WO2023042626A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023042626A1
WO2023042626A1 PCT/JP2022/031997 JP2022031997W WO2023042626A1 WO 2023042626 A1 WO2023042626 A1 WO 2023042626A1 JP 2022031997 W JP2022031997 W JP 2022031997W WO 2023042626 A1 WO2023042626 A1 WO 2023042626A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
outdoor air
heater
outdoor
air
Prior art date
Application number
PCT/JP2022/031997
Other languages
French (fr)
Japanese (ja)
Inventor
優生 大西
健二 名越
智貴 森川
峻一 植松
悠二 渡邉
輝夫 藤社
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280061266.XA priority Critical patent/CN117940709A/en
Publication of WO2023042626A1 publication Critical patent/WO2023042626A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0087Indoor units, e.g. fan coil units with humidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/06Air-humidification, e.g. cooling by humidification by evaporation of water in the air using moving unheated wet elements

Definitions

  • the present disclosure relates to air conditioners.
  • an air conditioner that is composed of an indoor unit arranged inside a room to be air-conditioned and an outdoor unit arranged outdoors.
  • This air conditioner is configured to supply humidified outdoor air or dehumidified outdoor air from an outdoor unit to an indoor unit.
  • the absorbent rotates, outdoor air heated by the heater passes through a portion of the absorbent, and unheated outdoor air passes through the remaining portion of the absorbent.
  • One of the outdoor air heated by the heater (humidified outdoor air) and the unheated outdoor air (dehumidified outdoor air) is supplied to the indoor unit, and the other is discharged outdoors.
  • the present disclosure provides an air conditioner in which outdoor air is humidified by passing through a rotating absorbent and supplied to an indoor unit, and is capable of suppressing the outdoor air from bypassing the absorbent. provide the machine.
  • An air conditioner of one aspect of the present disclosure is an air conditioner having an indoor unit and an outdoor unit.
  • the outdoor unit includes a heater for heating outdoor air, and a first end face and a second end face, and has a disc shape through which the outdoor air heated by the heater passes from the first end face toward the second end face.
  • an absorbent material Further, the outdoor unit includes an absorbent holder that has a cylindrical portion that holds the outer peripheral surface of the absorbent and rotates, and a facing member that faces the outer peripheral surface of the absorbent holder. Further, the outdoor unit includes a fan that generates outdoor air flow that passes through the absorbent, and a labyrinth seal member that forms a labyrinth flow path between the outer peripheral surface of the absorbent holder and the facing member.
  • the absorbent holder includes an enlarged diameter portion, and the labyrinth seal member, as a part of the labyrinth flow passage, extends at least in the radial direction of the absorbent between the absorbent holder and the enlarged diameter portion. an end face that defines a
  • An air conditioner is an air conditioner in which outdoor air is humidified by passing through a rotating absorbent and supplied to an indoor unit, and in which the outdoor air is prevented from bypassing the absorbent. can be done.
  • Schematic diagram showing the configuration of an air conditioner according to an embodiment of the present disclosure Schematic diagram showing the configuration of the ventilation system Schematic diagram showing the operating state of the ventilator during ventilation operation Schematic diagram showing the operating state of the ventilator during humidification operation Schematic diagram showing the operating state of the ventilation system during dehumidification operation
  • a perspective view showing the appearance of an outdoor unit of an air conditioner A perspective view showing the configuration of the ventilator with the lid removed.
  • Fig. 2 is an exploded perspective view showing the configuration of the ventilation device with the lid removed; Schematic cross-sectional view showing the configuration of the ventilator A perspective view showing the configuration of the heater unit. Bottom view showing the configuration of the heater unit An exploded perspective view showing the configuration of the heater unit.
  • FIG. 4 is a top view of a portion of the ventilator housing showing the second space;
  • Schematic cross-sectional view showing the configuration of the periphery of a portion of the absorber orthogonal to the radial direction of the absorber Schematic cross-sectional view showing the configuration around a part of the absorbent perpendicular to the radial direction of the absorbent in the ventilator of the comparative example
  • FIG. 2 is a top view of a portion of a ventilator housing showing a second space in a ventilator according to a different embodiment; Sectional drawing which shows the damper apparatus of the state connected indoors Sectional drawing which shows the damper apparatus of the state connected to outdoor Sectional perspective view of the ventilator showing the flow of outdoor air flowing out from the damper device
  • the front view of the outdoor unit which shows the inside of the main body of an outdoor unit roughly.
  • FIG. 2 is a perspective view showing the nozzle separated in two; Cross-sectional view showing the configuration of the nozzle
  • An air conditioner of one aspect of the present disclosure is an air conditioner having an indoor unit and an outdoor unit.
  • the outdoor unit includes a heater for heating outdoor air, and a first end face and a second end face, and has a disc shape through which the outdoor air heated by the heater passes from the first end face toward the second end face.
  • an absorbent material Further, the outdoor unit includes an absorbent holder that has a cylindrical portion that holds the outer peripheral surface of the absorbent and rotates, and a facing member that faces the outer peripheral surface of the absorbent holder. Further, the outdoor unit includes a fan that generates outdoor air flow that passes through the absorbent, and a labyrinth seal member that forms a labyrinth flow path between the outer peripheral surface of the absorbent holder and the opposing member.
  • the absorbent holder includes an enlarged diameter portion, and the labyrinth seal member, as a part of the labyrinth flow passage, extends at least in the radial direction of the absorbent between the absorbent holder and the enlarged diameter portion. an end face that defines a
  • Such an air conditioner according to one aspect of the present disclosure is an air conditioner in which outdoor air is supplied to an indoor unit after being humidified by passing through a rotating absorbent, in which the outdoor air bypasses the absorbent. can be suppressed.
  • the absorber holder includes, as the enlarged diameter portion, an external tooth and a flange provided on the end surface of the external tooth remote from the first end surface, and the end surface of the labyrinth seal member is arranged between the flange and the radial flow direction.
  • a path may be formed.
  • the end face of the labyrinth seal member may be provided with a ridge protruding toward the flange of the absorbent holder.
  • the facing member may be provided with ribs extending in the radial direction so as to face the second end surface of the absorbent material with a gap therebetween.
  • the tip of the rib of the opposing member may be provided with a ridge that protrudes toward the second end surface of the absorbent.
  • FIG. 1 is a schematic diagram showing the configuration of an air conditioner 10 according to an embodiment of the present disclosure.
  • the air conditioner 10 has an indoor unit 20 arranged in the indoor Rin to be air-conditioned, and an outdoor unit 30 arranged in the outdoor Rout.
  • the indoor unit 20 includes an indoor heat exchanger 22 that exchanges heat with the indoor air A1, and invites the indoor air A1 into the indoor unit 20, and the indoor air A1 after heat exchange with the indoor heat exchanger 22 is introduced into the room.
  • a fan 24 that blows to Rin is provided.
  • the outdoor unit 30 includes an outdoor heat exchanger 32 that exchanges heat with the outdoor air A2, and invites the outdoor air A2 into the outdoor unit 30.
  • a fan 34 blowing to Rout is provided.
  • the outdoor unit 30 is provided with a compressor 36, an expansion valve 38, and a four-way valve 40 for executing a refrigerating cycle with the indoor heat exchanger 22 and the outdoor heat exchanger 32.
  • the indoor heat exchanger 22, the outdoor heat exchanger 32, the compressor 36, the expansion valve 38, and the four-way valve 40 are connected by refrigerant pipes through which refrigerant flows.
  • the air conditioner 10 is configured such that the refrigerant flows from the compressor 36 through the four-way valve 40, the outdoor heat exchanger 32, the expansion valve 38, and the indoor heat exchanger 22 in order. Execute the freeze cycle back to 36.
  • the air conditioner 10 executes a refrigeration cycle in which refrigerant flows from the compressor 36 through the four-way valve 40, the indoor heat exchanger 22, the expansion valve 38, the outdoor heat exchanger 32 in order, and then returns to the compressor 36. .
  • the air conditioner 10 performs an air-conditioning operation that introduces the outdoor air A3 into the room Rin in addition to the air-conditioning operation using the refrigeration cycle. Therefore, the air conditioner 10 has a ventilator 50 .
  • a ventilation device 50 is provided in the outdoor unit 30 . That is, the outdoor unit 30 has a ventilator 50 .
  • FIG. 2 is a schematic diagram showing the configuration of the ventilation device 50.
  • FIG. 2 is a schematic diagram showing the configuration of the ventilation device 50.
  • the ventilator 50 includes an absorbent 52 through which outdoor air A3 and A4 pass.
  • the absorbent material 52 is a member through which air can pass, and is a member that collects moisture from the passing air or gives moisture to the passing air.
  • the absorber 52 is disc-shaped and rotates around a rotation center line C1 passing through the center thereof.
  • the absorbing material 52 is rotationally driven by a motor 54 .
  • the absorbent material 52 is preferably made of a polymer sorbent material that sorbs moisture in the air.
  • the polymeric sorbent material is composed of, for example, a crosslinked sodium polyacrylate. Compared to adsorbents such as silica gel and zeolite, polymer sorbents absorb more water per unit volume, can desorb water at low heating temperatures, and can retain water for a long time. can be done.
  • first flow path P1 and a second flow path P2 through which the outdoor air A3 and A4 respectively pass through the absorbent material 52.
  • the first flow path P1 and the second flow path P2 pass through the absorbent material 52 at different positions.
  • the first flow path P1 is a flow path through which the outdoor air A3 flows toward the inside of the indoor unit 20.
  • the outdoor air A3 flowing through the first flow path P1 is supplied into the indoor unit 20 via the ventilation conduit 56. As shown in FIG.
  • the first flow path P1 includes a plurality of branch flow paths P1a and P1b on the upstream side with respect to the absorbent 52. It should be noted that “upstream” and “downstream” are used herein with respect to air flow.
  • the plurality of tributaries P1a and P2a merge with the absorbent 52 on the upstream side.
  • First and second heaters 58 and 60 for heating the outdoor air A3 are provided in the plurality of branch passages P1a and P1b, respectively.
  • the first and second heaters 58, 60 may be heaters with the same heating capacity, or may be heaters with different heating capacities.
  • the first and second heaters 58 and 60 are preferably PTC (Positive Temperature Coefficient) heaters, which increase electrical resistance when current flows and the temperature rises, that is, can suppress excessive heating temperature rises. .
  • PTC Physical Temperature Coefficient
  • a heater using a nichrome wire, carbon fiber, or the like may be used, but in this case, if the current continues to flow, the heating temperature (surface temperature) will continue to rise, so it is necessary to monitor the temperature.
  • the PTC heater eliminates the need to monitor the heating temperature because the heater itself regulates the heating temperature within a certain temperature range. In this respect, the PTC heater is more preferable.
  • a first fan 62 that generates a flow of the outdoor air A3 toward the inside of the indoor unit 20 is provided in the first flow path P1.
  • the first fan 62 is arranged downstream with respect to the absorbent 52 .
  • the outdoor air A 3 flows from the outdoor Rout into the first flow path P 1 and passes through the absorbent 52 .
  • the first flow path P1 is provided with a damper device 64 that distributes the outdoor air A3 flowing through the first flow path P1 to the indoor Rin (that is, the indoor unit 20) or the outdoor Rout.
  • the damper device 64 is arranged downstream of the first fan 62 .
  • the outdoor air A3 distributed to the indoor unit 20 by the damper device 64 enters the indoor unit 20 via the ventilation conduit 56 and is blown out by the fan 24 to the indoor unit Rin.
  • the second flow path P2 is a flow path through which the outdoor air A4 flows. Unlike the outdoor air A3 flowing through the first flow path P1, the outdoor air A4 flowing through the second flow path P2 does not go to the indoor unit 20. The outdoor air A4 flowing through the second flow path P2 flows out to the outdoor Rout after passing through the absorbent 52 .
  • a second fan 66 that generates a flow of outdoor air A4 is provided in the second flow path P2.
  • the second fan 66 is arranged downstream with respect to the absorbent 52 .
  • the outdoor air A4 flows from the outdoor Rout into the second flow path P2, passes through the absorbent 52, and then flows out to the outdoor Rout.
  • the ventilator 50 selectively uses an absorbent 52 (motor 54), a first heater 58, a second heater 60, a first fan 62, a damper device 64, and a second fan 66 for ventilation operation. , humidification operation, and dehumidification operation are selectively performed.
  • FIG. 3 is a schematic diagram showing the operating state of the ventilator 50 during ventilation operation.
  • the ventilation operation is an air conditioning operation in which the outdoor air A3 is directly supplied to the indoor Rin (that is, the indoor unit 20) via the ventilation conduit 56.
  • motor 54 continues to rotate absorbent material 52 during ventilation operation.
  • the first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60.
  • the outdoor air A3 that has passed through the absorbent 52 is distributed to the indoor units 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the outdoor air A3 is supplied to the room Rin as it is, and the room Rin is ventilated.
  • FIG. 4 is a schematic diagram showing the operating state of the ventilator 50 during humidification operation.
  • the humidification operation is an air conditioning operation that humidifies the outdoor air A3 and supplies the humidified outdoor air A3 to the indoor Rin (that is, the indoor unit 20).
  • the motor 54 continues to rotate the absorbent 52 during the humidification operation.
  • the first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in the ON state, thereby causing the outdoor air A4 to flow through the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52. At this time, the heated outdoor air A3 can deprive the absorbent 52 of a larger amount of moisture than when it is not heated. As a result, the outdoor air A3 carries a large amount of moisture.
  • the outdoor air A3 that has passed through the absorbent 52 and carries a large amount of moisture is distributed to the indoor unit 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the outdoor air A3 carrying a large amount of moisture is supplied to the room Rin, and the room Rin is humidified.
  • the amount of moisture taken from the absorbent 52 by the outdoor air A3 is reduced. may be performed.
  • the absorbent 52 As the heated outdoor air A3 deprives moisture, the amount of water retained by the absorbent 52 decreases, that is, the absorbent 52 dries. When the absorbent 52 dries, the outdoor air A3 flowing through the first flow path P1 cannot deprive the absorbent 52 of moisture. As a countermeasure, the absorbent 52 deprives the outdoor air A4 flowing through the second flow path P2 of water. As a result, the amount of water retained in the absorbent material 52 is kept substantially constant, and the humidification operation can be continued.
  • FIG. 5 is a schematic diagram showing the operating state of the ventilation device 50 during dehumidification operation.
  • the dehumidification operation is an air conditioning operation in which the outdoor air A3 is dehumidified and the dehumidified outdoor air A3 is supplied to the indoor Rin (that is, the indoor unit 20). As shown in FIG. 5, in the dehumidifying operation, the adsorption operation and the regeneration operation are alternately performed.
  • the adsorption operation is an operation in which the moisture carried in the outdoor air A3 is adsorbed by the absorbent material 52, thereby dehumidifying the outdoor air A3.
  • the motor 54 continues to rotate the absorbent 52 during the adsorption operation.
  • the first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 .
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60. At this time, the moisture carried in the outdoor air A3 is absorbed by the absorbent 52 . As a result, the amount of moisture carried by the outdoor air A3 is reduced, that is, the outdoor air A3 is dried.
  • the outdoor air A3 dried by passing through the absorbent 52 is distributed to the indoor unit 20 by the damper device 64 .
  • the outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 .
  • the dry outdoor air A3 is supplied to the room Rin, and the room Rin is dehumidified.
  • a regeneration operation is performed to regenerate the absorbent 52 in order to recover its adsorption capacity.
  • the motor 54 continues to rotate the absorbent 52 during the regeneration operation.
  • the first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3.
  • the first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1.
  • the damper device 64 distributes the outdoor air A3 in the first flow path P1 not to the indoor unit 20 but to the outdoor Rout.
  • the second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
  • the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52.
  • the heated outdoor air A3 deprives the absorbent 52 of a large amount of moisture.
  • a large amount of moisture is carried in the outdoor air A3.
  • the water retention capacity of the absorbent 52 decreases, ie, the absorbent 52 dries and its adsorption capacity is regenerated.
  • the outdoor air A3 that passes through the absorbent 52 and carries a large amount of moisture is distributed to the outdoor route by the damper device 64 and is discharged to the outdoor route.
  • the outdoor air A3 carrying a large amount of moisture due to the regeneration of the absorbent 52 is not supplied to the indoor Rin.
  • the adsorption capacity of the absorbent 52 is maintained, and the dehumidification operation can be continuously performed.
  • the air-conditioning operation (cooling operation, dehumidifying operation (weak cooling operation), heating operation) by the above-described refrigeration cycle and the air-conditioning operation (ventilation operation, humidification operation, dehumidification operation) by the ventilation device 50 can be performed separately, and at the same time It is also possible to execute For example, if the dehumidification operation by the refrigeration cycle and the dehumidification operation by the ventilation device 50 are simultaneously executed, it is possible to dehumidify the room Rin while maintaining the room temperature constant.
  • the air conditioning operation performed by the air conditioner 10 is selected by the user.
  • the air conditioner 10 performs the air conditioning operation corresponding to the operation.
  • the air conditioner 10 includes a control device (not shown) that controls execution of the air conditioning operation by the refrigeration cycle and the air conditioning operation by the ventilation device 50 .
  • the controller has a computer system with a processor and memory.
  • the computer system functions as a control device by the processor executing the program stored in the memory.
  • the program executed by the processor is recorded in advance in the memory of the computer system here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through a telecommunication line such as the Internet. may be provided through
  • FIG. 6 is a perspective view showing the appearance of the outdoor unit 30 of the air conditioner 10.
  • FIG. 7 is a perspective view showing the configuration of the ventilator 50 with the lid 104 removed.
  • FIG. 8 is a top view showing the configuration of the ventilator 50 with the lid 104 removed.
  • FIG. 9 is an exploded perspective view showing the configuration of the ventilator 50 with the lid 104 removed.
  • 10 is a schematic cross-sectional view showing the configuration of the ventilator 50.
  • the XYZ orthogonal coordinate system shown in the drawings is for facilitating understanding of the embodiments, and does not limit the embodiments.
  • the X-axis direction indicates the front-rear direction of the outdoor unit 30, the Y-axis direction indicates the left-right direction, and the Z-axis direction indicates the height direction (vertical direction).
  • the ventilation device 50 is provided above the outdoor unit 30 in this embodiment.
  • the ventilator 50 is provided on a housing 100 of the main body of the outdoor unit 30 that houses the outdoor heat exchanger 32 , the fan 34 , the compressor 36 , the expansion valve 38 and the four-way valve 40 .
  • the ventilator 50 has a substantially rectangular parallelepiped shape elongated in the left-right direction (Y-axis direction) of the outdoor unit 30, and has a box-like housing 102 with an open top and an upper portion of the housing 102. and a lid 104 attached to the . Enclosed within housing 102 are the components of ventilator 50 , such as absorbent material 52 . 7 and 8 show the ventilator 50 with the lid 104 removed.
  • the absorbent 52 is arranged in the center of the ventilator 50 in the left-right direction (Y-axis direction).
  • the components related to the first flow path P1 are arranged on one side (right side) in the longitudinal direction of the absorbent 52, and the components related to the second flow path P2 are arranged on the other side (left side). ing.
  • a plurality of spaces S1 to S4 are substantially formed inside the housing 102 of the ventilation device 50. As shown in FIG. 10, a plurality of spaces S1 to S4 are substantially formed inside the housing 102 of the ventilation device 50. As shown in FIG. 10, a plurality of spaces S1 to S4 are substantially formed inside the housing 102 of the ventilation device 50. As shown in FIG. 10, a plurality of spaces S1 to S4 are substantially formed inside the housing 102 of the ventilation device 50.
  • the first space S1 is a space into which the outdoor air A3 first flows. Also, the first space S1 is substantially formed in the right and upper portions within the housing 102 .
  • the second space S2 is a space that communicates with the first space S1 via the absorbent 52, and is a space into which the outdoor air A3 in the first space S1 flows through the absorbent 52. Also, the second space S2 is substantially formed in the right and lower portions within the housing 102 .
  • the third space S3 is a space into which the outdoor air A4 first flows. Also, the third space S3 is substantially formed in the left and lower portions within the housing 102 .
  • the fourth space S4 is a space that communicates with the third space S3 via the absorbent 52, and is a space into which the outdoor air A4 in the third space S3 flows through the absorbent 52. Also, the fourth space S4 is substantially formed in the left and upper portions within the housing 102 .
  • the inside of the housing 102 is configured so that the outdoor air A3 inside the first and second spaces S1 and S2 does not move into the third and fourth spaces S3 and S4. Moreover, the inside of the housing 102 is conversely configured so that the outdoor air A4 in the third and fourth spaces S3 and S4 does not move to the first and second spaces S1 and S2. That is, the third and fourth spaces S3 and S4 are independent of the first and second spaces S1 and S2 (that is, they are sealed).
  • the housing 102 of the ventilator 50 has a first intake port 102a, a second There are two intake ports 102b and two exhaust ports 102c.
  • the first intake port 102a is formed in the center of the front wall 102d of the housing 102 in the left-right direction (Y-axis direction).
  • the second intake port 102b is formed in the center of the rear wall 102e of the housing 102 in the left-right direction.
  • the exhaust port 102c is formed on the left side of the front wall 102d.
  • the outdoor air A4 flows into the third space S3 inside the housing 102 via the first intake port 102a and the second intake port 102b. Specifically, the outdoor air A4 flows into the third space S3 between the bottom plate 102f of the housing 102 and the second end surface 52b of the absorbent 52, as shown in FIG.
  • the outdoor air A4 in the third space S3 flows into the absorbent 52 through the second end surface 52b and flows out from the absorbent 52 into the fourth space S4 through the first end surface 52a.
  • the outdoor air A4 that has passed through the absorbent 52 and flowed into the fourth space S4 is sucked into the second fan 66 .
  • the second fan 66 is a sirocco fan, and is an impeller arranged in the fan chamber F1 and rotating around a rotation center line extending in the vertical direction (Z-axis direction). 66a and a motor 66b for rotating the impeller 66a.
  • the outdoor air A4 is sucked into the fan chamber F1 by the rotation of the impeller 66a and is discharged to the outdoor Rout through the exhaust port 102c communicating with the fan chamber F1.
  • the fan room F1 is defined by a housing 102 and a partition plate 106 separating the third space S3 and the fourth space S4.
  • the partition plate 106 is formed with an air suction port 106a that communicates with the fan chamber F1 and through which the outdoor air A4 passes.
  • the housing 102 of the ventilator 50 has a third intake port 102g and a third 4 intake ports 102h are provided.
  • a third intake port 102g is formed in the right wall 102i of the housing 102 .
  • a fourth intake port 102 h is formed on the right side of the rear wall 102 e of the housing 102 .
  • the outdoor air A3 flows into the first space S1 inside the housing 102 via the third intake port 102g and the fourth intake port 102h.
  • the outdoor air A3 that has flowed into the first space S1 passes through the first and second heaters 58 and 60 and is directed above the first end surface 52a of the absorbent 52 .
  • the first and second heaters 58, 60 are incorporated in a heater unit 110 arranged in the center of the ventilator 50.
  • FIG. 11 is a perspective view showing the configuration of the heater unit 110.
  • FIG. 12 is a bottom view showing the configuration of the heater unit 110.
  • FIG. 13 is an exploded perspective view showing the configuration of the heater unit 110.
  • FIG. 14 is a schematic cross-sectional view showing the configuration of the heater unit 110 taken along line AA of FIG. 12. As shown in FIG.
  • the heater unit 110 includes a heater base member 112 that holds the first and second heaters 58,60.
  • the heater base member 112 includes a substantially triangular heater mounting portion 112a on which the first and second heaters 58 and 60 are mounted, and a cylindrical absorbent housing portion 112b that rotatably houses the absorbent 52.
  • the heater mounting portion 112a and the absorbent containing portion 112b of the heater base member 112 can be configured as separate parts.
  • the first and second heaters 58 and 60 are arranged on the heater mounting portion 112a of the heater base member 112 in a "V" shape.
  • the outdoor air A3 that is, branch passages P1a and P2b
  • the outdoor air A3 that is, branch passages P1a and P2b
  • the outdoor air A3 that is, branch passages P1a and P2b
  • the branch channels P1a and P1b join the main channel P1c in the first channel P1.
  • the first and second heaters 58, 60 are fin heaters having a plurality of heating fins that transfer heat to the outdoor air A3 flowing through the tributaries P1a, P2a.
  • the ventilator 50 includes an absorbent holder 114 that holds a disk-shaped absorbent 52 having a first end face 52a and a second end face 52b.
  • the absorbent holder 114 includes a cylindrical portion 114a that holds the outer peripheral surface 52c of the absorbent 52, a hub portion 114b that is rotatably supported by a support shaft 102j erected on the bottom plate 102f of the housing 102 of the ventilator 50, and ( See FIG. 10).
  • the absorbent holder 114 also includes a plurality of spoke portions 114c that connect the cylindrical portion 114a and the hub portion 114b. The plurality of spokes 114c support the second end face 52b of the absorbent 52. As shown in FIG.
  • the absorbent holder 114 holding the absorbent 52 is accommodated in the absorbent accommodating portion 112b of the heater base member 112 .
  • An engaging portion 112c is provided at the center of the absorbent containing portion 112b of the heater base member 112 to engage with the support shaft 102j of the housing 102 penetrating the hub portion 114b of the absorbent holder 114.
  • the heater base member 112 is provided with a plurality of beam portions 112d that connect the cylindrical absorbing material accommodating portion 112b and the engaging portion 112c positioned at the center thereof.
  • the cylindrical portion 114a of the absorber holder 114 has an outer peripheral surface formed with external teeth 114d that engage with the pinion gear 116 attached to the motor 54. As shown in FIG. The motor 54 rotates the absorbent 52 via the absorbent holder 114 .
  • the heater unit 110 also includes a first cover that covers a portion of the first end surface 52a of the absorbent 52 through which the outdoor air A3 passes, the first heater 58, and the second heater 60, as shown in FIG. It includes a member 118 and a second cover member 120 .
  • the first cover member 118 and the second cover member 120 are supported by the heater mounting portion 112a of the heater base member 112 and the plurality of beam portions 112d.
  • the first cover member 118 covers the first and second heaters 58 and 60, and an absorbent material surrounded by the heater mounting portion 112a and the beam portion 112d when viewed from above (as viewed in the Z-axis direction). It covers a portion of the first end surface 52a of 52 .
  • Such a first cover member 118 is covered with a gap provided between the second cover member 120 and the first cover member 118 .
  • the first cover member 118 is made of a resin material
  • the second cover member 120 is made of a metal material.
