the indicated rotation speed table 94. FIG. For example, the control unit 90 calculates the difference between the actual rotation speed Rs and the indicated rotation speeds R11 to R16, and adjusts the indicated rotation speed R1 so that the indicated rotation speed has the smallest difference among the indicated rotation speeds R11 to R16. to correct.
  • control unit 90 reduces the instructed rotation speed R1 to the instructed rotation speed R11 that is substantially equal to the actual rotation speed Rs.
  • the control unit 90 stores the corrected instructed rotation speed R1 in the storage unit 92. As a result, the set value of the indicated rotation speed R1 of the first fan 62 can be stored.
  • control unit 90 performs steps S91 to S96 in the fan rotational speed setting control. As described above, even if the setting of the fan rotation speed of the first fan 62 is erroneous, the fan rotation speed can be corrected to the optimum fan rotation speed by controlling the setting of the fan rotation speed.
  • control unit 90 sets or corrects the instructed rotation speed R1 using the instructed rotation speed table 94
  • the present invention is not limited to this.
  • the control unit 90 may set or correct the instructed rotation speed R ⁇ b>1 without using the instructed rotation speed table 94 .
  • the control unit 90 corrects the instructed rotation speed R1 based on the actual rotation speed Rs and the instructed rotation speed R1, but the present invention is not limited to this.
  • the control unit 90 may correct the indicated rotation speed R1 based on the maximum air volume M1 of the first fan 62 .
  • the control unit 90 may correct the indicated rotation speed R1 based on the deviation of the maximum air volume M1 of the first fan 62 .
  • control unit 90 may correct the instructed rotation speed R2 of the second fan 66 as well as the instructed rotation speed R1 of the first fan 62 .
  • FIG. 36 is a diagram showing a data configuration and an example of a command rotation speed table of a modified example.
  • the maximum air volume M1 of the first fan 62 decreases from M11 to M16
  • the indicated rotation speed R2 of the second fan 66 decreases from R21 to R26.
  • “Instructed number of rotations R2” means the maximum number of rotations of the second fan 66 set according to the length L of the hose.
  • the instruction rotation speed table of the modified example assigns the maximum air volume M1 of the first fan 62 and the instruction rotation speed R2 of the second fan 66 according to the hose length L. It is different from the command rotation speed table 94 described above.
  • the control unit 90 according to this modification uses the indicated rotation speed table shown in FIG. 2, the designated rotation speed R2 of the fan 66 may be set. Further, when correcting the instructed rotation speed R1 of the first fan 62, the control unit 90 according to this modification uses the instructed rotation speed table shown in FIG. may be corrected.
  • control unit 90 when the control unit 90 according to this modification corrects the indicated rotation speed R1 of the first fan 62 from R15 to R12, the indicated rotation speed R2 of the second fan 66 may be corrected from R25 to R22. good. In this manner, the control unit 90 according to this modification may correct the indicated rotation speeds R1 of the first fan 62 and the second fan 66 to the same hose length L set value.
  • the indicated rotation speed R2 of the second fan 66 By correcting the indicated rotation speed R2 of the second fan 66, it is possible to suppress the deterioration of the humidification performance. For example, if the indicated rotation speed R2 of the second fan 66 is not set with the correct hose length L, the outdoor air A3 blown by the first fan 62 and the outdoor air A3 blown by the second fan 66 are blown in the absorbent 52. The pressure balance with the outdoor air A4 may be lost. Therefore, the outdoor air A3 flowing through the first flow path P1 after passing through the heaters 58 and 60 is pulled by the outdoor air A4 flowing through the second flow path P2, and heat is not transmitted to the absorbent 52. In the meantime, it may be discharged to the outdoor route.
  • the control unit 90 corrects the instructed rotation speed R1 of the first fan 62 and the instructed rotation speed R2 of the second fan 66 .
  • the pressure balance between the outdoor air A3 blown by the first fan 62 and the outdoor air A4 blown by the second fan 66 can be maintained.
  • a decrease in humidification efficiency can be suppressed.
  • control unit 90 corrects the indicated rotation speed R1 of the first fan 62 based on the maximum air volume M1 of the first fan 62 using the indicated rotation speed table shown in FIG. good too.
  • the control unit 90 according to this modification may determine whether or not there is a deviation between the maximum air volume M1 of the first fan 62 and the actual air volume.
  • the actual air volume may be detected by a sensor or calculated based on the input of the fan motor 62A.
  • the control unit 90 according to this modification uses the instructed rotation speed table shown in FIG. You may correct
  • FIG. 37 is a flow chart showing the operation of fan rotation speed setting control according to the modification.
  • the fan rotation speed setting control of the modified example sets the indicated rotation speed R1 of the first fan 62 based on the actual rotation speed Rs of the first fan 62 and the input of the fan motor 62A. Set automatically.
  • step S ⁇ b>101 the control unit 90 related to the fan rotational speed setting control of the modified example rotates the first fan 62 . That is, the control unit 90 related to the setting control of the fan rotational speed of the modified example turns on the first fan 62 and blows the outdoor air A3 to the first flow path P1.
  • step S ⁇ b>102 the control unit 90 related to the fan rotation speed setting control of the modified example acquires the actual rotation speed Rs of the first fan 62 .
  • step S103 the control unit 90 related to the fan speed setting control of the modified example acquires the input of the fan motor 62A.
  • step S104 the control unit 90 related to the fan rotation speed setting control of the modified example sets the instructed rotation speed R1 of the first fan 62 based on the actual rotation speed Rs of the first fan 62 and the input of the fan motor 62A. set.
  • control unit 90 related to the fan rotational speed setting control of the modified example estimates the hose length L based on the actual rotational speed Rs of the first fan 62 and the input of the fan motor 62A, and the estimated hose length L and the instructed rotation speed table 94, the instructed rotation speed R1 may be determined.
  • control unit 90 related to the setting control of the fan rotation speed of the modified example can automatically set the rotation speed based on the actual rotation speed Rs of the first fan 62 and the input of the fan motor 62A without using the instruction rotation speed table 94. You may set instruction
  • the control unit 90 performs steps S101 to S104.
  • the instructed rotation speed R1 of the first fan 62 is automatically set based on the actual rotation speed Rs of the first fan 62 and the input of the fan motor 62A. can be set.
  • FIG. 38 is a block diagram showing a configuration for controlling the fan speed based on the outdoor temperature.
  • the air conditioner 10 includes a temperature sensor 96 that acquires the outdoor temperature.
  • the controller 90 controls the rotation speed of the first fan 62 based on the outdoor temperature acquired by the temperature sensor 96 .
  • FIG. 39 is a flow chart showing the operation of controlling the fan speed based on the outdoor temperature.
  • step S111 the temperature sensor 96 acquires the outdoor temperature.
  • step S112 the control unit 90 determines whether or not the outdoor temperature is below the threshold.
  • step S112: YES the process proceeds to step S113.
  • step S112: NO the process returns to step S111.
  • the threshold is dew point. Note that the threshold is not limited to the dew point, and may be set to any value.
  • control unit 90 increases the rotation speed of the first fan 62.
  • the control unit 90 performs steps S111 to S113 in controlling the fan speed based on the outdoor temperature.
  • the outdoor temperature falls below the threshold
  • the rotation speed of the first fan 62 by increasing the rotation speed of the first fan 62, the outdoor air A3 flowing through at least one of the first flow path P1 and the ventilation conduit 56 is The flow velocity can be increased.
  • the temperature of at least one of the inside of the first flow path P1 and the inside of the ventilation conduit 56 from becoming below the dew point.
  • the occurrence of dew condensation in at least one of the first flow path P1 and the ventilation conduit 56 can be suppressed.
  • the temperature sensor 96 is not an essential component.
  • the air conditioner 10 does not have to include the temperature sensor 96 .
  • the control unit 90 may acquire the outdoor temperature information by means other than the temperature sensor 96 .
  • the air conditioner 10 may be equipped with a communication device.
  • the control unit 90 may acquire outdoor temperature information from a server via a communication device.
  • FIG. 40 is a flow chart showing the operation of controlling the fan speed based on the opening and closing of the damper device 64.
  • step S121 the control unit 90 reduces the rotation speed of the first fan 62. As a result, the controller 90 reduces the amount of outdoor air A3 sent from the first fan 62 .
  • the control unit 90 performs damper control.
  • the control unit 90 controls opening or closing the damper device 64 .
  • the damper control may be opening/closing control of the damper device 64 described above (see FIGS. 16 to 21).
  • control unit 90 performs steps S121 to S122 in the control of the fan rotation speed based on the opening and closing of the damper device 64. In this way, the damper device 64 can be opened and closed safely by reducing the rotational speed of the first fan 62 before opening and closing the damper device 64 .
  • the above-described clean control, damper control, hose drying control, and heater residual heat removal control are not limited to being performed before and after the humidification operation. These controls may be implemented during humidification operation. Moreover, these controls are not limited to the humidifying operation, and may be performed before or after other operations such as the dehumidifying operation, or may be performed during the other operations.
  • the air conditioner according to the embodiment of the present disclosure is an air conditioner that includes an indoor unit and an outdoor unit.
  • An air conditioner according to an embodiment of the present disclosure is provided in an outdoor unit and includes an absorbent that absorbs moisture in outdoor air, a first flow path through which outdoor air passes through the absorbent, and a first and a first fan for generating a flow of outdoor air in the flow path.
  • the air conditioner according to the embodiment of the present disclosure includes a ventilation conduit that connects the first flow path and the indoor unit, and a damper that distributes the outdoor air flowing through the first flow path to the outdoor air and the ventilation conduit. and a controller for controlling the first fan and damper device.
  • the control unit controls the damper device to distribute outdoor air to the ventilation conduit, rotationally drive the first fan, and send dry outdoor air from the first flow path to the ventilation conduit.
  • the present disclosure is applicable to any air conditioner equipped with an indoor unit and an outdoor unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

An air conditioner according to an aspect of the present disclosure comprises an indoor unit and an outdoor unit. This air conditioner comprises: an absorption material which is provided in the outdoor unit and which absorbs moisture in outdoor air; a first flow path which passes through the absorption material and through which the outdoor air flows; and a first fan which generates the flow of the outdoor air in the first flow path. Further, the air conditioner comprises: a ventilation conduit which connects the first flow path and the indoor unit; a damper device which distributes the outdoor air flowing through the first flow path to outdoors and the ventilation conduit; and a control unit which controls the first fan and the damper device. The control unit controls the damper device to distribute the outdoor air to the ventilation conduit, rotate the first fan, and send dry outdoor air from the first flow path to the ventilation conduit.