  • the first heater 58 and the second heater 60 are mounted on the heater mounting portion 112a so that the passage direction of the outdoor air A3 is the horizontal direction (X-axis direction).
  • the first cover member 118 covers the upper part of the first heater 58 and the second heater 60 so that the outdoor air A3 can pass through the first heater 58 and the second heater 60 in the horizontal direction.
  • the second cover member 120 includes a top plate portion 120a that covers the first cover member 118, and a wall portion 120b that extends downward from the outer peripheral edge of the top plate portion 120a.
  • the top plate portion 120a faces the first cover member 118 with a gap in the height direction (Z-axis direction). Further, the wall portion 120b faces the first heater 58 and the second heater 60 with a space therebetween in the horizontal direction.
  • an undercover member 122 is attached to the lower portion of the heater mounting portion 112a of the heater base member 112.
  • the undercover member 122 includes a bottom plate portion 122a attached to the heater mounting portion 112a and a wall portion 122b extending from the bottom plate portion 122a in the height direction (Z-axis direction). Wall portion 122 b extends between first heater 58 and second heater 60 and wall portion 120 b of second cover member 120 .
  • the outdoor air A3 flows upward through the gap between the wall portion 120b of the second cover member 120 and the wall portion 122b of the undercover member 122. flowing towards Next, the outdoor air A3 climbs over the wall portion 122b of the undercover member 122 and flows above the bottom plate portion 122a in the horizontal direction (X-axis direction). reach. Before the outdoor air A3 reaches the first heater 58 and the second heater 60, foreign matter such as dust entrained in the outdoor air A3 is removed by gravity.
  • the distance D of the gap between the wall portion 120b of the second cover member 120 and the wall portion 122b of the undercover member 122 is set to a size, for example, 8 mm or less, which prevents insects and other organisms from entering. As a result, invasion of organisms into the first heater 58 and the second heater 60 is suppressed.
  • the outdoor air A3 flows through the gap between the first cover member 118 and the top plate portion 120a of the second cover member 120.
  • the gap between the first cover member 118 and the second cover member 120 is divided into the upstream portion of the branch passage P1a with respect to the first heater 58 and the upstream portion of the branch passage P1b with respect to the second heater 60.
  • It functions as a connecting path P1d that connects the
  • the channel length from the first heater 58 to the first fan 62 is shorter than the channel length from the second heater 60 to the first fan 62 . Therefore, the flow velocity of the outdoor air A3 at the first heater 58 is higher than the flow velocity at the second heater 60 .
  • part of the outdoor air A3 flowing through the upstream branch passage P1b with respect to the second heater 60 flows through the connecting passage P1d and into the branch passage P1a. It passes through the first heater 58 .
  • the reason for providing such a communication path P1d is to effectively utilize the exhaust heat H of the first heater 58 and the second heater 60. Specifically, much of the heat generated by first heater 58 and second heater 60 is used to heat outdoor air A3 passing through them. However, part of the generated heat is transmitted around the first heater 58 and the second heater 60 without being transmitted to the outdoor air A3 passing through the first heater 58 and the second heater 60. Specifically, it propagates above the first heater 58 and the second heater 60 .
  • exhaust heat H from the first heater 58 and the second heater 60 is transferred to the outdoor air A3 flowing through the communication path P1d.
  • the outdoor air A3 heated by the exhaust heat H passes through the first heater 58 or the second heater 60 and then through the absorbent 52 .
  • the outdoor air A3 flowing through the communication path P1d recovers the exhaust heat H of the first heater 58 and the second heater 60, whereby the outdoor air A3 is heated by the first and second heaters 58 and 60.
  • Improve efficiency is possible to improve efficiency.
  • the amount of humidification of the outdoor air A3 increases, and the efficiency of the humidification operation (humidification efficiency of the indoor Rin) or the efficiency of the regeneration operation in the dehumidification operation (the regeneration efficiency of the absorbent 52) increases. improves.
  • Such a communication path P1d for exhaust heat recovery may be provided not only above the first heater 58 and the second heater 60, but also below them.
  • the communication path P1d may pass through the vicinity of the first heater 58 and the second heater 60, that is, the area where the exhaust heat H of the first heater 58 and the second heater 60 is transmitted.
  • the outdoor air A3 heated by at least one of the first heater 58 and the second heater 60 moves the absorbent 52 downward from the first end surface 52a toward the second end surface 52b as shown in FIG. and enter the second space S2.
  • FIG. 15 is a top view showing a configuration around a portion of the housing 102 of the ventilation device 50 showing the second space S2.
  • the bottom plate 102f of the housing 102 is formed with an annular wall portion 102k extending in the height direction (Z-axis direction).
  • a partition plate 124 separating the first space S1 and the second space S2 is arranged at the top of the annular wall portion 102k (see FIG. 10).
  • the annular wall portion 102k of the housing 102 and the partition plate 124 define a second space S2.
  • a sealing unit (described later) for sealing between the annular wall portion 102k and the absorbing material 52 is mounted on the portion 102l of the annular wall portion 102k located below the absorbing material 52.
  • FIG. 16 is a schematic cross-sectional view showing the configuration around a portion of the absorbent 52 perpendicular to the radial direction of the absorbent 52. As shown in FIG.
  • a plurality of first sealing units 126 against the first end face 52a of the absorbent material 52 and a plurality of second sealing units 128 against the second end face 52b of the absorbent material 52 are connected to the ventilator 50.
  • the first seal unit 126 is provided on a plurality of beam portions 112 d of the heater base member 112 facing the first end face 52 a of the absorbent 52 .
  • the second seal unit 128 is provided on the portion 102 l of the annular wall portion 102 k of the housing 102 facing the second end face 52 b of the absorbent 52 .
  • the plurality of first seal units 126 are attached to the heater base member 112 while holding the seal member 126a contacting the first end face 52a of the absorbent 52 in the height direction (Z-axis direction) and the seal member 126a. and a seal holder 126b.
  • the seal member 126a substantially extends in the radial direction of the disk-shaped absorbent 52 and contacts the first end face 52a of the absorbent 52 .
  • the sealing member 126a is a brush. Note that the sealing member 126a is not limited to a brush as long as it can slide against the first end surface 52a of the rotating absorbent 52 .
  • the seal member 126a may be, for example, an elastic member such as silicone rubber having flexibility.
  • the outdoor air A3 flowing through the first flow path P1 specifically, a part of the outdoor air A3 flowing inside the first cover member 118 is transferred to the second flow path P2. (that is, entering the fourth space S4) is suppressed.
  • the outdoor air A4 flowing through the second flow path P2 is also suppressed from entering the first flow path P1.
  • the plurality of second seal units 128 includes a seal member 128a that contacts the second end face 52b of the absorbent 52 in the height direction (Z-axis direction), and a seal holder that holds the seal member 128a and is attached to the housing 102. 128b.
  • the seal member 128a extends substantially in the radial direction of the disk-shaped absorber 52, extends parallel to the seal member 126a of the first seal unit 126, and extends along the second end face of the absorber 52. 52b.
  • the sealing member 128a is a brush. Note that the sealing member 128a is not limited to a brush as long as it can slide against the second end surface 52b of the rotating absorbent 52 .
  • the sealing member 128a may be, for example, an elastic member such as silicone rubber having flexibility. Also, the seal member 128a may be different from the seal member 126a of the first seal unit 126, or may be the same.
  • part of the outdoor air A3 flowing through the first flow path P1 specifically, the outdoor air A3 flowing into the second space S2 from the second end surface 52b of the absorbent 52 is is suppressed from entering the second flow path P2 (that is, the third space S3).
  • the outdoor air A4 flowing through the second flow path P2 is also suppressed from entering the first flow path P1.
  • a plurality of absorbent holders 114 are provided on the second end face 52b of the absorbent 52 with which the second seal unit 128 (the seal member 128a thereof) contacts. There is a spoke portion 114c of . Therefore, during rotation of the absorbent holder 114, the seal member 128a needs to climb over the plurality of spoke portions 114c.
  • the spoke portion 114c is extended so that the entire sealing member 128a does not get over the spoke portion 114c at the same timing.
  • the sealing member 128 a substantially extends in the radial direction of the absorbent 52
  • the spoke portion 114 c does not substantially extend in the radial direction of the absorbent 52 .
  • the seal member 128a does not ride over the spoke portions 114c as a whole, but partially rides over the spoke portions 114c. As a result, the load on the motor 54 is reduced.
  • the beam portion 112d of the heater base member 112 provided with the first seal unit 126 is provided with a collision plate 112e extending in a direction away from the first seal unit 126.
  • the collision plate 112e extends above the portion of the first end surface 52a of the absorbent 52 through which the outdoor air A4 flows. As a result, the outdoor air A4 that has passed through the absorbing material 52 near the first seal unit 126 collides with the collision plate 112e.
  • This "collision plate” will be described with reference to a comparative example.
  • FIG. 17 is a schematic cross-sectional view showing the configuration around a portion of the absorbent 52 orthogonal to the radial direction of the absorbent 52 in the ventilator of the comparative example.
  • the passage of the outdoor air A3 between the sealing member 126a and the absorbent 52 is caused by the draft resistance of the absorbent 52, that is, the pressure loss caused by passing through the absorbent 52.
  • the pressure in the portion of the first flow path P ⁇ b>1 on the upstream side of the absorbent 52 (that is, the space S ⁇ b>5 ) is the pressure before pressure loss occurs due to the absorbent 52 .
  • the pressure in the portion of the second flow path P2 on the downstream side of the absorbent 52 (that is, the fourth space S4) is the pressure after passing through the absorbent 52 and causing pressure loss. is. That is, the pressure in the space S5 is relatively higher than the pressure in the space S4 because it does not pass through the absorbent 52 .
  • the difference between the two pressures can cause outdoor air A3 to pass between the seal member 126a and the absorbent material 52 .
  • the outdoor air A3 heated by the first heater 58 and the second heater 60 at a relatively high pressure passes between the seal member 126a and the absorbent 52 and flows through the second heater at a relatively low pressure. It can intrude into the flow path P2.
  • the outdoor air A4 flowing near the first seal unit 126 flows out from the first end face 52a of the absorbent 52 and then collides with the collision plate 112e.
  • a turbulent high pressure region AP is generated between the first end face 52a of the absorber 52 and the collision plate 112e.
  • This high pressure area AP reduces the pressure difference between both sides of the seal member 126a.
  • entry of the outdoor air A3 into the second flow path P2 through between the seal member 126a and the absorbent 52 is suppressed.
  • a throttle wall 112f extending toward the first end face 52a of the absorber 52 is provided at the tip of the collision plate 112e (the end far from the first seal unit 126).
  • a substantially closed space surrounded by the sealing member 126a, the collision plate 112e, the first end surface 52a of the absorbent 52, and the restrictor wall 112f is formed, and a high pressure area AP having a higher pressure is formed in the space. Occur.
  • intrusion of the outdoor air A3 into the second flow path P2 through the space between the sealing member 126a and the absorbent 52 is further suppressed as compared with the case where the throttle wall 112f is not provided.
  • the sealing member 126a of the first sealing unit 126 and the sealing member 128a of the second sealing unit 128 are arranged against the first end surface 52a and the second end surface 52b of the absorbent 52, respectively. contacting the absorber 52 in a direction orthogonal to the
  • embodiments of the present disclosure are not limited to this.
  • FIG. 18 is a schematic cross-sectional view showing the configuration around a portion of the absorbent 52 perpendicular to the radial direction of the absorbent 52 in a ventilator according to a different embodiment.
  • each of the sealing members 126a and 128a contacts the absorbent material 52 while being inclined with respect to the first end surface 52a and the second end surface 52b. .
  • the seal members 126a and 128a are held by the seal holders 226b and 228b in an inclined state so as to approach the absorber 52 from the upstream side to the downstream side in the rotational direction DR of the absorber 52.
  • the sliding resistance between the seal members 126a, 128a and the absorbing material 52 is lower than in the embodiment shown in FIG. 16, and the load on the motor 54 is reduced.
  • each of the seal members 126a and 128a may be held by the seal holder so as to be swingable about the center line of rotation extending in the radial direction of the absorber 52 .
  • first fan 62 and the second fan 62 are arranged so that the outdoor air A3 or the outdoor air A4 does not pass between the seal member 126a and the first end surface 52a and between the seal member 128a and the second end surface 52b.
  • the rotation speed of the first fan 62 is increased to decrease the pressure in the first flow path P1 and the second fan 66 is turned on. At least one of the following is performed: Decrease the rotation speed to increase the pressure in the second flow path P2. As a result, passage of the heated outdoor air A3 between the seal member 126a of the first seal unit 126 and the absorbent 52 can be further suppressed.
  • the ventilator 50 includes a labyrinth seal member 130 as a seal for the absorbent material 52, as shown in FIG.
  • FIG. 19 is a schematic cross-sectional view of the absorbent holder 114 showing the labyrinth flow path PL formed outside the absorbent holder 114.
  • FIG. 19 is a schematic cross-sectional view of the absorbent holder 114 showing the labyrinth flow path PL formed outside the absorbent holder 114.
  • the absorber holder 114 rotates, the outer peripheral surface of the cylindrical portion 114a faces the absorber containing portion 112b of the heater base member 112 and the partition plate 124 with a gap therebetween. are doing. Therefore, part of the outdoor air A3 that should pass through the absorbent 52 can bypass the absorbent 52 by flowing outside the cylindrical portion 114a.
  • the outdoor air A3 is heated by at least one of the first heater 58 and the second heater 60, the amount of moisture taken from the absorbent 52 by the outdoor air A3 is reduced when such a bypass occurs. That is, the efficiency of the humidification operation (humidification efficiency of the indoor Rin) or the efficiency of the regeneration operation (the regeneration efficiency of the absorbent 52) in the dehumidification operation decreases.
  • the labyrinth seal member 130 forms a labyrinth flow path PL between the absorbent holder 114 and the members facing it (the heater base member 112 and the partition plate 124).
  • the labyrinth flow path PL refers to a flow path having a high flow resistance due to the shape of the flow path that changes the flow direction of the fluid multiple times.
  • the labyrinth seal member 130 includes an end surface 130a forming a radial flow path PLa extending in the radial direction (Y-axis direction) of the absorbent 52 as part of the labyrinth flow path PL.
  • absorber holder 114 has external teeth 114d on the outer peripheral surface of cylindrical portion 114a.
  • the absorber holder 114 also has an annular flange 114e provided on the end face of the external tooth 114d on the far side from the first end face 52a of the absorber 52.
  • An end surface 130a of the labyrinth seal member 130 forms a radial flow path PLa between itself and the flange 114e.
  • the labyrinth flow path PL including such a radial flow path PLa makes it difficult for the outdoor air A3 to flow outside the cylindrical portion 114a and bypass the absorbent 52, so that it passes through the absorbent 52. As a result, it is possible to suppress a decrease in the efficiency of the humidification operation (humidification efficiency of the indoor Rin) or the efficiency of the regeneration operation in the dehumidification operation (the regeneration efficiency of the absorbent 52) caused by the outdoor air A3 bypassing the absorbent 52. can.
  • the end surface 130a of the labyrinth seal member 130 is provided with a ridge portion 130b that protrudes toward the flange 114e of the absorber holder 114. As shown in FIG. This further increases the channel resistance of the labyrinth channel PL.
  • ribs 124a extending in the radial direction (Y-axis direction) of the absorbent 52 are provided on the partition plate 124 so as to face the second end surface 52b of the absorbent 52 with a gap therebetween. is provided.
  • the rib 124a makes it difficult for the outdoor air A3 to flow out of the labyrinth flow path PL, and as a result, the flow path resistance of the labyrinth flow path PL further increases.
  • the ribs 124a of the partition plate 124 are provided at their ends with ridges 124b that protrude toward the second end face 52b of the absorbent 52. As shown in FIG.
  • the protrusion 124b makes it difficult for the outdoor air A3 to flow out of the labyrinth flow path PL, and as a result, the flow path resistance of the labyrinth flow path PL further increases.
  • the labyrinth flow path PL may be formed over the entire outer peripheral surface of the cylindrical portion 114a of the absorbent holder 114, or may not be formed over the entire surface.
  • the main purpose of the labyrinth flow path PL is to absorb the outdoor air A3 so that most of the outdoor air A3 heated by at least one of the first heater 58 and the second heater 60 passes through the absorbent 52. 52 bypass is suppressed. Therefore, it is sufficient that at least the labyrinth flow path PL exists outside the portion of the cylindrical portion 114a of the absorbent holder 114 corresponding to the portion of the absorbent 52 through which the heated outdoor air A3 passes.
  • the end face 130a of the labyrinth seal member 130 forms the radial flow path PLa between the flange 114e of the absorbent holder 114 and the end face 130a.
  • the portion of the absorbent holder 114 that cooperates with the end surface 130a of the labyrinth seal member 130 to form the radial flow path PLa is not limited to the flange 114e. If the absorber holder 114 has an enlarged diameter portion that protrudes radially outward, the end surface 130a of the labyrinth seal member 130 can form a radial flow path PLa between the enlarged diameter portion and the enlarged diameter portion. .
  • the flange 114e obstructs the outdoor air A3 flowing between the teeth of the external teeth 114d, which also increases the flow path resistance of the labyrinth flow path PL.
  • the outdoor air A3 that has passed through the absorbent 52 flows into the second space S2.
  • FIG. 20 is a schematic cross-sectional view showing components around the first fan 62.
  • the first fan 62 is a sirocco fan, and an impeller 62a that rotates around a rotation center line extending in the vertical direction (Z-axis direction) arranged in the fan chamber F2. and a motor 62b for rotating the impeller 62a.
  • the outdoor air A3 is sucked into the fan chamber F2 by the rotation inside the impeller 66a.
  • the fan chamber F2 is defined by an annular wall 124c provided on the partition plate 124 and a fan cover member 132 attached on the annular wall 124c.
  • the partition plate 124 is formed with an air suction port 124d that communicates with the fan chamber F2 and through which the outdoor air A3 passes.
  • the motor 62b of the first fan 62 is provided on the fan cover member 132 and covered with the motor cover member 134. That is, the motor 62b is housed in a motor chamber M1 defined by the fan cover member 132 and the motor cover member 134. As shown in FIG.
  • the fan cover member 132 and the motor cover member 134 are configured so that the outdoor air A3 flows into the motor chamber M1.
  • the outdoor air A3 flows into the first space through the third air intake port 102g and the fourth air intake port 102h. It flows into S1. Part of the outdoor air A3 that has flowed into the first space S1 passes through the first heater 58 and the second heater 60 as they are. The remainder flows into motor chamber M1, cools motor 62b, flows out of motor chamber M1, and passes through first heater 58 and second heater 60, as shown in FIG.
  • the fan cover member 132 and the motor cover member 134 each have a plurality of obstacle walls 132a extending in the vertical direction so that the outdoor air A3 entering the motor chamber M1 locally flows in the vertical direction (the Z-axis direction). , 134a are provided.
  • the obstacle walls 132a and 134a allow the outdoor air A3 to flow vertically, and the foreign matter entrained in the outdoor air A3 is removed by gravity. As a result, entry of foreign matter into the motor chamber M1 is suppressed.
  • a plurality of crosspieces 102m for suppressing entry of foreign matter are provided in the fourth air inlet 102h communicating with the first space S1.
  • an upper surface 102n of at least one crosspiece 102m is formed with an inclined surface 102o that is higher on the first space S1 side.
  • the inclined surface 102o suppresses rainwater falling obliquely downward from entering the first space S1.
  • Similar crosspieces 102m are also provided at the first air inlet 102a, the second air inlet 102b, and the third air inlet 102g.
  • the means for suppressing intrusion of rainwater is not limited to the inclined surface 102o.
  • FIG. 21 is a schematic cross-sectional view showing the configuration of the fourth air inlet 202h of the housing 202 in a ventilator according to another embodiment.
  • the fourth air inlet 202h of the housing 202 is provided with a plurality of crosspieces 202m.
  • Each crosspiece 202m is provided with a hanging portion 202p extending toward another crosspiece 202m located below.
  • the drooping portion 202p can also prevent rainwater from entering the first space S1.
  • the portion of the first flow path P1 between the absorbent 52 and the air suction port 124d, that is, the second space S2 has an orifice member 136 is provided.
  • the orifice member 136 is an obstacle for locally reducing the flow passage cross-sectional area in the portion of the first flow passage P1 between the absorbent 52 and the air suction port 124d.
  • the outdoor air A3 that has passed through the first heater 58 and the outdoor air A3 that has passed through the second heater 60 flow while being mixed.
  • the temperature distribution in the second space S2 is substantially uniform when both the first heater 58 and the second heater 60 are ON and when both are OFF.
  • the temperature distribution when only the first heater 58 is ON and the temperature distribution when only the second heater 60 is ON are not uniform and differ greatly from each other.
  • the outdoor air A3 that has passed through the first heater 58 arranged on the rear side of the ventilator 50 flows through the rear portion of the second space S2, and flows through the second heater arranged on the front side.
  • the outdoor air A3 that has passed through 60 flows through the front portion of the second space S2.
  • the outdoor air A3 flowing through the second space S2 begins to swirl in the vicinity of the air intake port 124d of the first fan 62, and then flows into the fan chamber F2 through the air intake port 124d.
  • the outdoor air A3 having a high temperature flows through the rear portion of the second space S2, and the temperature of the front portion is low (not heated). Outdoor air A3 flows. If the outdoor air A3 swirls in the vicinity of the air intake port 124d in this state, the detection accuracy of the temperature sensor 138 that measures the temperature of the outdoor air A3 in the second space S2 is lowered. Note that the temperature sensor 138 is provided on the partition plate 124 as shown in FIG.
  • the orifice member 136 is connected to the temperature sensor 138 in the portion (second space S2) of the first flow path P1 from the first and second heaters 58, 60 to the air intake port 124d. It is arranged on the upstream side. Also, the orifice member 136 is provided so as to cross the second space S2. Therefore, as shown in FIG. 10, the outdoor air A3 that has passed through the first heater 58 and the outdoor air A3 that has passed through the second heater 60 pass through the narrow gap between the orifice member 136 and the partition plate 124. to the air intake port 124d.
  • the outdoor air A3 that has passed through the first heater 58 and the outdoor air A3 that has passed through the second heater 60 are appropriately mixed by the vortex caused by the separation flow generated after passing through the gap.
  • the temperature sensor 138 located downstream of the orifice member 136 the temperature distribution when only the first heater 58 is ON and the temperature distribution when only the second heater 60 is ON are substantially equal to each other. be equal.
  • the orifice member 136 also has the effect of reducing the level of noise generated by the first fan 62 and leaking to the outdoor Rout.
  • orifice member 136 can also have other shapes.
  • FIG. 22 is a top view of part of the ventilation device housing 102 showing the second space S2 in a ventilation device according to a different embodiment.
  • the orifice member 236 is not provided across the second space S2, but is provided only on the front side of the ventilator.
  • the outdoor air A3 that has passed through the first heater 58 and the outdoor air A4 that has passed through the second heater 60 flow so as to bypass the orifice member 236 when viewed from above (as viewed in the Z-axis direction).
  • the outdoor air A3 that has passed through the first heater 58 and the outdoor air A3 that has passed through the second heater 60 are mixed appropriately. In this case, the outdoor air A3 gently flows near the temperature sensor 138, and the measurement environment of the temperature sensor 138 is stabilized.
  • the outdoor air A3 that has flowed from the second space S2 into the fan chamber F2 of the first fan 62 is sent to the damper device 64 by the rotation of the impeller 62a.
  • FIG. 23A is a cross-sectional view showing the damper device 64 connected to the room Rin. Also, FIG. 23B is a sectional view showing the damper device 64 connected to the outdoor Route.
  • the damper device 64 includes a portion of the partition plate 124 and a portion of the fan cover member 132 as components of its housing. .
  • the damper device 64 also includes an inflow port 64a into which the outdoor air A3 flows, and a first outflow port 64b that communicates with the indoor unit 20 and out of which the outdoor air A3 flows out.
  • the damper device 64 has a second outlet 64c communicating with the outdoor Rout and through which the outdoor air A3 flows out, and a closing door 64d that selectively closes one of the first outlet 64b and the second outlet 64c. and includes
  • the damper device 64 rotates the closing door 64d around a rotation center line extending in the height direction (Z-axis direction), and a power source such as a motor controlled by the control device of the air conditioner 10. (not shown).
  • the inlet 64 a of the damper device 64 communicates with the fan chamber F 2 of the first fan 62 .
  • the outdoor air A3 that has passed through the first heater 58, the second heater 60, and the absorbent 52 and is blown out from the impeller 62a of the first fan 62 passes through the inlet 64a to the damper device 64. flow inside.
  • a ventilation conduit 56 is connected to the first outflow port 64 b of the damper device 64 .
  • the first outflow port 64b communicates with the interior of the indoor unit 20 via the ventilation conduit 56 .
  • the outdoor air A3 that has passed through the inlet 64 a flows into the indoor unit 20 .
  • the first outflow port 64b opens rightward.
  • the opening direction of the first outflow port 64b of the damper device 64 is the right direction, and the opening direction of the inflow port 64a is the opposite left direction. Therefore, the outdoor air A3 that has flowed into the inflow port 64a flows out from the first outflow port 64b without changing its flow direction. Therefore, the outdoor air A3 can flow into the ventilation conduit 56 while maintaining the blowing speed of the first fan 62 without deceleration.
  • the second outflow port 64c of the damper device 64 communicates with the outdoor route indirectly, not directly. Specifically, the second outflow port 64c opens in the isolation chamber S6 provided in the housing 102 in a horizontal direction, particularly in a state facing the rear wall 102e.
  • the isolation chamber S6 is defined by the housing 102 and the fan cover member 132 and is independent of the other spaces S1-S4. Therefore, the outdoor air A3 flowing out from the second outlet 64c flows into the isolation chamber S6.
  • a connection port 102q that communicates with the inside of the housing 100 of the main body of the outdoor unit 30 is provided on the bottom plate 102f of the housing 102 that defines the isolation room S6.
  • FIG. 24 is a cross-sectional perspective view of the ventilator 50 showing the flow of the outdoor air A3 flowing out from the damper device 64.
  • FIG. 25 is a front view of the outdoor unit 30 schematically showing the inside of the main body of the outdoor unit 30. As shown in FIG.
  • the outdoor air A3 flowing backward from the second outflow port 64c of the damper device 64 changes its flow direction downward in the isolated chamber S6, and is provided on the bottom plate 102f of the housing 102. It passes through the connection port 102q.
  • the outdoor air A3 that has passed through the connection port 102q of the bottom plate 102f of the housing 102 flows into the housing 100 of the main body of the outdoor unit 30.