Description

空気調和機air conditioner
 本開示は、空気調和機に関する。 The present disclosure relates to air conditioners.
 従来、例えば、特許文献1に記載するように、空気調和対象の室内に配置される室内機と、室外に配置される室外機とから構成される空気調和機が知られている。この空気調和機は、室外機から室内機に加湿された室外空気を供給できるように構成されている。 Conventionally, as described in Patent Document 1, for example, an air conditioner is known that is composed of an indoor unit arranged inside a room to be air-conditioned and an outdoor unit arranged outdoors. This air conditioner is configured to supply humidified outdoor air from the outdoor unit to the indoor unit.
特開2001-91000号公報JP-A-2001-91000
 ところで、空気調和機内で結露が生じることを抑制したいというニーズがある。 By the way, there is a need to suppress the formation of condensation inside air conditioners.
 そこで、本開示は、空気調和機内で結露が生じることを抑制することが可能な空気調和機を提供する。 Therefore, the present disclosure provides an air conditioner capable of suppressing condensation within the air conditioner.
 本開示の一態様の空気調和機は、室内機と室外機とを備える空気調和機である。本開示の一態様の空気調和機は、室外機に設けられ、室外空気の水分を吸収する吸収材と、吸収材を通過し、室外空気が流れる第1の流路と、第1の流路に室外空気の流れを発生させる第1のファンと、を備える。また、本開示の一態様の空気調和機は、第1の流路と室内機とを接続する換気導管と、第1の流路を流れる室外空気を、室外と換気導管とに振り分けるダンパ装置と、第1のファンおよびダンパ装置を制御する制御部と、を備える。制御部は、ダンパ装置を制御し、室外空気を換気導管に振り分け、第1のファンを回転駆動し、第1の流路から換気導管へ乾燥した室外空気を送る。 An air conditioner according to one aspect of the present disclosure is an air conditioner that includes an indoor unit and an outdoor unit. An air conditioner according to one aspect of the present disclosure is provided in an outdoor unit and includes an absorbent that absorbs moisture in outdoor air, a first flow path through which the outdoor air flows through the absorbent, and a first flow path. and a first fan for generating a flow of outdoor air to. Further, an air conditioner according to one aspect of the present disclosure includes a ventilation conduit that connects a first flow path and an indoor unit, and a damper device that distributes outdoor air flowing through the first flow path into the outdoor air and the ventilation conduit. , and a control unit for controlling the first fan and damper device. The control unit controls the damper device to distribute outdoor air to the ventilation conduit, rotationally drive the first fan, and send dry outdoor air from the first flow path to the ventilation conduit.
 本開示の一態様の空気調和機は、空気調和機内で結露が生じることを抑制することができる。 The air conditioner according to one aspect of the present disclosure can suppress the occurrence of dew condensation inside the air conditioner.
本開示の一実施の形態に係る空気調和機の構成を示す概略図Schematic diagram showing the configuration of an air conditioner according to an embodiment of the present disclosure 換気装置の構成を示す概略図Schematic diagram showing the configuration of the ventilation system 換気運転中の換気装置の動作状態を示す概略図Schematic diagram showing the operating state of the ventilator during ventilation operation 加湿運転中の換気装置の動作状態を示す概略図Schematic diagram showing the operating state of the ventilator during humidification operation 除湿運転中の換気装置の動作状態を示す概略図Schematic diagram showing the operating state of the ventilation system during dehumidification operation 空気調和機を制御する構成を示すブロック図Block diagram showing a configuration for controlling an air conditioner 加湿運転ONからOFFまでの全体の動作を示すフローチャートFlowchart showing overall operation from ON to OFF of humidification operation クリーン制御の動作を示すフローチャートFlowchart showing operation of clean control クリーン制御における各部の状態を示すタイミングチャートTiming chart showing the state of each part in clean control 変形例のクリーン制御の動作を示すフローチャートFlowchart showing operation of clean control of modified example 変形例のクリーン制御における各部の状態を示すタイミングチャートTiming chart showing the state of each part in the clean control of the modified example ダンパ装置周辺の構成を示すブロック図Block diagram showing the configuration around the damper device ダンパ装置が正常に閉まっている状態を示す概略図Schematic diagram showing a state in which the damper device is normally closed ダンパ装置が正常に開いている状態を示す概略図Schematic diagram showing a state in which the damper device is normally opened ダンパ装置が正常に動作していない状態を示す概略図Schematic diagram showing a state in which the damper device is not operating normally ダンパ装置を開く場合のダンパ制御の動作を示すフローチャートFlowchart showing operation of damper control when the damper device is opened ダンパ装置を開く場合のダンパ制御における各部の状態を示すタイミングチャートTiming chart showing the state of each part in damper control when the damper device is opened ダンパ装置を閉じる場合のダンパ制御の動作を示すフローチャートFlowchart showing operation of damper control when the damper device is closed 変形例のダンパ制御の動作を示すフローチャートFlowchart showing operation of damper control of modification 変形例のダンパ制御における各部の状態を示すタイミングチャートTiming chart showing the state of each part in the damper control of the modified example 別の変形例のダンパ制御の動作を示すフローチャートFlowchart showing operation of damper control of another modified example 別の変形例のダンパ制御における各部の状態を示すタイミングチャートTiming chart showing the state of each part in damper control of another modified example ホース乾燥制御の動作を示すフローチャートFlowchart showing operation of hose drying control ホース乾燥制御における各部の状態を示すタイミングチャートTiming chart showing the state of each part in hose drying control 変形例のホース乾燥制御の動作を示すフローチャートFlowchart showing operation of hose drying control of modification 変形例のホース乾燥制御における各部の状態を示すタイミングチャートTiming chart showing the state of each part in the hose drying control of the modified example 別の変形例の空気調和機の構成を示すブロック図Block diagram showing the configuration of another modified air conditioner 別の変形例のホース乾燥制御の動作を示すフローチャートFlowchart showing operation of hose drying control of another modification 変形例における加湿運転ONからOFFまでの全体の動作を示すフローチャートFlowchart showing overall operation from ON to OFF of humidification operation in the modified example ヒータ余熱排除制御の動作を示すフローチャートFlowchart showing operation of heater residual heat removal control ヒータ余熱排除制御における各部の状態を示すタイミングチャートTiming chart showing the state of each part in heater residual heat removal control ホース長に応じて指示回転数が割り当てられた指示回転数テーブルのデータ構成および例を示す図A diagram showing a data structure and an example of a command rotation speed table in which command rotation speeds are assigned according to hose lengths. ファン回転数を制御するための構成を示すブロック図Block diagram showing the configuration for controlling the fan speed ファン回転数の設定制御の動作を示すフローチャートFlowchart showing operation of setting control of fan rotation speed ファン回転数の設定制御における各部の状態を示すタイミングチャートTiming chart showing the state of each part in setting control of fan rotation speed 変形例の指示回転数テーブルのデータ構成および例を示す図A diagram showing a data configuration and an example of a command rotation speed table of a modified example 変形例のファン回転数の設定制御の動作を示すフローチャートFlowchart showing operation of fan speed setting control according to a modification 室外温度に基づいてファン回転数を制御するための構成を示すブロック図Block diagram showing a configuration for controlling the fan speed based on the outdoor temperature 室外温度に基づくファン回転数の制御の動作を示すフローチャートFlowchart showing operation of fan speed control based on outdoor temperature ダンパ装置の開閉に基づくファン回転数の制御の動作を示すフローチャートFlowchart showing the operation of controlling the fan rotation speed based on opening and closing of the damper device
 本開示の一態様の空気調和機は、室内機と室外機とを備える空気調和機である。空気調和機は、室外機に設けられ、室外空気の水分を吸収する吸収材と、吸収材を通過し、室外空気が流れる第1の流路と、第1の流路に室外空気の流れを発生させる第1のファンと、を備える。また、空気調和機は、第1の流路と室内機とを接続する換気導管と、第1の流路を流れる室外空気を、室外と換気導管とに振り分けるダンパ装置と、第1のファンおよびダンパ装置を制御する制御部と、を備える。制御部は、ダンパ装置を制御し、室外空気を換気導管に振り分け、第1のファンを回転駆動し、第1の流路から換気導管へ乾燥した室外空気を送る。 An air conditioner according to one aspect of the present disclosure is an air conditioner that includes an indoor unit and an outdoor unit. An air conditioner is provided in an outdoor unit and includes an absorbent that absorbs moisture in outdoor air, a first flow path through which outdoor air flows through the absorbent, and a flow of outdoor air in the first flow path. and a first fan to generate. Further, the air conditioner includes a ventilation conduit connecting the first flow path and the indoor unit, a damper device for dividing the outdoor air flowing through the first flow path into the outdoor air and the ventilation conduit, a first fan and a control unit that controls the damper device. The control unit controls the damper device to distribute outdoor air to the ventilation conduit, rotationally drive the first fan, and send dry outdoor air from the first flow path to the ventilation conduit.
 このような本開示の一態様の空気調和機は、空気調和機内で結露が生じることを抑制することができる。 Such an air conditioner of one aspect of the present disclosure can suppress the occurrence of dew condensation inside the air conditioner.
 例えば、空気調和機は、第1の流路における吸収材の上流側で室外空気を加熱するヒータをさらに備え、制御部は、ヒータをオンにし、第1の流路を流れる室外空気を加熱してもよい。 For example, the air conditioner further includes a heater that heats the outdoor air upstream of the absorbent in the first flow path, and the control unit turns on the heater to heat the outdoor air flowing through the first flow path. may
 例えば、空気調和機は、吸収材を回転駆動するモータをさらに備え、制御部は、モータを駆動し、吸収材を回転させてもよい。 For example, the air conditioner may further include a motor that rotates the absorbent, and the control unit may drive the motor to rotate the absorbent.
 例えば、制御部は、換気導管内の湿度情報を取得し、取得した換気導管内の湿度情報に基づいてヒータをオンにするか否かを決定してもよい。 For example, the control unit may acquire humidity information inside the ventilation conduit, and determine whether to turn on the heater based on the acquired humidity information inside the ventilation conduit.
 例えば、制御部は、換気導管内の湿度に関連する情報を取得し、取得した換気導管内の湿度に関連する情報に基づいてヒータをオンにするか否かを決定してもよい。 For example, the control unit may acquire information related to the humidity within the ventilation conduit, and determine whether to turn on the heater based on the acquired information related to the humidity within the ventilation conduit.
 例えば、空気調和機は、吸収材を通過し、室外空気が室外から室外に流れる第2の流路と、第2の流路に室外空気の流れを発生させる第2のファンと、をさらに備え、制御部は、第2のファンを停止してもよい。 For example, the air conditioner further includes a second flow path through which the outdoor air passes through the absorbent material and flows from the outdoor to the outdoor, and a second fan that generates the flow of the outdoor air in the second flow path. , the controller may stop the second fan.
 例えば、制御部は、換気導管内の湿度に関連する情報を取得し、取得した換気導管内の湿度に関連する情報に基づいてダンパ装置および第1のファンを制御し、乾燥した室外空気を換気導管に送ってもよい。 For example, the control unit acquires information related to humidity in the ventilation conduit, controls the damper device and the first fan based on the acquired information related to humidity in the ventilation conduit, and ventilates dry outdoor air. Can be sent to conduit.
 例えば、空気調和機は、換気導管内の湿度情報を取得する湿度センサをさらに備え、制御部は、湿度センサで取得した換気導管内の湿度情報に基づいてダンパ装置および第1のファンを制御し、乾燥した室外空気を換気導管に送ってもよい。 For example, the air conditioner further includes a humidity sensor that acquires humidity information inside the ventilation conduit, and the controller controls the damper device and the first fan based on the humidity information inside the ventilation conduit acquired by the humidity sensor. , dry outdoor air may be sent to the ventilation conduit.
 例えば、制御部は、加湿運転の終了後に、ダンパ装置および第1のファンを制御し、乾燥した室外空気を換気導管に送ってもよい。 For example, the control unit may control the damper device and the first fan to send dry outdoor air to the ventilation conduit after the humidification operation ends.
 (実施の形態)
 以下、本開示の一実施の形態について図面を参照しながら説明する。
(Embodiment)
An embodiment of the present disclosure will be described below with reference to the drawings.
 図1は、本開示の一実施の形態に係る空気調和機10の構成を示す概略図である。 FIG. 1 is a schematic diagram showing the configuration of an air conditioner 10 according to an embodiment of the present disclosure.
 図1に示すように、本実施の形態に係る空気調和機10は、空調対象の室内Rinに配置される室内機20と、室外Routに配置される室外機30とを有する。 As shown in FIG. 1, the air conditioner 10 according to the present embodiment has an indoor unit 20 arranged in the indoor Rin to be air-conditioned, and an outdoor unit 30 arranged in the outdoor Rout.
 室内機20には、室内空気A1と熱交換を行う室内熱交換器22と、室内空気A1を室内機20内に誘引するとともに、室内熱交換器22と熱交換した後の室内空気A1を室内Rinに吹き出すファン24とが設けられている。 The indoor unit 20 includes an indoor heat exchanger 22 that exchanges heat with the indoor air A1, and invites the indoor air A1 into the indoor unit 20, and the indoor air A1 after heat exchange with the indoor heat exchanger 22 is introduced into the room. A fan 24 that blows to Rin is provided.
 室外機30には、室外空気A2と熱交換を行う室外熱交換器32と、室外空気A2を室外機30内に誘引するとともに、室外熱交換器32と熱交換した後の室外空気A2を室外Routに吹き出すファン34とが設けられている。また、室外機30には、室内熱交換器22および室外熱交換器32と冷凍サイクルを実行する圧縮機36、膨張弁38、および四方弁40が設けられている。 The outdoor unit 30 includes an outdoor heat exchanger 32 that exchanges heat with the outdoor air A2, and invites the outdoor air A2 into the outdoor unit 30. A fan 34 blowing to Rout is provided. In addition, the outdoor unit 30 is provided with a compressor 36, an expansion valve 38, and a four-way valve 40 for executing a refrigerating cycle with the indoor heat exchanger 22 and the outdoor heat exchanger 32.
 室内熱交換器22、室外熱交換器32、圧縮機36、膨張弁38、および四方弁40それぞれは、冷媒が流れる冷媒配管によって接続されている。冷房運転および除湿運転(弱冷房運転)の場合、空気調和機10は、冷媒が圧縮機36から四方弁40、室外熱交換器32、膨張弁38、室内熱交換器22を順に流れて圧縮機36に戻る冷凍サイクルを実行する。暖房運転の場合、空気調和機10は、冷媒が圧縮機36から四方弁40、室内熱交換器22、膨張弁38、室外熱交換器32を順に流れて圧縮機36に戻る冷凍サイクルを実行する。 The indoor heat exchanger 22, the outdoor heat exchanger 32, the compressor 36, the expansion valve 38, and the four-way valve 40 are connected by refrigerant pipes through which refrigerant flows. In the case of cooling operation and dehumidification operation (weak cooling operation), the air conditioner 10 is configured such that the refrigerant flows from the compressor 36 through the four-way valve 40, the outdoor heat exchanger 32, the expansion valve 38, and the indoor heat exchanger 22 in order. Execute the freeze cycle back to 36. In the case of heating operation, the air conditioner 10 executes a refrigeration cycle in which refrigerant flows from the compressor 36 through the four-way valve 40, the indoor heat exchanger 22, the expansion valve 38, the outdoor heat exchanger 32 in order, and then returns to the compressor 36. .
 空気調和機10は、冷凍サイクルによる空調運転の他に、室外空気A3を室内Rinに導入する空調運転を実行する。そのために、空気調和機10は、換気装置50を有する。換気装置50は、室外機30に設けられている。即ち、室外機30は、換気装置50を有する。 The air conditioner 10 performs an air-conditioning operation that introduces the outdoor air A3 into the room Rin in addition to the air-conditioning operation using the refrigeration cycle. Therefore, the air conditioner 10 has a ventilator 50 . A ventilation device 50 is provided in the outdoor unit 30 . That is, the outdoor unit 30 has a ventilator 50 .
 図2は、換気装置50の構成を示す概略図である。 FIG. 2 is a schematic diagram showing the configuration of the ventilation device 50. FIG.
 図2に示すように、換気装置50は、その内部に室外空気A3、A4が通過する吸収材52を備える。 As shown in FIG. 2, the ventilator 50 includes an absorbent 52 through which outdoor air A3 and A4 pass.
 吸収材52は、空気が通過可能な部材であって、通過する空気から水分を捕集するまたは通過する空気に水分を与える部材である。本実施の形態の場合、吸収材52は、円盤状であって、その中心を通過する回転中心線C1を中心にして回転する。吸収材52は、モータ54によって回転駆動される。 The absorbent material 52 is a member through which air can pass, and is a member that collects moisture from the passing air or gives moisture to the passing air. In the case of this embodiment, the absorber 52 is disc-shaped and rotates around a rotation center line C1 passing through the center thereof. The absorbing material 52 is rotationally driven by a motor 54 .
 吸収材52は、空気中の水分を収着する高分子収着材が好ましい。高分子収着材は、例えば、ポリアクリル酸ナトリウム架橋体から構成される。高分子収着材は、シリカゲルやゼオライトなどの吸着材に比べて、同一体積あたりの水分吸収量が多く、低い加熱温度で担持する水分を脱着することができ、そして水分を長時間担持することができる。 The absorbent material 52 is preferably a polymer sorbent material that sorbs moisture in the air. The polymeric sorbent material is composed of, for example, a crosslinked sodium polyacrylate. Compared to adsorbents such as silica gel and zeolite, polymer sorbents absorb more water per unit volume, can desorb water at low heating temperatures, and can retain water for a long time. can be done.
 換気装置50の内部には、吸収材52をそれぞれ通過し、室外空気A3、A4がそれぞれ流れる第1の流路P1と第2の流路P2とが設けられている。第1の流路P1と第2の流路P2は、異なる位置で吸収材52を通過する。 Inside the ventilator 50, there are provided a first flow path P1 and a second flow path P2 through which the outdoor air A3 and A4 respectively pass through the absorbent material 52. The first flow path P1 and the second flow path P2 pass through the absorbent material 52 at different positions.
 第1の流路P1は、室内機20内に向かう室外空気A3が流れる流路である。第1の流路P1を流れる室外空気A3は、換気導管56を介して、室内機20内に供給される。 The first flow path P1 is a flow path through which the outdoor air A3 flows toward the inside of the indoor unit 20. The outdoor air A3 flowing through the first flow path P1 is supplied into the indoor unit 20 via the ventilation conduit 56. As shown in FIG.
 本実施の形態の場合、第1の流路P1は、吸収材52に対して上流側に複数の支流路P1a、P1bを含んでいる。なお、本明細書において、「上流」および「下流」は、空気の流れに対して使用される。 In the case of the present embodiment, the first flow path P1 includes a plurality of branch flow paths P1a and P1b on the upstream side with respect to the absorbent 52. It should be noted that "upstream" and "downstream" are used herein with respect to air flow.
 複数の支流路P1a、P1bは、吸収材52に対して上流側で合流する。複数の支流路P1a、P1bそれぞれには、室外空気A3を加熱する第1および第2のヒータ58、60が設けられている。 The plurality of tributaries P1a and P1b merge with the absorbent 52 on the upstream side. First and second heaters 58 and 60 for heating the outdoor air A3 are provided in the plurality of branch passages P1a and P1b, respectively.
 第1および第2のヒータ58、60は、同一の加熱能力を備えるヒータであってもよいし、異なる加熱能力を備えるヒータであってもよい。また、第1および第2のヒータ58、60は、電流が流れて温度が上昇すると電気抵抗が増加する、即ち過剰な加熱温度の上昇を抑制することができるPTC(Positive Temperature Coefficient)ヒータが好ましい。ニクロム線やカーボン繊維などを用いるヒータを用いてもよいが、この場合、電流が流れ続けると加熱温度(表面温度)が上昇し続けるため、その温度をモニタリングする必要がある。一方、PTCヒータの場合、ヒータ自体が加熱温度を一定の温度範囲内で調節するために、加熱温度をモニタリングする必要がなくなる。この点で、PTCヒータがより好ましい。なお、第1および第2のヒータ58、60が、本開示の「ヒータ」に相当するが、本開示の「ヒータ」の数は複数でなくてもよく、即ち、第1および第2のヒータ58、60の一方が、本開示の「ヒータ」に相当するとしてもよい。 The first and second heaters 58, 60 may be heaters with the same heating capacity, or may be heaters with different heating capacities. Moreover, the first and second heaters 58 and 60 are preferably PTC (Positive Temperature Coefficient) heaters, which increase electrical resistance when current flows and the temperature rises, that is, can suppress excessive heating temperature rises. . A heater using a nichrome wire, carbon fiber, or the like may be used, but in this case, if the current continues to flow, the heating temperature (surface temperature) will continue to rise, so it is necessary to monitor the temperature. On the other hand, the PTC heater eliminates the need to monitor the heating temperature because the heater itself regulates the heating temperature within a certain temperature range. In this respect, the PTC heater is more preferable. Note that the first and second heaters 58 and 60 correspond to the "heaters" of the present disclosure, but the number of "heaters" of the present disclosure may not be plural, that is, the first and second heaters One of 58, 60 may correspond to the "heater" of the present disclosure.
 第1の流路P1には、室内機20内に向かう室外空気A3の流れを発生させる第1のファン62が設けられている。本実施の形態の場合、第1のファン62は、吸収材52に対して下流側に配置されている。第1のファン62が作動することにより、室外空気A3が、室外Routから第1の流路P1内に流入し、吸収材52を通過する。 A first fan 62 that generates a flow of the outdoor air A3 toward the inside of the indoor unit 20 is provided in the first flow path P1. In the case of this embodiment, the first fan 62 is arranged downstream with respect to the absorbent 52 . By operating the first fan 62 , the outdoor air A 3 flows from the outdoor Rout into the first flow path P 1 and passes through the absorbent 52 .
 また、第1の流路P1には、第1の流路P1を流れる室外空気A3を室内Rin(即ち室内機20)または室外Routに振り分けるダンパ装置64が設けられている。本実施の形態の場合、ダンパ装置64は、第1のファン62に対して下流側に配置されている。ダンパ装置64によって室内機20に振り分けられた室外空気A3は、換気導管56を介して室内機20内に入り、ファン24によって室内Rinに吹き出される。 Also, the first flow path P1 is provided with a damper device 64 that distributes the outdoor air A3 flowing through the first flow path P1 to the indoor Rin (that is, the indoor unit 20) or the outdoor Rout. In this embodiment, the damper device 64 is arranged downstream of the first fan 62 . The outdoor air A3 distributed to the indoor unit 20 by the damper device 64 enters the indoor unit 20 via the ventilation conduit 56 and is blown out by the fan 24 to the indoor unit Rin.
 第2の流路P2は、室外空気A4が流れる流路である。第1の流路P1を流れる室外空気A3と異なり、第2の流路P2を流れる室外空気A4は、室内機20に向かうことはない。第2の流路P2を流れる室外空気A4は、吸収材52を通過した後、室外Routに流出する。 The second flow path P2 is a flow path through which the outdoor air A4 flows. Unlike the outdoor air A3 flowing through the first flow path P1, the outdoor air A4 flowing through the second flow path P2 does not go to the indoor unit 20. The outdoor air A4 flowing through the second flow path P2 flows out to the outdoor Rout after passing through the absorbent 52 .
 第2の流路P2には、室外空気A4の流れを発生させる第2のファン66が設けられている。本実施の形態の場合、第2のファン66は、吸収材52に対して下流側に配置されている。第2のファン66が作動することにより、室外空気A4が、室外Routから第2の流路P2内に流入し、吸収材52を通過し、そして室外Routに流出する。 A second fan 66 that generates a flow of outdoor air A4 is provided in the second flow path P2. In the case of this embodiment, the second fan 66 is arranged downstream with respect to the absorbent 52 . By operating the second fan 66, the outdoor air A4 flows from the outdoor Rout into the second flow path P2, passes through the absorbent 52, and then flows out to the outdoor Rout.
 換気装置50は、吸収材52、モータ54、第1のヒータ58、第2のヒータ60、第1のファン62、ダンパ装置64、および第2のファン66を選択的に使用して換気運転、加湿運転、および除湿運転を選択的に実行する。 The ventilator 50 selectively uses the absorber 52, the motor 54, the first heater 58, the second heater 60, the first fan 62, the damper device 64, and the second fan 66 for ventilation operation; Humidification operation and dehumidification operation are selectively executed.
 図3は、換気運転中の換気装置50の動作状態を示す概略図である。 FIG. 3 is a schematic diagram showing the operating state of the ventilator 50 during ventilation operation.
 換気運転は、室外空気A3をそのまま換気導管56を介して室内Rin(即ち室内機20)に供給する空調運転である。図3に示すように、換気運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、OFF状態であって、室外空気A3を加熱していない。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。 The ventilation operation is an air conditioning operation in which the outdoor air A3 is directly supplied to the indoor Rin (that is, the indoor unit 20) via the ventilation conduit 56. As shown in FIG. 3, motor 54 continues to rotate absorbent material 52 during ventilation operation. The first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 . The second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
 このような換気運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されることなく吸収材52を通過する。吸収材52を通過した室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような換気運転により、室外空気A3がそのまま室内Rinに供給され、室内Rinが換気される。 According to such a ventilation operation, the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60. The outdoor air A3 that has passed through the absorbent 52 is distributed to the indoor units 20 by the damper device 64 . The outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 . Through such a ventilation operation, the outdoor air A3 is supplied to the room Rin as it is, and the room Rin is ventilated.
 図4は、加湿運転中の換気装置50の動作状態を示す概略図である。 FIG. 4 is a schematic diagram showing the operating state of the ventilator 50 during humidification operation.
 加湿運転は、室外空気A3を加湿し、その加湿された室外空気A3を室内Rin(即ち室内機20)に供給する空調運転である。図4に示すように、加湿運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、ON状態であって、室外空気A3を加熱している。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、ON状態であって、それにより第2の流路P2内を室外空気A4が流れている。 The humidification operation is an air conditioning operation that humidifies the outdoor air A3 and supplies the humidified outdoor air A3 to the indoor Rin (that is, the indoor unit 20). As shown in FIG. 4, the motor 54 continues to rotate the absorbent 52 during the humidification operation. The first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 . The second fan 66 is in the ON state, thereby causing the outdoor air A4 to flow through the second flow path P2.
 このような加湿運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されて吸収材52を通過する。このとき、加熱された室外空気A3は、加熱されていない場合に比べて、吸収材52からより多量の水分を奪うことができる。それにより、室外空気A3が多量の水分を担持する。吸収材52を通過して多量の水分を担持する室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような加湿運転により、多量の水分を担持する室外空気A3が室内Rinに供給され、室内Rinが加湿される。 According to such humidification operation, the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52. At this time, the heated outdoor air A3 can deprive the absorbent 52 of a larger amount of moisture than when it is not heated. As a result, the outdoor air A3 carries a large amount of moisture. The outdoor air A3 that has passed through the absorbent 52 and carries a large amount of moisture is distributed to the indoor unit 20 by the damper device 64 . The outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 . Through such a humidification operation, the outdoor air A3 carrying a large amount of moisture is supplied to the room Rin, and the room Rin is humidified.
 なお、第1のヒータ58と第2のヒータ60のいずれか一方をOFF状態にすることによって室外空気A3が吸収材52から奪う水分量を少なくする、即ち室内Rinの加湿量が少ない弱加湿運転が実行されてもよい。 By turning off either one of the first heater 58 and the second heater 60, the amount of moisture taken from the absorbent 52 by the outdoor air A3 is reduced. may be performed.
 加熱された室外空気A3に水分が奪われることにより、吸収材52の保水量が減少する、即ち吸収材52が乾燥する。吸収材52が乾燥すると、第1の流路P1を流れる室外空気A3は吸収材52から水分を奪うことができない。その対処として、吸収材52は、第2の流路P2を流れる室外空気A4から水分を奪う。それにより、吸収材52の保水量がほぼ一定に維持され、加湿運転を継続することができる。 As the heated outdoor air A3 absorbs moisture, the water retention capacity of the absorbent 52 decreases, that is, the absorbent 52 dries. When the absorbent 52 dries, the outdoor air A3 flowing through the first flow path P1 cannot deprive the absorbent 52 of moisture. As a countermeasure, the absorbent 52 deprives the outdoor air A4 flowing through the second flow path P2 of water. As a result, the amount of water retained in the absorbent material 52 is kept substantially constant, and the humidification operation can be continued.
 図5は、除湿運転中の換気装置50の動作状態を示す概略図である。 FIG. 5 is a schematic diagram showing the operating state of the ventilation device 50 during dehumidification operation.
 除湿運転は、室外空気A3を除湿し、その除湿された室外空気A3を室内Rin(即ち室内機20)に供給する空調運転である。図5に示すように、除湿運転では、吸着運転と再生運転とが交互に実行される。 The dehumidification operation is an air conditioning operation in which the outdoor air A3 is dehumidified and the dehumidified outdoor air A3 is supplied to the indoor Rin (that is, the indoor unit 20). As shown in FIG. 5, in the dehumidifying operation, the adsorption operation and the regeneration operation are alternately performed.
 吸着運転は、室外空気A3に担持されている水分を吸収材52に吸着させ、それにより室外空気A3を除湿する運転である。図5に示すように、吸着運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、OFF状態であって、室外空気A3を加熱していない。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。 The adsorption operation is an operation in which the moisture carried in the outdoor air A3 is adsorbed by the absorbent material 52, thereby dehumidifying the outdoor air A3. As shown in FIG. 5, the motor 54 continues to rotate the absorbent 52 during the adsorption operation. The first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 . The second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
 このような吸着運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されることなく吸収材52を通過する。このとき、室外空気A3に担持されている水分が吸収材52に吸着する。それにより、室外空気A3の水分の担持量が減少する、即ち室外空気A3が乾燥される。吸収材52を通過して乾燥した室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような吸着運転により、乾燥した室外空気A3が室内Rinに供給され、室内Rinが除湿される。 According to such adsorption operation, the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60. At this time, the moisture carried in the outdoor air A3 is absorbed by the absorbent 52 . As a result, the amount of moisture carried by the outdoor air A3 is reduced, that is, the outdoor air A3 is dried. The outdoor air A3 dried by passing through the absorbent 52 is distributed to the indoor unit 20 by the damper device 64 . The outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 . By such adsorption operation, the dry outdoor air A3 is supplied to the room Rin, and the room Rin is dehumidified.
 吸着運転が続くと、吸収材52の保水量が増加し続け、その結果、室外空気A3に担持されている水分に対する吸収材52の吸着能力が低下する。その吸着能力を回復するために吸収材52を再生させる再生運転が実行される。 As the adsorption operation continues, the water retention capacity of the absorbent 52 continues to increase, and as a result, the ability of the absorbent 52 to adsorb moisture carried in the outdoor air A3 decreases. A regeneration operation is performed to regenerate the absorbent 52 in order to recover its adsorption capacity.
 再生運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、ON状態であって、室外空気A3を加熱している。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を、室内機20ではなく、室外Routに振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。 The motor 54 continues to rotate the absorbent 52 during the regeneration operation. The first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 not to the indoor unit 20 but to the outdoor Rout. The second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