  • the housing 100 of the main body includes a heat exchange chamber R1 that houses the outdoor heat exchanger 32, the fan 34, and the like, and a machine room R2 that houses the compressor 36, the four-way valve 40, the control board, and the like. are roughly divided into The outdoor air A3 flows into the machine room R2.
  • an exhaust port provided with a plurality of crosspieces is provided in the portion of the rear wall 102e of the housing 102 facing the second outflow port 64c, the noise derived from the turbulence flows into the outdoor Rout through the exhaust port. Leak. Further, the operation sound of the closing door 64d also leaks to the outdoor Rout through the exhaust port. Additionally, the crosspieces can generate wind noise.
  • the internal space of the housing 100 functions as a "muffler" that reduces the level of noise that is generated when the outdoor air A3 flows through the damper device 64 and leaks to the outdoor Rout.
  • the machine room R2 is a substantially closed space, and communicates with the outdoor route through a gap that allows the heat generated from the compressor 36 and the like housed therein to flow out to the outdoor route.
  • the heat exchange chamber R1 communicates with the outdoor Rout via an intake port through which the outdoor air A2 sucked by the fan 34 passes and an exhaust port through which the outdoor air A2 after heat exchange flows out. Therefore, when the outdoor air A3 flowing out from the second outlet 64c of the damper device 64 flows into the machine room R2, the level of noise leaking to the outdoor Rout is reduced as compared with the case of flowing into the heat exchange room R1. be able to.
  • the damper device 64 discharges the outdoor air A3 to the outdoor Rout through the space in the housing 100 of the main body of the outdoor unit 30, so that the level of noise generated from the outdoor unit 30 can be reduced.
  • the outdoor air A3 should flow smoothly from the second outflow port 64c of the damper device 64 toward the connection port 102q communicating with the housing 100.
  • the damper device 64 may be configured such that the second outflow port 64c of the damper device 64 faces downward so that the connection port 102q faces the second outflow port 64c of the damper device 64 in the isolation chamber S6. . Furthermore, the damper device 64 may be configured such that the second outflow port 64c of the damper device 64 is directly connected to the connection port 102q.
  • the outdoor air A3 flowing out from the first outflow port 64b of the damper device 64 flows into the indoor unit 20 via the ventilation conduit 56.
  • FIG. 26 is a perspective view showing the indoor heat exchanger 22 and the nozzle 140 provided in the indoor unit 20.
  • FIG. Moreover, FIG. 27 is a side view of the indoor unit 20 which shows an internal structure.
  • the UVW orthogonal coordinate system shown in the drawing is for facilitating understanding of the embodiments, and does not limit the embodiments.
  • the U-axis direction indicates the horizontal direction of the indoor unit 20
  • the V-axis direction indicates the front-rear direction
  • the W-axis direction indicates the height direction (vertical direction).
  • the indoor unit 20 includes an indoor heat exchanger 22 and a nozzle 140.
  • the nozzle 140 includes a connecting portion 140a connected to the ventilation conduit 56 and an outlet 140b for blowing out the outdoor air A3 supplied from the ventilation conduit 56. As shown in FIG. 26
  • the nozzle 140 is provided in the housing 142 of the indoor unit 20 so as to blow out the outdoor air A3 supplied from the ventilation device 50 through the ventilation conduit 56 into the housing 142 of the indoor unit 20. ing. Specifically, the nozzle 140 is arranged inside the indoor unit 20 so that the blown outdoor air A3 passes through the dry area inside the indoor unit 20 and heads toward the fan 24 . Fan 24 is, for example, a cross-flow fan. Also, the “dry region” referred to here is a region that is drier than other regions. Such "dry areas" can be identified experimentally or by simulation.
  • the direction in which the outdoor air A3 is blown from the nozzle 140 is such that the outdoor air A3 blown from the outlet 140b passes through the dry portion DP of the indoor heat exchanger 22 serving as the "dry region" in the indoor unit 20. It is oriented to
  • the indoor heat exchanger 22 is arranged as follows when viewed in the direction in which the rotation center line of the fan 24 extends (viewed in the U-axis direction). is provided. That is, the indoor heat exchanger 22 is provided inside the housing 142 of the indoor unit 20 so as to partially surround the fan 24 (in this embodiment, surround the fan 24 except for the area below it).
  • the indoor heat exchanger 22 is also composed of a first portion 22a located behind the fan 24 and a second portion 22b located in front of the fan 24. As shown in FIG. Refrigerant supplied from the compressor 36 flows through the indoor heat exchanger 22 as described above.
  • the refrigerant flows from the upper portion to the lower portion of the first portion 22a as viewed in the extending direction of the rotation center line of the fan 24. It flows toward and then flows from the bottom to the top of the second portion 22b. That is, the refrigerant flows in the indoor heat exchanger 22 counterclockwise in FIG.
  • a dry portion DP is generated in the upper portion of the second portion 22b of the indoor heat exchanger 22.
  • the dry portion DP is positioned downstream in the refrigerant flow direction in the indoor heat exchanger 22 . Since the temperature of the refrigerant rises while flowing through other parts of the indoor heat exchanger 22, dew condensation is less likely to occur in the dry part DP than in the other parts (there is less condensed water that adheres).
  • the dry portion DP of the indoor heat exchanger 22 is a portion away from the drain pans 144 and 146 provided below the indoor heat exchanger 22, so the condensed water Less is. That is, since the condensed water flows downward toward the drain pans 144 and 146 on the surface of the indoor heat exchanger 22, the dry portion DP positioned above the indoor heat exchanger 22 has less condensed water.
  • the air conditioner 10 is configured to be able to simultaneously perform a dehumidifying operation (weak cooling operation) by the refrigeration cycle and a dehumidifying operation by the ventilation device 50 as one operation mode.
  • the indoor air A1 is taken into the housing 142 through the air intake port 142a provided in the upper part of the housing 142 of the indoor unit 20, and passes through the indoor heat exchanger 22. .
  • the indoor air A1 is cooled by the indoor heat exchanger 22 and is dehydrated and dried.
  • the removed moisture condenses on the surface of the indoor heat exchanger 22 .
  • the dry indoor air A1 is blown into the room Rin by the fan 24 through the air outlet 142b.
  • the outdoor air A3 heated during the adsorption operation in the dehumidification operation is supplied from the ventilation device 50 to the nozzle 140 .
  • the outdoor air A3 is blown out from the nozzle 140, is attracted by the fan 24, and passes through the dry portion DP of the indoor heat exchanger 22.
  • the outdoor air A3 passes through the dry portion DP, that is, does not pass through other portions of the indoor heat exchanger 22 where a large amount of condensed water adheres, so that the dry state is maintained.
  • the outdoor air A3 that has passed through the indoor heat exchanger 22 in a dry state is blown out into the room Rin by the fan 24 through the air outlet 142b.
  • Simultaneously executing the dehumidification operation (low cooling operation) by the refrigeration cycle and the dehumidification operation by the ventilation device 50 can dehumidify the room Rin without significantly lowering the room temperature.
  • the outdoor air A3 blown out from the nozzle 140 passes through other parts of the indoor heat exchanger 22 other than the dry part DP, the outdoor air A3 is humidified by evaporation of the condensed water. Since the humidified outdoor air A3 is blown into the room Rin, that is, part of the moisture originally present in the room Rin returns to the room Rin, the dehumidification efficiency of the room Rin decreases.
  • the air conditioner 10 is configured to be able to simultaneously execute a dehumidifying operation (weak cooling operation) by the refrigeration cycle and a ventilation operation by the ventilator 50 as one operation mode.
  • the outdoor air A3 that is not dehumidified is supplied from the ventilation device 50 to the nozzle 140 as it is.
  • the outdoor air A3 blown out from the nozzle 140 then passes through the dry portion DP of the indoor heat exchanger 22 .
  • the room Rin can be ventilated without returning part of the dew condensation water adhering to the indoor heat exchanger 22 to the room Rin due to the dehumidifying operation.
  • the nozzle 140 may blow out at least part of the outdoor air A3 toward the space between the indoor heat exchanger 22 and the fan 24 as a "dry area" inside the indoor unit 20.
  • the nozzle 140 is configured to be non-destructively divisible into a plurality of pieces.
  • FIG. 28 is an exploded perspective view showing the configuration of the nozzle 140.
  • FIG. FIG. 29 is a perspective view showing the nozzle 140 separated into two.
  • 30 is a cross-sectional view showing the structure of the nozzle 140. As shown in FIG.
  • the nozzle 140 consists of four parts 148, 150, 152 and 154. Specifically, as shown in FIG. 29, in the case of the present embodiment, the nozzle 140 is configured to be separable into a rear portion 140c having a connecting portion 140a and a front portion 140d having an outlet 140b. .
  • the rear portion 140c has a connection port 140e for connecting with the front portion 140d, and the front end portion 140f of the front portion 140d is removably inserted into the connection port 140e.
  • the rear portion 140c is attached to the base member 156 of the indoor unit 20, and the front portion 140d is attached to the filter frame 158.
  • the base member 156 functions as a bracket when installing the indoor unit 20 on the wall surface, and also holds components of the indoor unit 20 such as the indoor heat exchanger 22 and the fan 24 .
  • the filter frame 158 is a member that holds a filter (not shown) through which the indoor air A1 directed toward the indoor heat exchanger 22 passes, and is configured to be removable from the base member 156 . Removing the filter frame 158 from the base member 156 separates the front portion 140 d from the rear portion 140 c of the nozzle 140 .
  • the rear portion 140c of the nozzle 140 is configured to be splittable into two parts 148, 150 along its internal flow path.
  • the front portion 140d is also configured to be splittable into two parts 152, 154 along its internal flow path.
  • the parts 148 and 150 are configured to be able to be joined together by, for example, snap engagement without using fixing parts such as screws.
  • parts 152, 154 are also configured to be dockable without the use of securing parts.
  • the rear portion 140c of the nozzle 140 is provided with a constriction portion 140i that makes the cross-sectional area of the flow passage smaller than that of other locations.
  • the nozzle 140 having such a configuration, it is possible to easily check and clean the inside. That is, the nozzle 140 can be divided into four parts 148, 150, 152 and 154, each of which can be checked or cleaned.
  • the outdoor air A3 in the air conditioner 10 in which the outdoor air A3 is humidified by passing through the rotating absorbent 52 and supplied to the indoor unit 20, the outdoor air A3 passes through the absorbent 52. Bypassing can be suppressed.
  • the absorbent holder 114 is in contact with the facing member (the absorbent housing portion 112b of the heater base member 112 and the partition plate 124) in order to rotate smoothly. not.
  • the absorbent holder 114 is rotatable, a portion of the absorbent holder 114 may slide relative to the opposing member.
  • the air conditioner according to the embodiment of the present disclosure is an air conditioner having an indoor unit and an outdoor unit.
  • the outdoor unit includes a heater for heating outdoor air, and a first end surface and a second end surface, and the disk through which the outdoor air heated by the heater passes from the first end surface to the second end surface.
  • a shaped absorbent material e.g., a shaped absorbent material.
  • the outdoor unit includes an absorbent holder that has a cylindrical portion that holds the outer peripheral surface of the absorbent and rotates, and a facing member that faces the outer peripheral surface of the absorbent holder.
  • the outdoor unit includes a fan that generates outdoor air flow that passes through the absorbent, and a labyrinth seal member that forms a labyrinth flow path between the outer peripheral surface of the absorbent holder and the facing member.
  • the absorbent holder includes an enlarged diameter portion
  • the labyrinth seal member is a radial flow path extending at least in the radial direction of the absorbent between itself and the enlarged diameter portion of the absorbent holder as part of the labyrinth flow path. an end face that defines a
  • the present disclosure is applicable to any air conditioner equipped with an indoor unit and an outdoor unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Humidification (AREA)

Abstract

An outdoor unit of an air conditioner according to an embodiment of the present invention is provided with a heater, and an absorbent material (52) through which outdoor air (A3) heated by the heater passes. In addition, the outdoor unit is provided with an absorbent material holder (114) that rotates and is provided with a cylindrical part (114a) that holds the absorbent material (52), and opposing members (112, 124) that oppose the outer circumferential surface of the absorbent material holder (114). In addition, the outdoor unit is provided with a fan for generating a flow of the outdoor air (A3) that passes through the absorbent material (52), and a labyrinth seal member (130) for forming a labyrinth flow passage (PL) between the outer circumferential surface of the absorbent material holder (114) and the opposing members (112, 124). The labyrinth seal member (130) is provided with an end surface (130a) for forming, as a portion of the labyrinth flow passage (PL), a radial flow passage (PLa) at least extending in the radial direction of the absorbent material (52) between said end surface and an expanded-diameter portion (114e) of the absorbent material holder (114).

Description

空気調和機air conditioner
 本開示は、空気調和機に関する。 The present disclosure relates to air conditioners.
 従来、例えば、特許文献1に記載するように、空気調和対象の室内に配置される室内機と、室外に配置される室外機とから構成される空気調和機が知られている。この空気調和機は、室外機から室内機に加湿された室外空気または除湿された室外空気を供給するように構成されている。具体的には、吸収材が回転し、ヒータによって加熱された室外空気が吸収材の一部分を通過し、加熱されていない室外空気が吸収材の残りの部分を通過する。ヒータによって加熱された室外空気(加湿された室外空気)または加熱されていない室外空気(除湿された室外空気)の一方が室内機に供給され、他方が室外に排出される。 Conventionally, as described in Patent Document 1, for example, an air conditioner is known that is composed of an indoor unit arranged inside a room to be air-conditioned and an outdoor unit arranged outdoors. This air conditioner is configured to supply humidified outdoor air or dehumidified outdoor air from an outdoor unit to an indoor unit. Specifically, the absorbent rotates, outdoor air heated by the heater passes through a portion of the absorbent, and unheated outdoor air passes through the remaining portion of the absorbent. One of the outdoor air heated by the heater (humidified outdoor air) and the unheated outdoor air (dehumidified outdoor air) is supplied to the indoor unit, and the other is discharged outdoors.
特開2003-314858号公報JP-A-2003-314858
 ところで、特許文献1に記載された空気調和機の場合、吸収材は回転する。そのために、吸収材の外周面とその外周面に対向する対向部材との間にクリアランスが存在する。ヒータによって加熱された室外空気の一部がクリアランスを介して吸収材をバイパスすると、室内機に供給される室外空気の加湿量が減少する。その結果、室内の加湿効率が低下する。 By the way, in the case of the air conditioner described in Patent Document 1, the absorbent rotates. Therefore, there is a clearance between the outer peripheral surface of the absorber and the opposing member facing the outer peripheral surface. When part of the outdoor air heated by the heater bypasses the absorbent through the clearance, the amount of humidification of the outdoor air supplied to the indoor unit is reduced. As a result, the indoor humidification efficiency decreases.
 そこで、本開示は、室外空気が回転する吸収材を通過することによって加湿されて室内機に供給される空気調和機において、室外空気が吸収材をバイパスすることを抑制することが可能な空気調和機を提供する。 Therefore, the present disclosure provides an air conditioner in which outdoor air is humidified by passing through a rotating absorbent and supplied to an indoor unit, and is capable of suppressing the outdoor air from bypassing the absorbent. provide the machine.
 本開示の一態様の空気調和機は、室内機と室外機とを有する空気調和機である。室外機が、室外空気を加熱するヒータと、第1の端面と第2の端面とを備え、ヒータによって加熱された室外空気が第1の端面から第2の端面に向かって通過する円盤状の吸収材と、を備える。また、室外機が、吸収材の外周面を保持する円筒状部を備えて回転する吸収材ホルダと、吸収材ホルダの外周面に対して対向する対向部材と、を備える。また、室外機が、吸収材を通過する室外空気の流れを発生させるファンと、吸収材ホルダの外周面と対向部材との間に、ラビリンス流路を形成するラビリンスシール部材と、を備える。そして、吸収材ホルダが、拡径部を含み、ラビリンスシール部材が、ラビリンス流路の一部分として、吸収材ホルダの拡径部との間に吸収材の径方向に少なくとも延在する径方向流路を形成する端面を備える。 An air conditioner of one aspect of the present disclosure is an air conditioner having an indoor unit and an outdoor unit. The outdoor unit includes a heater for heating outdoor air, and a first end face and a second end face, and has a disc shape through which the outdoor air heated by the heater passes from the first end face toward the second end face. an absorbent material; Further, the outdoor unit includes an absorbent holder that has a cylindrical portion that holds the outer peripheral surface of the absorbent and rotates, and a facing member that faces the outer peripheral surface of the absorbent holder. Further, the outdoor unit includes a fan that generates outdoor air flow that passes through the absorbent, and a labyrinth seal member that forms a labyrinth flow path between the outer peripheral surface of the absorbent holder and the facing member. The absorbent holder includes an enlarged diameter portion, and the labyrinth seal member, as a part of the labyrinth flow passage, extends at least in the radial direction of the absorbent between the absorbent holder and the enlarged diameter portion. an end face that defines a
 本開示の一態様の空気調和機は、室外空気が回転する吸収材を通過することによって加湿されて室内機に供給される空気調和機において、室外空気が吸収材をバイパスすることを抑制することができる。 An air conditioner according to one aspect of the present disclosure is an air conditioner in which outdoor air is humidified by passing through a rotating absorbent and supplied to an indoor unit, and in which the outdoor air is prevented from bypassing the absorbent. can be done.
本開示の一実施の形態に係る空気調和機の構成を示す概略図Schematic diagram showing the configuration of an air conditioner according to an embodiment of the present disclosure 換気装置の構成を示す概略図Schematic diagram showing the configuration of the ventilation system 換気運転中の換気装置の動作状態を示す概略図Schematic diagram showing the operating state of the ventilator during ventilation operation 加湿運転中の換気装置の動作状態を示す概略図Schematic diagram showing the operating state of the ventilator during humidification operation 除湿運転中の換気装置の動作状態を示す概略図Schematic diagram showing the operating state of the ventilation system during dehumidification operation 空気調和機の室外機の外観を示す斜視図A perspective view showing the appearance of an outdoor unit of an air conditioner 蓋体を取り除いた状態の換気装置の構成を示す斜視図A perspective view showing the configuration of the ventilator with the lid removed. 蓋体を取り除いた状態の換気装置の構成を示す上面図Top view showing the configuration of the ventilator with the lid removed 蓋体を取り除いた状態の換気装置の構成を示す分解斜視図Fig. 2 is an exploded perspective view showing the configuration of the ventilation device with the lid removed; 換気装置の構成を示す概略的な断面図Schematic cross-sectional view showing the configuration of the ventilator ヒータユニットの構成を示す斜視図A perspective view showing the configuration of the heater unit. ヒータユニットの構成を示す下面図Bottom view showing the configuration of the heater unit ヒータユニットの構成を示す分解斜視図An exploded perspective view showing the configuration of the heater unit. 図12のA-A線に沿ったヒータユニットの構成を示す概略的な断面図Schematic cross-sectional view showing the configuration of the heater unit along line AA in FIG. 第2の空間を示す換気装置の筺体の一部分の上面図FIG. 4 is a top view of a portion of the ventilator housing showing the second space; 吸収材の径方向と直交する吸収材の一部分の周辺の構成を示す概略的な断面図Schematic cross-sectional view showing the configuration of the periphery of a portion of the absorber orthogonal to the radial direction of the absorber 比較例の換気装置における、吸収材の径方向と直交する吸収材の一部分の周辺の構成を示す概略的な断面図Schematic cross-sectional view showing the configuration around a part of the absorbent perpendicular to the radial direction of the absorbent in the ventilator of the comparative example 異なる実施の形態に係る換気装置における、吸収材の径方向と直交する吸収材の一部分の周辺の構成を示す概略的な断面図Schematic cross-sectional view showing the configuration around a part of the absorbent perpendicular to the radial direction of the absorbent in a ventilator according to a different embodiment 吸収材ホルダの外側に形成されたラビリンス流路を示す吸収材ホルダの概略的な断面図Schematic cross-sectional view of an absorbent holder showing labyrinth channels formed on the outside of the absorbent holder. 第1のファンまわりの構成要素を示す概略的な断面図Schematic cross-sectional view showing components around the first fan 異なる実施の形態に係る換気装置における、筺体の第4の吸気口の構成を示す概略的な断面図Schematic cross-sectional view showing the configuration of the fourth air inlet of the housing in a ventilation device according to a different embodiment 異なる実施の形態に係る換気装置における、第2の空間を示す換気装置の筺体の一部分の上面図FIG. 2 is a top view of a portion of a ventilator housing showing a second space in a ventilator according to a different embodiment; 室内に接続した状態のダンパ装置を示す断面図Sectional drawing which shows the damper apparatus of the state connected indoors 室外に接続した状態のダンパ装置を示す断面図Sectional drawing which shows the damper apparatus of the state connected to outdoor ダンパ装置から流出した室外空気の流れを示す換気装置の断面斜視図Sectional perspective view of the ventilator showing the flow of outdoor air flowing out from the damper device 室外機の本体内部を概略的に示す室外機の正面図The front view of the outdoor unit which shows the inside of the main body of an outdoor unit roughly. 室内機に設けられた室内熱交換器とノズルを示す斜視図The perspective view which shows the indoor heat exchanger and nozzle which were provided in the indoor unit 内部構造を示す室内機の側面図Side view of indoor unit showing internal structure ノズルの構成を示す分解斜視図Exploded perspective view showing the configuration of the nozzle 2つに分離された状態のノズルを示す斜視図FIG. 2 is a perspective view showing the nozzle separated in two; ノズルの構成を示す断面図Cross-sectional view showing the configuration of the nozzle
 本開示の一態様の空気調和機は、室内機と室外機とを有する空気調和機である。室外機が、室外空気を加熱するヒータと、第1の端面と第2の端面とを備え、ヒータによって加熱された室外空気が第1の端面から第2の端面に向かって通過する円盤状の吸収材と、を備える。また、室外機が、吸収材の外周面を保持する円筒状部を備えて回転する吸収材ホルダと、吸収材ホルダの外周面に対して対向する対向部材と、を備える。また、室外機が、吸収材を通過する室外空気の流れを発生させるファンと、吸収材ホルダの外周面と対向部材との間に、ラビリンス流路を形成するラビリンスシール部材と、を備える。そして、吸収材ホルダが、拡径部を含み、ラビリンスシール部材が、ラビリンス流路の一部分として、吸収材ホルダの拡径部との間に吸収材の径方向に少なくとも延在する径方向流路を形成する端面を備える。 An air conditioner of one aspect of the present disclosure is an air conditioner having an indoor unit and an outdoor unit. The outdoor unit includes a heater for heating outdoor air, and a first end face and a second end face, and has a disc shape through which the outdoor air heated by the heater passes from the first end face toward the second end face. an absorbent material; Further, the outdoor unit includes an absorbent holder that has a cylindrical portion that holds the outer peripheral surface of the absorbent and rotates, and a facing member that faces the outer peripheral surface of the absorbent holder. Further, the outdoor unit includes a fan that generates outdoor air flow that passes through the absorbent, and a labyrinth seal member that forms a labyrinth flow path between the outer peripheral surface of the absorbent holder and the opposing member. The absorbent holder includes an enlarged diameter portion, and the labyrinth seal member, as a part of the labyrinth flow passage, extends at least in the radial direction of the absorbent between the absorbent holder and the enlarged diameter portion. an end face that defines a
 このような本開示の一態様の空気調和機は、室外空気が回転する吸収材を通過することによって加湿されて室内機に供給される空気調和機において、室外空気が吸収材をバイパスすることを抑制することができる。 Such an air conditioner according to one aspect of the present disclosure is an air conditioner in which outdoor air is supplied to an indoor unit after being humidified by passing through a rotating absorbent, in which the outdoor air bypasses the absorbent. can be suppressed.
 例えば、吸収材ホルダが、拡径部として、外歯と、第1の端面から遠い外歯の端面に設けられたフランジとを含み、ラビリンスシール部材の端面が、フランジとの間に径方向流路を形成してもよい。 For example, the absorber holder includes, as the enlarged diameter portion, an external tooth and a flange provided on the end surface of the external tooth remote from the first end surface, and the end surface of the labyrinth seal member is arranged between the flange and the radial flow direction. A path may be formed.
 例えば、ラビリンスシール部材の端面に、吸収材ホルダのフランジに向かって突出する突条部が設けられてもよい。 For example, the end face of the labyrinth seal member may be provided with a ridge protruding toward the flange of the absorbent holder.
 例えば、対向部材に、吸収材の第2の端面に間隔をあけて対向するように径方向に延在するリブが設けられてもよい。 For example, the facing member may be provided with ribs extending in the radial direction so as to face the second end surface of the absorbent material with a gap therebetween.
 例えば、対向部材のリブの先端に、吸収材の第2の端面に向かって突出する突条部が設けられてもよい。 For example, the tip of the rib of the opposing member may be provided with a ridge that protrudes toward the second end surface of the absorbent.
 (実施の形態)
 以下、本開示の一実施の形態について図面を参照しながら説明する。
(Embodiment)
An embodiment of the present disclosure will be described below with reference to the drawings.
 図1は、本開示の一実施の形態に係る空気調和機10の構成を示す概略図である。 FIG. 1 is a schematic diagram showing the configuration of an air conditioner 10 according to an embodiment of the present disclosure.
 図1に示すように、本実施の形態に係る空気調和機10は、空調対象の室内Rinに配置される室内機20と、室外Routに配置される室外機30とを有する。 As shown in FIG. 1, the air conditioner 10 according to the present embodiment has an indoor unit 20 arranged in the indoor Rin to be air-conditioned, and an outdoor unit 30 arranged in the outdoor Rout.
 室内機20には、室内空気A1と熱交換を行う室内熱交換器22と、室内空気A1を室内機20内に誘引するとともに、室内熱交換器22と熱交換した後の室内空気A1を室内Rinに吹き出すファン24とが設けられている。 The indoor unit 20 includes an indoor heat exchanger 22 that exchanges heat with the indoor air A1, and invites the indoor air A1 into the indoor unit 20, and the indoor air A1 after heat exchange with the indoor heat exchanger 22 is introduced into the room. A fan 24 that blows to Rin is provided.
 室外機30には、室外空気A2と熱交換を行う室外熱交換器32と、室外空気A2を室外機30内に誘引するとともに、室外熱交換器32と熱交換した後の室外空気A2を室外Routに吹き出すファン34とが設けられている。また、室外機30には、室内熱交換器22および室外熱交換器32と冷凍サイクルを実行する圧縮機36、膨張弁38、および四方弁40が設けられている。 The outdoor unit 30 includes an outdoor heat exchanger 32 that exchanges heat with the outdoor air A2, and invites the outdoor air A2 into the outdoor unit 30. A fan 34 blowing to Rout is provided. In addition, the outdoor unit 30 is provided with a compressor 36, an expansion valve 38, and a four-way valve 40 for executing a refrigerating cycle with the indoor heat exchanger 22 and the outdoor heat exchanger 32.