 このような再生運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されて吸収材52を通過する。このとき、加熱された室外空気A3は、吸収材52から多量の水分を奪う。それにより、室外空気A3に多量の水分が担持される。それとともに、吸収材52の保水量が減少する、即ち吸収材52が乾燥してその吸着能力が再生する。吸収材52を通過して多量の水分を担持する室外空気A3は、ダンパ装置64によって室外Routに振り分けられ、室外Routに排出される。これにより、除湿運転における再生運転中に、吸収材52の再生によって多量の水分を担持する室外空気A3が室内Rinに供給されることがない。 According to such a regeneration operation, the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52. At this time, the heated outdoor air A3 deprives the absorbent 52 of a large amount of moisture. As a result, a large amount of moisture is carried in the outdoor air A3. At the same time, the water retention capacity of the absorbent 52 decreases, that is, the absorbent 52 dries and its adsorption capacity is regenerated. The outdoor air A3 that passes through the absorbent 52 and carries a large amount of moisture is distributed to the outdoor route by the damper device 64 and is discharged to the outdoor route. As a result, during the regeneration operation in the dehumidification operation, the outdoor air A3 carrying a large amount of moisture due to the regeneration of the absorbent 52 is not supplied to the indoor Rin.
 このような吸着運転と再生運転を交互に行うことにより、吸収材52の吸着能力が維持され、除湿運転を継続的に実行することができる。 By alternately performing such adsorption operation and regeneration operation, the adsorption capacity of the absorbent 52 is maintained, and the dehumidification operation can be continuously performed.
 上述の冷凍サイクルによる空調運転(冷房運転、除湿運転(弱冷房運転)、暖房運転)と換気装置50による空調運転(換気運転、加湿運転、除湿運転)は、別々に実行可能であり、また同時に実行することも可能である。例えば、冷凍サイクルによる除湿運転と換気装置50による除湿運転を同時に実行すれば、室温を一定に維持した状態で室内Rinを除湿することが可能である。 The air-conditioning operation (cooling operation, dehumidifying operation (weak cooling operation), heating operation) by the above-described refrigeration cycle and the air-conditioning operation (ventilation operation, humidification operation, dehumidification operation) by the ventilation device 50 can be performed separately, and at the same time It is also possible to execute For example, if the dehumidification operation by the refrigeration cycle and the dehumidification operation by the ventilation device 50 are simultaneously executed, it is possible to dehumidify the room Rin while maintaining the room temperature constant.
 空気調和機10が実行する空調運転は、ユーザによって選択される。例えば、図1に示すリモートコントローラ70に対するユーザの選択操作により、その操作に対応する空調運転を空気調和機10は実行する。 The air conditioning operation performed by the air conditioner 10 is selected by the user. For example, when a user selects the remote controller 70 shown in FIG. 1, the air conditioner 10 performs the air conditioning operation corresponding to the operation.
 ここまでは、本実施の形態に係る空気調和機10の構成および動作について概略的に説明してきた。ここからは、本実施の形態に係る空気調和機10の更なる特徴について説明する。 So far, the configuration and operation of the air conditioner 10 according to the present embodiment have been schematically described. Further features of the air conditioner 10 according to the present embodiment will now be described.
 図6は、空気調和機10を制御する構成を示すブロック図である。 FIG. 6 is a block diagram showing a configuration for controlling the air conditioner 10. As shown in FIG.
 図6に示すように、空気調和機10の構成要素は、制御部90によって制御される。制御部90は、例えば、プログラムを記憶したメモリと、CPU(Central Processing Unit)などのプロセッサに対応する処理回路を備える。制御部90の機能は、ハードウェアのみで構成してもよいし、ハードウェアとソフトウェアとを組み合わせることにより実現してもよい。制御部90は、メモリに格納されたデータやプログラムを読み出して種々の演算処理を行うことで、所定の機能を実現する。なお、プロセッサが実行するプログラムは、ここではメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。本実施の形態の場合、制御部90は、モータ54、第1のヒータ58、第2のヒータ60、第1のファン62、ダンパ装置64および第2のファン66を制御する。 As shown in FIG. 6, the components of the air conditioner 10 are controlled by a control unit 90. The control unit 90 includes, for example, a memory storing a program and a processing circuit corresponding to a processor such as a CPU (Central Processing Unit). The functions of the control unit 90 may be configured only by hardware, or may be realized by combining hardware and software. The control unit 90 reads data and programs stored in the memory and performs various arithmetic processing, thereby realizing a predetermined function. In addition, although the program executed by the processor is pre-recorded in the memory here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through an electric communication line such as the Internet. may be provided. In this embodiment, the controller 90 controls the motor 54 , first heater 58 , second heater 60 , first fan 62 , damper device 64 and second fan 66 .
 <加湿運転の全体フロー>
 図7は、加湿運転ONからOFFまでの全体の動作を示すフローチャートである。なお、図7に示す処理は、制御部90によって空気調和機10の構成要素を制御することによって実施される。なお、図7に示す処理は一例であって、本実施の形態は、図7に示す処理に限定されない。例えば、図7に示す各処理は、除湿運転などに適用することも可能である。
<Overall flow of humidification operation>
FIG. 7 is a flow chart showing the entire operation from ON to OFF of the humidification operation. Note that the processing shown in FIG. 7 is performed by controlling the components of the air conditioner 10 by the control unit 90 . Note that the processing shown in FIG. 7 is an example, and the present embodiment is not limited to the processing shown in FIG. For example, each process shown in FIG. 7 can also be applied to a dehumidifying operation.
 図7に示す処理は、例えば、図1に示すリモートコントローラ70に対するユーザの選択操作により、加湿運転がONになったときに開始する。 The processing shown in FIG. 7 is started, for example, when the humidification operation is turned ON by the user's selection operation on the remote controller 70 shown in FIG.
 図7に示すように、ステップS10では、制御部90が、開始条件が成立しているか否かを判定する。制御部90が、開始条件が成立していると判定した場合(ステップS10:YES)、処理はステップS20に進む。制御部90が、開始条件が成立していないと判定している間(ステップS10:NO)、処理はステップS10を繰り返す。 As shown in FIG. 7, in step S10, the control unit 90 determines whether or not the start condition is satisfied. When the control unit 90 determines that the start condition is satisfied (step S10: YES), the process proceeds to step S20. While the control unit 90 determines that the start condition is not satisfied (step S10: NO), the process repeats step S10.
 開始条件は、加湿運転を開始するための条件であり、例えば、運転モード、湿度、湿度コントロール、運転周波数、インバータ電流、温度および異常の有無のうちの少なくとも1つを含んでいてもよい。 The start condition is a condition for starting humidification operation, and may include, for example, at least one of operation mode, humidity, humidity control, operation frequency, inverter current, temperature, and presence/absence of abnormality.
 なお、制御部90が、開始条件が成立していないと判定した場合(ステップS10:NO)、制御部90は開始条件が成立するための制御を実施してもよい。例えば、換気導管56内に結露が発生している場合、後述するホース乾燥制御(ステップS60)を実施してもよい。 When the control unit 90 determines that the start condition is not satisfied (step S10: NO), the control unit 90 may perform control to satisfy the start condition. For example, when condensation occurs in the ventilation conduit 56, hose drying control (step S60), which will be described later, may be performed.
 ステップS20では、制御部90が、クリーン制御を実施する。クリーン制御とは、空気調和機10内の異物を除去する制御である。例えば、換気装置50は、室外Routに配置されている場合、換気装置50内に異物が蓄積することがある。クリーン制御を実施することによって、換気装置50内の異物を除去し、室内Rinに異物が流入することを抑制することができる。異物としては、例えば、埃、花粉、アレル物質、カビ、細菌、ウィルス、PM2.5、NOx、SOx、有害物質、害虫などが含まれる。 At step S20, the control unit 90 performs clean control. Clean control is control for removing foreign matter in the air conditioner 10 . For example, when the ventilator 50 is placed on the outdoor route, foreign matter may accumulate in the ventilator 50 . By executing the clean control, it is possible to remove the foreign matter in the ventilation device 50 and suppress the foreign matter from flowing into the room Rin. Foreign substances include, for example, dust, pollen, allergens, mold, bacteria, viruses, PM2.5, NOx, SOx, harmful substances, pests, and the like.
 ステップS30では、制御部90が、ダンパ「開」制御を実施する。ダンパ「開」制御とは、ダンパ装置64を開いて、第1の流路P1を流れる室外空気A3を室内機20に振り分ける制御である。これにより、室外空気A3が換気導管56を通って室内機20に流入する。 At step S30, the control unit 90 performs damper "open" control. The damper “open” control is control to open the damper device 64 and distribute the outdoor air A3 flowing through the first flow path P1 to the indoor units 20 . As a result, the outdoor air A3 flows into the indoor unit 20 through the ventilation conduit 56 .
 ステップS40では、制御部90が、加湿運転制御を実施する。 In step S40, the control unit 90 performs humidification operation control.
 ステップS50では、制御部90が、加湿運転制御を終了するか否かを判定する。制御部90が加湿運転制御を終了すると判定した場合(ステップS50:YES)、処理はステップS60に進む。制御部90が加湿運転制御を終了しないと判定した場合(ステップS50:NO)、処理はステップS40に戻る。 At step S50, the control unit 90 determines whether or not to end the humidification operation control. When the controller 90 determines to end the humidification operation control (step S50: YES), the process proceeds to step S60. When the controller 90 determines not to end the humidification operation control (step S50: NO), the process returns to step S40.
 加湿運転制御は、例えば、図1に示すリモートコントローラ70に対するユーザの選択操作により、加湿運転がOFFになったときに終了する。あるいは、加湿運転制御の終了は、開始条件と同様の条件に基づいて判定されてもよい。 The humidification operation control ends, for example, when the humidification operation is turned off by the user's selection operation on the remote controller 70 shown in FIG. Alternatively, the end of humidification operation control may be determined based on the same condition as the start condition.
 ステップS60では、制御部90が、ホース乾燥制御を実施する。ホース乾燥制御とは、ホースである換気導管56内を乾燥する制御である。本明細書では、換気導管56を「ホース」と称する場合がある。 At step S60, the control unit 90 performs hose drying control. Hose drying control is control for drying the inside of the ventilation conduit 56, which is a hose. The ventilation conduit 56 is sometimes referred to herein as a "hose."
 ステップS70では、制御部90が、ダンパ「閉」制御を実施する。ダンパ「閉」制御とは、ダンパ装置64を閉じて、第1の流路P1を流れる室外空気A3を室外Routに振り分ける制御である。 At step S70, the control unit 90 performs damper "close" control. The damper “close” control is control to close the damper device 64 and distribute the outdoor air A3 flowing through the first flow path P1 to the outdoor Rout.
 以上のように、加湿運転がONになってからOFFになるまでに、制御部90がステップS10~S70を実施する。 As described above, the control unit 90 performs steps S10 to S70 from when the humidification operation is turned ON to when it is turned OFF.
 なお、図7に示す処理は例示であって、加湿運転ONからOFFまでの全体の動作がこれに限定されるものではない。例えば、図7に示す処理は、追加のステップをさらに含んでいてもよいし、ステップが削除されてもよいし、統合されてもよいし、分割されてもよい。 Note that the processing shown in FIG. 7 is an example, and the overall operation from ON to OFF of the humidification operation is not limited to this. For example, the process shown in FIG. 7 may further include additional steps, or steps may be deleted, integrated, or divided.
 <クリーン制御>
 図7に示すステップS20のクリーン制御について詳細に説明する。
<Clean control>
The clean control in step S20 shown in FIG. 7 will be described in detail.
 図8はクリーン制御の動作を示すフローチャートであり、図9はクリーン制御における各部の状態を示すタイミングチャートである。なお、図9の(a)はダンパ装置64の開閉制御を示し、図9の(b)は第1のファン62のオンオフ制御を示し、図9の(c)は第2のファン66のオンオフ制御を示し、図9の(d)は吸収材52を回転駆動するモータ54のオンオフ制御を示す。 FIG. 8 is a flow chart showing the operation of clean control, and FIG. 9 is a timing chart showing the state of each part in clean control. 9A shows the opening/closing control of the damper device 64, FIG. 9B shows the ON/OFF control of the first fan 62, and FIG. 9C shows the ON/OFF control of the second fan 66. FIG. 9(d) shows on/off control of the motor 54 that drives the absorber 52 to rotate.
 図8および図9に示すように、ステップS21では、制御部90が、ダンパ「閉」制御を実施する。即ち、制御部90は、ダンパ装置64を閉じて、第1の流路P1を流れる室外空気A3を室外Routに振り分ける。 As shown in FIGS. 8 and 9, in step S21, the control unit 90 performs damper "close" control. That is, the control unit 90 closes the damper device 64 and distributes the outdoor air A3 flowing through the first flow path P1 to the outdoor Rout.
 なお、ステップS21以前からダンパ装置64が閉じている場合、ステップS21では、ダンパ装置64が閉じている状態を維持する。 If the damper device 64 has been closed before step S21, the damper device 64 remains closed in step S21.
 ステップS22では、制御部90が、第1のファン62を回転させる。つまり、制御部90は、第1のファン62をオンにし、第1の流路P1に室外空気A3を送風する。即ち、制御部90は、第1のファン62を回転駆動し、第1の流路P1から室外Routへ室外空気A3を排出する。これにより、第1のファン62により送風される室外空気A3によって、第1の流路P1および吸収材52に蓄積した埃や虫などの異物が室外Routに排出される。なお、第1のファン62は後述するファンモータ62Aによって回転駆動される。制御部90はファンモータ62Aを駆動することによって、第1のファン62を回転させる。 At step S22, the control unit 90 rotates the first fan 62. That is, the controller 90 turns on the first fan 62 to blow the outdoor air A3 to the first flow path P1. That is, the controller 90 rotates the first fan 62 to discharge the outdoor air A3 from the first flow path P1 to the outdoor Rout. As a result, foreign matter such as dust and insects accumulated in the first flow path P1 and the absorbent 52 is discharged to the outdoor Rout by the outdoor air A3 blown by the first fan 62 . The first fan 62 is rotationally driven by a fan motor 62A, which will be described later. The controller 90 rotates the first fan 62 by driving the fan motor 62A.
 ステップS23では、制御部90が、第2のファン66を回転させる。つまり、制御部90は、第2のファン66をオンにし、第2の流路P2に室外空気A4を送風する。即ち、制御部90は、第2のファン66を回転駆動し、第2の流路P2から室外Routへ室外空気A4を排出する。これにより、第2のファン66により送風される室外空気A4によって、第2の流路P2および吸収材52に蓄積した埃や虫などの異物が室外Routに排出される。なお、第2のファン66はファンモータ(図示せず)によって回転駆動される。制御部90はこのファンモータを駆動することによって、第2のファン66を回転させる。 In step S23, the control unit 90 rotates the second fan 66. That is, the controller 90 turns on the second fan 66 to blow the outdoor air A4 to the second flow path P2. That is, the controller 90 rotates the second fan 66 to discharge the outdoor air A4 from the second flow path P2 to the outdoor Rout. As a result, foreign matter such as dust and insects accumulated in the second flow path P2 and the absorbent 52 is discharged to the outdoor Rout by the outdoor air A4 blown by the second fan 66 . The second fan 66 is rotationally driven by a fan motor (not shown). The control unit 90 rotates the second fan 66 by driving this fan motor.
 ステップS24では、制御部90が、吸収材52を回転させる。即ち、制御部90は、吸収材52を回転駆動するモータ54を駆動し、吸収材52を回転させる。これにより、吸収材52を回転させながら、第1のファン62および第2のファン66により室外空気A3,A4が送風されるため、吸収材52に付着した異物を容易に除去することができる。また、吸収材52において、第1のファン62により送風される室外空気A3の向きと、第2のファン66により送風される室外空気A4の向きとが、異なっている。具体的には、吸収材52において、室外空気A3の流れと室外空気A4の流れとが対向流となっている。これにより、室外空気A3,A4を吸収材52に対して二方向から通過させることができ、吸収材52に付着した埃などの異物を除去することができる。 At step S24, the control unit 90 rotates the absorbent 52. That is, the control unit 90 drives the motor 54 that rotates the absorbent 52 to rotate the absorbent 52 . As a result, the outdoor air A3 and A4 are blown by the first fan 62 and the second fan 66 while the absorbent 52 is being rotated, so foreign matter attached to the absorbent 52 can be easily removed. Moreover, in the absorbent 52, the direction of the outdoor air A3 blown by the first fan 62 and the direction of the outdoor air A4 blown by the second fan 66 are different. Specifically, in the absorbent 52, the outdoor air A3 and the outdoor air A4 flow in opposite directions. As a result, the outdoor air A3, A4 can pass through the absorbent 52 from two directions, and foreign matter such as dust adhering to the absorbent 52 can be removed.
 ステップS25では、制御部90が、所定の時間t21が経過したか否かを判定する。制御部90が、所定の時間t21が経過したと判定した場合(ステップS25:YES)、クリーン制御が終了する。制御部90が、所定の時間t21が経過していないと判定した場合(ステップS25:NO)、処理はステップS22に戻る。所定の時間t21は、例えば、30秒以上90秒以下である。好ましくは、所定の時間t21は、60秒である。 At step S25, the control unit 90 determines whether or not a predetermined time t21 has elapsed. When the controller 90 determines that the predetermined time t21 has elapsed (step S25: YES), the clean control ends. When the control unit 90 determines that the predetermined time t21 has not elapsed (step S25: NO), the process returns to step S22. The predetermined time t21 is, for example, 30 seconds or more and 90 seconds or less. Preferably, the predetermined time t21 is 60 seconds.
 以上のように、クリーン制御においては、制御部90がステップS21~S25を実施する。このように、クリーン制御を行うことによって、換気装置50内に蓄積した埃や虫などの異物を除去することができる。具体的には、第1の流路P1、第2の流路P2および吸収材52に蓄積した異物を除去することができる。これにより、室内機20に異物が流入することを抑制することができる。 As described above, in clean control, the control unit 90 performs steps S21 to S25. By performing clean control in this manner, foreign matter such as dust and insects accumulated in the ventilation device 50 can be removed. Specifically, foreign matter accumulated in the first flow path P1, the second flow path P2, and the absorbent 52 can be removed. As a result, it is possible to prevent foreign matter from entering the indoor unit 20 .
 クリーン制御においては、第1のファン62のファン速度は、第2のファン66のファン速度より大きくてもよい。即ち、第1のファン62の回転数は、第2のファン66の回転数より大きくてもよい。これにより、第1のファン62により送風される室外空気A3の風量を、第2のファン66により送風される室外空気A4の風量よりも大きくすることができる。その結果、第1の流路P1に蓄積した異物を優先的に除去することができるため、室内機20側に異物が流入することをより抑制することができる。 In clean control, the fan speed of the first fan 62 may be greater than the fan speed of the second fan 66. That is, the rotation speed of the first fan 62 may be higher than the rotation speed of the second fan 66 . Thereby, the air volume of the outdoor air A3 blown by the first fan 62 can be made larger than the air volume of the outdoor air A4 blown by the second fan 66 . As a result, the foreign matter accumulated in the first flow path P1 can be preferentially removed, so that the inflow of the foreign matter into the indoor unit 20 can be further suppressed.
 クリーン制御においては、第1のファン62のファン速度は、加湿運転における第1のファン62のファン速度よりも大きくてもよい。即ち、クリーン制御における第1のファン62の回転数は、加湿運転における第1のファン62の回転数より大きくてもよい。これにより、クリーン制御において第1のファン62により送風される室外空気A3の風量を、加湿運転のときよりも大きくすることができる。その結果、第1の流路P1および吸収材52に蓄積した異物をより除去しやすくすることができる。 In clean control, the fan speed of the first fan 62 may be higher than the fan speed of the first fan 62 in humidification operation. That is, the number of revolutions of the first fan 62 in the clean control may be higher than the number of revolutions of the first fan 62 in the humidification operation. As a result, the air volume of the outdoor air A3 blown by the first fan 62 in the clean control can be made larger than that in the humidification operation. As a result, foreign substances accumulated in the first flow path P1 and the absorbent 52 can be more easily removed.
 次に、変形例のクリーン制御について説明する。変形例のクリーン制御では、吸収材52に付着したNOxおよびSOxの少なくとも一方を除去することができる。 Next, the clean control of the modified example will be explained. In the clean control of the modified example, at least one of NOx and SOx adhering to the absorbent 52 can be removed.
 図10は変形例のクリーン制御の動作を示すフローチャートであり、図11は変形例のクリーン制御における各部の状態を示すタイミングチャートである。なお、図11の(a)はダンパ装置64の開閉制御を示し、図11の(b)は第1のファン62のオンオフ制御を示し、図11の(c)は第2のファン66のオンオフ制御を示す。また、図11の(d)は吸収材52を回転駆動するモータ54のオンオフ制御を示し、図11の(e)はヒータ58,60のオンオフ制御を示す。なお、本明細書では、第1および第2のヒータ58、60を、単に「ヒータ58,60」と称する場合がある。 FIG. 10 is a flow chart showing the clean control operation of the modification, and FIG. 11 is a timing chart showing the state of each part in the clean control of the modification. 11A shows the opening/closing control of the damper device 64, FIG. 11B shows the ON/OFF control of the first fan 62, and FIG. 11C shows the ON/OFF control of the second fan 66. Indicates control. 11(d) shows on/off control of the motor 54 for rotating the absorbent 52, and FIG. 11(e) shows on/off control of the heaters 58 and 60. FIG. In this specification, the first and second heaters 58, 60 may be simply referred to as " heaters 58, 60".
 図10および図11に示すように、変形例のクリーン制御は、ヒータ58,60をオンにするステップS24Aを含む点で、上述したクリーン制御(図8参照)と異なる。変形例におけるその他の処理は、上述したクリーン制御と同じである。このため、ステップS24Aについて説明する。 As shown in FIGS. 10 and 11, the clean control of the modified example differs from the clean control described above (see FIG. 8) in that it includes a step S24A of turning on the heaters 58 and 60. Other processing in the modified example is the same as the clean control described above. Therefore, step S24A will be described.
 ステップS24Aでは、変形例のクリーン制御に係る制御部90が、ヒータ58,60をオンにする。即ち、変形例のクリーン制御に係る制御部90は、第1の流路P1における吸収材52の上流側で室外空気A3を加熱する第1のヒータ58および第2のヒータ60をオンにし、第1の流路P1を流れる室外空気A3を加熱する。これにより、加熱された室外空気A3が吸収材52を通過する際に、吸収材52に付着したNOxやSOxを除去することができる。 At step S24A, the control unit 90 related to the clean control of the modified example turns on the heaters 58 and 60. That is, the control unit 90 related to the clean control of the modified example turns on the first heater 58 and the second heater 60 that heat the outdoor air A3 on the upstream side of the absorbent 52 in the first flow path P1, and turns on the second heater 60. The outdoor air A3 flowing through the first flow path P1 is heated. As a result, when the heated outdoor air A3 passes through the absorbent 52, NOx and SOx adhering to the absorbent 52 can be removed.
 以上のように、変形例のクリーン制御においては、この変形例の制御部90がステップS24Aをさらに実施する。このように、ヒータ58,60をオンにして第1の流路P1を流れる室外空気A3を加熱することによって、吸収材52に付着したNOxやSOxを除去することができる。 As described above, in the clean control of the modified example, the control unit 90 of this modified example further performs step S24A. Thus, by turning on the heaters 58 and 60 to heat the outdoor air A3 flowing through the first flow path P1, NOx and SOx attached to the absorbent 52 can be removed.
 なお、上記変形例を含む本実施の形態に係るクリーン制御は、図7に示すように、加湿運転前に実施されるものとして説明したが、これに限定されない。例えば、加湿運転後にクリーン制御が実施されてもよい。また、換気装置50が異物を検知するセンサを備えてもよく、センサによって異物が検知された場合にクリーン制御が実施されてもよい。あるいは、クリーン制御は、所定の時間ごとに実施されてもよい。 Although the clean control according to the present embodiment, including the modification described above, has been described as being performed before the humidification operation as shown in FIG. 7, it is not limited to this. For example, clean control may be performed after the humidification operation. Further, the ventilation device 50 may include a sensor that detects foreign matter, and clean control may be performed when the sensor detects the foreign matter. Alternatively, clean control may be performed at predetermined time intervals.
 上記変形例を含む本実施の形態の場合、制御部90が、第1のファン62、第2のファン66および吸収材52を回転駆動することによってクリーン制御を実施する例について説明したが、これに限定されない。制御部90は、第1のファン62および第2のファン66の一方を回転駆動することによってクリーン制御を実施してもよい。例えば、制御部90は、ダンパ装置64を閉じて、第1のファン62を回転駆動し、第2のファン66を回転駆動しなくてもよい。または、制御部90は、ダンパ装置64を閉じて、第2のファン66を回転駆動し、第1のファン62を回転駆動しなくてもよい。また、制御部90は、吸収材52を回転させなくてもよい。 In the case of the present embodiment including the above modified example, an example in which the control unit 90 performs clean control by rotationally driving the first fan 62, the second fan 66 and the absorbent 52 has been described. is not limited to The controller 90 may perform clean control by rotating one of the first fan 62 and the second fan 66 . For example, the control unit 90 may close the damper device 64 to rotate the first fan 62 and not rotate the second fan 66 . Alternatively, the control unit 90 may close the damper device 64 to rotate the second fan 66 without driving the first fan 62 to rotate. Also, the control unit 90 does not have to rotate the absorbent 52 .
 上記変形例を含む本実施の形態に係るクリーン制御では、図9および図11に示すように、所定の時間t21が経過後に、第1のファン62、第2のファン66および吸収材52のモータ54がオフになっているが、これらがオンのままであってもよい。 In the clean control according to the present embodiment including the modified example, as shown in FIGS. 9 and 11, the motors of the first fan 62, the second fan 66 and the absorbent 52 are 54 are turned off, but they may remain on.
 なお、空気調和機10は、室内機20に位置する換気導管56の出口(ノズル出口)にイオン発生器を配置していてもよい。花粉やウィルスなどが換気導管56から室内機20に流入した場合であっても、イオン発生器によって花粉やウィルスを除去することができる。 Note that the air conditioner 10 may have an ion generator at the outlet (nozzle outlet) of the ventilation conduit 56 located in the indoor unit 20 . Even if pollen, viruses, and the like flow into the indoor unit 20 from the ventilation conduit 56, the ion generator can remove the pollen and viruses.
 <ダンパ制御>
 ダンパ制御について詳細に説明する。
<Damper control>
Damper control will be described in detail.
 図12は、ダンパ装置64周辺の構成を示すブロック図である。 FIG. 12 is a block diagram showing the configuration around the damper device 64. As shown in FIG.
 図12に示すように、ダンパ装置64は、弁体80と、弁体80を回動するダンパモータ82と、を備える。また、空気調和機10は、ダンパ装置64の開閉を検知する検出部84を備える。 As shown in FIG. 12 , the damper device 64 includes a valve body 80 and a damper motor 82 that rotates the valve body 80 . The air conditioner 10 also includes a detector 84 that detects opening and closing of the damper device 64 .
 弁体80は、板状であり、一端がダンパモータ82に接続され、ダンパモータ82を中心にして回動する。弁体80は、ダンパモータ82によって回動されることによって開閉される。 The valve body 80 has a plate shape, one end of which is connected to a damper motor 82 and rotates around the damper motor 82 . The valve body 80 is opened and closed by being rotated by a damper motor 82 .
 ダンパモータ82は、弁体80の端部を支持し、弁体80を回動する。ダンパモータ82は、例えば、ステッピングモータである。ダンパモータ82は、制御部90からの制御コマンドを受信し、制御コマンドに基づいて弁体80を回動する。 The damper motor 82 supports the end of the valve body 80 and rotates the valve body 80 . The damper motor 82 is, for example, a stepping motor. The damper motor 82 receives a control command from the controller 90 and rotates the valve body 80 based on the control command.
 制御コマンドは、弁体80を開閉するコマンドを含む。例えば、制御コマンドは、ダンパ「開」コマンドと、ダンパ「閉」コマンドと、を含む。ダンパ「開」コマンドは、弁体80を開くコマンドである。弁体80が開くことによって、室外空気A3が第1の流路P1から換気導管56に振り分けられる。ダンパ「閉」コマンドは、弁体80を閉じるコマンドである。弁体80が閉じることによって、室外空気A3が第1の流路P1から室外Routへ振り分けられる。 The control commands include commands for opening and closing the valve body 80. For example, control commands include a damper "open" command and a damper "close" command. A damper “open” command is a command to open the valve body 80 . The outdoor air A3 is distributed from the first flow path P1 to the ventilation conduit 56 by opening the valve body 80 . A damper “close” command is a command to close the valve body 80 . By closing the valve body 80, the outdoor air A3 is distributed from the first flow path P1 to the outdoor Rout.
 また、制御コマンドは、ダンパモータ82のトルクを制御するコマンドを含む。トルクを制御するコマンドは、例えば、パルスレート(PPS:Pulse Per Second)である。制御部90は、パルスレートを調節することによってダンパモータ82のトルクを調節することができる。例えば、制御部90は、パルスレートを小さくすることによってダンパモータ82のトルクを大きくすることができる。 The control command also includes a command for controlling the torque of the damper motor 82. A command for controlling torque is, for example, a pulse rate (PPS: Pulse Per Second). The controller 90 can adjust the torque of the damper motor 82 by adjusting the pulse rate. For example, the controller 90 can increase the torque of the damper motor 82 by decreasing the pulse rate.
 検出部84は、弁体80の開閉を検知するセンサである。検出部84は、例えば、リミットセンサである。リミットセンサは、弁体80との接触によって弁体80の開閉を検知する。検出部84は、弁体80の検知結果を制御部90に送信する。 The detection unit 84 is a sensor that detects opening and closing of the valve body 80 . The detector 84 is, for example, a limit sensor. The limit sensor detects opening and closing of the valve body 80 by contact with the valve body 80 . The detection unit 84 transmits the detection result of the valve body 80 to the control unit 90 .
 制御部90は、検出部84の検出結果を受信し、検出結果に基づいて弁体80が正常に開閉しているか否かを判定する。具体的には、制御部90は、検出部84の検出結果と制御コマンドとに基づいて、弁体80が正常に開閉しているか否かを判定する。 The control unit 90 receives the detection result of the detection unit 84 and determines whether the valve body 80 is normally opened and closed based on the detection result. Specifically, the control unit 90 determines whether the valve body 80 is normally opened and closed based on the detection result of the detection unit 84 and the control command.
 図13はダンパ装置64が正常に閉まっている状態を示す概略図であり、図14はダンパ装置64が正常に開いている状態を示す概略図である。 FIG. 13 is a schematic diagram showing a state in which the damper device 64 is normally closed, and FIG. 14 is a schematic diagram showing a state in which the damper device 64 is normally open.
 図13に示すように、ダンパ装置64が正常に閉じている状態では、弁体80が換気導管56の入口56aを塞いでいる。換気導管56の入口56aとは、換気導管56と第1の流路P1とが連通する開口である。具体的には、ダンパ装置64が正常に閉じている状態では、弁体80が第1の流路P1の延びる方向に沿って配置され、換気導管56の入口56aを塞いでいる。このため、第1の流路P1を流れる室外空気A3は室外Routに排出される。 As shown in FIG. 13, the valve body 80 blocks the inlet 56a of the ventilation conduit 56 when the damper device 64 is normally closed. The inlet 56a of the ventilation conduit 56 is an opening through which the ventilation conduit 56 and the first flow path P1 communicate. Specifically, when the damper device 64 is normally closed, the valve body 80 is arranged along the direction in which the first flow path P1 extends and closes the inlet 56a of the ventilation conduit 56 . Therefore, the outdoor air A3 flowing through the first flow path P1 is discharged to the outdoor Rout.
 図14に示すように、ダンパ装置64が正常に開いている状態では、弁体80が換気導管56の入口56aを開放するとともに、第1の流路P1を塞いでいる。具体的には、ダンパ装置64が正常に開いている状態では、弁体80が第1の流路P1の延びる方向と交差する方向に配置され、換気導管56の入口56aを開放するとともに、第1の流路P1を塞いでいる。このため、第1の流路P1を流れる室外空気A3は、換気導管56を通って室内Rinに流入する。 As shown in FIG. 14, when the damper device 64 is normally opened, the valve body 80 opens the inlet 56a of the ventilation conduit 56 and blocks the first flow path P1. Specifically, when the damper device 64 is normally open, the valve body 80 is arranged in a direction intersecting the direction in which the first flow path P1 extends, opening the inlet 56a of the ventilation conduit 56, and opening the first flow path P1. 1 flow path P1 is blocked. Therefore, the outdoor air A3 flowing through the first flow path P1 flows through the ventilation conduit 56 into the room Rin.
 また、弁体80が正常に開いている状態では、弁体80は検出部84に接触する。検出部84は、弁体80が接触している場合に、弁体80が開いていることを示す信号を制御部90に送信する。例えば、検出部84は、弁体80が接触している場合に、出力値「1」の信号を制御部90に送信する。検出部84は、弁体80が接触していない場合に、出力値「0」の信号を制御部90に送信する。 Also, when the valve body 80 is normally opened, the valve body 80 contacts the detection section 84 . The detector 84 sends a signal to the controller 90 indicating that the valve body 80 is open when the valve body 80 is in contact. For example, the detection unit 84 transmits a signal with an output value of "1" to the control unit 90 when the valve body 80 is in contact. The detection unit 84 transmits a signal with an output value of "0" to the control unit 90 when the valve body 80 is not in contact.
 例えば、制御部90は、制御コマンドとしてダンパ「開」コマンドを送信し、検出部84から出力値「1」を受信すると、弁体80が正常に開いていると判定する。制御部90は、制御コマンドとしてダンパ「開」コマンドを送信してから所定の時間が経過しても検出部84からの出力値が「0」である場合、弁体80が正常に開いていないと判定する。 For example, when the control unit 90 transmits a damper "open" command as a control command and receives an output value of "1" from the detection unit 84, it determines that the valve body 80 is normally open. If the output value from the detection unit 84 is "0" even after a predetermined time has passed since the damper "open" command was transmitted as the control command, the control unit 90 does not normally open the valve body 80. I judge.
 図15は、ダンパ装置64が正常に動作していない状態を示す概略図である。 FIG. 15 is a schematic diagram showing a state in which the damper device 64 is not operating normally.
 図15に示すように、例えば、弁体80に異物G1が付着している場合に、弁体80が正常に開けない。異物G1は、例えば、埃、虫、水および氷などのうちの少なくとも1つを含む。この場合、弁体80が検出部84に接触しないため、検出部84は弁体80が開いていないことを検出する。 As shown in FIG. 15, for example, when foreign matter G1 adheres to the valve body 80, the valve body 80 cannot be opened normally. Foreign matter G1 includes, for example, at least one of dust, insects, water, and ice. In this case, since the valve body 80 does not contact the detector 84, the detector 84 detects that the valve body 80 is not open.
 このように、ダンパ装置64に異物G1が付着している場合、ダンパ装置64が正常には開閉できなくなる。本実施の形態に係るダンパ制御では、制御部90は、ダンパ装置64の弁体80が正常に開閉していないことを検出し、弁体80が正常に開閉していない場合、第1のファン62により送風を行う。これにより、制御部90は、ダンパ装置64に付着した異物G1を除去する。 Thus, when the damper device 64 has the foreign matter G1 attached thereto, the damper device 64 cannot be opened and closed normally. In the damper control according to the present embodiment, the control unit 90 detects that the valve body 80 of the damper device 64 is not normally opened and closed, and if the valve body 80 is not normally opened and closed, the first fan Air is blown by 62 . Thereby, the control unit 90 removes the foreign matter G1 adhering to the damper device 64 .
 図16はダンパ装置64を開く場合のダンパ制御の動作を示すフローチャートであり、図17はダンパ装置64を開く場合のダンパ制御における各部の状態を示すタイミングチャートである。なお、図17の(a)は制御コマンドを示し、図17の(b)はダンパ装置64(弁体80)の開閉制御を示し、図17の(c)は検出部84の検出状態を示す。また、図17の(d)は第1のファン62のオンオフ制御を示し、図17の(e)はダンパモータ82のオンオフ制御を示す。 FIG. 16 is a flowchart showing the damper control operation when the damper device 64 is opened, and FIG. 17 is a timing chart showing the state of each part in the damper control when the damper device 64 is opened. 17(a) shows the control command, FIG. 17(b) shows the opening/closing control of the damper device 64 (valve body 80), and FIG. 17(c) shows the detection state of the detection unit 84. . Further, (d) of FIG. 17 shows on/off control of the first fan 62, and (e) of FIG. 17 shows on/off control of the damper motor 82. As shown in FIG.
 図16および図17に示すように、ステップS31では、制御部90が、ダンパ装置64を開く制御を行う。即ち、制御部90は、ダンパ装置64のダンパモータ82にダンパ「開」コマンドを送信する。 As shown in FIGS. 16 and 17, in step S31, the control unit 90 controls the damper device 64 to open. That is, the control unit 90 transmits a damper “open” command to the damper motor 82 of the damper device 64 .
 ダンパモータ82は、制御部90からダンパ「開」コマンドを受信すると、回転駆動を開始する。これにより、弁体80が開き始める。 Upon receiving a damper "open" command from the control unit 90, the damper motor 82 starts rotating. Thereby, the valve body 80 starts to open.
 ステップS32では、検出部84がダンパ装置64の開閉を検知する。即ち、検出部84は、弁体80の開閉を検知する。本実施の形態では、検出部84はリミットセンサである。このため、検出部84は、弁体80が接触しているか否かに基づいて、弁体80の開閉を検知する。例えば、検出部84は、弁体80が接触している場合に弁体80が開いていると検知する。 At step S32, the detection unit 84 detects opening and closing of the damper device 64. That is, the detector 84 detects opening and closing of the valve body 80 . In this embodiment, the detector 84 is a limit sensor. Therefore, the detection unit 84 detects opening and closing of the valve body 80 based on whether the valve body 80 is in contact. For example, the detector 84 detects that the valve body 80 is open when the valve body 80 is in contact.
 例えば、検出部84は、弁体80が接触している場合に出力値「1」の信号を制御部90に送信する。検出部84は、弁体80が接触していない場合に出力値「0」の信号を制御部90に送信する。 For example, the detection unit 84 transmits a signal with an output value of "1" to the control unit 90 when the valve body 80 is in contact. The detection unit 84 transmits a signal with an output value of "0" to the control unit 90 when the valve body 80 is not in contact.
 ステップS33では、制御部90が、ダンパ装置64が開いているか否かを判定する。制御部90が、ダンパ装置64が開いていると判定した場合(ステップS33:YES)、処理は終了する。制御部90が、ダンパ装置64が開いていないと判定した場合(ステップS33:NO)、処理はステップS34に進む。 At step S33, the control unit 90 determines whether the damper device 64 is open. If the control unit 90 determines that the damper device 64 is open (step S33: YES), the process ends. When the control unit 90 determines that the damper device 64 is not open (step S33: NO), the process proceeds to step S34.
 ステップS33の判定は、以下のように行う。即ち、制御部90は、検出部84の検出結果に基づいて弁体80が正常に開いているか否かを判定する。具体的には、制御部90は、検出部84の検出結果とステップS31で送信した制御コマンドとに基づいて弁体80が正常に開いているか否かを判定する。 The determination in step S33 is performed as follows. That is, the control section 90 determines whether or not the valve body 80 is normally opened based on the detection result of the detection section 84 . Specifically, the control unit 90 determines whether the valve body 80 is normally opened based on the detection result of the detection unit 84 and the control command transmitted in step S31.
 例えば、制御部90は、制御コマンドがダンパ「開」コマンドであり、検出部84から出力値「1」の信号を受信したとき、弁体80が正常に開いていると判定する。あるいは、制御部90は、制御コマンドがダンパ「開」コマンドであり、検出部84から出力値「1」の信号を所定の時間受信したとき、弁体80が正常に開いていると判定してもよい。また、制御部90は、制御コマンドがダンパ「開」コマンドであり、検出部84から出力値「0」の信号を受信したとき、弁体80が正常に開いていないと判定する。 For example, the control unit 90 determines that the valve body 80 is normally opened when the control command is the damper "open" command and the signal with the output value "1" is received from the detection unit 84. Alternatively, the control unit 90 determines that the valve body 80 is normally opened when the control command is the damper “open” command and the signal of the output value “1” is received from the detection unit 84 for a predetermined time. good too. Further, when the control command is the damper “open” command and the signal of the output value “0” is received from the detection unit 84, the control unit 90 determines that the valve body 80 is not normally opened.
 ステップS34では、制御部90が、第1のファン62を回転させる。制御部90は、弁体80が開いていないと判定した場合に(ステップS33:NO)、第1のファン62を回転駆動する。具体的には、制御部90は、第1のファン62をオンにし、第1の流路P1に室外空気A3を送風する。これにより、第1のファン62により送風される室外空気A3によって、ダンパ装置64に付着した異物G1が除去される。 In step S34, the control unit 90 rotates the first fan 62. When the control unit 90 determines that the valve body 80 is not open (step S33: NO), it drives the first fan 62 to rotate. Specifically, the controller 90 turns on the first fan 62 to blow the outdoor air A3 to the first flow path P1. As a result, the foreign matter G1 adhering to the damper device 64 is removed by the outdoor air A3 blown by the first fan 62 .
 制御部90は、所定の時間、第1のファン62を回転駆動した後、第1のファン62を停止する。第1のファン62を回転駆動した後、処理はステップS33に戻る。 After rotating the first fan 62 for a predetermined time, the control unit 90 stops the first fan 62 . After rotating the first fan 62, the process returns to step S33.
 以上のように、ダンパ装置64を開くダンパ制御においては、制御部90がステップS31~S34を実施する。このように、ダンパ制御をすることによって、ダンパ装置64に異物G1が付着してダンパ装置64が正常に開くことができない場合に、第1のファン62を駆動し、室外空気A3を送風することによって異物G1を取り除くことができる。 As described above, in the damper control for opening the damper device 64, the control unit 90 performs steps S31 to S34. By controlling the damper in this manner, the first fan 62 is driven to blow the outdoor air A3 when the foreign matter G1 adheres to the damper device 64 and the damper device 64 cannot be opened normally. can remove the foreign matter G1.
 なお、上述の制御では、ダンパ装置64を開くダンパ制御について説明したが、ダンパ装置64を閉じるダンパ制御(例えば、図7に示すステップS70)についても同様の処理が実行される。 Although damper control for opening the damper device 64 has been described in the above control, similar processing is performed for damper control for closing the damper device 64 (for example, step S70 shown in FIG. 7).
 図18は、ダンパ装置64を閉じる場合のダンパ制御の動作を示すフローチャートである。 FIG. 18 is a flowchart showing the damper control operation when the damper device 64 is closed.
 図18に示すように、ステップS31Aでは、制御部90が、ダンパ装置64を閉じる制御を行う。即ち、制御部90は、ダンパ装置64のダンパモータ82にダンパ「閉」コマンドを送信する。 As shown in FIG. 18, in step S31A, the control unit 90 controls the damper device 64 to close. That is, the control unit 90 transmits a damper “close” command to the damper motor 82 of the damper device 64 .
 ダンパモータ82は、制御部90からダンパ「閉」コマンドを受信すると、回転駆動を開始する。これにより、弁体80が閉じ始める。 Upon receiving a damper "close" command from the control unit 90, the damper motor 82 starts rotating. Thereby, the valve body 80 begins to close.
 ステップS32Aでは、検出部84がダンパ装置64の開閉を検知する。検出部84がリミットセンサである場合、検出部84は、換気導管56の入口56aに配置されていてもよい。検出部84は、換気導管56の入口56aで弁体80が接触しているか否かに基づいて、弁体80が閉じているか否かを検知する。例えば、検出部84は、換気導管56の入口56aで弁体80が接触している場合に弁体80が閉じていると検知する。 At step S32A, the detection unit 84 detects opening and closing of the damper device 64. If the detector 84 is a limit sensor, the detector 84 may be arranged at the inlet 56 a of the ventilation conduit 56 . The detector 84 detects whether the valve body 80 is closed based on whether the valve body 80 is in contact with the inlet 56 a of the ventilation conduit 56 . For example, the detector 84 detects that the valve body 80 is closed when the valve body 80 is in contact with the inlet 56 a of the ventilation conduit 56 .
 例えば、検出部84は、弁体80が接触している場合に出力値「1」の信号を制御部90に送信する。検出部84は、弁体80が接触していない場合に出力値「0」の信号を制御部90に送信する。 For example, the detection unit 84 transmits a signal with an output value of "1" to the control unit 90 when the valve body 80 is in contact. The detection unit 84 transmits a signal with an output value of "0" to the control unit 90 when the valve body 80 is not in contact.
 ステップS33Aでは、制御部90が、ダンパ装置64が閉じているか否かを判定する。制御部90が、ダンパ装置64が閉じている判定した場合(ステップS33A:YES)、処理は終了する。制御部90が、ダンパ装置64が閉じていないと判定した場合(ステップS33A:NO)、処理はステップS34に進む。 At step S33A, the control unit 90 determines whether the damper device 64 is closed. If the control unit 90 determines that the damper device 64 is closed (step S33A: YES), the process ends. When the control unit 90 determines that the damper device 64 is not closed (step S33A: NO), the process proceeds to step S34.
 ステップS33Aの判定は、以下のように行う。即ち、制御部90は、検出部84の検出結果に基づいて弁体80が正常に閉じている否かを判定する。具体的には、制御部90は、検出部84の検出結果とステップS31Aで送信した制御コマンドとに基づいて弁体80が正常に閉じているか否かを判定する。 The determination in step S33A is performed as follows. That is, the control section 90 determines whether or not the valve body 80 is normally closed based on the detection result of the detection section 84 . Specifically, the control unit 90 determines whether the valve body 80 is normally closed based on the detection result of the detection unit 84 and the control command transmitted in step S31A.
 例えば、制御部90は、制御コマンドがダンパ「閉」コマンドであり、検出部84から出力値「1」の信号を受信したとき、弁体80が正常に閉じていると判定する。あるいは、制御部90は、制御コマンドがダンパ「閉」コマンドであり、検出部84から出力値「1」の信号を所定の時間受信したとき、弁体80が正常に閉じていると判定してもよい。また、制御部90は、制御コマンドがダンパ「閉」コマンドであり、検出部84から出力値「1」の信号を受信したとき、弁体80が正常に閉じていないと判定する。 For example, the control unit 90 determines that the valve body 80 is normally closed when the control command is the damper "close" command and the signal with the output value "1" is received from the detection unit 84. Alternatively, the control unit 90 determines that the valve body 80 is normally closed when the control command is the damper “close” command and the signal of the output value “1” is received from the detection unit 84 for a predetermined time. good too. Further, when the control command is the damper “close” command and the signal of the output value “1” is received from the detection unit 84, the control unit 90 determines that the valve body 80 is not normally closed.
 ステップS34では、制御部90が、第1のファン62を回転させる。これにより、第1のファン62により送風される室外空気A3によって、ダンパ装置64に付着した異物G1が除去される。 In step S34, the control unit 90 rotates the first fan 62. As a result, the foreign matter G1 adhering to the damper device 64 is removed by the outdoor air A3 blown by the first fan 62 .
 制御部90は、所定の時間、第1のファン62を回転駆動した後、第1のファン62を停止する。第1のファン62を回転駆動した後、処理はステップS33Aに戻る。 After rotating the first fan 62 for a predetermined time, the control unit 90 stops the first fan 62 . After rotating the first fan 62, the process returns to step S33A.
 以上のように、ダンパ装置64を閉じるダンパ制御においては、制御部90がステップS31A~S34を実施する。このように、ダンパ制御をすることによって、ダンパ装置64に異物G1が付着してダンパ装置64が正常に開閉できなくなった場合に、第1のファン62を駆動し、異物G1を取り除くことができる。 As described above, in damper control for closing the damper device 64, the control unit 90 performs steps S31A to S34. By controlling the damper in this manner, when the damper device 64 is unable to open and close normally due to the foreign matter G1 adhering to it, the first fan 62 can be driven to remove the foreign matter G1. .
 上述したダンパ制御は、ダンパ装置64の開閉操作時に実施される例について説明したが、これに限定されない。例えば、上述したダンパ制御は、加湿運転や除湿運転を含む通常運転時においてダンパ装置64が正常に開閉されていない状態を検知した場合に実施されてもよい。 Although the damper control described above has been described as being performed when the damper device 64 is opened and closed, it is not limited to this. For example, the damper control described above may be performed when it is detected that the damper device 64 is not normally opened and closed during normal operation including humidification operation and dehumidification operation.
 本実施の形態の場合、ダンパモータ82がステッピングモータである例について説明したが、これに限定されない。例えば、ダンパモータ82は、弁体80を開閉可能なアクチュエータであればよい。 In the case of the present embodiment, an example in which the damper motor 82 is a stepping motor has been described, but it is not limited to this. For example, the damper motor 82 may be an actuator capable of opening and closing the valve body 80 .
 本実施の形態の場合、検出部84がリミットセンサである例について説明したが、これに限定されない。検出部84は、弁体80の開閉が検知可能なセンサであればよい。例えば、検出部84は、赤外線センサなどの測距センサであってもよい。制御部90は、測距センサにより測定された距離の情報に基づいて、弁体80が正常に開閉しているか否かを判定してもよい。 In the case of the present embodiment, an example in which the detection unit 84 is a limit sensor has been described, but the present invention is not limited to this. The detection unit 84 may be any sensor capable of detecting opening and closing of the valve body 80 . For example, the detection unit 84 may be a ranging sensor such as an infrared sensor. The control unit 90 may determine whether or not the valve body 80 is normally opened and closed based on distance information measured by the distance measuring sensor.
 次に、変形例のダンパ制御について説明する。変形例のダンパ制御では、ダンパモータ82のトルクを増大させる処理が実行される。 Next, the damper control of the modified example will be explained. In the damper control of the modified example, processing for increasing the torque of the damper motor 82 is executed.
 図19は変形例のダンパ制御の動作を示すフローチャートであり、図20は変形例のダンパ制御における各部の状態を示すタイミングチャートである。なお、図20の(a)は制御コマンドを示し、図20の(b)はダンパ装置64(弁体80)の開閉制御を示し、図20の(c)は検出部84の検出状態を示す。また、図20の(d)は第1のファン62のオンオフ制御を示し、図20の(e)はダンパモータ82のオンオフ制御およびトルクを示す。 FIG. 19 is a flowchart showing the damper control operation of the modification, and FIG. 20 is a timing chart showing the state of each part in the damper control of the modification. 20(a) shows the control command, FIG. 20(b) shows the opening/closing control of the damper device 64 (valve body 80), and FIG. 20(c) shows the detection state of the detector 84. . 20(d) shows the on/off control of the first fan 62, and FIG. 20(e) shows the on/off control and torque of the damper motor 82. As shown in FIG.
 図19および図20に示すように、変形例のダンパ制御は、ダンパモータ82のトルクを増大させるステップS35を含む点で、上述したダンパ制御(図16参照)と異なる。変形例におけるその他の処理は、上述したダンパ制御と同じである。このため、ステップS35について説明する。 As shown in FIGS. 19 and 20, the modified damper control differs from the damper control described above (see FIG. 16) in that it includes a step S35 of increasing the torque of the damper motor 82. FIG. Other processing in the modified example is the same as the damper control described above. Therefore, step S35 will be described.
 ステップS35では、変形例のダンパ制御に係る制御部90が、ダンパモータ82のトルクを増大させる。即ち、変形例のダンパ制御に係る制御部90は、ダンパモータ82のパルスレート(PPS)を小さくする。ダンパモータ82はステッピングモータであるため、パルスレートを小さくすることによってトルクを増大させることができる。 In step S<b>35 , the control unit 90 related to the damper control of the modified example increases the torque of the damper motor 82 . That is, the control unit 90 related to the damper control of the modified example reduces the pulse rate (PPS) of the damper motor 82 . Since the damper motor 82 is a stepping motor, the torque can be increased by decreasing the pulse rate.
 具体的には、変形例のダンパ制御に係る制御部90は、制御コマンドとして、パルスレートを小さくするコマンドをダンパモータ82に送信する。ダンパモータ82は、変形例のダンパ制御に係る制御部90からの制御コマンドを受信すると、パルスレートを小さくする。これにより、ダンパモータ82のトルクを増大させることができる。 Specifically, the control unit 90 related to the damper control of the modified example transmits a command to decrease the pulse rate to the damper motor 82 as a control command. The damper motor 82 reduces the pulse rate upon receiving a control command from the control unit 90 relating to the damper control of the modified example. Thereby, the torque of the damper motor 82 can be increased.
 ダンパモータ82のトルクを増大させると、ダンパモータ82による弁体80を回動させる力が大きくなる。したがって、ダンパモータ82のトルクを増大させることによって、弁体80を開閉する力を大きくすることができる。これにより、ダンパ装置64に異物G1が付着した場合であっても弁体80を正常に開くことができる。 When the torque of the damper motor 82 is increased, the force of the damper motor 82 that rotates the valve body 80 is increased. Therefore, by increasing the torque of the damper motor 82, the force for opening and closing the valve body 80 can be increased. As a result, the valve body 80 can be opened normally even when the foreign matter G1 adheres to the damper device 64 .
 以上のように、変形例のダンパ制御においては、この変形例の制御部90がステップS31~S35を実施する。このように、ダンパモータ82のトルクを増大させることによって弁体80の開く力を大きくすることができる。これにより、ダンパ装置64に異物G1が付着していたとしても、弁体80を正常に開くことができる。 As described above, in the damper control of the modified example, the control unit 90 of this modified example performs steps S31 to S35. Thus, by increasing the torque of the damper motor 82, the opening force of the valve body 80 can be increased. As a result, even if foreign matter G1 adheres to the damper device 64, the valve body 80 can be opened normally.
 なお、変形例のダンパ制御においては、第1のファン62を回転させるステップS34は必須の処理ではない。変形例のダンパ制御においては、この変形例の制御部90は、ステップS34を実施しなくてもよい。 It should be noted that in the damper control of the modified example, step S34 of rotating the first fan 62 is not an essential process. In the damper control of the modified example, the control unit 90 of this modified example does not have to perform step S34.
 また、ダンパモータ82のトルクを制御する例として、ダンパモータ82のパルスレートを制御する例について説明したが、ダンパモータ82のトルクを制御する方法は、これに限定されない。 Also, as an example of controlling the torque of the damper motor 82, the example of controlling the pulse rate of the damper motor 82 has been described, but the method of controlling the torque of the damper motor 82 is not limited to this.
 次に、別の変形例のダンパ制御について説明する。別の変形例のダンパ制御では、ヒータ58,60をオンにし、且つ吸収材52を回転させる処理が実行される。 Next, damper control of another modified example will be described. Another modification of the damper control involves turning on the heaters 58 and 60 and rotating the absorber 52 .
 図21は別の変形例のダンパ制御の動作を示すフローチャートであり、図22は別の変形例のダンパ制御における各部の状態を示すタイミングチャートである。なお、図22の(a)は制御コマンドを示し、図22の(b)はダンパ装置64(弁体80)の開閉制御を示し、図22の(c)は検出部84の検出状態を示し、図22の(d)は第1のファン62のオンオフ制御を示す。また、図22の(e)はヒータ58,60のオンオフ制御を示し、図22の(f)は吸収材52を回転駆動するモータ54のオンオフ制御を示す。 FIG. 21 is a flowchart showing the damper control operation of another modified example, and FIG. 22 is a timing chart showing the states of each part in the damper control of another modified example. 22(a) shows control commands, FIG. 22(b) shows opening/closing control of the damper device 64 (valve body 80), and FIG. , (d) of FIG. 22 shows on/off control of the first fan 62 . FIG. 22(e) shows on/off control of the heaters 58 and 60, and FIG. 22(f) shows on/off control of the motor 54 that drives the absorbent 52 to rotate.
 図21および図22に示すように、別の変形例のダンパ制御は、ヒータ58,60をオンにするステップS36および吸収材52を回転させるステップS37を含む点で、上述したダンパ制御(図16、図19参照)と異なる。別の変形例におけるその他の処理は、上述したダンパ制御と同じである。このため、ステップS36およびS37について説明する。 As shown in FIGS. 21 and 22, the damper control of another modification includes the step S36 of turning on the heaters 58 and 60 and the step S37 of rotating the absorbing material 52. , see FIG. 19). Other processing in another modification is the same as the damper control described above. Therefore, steps S36 and S37 will be described.
 ステップS36では、別の変形例のダンパ制御に係る制御部90が、ヒータ58,60をオンにする。即ち、別の変形例のダンパ制御に係る制御部90は、第1の流路P1における吸収材52の上流側で室外空気A3を加熱する第1のヒータ58および第2のヒータ60をオンにし、第1の流路P1を流れる室外空気A3を加熱する。これにより、加熱された室外空気A3がダンパ装置64を通過する際に、ダンパ装置64に付着した氷などの熱により溶ける異物G1を除去することができる。 In step S36, the control unit 90 related to damper control of another modified example turns on the heaters 58 and 60. That is, the control unit 90 related to damper control in another modification turns on the first heater 58 and the second heater 60 that heat the outdoor air A3 on the upstream side of the absorbent 52 in the first flow path P1. , heats the outdoor air A3 flowing through the first flow path P1. As a result, when the heated outdoor air A3 passes through the damper device 64, it is possible to remove the foreign matter G1 such as ice adhering to the damper device 64 and melted by heat.
 ステップS37では、別の変形例のダンパ制御に係る制御部90が、吸収材52を回転させる。具体的には、別の変形例のダンパ制御に係る制御部90は、吸収材52を回転駆動するモータ54を駆動し、吸収材52を回転させる。これにより、吸収材52の一部にヒータ58,60による熱が集中することを抑制することができる。即ち、吸収材52がヒータ58,60によって局所的に加熱されることを抑制することができる。 In step S<b>37 , the control unit 90 related to damper control of another modified example rotates the absorber 52 . Specifically, the control unit 90 related to damper control in another modified example drives the motor 54 that rotationally drives the absorbing material 52 to rotate the absorbing material 52 . As a result, concentration of heat from the heaters 58 and 60 on a portion of the absorbent 52 can be suppressed. That is, it is possible to prevent the absorbent 52 from being locally heated by the heaters 58 and 60 .
 以上のように、別の変形例のダンパ制御においては、この変形例の制御部90がステップS31~S34およびS36~S37を実施する。このように、氷などの異物G1が付着している場合に、ヒータ58,60をオンにすることによって、ダンパ装置64にヒータ58,60によって暖められた風が送風される。これにより、異物G1を溶かすことによってダンパ装置64に付着した異物G1を除去することができる。 As described above, in the damper control of another modified example, the control unit 90 of this modified example performs steps S31 to S34 and S36 to S37. In this way, when the foreign matter G1 such as ice adheres, the air warmed by the heaters 58 and 60 is sent to the damper device 64 by turning on the heaters 58 and 60 . As a result, the foreign matter G1 adhering to the damper device 64 can be removed by melting the foreign matter G1.
 なお、別の変形例のダンパ制御においては、吸収材52を回転させるステップS37は必須の処理ではない。即ち、別の変形例のダンパ制御においては、ステップS37は実施されなくてもよい。 Note that in the damper control of another modified example, the step S37 of rotating the absorber 52 is not an essential process. That is, in the damper control of another modified example, step S37 may not be performed.
 また、別の変形例のダンパ制御においては、この変形例の制御部90は、室外Routの温度情報を取得し、室外Routの温度情報に基づいてヒータ58,60をオンにするか否かを決定してもよい。例えば、室外機30は、室外Routの温度情報を取得する温度センサを備えてもよい。この変形例の制御部90は、温度センサにより取得した室外Routの温度情報に基づいて、ヒータ58,60をオンにするか否かを決定してもよい。あるいは、空気調和機10は、サーバなどの外部機器と通信する通信機を備えてもよい。この変形例の制御部90は、通信機を介して外部機器から室外Routの温度情報を取得し、外部機器から取得した室外Routの温度情報に基づいて、ヒータ58,60をオンにするか否かを決定してもよい。 Further, in the damper control of another modified example, the control unit 90 of this modified example acquires the temperature information of the outdoor route and determines whether to turn on the heaters 58 and 60 based on the temperature information of the outdoor route. may decide. For example, the outdoor unit 30 may include a temperature sensor that acquires temperature information on the outdoor Rout. The control unit 90 of this modification may determine whether to turn on the heaters 58 and 60 based on the temperature information of the outdoor Rout acquired by the temperature sensor. Alternatively, the air conditioner 10 may include a communication device that communicates with an external device such as a server. The control unit 90 of this modification acquires the temperature information of the outdoor route from the external device via the communication device, and whether or not to turn on the heaters 58 and 60 based on the temperature information of the outdoor route acquired from the external device. You may decide whether
 また、別の変形例のダンパ制御は、変形例のダンパ制御におけるダンパモータ82のトルクを増大させるステップS35を含んでいてもよい。 Further, the damper control of another modified example may include step S35 of increasing the torque of the damper motor 82 in the damper control of the modified example.
 また、図19~22では、ダンパ装置64を開く場合のダンパ制御について説明したが、ダンパ装置64を閉じる場合についても、同様に制御を行うことができる。即ち、図18に示すダンパ装置64を閉じる場合のダンパ制御に、図19に示す変形例のダンパ制御が適用されてもよいし、図21に示す別の変形例のダンパ制御が適用されてもよい。  In addition, although the damper control when the damper device 64 is opened has been described in Figs. 19 to 22, the same control can be performed when the damper device 64 is closed. That is, the damper control of the modified example shown in FIG. 19 may be applied to the damper control when closing the damper device 64 shown in FIG. 18, or the damper control of another modified example shown in FIG. good.
 <ホース乾燥制御>
 ホース乾燥制御について詳細に説明する。
<Hose drying control>
Hose drying control will be described in detail.
 図23はホース乾燥制御の動作を示すフローチャートであり、図24はホース乾燥制御における各部の状態を示すタイミングチャートである。なお、図24の(a)はダンパ装置64の開閉制御を示し、図24の(b)は第1のファン62のオンオフ制御を示し、図24の(c)は第2のファン66のオンオフ制御を示す。 FIG. 23 is a flowchart showing the operation of hose drying control, and FIG. 24 is a timing chart showing the state of each part in hose drying control. 24A shows the opening/closing control of the damper device 64, FIG. 24B shows the ON/OFF control of the first fan 62, and FIG. 24C shows the ON/OFF control of the second fan 66. Indicates control.
 図23および図24に示すように、ステップS61では、制御部90が、ダンパ「開」制御を実施する。即ち、制御部90は、ダンパ装置64を開いて、第1の流路P1を流れる室外空気A3を、換気導管56に振り分ける。 As shown in FIGS. 23 and 24, in step S61, the control unit 90 performs damper "open" control. That is, the control unit 90 opens the damper device 64 to distribute the outdoor air A3 flowing through the first flow path P1 to the ventilation conduit 56 .
 換気導管56は、第1の流路P1と室内機20とをダンパ装置64を介して接続している。したがって、制御部90は、ダンパ装置64を制御し、室外空気A3を換気導管56に振り分けることができる。 The ventilation conduit 56 connects the first flow path P1 and the indoor unit 20 via the damper device 64 . Therefore, the controller 90 can control the damper device 64 to distribute the outdoor air A3 to the ventilation conduit 56 .
 なお、ステップS61以前からダンパ装置64が開いている場合、ステップS61では、制御部90は、ダンパ装置64が開いている状態を維持する。 If the damper device 64 has been opened before step S61, the controller 90 keeps the damper device 64 open in step S61.
 ステップS62では、制御部90が、第1のファン62を回転させる。つまり、制御部90は、第1のファン62をオンにし、第1の流路P1に室外空気A3を送風する。即ち、制御部90は、第1のファン62を回転駆動し、第1の流路P1から換気導管56へ乾燥した室外空気A3を送る。これにより、第1のファン62により送風される乾燥した室外空気A3によって、換気導管56内が乾燥する。ここで、乾燥した室外空気A3とは、例えば、飽和空気状態でない室外空気A3を意味する。「飽和空気状態ではない室外空気」とは、室外空気が最大限まで水分を含んでいない状態を意味する。例えば、室外空気A3の湿度が70%以下、好ましくは50%以下、より好ましくは30%以下であってもよい。 At step S62, the control unit 90 causes the first fan 62 to rotate. That is, the controller 90 turns on the first fan 62 to blow the outdoor air A3 to the first flow path P1. That is, the controller 90 rotates the first fan 62 to send the dry outdoor air A3 to the ventilation conduit 56 from the first flow path P1. As a result, the inside of the ventilation conduit 56 is dried by the dry outdoor air A3 blown by the first fan 62 . Here, the dry outdoor air A3 means, for example, the outdoor air A3 that is not in a saturated air state. By "outdoor air that is not saturated air" is meant that the outdoor air is maximally free of moisture. For example, the humidity of the outdoor air A3 may be 70% or less, preferably 50% or less, more preferably 30% or less.
 なお、ステップS62以前から第1のファン62が回転している場合、ステップS62では、制御部90は、第1のファン62が回転している状態を維持する。 Note that if the first fan 62 has been rotating before step S62, the control unit 90 maintains the state in which the first fan 62 is rotating in step S62.
 ステップS63では、制御部90が、第2のファン66を停止させる。つまり、制御部90は、第2のファン66をオフにし、第2の流路P2に室外空気A4を送風することを止める。即ち、制御部90は、第2のファン66の回転を停止し、第2の流路P2に室外空気A4を送風することを止める。これにより、吸収材52が水分を吸収しなくなるため、第1のファン62により送風される室外空気A3を乾燥させることができる。 At step S63, the control unit 90 stops the second fan 66. That is, the control unit 90 turns off the second fan 66 to stop blowing the outdoor air A4 to the second flow path P2. That is, the control unit 90 stops the rotation of the second fan 66 and stops blowing the outdoor air A4 to the second flow path P2. As a result, the absorbent 52 does not absorb moisture, so the outdoor air A3 blown by the first fan 62 can be dried.
 ステップS64では、制御部90が、所定の時間t61が経過したか否かを判定する。制御部90が、所定の時間t61が経過したと判定した場合(ステップS64:YES)、処理は終了する。制御部90が、所定の時間t61が経過していないと判定した場合(ステップS64:NO)、処理はステップS62に戻る。 At step S64, the control unit 90 determines whether or not a predetermined time t61 has elapsed. When the control unit 90 determines that the predetermined time t61 has elapsed (step S64: YES), the process ends. When the control unit 90 determines that the predetermined time t61 has not elapsed (step S64: NO), the process returns to step S62.