 室内熱交換器22、室外熱交換器32、圧縮機36、膨張弁38、および四方弁40それぞれは、冷媒が流れる冷媒配管によって接続されている。冷房運転および除湿運転(弱冷房運転)の場合、空気調和機10は、冷媒が圧縮機36から四方弁40、室外熱交換器32、膨張弁38、室内熱交換器22を順に流れて圧縮機36に戻る冷凍サイクルを実行する。暖房運転の場合、空気調和機10は、冷媒が圧縮機36から四方弁40、室内熱交換器22、膨張弁38、室外熱交換器32を順に流れて圧縮機36に戻る冷凍サイクルを実行する。 The indoor heat exchanger 22, the outdoor heat exchanger 32, the compressor 36, the expansion valve 38, and the four-way valve 40 are connected by refrigerant pipes through which refrigerant flows. In the case of cooling operation and dehumidification operation (weak cooling operation), the air conditioner 10 is configured such that the refrigerant flows from the compressor 36 through the four-way valve 40, the outdoor heat exchanger 32, the expansion valve 38, and the indoor heat exchanger 22 in order. Execute the freeze cycle back to 36. In the case of heating operation, the air conditioner 10 executes a refrigeration cycle in which refrigerant flows from the compressor 36 through the four-way valve 40, the indoor heat exchanger 22, the expansion valve 38, the outdoor heat exchanger 32 in order, and then returns to the compressor 36. .
 空気調和機10は、冷凍サイクルによる空調運転の他に、室外空気A3を室内Rinに導入する空調運転を実行する。そのために、空気調和機10は、換気装置50を有する。換気装置50は、室外機30に設けられている。すなわち、室外機30は、換気装置50を有する。 The air conditioner 10 performs an air-conditioning operation that introduces the outdoor air A3 into the room Rin in addition to the air-conditioning operation using the refrigeration cycle. Therefore, the air conditioner 10 has a ventilator 50 . A ventilation device 50 is provided in the outdoor unit 30 . That is, the outdoor unit 30 has a ventilator 50 .
 図2は、換気装置50の構成を示す概略図である。 FIG. 2 is a schematic diagram showing the configuration of the ventilation device 50. FIG.
 図2に示すように、換気装置50は、その内部に室外空気A3、A4が通過する吸収材52を備える。 As shown in FIG. 2, the ventilator 50 includes an absorbent 52 through which outdoor air A3 and A4 pass.
 吸収材52は、空気が通過可能な部材であって、通過する空気から水分を捕集するまたは通過する空気に水分を与える部材である。本実施の形態の場合、吸収材52は、円盤状であって、その中心を通過する回転中心線C1を中心にして回転する。吸収材52は、モータ54によって回転駆動される。 The absorbent material 52 is a member through which air can pass, and is a member that collects moisture from the passing air or gives moisture to the passing air. In the case of this embodiment, the absorber 52 is disc-shaped and rotates around a rotation center line C1 passing through the center thereof. The absorbing material 52 is rotationally driven by a motor 54 .
 吸収材52は、空気中の水分を収着する高分子収着材で形成されることが好ましい。高分子収着材は、例えば、ポリアクリル酸ナトリウム架橋体から構成される。高分子収着材は、シリカゲルやゼオライトなどの吸着材に比べて、同一体積あたりの水分吸収量が多く、低い加熱温度で担持する水分を脱着することができ、そして水分を長時間担持することができる。 The absorbent material 52 is preferably made of a polymer sorbent material that sorbs moisture in the air. The polymeric sorbent material is composed of, for example, a crosslinked sodium polyacrylate. Compared to adsorbents such as silica gel and zeolite, polymer sorbents absorb more water per unit volume, can desorb water at low heating temperatures, and can retain water for a long time. can be done.
 換気装置50の内部には、吸収材52をそれぞれ通過し、室外空気A3、A4がそれぞれ流れる第1の流路P1と第2の流路P2とが設けられている。第1の流路P1と第2の流路P2は、異なる位置で吸収材52を通過する。 Inside the ventilator 50, there are provided a first flow path P1 and a second flow path P2 through which the outdoor air A3 and A4 respectively pass through the absorbent material 52. The first flow path P1 and the second flow path P2 pass through the absorbent material 52 at different positions.
 第1の流路P1は、室内機20内に向かう室外空気A3が流れる流路である。第1の流路P1を流れる室外空気A3は、換気導管56を介して、室内機20内に供給される。 The first flow path P1 is a flow path through which the outdoor air A3 flows toward the inside of the indoor unit 20. The outdoor air A3 flowing through the first flow path P1 is supplied into the indoor unit 20 via the ventilation conduit 56. As shown in FIG.
 本実施の形態の場合、第1の流路P1は、吸収材52に対して上流側に複数の支流路P1a、P1bを含んでいる。なお、本明細書において、「上流」および「下流」は、空気の流れに対して使用される。 In the case of the present embodiment, the first flow path P1 includes a plurality of branch flow paths P1a and P1b on the upstream side with respect to the absorbent 52. It should be noted that "upstream" and "downstream" are used herein with respect to air flow.
 複数の支流路P1a、P2aは、吸収材52に対して上流側で合流する。複数の支流路P1a、P1bそれぞれには、室外空気A3を加熱する第1および第2のヒータ58、60が設けられている。 The plurality of tributaries P1a and P2a merge with the absorbent 52 on the upstream side. First and second heaters 58 and 60 for heating the outdoor air A3 are provided in the plurality of branch passages P1a and P1b, respectively.
 第1および第2のヒータ58、60は、同一の加熱能力を備えるヒータであってもよいし、異なる加熱能力を備えるヒータであってもよい。また、第1および第2のヒータ58、60は、電流が流れて温度が上昇すると電気抵抗が増加する、すなわち過剰な加熱温度の上昇を抑制することができるPTC(Positive Temperature Coefficient)ヒータが好ましい。ニクロム線やカーボン繊維などを用いるヒータを用いてもよいが、この場合、電流が流れ続けると加熱温度(表面温度)が上昇し続けるため、その温度をモニタリングする必要がある。一方、PTCヒータの場合、ヒータ自体が加熱温度を一定の温度範囲内で調節するために、加熱温度をモニタリングする必要がなくなる。この点で、PTCヒータがより好ましい。 The first and second heaters 58, 60 may be heaters with the same heating capacity, or may be heaters with different heating capacities. In addition, the first and second heaters 58 and 60 are preferably PTC (Positive Temperature Coefficient) heaters, which increase electrical resistance when current flows and the temperature rises, that is, can suppress excessive heating temperature rises. . A heater using a nichrome wire, carbon fiber, or the like may be used, but in this case, if the current continues to flow, the heating temperature (surface temperature) will continue to rise, so it is necessary to monitor the temperature. On the other hand, the PTC heater eliminates the need to monitor the heating temperature because the heater itself regulates the heating temperature within a certain temperature range. In this respect, the PTC heater is more preferable.
 第1の流路P1には、室内機20内に向かう室外空気A3の流れを発生させる第1のファン62が設けられている。本実施の形態の場合、第1のファン62は、吸収材52に対して下流側に配置されている。第1のファン62が作動することにより、室外空気A3が、室外Routから第1の流路P1内に流入し、吸収材52を通過する。 A first fan 62 that generates a flow of the outdoor air A3 toward the inside of the indoor unit 20 is provided in the first flow path P1. In the case of this embodiment, the first fan 62 is arranged downstream with respect to the absorbent 52 . By operating the first fan 62 , the outdoor air A 3 flows from the outdoor Rout into the first flow path P 1 and passes through the absorbent 52 .
 また、第1の流路P1には、第1の流路P1を流れる室外空気A3を室内Rin(すなわち室内機20)または室外Routに振り分けるダンパ装置64が設けられている。本実施の形態の場合、ダンパ装置64は、第1のファン62に対して下流側に配置されている。ダンパ装置64によって室内機20に振り分けられた室外空気A3は、換気導管56を介して室内機20内に入り、ファン24によって室内Rinに吹き出される。 Also, the first flow path P1 is provided with a damper device 64 that distributes the outdoor air A3 flowing through the first flow path P1 to the indoor Rin (that is, the indoor unit 20) or the outdoor Rout. In this embodiment, the damper device 64 is arranged downstream of the first fan 62 . The outdoor air A3 distributed to the indoor unit 20 by the damper device 64 enters the indoor unit 20 via the ventilation conduit 56 and is blown out by the fan 24 to the indoor unit Rin.
 第2の流路P2は、室外空気A4が流れる流路である。第1の流路P1を流れる室外空気A3と異なり、第2の流路P2を流れる室外空気A4は、室内機20に向かうことはない。第2の流路P2を流れる室外空気A4は、吸収材52を通過した後、室外Routに流出する。 The second flow path P2 is a flow path through which the outdoor air A4 flows. Unlike the outdoor air A3 flowing through the first flow path P1, the outdoor air A4 flowing through the second flow path P2 does not go to the indoor unit 20. The outdoor air A4 flowing through the second flow path P2 flows out to the outdoor Rout after passing through the absorbent 52 .
 第2の流路P2には、室外空気A4の流れを発生させる第2のファン66が設けられている。本実施の形態の場合、第2のファン66は、吸収材52に対して下流側に配置されている。第2のファン66が作動することにより、室外空気A4が、室外Routから第2の流路P2内に流入し、吸収材52を通過し、そして室外Routに流出する。 A second fan 66 that generates a flow of outdoor air A4 is provided in the second flow path P2. In the case of this embodiment, the second fan 66 is arranged downstream with respect to the absorbent 52 . By operating the second fan 66, the outdoor air A4 flows from the outdoor Rout into the second flow path P2, passes through the absorbent 52, and then flows out to the outdoor Rout.
 換気装置50は、吸収材52(モータ54)、第1のヒータ58、第2のヒータ60、第1のファン62、ダンパ装置64、および第2のファン66を選択的に使用して換気運転、加湿運転、および除湿運転を選択的に実行する。 The ventilator 50 selectively uses an absorbent 52 (motor 54), a first heater 58, a second heater 60, a first fan 62, a damper device 64, and a second fan 66 for ventilation operation. , humidification operation, and dehumidification operation are selectively performed.
 図3は、換気運転中の換気装置50の動作状態を示す概略図である。 FIG. 3 is a schematic diagram showing the operating state of the ventilator 50 during ventilation operation.
 換気運転は、室外空気A3をそのまま換気導管56を介して室内Rin(すなわち室内機20)に供給する空調運転である。図3に示すように、換気運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、OFF状態であって、室外空気A3を加熱していない。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。 The ventilation operation is an air conditioning operation in which the outdoor air A3 is directly supplied to the indoor Rin (that is, the indoor unit 20) via the ventilation conduit 56. As shown in FIG. 3, motor 54 continues to rotate absorbent material 52 during ventilation operation. The first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 . The second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
 このような換気運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されることなく吸収材52を通過する。吸収材52を通過した室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような換気運転により、室外空気A3がそのまま室内Rinに供給され、室内Rinが換気される。 According to such a ventilation operation, the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60. The outdoor air A3 that has passed through the absorbent 52 is distributed to the indoor units 20 by the damper device 64 . The outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 . Through such a ventilation operation, the outdoor air A3 is supplied to the room Rin as it is, and the room Rin is ventilated.
 図4は、加湿運転中の換気装置50の動作状態を示す概略図である。 FIG. 4 is a schematic diagram showing the operating state of the ventilator 50 during humidification operation.
 加湿運転は、室外空気A3を加湿し、その加湿された室外空気A3を室内Rin(すなわち室内機20)に供給する空調運転である。図4に示すように、加湿運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、ON状態であって、室外空気A3を加熱している。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、ON状態であって、それにより第2の流路P2内を室外空気A4が流れている。 The humidification operation is an air conditioning operation that humidifies the outdoor air A3 and supplies the humidified outdoor air A3 to the indoor Rin (that is, the indoor unit 20). As shown in FIG. 4, the motor 54 continues to rotate the absorbent 52 during the humidification operation. The first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 . The second fan 66 is in the ON state, thereby causing the outdoor air A4 to flow through the second flow path P2.
 このような加湿運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されて吸収材52を通過する。このとき、加熱された室外空気A3は、加熱されていない場合に比べて、吸収材52からより多量の水分を奪うことができる。それにより、室外空気A3が多量の水分を担持する。吸収材52を通過して多量の水分を担持する室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような加湿運転により、多量の水分を担持する室外空気A3が室内Rinに供給され、室内Rinが加湿される。 According to such humidification operation, the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52. At this time, the heated outdoor air A3 can deprive the absorbent 52 of a larger amount of moisture than when it is not heated. As a result, the outdoor air A3 carries a large amount of moisture. The outdoor air A3 that has passed through the absorbent 52 and carries a large amount of moisture is distributed to the indoor unit 20 by the damper device 64 . The outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 . Through such a humidification operation, the outdoor air A3 carrying a large amount of moisture is supplied to the room Rin, and the room Rin is humidified.
 なお、第1のヒータ58と第2のヒータ60のいずれか一方をOFF状態にすることによって室外空気A3が吸収材52から奪う水分量を少なくする、すなわち室内Rinの加湿量が少ない弱加湿運転が実行されてもよい。 By turning off either one of the first heater 58 and the second heater 60, the amount of moisture taken from the absorbent 52 by the outdoor air A3 is reduced. may be performed.
 加熱された室外空気A3に水分が奪われることにより、吸収材52の保水量が減少する、すなわち吸収材52が乾燥する。吸収材52が乾燥すると、第1の流路P1を流れる室外空気A3は吸収材52から水分を奪うことができない。その対処として、吸収材52は、第2の流路P2を流れる室外空気A4から水分を奪う。それにより、吸収材52の保水量がほぼ一定に維持され、加湿運転を継続することができる。 As the heated outdoor air A3 deprives moisture, the amount of water retained by the absorbent 52 decreases, that is, the absorbent 52 dries. When the absorbent 52 dries, the outdoor air A3 flowing through the first flow path P1 cannot deprive the absorbent 52 of moisture. As a countermeasure, the absorbent 52 deprives the outdoor air A4 flowing through the second flow path P2 of water. As a result, the amount of water retained in the absorbent material 52 is kept substantially constant, and the humidification operation can be continued.
 図5は、除湿運転中の換気装置50の動作状態を示す概略図である。 FIG. 5 is a schematic diagram showing the operating state of the ventilation device 50 during dehumidification operation.
 除湿運転は、室外空気A3を除湿し、その除湿された室外空気A3を室内Rin(すなわち室内機20)に供給する空調運転である。図5に示すように、除湿運転では、吸着運転と再生運転とが交互に実行される。 The dehumidification operation is an air conditioning operation in which the outdoor air A3 is dehumidified and the dehumidified outdoor air A3 is supplied to the indoor Rin (that is, the indoor unit 20). As shown in FIG. 5, in the dehumidifying operation, the adsorption operation and the regeneration operation are alternately performed.
 吸着運転は、室外空気A3に担持されている水分を吸収材52に吸着させ、それにより室外空気A3を除湿する運転である。図5に示すように、吸着運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、OFF状態であって、室外空気A3を加熱していない。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を室内機20に振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。 The adsorption operation is an operation in which the moisture carried in the outdoor air A3 is adsorbed by the absorbent material 52, thereby dehumidifying the outdoor air A3. As shown in FIG. 5, the motor 54 continues to rotate the absorbent 52 during the adsorption operation. The first heater 58 and the second heater 60 are in the OFF state and do not heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 to the indoor units 20 . The second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
 このような吸着運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されることなく吸収材52を通過する。このとき、室外空気A3に担持されている水分が吸収材52に吸着する。それにより、室外空気A3の水分の担持量が減少する、すなわち室外空気A3が乾燥される。吸収材52を通過して乾燥した室外空気A3は、ダンパ装置64によって室内機20に振り分けられる。ダンパ装置64を通過して換気導管56を介して室内機20に到達した室外空気A3は、ファン24によって室内Rinに吹き出される。このような吸着運転により、乾燥した室外空気A3が室内Rinに供給され、室内Rinが除湿される。 According to such adsorption operation, the outdoor air A3 flows into the first flow path P1 and passes through the absorbent 52 without being heated by the first and second heaters 58, 60. At this time, the moisture carried in the outdoor air A3 is absorbed by the absorbent 52 . As a result, the amount of moisture carried by the outdoor air A3 is reduced, that is, the outdoor air A3 is dried. The outdoor air A3 dried by passing through the absorbent 52 is distributed to the indoor unit 20 by the damper device 64 . The outdoor air A3 that has passed through the damper device 64 and reached the indoor unit 20 via the ventilation conduit 56 is blown out into the room Rin by the fan 24 . By such adsorption operation, the dry outdoor air A3 is supplied to the room Rin, and the room Rin is dehumidified.
 吸着運転が続くと、吸収材52の保水量が増加し続け、その結果、室外空気A3に担持されている水分に対する吸収材52の吸着能力が低下する。その吸着能力を回復するために吸収材52を再生させる再生運転が実行される。 As the adsorption operation continues, the water retention capacity of the absorbent 52 continues to increase, and as a result, the ability of the absorbent 52 to adsorb moisture carried in the outdoor air A3 decreases. A regeneration operation is performed to regenerate the absorbent 52 in order to recover its adsorption capacity.
 再生運転中、モータ54は、吸収材52を回転し続ける。第1のヒータ58と第2のヒータ60は、ON状態であって、室外空気A3を加熱している。第1のファン62はON状態で、それにより第1の流路P1内を室外空気A3が流れている。ダンパ装置64は、第1の流路P1内の室外空気A3を、室内機20ではなく、室外Routに振り分ける。第2のファン66は、OFF状態であって、それにより第2の流路P2内に室外空気A4の流れが発生していない。 The motor 54 continues to rotate the absorbent 52 during the regeneration operation. The first heater 58 and the second heater 60 are in the ON state and heat the outdoor air A3. The first fan 62 is in the ON state, thereby causing the outdoor air A3 to flow through the first flow path P1. The damper device 64 distributes the outdoor air A3 in the first flow path P1 not to the indoor unit 20 but to the outdoor Rout. The second fan 66 is in an OFF state, so that no flow of outdoor air A4 is generated in the second flow path P2.
 このような再生運転によれば、室外空気A3は、第1の流路P1に流入し、第1および第2のヒータ58、60に加熱されて吸収材52を通過する。このとき、加熱された室外空気A3は、吸収材52から多量の水分を奪う。それにより、室外空気A3に多量の水分が担持される。それとともに、吸収材52の保水量が減少する、すなわち吸収材52が乾燥してその吸着能力が再生する。吸収材52を通過して多量の水分を担持する室外空気A3は、ダンパ装置64によって室外Routに振り分けられ、室外Routに排出される。これにより、除湿運転における再生運転中に、吸収材52の再生によって多量の水分を担持する室外空気A3が室内Rinに供給されることがない。 According to such a regeneration operation, the outdoor air A3 flows into the first flow path P1, is heated by the first and second heaters 58 and 60, and passes through the absorbent 52. At this time, the heated outdoor air A3 deprives the absorbent 52 of a large amount of moisture. As a result, a large amount of moisture is carried in the outdoor air A3. At the same time, the water retention capacity of the absorbent 52 decreases, ie, the absorbent 52 dries and its adsorption capacity is regenerated. The outdoor air A3 that passes through the absorbent 52 and carries a large amount of moisture is distributed to the outdoor route by the damper device 64 and is discharged to the outdoor route. As a result, during the regeneration operation in the dehumidification operation, the outdoor air A3 carrying a large amount of moisture due to the regeneration of the absorbent 52 is not supplied to the indoor Rin.
 このような吸着運転と再生運転を交互に行うことにより、吸収材52の吸着能力が維持され、除湿運転を継続的に実行することができる。 By alternately performing such adsorption operation and regeneration operation, the adsorption capacity of the absorbent 52 is maintained, and the dehumidification operation can be continuously performed.
 上述の冷凍サイクルによる空調運転(冷房運転、除湿運転(弱冷房運転)、暖房運転)と換気装置50による空調運転(換気運転、加湿運転、除湿運転)は、別々に実行可能であり、また同時に実行することも可能である。例えば、冷凍サイクルによる除湿運転と換気装置50による除湿運転を同時に実行すれば、室温を一定に維持した状態で室内Rinを除湿することが可能である。 The air-conditioning operation (cooling operation, dehumidifying operation (weak cooling operation), heating operation) by the above-described refrigeration cycle and the air-conditioning operation (ventilation operation, humidification operation, dehumidification operation) by the ventilation device 50 can be performed separately, and at the same time It is also possible to execute For example, if the dehumidification operation by the refrigeration cycle and the dehumidification operation by the ventilation device 50 are simultaneously executed, it is possible to dehumidify the room Rin while maintaining the room temperature constant.
 空気調和機10が実行する空調運転は、ユーザによって選択される。例えば、図1に示すリモートコントローラ70に対するユーザの選択操作により、その操作に対応する空調運転を空気調和機10は実行する。なお、空気調和機10は、冷凍サイクルによる空調運転および換気装置50による空調運転の実行を制御する制御装置(図示せず)を備える。制御装置は、プロセッサおよびメモリを有するコンピュータシステムを有している。そして、プロセッサがメモリに格納されているプログラムを実行することにより、コンピュータシステムが制御装置として機能する。プロセッサが実行するプログラムは、ここではコンピュータシステムのメモリに予め記録されているとしたが、メモリカード等の非一時的な記録媒体に記録されて提供されてもよいし、インターネット等の電気通信回線を通じて提供されてもよい。 The air conditioning operation performed by the air conditioner 10 is selected by the user. For example, when a user selects the remote controller 70 shown in FIG. 1, the air conditioner 10 performs the air conditioning operation corresponding to the operation. Note that the air conditioner 10 includes a control device (not shown) that controls execution of the air conditioning operation by the refrigeration cycle and the air conditioning operation by the ventilation device 50 . The controller has a computer system with a processor and memory. The computer system functions as a control device by the processor executing the program stored in the memory. Although the program executed by the processor is recorded in advance in the memory of the computer system here, it may be recorded in a non-temporary recording medium such as a memory card and provided, or may be provided through a telecommunication line such as the Internet. may be provided through
 ここまでは、本実施の形態に係る空気調和機10の構成および動作について概略的に説明してきた。ここからは、本実施の形態に係る空気調和機10の更なる特徴について説明する。 So far, the configuration and operation of the air conditioner 10 according to the present embodiment have been schematically described. Further features of the air conditioner 10 according to the present embodiment will now be described.
 図6は、空気調和機10の室外機30の外観を示す斜視図である。また、図7は、蓋体104を取り除いた状態の換気装置50の構成を示す斜視図である。さらに、図8は、蓋体104を取り除いた状態の換気装置50の構成を示す上面図である。さらにまた、図9は、蓋体104を取り除いた状態の換気装置50の構成を示す分解斜視図である。そして、図10は、換気装置50の構成を示す概略的な断面図である。なお、図面に示すX-Y-Z直交座標系は、実施の形態の理解を容易にするためのものであって、実施の形態を限定するものではない。X軸方向は室外機30の前後方向を示し、Y軸方向は左右方向を示し、Z軸方向は高さ方向(上下方向)を示している。 6 is a perspective view showing the appearance of the outdoor unit 30 of the air conditioner 10. FIG. 7 is a perspective view showing the configuration of the ventilator 50 with the lid 104 removed. Furthermore, FIG. 8 is a top view showing the configuration of the ventilator 50 with the lid 104 removed. Furthermore, FIG. 9 is an exploded perspective view showing the configuration of the ventilator 50 with the lid 104 removed. 10 is a schematic cross-sectional view showing the configuration of the ventilator 50. As shown in FIG. The XYZ orthogonal coordinate system shown in the drawings is for facilitating understanding of the embodiments, and does not limit the embodiments. The X-axis direction indicates the front-rear direction of the outdoor unit 30, the Y-axis direction indicates the left-right direction, and the Z-axis direction indicates the height direction (vertical direction).
 図6に示すように、本実施の形態の場合、換気装置50は、室外機30の上部に設けられている。具体的には、換気装置50は、室外熱交換器32、ファン34、圧縮機36、膨張弁38、および四方弁40を格納する室外機30の本体の筺体100上に設けられている。 As shown in FIG. 6, the ventilation device 50 is provided above the outdoor unit 30 in this embodiment. Specifically, the ventilator 50 is provided on a housing 100 of the main body of the outdoor unit 30 that houses the outdoor heat exchanger 32 , the fan 34 , the compressor 36 , the expansion valve 38 and the four-way valve 40 .
 図6-図8に示すように、換気装置50は、室外機30の左右方向(Y軸方向)に長い略直方体形状であって、上方が開いた箱状の筺体102と、筺体102の上部に取り付けられる蓋体104とを備える。筺体102内に、吸収材52などの換気装置50の構成要素が格納されている。なお、図7および図8は、蓋体104を取り除いた状態の換気装置50を示している。 As shown in FIGS. 6 to 8, the ventilator 50 has a substantially rectangular parallelepiped shape elongated in the left-right direction (Y-axis direction) of the outdoor unit 30, and has a box-like housing 102 with an open top and an upper portion of the housing 102. and a lid 104 attached to the . Enclosed within housing 102 are the components of ventilator 50 , such as absorbent material 52 . 7 and 8 show the ventilator 50 with the lid 104 removed.
 図7-図9に示すように、本実施の形態の場合、吸収材52は、換気装置50の左右方向(Y軸方向)の中央に配置されている。吸収材52に対して長手方向の一方側(右側)に第1の流路P1に関連する構成要素が配置され、他方側(左側)に第2の流路P2に関連する構成要素が配置されている。 As shown in FIGS. 7-9, in the case of the present embodiment, the absorbent 52 is arranged in the center of the ventilator 50 in the left-right direction (Y-axis direction). The components related to the first flow path P1 are arranged on one side (right side) in the longitudinal direction of the absorbent 52, and the components related to the second flow path P2 are arranged on the other side (left side). ing.
 また、図10に示すように、換気装置50の筺体102内には、複数の空間S1~S4が実質的に形成されている。 In addition, as shown in FIG. 10, a plurality of spaces S1 to S4 are substantially formed inside the housing 102 of the ventilation device 50. As shown in FIG.
 第1の空間S1は、室外空気A3が最初に流入する空間である。また、第1の空間S1は、実質的に、筺体102内の右側および上側部分に形成されている。 The first space S1 is a space into which the outdoor air A3 first flows. Also, the first space S1 is substantially formed in the right and upper portions within the housing 102 .
 第2の空間S2は、吸収材52を介して第1の空間S1に連絡する空間であって、第1の空間S1内の室外空気A3が吸収材52を通過して流入する空間である。また、第2の空間S2は、実質的に、筺体102内の右側および下側部分に形成されている。 The second space S2 is a space that communicates with the first space S1 via the absorbent 52, and is a space into which the outdoor air A3 in the first space S1 flows through the absorbent 52. Also, the second space S2 is substantially formed in the right and lower portions within the housing 102 .
 第3の空間S3は、室外空気A4が最初に流入する空間である。また、第3の空間S3は、実質的に、筺体102内の左側および下側部分に形成されている。 The third space S3 is a space into which the outdoor air A4 first flows. Also, the third space S3 is substantially formed in the left and lower portions within the housing 102 .
 第4の空間S4は、吸収材52を介して第3の空間S3に連絡する空間であって、第3の空間S3内の室外空気A4が吸収材52を通過して流入する空間である。また、第4の空間S4は、実質的に、筺体102内の左側および上側部分に形成されている。 The fourth space S4 is a space that communicates with the third space S3 via the absorbent 52, and is a space into which the outdoor air A4 in the third space S3 flows through the absorbent 52. Also, the fourth space S4 is substantially formed in the left and upper portions within the housing 102 .
 筺体102内は、第1および第2の空間S1、S2内部の室外空気A3が第3および第4の空間S3、S4内に移動しないように構成されている。また、筺体102内は、逆に第3および第4の空間S3、S4内の室外空気A4が第1および第2の空間S1、S2に移動しないように構成されている。つまり、第1および第2の空間S1、S2に対して第3および第4の空間S3、S4が独立している(すなわちこれらの間がシールされている)。 The inside of the housing 102 is configured so that the outdoor air A3 inside the first and second spaces S1 and S2 does not move into the third and fourth spaces S3 and S4. Moreover, the inside of the housing 102 is conversely configured so that the outdoor air A4 in the third and fourth spaces S3 and S4 does not move to the first and second spaces S1 and S2. That is, the third and fourth spaces S3 and S4 are independent of the first and second spaces S1 and S2 (that is, they are sealed).
 まず、構成がシンプルな第2の流路P2に関連する換気装置50の構成要素について説明する。 First, the constituent elements of the ventilator 50 related to the second flow path P2, which has a simple configuration, will be described.
 本実施の形態の場合、図8および図9に示すように、室外空気A4が流れる第2の流路P2に関連して、換気装置50の筺体102には、第1の吸気口102a、第2の吸気口102b、および排気口102cが設けられている。第1の吸気口102aは、筺体102の前壁102dの左右方向(Y軸方向)の中央に形成されている。また、第2の吸気口102bは、筺体102の後壁102eの左右方向の中央に形成されている。そして、排気口102cは、前壁102dの左側に形成されている。 In the case of the present embodiment, as shown in FIGS. 8 and 9, the housing 102 of the ventilator 50 has a first intake port 102a, a second There are two intake ports 102b and two exhaust ports 102c. The first intake port 102a is formed in the center of the front wall 102d of the housing 102 in the left-right direction (Y-axis direction). The second intake port 102b is formed in the center of the rear wall 102e of the housing 102 in the left-right direction. The exhaust port 102c is formed on the left side of the front wall 102d.
 室外空気A4は、第2のファン66が作動すると、第1の吸気口102aと第2の吸気口102bとを介して、筺体102内の第3の空間S3に流入する。具体的には、室外空気A4は、図10に示すように、筺体102の底板102fと吸収材52の第2の端面52bとの間の第3の空間S3に流入する。 When the second fan 66 operates, the outdoor air A4 flows into the third space S3 inside the housing 102 via the first intake port 102a and the second intake port 102b. Specifically, the outdoor air A4 flows into the third space S3 between the bottom plate 102f of the housing 102 and the second end surface 52b of the absorbent 52, as shown in FIG.
 第3の空間S3内の室外空気A4は、第2の端面52bを介して吸収材52内に流入し、第1の端面52aを介して吸収材52から第4の空間S4に流出する。吸収材52を通過して第4の空間S4に流入した室外空気A4は、第2のファン66に吸い込まれる。本実施の形態の場合、第2のファン66は、シロッコファンであって、ファン室F1内に配置されて上下方向(Z軸方向)に延在する回転中心線を中心にして回転する羽根車66aと、羽根車66aを回転させるモータ66bとから構成されている。室外空気A4は、羽根車66aの回転により、ファン室F1に吸い込まれ、ファン室F1に連通する排気口102cを介して室外Routに排出される。なお、ファン室F1は、筺体102と、第3の空間S3と第4の空間S4とを隔てる仕切り板106とによって画定されている。仕切り板106には、ファン室F1に連通して室外空気A4が通過する空気吸い込み口106aが形成されている。 The outdoor air A4 in the third space S3 flows into the absorbent 52 through the second end surface 52b and flows out from the absorbent 52 into the fourth space S4 through the first end surface 52a. The outdoor air A4 that has passed through the absorbent 52 and flowed into the fourth space S4 is sucked into the second fan 66 . In the case of the present embodiment, the second fan 66 is a sirocco fan, and is an impeller arranged in the fan chamber F1 and rotating around a rotation center line extending in the vertical direction (Z-axis direction). 66a and a motor 66b for rotating the impeller 66a. The outdoor air A4 is sucked into the fan chamber F1 by the rotation of the impeller 66a and is discharged to the outdoor Rout through the exhaust port 102c communicating with the fan chamber F1. The fan room F1 is defined by a housing 102 and a partition plate 106 separating the third space S3 and the fourth space S4. The partition plate 106 is formed with an air suction port 106a that communicates with the fan chamber F1 and through which the outdoor air A4 passes.
 次に、第1の流路P1に関連する換気装置50の構成要素ついて説明する。 Next, the components of the ventilator 50 related to the first flow path P1 will be described.
 本実施の形態の場合、図8および図9に示すように、室外空気A3が流れる第1の流路P1に関連して、換気装置50の筺体102には、第3の吸気口102gおよび第4の吸気口102hが設けられている。第3の吸気口102gは、筺体102の右壁102iに形成されている。また、第4の吸気口102hは、筺体102の後壁102eの右側に形成されている。 In the case of the present embodiment, as shown in FIGS. 8 and 9, the housing 102 of the ventilator 50 has a third intake port 102g and a third 4 intake ports 102h are provided. A third intake port 102g is formed in the right wall 102i of the housing 102 . A fourth intake port 102 h is formed on the right side of the rear wall 102 e of the housing 102 .
 室外空気A3は、第1のファン62が作動すると、第3の吸気口102gと第4の吸気口102hとを介して、筺体102内の第1の空間S1に流入する。第1の空間S1内に流入した室外空気A3は、第1および第2のヒータ58、60を通過し、吸収材52の第1の端面52aの上方に向かう。 When the first fan 62 operates, the outdoor air A3 flows into the first space S1 inside the housing 102 via the third intake port 102g and the fourth intake port 102h. The outdoor air A3 that has flowed into the first space S1 passes through the first and second heaters 58 and 60 and is directed above the first end surface 52a of the absorbent 52 .
 本実施の形態の場合、第1および第2のヒータ58、60は、換気装置50の中央に配置されるヒータユニット110内に組み込まれている。 In the case of this embodiment, the first and second heaters 58, 60 are incorporated in a heater unit 110 arranged in the center of the ventilator 50.
 図11は、ヒータユニット110の構成を示す斜視図である。また、図12は、ヒータユニット110の構成を示す下面図である。さらに、図13は、ヒータユニット110の構成を示す分解斜視図である。そして、図14は、図12のA-A線に沿ったヒータユニット110の構成を示す概略的な断面図である。 11 is a perspective view showing the configuration of the heater unit 110. FIG. 12 is a bottom view showing the configuration of the heater unit 110. As shown in FIG. Furthermore, FIG. 13 is an exploded perspective view showing the configuration of the heater unit 110. As shown in FIG. 14 is a schematic cross-sectional view showing the configuration of the heater unit 110 taken along line AA of FIG. 12. As shown in FIG.
 図11-図14に示すように、ヒータユニット110は、第1および第2のヒータ58、60を保持するヒータベース部材112を含んでいる。ヒータベース部材112は、第1および第2のヒータ58、60が載置される略三角形状のヒータ載置部112aと、吸収材52を回転可能に収容する円筒状の吸収材収容部112bとを備える。なお、ヒータベース部材112のヒータ載置部112aと吸収材収容部112bは、別部品として構成することも可能である。 As shown in FIGS. 11-14, the heater unit 110 includes a heater base member 112 that holds the first and second heaters 58,60. The heater base member 112 includes a substantially triangular heater mounting portion 112a on which the first and second heaters 58 and 60 are mounted, and a cylindrical absorbent housing portion 112b that rotatably houses the absorbent 52. Prepare. Note that the heater mounting portion 112a and the absorbent containing portion 112b of the heater base member 112 can be configured as separate parts.
 第1および第2のヒータ58、60は、ヒータベース部材112のヒータ載置部112a上に、「ハ」の字状に配置されている。第1のヒータ58と第2のヒータ60とをそれぞれ通過した室外空気A3(すなわち支流路P1a、P2b)は、ヒータベース部材112の吸収材収容部112bに収容された吸収材52の第1の端面52a上で合流する。すなわち、支流路P1a、P1bが第1の流路P1における本流路P1cに合流する。なお、第1および第2のヒータ58、60は、支流路P1a、P2aを流れる室外空気A3に熱を伝達する複数の加熱フィンを備えるフィンヒータである。 The first and second heaters 58 and 60 are arranged on the heater mounting portion 112a of the heater base member 112 in a "V" shape. The outdoor air A3 (that is, branch passages P1a and P2b) that has passed through the first heater 58 and the second heater 60 respectively passes through the first air of the absorbent 52 accommodated in the absorbent accommodating portion 112b of the heater base member 112. They merge on the end surface 52a. That is, the branch channels P1a and P1b join the main channel P1c in the first channel P1. The first and second heaters 58, 60 are fin heaters having a plurality of heating fins that transfer heat to the outdoor air A3 flowing through the tributaries P1a, P2a.
 本実施の形態の場合、換気装置50は、第1の端面52aと第2の端面52bとを備える円盤状の吸収材52を保持する吸収材ホルダ114を含んでいる。吸収材ホルダ114は、吸収材52の外周面52cを保持する円筒状部114aと、換気装置50の筺体102の底板102fに立設する支持シャフト102jに回転可能に支持されるハブ部114bと(図10参照)を備える。また、吸収材ホルダ114は、円筒状部114aとハブ部114bとを連結する複数のスポーク部114cを備える。複数のスポーク部114cは、吸収材52の第2の端面52bを支持する。 In the case of this embodiment, the ventilator 50 includes an absorbent holder 114 that holds a disk-shaped absorbent 52 having a first end face 52a and a second end face 52b. The absorbent holder 114 includes a cylindrical portion 114a that holds the outer peripheral surface 52c of the absorbent 52, a hub portion 114b that is rotatably supported by a support shaft 102j erected on the bottom plate 102f of the housing 102 of the ventilator 50, and ( See FIG. 10). The absorbent holder 114 also includes a plurality of spoke portions 114c that connect the cylindrical portion 114a and the hub portion 114b. The plurality of spokes 114c support the second end face 52b of the absorbent 52. As shown in FIG.
 ヒータベース部材112の吸収材収容部112bには、吸収材52を保持した状態の吸収材ホルダ114が収容される。また、ヒータベース部材112の吸収材収容部112bの中央は、吸収材ホルダ114のハブ部114bを貫通した筺体102の支持シャフト102jと係合する係合部112cが設けられている。円筒状の吸収材収容部112bとその中央に位置する係合部112cとを連結する複数のビーム部112dが、ヒータベース部材112に設けられている。 The absorbent holder 114 holding the absorbent 52 is accommodated in the absorbent accommodating portion 112b of the heater base member 112 . An engaging portion 112c is provided at the center of the absorbent containing portion 112b of the heater base member 112 to engage with the support shaft 102j of the housing 102 penetrating the hub portion 114b of the absorbent holder 114. As shown in FIG. The heater base member 112 is provided with a plurality of beam portions 112d that connect the cylindrical absorbing material accommodating portion 112b and the engaging portion 112c positioned at the center thereof.
 なお、図9に示すように、吸収材ホルダ114の円筒状部114aの外周面には、モータ54に取り付けられたピニオンギア116と係合する外歯114dが形成されている。このような吸収材ホルダ114を介して、モータ54は吸収材52を回転駆動する。 As shown in FIG. 9, the cylindrical portion 114a of the absorber holder 114 has an outer peripheral surface formed with external teeth 114d that engage with the pinion gear 116 attached to the motor 54. As shown in FIG. The motor 54 rotates the absorbent 52 via the absorbent holder 114 .
 ヒータユニット110はまた、図13に示すように、室外空気A3が通過する吸収材52の第1の端面52aの一部分、第1のヒータ58、および第2のヒータ60を覆う、第1のカバー部材118と第2のカバー部材120とを含んでいる。第1のカバー部材118および第2のカバー部材120は、ヒータベース部材112のヒータ載置部112aと複数のビーム部112dに支持されている。その結果、第1のカバー部材118が、第1および第2のヒータ58、60を覆うとともに、上方視(Z軸方向視)でヒータ載置部112aとビーム部112dとに囲まれた吸収材52の第1の端面52aの部分を覆う。そのような第1のカバー部材118を、第2のカバー部材120が第1のカバー部材118との間に隙間を設けた状態で覆う。なお、本実施の形態の場合、第1のカバー部材118は樹脂材料から作製され、第2のカバー部材120は金属材料から作製されている。このような第1のカバー部材118と第2のカバー部材120とにより、第1のヒータ58および第2のヒータ60をそれぞれ通過した室外空気A3は、第1のカバー部材118と第2のカバー部材120とに覆われた吸収材52の第1の端面52aの部分を通過する。 The heater unit 110 also includes a first cover that covers a portion of the first end surface 52a of the absorbent 52 through which the outdoor air A3 passes, the first heater 58, and the second heater 60, as shown in FIG. It includes a member 118 and a second cover member 120 . The first cover member 118 and the second cover member 120 are supported by the heater mounting portion 112a of the heater base member 112 and the plurality of beam portions 112d. As a result, the first cover member 118 covers the first and second heaters 58 and 60, and an absorbent material surrounded by the heater mounting portion 112a and the beam portion 112d when viewed from above (as viewed in the Z-axis direction). It covers a portion of the first end surface 52a of 52 . Such a first cover member 118 is covered with a gap provided between the second cover member 120 and the first cover member 118 . In addition, in the case of this embodiment, the first cover member 118 is made of a resin material, and the second cover member 120 is made of a metal material. With the first cover member 118 and the second cover member 120 as described above, the outdoor air A3 that has passed through the first heater 58 and the second heater 60 is The first end surface 52a of the absorbent material 52 covered with the member 120 is passed through.
 図14に示すように、第1のヒータ58および第2のヒータ60は、室外空気A3の通過方向が水平方向(X軸方向)になるようにヒータ載置部112aに載置されている。第1のカバー部材118は、室外空気A3が水平方向に第1のヒータ58および第2のヒータ60を通過できるように、第1のヒータ58および第2のヒータ60の上部を覆う。 As shown in FIG. 14, the first heater 58 and the second heater 60 are mounted on the heater mounting portion 112a so that the passage direction of the outdoor air A3 is the horizontal direction (X-axis direction). The first cover member 118 covers the upper part of the first heater 58 and the second heater 60 so that the outdoor air A3 can pass through the first heater 58 and the second heater 60 in the horizontal direction.
 第2のカバー部材120は、第1のカバー部材118を覆う天板部120aと、天板部120aの外周縁から下方向に延在する壁部120bとを備える。天板部120aは、第1のカバー部材118に対して高さ方向(Z軸方向)に間隔をあけて対向する。また、壁部120bは、第1のヒータ58および第2のヒータ60に対して水平方向に間隔をあけて対向する。 The second cover member 120 includes a top plate portion 120a that covers the first cover member 118, and a wall portion 120b that extends downward from the outer peripheral edge of the top plate portion 120a. The top plate portion 120a faces the first cover member 118 with a gap in the height direction (Z-axis direction). Further, the wall portion 120b faces the first heater 58 and the second heater 60 with a space therebetween in the horizontal direction.
 また、本実施の形態の場合、図14に示すように、ヒータベース部材112のヒータ載置部112aの下部には、アンダーカバー部材122が取り付けられている。アンダーカバー部材122は、ヒータ載置部112aに取り付けられる底板部122aと、高さ方向(Z軸方向)に底板部122aから延在する壁部122bとを備える。壁部122bは、第1のヒータ58および第2のヒータ60と第2のカバー部材120の壁部120bとの間で延在している。 Further, in the case of the present embodiment, as shown in FIG. 14, an undercover member 122 is attached to the lower portion of the heater mounting portion 112a of the heater base member 112. As shown in FIG. The undercover member 122 includes a bottom plate portion 122a attached to the heater mounting portion 112a and a wall portion 122b extending from the bottom plate portion 122a in the height direction (Z-axis direction). Wall portion 122 b extends between first heater 58 and second heater 60 and wall portion 120 b of second cover member 120 .
 このような第2のカバー部材120およびアンダーカバー部材122によれば、室外空気A3は、第2のカバー部材120の壁部120bとアンダーカバー部材122の壁部122bとの間の隙間を上方向に向かって流れる。次に、室外空気A3は、アンダーカバー部材122の壁部122bを乗り越えて底板部122aの上方を水平方向(X軸方向)に流れ、そして、第1のヒータ58と第2のヒータ60とに到達する。このような室外空気A3の流れ(すなわち支流路P1a、P1b)により、室外空気A3が第1のヒータ58および第2のヒータ60に到達する前に、室外空気A3に同伴するほこりなど異物が、重力によって取り除かれる。なお、第2のカバー部材120の壁部120bとアンダーカバー部材122の壁部122bとの間の隙間の距離Dは、昆虫などの生物が進入できないサイズ、例えば8mm以下にされている。これにより、第1のヒータ58と第2のヒータ60への生物の侵入が抑制されている。 According to the second cover member 120 and the undercover member 122, the outdoor air A3 flows upward through the gap between the wall portion 120b of the second cover member 120 and the wall portion 122b of the undercover member 122. flowing towards Next, the outdoor air A3 climbs over the wall portion 122b of the undercover member 122 and flows above the bottom plate portion 122a in the horizontal direction (X-axis direction). reach. Before the outdoor air A3 reaches the first heater 58 and the second heater 60, foreign matter such as dust entrained in the outdoor air A3 is removed by gravity. The distance D of the gap between the wall portion 120b of the second cover member 120 and the wall portion 122b of the undercover member 122 is set to a size, for example, 8 mm or less, which prevents insects and other organisms from entering. As a result, invasion of organisms into the first heater 58 and the second heater 60 is suppressed.
 図14に示すように、第1のカバー部材118と第2のカバー部材120の天板部120aとの間の隙間には、室外空気A3が流れる。すなわち、第1のカバー部材118と第2のカバー部材120との間の隙間が、支流路P1aにおける第1のヒータ58に対する上流側部分と支流路P1bにおける第2のヒータ60に対する上流側部分とを連絡する連絡路P1dとして機能する。本実施の形態の場合、第1のヒータ58から第1のファン62までの流路長が、第2のヒータ60から第1のファン62までの流路長より短い。そのため、第1のヒータ58での室外空気A3の流速が、第2のヒータ60での流速に比べて高速である。その結果、図14に示すように、第2のヒータ60に対して上流側の支流路P1bの部分を流れる室外空気A3の一部が、連絡路P1dを流れて支流路P1aに流入し、そして第1のヒータ58を通過する。 As shown in FIG. 14, the outdoor air A3 flows through the gap between the first cover member 118 and the top plate portion 120a of the second cover member 120. As shown in FIG. That is, the gap between the first cover member 118 and the second cover member 120 is divided into the upstream portion of the branch passage P1a with respect to the first heater 58 and the upstream portion of the branch passage P1b with respect to the second heater 60. It functions as a connecting path P1d that connects the In the case of this embodiment, the channel length from the first heater 58 to the first fan 62 is shorter than the channel length from the second heater 60 to the first fan 62 . Therefore, the flow velocity of the outdoor air A3 at the first heater 58 is higher than the flow velocity at the second heater 60 . As a result, as shown in FIG. 14, part of the outdoor air A3 flowing through the upstream branch passage P1b with respect to the second heater 60 flows through the connecting passage P1d and into the branch passage P1a. It passes through the first heater 58 .
 このような連絡路P1dを設ける理由は、第1のヒータ58および第2のヒータ60の排熱Hを有効利用するためである。具体的には、第1のヒータ58および第2のヒータ60が発生する熱の多くは、これらを通過する室外空気A3の加熱に使用される。しかしながら、発生した熱の一部は、第1のヒータ58および第2のヒータ60を通過する室外空気A3に伝達することなく、第1のヒータ58および第2のヒータ60の周囲に伝達する、特に第1のヒータ58と第2のヒータ60の上方に伝達する。 The reason for providing such a communication path P1d is to effectively utilize the exhaust heat H of the first heater 58 and the second heater 60. Specifically, much of the heat generated by first heater 58 and second heater 60 is used to heat outdoor air A3 passing through them. However, part of the generated heat is transmitted around the first heater 58 and the second heater 60 without being transmitted to the outdoor air A3 passing through the first heater 58 and the second heater 60. Specifically, it propagates above the first heater 58 and the second heater 60 .
 本実施の形態の場合、第1のヒータ58と第2のヒータ60の排熱Hは、連絡路P1dを流れる室外空気A3に伝達する。その排熱Hによって加熱された室外空気A3は、第1のヒータ58または第2のヒータ60を通過し、そして吸収材52を通過する。このように、連絡路P1dを流れる室外空気A3が第1のヒータ58と第2のヒータ60の排熱Hを回収することにより、第1および第2のヒータ58、60による室外空気A3の加熱効率が向上する。その結果、室外空気A3の加湿量(吸収材52から奪う水分量)が増加し、加湿運転の効率(室内Rinの加湿効率)または除湿運転における再生運転の効率(吸収材52の再生効率)が向上する。 In the case of the present embodiment, exhaust heat H from the first heater 58 and the second heater 60 is transferred to the outdoor air A3 flowing through the communication path P1d. The outdoor air A3 heated by the exhaust heat H passes through the first heater 58 or the second heater 60 and then through the absorbent 52 . In this manner, the outdoor air A3 flowing through the communication path P1d recovers the exhaust heat H of the first heater 58 and the second heater 60, whereby the outdoor air A3 is heated by the first and second heaters 58 and 60. Improve efficiency. As a result, the amount of humidification of the outdoor air A3 (the amount of moisture taken from the absorbent 52) increases, and the efficiency of the humidification operation (humidification efficiency of the indoor Rin) or the efficiency of the regeneration operation in the dehumidification operation (the regeneration efficiency of the absorbent 52) increases. improves.
 なお、このような排熱回収用の連絡路P1dは、第1のヒータ58および第2のヒータ60の上方に限らず、下方にも設けてもよい。連絡路P1dは、第1のヒータ58および第2のヒータ60近傍、すなわち第1のヒータ58および第2のヒータ60の排熱Hが伝達する領域を通過すればよい。 It should be noted that such a communication path P1d for exhaust heat recovery may be provided not only above the first heater 58 and the second heater 60, but also below them. The communication path P1d may pass through the vicinity of the first heater 58 and the second heater 60, that is, the area where the exhaust heat H of the first heater 58 and the second heater 60 is transmitted.
 第1のヒータ58および第2のヒータ60の少なくとも一方によって加熱された室外空気A3は、図10に示すように、吸収材52を第1の端面52aから第2の端面52bに向かって下方向に通過し、第2の空間S2に入る。 The outdoor air A3 heated by at least one of the first heater 58 and the second heater 60 moves the absorbent 52 downward from the first end surface 52a toward the second end surface 52b as shown in FIG. and enter the second space S2.
 図15は、第2の空間S2を示す換気装置50の筺体102の一部分の周辺の構成を示す上面図である。 FIG. 15 is a top view showing a configuration around a portion of the housing 102 of the ventilation device 50 showing the second space S2.
 図15に示すように、筺体102の底板102fには、高さ方向(Z軸方向)に延在する環状壁部102kが形成されている。この環状壁部102kの頂部に、第1の空間S1と第2の空間S2とを隔てる仕切り板124が配置される(図10参照)。これらの筺体102の環状壁部102kと仕切り板124とにより、第2の空間S2が画定されている。なお、吸収材52の下方に位置する環状壁部102kの部分102l上には、環状壁部102kと吸収材52との間をシールする、後述するシールユニットが取り付けられる。 As shown in FIG. 15, the bottom plate 102f of the housing 102 is formed with an annular wall portion 102k extending in the height direction (Z-axis direction). A partition plate 124 separating the first space S1 and the second space S2 is arranged at the top of the annular wall portion 102k (see FIG. 10). The annular wall portion 102k of the housing 102 and the partition plate 124 define a second space S2. A sealing unit (described later) for sealing between the annular wall portion 102k and the absorbing material 52 is mounted on the portion 102l of the annular wall portion 102k located below the absorbing material 52. FIG.
 図16は、吸収材52の径方向と直交する吸収材52の一部分の周辺の構成を示す概略的な断面図である。 FIG. 16 is a schematic cross-sectional view showing the configuration around a portion of the absorbent 52 perpendicular to the radial direction of the absorbent 52. As shown in FIG.
 図16に示すように、吸収材52の第1の端面52aに対する複数の第1のシールユニット126と、吸収材52の第2の端面52bに対する複数の第2のシールユニット128が、換気装置50に設けられている。本実施の形態の場合、第1のシールユニット126は、吸収材52の第1の端面52aに対向するヒータベース部材112の複数のビーム部112dに設けられている。第2のシールユニット128は、吸収材52の第2の端面52bに対向する筺体102の環状壁部102kの部分102lに設けられている。 As shown in FIG. 16, a plurality of first sealing units 126 against the first end face 52a of the absorbent material 52 and a plurality of second sealing units 128 against the second end face 52b of the absorbent material 52 are connected to the ventilator 50. is provided in In the case of this embodiment, the first seal unit 126 is provided on a plurality of beam portions 112 d of the heater base member 112 facing the first end face 52 a of the absorbent 52 . The second seal unit 128 is provided on the portion 102 l of the annular wall portion 102 k of the housing 102 facing the second end face 52 b of the absorbent 52 .