 例えば、所定の時間t61は、3分以上30分以下である。好ましくは、所定の時間t61は、10分である。 For example, the predetermined time t61 is 3 minutes or more and 30 minutes or less. Preferably, the predetermined time t61 is 10 minutes.
 以上のように、ホース乾燥制御においては、制御部90がステップS61~S64を実施する。このように、ホース乾燥制御を行うことによって、ホース内、即ち、換気導管56内を乾燥させることができる。例えば、加湿運転の終了後に、ホース乾燥制御を行うことによって、換気導管56内を乾燥させ、結露が生じることを抑制することができる。 As described above, in hose drying control, the control unit 90 performs steps S61 to S64. Thus, the inside of the hose, that is, the inside of the ventilation conduit 56 can be dried by performing the hose drying control. For example, by performing hose drying control after the humidification operation ends, the inside of the ventilation conduit 56 can be dried to suppress the occurrence of dew condensation.
 なお、ホース乾燥制御は加湿運転の終了後に実施することに限定されない。例えば、換気導管56内の湿度または結露量に基づいてホース乾燥制御が実施されてもよいし、所定の時間ごとにホース乾燥制御が実施されてもよい。 Note that the hose drying control is not limited to being performed after the humidification operation ends. For example, hose drying control may be performed based on the humidity or the amount of condensation in ventilation conduit 56, or hose drying control may be performed at predetermined time intervals.
 また、ステップS64では、所定の時間t61経過後にホース乾燥制御が終了する例について説明したが、これに限定されない。例えば、換気導管56内の湿度または結露量に基づいてホース乾燥制御が終了されてもよい。 Also, in step S64, the example in which the hose drying control ends after the predetermined time t61 has elapsed has been described, but the present invention is not limited to this. For example, hose dry control may be terminated based on the amount of humidity or condensation within ventilation conduit 56 .
 次に、変形例のホース乾燥制御について説明する。変形例のホース乾燥制御では、吸収材52を回転させ、ヒータ58,60をオンにする処理が実行される。 Next, the modified hose drying control will be explained. In the hose drying control of the modified example, a process of rotating the absorbent 52 and turning on the heaters 58 and 60 is executed.
 図25は変形例のホース乾燥制御の動作を示すフローチャートであり、図26は変形例のホース乾燥制御における各部の状態を示すタイミングチャートである。なお、図26の(a)はダンパ装置64の開閉制御を示し、図26の(b)は第1のファン62のオンオフ制御を示し、図26の(c)は第2のファン66のオンオフ制御を示す。また、図26の(d)は吸収材52を回転駆動するモータ54のオンオフ制御を示し、図26の(e)はヒータ58,60のオンオフ制御を示す。 FIG. 25 is a flowchart showing the operation of the hose drying control of the modification, and FIG. 26 is a timing chart showing the states of each part in the hose drying control of the modification. 26(a) shows the opening/closing control of the damper device 64, FIG. 26(b) shows the on/off control of the first fan 62, and FIG. 26(c) shows the on/off control of the second fan 66. Indicates control. 26(d) shows on/off control of the motor 54 for rotating the absorbent 52, and FIG. 26(e) shows on/off control of the heaters 58 and 60. FIG.
 図25および図26に示すように、変形例のホース乾燥制御は、吸収材52を回転させるステップS63Aと、ヒータ58,60をオンにするステップS63Bと、を含む点で、上述したホース乾燥制御(図23参照)と異なる。変形例におけるその他の処理は、上述したホース乾燥制御と同じである。このため、ステップS63AおよびS63Bについて説明する。 As shown in FIGS. 25 and 26, the modified hose drying control includes a step S63A of rotating the absorbent 52 and a step S63B of turning on the heaters 58 and 60. (see FIG. 23). Other processing in the modified example is the same as the hose drying control described above. Therefore, steps S63A and S63B will be described.
 ステップS63Aでは、変形例のホース乾燥制御に係る制御部90が、吸収材52を回転させる。即ち、変形例のホース乾燥制御に係る制御部90は、吸収材52を回転駆動するモータ54を駆動し、吸収材52を回転させる。これにより、ステップS63Bにおいてヒータ58,60をオンにして加熱をする場合に、吸収材52が局所的に加熱されることを抑制することができる。 At step S63A, the control unit 90 related to the modified hose drying control rotates the absorbent 52. That is, the control unit 90 related to the hose drying control of the modified example drives the motor 54 that rotationally drives the absorbent 52 to rotate the absorbent 52 . As a result, when heating is performed by turning on the heaters 58 and 60 in step S63B, it is possible to prevent the absorbent 52 from being locally heated.
 ステップS63Bでは、変形例のホース乾燥制御に係る制御部90が、ヒータ58,60をオンにする。制御部90は、第1の流路P1における吸収材52の上流側で室外空気A3を加熱する第1のヒータ58および第2のヒータ60をオンにし、第1の流路P1を流れる室外空気A3を加熱する。これにより、室外空気A3を乾燥させることができ、乾燥した室外空気A3を換気導管56内へ送ることができる。 At step S63B, the control unit 90 related to the hose drying control of the modified example turns on the heaters 58 and 60. The control unit 90 turns on the first heater 58 and the second heater 60 that heat the outdoor air A3 on the upstream side of the absorbent 52 in the first flow path P1, and heats the outdoor air flowing through the first flow path P1. Heat A3. This allows the outdoor air A3 to be dried and the dry outdoor air A3 to be sent into the ventilation conduit 56 .
 以上のように、変形例のホース乾燥制御においては、この変形例の制御部90がステップS63AおよびS63Bをさらに実施する。変形例のホース乾燥制御においては、ヒータ58,60をオンにすることによって、第1の流路P1を流れる室外空気A3を乾燥させることができる。これにより、換気導管56内をより乾燥させやすくすることができる。例えば、室外空気A3の湿度が高い場合にヒータ58,60で加熱することによって室外空気A3の湿度を下げることができる。また、吸収材52を回転させることによって、吸収材52がヒータ58,60の加熱によりダメージを受けることを抑制することができる。 As described above, in the hose drying control of the modified example, the control unit 90 of this modified example further performs steps S63A and S63B. In the hose drying control of the modified example, by turning on the heaters 58 and 60, the outdoor air A3 flowing through the first flow path P1 can be dried. This makes it easier to dry the inside of the ventilation conduit 56 . For example, when the humidity of the outdoor air A3 is high, the humidity of the outdoor air A3 can be lowered by heating with the heaters 58 and 60 . Also, by rotating the absorbent 52, it is possible to prevent the absorbent 52 from being damaged by the heating of the heaters 58 and 60. FIG.
 次に、別の変形例のホース乾燥制御について説明する。別の変形例のホース乾燥制御では、別の変形例のホース乾燥制御に係る制御部90が、換気導管56内の湿度情報に基づいてヒータ58,60のオンオフを決定する。 Next, another modified example of hose drying control will be described. In another modified hose drying control, a control unit 90 associated with another modified hose drying control determines whether the heaters 58 , 60 are turned on or off based on humidity information in the ventilation conduit 56 .
 図27は別の変形例の空気調和機10の構成を示すブロック図である。 FIG. 27 is a block diagram showing the configuration of the air conditioner 10 of another modified example.
 図27に示すように、別の変形例においては、空気調和機10は、換気導管56内の湿度情報を取得する湿度センサ86を備える。湿度センサ86は、例えば、室内機20と接続される換気導管56の出口側のノズルに配置される。 As shown in FIG. 27 , in another modification, the air conditioner 10 includes a humidity sensor 86 that acquires humidity information inside the ventilation conduit 56 . The humidity sensor 86 is arranged, for example, at a nozzle on the outlet side of the ventilation conduit 56 connected to the indoor unit 20 .
 制御部90は、湿度センサ86で取得した湿度情報に基づいてダンパ装置64および第1のファン62を制御する。例えば、湿度センサ86によって取得した換気導管56内の湿度が閾値以上になったとき、制御部90は、乾燥した室外空気A3を換気導管56に振り分け、第1のファン62を回転駆動する。これにより、換気導管56内に乾燥した室外空気A3が送られる。 The control unit 90 controls the damper device 64 and the first fan 62 based on humidity information acquired by the humidity sensor 86 . For example, when the humidity inside the ventilation conduit 56 obtained by the humidity sensor 86 reaches or exceeds a threshold value, the controller 90 distributes the dry outdoor air A3 to the ventilation conduit 56 and drives the first fan 62 to rotate. This forces dry outdoor air A3 into the ventilation conduit 56 .
 図28は別の変形例のホース乾燥制御の動作を示すフローチャートである。 FIG. 28 is a flow chart showing the operation of hose drying control in another modified example.
 図28に示すように、別の変形例のホース乾燥制御では、換気導管56内の湿度情報を取得するステップS63Cおよび換気導管56内の湿度が閾値以上であるか否かを判定するステップS63Dを含む点で、上述した変形例のホース乾燥制御(図25参照)と異なる。別の変形例におけるその他の処理は、上述した変形例のホース乾燥制御と同じである。このため、ステップS63CおよびS63Dについて説明する。 As shown in FIG. 28, in another modification of the hose drying control, a step S63C of acquiring humidity information in the ventilation conduit 56 and a step S63D of determining whether the humidity in the ventilation conduit 56 is equal to or higher than a threshold value are performed. It is different from the hose drying control of the modification (see FIG. 25) described above in that it includes. Other processing in another modification is the same as the hose drying control of the modification described above. Therefore, steps S63C and S63D will be described.
 ステップS63Cでは、湿度センサ86が、換気導管56内の湿度情報を取得する。湿度情報とは、換気導管56内の湿度である。湿度センサ86は、湿度情報を取得し、別の変形例のホース乾燥制御に係る制御部90に送信する。 In step S63C, the humidity sensor 86 acquires humidity information within the ventilation conduit 56. Humidity information is the humidity within the ventilation conduit 56 . The humidity sensor 86 acquires humidity information and transmits it to the control unit 90 related to hose drying control of another modified example.
 ステップS63Dでは、別の変形例のホース乾燥制御に係る制御部90が、湿度情報に基づいてヒータ58,60をオンにするか否かを決定する。別の変形例のホース乾燥制御に係る制御部90が、湿度が閾値以上であると判定した場合(ステップS63D:YES)、処理はステップS63Aに進む。別の変形例のホース乾燥制御に係る制御部90が、湿度が閾値より小さいと判定した場合(ステップS63D:NO)、処理はステップS64に進む。 In step S63D, the control unit 90 related to the hose drying control of another modified example determines whether to turn on the heaters 58, 60 based on the humidity information. When the control unit 90 related to the hose drying control of another modified example determines that the humidity is equal to or higher than the threshold (step S63D: YES), the process proceeds to step S63A. When the control unit 90 related to the hose drying control of another modified example determines that the humidity is lower than the threshold (step S63D: NO), the process proceeds to step S64.
 ステップS63Dでは、別の変形例のホース乾燥制御に係る制御部90は、湿度センサ86で取得した湿度が閾値以上であるか否かを判定する。例えば、閾値は、90%に設定される。なお、閾値は90%に限定されず、任意の値に設定してもよい。 In step S63D, the control unit 90 related to the hose drying control of another modified example determines whether the humidity obtained by the humidity sensor 86 is equal to or higher than the threshold. For example, the threshold is set at 90%. Note that the threshold is not limited to 90% and may be set to any value.
 以上のように、別の変形例のホース乾燥制御は、ステップS63CおよびS63Dをさらに実施する。これにより、換気導管56内の湿度情報に応じてヒータ58,60をオンにするか否かを決定することができる。その結果、ホース乾燥制御を効率良く実施することができる。 As described above, the hose drying control of another modified example further implements steps S63C and S63D. This allows a decision to turn on or not the heaters 58 , 60 depending on the humidity information in the ventilation conduit 56 . As a result, hose drying control can be performed efficiently.
 なお、ステップS63Cでは、湿度センサ86が換気導管56内の湿度を取得する例について説明したが、これに限定されない。例えば、別の変形例のホース乾燥制御に係る制御部90は、換気導管56内の湿度に関連する情報を取得してもよい。湿度に関連する情報とは、例えば、結露量、換気導管56の入口56aと出口の温度差などを含む。例えば、この変形例の制御部90は、換気導管56内の結露量を取得し、結露量に基づいてヒータ58,60のオンを決定してもよい。あるいは、この変形例の空気調和機10は、換気導管56の入口56aと出口に配置される複数の温度センサを備え、この変形例の制御部90は、換気導管56の入口56aと出口の温度差に基づいてヒータ58,60のオンを決定してもよい。 Note that in step S63C, an example in which the humidity sensor 86 acquires the humidity inside the ventilation conduit 56 has been described, but the present invention is not limited to this. For example, another alternative hose drying control controller 90 may obtain information related to the humidity within the ventilation conduit 56 . Information related to humidity includes, for example, the amount of condensation, the temperature difference between the inlet 56a and the outlet of the ventilation conduit 56, and the like. For example, the controller 90 of this variation may acquire the amount of condensation within the ventilation conduit 56 and determine to turn on the heaters 58, 60 based on the amount of condensation. Alternatively, the air conditioner 10 of this modification includes a plurality of temperature sensors arranged at the inlet 56a and the outlet of the ventilation conduit 56, and the controller 90 of this modification controls the temperature of the inlet 56a and the outlet of the ventilation conduit 56. The decision to turn on the heaters 58, 60 may be based on the difference.
 また、ステップS63CおよびS63Dは、ステップS61より前に実施されてもよい。この場合、この変形例の制御部90は、湿度センサ86で取得した湿度情報に基づいてステップS61~S64を実施するか否かを決定してもよい。即ち、制御部90は、湿度センサ86で取得した湿度情報に基づいてダンパ装置64および第1のファン62を制御し、乾燥した室外空気A3を換気導管56に送ってもよい。例えば、湿度センサ86で取得した湿度が70%以上である場合に、ダンパ装置64および第1のファン62を制御し、乾燥した室外空気A3を換気導管56に送ってもよい。 Also, steps S63C and S63D may be performed before step S61. In this case, the control unit 90 of this modified example may determine whether to perform steps S61 to S64 based on the humidity information acquired by the humidity sensor 86. FIG. That is, the control unit 90 may control the damper device 64 and the first fan 62 based on the humidity information acquired by the humidity sensor 86 to send the dry outdoor air A3 to the ventilation conduit 56. For example, damper device 64 and first fan 62 may be controlled to send dry outdoor air A3 to ventilation conduit 56 when the humidity obtained by humidity sensor 86 is 70% or higher.
 また、別の変形例のホース乾燥制御に係る制御部90は、換気導管56内の湿度に関連する情報を取得し、この情報に基づいてダンパ装置64および第1のファン62を制御してもよい。例えば、換気導管56内の結露量が所定の閾値以上である場合に、この変形例の制御部90はダンパ装置64および第1のファン62を制御し、乾燥した室外空気A3を換気導管56に送ってもよい。あるいは、換気導管56の入口56aと出口の温度差が10℃以上である場合に、この変形例の制御部90はダンパ装置64および第1のファン62を制御し、乾燥した室外空気A3を換気導管56に送ってもよい。 Further, the control unit 90 related to the hose drying control of another modification acquires information related to the humidity in the ventilation conduit 56, and controls the damper device 64 and the first fan 62 based on this information. good. For example, when the amount of condensation in the ventilation conduit 56 is greater than or equal to a predetermined threshold, the controller 90 of this variant controls the damper device 64 and the first fan 62 to direct dry outdoor air A3 to the ventilation conduit 56. You can send Alternatively, when the temperature difference between the inlet 56a and the outlet of the ventilation conduit 56 is 10° C. or more, the control unit 90 of this modification controls the damper device 64 and the first fan 62 to ventilate the dry outdoor air A3. It may be sent to conduit 56 .
 <ヒータ余熱排除制御>
 次に、変形例における加湿運転ONからOFFまでの動作について説明する。当該変形例においては、ヒータ58,60の予熱を排除する制御がさらに実施される。
<Heater residual heat removal control>
Next, the operation from ON to OFF of the humidification operation in the modified example will be described. In this variant, a further control is implemented to eliminate preheating of the heaters 58,60.
 図29は、変形例における加湿運転ONからOFFまでの全体の動作を示すフローチャートである。 FIG. 29 is a flowchart showing the entire operation from ON to OFF of the humidification operation in the modified example.
 図29に示すように、処理は、ステップS80としてヒータ余熱排除制御を含む。ヒータ余熱排除制御とは、ヒータ58,60の余熱を排除する制御である。ステップS80では、変形例に係る制御部90が、ヒータ58,60を冷却する制御を行う。 As shown in FIG. 29, the process includes heater residual heat elimination control as step S80. Heater residual heat elimination control is control for eliminating residual heat of the heaters 58 and 60 . In step S<b>80 , the control unit 90 according to the modification performs control to cool the heaters 58 and 60 .
 本変形例の場合、ステップS80は、ステップS10~S70を実施した後に実施される。 In the case of this modification, step S80 is performed after steps S10 to S70 are performed.
 図30はヒータ余熱排除制御の動作を示すフローチャートであり、図31はヒータ余熱排除制御における各部の状態を示すタイミングチャートである。図31の(a)はダンパ装置64の開閉制御を示し、図31の(b)は第1のファン62のオンオフ制御を示し、図31の(c)は第2のファン66のオンオフ制御を示す。また、図31の(d)は吸収材52を回転駆動するモータ54のオンオフ制御を示し、図31の(e)はヒータ58,60のオンオフ制御を示す。なお、図31は、ホース乾燥制御を行った後にヒータ余熱排除制御を行う例について示す。 FIG. 30 is a flow chart showing the operation of the heater residual heat elimination control, and FIG. 31 is a timing chart showing the states of each part in the heater residual heat elimination control. 31(a) shows open/close control of the damper device 64, FIG. 31(b) shows on/off control of the first fan 62, and FIG. 31(c) shows on/off control of the second fan 66. show. 31(d) shows on/off control of the motor 54 for rotating the absorbent 52, and FIG. 31(e) shows on/off control of the heaters 58 and 60. FIG. Note that FIG. 31 shows an example in which the heater residual heat removal control is performed after the hose drying control is performed.
 図30および図31に示すように、ステップS81では、変形例に係る制御部90が、ダンパ装置64を閉じる制御を行う。具体的には、変形例に係る制御部90は、ダンパ装置64のダンパモータ82にダンパ「閉」コマンドを送信する。これにより、ダンパ装置64が閉じ、第1の流路P1を流れる室外空気A3が室外Routに排出される。 As shown in FIGS. 30 and 31, in step S81, the control unit 90 according to the modification controls the damper device 64 to close. Specifically, the control unit 90 according to the modification transmits a damper “close” command to the damper motor 82 of the damper device 64 . As a result, the damper device 64 is closed, and the outdoor air A3 flowing through the first flow path P1 is discharged to the outdoor Rout.
 なお、ステップS81以前からダンパ装置64が閉じている場合、変形例に係る制御部90は、ダンパ装置64が閉じている状態を維持する。 Note that when the damper device 64 is closed from before step S81, the control unit 90 according to the modification maintains the damper device 64 closed.
 ステップS82では、変形例に係る制御部90が、ヒータ58,60をオフにする。これにより、ヒータ58,60による加熱が停止する。 In step S82, the control unit 90 according to the modification turns off the heaters 58, 60. Heating by the heaters 58 and 60 is thereby stopped.
 ステップS83では、変形例に係る制御部90が、第1のファン62を回転させる。つまり、変形例に係る制御部90は、第1のファン62をオンにし、第1の流路P1に室外空気A3を送風する。即ち、変形例に係る制御部90は、第1のファン62を回転駆動し、第1の流路P1から室外Routへ室外空気A3を排出する。これにより、第1のファン62により送風される室外空気A3によって、ヒータ58,60が冷却される。 In step S83, the control unit 90 according to the modification rotates the first fan 62. That is, the control unit 90 according to the modification turns on the first fan 62 to blow the outdoor air A3 to the first flow path P1. That is, the control unit 90 according to the modification rotates the first fan 62 to discharge the outdoor air A3 from the first flow path P1 to the outdoor Rout. As a result, the outdoor air A3 blown by the first fan 62 cools the heaters 58 and 60 .
 ステップS84では、変形例に係る制御部90が、第2のファン66を回転させる。つまり、変形例に係る制御部90は、第2のファン66をオンにし、第2の流路P2に室外空気A4を送風する。即ち、変形例に係る制御部90は、第2のファン66を回転駆動し、第2の流路P2から室外Routへ室外空気A4を排出する。これにより、第2のファン66により送風される室外空気A4によって、吸収材52が乾燥することを抑制する。 In step S84, the control unit 90 according to the modification causes the second fan 66 to rotate. That is, the control unit 90 according to the modification turns on the second fan 66 to blow the outdoor air A4 to the second flow path P2. That is, the control unit 90 according to the modification rotates the second fan 66 to discharge the outdoor air A4 from the second flow path P2 to the outdoor Rout. This prevents the absorbent 52 from being dried by the outdoor air A4 blown by the second fan 66 .
 ステップS85では、変形例に係る制御部90が、吸収材52を回転させる。変形例に係る制御部90は、吸収材52を回転駆動するモータ54を駆動し、吸収材52を回転させる。これにより、ヒータ58,60の余熱によって吸収材52が局所的に加熱されることを抑制することができる。 In step S85, the control unit 90 according to the modification rotates the absorbent 52. The control unit 90 according to the modification drives the motor 54 that rotationally drives the absorbing material 52 to rotate the absorbing material 52 . As a result, it is possible to prevent the absorbent 52 from being locally heated by the residual heat of the heaters 58 and 60 .
 ステップS86では、変形例に係る制御部90が、所定の時間t81が経過したが否かを判定する。変形例に係る制御部90が、所定の時間t81が経過したと判定した場合(ステップS86:YES)、ヒータ余熱排除制御を終了する。変形例に係る制御部90が、所定の時間t81が経過していないと判定した場合(ステップS86:NO)、処理はステップS82に戻る。所定の時間t81は、例えば、30秒以上2分以下である。好ましくは、所定の時間t81は、1分である。 In step S86, the control unit 90 according to the modification determines whether or not a predetermined time t81 has elapsed. When the control unit 90 according to the modification determines that the predetermined time t81 has elapsed (step S86: YES), the heater residual heat elimination control is terminated. When the control unit 90 according to the modification determines that the predetermined time t81 has not elapsed (step S86: NO), the process returns to step S82. The predetermined time t81 is, for example, 30 seconds or more and 2 minutes or less. Preferably, the predetermined time t81 is 1 minute.
 以上のように、ヒータ余熱排除制御においては、変形例に係る制御部90がステップS81~S86を実施する。このように、ヒータ余熱排除制御を行うことによって、ヒータ58,60の余熱を排除することができる。 As described above, in the heater residual heat elimination control, the control unit 90 according to the modification performs steps S81 to S86. By performing the heater residual heat removal control in this way, the residual heat of the heaters 58 and 60 can be removed.
 なお、ステップS84およびS85は必須の処理ではない。例えば、ヒータ余熱排除制御においては、ステップS84およびステップS85のうちの少なくとも1つが実施されなくてもよい。即ち、変形例に係る制御部90は、第1のファン62を回転させていればよく、第2のファン66および吸収材52を回転させなくてもよい。 Note that steps S84 and S85 are not essential processes. For example, in heater residual heat elimination control, at least one of step S84 and step S85 may not be performed. That is, the control unit 90 according to the modified example only needs to rotate the first fan 62 and does not have to rotate the second fan 66 and the absorber 52 .
 また、本変形例の場合、ホース乾燥制御の後にヒータ余熱排除制御が実施される例について説明したが、これに限定されない。例えば、ヒータ58,60の温度が閾値温度を超えた場合に、ヒータ余熱排除制御が実施されてもよい。 Also, in the case of this modified example, the example in which the heater residual heat removal control is performed after the hose drying control has been described, but the present invention is not limited to this. For example, when the temperature of the heaters 58 and 60 exceeds the threshold temperature, heater residual heat elimination control may be performed.
 <ファン回転数の設定制御>
 次に、ファン回転数の設定制御について説明する。
<Fan speed setting control>
Next, setting control of the fan rotation speed will be described.
 空気調和機10は、ホース長Lに応じて第1のファン62のファン回転数を制御する。本明細書では、「ホース長L」とは換気導管56の長さを意味する。 The air conditioner 10 controls the fan rotation speed of the first fan 62 according to the hose length L. As used herein, “hose length L” means the length of ventilation conduit 56 .
 図32は、ホース長Lに応じて指示回転数R1が割り当てられた指示回転数テーブル94のデータ構成および例を示す図である。なお、図32において、ホース長LはL1からL6にかけて長くなっており、第1のファン62の指示回転数R1はR11からR16にかけて大きくなっている。「指示回転数R1」とは、ホース長Lに応じて設定された第1のファン62の最大回転数を意味する。 FIG. 32 is a diagram showing a data configuration and an example of the instructed rotation speed table 94 in which the instructed rotation speed R1 is assigned according to the hose length L. In FIG. 32, the hose length L increases from L1 to L6, and the indicated rotation speed R1 of the first fan 62 increases from R11 to R16. "Instructed number of rotations R1" means the maximum number of rotations of the first fan 62 that is set according to the length L of the hose.
 図32に示すように、指示回転数テーブル94では、ホース長Lに応じて第1のファン62の指示回転数R1が割り当てられている。例えば、第1のファン62の指示回転数R1は、空気調和機10を設置した際の初期設定時に設定される。 As shown in FIG. 32, in the indicated rotation speed table 94, the indicated rotation speed R1 of the first fan 62 is assigned according to the hose length L. For example, the indicated rotation speed R1 of the first fan 62 is set during initial setting when the air conditioner 10 is installed.
 空気調和機10においては、制御部90は、指示回転数テーブル94を参照し、ホース長Lに応じた第1のファン62の指示回転数R1を設定する。例えば、空気調和機10の初期設定時において、作業者が入力インタフェースを介してホース長L<L1を入力したとする。この場合、制御部90は、指示回転数テーブル94を参照し、ホース長L<L1に対応する指示回転数R11を設定する。または、作業者が入力インタフェースを介してホース長L3≦L<L4を入力したとする。この場合、制御部90は、指示回転数テーブル94を参照し、ホース長L3≦L<L4に対応する指示回転数R14を設定する。 In the air conditioner 10, the controller 90 refers to the instructed rotation speed table 94 and sets the instructed rotation speed R1 of the first fan 62 according to the hose length L. For example, assume that the operator inputs hose length L<L1 through the input interface when initializing the air conditioner 10 . In this case, the control unit 90 refers to the instructed rotation speed table 94 and sets the instructed rotation speed R11 corresponding to the hose length L<L1. Alternatively, it is assumed that the operator inputs hose length L3≦L<L4 via the input interface. In this case, the control unit 90 refers to the instructed rotation speed table 94 and sets the instructed rotation speed R14 corresponding to the hose length L3≦L<L4.
 このように、制御部90は、ホース長Lに応じて第1のファン62の指示回転数R1を設定することによって、最適なファン回転数に調整している。ホース長Lは長くなるほど、送風抵抗が増大する。このため、空気調和機10では、ホース長Lが長くなるほど、第1のファン62のファン回転数を大きくすることによって、室内機20に十分な量の室外空気A3を送風している。これにより、加湿能力などの性能低下を抑制することができる。 In this manner, the control unit 90 sets the indicated rotation speed R1 of the first fan 62 according to the hose length L, thereby adjusting the fan rotation speed to the optimum. The longer the hose length L, the greater the blowing resistance. Therefore, in the air conditioner 10, a sufficient amount of outdoor air A3 is blown to the indoor unit 20 by increasing the fan rotation speed of the first fan 62 as the hose length L increases. As a result, deterioration in performance such as humidification ability can be suppressed.
 また、ホース長Lが比較的短い場合に、第1のファン62の回転数限界値よりも低いファン回転数で回転させることによって、第1のファン62による騒音を抑制したり、第1のファン62の耐久性を考慮した制御を行ったりすることができる。なお、回転数限界値とは、第1のファン62の耐久性を著しく低下させない回転数の限界値を意味し、ファンの仕様などによって決定される。 Further, when the hose length L is relatively short, by rotating the first fan 62 at a fan rotation speed lower than the rotation speed limit value, the noise caused by the first fan 62 can be suppressed and the first fan 62 durability can be considered. Note that the rotation speed limit value means a rotation speed limit value that does not significantly reduce the durability of the first fan 62, and is determined according to fan specifications and the like.
 図33は、ファン回転数を制御するための構成を示すブロック図である。 FIG. 33 is a block diagram showing the configuration for controlling the fan speed.
 図33に示すように、第1のファン62は、ファンモータ62Aによって回転駆動される。ファンモータ62Aは、制御部90によって制御される。具体的には、ファンモータ62Aは、制御部90から制御コマンドを受信し、制御コマンドに基づいて第1のファン62を回転駆動する。制御部90は、ダンパ装置64を開いた状態で第1のファン62を回転させることによって、換気導管56内へ室外空気A3を送風する。 As shown in FIG. 33, the first fan 62 is rotationally driven by a fan motor 62A. Fan motor 62A is controlled by control unit 90 . Specifically, the fan motor 62A receives a control command from the control unit 90 and rotates the first fan 62 based on the control command. The control unit 90 blows the outdoor air A3 into the ventilation conduit 56 by rotating the first fan 62 with the damper device 64 open.
 制御コマンドは、指示回転数R1を含む。指示回転数R1は、記憶部92に格納されている。制御部90は、記憶部92から指示回転数R1を読み出し、ファンモータ62Aに制御コマンドを送信する。 The control command includes the indicated rotation speed R1. The instructed rotation speed R1 is stored in the storage unit 92 . The control unit 90 reads the instructed rotation speed R1 from the storage unit 92 and transmits a control command to the fan motor 62A.
 本実施の形態の場合、記憶部92は、図32に示す指示回転数テーブル94を格納している。 In the case of the present embodiment, the storage unit 92 stores a command rotation speed table 94 shown in FIG.
 上述したように、例えば、空気調和機10の初期設定時において、作業者が入力インタフェースを介してホース長Lを入力することによって、第1のファン62の指示回転数R1が設定される。設定された指示回転数R1は、記憶部92に記憶される。制御部90は、第1のファン62を回転駆動する際に、記憶部92から指示回転数R1を読み出す。 As described above, for example, when the air conditioner 10 is initialized, the operator inputs the hose length L via the input interface to set the indicated rotation speed R1 of the first fan 62 . The instructed rotation speed R1 that has been set is stored in the storage unit 92 . When the first fan 62 is rotationally driven, the control unit 90 reads the instructed rotation speed R1 from the storage unit 92 .
 ここで、ファンモータ62Aに印加されるDC電圧が所定の閾値を下回った場合、または作業者がホース長Lを間違って入力していた場合、以下の問題が生じ得る。即ち、第1のファン62が最適な回転数で回転駆動されなくなり、第1のファン62の指示回転数R1と実回転数とに乖離が生じることがある。 Here, if the DC voltage applied to the fan motor 62A falls below a predetermined threshold, or if the operator incorrectly inputs the hose length L, the following problems may occur. That is, the first fan 62 is no longer rotationally driven at the optimum rotational speed, and a discrepancy may occur between the indicated rotational speed R1 and the actual rotational speed of the first fan 62 .
 例えば、ファンモータ62Aに印加されるDC電圧として、第1のファン62を回転させるためにDC240Vが必要である場合、所定の閾値はDC240Vに設定される。この場合、ファンモータ62Aに印加されるDC電圧がDC240Vを下回ると、第1のファン62の実回転数が指示回転数R1を下回る。このように、ファンモータ62Aに印加されるDC電圧が所定の閾値を下回った場合、第1のファン62の指示回転数R1と実回転数とに乖離が生じる。 For example, if the DC voltage applied to the fan motor 62A requires 240V DC to rotate the first fan 62, the predetermined threshold is set to 240V DC. In this case, when the DC voltage applied to the fan motor 62A falls below DC240V, the actual rotation speed of the first fan 62 falls below the indicated rotation speed R1. In this way, when the DC voltage applied to the fan motor 62A falls below the predetermined threshold value, a discrepancy occurs between the indicated rotation speed R1 and the actual rotation speed of the first fan 62. FIG.
 例えば、初期設定で設定したホース長Lが「L4≦L<L5」である場合、第1のファン62の指示回転数R1はR15に設定される。実際のホース長が「L<L1」である場合、指示回転数R1=R15で第1のファン62を回転させると、ホースの抵抗が小さいため、風量が比較的大きくなりやすい。風量が大きくなると、ファンモータ62Aのトルクが大きくなりやすい。しかしながら、ファンモータ62Aにおいてはモータスペック以上のトルクが出ないため、第1のファン62の実回転数は指示回転数R15よりも小さくなる。このように、初期設定時におけるホース長Lの設定が誤っている場合、第1のファン62の指示回転数R1と実回転数とに乖離が生じる。 For example, when the hose length L set in the initial setting is "L4≦L<L5", the indicated rotation speed R1 of the first fan 62 is set to R15. When the actual hose length is "L<L1", if the first fan 62 is rotated at the instructed rotation speed R1=R15, the resistance of the hose is small, so the air volume tends to be relatively large. As the air volume increases, the torque of the fan motor 62A tends to increase. However, since the fan motor 62A does not generate torque equal to or greater than the motor spec, the actual rotation speed of the first fan 62 is smaller than the indicated rotation speed R15. As described above, when the hose length L is incorrectly set at the time of initial setting, a deviation occurs between the indicated rotation speed R1 and the actual rotation speed of the first fan 62 .