 複数の第1のシールユニット126は、吸収材52の第1の端面52aに高さ方向(Z軸方向)に接触するシール部材126aと、シール部材126aを保持してヒータベース部材112に取り付けられるシールホルダ126bとを備える。シール部材126aは、円盤状の吸収材52の径方向に実質的に延在し、吸収材52の第1の端面52aに接触する。本実施の形態の場合、シール部材126aは、ブラシである。なお、シール部材126aは、回転する吸収材52の第1の端面52aに対して摺動可能であれば、ブラシに限らない。シール部材126aは、例えば、可撓性を備えるシリコンゴムなどの弾性部材であってもよい。 The plurality of first seal units 126 are attached to the heater base member 112 while holding the seal member 126a contacting the first end face 52a of the absorbent 52 in the height direction (Z-axis direction) and the seal member 126a. and a seal holder 126b. The seal member 126a substantially extends in the radial direction of the disk-shaped absorbent 52 and contacts the first end face 52a of the absorbent 52 . In this embodiment, the sealing member 126a is a brush. Note that the sealing member 126a is not limited to a brush as long as it can slide against the first end surface 52a of the rotating absorbent 52 . The seal member 126a may be, for example, an elastic member such as silicone rubber having flexibility.
 このような第1のシールユニット126により、第1の流路P1を流れる室外空気A3、具体的には第1のカバー部材118内を流れる室外空気A3の一部が、第2の流路P2(すなわち第4の空間S4)内に侵入することが抑制される。また、それとは逆に、第2の流路P2内を流れる室外空気A4が第1の流路P1内に侵入することも抑制される。 With such a first seal unit 126, the outdoor air A3 flowing through the first flow path P1, specifically, a part of the outdoor air A3 flowing inside the first cover member 118 is transferred to the second flow path P2. (that is, entering the fourth space S4) is suppressed. Conversely, the outdoor air A4 flowing through the second flow path P2 is also suppressed from entering the first flow path P1.
 複数の第2のシールユニット128は、吸収材52の第2の端面52bに高さ方向(Z軸方向)に接触するシール部材128aと、シール部材128aを保持して筺体102に取り付けられるシールホルダ128bとを備える。シール部材128aは、円盤状の吸収材52の径方向に実質的に延在するとともに、第1のシールユニット126のシール部材126aに対して平行に延在し、吸収材52の第2の端面52bに接触する。本実施の形態の場合、シール部材128aは、ブラシである。なお、シール部材128aは、回転する吸収材52の第2の端面52bに対して摺動可能であれば、ブラシに限らない。シール部材128aは、例えば、可撓性を備えるシリコンゴムなどの弾性部材であってもよい。また、シール部材128aは、第1のシールユニット126のシール部材126aと異なってもよく、また同一であってもよい。 The plurality of second seal units 128 includes a seal member 128a that contacts the second end face 52b of the absorbent 52 in the height direction (Z-axis direction), and a seal holder that holds the seal member 128a and is attached to the housing 102. 128b. The seal member 128a extends substantially in the radial direction of the disk-shaped absorber 52, extends parallel to the seal member 126a of the first seal unit 126, and extends along the second end face of the absorber 52. 52b. In this embodiment, the sealing member 128a is a brush. Note that the sealing member 128a is not limited to a brush as long as it can slide against the second end surface 52b of the rotating absorbent 52 . The sealing member 128a may be, for example, an elastic member such as silicone rubber having flexibility. Also, the seal member 128a may be different from the seal member 126a of the first seal unit 126, or may be the same.
 このような第2のシールユニット128により、第1の流路P1を流れる室外空気A3、具体的には吸収材52の第2の端面52bから第2の空間S2に流入する室外空気A3の一部が、第2の流路P2(すなわち第3の空間S3)内に侵入することが抑制される。また、それとは逆に、第2の流路P2内を流れる室外空気A4が第1の流路P1内に侵入することも抑制される。 With such a second seal unit 128, part of the outdoor air A3 flowing through the first flow path P1, specifically, the outdoor air A3 flowing into the second space S2 from the second end surface 52b of the absorbent 52 is is suppressed from entering the second flow path P2 (that is, the third space S3). Conversely, the outdoor air A4 flowing through the second flow path P2 is also suppressed from entering the first flow path P1.
 なお、本実施の形態の場合、図12に示すように、第2のシールユニット128(そのシール部材128a)が接触する吸収材52の第2の端面52b上には、吸収材ホルダ114の複数のスポーク部114cが存在する。そのため、吸収材ホルダ114の回転中、シール部材128aは、複数のスポーク部114cを乗り越える必要がある。 In this embodiment, as shown in FIG. 12, a plurality of absorbent holders 114 are provided on the second end face 52b of the absorbent 52 with which the second seal unit 128 (the seal member 128a thereof) contacts. There is a spoke portion 114c of . Therefore, during rotation of the absorbent holder 114, the seal member 128a needs to climb over the plurality of spoke portions 114c.
 このとき、シール部材128a全体が同時のタイミングでスポーク部114cを乗り越えると、そのタイミングに吸収材ホルダ114の回転抵抗が増加する。その結果、吸収材ホルダ114を回転させるモータ54に断続的にトルク負荷がかかる。 At this time, when the entire sealing member 128a gets over the spoke portion 114c at the same timing, the rotational resistance of the absorbent holder 114 increases at that timing. As a result, an intermittent torque load is applied to the motor 54 that rotates the absorbent holder 114 .
 そこで、シール部材128a全体が同時のタイミングでスポーク部114cを乗り越えないように、スポーク部114cが延在している。具体的には、シール部材128aは吸収材52の径方向に実質的に延在し、スポーク部114cは吸収材52の径方向に実質的に延在していない。その結果、例えばシール部材128aの吸収材52の中心側の端がスポーク部114c上に位置するとき、シール部材128aの外側の端はスポーク部114c上に位置していない。このような延在方向の違いにより、シール部材128aは、その全体がスポーク部114cを同時に乗り越えることなく、一部分ずつスポーク部114cを乗り越える。その結果、モータ54への負荷が低減される。 Therefore, the spoke portion 114c is extended so that the entire sealing member 128a does not get over the spoke portion 114c at the same timing. Specifically, the sealing member 128 a substantially extends in the radial direction of the absorbent 52 , and the spoke portion 114 c does not substantially extend in the radial direction of the absorbent 52 . As a result, for example, when the center side end of the sealing member 128a of the absorbent 52 is positioned on the spoke portion 114c, the outer end of the sealing member 128a is not positioned on the spoke portion 114c. Due to such a difference in extending direction, the seal member 128a does not ride over the spoke portions 114c as a whole, but partially rides over the spoke portions 114c. As a result, the load on the motor 54 is reduced.
 また、図16に示すように、第1のシールユニット126が設けられるヒータベース部材112のビーム部112dには、第1のシールユニット126から離れる方向に延在する衝突板112eが設けられている。衝突板112eは、室外空気A4が流出する吸収材52の第1の端面52aの部分の上方を延在する。その結果、衝突板112eには、第1のシールユニット126近傍で吸収材52を通過した室外空気A4が衝突する。この「衝突板」について比較例を挙げて説明する。 Further, as shown in FIG. 16, the beam portion 112d of the heater base member 112 provided with the first seal unit 126 is provided with a collision plate 112e extending in a direction away from the first seal unit 126. . The collision plate 112e extends above the portion of the first end surface 52a of the absorbent 52 through which the outdoor air A4 flows. As a result, the outdoor air A4 that has passed through the absorbing material 52 near the first seal unit 126 collides with the collision plate 112e. This "collision plate" will be described with reference to a comparative example.
 図17は、比較例の換気装置における、吸収材52の径方向と直交する吸収材52の一部分の周辺の構成を示す概略的な断面図である。 FIG. 17 is a schematic cross-sectional view showing the configuration around a portion of the absorbent 52 orthogonal to the radial direction of the absorbent 52 in the ventilator of the comparative example.
 図17に示すように、比較例の換気装置では、第1のシールユニット126から離れるように第2の流路P2内に突出する衝突板112eがない。この場合、第1のヒータ58および第2のヒータ60を通過して吸収材52内に流入する前の室外空気A3の一部が、第2の流路P2内に侵入しうる。具体的には、室外空気A3の一部が、シール部材126aと吸収材52との間を通過して第2の流路P2内に侵入しうる。 As shown in FIG. 17, in the ventilator of the comparative example, there is no impingement plate 112e protruding into the second flow path P2 away from the first seal unit 126. As shown in FIG. In this case, part of the outdoor air A3 before passing through the first heater 58 and the second heater 60 and flowing into the absorbent 52 may enter the second flow path P2. Specifically, part of the outdoor air A3 may pass between the seal member 126a and the absorbent 52 and enter the second flow path P2.
 この室外空気A3のシール部材126aと吸収材52との間の通過は、吸収材52の通風抵抗、すなわち吸収材52を通過することによって生じる圧力損失を原因として起こる。具体的には、吸収材52に対して上流側の第1の流路P1の部分(すなわち空間S5)内の圧力は、吸収材52によって圧力損失が起こる前の圧力である。これに対して、吸収材52に対して下流側の第2の流路P2の部分(すなわち第4の空間S4)内の圧力は、吸収材52を通過して圧力損失が生じた後の圧力である。すなわち、空間S5の圧力は、吸収材52を通過していない分、空間S4内の圧力に比べて相対的に高い。この2つの圧力の差により、室外空気A3のシール部材126aと吸収材52との間の通過が起こりうる。その結果、相対的に高圧で第1のヒータ58および第2のヒータ60によって加熱された室外空気A3が、シール部材126aと吸収材52との間を介して、相対的に低圧の第2の流路P2内に侵入しうる。 The passage of the outdoor air A3 between the sealing member 126a and the absorbent 52 is caused by the draft resistance of the absorbent 52, that is, the pressure loss caused by passing through the absorbent 52. Specifically, the pressure in the portion of the first flow path P<b>1 on the upstream side of the absorbent 52 (that is, the space S<b>5 ) is the pressure before pressure loss occurs due to the absorbent 52 . On the other hand, the pressure in the portion of the second flow path P2 on the downstream side of the absorbent 52 (that is, the fourth space S4) is the pressure after passing through the absorbent 52 and causing pressure loss. is. That is, the pressure in the space S5 is relatively higher than the pressure in the space S4 because it does not pass through the absorbent 52 . The difference between the two pressures can cause outdoor air A3 to pass between the seal member 126a and the absorbent material 52 . As a result, the outdoor air A3 heated by the first heater 58 and the second heater 60 at a relatively high pressure passes between the seal member 126a and the absorbent 52 and flows through the second heater at a relatively low pressure. It can intrude into the flow path P2.
 このように加熱されて高温の室外空気A3の一部が吸収材52を通過せずに第2の流路P2内に侵入すると、室外空気A3が吸収材52から奪う水分量が減少する。すなわち加湿運転の効率(室内Rinの加湿効率)が低下する。この対処として、本実施の形態の場合、図16に示すように、第1のシールユニット126から第2の流路P2内に突出する衝突板112eが存在する。 When part of the heated outdoor air A3 of high temperature enters the second flow path P2 without passing through the absorbent 52, the amount of moisture taken from the absorbent 52 by the outdoor air A3 decreases. That is, the efficiency of the humidification operation (humidification efficiency of the room Rin) decreases. As a countermeasure for this, in the case of the present embodiment, as shown in FIG. 16, there is a collision plate 112e that protrudes from the first seal unit 126 into the second flow path P2.
 図16に示すように、第1のシールユニット126近傍を流れる室外空気A4は、吸収材52の第1の端面52aから流出した後、衝突板112eに衝突する。それにより、吸収材52の第1の端面52aと衝突板112eとの間に乱流状態の高圧領域APが発生する。この高圧領域APにより、シール部材126aの両側の圧力差が小さくなる。その結果、シール部材126aと吸収材52との間を介する室外空気A3の第2の流路P2への侵入が抑制される。 As shown in FIG. 16, the outdoor air A4 flowing near the first seal unit 126 flows out from the first end face 52a of the absorbent 52 and then collides with the collision plate 112e. As a result, a turbulent high pressure region AP is generated between the first end face 52a of the absorber 52 and the collision plate 112e. This high pressure area AP reduces the pressure difference between both sides of the seal member 126a. As a result, entry of the outdoor air A3 into the second flow path P2 through between the seal member 126a and the absorbent 52 is suppressed.
 本実施の形態の場合、衝突板112eの先端(第1のシールユニット126から遠い端)には、吸収材52の第1の端面52aに向かって延在する絞り壁112fが設けられている。これにより、シール部材126a、衝突板112e、吸収材52の第1の端面52a、および絞り壁112fによって囲まれたほぼ閉じた状態の空間が形成され、その空間内により圧力が高い高圧領域APが発生する。その結果、絞り壁112fがない場合に比べて、シール部材126aと吸収材52との間を介する室外空気A3の第2の流路P2への侵入がより抑制される。 In the case of this embodiment, a throttle wall 112f extending toward the first end face 52a of the absorber 52 is provided at the tip of the collision plate 112e (the end far from the first seal unit 126). As a result, a substantially closed space surrounded by the sealing member 126a, the collision plate 112e, the first end surface 52a of the absorbent 52, and the restrictor wall 112f is formed, and a high pressure area AP having a higher pressure is formed in the space. Occur. As a result, intrusion of the outdoor air A3 into the second flow path P2 through the space between the sealing member 126a and the absorbent 52 is further suppressed as compared with the case where the throttle wall 112f is not provided.
 なお、図16に示すように、第1のシールユニット126のシール部材126aと第2のシールユニット128のシール部材128aそれぞれは、吸収材52の第1の端面52aおよび第2の端面52bに対して直交する方向に吸収材52に接触している。しかしながら、本開示の実施の形態はこれに限らない。 As shown in FIG. 16, the sealing member 126a of the first sealing unit 126 and the sealing member 128a of the second sealing unit 128 are arranged against the first end surface 52a and the second end surface 52b of the absorbent 52, respectively. contacting the absorber 52 in a direction orthogonal to the However, embodiments of the present disclosure are not limited to this.
 図18は、異なる実施の形態に係る換気装置における、吸収材52の径方向と直交する吸収材52の一部分の周辺の構成を示す概略的な断面図である。 FIG. 18 is a schematic cross-sectional view showing the configuration around a portion of the absorbent 52 perpendicular to the radial direction of the absorbent 52 in a ventilator according to a different embodiment.
 図18に示すように、異なる実施の形態に係る換気装置において、シール部材126a、128aそれぞれは、第1の端面52aおよび第2の端面52bそれぞれに対して傾斜した状態で吸収材52に接触する。具体的には、吸収材52の回転方向DRの上流側から下流側に向かうにしたがって吸収材52に接近するように傾いた状態で、シール部材126a、128aはシールホルダ226b、228bに保持されている。この場合、図16に示す実施の形態に比べて、シール部材126a、128aと吸収材52との間の摺動抵抗が低くなり、モータ54に対する負荷が低下する。 As shown in FIG. 18, in a ventilator according to a different embodiment, each of the sealing members 126a and 128a contacts the absorbent material 52 while being inclined with respect to the first end surface 52a and the second end surface 52b. . Specifically, the seal members 126a and 128a are held by the seal holders 226b and 228b in an inclined state so as to approach the absorber 52 from the upstream side to the downstream side in the rotational direction DR of the absorber 52. there is In this case, the sliding resistance between the seal members 126a, 128a and the absorbing material 52 is lower than in the embodiment shown in FIG. 16, and the load on the motor 54 is reduced.
 なお、吸収材52の回転方向が切り替わる場合、シール部材126a、128aそれぞれは、吸収材52の径方向に延在する回転中心線を中心として揺動可能にシールホルダに保持されてもよい。 When the rotational direction of the absorber 52 is switched, each of the seal members 126a and 128a may be held by the seal holder so as to be swingable about the center line of rotation extending in the radial direction of the absorber 52 .
 また、シール部材126aと第1の端面52aとの間、およびシール部材128aと第2の端面52bとの間を室外空気A3または室外空気A4が通過しないように、第1のファン62と第2のファン66の回転数を調節してもよい。例えば第1のファン62や第2のファン66の回転速度が高くなると、第1の流路P1や第2の流路P2内の圧力が下がる。それとは逆に回転速度が低くなると圧力が上がる。 Further, the first fan 62 and the second fan 62 are arranged so that the outdoor air A3 or the outdoor air A4 does not pass between the seal member 126a and the first end surface 52a and between the seal member 128a and the second end surface 52b. You may adjust the rotation speed of the fan 66 of . For example, when the rotation speed of the first fan 62 and the second fan 66 increases, the pressure in the first flow path P1 and the second flow path P2 decreases. Conversely, as the rotation speed decreases, the pressure increases.
 例えば、第1のヒータ58および第2のヒータ60の少なくとも一方がONの場合、第1のファン62の回転速度を上げて第1の流路P1内の圧力を下げるおよび第2のファン66の回転速度を下げて第2の流路P2内の圧力を上げる、の少なくともいずれかを行う。このことにより、加熱された室外空気A3の第1のシールユニット126のシール部材126aと吸収材52との間の通過をより抑制することができる。 For example, when at least one of the first heater 58 and the second heater 60 is ON, the rotation speed of the first fan 62 is increased to decrease the pressure in the first flow path P1 and the second fan 66 is turned on. At least one of the following is performed: Decrease the rotation speed to increase the pressure in the second flow path P2. As a result, passage of the heated outdoor air A3 between the seal member 126a of the first seal unit 126 and the absorbent 52 can be further suppressed.
 吸収材52に関するシールとして、第1のシールユニット126と第2のシールユニット128以外に、図13に示すように、ラビリンスシール部材130を換気装置50は備える。 In addition to the first seal unit 126 and the second seal unit 128, the ventilator 50 includes a labyrinth seal member 130 as a seal for the absorbent material 52, as shown in FIG.
 図19は、吸収材ホルダ114の外側に形成されたラビリンス流路PLを示す吸収材ホルダ114の概略的な断面図である。 19 is a schematic cross-sectional view of the absorbent holder 114 showing the labyrinth flow path PL formed outside the absorbent holder 114. FIG.
 図19に示すように、吸収材ホルダ114は、回転するために、その円筒状部114aの外周面が、ヒータベース部材112の吸収材収容部112bと仕切り板124に対して間隔をあけて対向している。そのため、本来、吸収材52を通過すべき室外空気A3の一部が、円筒状部114aの外側を流れて吸収材52をバイパスしうる。室外空気A3が第1のヒータ58および第2のヒータ60の少なくとも一方によって加熱されている場合、このようなバイパスが発生すると、室外空気A3が吸収材52から奪う水分量が減少する。すなわち加湿運転の効率(室内Rinの加湿効率)または除湿運転における再生運転の効率(吸収材52の再生効率)が低下する。そこで、本実施の形態の場合、ラビリンスシール部材130により、吸収材ホルダ114とそれに対向する部材(ヒータベース部材112と仕切り板124)との間にラビリンス流路PLが形成されている。なお、ラビリンス流路PLは、流体の流れ方向を複数回変更させる流路形状を備えることによって高い流路抵抗を備える流路を言う。 As shown in FIG. 19, since the absorber holder 114 rotates, the outer peripheral surface of the cylindrical portion 114a faces the absorber containing portion 112b of the heater base member 112 and the partition plate 124 with a gap therebetween. are doing. Therefore, part of the outdoor air A3 that should pass through the absorbent 52 can bypass the absorbent 52 by flowing outside the cylindrical portion 114a. When the outdoor air A3 is heated by at least one of the first heater 58 and the second heater 60, the amount of moisture taken from the absorbent 52 by the outdoor air A3 is reduced when such a bypass occurs. That is, the efficiency of the humidification operation (humidification efficiency of the indoor Rin) or the efficiency of the regeneration operation (the regeneration efficiency of the absorbent 52) in the dehumidification operation decreases. Therefore, in the case of the present embodiment, the labyrinth seal member 130 forms a labyrinth flow path PL between the absorbent holder 114 and the members facing it (the heater base member 112 and the partition plate 124). The labyrinth flow path PL refers to a flow path having a high flow resistance due to the shape of the flow path that changes the flow direction of the fluid multiple times.
 ラビリンスシール部材130は、ラビリンス流路PLの一部として、吸収材52の径方向(Y軸方向)に延在する径方向流路PLaを形成する端面130aを備える。具体的には、本実施の形態の場合、吸収材ホルダ114は、その円筒状部114aの外周面に外歯114dを備える。また、吸収材ホルダ114は、吸収材52の第1の端面52aから遠い側の外歯114dの端面に設けられた環状のフランジ114eを備える。ラビリンスシール部材130の端面130aは、フランジ114eとの間に径方向流路PLaを形成する。 The labyrinth seal member 130 includes an end surface 130a forming a radial flow path PLa extending in the radial direction (Y-axis direction) of the absorbent 52 as part of the labyrinth flow path PL. Specifically, in the case of this embodiment, absorber holder 114 has external teeth 114d on the outer peripheral surface of cylindrical portion 114a. The absorber holder 114 also has an annular flange 114e provided on the end face of the external tooth 114d on the far side from the first end face 52a of the absorber 52. As shown in FIG. An end surface 130a of the labyrinth seal member 130 forms a radial flow path PLa between itself and the flange 114e.
 このような径方向流路PLaを含むラビリンス流路PLにより、室外空気A3は、円筒状部114aの外側を流れて吸収材52をバイパスし難くなり、吸収材52を通過する。その結果、室外空気A3が吸収材52をバイパスすることよって生じる加湿運転の効率(室内Rinの加湿効率)または除湿運転における再生運転の効率(吸収材52の再生効率)の低下を抑制することができる。 The labyrinth flow path PL including such a radial flow path PLa makes it difficult for the outdoor air A3 to flow outside the cylindrical portion 114a and bypass the absorbent 52, so that it passes through the absorbent 52. As a result, it is possible to suppress a decrease in the efficiency of the humidification operation (humidification efficiency of the indoor Rin) or the efficiency of the regeneration operation in the dehumidification operation (the regeneration efficiency of the absorbent 52) caused by the outdoor air A3 bypassing the absorbent 52. can.
 また、本実施の形態の場合、ラビリンスシール部材130の端面130aには、吸収材ホルダ114のフランジ114eに向かって突出する突条部130bが設けられている。これにより、ラビリンス流路PLの流路抵抗がさらに増加する。 Further, in the case of the present embodiment, the end surface 130a of the labyrinth seal member 130 is provided with a ridge portion 130b that protrudes toward the flange 114e of the absorber holder 114. As shown in FIG. This further increases the channel resistance of the labyrinth channel PL.
 さらに、本実施の形態の場合、仕切り板124には、吸収材52の第2の端面52bに間隔をあけて対向するように吸収材52の径方向(Y軸方向)に延在するリブ124aが設けられている。このリブ124aにより、ラビリンス流路PLから室外空気A3が流出しにくくなり、その結果として、ラビリンス流路PLの流路抵抗がさらに増加する。 Furthermore, in the case of the present embodiment, ribs 124a extending in the radial direction (Y-axis direction) of the absorbent 52 are provided on the partition plate 124 so as to face the second end surface 52b of the absorbent 52 with a gap therebetween. is provided. The rib 124a makes it difficult for the outdoor air A3 to flow out of the labyrinth flow path PL, and as a result, the flow path resistance of the labyrinth flow path PL further increases.
 さらにまた、本実施の形態の場合、仕切り板124のリブ124aの先端に、吸収材52の第2の端面52bに向かって突出する突条部124bが設けられている。この突条部124bにより、ラビリンス流路PLから室外空気A3が流出しにくくなり、その結果として、ラビリンス流路PLの流路抵抗がさらに増加する。 Furthermore, in the case of the present embodiment, the ribs 124a of the partition plate 124 are provided at their ends with ridges 124b that protrude toward the second end face 52b of the absorbent 52. As shown in FIG. The protrusion 124b makes it difficult for the outdoor air A3 to flow out of the labyrinth flow path PL, and as a result, the flow path resistance of the labyrinth flow path PL further increases.
 なお、ラビリンス流路PLは、吸収材ホルダ114の円筒状部114aの外周面全体にわたって形成してもよく、また全体にわたって形成しなくてもよい。ラビリンス流路PLの主目的は、第1のヒータ58および第2のヒータ60の少なくとも1つによって加熱された室外空気A3の多くが吸収材52を通過するように、その室外空気A3の吸収材52のバイパスを抑制することである。したがって、加熱された室外空気A3が通過する吸収材52の部分に対応する吸収材ホルダ114の円筒状部114aの部分の外側に、ラビリンス流路PLが少なくとも存在すればよい。なお、円筒状部114aの外周面全体にわたってラビリンス流路PLを形成した場合、第2の端面52bから第1の端面52aに向かって吸収材52を通過する室外空気A4についても、吸収材52のバイパスを抑制することができる。 The labyrinth flow path PL may be formed over the entire outer peripheral surface of the cylindrical portion 114a of the absorbent holder 114, or may not be formed over the entire surface. The main purpose of the labyrinth flow path PL is to absorb the outdoor air A3 so that most of the outdoor air A3 heated by at least one of the first heater 58 and the second heater 60 passes through the absorbent 52. 52 bypass is suppressed. Therefore, it is sufficient that at least the labyrinth flow path PL exists outside the portion of the cylindrical portion 114a of the absorbent holder 114 corresponding to the portion of the absorbent 52 through which the heated outdoor air A3 passes. Note that when the labyrinth flow path PL is formed over the entire outer peripheral surface of the cylindrical portion 114a, the outdoor air A4 passing through the absorbent 52 from the second end face 52b toward the first end face 52a also passes through the absorbent 52. Bypass can be suppressed.
 また、本実施の形態の場合、ラビリンスシール部材130の端面130aは、吸収材ホルダ114のフランジ114eとの間に径方向流路PLaを形成する。ラビリンスシール部材130の端面130aと協働して径方向流路PLaを形成する吸収材ホルダ114の部分は、フランジ114eに限らない。吸収材ホルダ114が径方向外側に突出する拡径部を備えていれば、ラビリンスシール部材130の端面130aはその拡径部との間に、径方向流路PLaを形成することが可能である。なお、フランジ114eは、外歯114dの歯間を流れる室外空気A3を妨害するものであり、これによっても、ラビリンス流路PLの流路抵抗が増加している。 In addition, in the case of the present embodiment, the end face 130a of the labyrinth seal member 130 forms the radial flow path PLa between the flange 114e of the absorbent holder 114 and the end face 130a. The portion of the absorbent holder 114 that cooperates with the end surface 130a of the labyrinth seal member 130 to form the radial flow path PLa is not limited to the flange 114e. If the absorber holder 114 has an enlarged diameter portion that protrudes radially outward, the end surface 130a of the labyrinth seal member 130 can form a radial flow path PLa between the enlarged diameter portion and the enlarged diameter portion. . The flange 114e obstructs the outdoor air A3 flowing between the teeth of the external teeth 114d, which also increases the flow path resistance of the labyrinth flow path PL.
 吸収材52を通過した室外空気A3は、第2の空間S2内に流入する。 The outdoor air A3 that has passed through the absorbent 52 flows into the second space S2.
 図20は、第1のファン62まわりの構成要素を示す概略的な断面図である。 FIG. 20 is a schematic cross-sectional view showing components around the first fan 62. FIG.
 図20に示すように、第1の流路P1を流れる、具体的には第2の空間S2内に流入した室外空気A3は、第1のファン62に吸い込まれる。本実施の形態の場合、第1のファン62は、シロッコファンであって、ファン室F2に配置された上下方向(Z軸方向)に延在する回転中心線を中心にして回転する羽根車62aと、羽根車62aを回転させるモータ62bとから構成されている。室外空気A3は、羽根車66a内の回転により、ファン室F2に吸い込まれる。なお、ファン室F2は、仕切り板124上に設けられた環状壁124cと環状壁124c上に取り付けられるファンカバー部材132によって画定されている。仕切り板124には、ファン室F2に連通して室外空気A3が通過する空気吸い込み口124dが形成されている。 As shown in FIG. 20, the outdoor air A3 that flows through the first flow path P1, specifically, that has flowed into the second space S2, is sucked into the first fan 62. As shown in FIG. In the case of this embodiment, the first fan 62 is a sirocco fan, and an impeller 62a that rotates around a rotation center line extending in the vertical direction (Z-axis direction) arranged in the fan chamber F2. and a motor 62b for rotating the impeller 62a. The outdoor air A3 is sucked into the fan chamber F2 by the rotation inside the impeller 66a. The fan chamber F2 is defined by an annular wall 124c provided on the partition plate 124 and a fan cover member 132 attached on the annular wall 124c. The partition plate 124 is formed with an air suction port 124d that communicates with the fan chamber F2 and through which the outdoor air A3 passes.
 本実施の形態の場合、第1のファン62のモータ62bは、ファンカバー部材132上に設けられ、モータカバー部材134によって覆われている。すなわち、モータ62bは、ファンカバー部材132とモータカバー部材134によって画定されたモータ室M1に格納されている。 In the case of this embodiment, the motor 62b of the first fan 62 is provided on the fan cover member 132 and covered with the motor cover member 134. That is, the motor 62b is housed in a motor chamber M1 defined by the fan cover member 132 and the motor cover member 134. As shown in FIG.
 本実施の形態の場合、モータ室M1内に室外空気A3が流入するように、ファンカバー部材132とモータカバー部材134とが構成されている。 In the case of this embodiment, the fan cover member 132 and the motor cover member 134 are configured so that the outdoor air A3 flows into the motor chamber M1.
 具体的に説明すると、第1のファン62が回転すると、図8および図9に示すように、第3の吸気口102gおよび第4の吸気口102hを介して、室外空気A3が第1の空間S1内に流入する。第1の空間S1内に流入した室外空気A3は、その一部がそのまま第1のヒータ58および第2のヒータ60を通過する。その残りは、図20に示すように、モータ室M1内に流入し、モータ62bを冷却してモータ室M1から流出し、そして、第1のヒータ58および第2のヒータ60を通過する。 Specifically, when the first fan 62 rotates, as shown in FIGS. 8 and 9, the outdoor air A3 flows into the first space through the third air intake port 102g and the fourth air intake port 102h. It flows into S1. Part of the outdoor air A3 that has flowed into the first space S1 passes through the first heater 58 and the second heater 60 as they are. The remainder flows into motor chamber M1, cools motor 62b, flows out of motor chamber M1, and passes through first heater 58 and second heater 60, as shown in FIG.
 モータ室M1内に侵入する室外空気A3が局所的に上下方向(Z軸方向)に流れるように、ファンカバー部材132とモータカバー部材134それぞれには、上下方向に延在する複数の障害壁132a、134aが設けられている。これらの障害壁132a、134aにより、室外空気A3が上下方向に流れ、室外空気A3に同伴する異物が重力によって取り除かれる。その結果、モータ室M1への異物の侵入が抑制されている。 The fan cover member 132 and the motor cover member 134 each have a plurality of obstacle walls 132a extending in the vertical direction so that the outdoor air A3 entering the motor chamber M1 locally flows in the vertical direction (the Z-axis direction). , 134a are provided. The obstacle walls 132a and 134a allow the outdoor air A3 to flow vertically, and the foreign matter entrained in the outdoor air A3 is removed by gravity. As a result, entry of foreign matter into the motor chamber M1 is suppressed.
 また、第1の空間S1に連通する第4の吸気口102hには、異物の侵入を抑制する複数の桟102mが設けられている。さらに、少なくとも1つの桟102mの上面102nには、第1の空間S1側が高い傾斜面102oが形成されている。この傾斜面102oにより、斜め下方向に降る雨水の第1の空間S1内への侵入が抑制される。なお、同様の桟102mが、第1の吸気口102a、第2の吸気口102b、および第3の吸気口102gにも設けられている。 In addition, a plurality of crosspieces 102m for suppressing entry of foreign matter are provided in the fourth air inlet 102h communicating with the first space S1. Further, an upper surface 102n of at least one crosspiece 102m is formed with an inclined surface 102o that is higher on the first space S1 side. The inclined surface 102o suppresses rainwater falling obliquely downward from entering the first space S1. Similar crosspieces 102m are also provided at the first air inlet 102a, the second air inlet 102b, and the third air inlet 102g.
 なお、雨水の侵入を抑制する手段は、傾斜面102oに限らない。 It should be noted that the means for suppressing intrusion of rainwater is not limited to the inclined surface 102o.
 図21は、異なる実施の形態に係る換気装置における、筺体202の第4の吸気口202hの構成を示す概略的な断面図である。 FIG. 21 is a schematic cross-sectional view showing the configuration of the fourth air inlet 202h of the housing 202 in a ventilator according to another embodiment.
 図21に示すように、異なる実施の形態に係る換気装置において、筺体202の第4の吸気口202hには、複数の桟202mが設けられている。桟202mそれぞれには、下方に位置する他の桟202mに向かって延在する垂れ下がり部202pが設けられている。このような垂れ下がり部202pによっても、雨水の第1の空間S1内への侵入を抑制することができる。 As shown in FIG. 21, in a ventilator according to a different embodiment, the fourth air inlet 202h of the housing 202 is provided with a plurality of crosspieces 202m. Each crosspiece 202m is provided with a hanging portion 202p extending toward another crosspiece 202m located below. The drooping portion 202p can also prevent rainwater from entering the first space S1.
 本実施の形態の場合、図10および図15に示すように、吸収材52から空気吸い込み口124dとの間の第1の流路P1の部分、すなわち第2の空間S2内には、オリフィス部材136が設けられている。オリフィス部材136は、吸収材52から空気吸い込み口124dとの間の第1の流路P1の部分において、局所的に流路断面積を小さくするための障害物である。オリフィス部材136を設けることにより、オリフィス部材136を設けない場合に比べて第2の空間S2内の温度分布が一様化される。 In the case of this embodiment, as shown in FIGS. 10 and 15, the portion of the first flow path P1 between the absorbent 52 and the air suction port 124d, that is, the second space S2 has an orifice member 136 is provided. The orifice member 136 is an obstacle for locally reducing the flow passage cross-sectional area in the portion of the first flow passage P1 between the absorbent 52 and the air suction port 124d. By providing the orifice member 136, the temperature distribution in the second space S2 is made more uniform than when the orifice member 136 is not provided.
 具体的に説明すると、第2の空間S2には、第1のヒータ58を通過した室外空気A3と第2のヒータ60を通過した室外空気A3が混ざりながら流れる。第1のヒータ58と第2のヒータ60の両方がONである場合と両方がOFFである場合、第2の空間S2内の温度分布は実質的に一様である。 Specifically, in the second space S2, the outdoor air A3 that has passed through the first heater 58 and the outdoor air A3 that has passed through the second heater 60 flow while being mixed. The temperature distribution in the second space S2 is substantially uniform when both the first heater 58 and the second heater 60 are ON and when both are OFF.
 これに対して、第1のヒータ58のみがONである場合の温度分布と第2のヒータ60のみがONである場合の温度分布は、それぞれ一様でなく、また互いに大きく異なる。具体的には、換気装置50の後側に配置されている第1のヒータ58を通過した室外空気A3は第2の空間S2において後側部分を流れ、前側に配置されている第2のヒータ60を通過した室外空気A3は第2の空間S2において前側部分を流れる。第2の空間S2を流れる室外空気A3は、第1のファン62の空気吸い込み口124d近傍で旋回し始め、その状態で空気吸い込み口124dを介してファン室F2に流入する。このとき、例えば後側の第1のヒータ58のみONである場合、第2の空間S2内の後側部分を温度が高い室外空気A3が流れ、前側部分を温度が低い(加熱されていない)室外空気A3が流れる。この状態で室外空気A3が空気吸い込み口124d近傍で旋回すると、第2の空間S2内の室外空気A3の温度を測定する温度センサ138の検出精度が低下する。なお、温度センサ138は、図9に示すように仕切り板124に設けられている。 On the other hand, the temperature distribution when only the first heater 58 is ON and the temperature distribution when only the second heater 60 is ON are not uniform and differ greatly from each other. Specifically, the outdoor air A3 that has passed through the first heater 58 arranged on the rear side of the ventilator 50 flows through the rear portion of the second space S2, and flows through the second heater arranged on the front side. The outdoor air A3 that has passed through 60 flows through the front portion of the second space S2. The outdoor air A3 flowing through the second space S2 begins to swirl in the vicinity of the air intake port 124d of the first fan 62, and then flows into the fan chamber F2 through the air intake port 124d. At this time, for example, when only the first heater 58 on the rear side is ON, the outdoor air A3 having a high temperature flows through the rear portion of the second space S2, and the temperature of the front portion is low (not heated). Outdoor air A3 flows. If the outdoor air A3 swirls in the vicinity of the air intake port 124d in this state, the detection accuracy of the temperature sensor 138 that measures the temperature of the outdoor air A3 in the second space S2 is lowered. Note that the temperature sensor 138 is provided on the partition plate 124 as shown in FIG.
 図15に示すように、オリフィス部材136は、第1および第2のヒータ58、60から空気吸い込み口124dまでの第1の流路P1の部分(第2の空間S2)において、温度センサ138に対して上流側に配置されている。また、オリフィス部材136は、第2の空間S2を横断するように設けられている。したがって、図10に示すように、第1のヒータ58を通過した室外空気A3と第2のヒータ60を通過した室外空気A3は、オリフィス部材136と仕切り板124との間の狭い隙間を通過して空気吸い込み口124dに向かう。その隙間と隙間を通過後に発生する剥離流による渦により、第1のヒータ58を通過した室外空気A3と第2のヒータ60を通過した室外空気A3が適度に混ざり合う。その結果、オリフィス部材136の下流側に位置する温度センサ138の周囲において、第1のヒータ58のみがONである場合の温度分布と第2のヒータ60のみがONである場合の温度分布が略等しくなる。なお、オリフィス部材136には、副次的な効果として、第1のファン62によって発生して室外Routに漏れる騒音レベルを低減する効果もある。 As shown in FIG. 15, the orifice member 136 is connected to the temperature sensor 138 in the portion (second space S2) of the first flow path P1 from the first and second heaters 58, 60 to the air intake port 124d. It is arranged on the upstream side. Also, the orifice member 136 is provided so as to cross the second space S2. Therefore, as shown in FIG. 10, the outdoor air A3 that has passed through the first heater 58 and the outdoor air A3 that has passed through the second heater 60 pass through the narrow gap between the orifice member 136 and the partition plate 124. to the air intake port 124d. The outdoor air A3 that has passed through the first heater 58 and the outdoor air A3 that has passed through the second heater 60 are appropriately mixed by the vortex caused by the separation flow generated after passing through the gap. As a result, around the temperature sensor 138 located downstream of the orifice member 136, the temperature distribution when only the first heater 58 is ON and the temperature distribution when only the second heater 60 is ON are substantially equal to each other. be equal. As a secondary effect, the orifice member 136 also has the effect of reducing the level of noise generated by the first fan 62 and leaking to the outdoor Rout.
 なお、オリフィス部材136は、他の形状も可能である。 It should be noted that the orifice member 136 can also have other shapes.
 図22は、異なる実施の形態に係る換気装置における、第2の空間S2を示す換気装置の筺体102の一部分の上面図である。 FIG. 22 is a top view of part of the ventilation device housing 102 showing the second space S2 in a ventilation device according to a different embodiment.
 図22に示すように、異なる実施の形態に係る換気装置おいて、オリフィス部材236は、第2の空間S2を横断するように設けられておらず、換気装置の前側のみに設けられている。この場合、第1のヒータ58を通過した室外空気A3と第2のヒータ60を通過した室外空気A4は、上方視(Z軸方向視)でオリフィス部材236をバイパスするように流れる。バイパスするときに、第1のヒータ58を通過した室外空気A3と第2のヒータ60を通過した室外空気A3とが適度に混ざり合う。この場合、温度センサ138近くでは室外空気A3が緩やかに流れ、温度センサ138の測定環境が安定する。 As shown in FIG. 22, in a ventilator according to a different embodiment, the orifice member 236 is not provided across the second space S2, but is provided only on the front side of the ventilator. In this case, the outdoor air A3 that has passed through the first heater 58 and the outdoor air A4 that has passed through the second heater 60 flow so as to bypass the orifice member 236 when viewed from above (as viewed in the Z-axis direction). When bypassing, the outdoor air A3 that has passed through the first heater 58 and the outdoor air A3 that has passed through the second heater 60 are mixed appropriately. In this case, the outdoor air A3 gently flows near the temperature sensor 138, and the measurement environment of the temperature sensor 138 is stabilized.
 図20に示すように、第2の空間S2から第1のファン62のファン室F2に流入した室外空気A3は、羽根車62aの回転よってダンパ装置64に送られる。 As shown in FIG. 20, the outdoor air A3 that has flowed from the second space S2 into the fan chamber F2 of the first fan 62 is sent to the damper device 64 by the rotation of the impeller 62a.
 図23Aは、室内Rinに接続した状態のダンパ装置64を示す断面図である。また、図23Bは、室外Routに接続した状態のダンパ装置64を示す断面図である。 FIG. 23A is a cross-sectional view showing the damper device 64 connected to the room Rin. Also, FIG. 23B is a sectional view showing the damper device 64 connected to the outdoor Route.
 図23Aおよび図23B、それに加えて図9に示すように、本実施の形態の場合、ダンパ装置64は、仕切り板124の一部分とファンカバー部材132の一部分とを、そのハウジングの構成要素として備える。また、ダンパ装置64は、室外空気A3が流入する流入口64aと、室内機20に連通して室外空気A3が流出する第1の流出口64bと、を含んでいる。また、ダンパ装置64は、室外Routに連通して室外空気A3が流出する第2の流出口64cと、第1の流出口64bおよび第2の流出口64cの一方を選択的に閉じる閉鎖扉64dと、を含んでいる。なお、ダンパ装置64は、高さ方向(Z軸方向)に延在する回転中心線を中心にして閉鎖扉64dを回転駆動し、空気調和機10の制御装置によって制御されるモータなどの動力源(図示せず)も含んでいる。 As shown in FIGS. 23A and 23B and also in FIG. 9, in the case of this embodiment, the damper device 64 includes a portion of the partition plate 124 and a portion of the fan cover member 132 as components of its housing. . The damper device 64 also includes an inflow port 64a into which the outdoor air A3 flows, and a first outflow port 64b that communicates with the indoor unit 20 and out of which the outdoor air A3 flows out. Further, the damper device 64 has a second outlet 64c communicating with the outdoor Rout and through which the outdoor air A3 flows out, and a closing door 64d that selectively closes one of the first outlet 64b and the second outlet 64c. and includes The damper device 64 rotates the closing door 64d around a rotation center line extending in the height direction (Z-axis direction), and a power source such as a motor controlled by the control device of the air conditioner 10. (not shown).
 ダンパ装置64の流入口64aは、第1のファン62のファン室F2に連通している。それにより、第1のヒータ58、第2のヒータ60、および吸収材52を通過し、第1のファン62の羽根車62aから吹き出された室外空気A3が、流入口64aを介してダンパ装置64内に流入する。 The inlet 64 a of the damper device 64 communicates with the fan chamber F 2 of the first fan 62 . As a result, the outdoor air A3 that has passed through the first heater 58, the second heater 60, and the absorbent 52 and is blown out from the impeller 62a of the first fan 62 passes through the inlet 64a to the damper device 64. flow inside.
 ダンパ装置64の第1の流出口64bには換気導管56が接続される。これにより、第1の流出口64bは、換気導管56を介して室内機20内に連通する。その結果、流入口64aを通過した室外空気A3が室内機20内に流入する。なお、本実施の形態の場合、第1の流出口64bは、右方向に開口している。 A ventilation conduit 56 is connected to the first outflow port 64 b of the damper device 64 . Thereby, the first outflow port 64b communicates with the interior of the indoor unit 20 via the ventilation conduit 56 . As a result, the outdoor air A3 that has passed through the inlet 64 a flows into the indoor unit 20 . In addition, in the case of the present embodiment, the first outflow port 64b opens rightward.
 また、本実施の形態の場合、ダンパ装置64の第1の流出口64bの開口方向が右方向であって、流入口64aの開口方向は、その逆の左方向である。そのため、流入口64aに流入した室外空気A3は、その流れ方向を変更することなく、第1の流出口64bから流出する。そのため、室外空気A3は、第1のファン62の吹き出し速度を維持したまま減速することなく、換気導管56内に流入することができる。 Further, in the case of the present embodiment, the opening direction of the first outflow port 64b of the damper device 64 is the right direction, and the opening direction of the inflow port 64a is the opposite left direction. Therefore, the outdoor air A3 that has flowed into the inflow port 64a flows out from the first outflow port 64b without changing its flow direction. Therefore, the outdoor air A3 can flow into the ventilation conduit 56 while maintaining the blowing speed of the first fan 62 without deceleration.
 ダンパ装置64の第2の流出口64cは、直接的ではなく、間接的に室外Routに連通する。具体的には、第2の流出口64cは、筺体102内に設けられた隔離室S6内で、水平方向、特に後壁102eに向いた状態で開口している。隔離室S6は、筺体102とファンカバー部材132とによって画定され、他の空間S1~S4から独立している。したがって、第2の流出口64cから流出する室外空気A3は、隔離室S6内に流出する。 The second outflow port 64c of the damper device 64 communicates with the outdoor route indirectly, not directly. Specifically, the second outflow port 64c opens in the isolation chamber S6 provided in the housing 102 in a horizontal direction, particularly in a state facing the rear wall 102e. The isolation chamber S6 is defined by the housing 102 and the fan cover member 132 and is independent of the other spaces S1-S4. Therefore, the outdoor air A3 flowing out from the second outlet 64c flows into the isolation chamber S6.
 隔離室S6を画定する筺体102の底板102fには、室外機30の本体の筺体100内に連通する接続口102qが設けられている。 A connection port 102q that communicates with the inside of the housing 100 of the main body of the outdoor unit 30 is provided on the bottom plate 102f of the housing 102 that defines the isolation room S6.
 図24は、ダンパ装置64から流出した室外空気A3の流れを示す換気装置50の断面斜視図である。また、図25は、室外機30の本体内部を概略的に示す室外機30の正面図である。 24 is a cross-sectional perspective view of the ventilator 50 showing the flow of the outdoor air A3 flowing out from the damper device 64. FIG. 25 is a front view of the outdoor unit 30 schematically showing the inside of the main body of the outdoor unit 30. As shown in FIG.
 図24に示すように、ダンパ装置64の第2の流出口64cから後方向に流出した室外空気A3は、隔離室S6内で流れ方向を下方向に変え、筺体102の底板102fに設けられた接続口102qを通過する。 As shown in FIG. 24, the outdoor air A3 flowing backward from the second outflow port 64c of the damper device 64 changes its flow direction downward in the isolated chamber S6, and is provided on the bottom plate 102f of the housing 102. It passes through the connection port 102q.
 図25に示すように、筺体102の底板102fの接続口102qを通過した室外空気A3は、室外機30の本体の筺体100内に流入する。 As shown in FIG. 25, the outdoor air A3 that has passed through the connection port 102q of the bottom plate 102f of the housing 102 flows into the housing 100 of the main body of the outdoor unit 30.
 本実施の形態の場合、本体の筺体100内は、室外熱交換器32やファン34などを格納する熱交換室R1と、圧縮機36、四方弁40、制御基板などを格納する機械室R2とに、大略分かれている。室外空気A3は、機械室R2内に流入する。 In the case of the present embodiment, the housing 100 of the main body includes a heat exchange chamber R1 that houses the outdoor heat exchanger 32, the fan 34, and the like, and a machine room R2 that houses the compressor 36, the four-way valve 40, the control board, and the like. are roughly divided into The outdoor air A3 flows into the machine room R2.
 このように、ダンパ装置64の第2の流出口64cから流出する室外空気A3を、室外機30の本体の筺体100を介して、室外Routに排出する理由について説明する。 The reason why the outdoor air A3 flowing out from the second outlet 64c of the damper device 64 is thus discharged to the outdoor Rout via the housing 100 of the main body of the outdoor unit 30 will be explained.
 図23Bに示すように、第2の流出口64cから流出する場合、室外空気A3は、閉鎖扉64dに衝突してその流れ方向を実質的に90度変更する。このとき、ダンパ装置64内に乱流が発生し、その結果として騒音が発生する。 As shown in FIG. 23B, when flowing out from the second outlet 64c, the outdoor air A3 collides with the closing door 64d and changes its flow direction by substantially 90 degrees. At this time, turbulence is generated in the damper device 64, resulting in noise.
 ここで、仮に第2の流出口64cに対向する筺体102の後壁102eの部分に複数の桟を備える排気口を設けた場合、乱流由来の騒音がその排気口を介して、室外Routに漏れる。また、閉鎖扉64dの動作音もその排気口を介して室外Routに漏れる。さらに、桟によって風切り音が発生しうる。 Here, if an exhaust port provided with a plurality of crosspieces is provided in the portion of the rear wall 102e of the housing 102 facing the second outflow port 64c, the noise derived from the turbulence flows into the outdoor Rout through the exhaust port. Leak. Further, the operation sound of the closing door 64d also leaks to the outdoor Rout through the exhaust port. Additionally, the crosspieces can generate wind noise.
 本実施の形態のように、第2の流出口64cから流出した室外空気A3が隔離室S6を介して筺体100内に流入する場合、乱流由来の騒音や閉鎖扉64dの動作音が室外Routに漏れることが抑制される。すなわち、筺体100の内部空間が、室外空気A3がダンパ装置64を流れることによって発生して室外Routに漏れる騒音のレベルを低下させる「マフラー」として機能する。 As in the present embodiment, when the outdoor air A3 flowing out from the second outlet 64c flows into the housing 100 via the isolation chamber S6, noise derived from turbulence and operation noise of the closing door 64d are generated by the outdoor Rout. is suppressed. That is, the internal space of the housing 100 functions as a "muffler" that reduces the level of noise that is generated when the outdoor air A3 flows through the damper device 64 and leaks to the outdoor Rout.
 特に、室外空気A3が機械室R2に流入する場合、さらに室外Routに漏れる騒音のレベルを低下させることができる。機械室R2は、略密閉空間であって、その中に格納されている圧縮機36などから発生する熱が室外Routに流出できる程度の隙間を介して室外Routに連絡している。一方、熱交換室R1は、ファン34によって吸い込まれる室外空気A2が通過する吸気口および熱交換した後の室外空気A2が流出する排気口を介して、室外Routに連絡している。したがって、機械室R2にダンパ装置64の第2の流出口64cから流出した室外空気A3が流入する方が、熱交換室R1に流入する場合に比べて、室外Routに漏れる騒音のレベルを低下させることができる。 Especially when the outdoor air A3 flows into the machine room R2, the level of noise leaking to the outdoor Rout can be further reduced. The machine room R2 is a substantially closed space, and communicates with the outdoor route through a gap that allows the heat generated from the compressor 36 and the like housed therein to flow out to the outdoor route. On the other hand, the heat exchange chamber R1 communicates with the outdoor Rout via an intake port through which the outdoor air A2 sucked by the fan 34 passes and an exhaust port through which the outdoor air A2 after heat exchange flows out. Therefore, when the outdoor air A3 flowing out from the second outlet 64c of the damper device 64 flows into the machine room R2, the level of noise leaking to the outdoor Rout is reduced as compared with the case of flowing into the heat exchange room R1. be able to.
 このようにダンパ装置64が室外機30の本体の筺体100内の空間を介して室外空気A3を室外Routに排出することにより、室外機30から発生する騒音のレベルを低下させることができる。 As described above, the damper device 64 discharges the outdoor air A3 to the outdoor Rout through the space in the housing 100 of the main body of the outdoor unit 30, so that the level of noise generated from the outdoor unit 30 can be reduced.
 なお、ダンパ装置64の第2の流出口64cから筺体100に連通する接続口102qに向かって室外空気A3がスムーズに流れるように、つまりこれらの間で乱流が発生して騒音が生じないように、以下のようにしてもよい。すなわち、第2の流出口64cと接続口102qとを接続するダクトが、筺体102内に設けられてもよい。 The outdoor air A3 should flow smoothly from the second outflow port 64c of the damper device 64 toward the connection port 102q communicating with the housing 100. Alternatively, you can do the following: That is, a duct may be provided in the housing 102 to connect the second outflow port 64c and the connection port 102q.
 また、隔離室S6内でダンパ装置64の第2の流出口64cと接続口102qとが対向するように、第2の流出口64cが下方向に向くようにダンパ装置64は構成されてもよい。さらに、ダンパ装置64の第2の流出口64cが接続口102qに直接的に接続するように、ダンパ装置64は構成されてもよい。 Further, the damper device 64 may be configured such that the second outflow port 64c of the damper device 64 faces downward so that the connection port 102q faces the second outflow port 64c of the damper device 64 in the isolation chamber S6. . Furthermore, the damper device 64 may be configured such that the second outflow port 64c of the damper device 64 is directly connected to the connection port 102q.