 また、ファンモータ62Aが回転数限界値付近で第1のファン62を回転駆動し続けている場合、第1のファン62から騒音や異音が発生したり、ファンモータ62Aの耐久性が低下したりするという問題も生じる。 Further, when the fan motor 62A continues to rotate the first fan 62 near the rotational speed limit value, the first fan 62 generates noise or abnormal noise, and the durability of the fan motor 62A is deteriorated. There is also a problem that
 そこで、制御部90は、第1のファン62の実回転数を取得し、指示回転数R1と実回転数とに基づいて指示回転数R1を補正する。例えば、制御部90は、指示回転数R1と実回転数とに乖離が生じていると判定した場合、ファンモータ62Aに印加される電圧が所定の閾値以上であるか否かを判定する。ファンモータ62Aに印加される電圧が所定の閾値以上である場合、制御部90は、指示回転数R1と実回転数とに基づいて指示回転数R1を補正する。 Therefore, the control unit 90 acquires the actual rotation speed of the first fan 62 and corrects the instructed rotation speed R1 based on the instructed rotation speed R1 and the actual rotation speed. For example, when the controller 90 determines that there is a discrepancy between the indicated rotation speed R1 and the actual rotation speed, it determines whether the voltage applied to the fan motor 62A is equal to or higher than a predetermined threshold. When the voltage applied to the fan motor 62A is equal to or higher than the predetermined threshold, the controller 90 corrects the commanded rotation speed R1 based on the commanded rotation speed R1 and the actual rotation speed.
 図34はファン回転数の設定制御の動作を示すフローチャートであり、図35はファン回転数の設定制御における各部の状態を示すタイミングチャートである。図35の(a)は第1のファン62の指示回転数R1を示し、図35の(b)は第1のファン62の実回転数を示す。なお、図35においては、実際のホース長がL<L1であるが、初期設定がホース長L3≦L<L4、指示回転数R1=R14に間違って設定されている場合に、実回転数Rsに基づいて指示回転数R1を補正する例を示す。 FIG. 34 is a flow chart showing the operation of setting control of the fan rotation speed, and FIG. 35 is a timing chart showing the state of each part in the setting control of the fan rotation speed. FIG. 35(a) shows the indicated rotation speed R1 of the first fan 62, and FIG. 35(b) shows the actual rotation speed of the first fan 62. FIG. In FIG. 35, the actual hose length is L<L1. An example of correcting the command rotation speed R1 based on is shown.
 図34および図35に示すように、ステップS91では、制御部90が、第1のファン62の指示回転数R1を取得する。制御部90は、記憶部92から第1のファン62の指示回転数R1を読み出す。なお、指示回転数R1は、初期設定時に入力されたホース長L3≦L<L4に対応する指示回転数R14に設定されている。 As shown in FIGS. 34 and 35, in step S91, the control unit 90 acquires the indicated rotation speed R1 of the first fan 62. As shown in FIG. The control unit 90 reads the instructed rotation speed R1 of the first fan 62 from the storage unit 92 . The indicated rotation speed R1 is set to the indicated rotation speed R14 corresponding to the hose length L3≦L<L4 input at the time of initialization.
 ステップS92では、制御部90が、第1のファン62の指示回転数R1=R14に基づいて第1のファン62を回転させる。即ち、制御部90は、第1のファン62を回転駆動するファンモータ62Aに指示回転数R14を送信する。ファンモータ62Aは、指示回転数R1=R14に基づいて第1のファン62を回転駆動する。 In step S92, the control unit 90 rotates the first fan 62 based on the command rotation speed R1=R14 of the first fan 62. That is, the control unit 90 transmits the instructed rotation speed R14 to the fan motor 62A that drives the first fan 62 to rotate. The fan motor 62A rotationally drives the first fan 62 based on the indicated rotational speed R1=R14.
 ステップS93では、制御部90が、第1のファン62の実回転数Rsを取得する。実回転数Rsとは、第1のファン62の実際の回転数である。制御部90は、ファンモータ62Aから第1のファン62の実回転数Rsを取得する。 In step S93, the control unit 90 acquires the actual rotation speed Rs of the first fan 62. The actual rotation speed Rs is the actual rotation speed of the first fan 62 . The control unit 90 acquires the actual rotational speed Rs of the first fan 62 from the fan motor 62A.
 ステップS94では、制御部90が、第1のファン62の回転開始から所定の時間t91が経過したか否かを判定する。制御部90が、所定の時間t91が経過したと判定した場合(ステップS94:YES)、処理はステップS95へ進む。制御部90が、所定の時間t91が経過していないと判定した場合(ステップS94:NO)、処理はステップS92に戻る。所定の時間t91は、例えば、5分以上30分以下である。 In step S94, the control unit 90 determines whether or not a predetermined time t91 has passed since the first fan 62 started rotating. When the control unit 90 determines that the predetermined time t91 has elapsed (step S94: YES), the process proceeds to step S95. When the control unit 90 determines that the predetermined time t91 has not elapsed (step S94: NO), the process returns to step S92. The predetermined time t91 is, for example, 5 minutes or more and 30 minutes or less.
 ステップS95では、制御部90が、実回転数Rsと指示回転数R1とに乖離があるか否かを判定する。制御部90が、乖離があると判定した場合(ステップS95:YES)、処理はステップS96へ進む。制御部90が、乖離がないと判定した場合(ステップS95:NO)、処理は終了する。本実施の形態では、制御部90が、指示回転数R1と実回転数とに乖離があると判定した場合(ステップS95:YES)、ファンモータ62Aに印加される電圧が所定の閾値以上であるか否かを判定する。ファンモータ62Aに印加される電圧が所定の閾値以上である場合、処理はステップS96へ進む。 In step S95, the control unit 90 determines whether or not there is a discrepancy between the actual rotation speed Rs and the command rotation speed R1. If the control unit 90 determines that there is a deviation (step S95: YES), the process proceeds to step S96. If the control unit 90 determines that there is no deviation (step S95: NO), the process ends. In the present embodiment, when the controller 90 determines that there is a deviation between the commanded rotation speed R1 and the actual rotation speed (step S95: YES), the voltage applied to the fan motor 62A is equal to or higher than the predetermined threshold. Determine whether or not If the voltage applied to the fan motor 62A is greater than or equal to the predetermined threshold, the process proceeds to step S96.
 例えば、制御部90は、ステップS93の実施後、ステップS94の判定前に、指示回転数R1と実回転数Rsとの差を算出する。ステップS95では、算出した差が所定の時間t91、閾値を超えている場合に、制御部90は、実回転数Rsと指示回転数R1とに乖離があると判定する。例えば、閾値は、400rpmに設定される。なお、閾値は400rpmに限定されず、任意の値に設定してもよい。 For example, the control unit 90 calculates the difference between the command rotation speed R1 and the actual rotation speed Rs after performing step S93 and before the determination in step S94. In step S95, when the calculated difference exceeds the threshold for a predetermined time t91, the control unit 90 determines that there is a deviation between the actual rotation speed Rs and the command rotation speed R1. For example, the threshold is set at 400 rpm. Note that the threshold is not limited to 400 rpm, and may be set to any value.
 ステップS96では、制御部90が、第1のファン62の指示回転数R1を補正する。例えば、制御部90は、指示回転数R1を実回転数Rs付近に補正する。言い換えると、制御部90は、指示回転数R1を実回転数Rsから所定の範囲内に補正する。「実回転数Rsから所定の範囲内」とは、実回転数Rsの±5%以内である。あるいは、「実回転数Rsから所定の範囲内」とは、実回転数Rsの±200rpm以内である。好ましくは、制御部90は、指示回転数R1を実回転数Rs以下に補正する。 In step S96, the control unit 90 corrects the indicated rotation speed R1 of the first fan 62. For example, the control unit 90 corrects the indicated rotation speed R1 to be close to the actual rotation speed Rs. In other words, the control unit 90 corrects the instructed rotation speed R1 to within a predetermined range from the actual rotation speed Rs. "Within a predetermined range from the actual number of revolutions Rs" is within ±5% of the actual number of revolutions Rs. Alternatively, "within a predetermined range from the actual number of revolutions Rs" is within ±200 rpm of the actual number of revolutions Rs. Preferably, the control unit 90 corrects the indicated rotation speed R1 to be equal to or lower than the actual rotation speed Rs.
 本実施の形態の場合、制御部90は、記憶部92から指示回転数テーブル94を読み出し、指示回転数テーブル94と、実回転数Rsと、に基づいて、指示回転数R1を補正する。具体的には、制御部90は、指示回転数テーブル94の指示回転数R11~R16から実回転数Rs付近の指示回転数R1を選択する。例えば、制御部90は、実回転数Rsと指示回転数R11~R16との差を算出し、指示回転数R11~R16のうち差が最も小さくなる指示回転数となるように指示回転数R1を補正する。 In the case of the present embodiment, the control unit 90 reads the instructed rotation speed table 94 from the storage unit 92, and corrects the instructed rotation speed R1 based on the instructed rotation speed table 94 and the actual rotation speed Rs. Specifically, the control unit 90 selects the indicated rotation speed R1 near the actual rotation speed Rs from the indicated rotation speeds R11 to R16 of the indicated rotation speed table 94. FIG. For example, the control unit 90 calculates the difference between the actual rotation speed Rs and the indicated rotation speeds R11 to R16, and adjusts the indicated rotation speed R1 so that the indicated rotation speed has the smallest difference among the indicated rotation speeds R11 to R16. to correct.
 本実施の形態の場合、制御部90は、指示回転数R1を、実回転数Rsと略等しい指示回転数R11まで小さくしている。 In the case of the present embodiment, the control unit 90 reduces the instructed rotation speed R1 to the instructed rotation speed R11 that is substantially equal to the actual rotation speed Rs.
 制御部90は、補正した指示回転数R1を記憶部92に格納する。これにより、第1のファン62の指示回転数R1の設定値を記憶しておくことができる。 The control unit 90 stores the corrected instructed rotation speed R1 in the storage unit 92. As a result, the set value of the indicated rotation speed R1 of the first fan 62 can be stored.
 以上のように、ファン回転数の設定制御においては、制御部90がステップS91~S96を実施する。このように、第1のファン62のファン回転数の設定が誤っていた場合でも、ファン回転数の設定制御を行うことによって最適なファン回転数に補正することができる。 As described above, the control unit 90 performs steps S91 to S96 in the fan rotational speed setting control. As described above, even if the setting of the fan rotation speed of the first fan 62 is erroneous, the fan rotation speed can be corrected to the optimum fan rotation speed by controlling the setting of the fan rotation speed.
 なお、本実施の形態の場合、制御部90が指示回転数テーブル94を用いて指示回転数R1を設定または補正する例について説明したが、これに限定されない。制御部90は、指示回転数テーブル94を用いずに指示回転数R1を設定または補正してもよい。 In addition, in the case of the present embodiment, an example in which the control unit 90 sets or corrects the instructed rotation speed R1 using the instructed rotation speed table 94 has been described, but the present invention is not limited to this. The control unit 90 may set or correct the instructed rotation speed R<b>1 without using the instructed rotation speed table 94 .
 本実施の形態の場合、制御部90が実回転数Rsと指示回転数R1とに基づいて指示回転数R1を補正する例について説明したが、これに限定されない。例えば、制御部90は、第1のファン62の最大風量M1に基づいて指示回転数R1を補正してもよい。ホース長Lが長くなるほど送風抵抗が大きくなるため、第1のファン62からの送風量が小さくなる。このため、制御部90は、第1のファン62の最大風量M1の乖離に基づいて指示回転数R1を補正してもよい。 In the case of the present embodiment, an example has been described in which the control unit 90 corrects the instructed rotation speed R1 based on the actual rotation speed Rs and the instructed rotation speed R1, but the present invention is not limited to this. For example, the control unit 90 may correct the indicated rotation speed R1 based on the maximum air volume M1 of the first fan 62 . As the hose length L increases, the blowing resistance increases, so the amount of air blown from the first fan 62 decreases. Therefore, the control unit 90 may correct the indicated rotation speed R1 based on the deviation of the maximum air volume M1 of the first fan 62 .
 また、制御部90は、第1のファン62の指示回転数R1の補正とともに、第2のファン66の指示回転数R2を補正してもよい。 Further, the control unit 90 may correct the instructed rotation speed R2 of the second fan 66 as well as the instructed rotation speed R1 of the first fan 62 .
 図36は、変形例の指示回転数テーブルのデータ構成および例を示す図である。図36において、第1のファン62の最大風量M1はM11からM16にかけて小さくなっており、第2のファン66の指示回転数R2はR21からR26にかけて小さくなっている。「指示回転数R2」とは、ホース長Lに応じて設定された第2のファン66の最大回転数を意味する。 FIG. 36 is a diagram showing a data configuration and an example of a command rotation speed table of a modified example. In FIG. 36, the maximum air volume M1 of the first fan 62 decreases from M11 to M16, and the indicated rotation speed R2 of the second fan 66 decreases from R21 to R26. “Instructed number of rotations R2” means the maximum number of rotations of the second fan 66 set according to the length L of the hose.
 図36に示すように、変形例の指示回転数テーブルは、ホース長Lに応じて第1のファン62の最大風量M1および第2のファン66の指示回転数R2が割り当てられている点で、上述の指示回転数テーブル94と異なる。初期設定時にホース長Lが入力されたときに、この変形例に係る制御部90は、図36に示す指示回転数テーブルを用いて、第1のファン62の指示回転数R1に加えて、第2のファン66の指示回転数R2を設定してもよい。また、この変形例に係る制御部90は、第1のファン62の指示回転数R1を補正する際に、図36に示す指示回転数テーブルを用いて、第2のファン66の指示回転数R2を補正してもよい。例えば、この変形例に係る制御部90は、第1のファン62の指示回転数R1をR15からR12に補正するとき、第2のファン66の指示回転数R2をR25からR22に補正してもよい。このように、この変形例に係る制御部90は、第1のファン62と第2のファン66の指示回転数R1を同じホース長Lの設定値に補正してもよい。 As shown in FIG. 36, the instruction rotation speed table of the modified example assigns the maximum air volume M1 of the first fan 62 and the instruction rotation speed R2 of the second fan 66 according to the hose length L. It is different from the command rotation speed table 94 described above. When the hose length L is input at the time of initial setting, the control unit 90 according to this modification uses the indicated rotation speed table shown in FIG. 2, the designated rotation speed R2 of the fan 66 may be set. Further, when correcting the instructed rotation speed R1 of the first fan 62, the control unit 90 according to this modification uses the instructed rotation speed table shown in FIG. may be corrected. For example, when the control unit 90 according to this modification corrects the indicated rotation speed R1 of the first fan 62 from R15 to R12, the indicated rotation speed R2 of the second fan 66 may be corrected from R25 to R22. good. In this manner, the control unit 90 according to this modification may correct the indicated rotation speeds R1 of the first fan 62 and the second fan 66 to the same hose length L set value.
 第2のファン66の指示回転数R2を補正することによって、加湿性能の低下を抑制することができる。例えば、第2のファン66の指示回転数R2が正しいホース長Lで設定されていない場合、吸収材52において、第1のファン62により送風される室外空気A3と第2のファン66により送風される室外空気A4との間の圧力のバランスが崩れてしまうことがある。このため、ヒータ58,60を通過した後の第1の流路P1を流れる室外空気A3が、第2の流路P2を流れる室外空気A4に引っ張られてしまい、吸収材52に熱が伝わらずに、室外Routに放出されてしまうことがある。これにより、加湿効率が低下してしまうことが考えられる。したがって、この変形例に係る制御部90は、第1のファン62の指示回転数R1の補正とともに、第2のファン66の指示回転数R2を補正する。これにより、吸収材52において、第1のファン62により送風される室外空気A3と第2のファン66により送風される室外空気A4との間の圧力のバランスを保つことができる。その結果、加湿効率の低下を抑制することができる。 By correcting the indicated rotation speed R2 of the second fan 66, it is possible to suppress the deterioration of the humidification performance. For example, if the indicated rotation speed R2 of the second fan 66 is not set with the correct hose length L, the outdoor air A3 blown by the first fan 62 and the outdoor air A3 blown by the second fan 66 are blown in the absorbent 52. The pressure balance with the outdoor air A4 may be lost. Therefore, the outdoor air A3 flowing through the first flow path P1 after passing through the heaters 58 and 60 is pulled by the outdoor air A4 flowing through the second flow path P2, and heat is not transmitted to the absorbent 52. In the meantime, it may be discharged to the outdoor route. As a result, it is conceivable that the humidification efficiency is lowered. Therefore, the control unit 90 according to this modification corrects the instructed rotation speed R1 of the first fan 62 and the instructed rotation speed R2 of the second fan 66 . Thereby, in the absorbent 52, the pressure balance between the outdoor air A3 blown by the first fan 62 and the outdoor air A4 blown by the second fan 66 can be maintained. As a result, a decrease in humidification efficiency can be suppressed.
 また、この変形例に係る制御部90は、図36に示す指示回転数テーブルを用いて第1のファン62の最大風量M1に基づいて、第1のファン62の指示回転数R1を補正してもよい。例えば、この変形例に係る制御部90は、第1のファン62の最大風量M1と実際の風量とに乖離があるか否かを判定してもよい。例えば、実際の風量は、センサによって検出してもよいし、ファンモータ62Aの入力に基づいて算出されてもよい。最大風量M1と実際の風量とに乖離がある場合に、この変形例に係る制御部90は、図36に示す指示回転数テーブルを用いて、第1のファン62の指示回転数R1を、実際の風量に対応する指示回転数に補正してもよい。 Further, the control unit 90 according to this modification corrects the indicated rotation speed R1 of the first fan 62 based on the maximum air volume M1 of the first fan 62 using the indicated rotation speed table shown in FIG. good too. For example, the control unit 90 according to this modification may determine whether or not there is a deviation between the maximum air volume M1 of the first fan 62 and the actual air volume. For example, the actual air volume may be detected by a sensor or calculated based on the input of the fan motor 62A. When there is a discrepancy between the maximum air volume M1 and the actual air volume, the control unit 90 according to this modification uses the instructed rotation speed table shown in FIG. You may correct|amend to the instruction|indication rotation speed corresponding to the air volume of .
 図37は、変形例のファン回転数の設定制御の動作を示すフローチャートである。 FIG. 37 is a flow chart showing the operation of fan rotation speed setting control according to the modification.
 図37に示すように、変形例のファン回転数の設定制御は、第1のファン62の実回転数Rsとファンモータ62Aの入力とに基づいて、第1のファン62の指示回転数R1を自動的に設定する。 As shown in FIG. 37, the fan rotation speed setting control of the modified example sets the indicated rotation speed R1 of the first fan 62 based on the actual rotation speed Rs of the first fan 62 and the input of the fan motor 62A. Set automatically.
 ステップS101では、変形例のファン回転数の設定制御に係る制御部90が第1のファン62を回転させる。即ち、変形例のファン回転数の設定制御に係る制御部90は、第1のファン62をオンにし、第1の流路P1に室外空気A3を送風する。 In step S<b>101 , the control unit 90 related to the fan rotational speed setting control of the modified example rotates the first fan 62 . That is, the control unit 90 related to the setting control of the fan rotational speed of the modified example turns on the first fan 62 and blows the outdoor air A3 to the first flow path P1.
 ステップS102では、変形例のファン回転数の設定制御に係る制御部90が第1のファン62の実回転数Rsを取得する。 In step S<b>102 , the control unit 90 related to the fan rotation speed setting control of the modified example acquires the actual rotation speed Rs of the first fan 62 .
 ステップS103では、変形例のファン回転数の設定制御に係る制御部90がファンモータ62Aの入力を取得する。 In step S103, the control unit 90 related to the fan speed setting control of the modified example acquires the input of the fan motor 62A.
 ステップS104では、変形例のファン回転数の設定制御に係る制御部90が第1のファン62の実回転数Rsとファンモータ62Aの入力とに基づいて第1のファン62の指示回転数R1を設定する。 In step S104, the control unit 90 related to the fan rotation speed setting control of the modified example sets the instructed rotation speed R1 of the first fan 62 based on the actual rotation speed Rs of the first fan 62 and the input of the fan motor 62A. set.
 例えば、変形例のファン回転数の設定制御に係る制御部90は、第1のファン62の実回転数Rsとファンモータ62Aの入力とに基づいてホース長Lを推定し、推定したホース長Lと指示回転数テーブル94とに基づいて指示回転数R1を決定してもよい。 For example, the control unit 90 related to the fan rotational speed setting control of the modified example estimates the hose length L based on the actual rotational speed Rs of the first fan 62 and the input of the fan motor 62A, and the estimated hose length L and the instructed rotation speed table 94, the instructed rotation speed R1 may be determined.
 あるいは、変形例のファン回転数の設定制御に係る制御部90は、指示回転数テーブル94を用いずに、第1のファン62の実回転数Rsとファンモータ62Aの入力とに基づいて自動的に指示回転数R1を設定してもよい。この場合、変形例のファン回転数の設定制御に係る制御部90は、ホース長Lを推定しなくてもよい。 Alternatively, the control unit 90 related to the setting control of the fan rotation speed of the modified example can automatically set the rotation speed based on the actual rotation speed Rs of the first fan 62 and the input of the fan motor 62A without using the instruction rotation speed table 94. You may set instruction|indication rotation speed R1 to. In this case, the control unit 90 related to the fan rotational speed setting control of the modified example does not need to estimate the hose length L.
 以上のように、変形例のファン回転数の設定制御では、この変形例に係る制御部90がステップS101~S104を実施する。このように、変形例のファン回転数の設定制御では、第1のファン62の実回転数Rsとファンモータ62Aの入力とに基づいて、第1のファン62の指示回転数R1を自動的に設定することができる。 As described above, in the fan rotational speed setting control of the modified example, the control unit 90 according to this modified example performs steps S101 to S104. As described above, in the fan rotation speed setting control of the modified example, the instructed rotation speed R1 of the first fan 62 is automatically set based on the actual rotation speed Rs of the first fan 62 and the input of the fan motor 62A. can be set.
 <室外温度に基づくファン回転数の制御>
 次に、室外温度に基づくファン回転数の制御について説明する。
<Control of fan speed based on outdoor temperature>
Next, control of the fan speed based on the outdoor temperature will be described.
 図38は、室外温度に基づいてファン回転数を制御するための構成を示すブロック図である。 FIG. 38 is a block diagram showing a configuration for controlling the fan speed based on the outdoor temperature.
 図38に示すように、空気調和機10は、室外温度を取得する温度センサ96を備える。制御部90は、温度センサ96によって取得した室外温度に基づいて、第1のファン62の回転数を制御する。 As shown in FIG. 38, the air conditioner 10 includes a temperature sensor 96 that acquires the outdoor temperature. The controller 90 controls the rotation speed of the first fan 62 based on the outdoor temperature acquired by the temperature sensor 96 .
 図39は、室外温度に基づくファン回転数の制御の動作を示すフローチャートである。 FIG. 39 is a flow chart showing the operation of controlling the fan speed based on the outdoor temperature.
 図39に示すように、ステップS111では、温度センサ96が室外温度を取得する。 As shown in FIG. 39, in step S111, the temperature sensor 96 acquires the outdoor temperature.
 ステップS112では、制御部90が、室外温度が閾値以下であるか否かを判定する。制御部90が、室外温度が閾値以下であると判定した場合(ステップS112:YES)、処理はステップS113に進む。制御部90が、室外温度が閾値より大きいと判定した場合(ステップS112:NO)、処理はステップS111に戻る。例えば、閾値は露点である。なお、閾値は露点に限定されず、任意の値に設定されてもよい。 In step S112, the control unit 90 determines whether or not the outdoor temperature is below the threshold. When the control unit 90 determines that the outdoor temperature is equal to or lower than the threshold (step S112: YES), the process proceeds to step S113. When the controller 90 determines that the outdoor temperature is higher than the threshold (step S112: NO), the process returns to step S111. For example, the threshold is dew point. Note that the threshold is not limited to the dew point, and may be set to any value.
 ステップS113では、制御部90が、第1のファン62の回転数を増大させる。 At step S113, the control unit 90 increases the rotation speed of the first fan 62.
 以上のように、室外温度に基づいてファン回転数の制御では、制御部90がステップS111~S113を実施する。このように、室外温度が閾値以下になった場合に、第1のファン62の回転数を増大させることによって、第1の流路P1内および換気導管56内の少なくとも一方を流れる室外空気A3の流速を大きくすることができる。これにより、例えば、室外温度が露点以下になっている場合でも、第1の流路P1内および換気導管56内の少なくとも一方の温度が露点以下になることを抑制することができる。その結果、第1の流路P1内および換気導管56内の少なくとも一方で結露が生じることを抑制することができる。 As described above, the control unit 90 performs steps S111 to S113 in controlling the fan speed based on the outdoor temperature. In this way, when the outdoor temperature falls below the threshold, by increasing the rotation speed of the first fan 62, the outdoor air A3 flowing through at least one of the first flow path P1 and the ventilation conduit 56 is The flow velocity can be increased. As a result, for example, even when the outdoor temperature is below the dew point, it is possible to prevent the temperature of at least one of the inside of the first flow path P1 and the inside of the ventilation conduit 56 from becoming below the dew point. As a result, the occurrence of dew condensation in at least one of the first flow path P1 and the ventilation conduit 56 can be suppressed.
 なお、温度センサ96は必須の構成ではない。空気調和機10は、温度センサ96を備えていなくてもよい。制御部90は、温度センサ96以外の手段で室外温度の情報を取得してもよい。例えば、空気調和機10が通信機を備えてもよい。制御部90は、通信機を介してサーバから室外温度の情報を取得してもよい。 Note that the temperature sensor 96 is not an essential component. The air conditioner 10 does not have to include the temperature sensor 96 . The control unit 90 may acquire the outdoor temperature information by means other than the temperature sensor 96 . For example, the air conditioner 10 may be equipped with a communication device. The control unit 90 may acquire outdoor temperature information from a server via a communication device.
 <ダンパ装置の開閉に基づくファン回転数の制御>
 次に、ダンパ装置64の開閉に基づくファン回転数の制御について説明する。
<Control of Fan Rotational Speed Based on Opening/Closing of Damper Device>
Next, control of the fan rotation speed based on opening and closing of the damper device 64 will be described.
 図40は、ダンパ装置64の開閉に基づくファン回転数の制御の動作を示すフローチャートである。 FIG. 40 is a flow chart showing the operation of controlling the fan speed based on the opening and closing of the damper device 64. FIG.
 図40に示すように、ステップS121では、制御部90が、第1のファン62の回転数を低下させる。これにより、制御部90は、第1のファン62から送られる室外空気A3の送風量を小さくする。 As shown in FIG. 40, in step S121, the control unit 90 reduces the rotation speed of the first fan 62. As a result, the controller 90 reduces the amount of outdoor air A3 sent from the first fan 62 .
 ステップS122では、制御部90がダンパ制御を行う。制御部90は、ダンパ装置64を開く、または閉じる制御を行う。ダンパ制御は、上述したダンパ装置64の開閉制御であってもよい(図16~21参照)。 At step S122, the control unit 90 performs damper control. The control unit 90 controls opening or closing the damper device 64 . The damper control may be opening/closing control of the damper device 64 described above (see FIGS. 16 to 21).
 以上のように、ダンパ装置64の開閉に基づくファン回転数の制御では、制御部90がステップS121~S122を実施する。このように、ダンパ装置64を開閉する前に、第1のファン62の回転数を低下させることによって、ダンパ装置64を安全に開閉することができる。 As described above, the control unit 90 performs steps S121 to S122 in the control of the fan rotation speed based on the opening and closing of the damper device 64. In this way, the damper device 64 can be opened and closed safely by reducing the rotational speed of the first fan 62 before opening and closing the damper device 64 .
 なお、本明細書において、「第1」、「第2」などの用語は、説明のためだけに用いられるものであり、相対的な重要性または技術的特徴の順位を明示または暗示するものとして理解されるべきではない。「第1」と「第2」と限定されている特徴は、1つまたはさらに多くの当該特徴を含むことを明示または暗示するものである。 In this specification, terms such as "first" and "second" are used only for explanation, and express or imply the relative importance or order of technical features. should not be understood. A feature that is qualified as "first" and "second" expressly or implicitly includes one or more of such features.
 また、上述したクリーン制御、ダンパ制御、ホース乾燥制御およびヒータ余熱排除制御は、加湿運転の前後に実施されることに限定されない。これらの制御は、加湿運転中に実施されてもよい。また、これらの制御は、加湿運転に限定されず、除湿運転などの他の運転の前後に実施されてもよいし、他の運転中に実施されてもよい。 Also, the above-described clean control, damper control, hose drying control, and heater residual heat removal control are not limited to being performed before and after the humidification operation. These controls may be implemented during humidification operation. Moreover, these controls are not limited to the humidifying operation, and may be performed before or after other operations such as the dehumidifying operation, or may be performed during the other operations.
 本開示の実施の形態に係る空気調和機は、広義には、室内機と室外機とを備える空気調和機である。本開示の実施の形態に係る空気調和機は、室外機に設けられ、室外空気の水分を吸収する吸収材と、吸収材を通過し、室外空気が流れる第1の流路と、第1の流路に室外空気の流れを発生させる第1のファンと、を備える。また、本開示の実施の形態に係る空気調和機は、第1の流路と室内機とを接続する換気導管と、第1の流路を流れる室外空気を、室外と換気導管とに振り分けるダンパ装置と、第1のファンおよびダンパ装置を制御する制御部と、を備える。制御部は、ダンパ装置を制御し、室外空気を換気導管に振り分け、第1のファンを回転駆動し、第1の流路から換気導管へ乾燥した室外空気を送る。 Broadly speaking, the air conditioner according to the embodiment of the present disclosure is an air conditioner that includes an indoor unit and an outdoor unit. An air conditioner according to an embodiment of the present disclosure is provided in an outdoor unit and includes an absorbent that absorbs moisture in outdoor air, a first flow path through which outdoor air passes through the absorbent, and a first and a first fan for generating a flow of outdoor air in the flow path. Further, the air conditioner according to the embodiment of the present disclosure includes a ventilation conduit that connects the first flow path and the indoor unit, and a damper that distributes the outdoor air flowing through the first flow path to the outdoor air and the ventilation conduit. and a controller for controlling the first fan and damper device. The control unit controls the damper device to distribute outdoor air to the ventilation conduit, rotationally drive the first fan, and send dry outdoor air from the first flow path to the ventilation conduit.
 本開示は、室内機と室外機を備える空気調和機であれば適用可能である。 The present disclosure is applicable to any air conditioner equipped with an indoor unit and an outdoor unit.
   10   空気調和機
   20   室内機
   22   室内熱交換器
   24   ファン
   30   室外機
   32   室外熱交換器
   34   ファン
   36   圧縮機
   38   膨張弁
   40   四方弁
   50   換気装置
   52   吸収材
   54   モータ
   56   換気導管
   56a  入口
   58   ヒータ(第1のヒータ)
   60   ヒータ(第2のヒータ)
   62   第1のファン
   62A  ファンモータ
   64   ダンパ装置
   66   第2のファン
   70   リモートコントローラ
   80   弁体
   82   ダンパモータ
   84   検出部
   86   湿度センサ
   90   制御部
   92   記憶部
   94   指示回転数テーブル
   96   温度センサ
   A1   室内空気
   A2   室外空気
   A3   室外空気
   A4   室外空気
   C1   回転中心線
   G1   異物
   L    ホース長
   M1   最大風量
   P1   第1の流路
   P1a  支流路
   P1b  支流路
   P2   第2の流路
   R1   指示回転数
   R2   指示回転数
   Rin  室内
   Rout 室外
   Rs   実回転数
10 air conditioner 20 indoor unit 22 indoor heat exchanger 24 fan 30 outdoor unit 32 outdoor heat exchanger 34 fan 36 compressor 38 expansion valve 40 four-way valve 50 ventilator 52 absorbent 54 motor 56 ventilation conduit 56a inlet 58 heater (second 1 heater)
60 heater (second heater)
62 first fan 62A fan motor 64 damper device 66 second fan 70 remote controller 80 valve element 82 damper motor 84 detection unit 86 humidity sensor 90 control unit 92 storage unit 94 instruction rotation speed table 96 temperature sensor A1 indoor air A2 outdoor air A3 Outdoor air A4 Outdoor air C1 Rotation center line G1 Foreign object L Hose length M1 Maximum air volume P1 First flow path P1a Branch flow path P1b Branch flow path P2 Second flow path R1 Indicated rotation speed R2 Indication rotation speed Rin Indoor Rout Outdoor Rs Actual number of revolutions

Claims (9)

  1.  室内機と室外機とを備える空気調和機であって、
     前記室外機に設けられ、室外空気の水分を吸収する吸収材と、
     前記吸収材を通過し、室外空気が流れる第1の流路と、
     前記第1の流路に室外空気の流れを発生させる第1のファンと、
     前記第1の流路と前記室内機とを接続する換気導管と、
     前記第1の流路を流れる室外空気を、室外と前記換気導管とに振り分けるダンパ装置と、
     前記第1のファンおよび前記ダンパ装置を制御する制御部と、
    を備え、
     前記制御部は、
      前記ダンパ装置を制御し、室外空気を前記換気導管に振り分け、
      前記第1のファンを回転駆動し、前記第1の流路から前記換気導管へ乾燥した室外空気を送る、
     空気調和機。
    An air conditioner comprising an indoor unit and an outdoor unit,
    an absorbent provided in the outdoor unit for absorbing moisture in the outdoor air;
    a first flow path through which the outdoor air flows through the absorbent;
    a first fan that generates a flow of outdoor air in the first flow path;
    a ventilation conduit connecting the first flow path and the indoor unit;
    a damper device that distributes the outdoor air flowing through the first flow path to the outdoor and the ventilation conduit;
    a control unit that controls the first fan and the damper device;
    with
    The control unit
    controlling the damper device to distribute outdoor air to the ventilation conduit;
    rotationally driving the first fan to deliver dry outdoor air from the first flow path to the ventilation conduit;
    Air conditioner.
  2.  前記第1の流路における前記吸収材の上流側で室外空気を加熱するヒータをさらに備え、
     前記制御部は、前記ヒータをオンにし、前記第1の流路を流れる室外空気を加熱する、
     請求項1に記載の空気調和機。
    further comprising a heater that heats outdoor air on the upstream side of the absorbent in the first flow path;
    The control unit turns on the heater to heat the outdoor air flowing through the first flow path.
    The air conditioner according to claim 1.
  3.  前記吸収材を回転駆動するモータをさらに備え、
     前記制御部は、前記モータを駆動し、前記吸収材を回転させる、
     請求項2に記載の空気調和機。
    further comprising a motor for rotationally driving the absorbent,
    The control unit drives the motor to rotate the absorber.
    The air conditioner according to claim 2.
  4.  前記制御部は、前記換気導管内の湿度情報を取得し、取得した前記換気導管内の湿度情報に基づいて前記ヒータをオンにするか否かを決定する、
     請求項2または3に記載の空気調和機。
    The control unit acquires humidity information within the ventilation conduit, and determines whether to turn on the heater based on the acquired humidity information within the ventilation conduit.
    The air conditioner according to claim 2 or 3.
  5.  前記制御部は、前記換気導管内の湿度に関連する情報を取得し、取得した前記換気導管内の湿度に関連する情報に基づいて前記ヒータをオンにするか否かを決定する、
     請求項2~4のいずれか一項に記載の空気調和機。
    The control unit acquires information related to the humidity within the ventilation conduit, and determines whether to turn on the heater based on the acquired information related to the humidity within the ventilation conduit.
    The air conditioner according to any one of claims 2-4.
  6.  前記吸収材を通過し、室外空気が室外から室外に流れる第2の流路と、
     前記第2の流路に室外空気の流れを発生させる第2のファンと、
    をさらに備え、
     前記制御部は、前記第2のファンを停止する、
     請求項1~5のいずれか一項に記載の空気調和機。
    a second flow path through which the outdoor air flows from the outdoor to the outdoor, passing through the absorbent;
    a second fan that generates a flow of outdoor air in the second flow path;
    further comprising
    The control unit stops the second fan,
    The air conditioner according to any one of claims 1 to 5.
  7.  前記制御部は、前記換気導管内の湿度に関連する情報を取得し、取得した前記換気導管内の湿度に関連する情報に基づいて前記ダンパ装置および前記第1のファンを制御し、前記乾燥した室外空気を前記換気導管に送る、
     請求項1~6のいずれか一項に記載の空気調和機。
    The control unit acquires information related to the humidity within the ventilation conduit, controls the damper device and the first fan based on the acquired information related to the humidity within the ventilation conduit, and directing outdoor air to said ventilation conduit;
    The air conditioner according to any one of claims 1 to 6.
  8.  前記換気導管内の湿度情報を取得する湿度センサをさらに備え、
     前記制御部は、前記湿度センサで取得した前記換気導管内の湿度情報に基づいて前記ダンパ装置および前記第1のファンを制御し、前記乾燥した室外空気を前記換気導管に送る、
     請求項1~7のいずれか一項に記載の空気調和機。
    further comprising a humidity sensor for obtaining humidity information within the ventilation conduit;
    The control unit controls the damper device and the first fan based on humidity information in the ventilation conduit acquired by the humidity sensor, and sends the dry outdoor air to the ventilation conduit.
    The air conditioner according to any one of claims 1 to 7.
  9.  前記制御部は、加湿運転の終了後に、前記ダンパ装置および前記第1のファンを制御し、前記乾燥した室外空気を前記換気導管に送る、
     請求項1~8のいずれか一項に記載の空気調和機。
    After the humidification operation ends, the control unit controls the damper device and the first fan to send the dry outdoor air to the ventilation conduit.
    The air conditioner according to any one of claims 1 to 8.
PCT/JP2022/032002 2021-09-17 2022-08-25 Air conditioner WO2023042631A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280061469.9A CN117940717A (en) 2021-09-17 2022-08-25 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021151895A JP2023044061A (en) 2021-09-17 2021-09-17 air conditioner
JP2021-151895 2021-09-17

Publications (1)

Publication Number Publication Date
WO2023042631A1 true WO2023042631A1 (en) 2023-03-23

Family

ID=85602741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032002 WO2023042631A1 (en) 2021-09-17 2022-08-25 Air conditioner

Country Status (3)

Country Link
JP (1) JP2023044061A (en)
CN (1) CN117940717A (en)
WO (1) WO2023042631A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073286A (en) * 1996-04-12 1998-03-17 Matsushita Electric Ind Co Ltd Ventilating and dehumidifying device
JP2001091001A (en) * 1999-09-27 2001-04-06 Daikin Ind Ltd Air-conditioner having humidifying function
WO2002025183A1 (en) * 2000-09-21 2002-03-28 Daikin Industries, Ltd. Humidifier and air conditioner using the humidifier
JP2003314858A (en) * 2002-04-22 2003-11-06 Daikin Ind Ltd Air conditioner
JP2006010307A (en) * 2004-05-26 2006-01-12 Mitsubishi Chemicals Corp Humidifier, and humidifying method
JP2010117112A (en) * 2008-11-14 2010-05-27 Daikin Ind Ltd Air conditioner
JP2011094923A (en) * 2009-10-30 2011-05-12 Daikin Industries Ltd Air conditioner
JP2018084351A (en) * 2016-11-22 2018-05-31 ダイキン工業株式会社 Outdoor unit
JP2018534519A (en) * 2015-10-08 2018-11-22 キュンドン ナビエン シーオー.,エルティーディー. Humidity controller

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073286A (en) * 1996-04-12 1998-03-17 Matsushita Electric Ind Co Ltd Ventilating and dehumidifying device
JP2001091001A (en) * 1999-09-27 2001-04-06 Daikin Ind Ltd Air-conditioner having humidifying function
WO2002025183A1 (en) * 2000-09-21 2002-03-28 Daikin Industries, Ltd. Humidifier and air conditioner using the humidifier
JP2003314858A (en) * 2002-04-22 2003-11-06 Daikin Ind Ltd Air conditioner
JP2006010307A (en) * 2004-05-26 2006-01-12 Mitsubishi Chemicals Corp Humidifier, and humidifying method
JP2010117112A (en) * 2008-11-14 2010-05-27 Daikin Ind Ltd Air conditioner
JP2011094923A (en) * 2009-10-30 2011-05-12 Daikin Industries Ltd Air conditioner
JP2018534519A (en) * 2015-10-08 2018-11-22 キュンドン ナビエン シーオー.,エルティーディー. Humidity controller
JP2018084351A (en) * 2016-11-22 2018-05-31 ダイキン工業株式会社 Outdoor unit

Also Published As

Publication number Publication date
JP2023044061A (en) 2023-03-30
CN117940717A (en) 2024-04-26

Similar Documents

Publication Publication Date Title
JP4341244B2 (en) Humidifier and air conditioner using the same
WO2023042631A1 (en) Air conditioner
WO2023042622A1 (en) Air conditioner
WO2023042630A1 (en) Air conditioner
WO2023042629A1 (en) Air conditioner
WO2023042627A1 (en) Air conditioner
WO2023042623A1 (en) Air conditioner
WO2022172485A1 (en) Ventilator and air conditioner equipped with ventilator
WO2023063239A1 (en) Air conditioner
JP2024046347A (en) Air conditioner, method for controlling air conditioner, program and computer-readable storage medium
WO2023074488A1 (en) Air conditioner
JP2021089102A (en) Air conditioning system
JP2024046341A (en) air conditioner
JP2024058407A (en) Air conditioner, control method of the same, program, and computer-readable storage medium
WO2023042656A1 (en) Air conditioner
JP2024104467A (en) Air conditioner
JP2024098346A (en) Air conditioner
CN118361782A (en) Air conditioner, control method for air conditioner, program, and computer-readable storage medium
JP3702586B2 (en) Dehumidifier
JP2024061413A (en) Air conditioner, control method of air conditioner, program, and computer-readable storage medium
WO2021112127A1 (en) Air conditioning system
JP2024061401A (en) Air conditioner, control method of air conditioner, program, and computer-readable storage medium
JP2024061404A (en) Air conditioner, control method of air conditioner, program, and computer-readable storage medium
CN118310159A (en) Air conditioner, control method for air conditioner, and computer-readable storage medium
JP2024037000A (en) Control device, control method, computer program and storage medium of outdoor unit of air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869778

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061469.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22869778

Country of ref document: EP

Kind code of ref document: A1