 ダンパ装置64の第1の流出口64bから流出した室外空気A3は、換気導管56を介して、室内機20内に流入する。 The outdoor air A3 flowing out from the first outflow port 64b of the damper device 64 flows into the indoor unit 20 via the ventilation conduit 56.
 図26は、室内機20に設けられた室内熱交換器22とノズル140を示す斜視図である。また、図27は、内部構造を示す室内機20の側面図である。なお、図に示すU-V-W直交座標系は、実施の形態の理解を容易にするためのものであって、実施の形態を限定するものではない。U軸方向は室内機20の左右方向を示し、V軸方向は前後方向を示し、W軸方向は高さ方向(上下方向)を示している。 26 is a perspective view showing the indoor heat exchanger 22 and the nozzle 140 provided in the indoor unit 20. FIG. Moreover, FIG. 27 is a side view of the indoor unit 20 which shows an internal structure. The UVW orthogonal coordinate system shown in the drawing is for facilitating understanding of the embodiments, and does not limit the embodiments. The U-axis direction indicates the horizontal direction of the indoor unit 20, the V-axis direction indicates the front-rear direction, and the W-axis direction indicates the height direction (vertical direction).
 図26に示すように、室内機20は、室内熱交換器22と、ノズル140とを備える。ノズル140は、換気導管56と接続する接続部140aと、換気導管56から供給された室外空気A3を吹き出す吹き出し口140bとを備える。 As shown in FIG. 26, the indoor unit 20 includes an indoor heat exchanger 22 and a nozzle 140. The nozzle 140 includes a connecting portion 140a connected to the ventilation conduit 56 and an outlet 140b for blowing out the outdoor air A3 supplied from the ventilation conduit 56. As shown in FIG.
 図27に示すように、ノズル140は、室内機20の筺体142内に換気装置50から換気導管56を介して供給された室外空気A3を吹き出すように、室内機20の筺体142内に設けられている。具体的には、ノズル140は、吹き出した室外空気A3が室内機20内における乾燥領域を通過してファン24に向かうように室内機20内に配置されている。ファン24は、例えばクロスフローファンである。また、ここで言う「乾燥領域」とは、他の領域に比べて乾燥している領域である。このような「乾燥領域」は、実験的にまたはシミュレーションによって特定することができる。 As shown in FIG. 27, the nozzle 140 is provided in the housing 142 of the indoor unit 20 so as to blow out the outdoor air A3 supplied from the ventilation device 50 through the ventilation conduit 56 into the housing 142 of the indoor unit 20. ing. Specifically, the nozzle 140 is arranged inside the indoor unit 20 so that the blown outdoor air A3 passes through the dry area inside the indoor unit 20 and heads toward the fan 24 . Fan 24 is, for example, a cross-flow fan. Also, the “dry region” referred to here is a region that is drier than other regions. Such "dry areas" can be identified experimentally or by simulation.
 本実施の形態の場合、ノズル140の室外空気A3の吹き出し方向が、吹き出し口140bから吹き出した室外空気A3が室内機20内の「乾燥領域」としての室内熱交換器22の乾燥部分DPを通過するように、方向付けされている。 In the case of the present embodiment, the direction in which the outdoor air A3 is blown from the nozzle 140 is such that the outdoor air A3 blown from the outlet 140b passes through the dry portion DP of the indoor heat exchanger 22 serving as the "dry region" in the indoor unit 20. It is oriented to
 具体的に説明すると、本実施の形態の場合、図27に示すように、ファン24の回転中心線の延在方向視(U軸方向視)で、室内熱交換器22は、以下のように設けられている。すなわち、室内熱交換器22は、ファン24を部分的に囲むように(本実施の形態の場合はファン24の下方を除いて囲むように)室内機20の筺体142内に設けられている。室内熱交換器22はまた、ファン24の後方に位置する第1の部分22aと、ファン24の前側に位置する第2の部分22bとから構成されている。このような室内熱交換器22内を、圧縮機36から供給された冷媒が流れる。本実施の形態の場合、空気調和機10の冷房運転または弱冷房運転(除湿運転)時、ファン24の回転中心線の延在方向視で、冷媒は、第1の部分22aの上部から下部に向かって流れ、そして、第2の部分22bの下部から上部に向かって流れる。すなわち、冷媒は、図27において、反時計方向に室内熱交換器22内を流れる。 Specifically, in the case of the present embodiment, as shown in FIG. 27, the indoor heat exchanger 22 is arranged as follows when viewed in the direction in which the rotation center line of the fan 24 extends (viewed in the U-axis direction). is provided. That is, the indoor heat exchanger 22 is provided inside the housing 142 of the indoor unit 20 so as to partially surround the fan 24 (in this embodiment, surround the fan 24 except for the area below it). The indoor heat exchanger 22 is also composed of a first portion 22a located behind the fan 24 and a second portion 22b located in front of the fan 24. As shown in FIG. Refrigerant supplied from the compressor 36 flows through the indoor heat exchanger 22 as described above. In the case of the present embodiment, when the air conditioner 10 is in cooling operation or low cooling operation (dehumidifying operation), the refrigerant flows from the upper portion to the lower portion of the first portion 22a as viewed in the extending direction of the rotation center line of the fan 24. It flows toward and then flows from the bottom to the top of the second portion 22b. That is, the refrigerant flows in the indoor heat exchanger 22 counterclockwise in FIG.
 このような冷媒の流れの結果、室内熱交換器22の第2の部分22bの上部に乾燥部分DPが発生する。乾燥部分DPは、室内熱交換器22において冷媒の流れ方向の下流側に位置する。冷媒は室内熱交換器22の他の部分を流れている間に温度が上昇するので、乾燥部分DPでは、他の部分に比べて結露が生じにくい(付着する結露水が少ない)。 As a result of such refrigerant flow, a dry portion DP is generated in the upper portion of the second portion 22b of the indoor heat exchanger 22. The dry portion DP is positioned downstream in the refrigerant flow direction in the indoor heat exchanger 22 . Since the temperature of the refrigerant rises while flowing through other parts of the indoor heat exchanger 22, dew condensation is less likely to occur in the dry part DP than in the other parts (there is less condensed water that adheres).
 また、本実施の形態の場合、室内熱交換器22の乾燥部分DPは、室内熱交換器22の下方に設けられたドレインパン144、146から離れた部分であるので、付着している結露水が少ない。すなわち、結露水が室内熱交換器22の表面上をドレインパン144、146に向かって下方向に流れるので、室内熱交換器22の上部に位置する乾燥部分DPには結露水が少ない。 In addition, in the case of the present embodiment, the dry portion DP of the indoor heat exchanger 22 is a portion away from the drain pans 144 and 146 provided below the indoor heat exchanger 22, so the condensed water Less is. That is, since the condensed water flows downward toward the drain pans 144 and 146 on the surface of the indoor heat exchanger 22, the dry portion DP positioned above the indoor heat exchanger 22 has less condensed water.
 このようにノズル140から吹き出された室外空気A3が室内機20内の乾燥領域(本実施の形態の場合、室内熱交換器22の乾燥部分DP)を通過してファン24に向かう理由について説明する。 The reason why the outdoor air A3 blown out from the nozzle 140 in this way passes through the dry area in the indoor unit 20 (in the case of the present embodiment, the dry portion DP of the indoor heat exchanger 22) and goes to the fan 24 will be explained. .
 空気調和機10は、1つの運転モードとして、冷凍サイクルによる除湿運転(弱冷房運転)と換気装置50による除湿運転とを同時に実行できるように構成されている。 The air conditioner 10 is configured to be able to simultaneously perform a dehumidifying operation (weak cooling operation) by the refrigeration cycle and a dehumidifying operation by the ventilation device 50 as one operation mode.
 冷凍サイクルによる除湿運転では、ファン24が回転すると、室内機20の筺体142の上部に設けられた空気取り込み口142aを介して室内空気A1が筺体142に取り込まれ、室内熱交換器22を通過する。このとき、室内空気A1は室内熱交換器22に冷却されるとともに水分が奪われて乾燥する。奪われた水分は、室内熱交換器22の表面で結露する。乾燥した室内空気A1は、ファン24によって空気吹き出し口142bを介して室内Rinに吹き出される。 In the dehumidification operation by the refrigeration cycle, when the fan 24 rotates, the indoor air A1 is taken into the housing 142 through the air intake port 142a provided in the upper part of the housing 142 of the indoor unit 20, and passes through the indoor heat exchanger 22. . At this time, the indoor air A1 is cooled by the indoor heat exchanger 22 and is dehydrated and dried. The removed moisture condenses on the surface of the indoor heat exchanger 22 . The dry indoor air A1 is blown into the room Rin by the fan 24 through the air outlet 142b.
 換気装置50による除湿運転(図5参照)では、換気装置50からノズル140に、除湿運転における吸着運転時に昇温された室外空気A3が供給される。室外空気A3は、ノズル140から吹き出され、ファン24に誘引されて室内熱交換器22の乾燥部分DPを通過する。このとき、室外空気A3は、乾燥部分DPを通過するので、すなわち多くの結露水が付着する室内熱交換器22の他の部分を通過しないので、乾燥状態が維持される。乾燥状態を維持された状態で室内熱交換器22を通過した室外空気A3は、ファン24によって空気吹き出し口142bを介して室内Rinに吹き出される。 In the dehumidification operation by the ventilation device 50 (see FIG. 5), the outdoor air A3 heated during the adsorption operation in the dehumidification operation is supplied from the ventilation device 50 to the nozzle 140 . The outdoor air A3 is blown out from the nozzle 140, is attracted by the fan 24, and passes through the dry portion DP of the indoor heat exchanger 22. At this time, the outdoor air A3 passes through the dry portion DP, that is, does not pass through other portions of the indoor heat exchanger 22 where a large amount of condensed water adheres, so that the dry state is maintained. The outdoor air A3 that has passed through the indoor heat exchanger 22 in a dry state is blown out into the room Rin by the fan 24 through the air outlet 142b.
 このような冷凍サイクルによる除湿運転(弱冷房運転)と換気装置50による除湿運転とを同時に実行すると、室内温度を大きく低下させることなく室内Rinを除湿することができる。 Simultaneously executing the dehumidification operation (low cooling operation) by the refrigeration cycle and the dehumidification operation by the ventilation device 50 can dehumidify the room Rin without significantly lowering the room temperature.
 ここで、仮にノズル140から吹き出された室外空気A3が、乾燥部分DP以外の室内熱交換器22の他の部分を通過すると、その室外空気A3は結露水の蒸発によって加湿される。その加湿された室外空気A3が室内Rinに吹き出されるので、すなわち元々室内Rinに存在した水分の一部が室内Rinに戻ることになるので、室内Rinの除湿効率が低下する。 Here, if the outdoor air A3 blown out from the nozzle 140 passes through other parts of the indoor heat exchanger 22 other than the dry part DP, the outdoor air A3 is humidified by evaporation of the condensed water. Since the humidified outdoor air A3 is blown into the room Rin, that is, part of the moisture originally present in the room Rin returns to the room Rin, the dehumidification efficiency of the room Rin decreases.
 また、空気調和機10は、1つの運転モードとして、冷凍サイクルによる除湿運転(弱冷房運転)と換気装置50による換気運転とを同時に実行できるように構成されている。 In addition, the air conditioner 10 is configured to be able to simultaneously execute a dehumidifying operation (weak cooling operation) by the refrigeration cycle and a ventilation operation by the ventilator 50 as one operation mode.
 この場合、換気装置50から除湿されていないそのままの室外空気A3がノズル140に供給される。そして、ノズル140から吹き出された室外空気A3は、室内熱交換器22の乾燥部分DPを通過する。この場合、除湿運転によって室内熱交換器22に付着した結露水の一部を室内Rinに戻すことなく、室内Rinの換気を行うことができる。 In this case, the outdoor air A3 that is not dehumidified is supplied from the ventilation device 50 to the nozzle 140 as it is. The outdoor air A3 blown out from the nozzle 140 then passes through the dry portion DP of the indoor heat exchanger 22 . In this case, the room Rin can be ventilated without returning part of the dew condensation water adhering to the indoor heat exchanger 22 to the room Rin due to the dehumidifying operation.
 なお、ノズル140は、室内機20内の「乾燥領域」として、室外空気A3の少なくとも一部を室内熱交換器22とファン24との間の空間に向かって吹き出してもよい。 Note that the nozzle 140 may blow out at least part of the outdoor air A3 toward the space between the indoor heat exchanger 22 and the fan 24 as a "dry area" inside the indoor unit 20.
 本実施の形態の場合、ノズル140は、複数に非破壊で分割可能に構成されている。 In the case of this embodiment, the nozzle 140 is configured to be non-destructively divisible into a plurality of pieces.
 図28は、ノズル140の構成を示す分解斜視図である。また、図29は、2つに分離された状態のノズル140を示す斜視図である。そして、図30は、ノズル140の構成を示す断面図である。 28 is an exploded perspective view showing the configuration of the nozzle 140. FIG. FIG. 29 is a perspective view showing the nozzle 140 separated into two. 30 is a cross-sectional view showing the structure of the nozzle 140. As shown in FIG.
 図28に示すように、ノズル140は、4つの部品148、150、152および154から構成されている。具体的には、図29に示すように、本実施の形態の場合、ノズル140は、接続部140aを備える後側部分140cと、吹き出し口140bを備える前側部分140dに分離可能に構成されている。後側部分140cは前側部分140dと接続するための接続口140eを備え、前側部分140dの先端部140fが接続口140eに抜き差し可能に挿入される。 As shown in FIG. 28, the nozzle 140 consists of four parts 148, 150, 152 and 154. Specifically, as shown in FIG. 29, in the case of the present embodiment, the nozzle 140 is configured to be separable into a rear portion 140c having a connecting portion 140a and a front portion 140d having an outlet 140b. . The rear portion 140c has a connection port 140e for connecting with the front portion 140d, and the front end portion 140f of the front portion 140d is removably inserted into the connection port 140e.
 図29に示すように、本実施の形態の場合、後側部分140cは室内機20のベース部材156に取り付けられており、前側部分140dはフィルタ枠158に取り付けられている。ベース部材156は、室内機20を壁面に据え付けるときのブラケットとして機能するとともに、室内熱交換器22やファン24などの室内機20の構成要素を保持する。フィルタ枠158は、室内熱交換器22に向かう室内空気A1が通過するフィルタ(図示せず)を保持する部材であって、ベース部材156に対して取り外し可能に構成されている。フィルタ枠158をベース部材156から取り外すと、ノズル140の後側部分140cから前側部分140dが分離する。 As shown in FIG. 29, in this embodiment, the rear portion 140c is attached to the base member 156 of the indoor unit 20, and the front portion 140d is attached to the filter frame 158. The base member 156 functions as a bracket when installing the indoor unit 20 on the wall surface, and also holds components of the indoor unit 20 such as the indoor heat exchanger 22 and the fan 24 . The filter frame 158 is a member that holds a filter (not shown) through which the indoor air A1 directed toward the indoor heat exchanger 22 passes, and is configured to be removable from the base member 156 . Removing the filter frame 158 from the base member 156 separates the front portion 140 d from the rear portion 140 c of the nozzle 140 .
 図30に示すように、ノズル140の後側部分140cの接続口140eに前側部分140dの先端部140fが挿入されると、後側部分140cの内周面140gと前側部分140dの内周面140hが段差なく連続するように接続する。これにより、後側部分140cから前側部分140dに流れる室外空気A3の圧力損失が抑制されている。 As shown in FIG. 30, when the front end portion 140f of the front portion 140d is inserted into the connection port 140e of the rear portion 140c of the nozzle 140, the inner peripheral surface 140g of the rear portion 140c and the inner peripheral surface 140h of the front portion 140d are separated. connected so that they are continuous without steps. This suppresses the pressure loss of the outdoor air A3 flowing from the rear portion 140c to the front portion 140d.
 図28に示すように、ノズル140の後側部分140cは、その内部流路に沿って2つの部品148、150に分割可能に構成されている。また、前側部分140dも、その内部流路に沿って2つの部品152、154に分割可能に構成されている。なお、部品148、150は、ねじなどの固定部品を使用することなく、例えばスナップ係合などにより合体可能に構成されている。同様に、部品152、154も、固定部品を使用することなく合体可能に構成されている。 As shown in FIG. 28, the rear portion 140c of the nozzle 140 is configured to be splittable into two parts 148, 150 along its internal flow path. The front portion 140d is also configured to be splittable into two parts 152, 154 along its internal flow path. Note that the parts 148 and 150 are configured to be able to be joined together by, for example, snap engagement without using fixing parts such as screws. Similarly, parts 152, 154 are also configured to be dockable without the use of securing parts.
 なお、図30に示すように、本実施の形態の場合、ノズル140の後側部分140cには、流路断面積を他の場所に比べて小さくする縮流部140iが設けられている。これにより、室外機30からの騒音を反射し、室内機20内に伝わる騒音のレベルを低下させることができる。 In addition, as shown in FIG. 30, in the case of the present embodiment, the rear portion 140c of the nozzle 140 is provided with a constriction portion 140i that makes the cross-sectional area of the flow passage smaller than that of other locations. As a result, the noise from the outdoor unit 30 can be reflected, and the level of noise transmitted inside the indoor unit 20 can be reduced.
 このような構成のノズル140によれば、その内部のチェックやクリーニングを容易に行うことができる。すなわち、ノズル140を4つの部品148、150、152および154に分割し、それぞれの部品に対してチェックやクリーニングを行うことができる。 According to the nozzle 140 having such a configuration, it is possible to easily check and clean the inside. That is, the nozzle 140 can be divided into four parts 148, 150, 152 and 154, each of which can be checked or cleaned.
 以上のような本実施の形態によれば、室外空気A3が回転する吸収材52を通過することによって加湿されて室内機20に供給される空気調和機10において、室外空気A3が吸収材52をバイパスすることを抑制することができる。 According to the present embodiment as described above, in the air conditioner 10 in which the outdoor air A3 is humidified by passing through the rotating absorbent 52 and supplied to the indoor unit 20, the outdoor air A3 passes through the absorbent 52. Bypassing can be suppressed.
 以上、上述の実施の形態を挙げて本開示を説明したが、本開示は上述の実施の形態に限定されない。 Although the present disclosure has been described with reference to the above-described embodiments, the present disclosure is not limited to the above-described embodiments.
 例えば、上述の実施の形態の場合、図19に示すように、吸収材ホルダ114は、スムーズに回転するために、対向部材(ヒータベース部材112の吸収材収容部112bおよび仕切り板124)と接触していない。しかしながら、本開示の実施の形態はこれに限らない。吸収材ホルダ114は、回転可能であれば、一部分が対向部材に対して摺動してもよい。 For example, in the case of the above embodiment, as shown in FIG. 19, the absorbent holder 114 is in contact with the facing member (the absorbent housing portion 112b of the heater base member 112 and the partition plate 124) in order to rotate smoothly. not. However, embodiments of the present disclosure are not limited to this. If the absorbent holder 114 is rotatable, a portion of the absorbent holder 114 may slide relative to the opposing member.
 すなわち、本開示の実施の形態に係る空気調和機は、広義には、室内機と室外機とを有する空気調和機である。そして、室外機が、室外空気を加熱するヒータと、第1の端面と第2の端面とを備え、ヒータによって加熱された室外空気が第1の端面から第2の端面に向かって通過する円盤状の吸収材と、を備える。また、室外機が、吸収材の外周面を保持する円筒状部を備えて回転する吸収材ホルダと、吸収材ホルダの外周面に対して対向する対向部材と、を備える。また、室外機が、吸収材を通過する室外空気の流れを発生させるファンと、吸収材ホルダの外周面と対向部材との間に、ラビリンス流路を形成するラビリンスシール部材と、を備える。そして、吸収材ホルダが、拡径部を含み、ラビリンスシール部材が、ラビリンス流路の一部分として、吸収材ホルダの拡径部との間に吸収材の径方向に少なくとも延在する径方向流路を形成する端面を備える。 That is, in a broad sense, the air conditioner according to the embodiment of the present disclosure is an air conditioner having an indoor unit and an outdoor unit. The outdoor unit includes a heater for heating outdoor air, and a first end surface and a second end surface, and the disk through which the outdoor air heated by the heater passes from the first end surface to the second end surface. a shaped absorbent material. Further, the outdoor unit includes an absorbent holder that has a cylindrical portion that holds the outer peripheral surface of the absorbent and rotates, and a facing member that faces the outer peripheral surface of the absorbent holder. Further, the outdoor unit includes a fan that generates outdoor air flow that passes through the absorbent, and a labyrinth seal member that forms a labyrinth flow path between the outer peripheral surface of the absorbent holder and the facing member. The absorbent holder includes an enlarged diameter portion, and the labyrinth seal member is a radial flow path extending at least in the radial direction of the absorbent between itself and the enlarged diameter portion of the absorbent holder as part of the labyrinth flow path. an end face that defines a
 本開示は、室内機と室外機を備える空気調和機であれば適用可能である。 The present disclosure is applicable to any air conditioner equipped with an indoor unit and an outdoor unit.
   10   空気調和機
   20   室内機
   22   室内熱交換器
   22a  第1の部分
   22b  第2の部分
   24   ファン
   30   室外機
   32   室外熱交換器
   34   ファン
   36   圧縮機
   38   膨張弁
   40   四方弁
   50   換気装置
   52   吸収材
   52a  第1の端面
   52b  第2の端面
   52c  外周面
   54   モータ
   56   換気導管
   58   ヒータ(第1のヒータ)
   60   ヒータ(第2のヒータ)
   62   ファン(第1のファン)
   62a  羽根車
   62b  モータ
   64   ダンパ装置
   64a  流入口
   64b  第1の流出口
   64c  第2の流出口
   64d  閉鎖扉
   66   第2のファン
   66a  羽根車
   66b  モータ
   70   リモートコントローラ
   100  筺体
   102  筺体
   102a 第1の吸気口
   102b 第2の吸気口
   102c 排気口
   102d 前壁
   102e 後壁
   102f 底板
   102g 第3の吸気口
   102h 第4の吸気口
   102i 右壁
   102j 支持シャフト
   102k 環状壁部
   102l 部分
   102m 桟
   102n 上面
   102o 傾斜面
   102q 接続口
   104  蓋体
   106  仕切り板
   106a 空気吸い込み口
   110  ヒータユニット
   112  対向部材(ヒータベース部材)
   112a ヒータ載置部
   112b 吸収材収容部
   112c 係合部
   112d ビーム部
   112e 衝突板
   112f 絞り壁
   114  吸収材ホルダ
   114a 円筒状部
   114b ハブ部
   114c スポーク部
   114d 拡径部(外歯)
   114e 拡径部(フランジ)
   116  ピニオンギア
   118  第1のカバー部材
   120  第2のカバー部材
   120a 天板部
   120b 壁部
   122  アンダーカバー部材
   122a 底板部
   122b 壁部
   124  対向部材(仕切り板)
   124a リブ
   124b 突条部
   124c 環状壁
   124d 空気吸い込み口
   126  第1のシールユニット
   126a シール部材
   126b シールホルダ
   128  第2のシールユニット
   128a シール部材
   128b シールホルダ
   130  ラビリンスシール部材
   130a 端面
   130b 突条部
   132  ファンカバー部材
   132a 障害壁
   134  モータカバー部材
   134a 障害壁
   136  オリフィス部材
   138  温度センサ
   140  ノズル
   140a 接続部
   140b 吹き出し口
   140c 後側部分
   140d 前側部分
   140e 接続口
   140f 先端部
   140g 内周面
   140h 内周面
   140i 縮流部
   142  筺体
   142a 空気取り込み口
   142b 空気吹き出し口
   144  ドレインパン
   146  ドレインパン
   148  部品
   150  部品
   152  部品
   154  部品
   156  ベース部材
   158  フィルタ枠
   202  筺体
   202h 第4の吸気口
   202m 桟
   202p 垂れ下がり部
   226b シールホルダ
   228b シールホルダ
   236  オリフィス部材
   A1   室内空気
   A2   室外空気
   A3   室外空気
   A4   室外空気
   AP   高圧領域
   C1   回転中心線
   D    距離
   DP   乾燥部分
   DR   回転方向
   F1   ファン室
   F2   ファン室
   H    排熱
   M1   モータ室
   P1   第1の流路
   P1a  支流路
   P1b  支流路
   P1c  本流路
   P1d  連絡路
   P2   第2の流路
   PL   ラビリンス流路
   PLa  径方向流路
   R1   熱交換室
   R2   機械室
   Rin  室内
   Rout 室外
   S1   第1の空間
   S2   第2の空間
   S3   第3の空間
   S4   第4の空間
   S5   空間
   S6   隔離室
REFERENCE SIGNS LIST 10 air conditioner 20 indoor unit 22 indoor heat exchanger 22a first portion 22b second portion 24 fan 30 outdoor unit 32 outdoor heat exchanger 34 fan 36 compressor 38 expansion valve 40 four-way valve 50 ventilator 52 absorbent 52a First end face 52b Second end face 52c Outer peripheral face 54 Motor 56 Ventilation conduit 58 Heater (first heater)
60 heater (second heater)
62 fan (first fan)
62a impeller 62b motor 64 damper device 64a inlet 64b first outlet 64c second outlet 64d closing door 66 second fan 66a impeller 66b motor 70 remote controller 100 housing 102 housing 102a first intake port 102b Second intake port 102c Exhaust port 102d Front wall 102e Rear wall 102f Bottom plate 102g Third intake port 102h Fourth intake port 102i Right wall 102j Support shaft 102k Annular wall portion 102l Part 102m Crosspiece 102n Upper surface 102o Inclined surface 102q Connection port REFERENCE SIGNS LIST 104 Lid 106 Partition plate 106a Air suction port 110 Heater unit 112 Opposing member (heater base member)
112a Heater mounting portion 112b Absorbent accommodating portion 112c Engaging portion 112d Beam portion 112e Collision plate 112f Diaphragm wall 114 Absorbent holder 114a Cylindrical portion 114b Hub portion 114c Spoke portion 114d Expanded diameter portion (external teeth)
114e Expanded diameter portion (flange)
116 pinion gear 118 first cover member 120 second cover member 120a top plate portion 120b wall portion 122 under cover member 122a bottom plate portion 122b wall portion 124 opposing member (partition plate)
124a rib 124b ridge portion 124c annular wall 124d air suction port 126 first seal unit 126a seal member 126b seal holder 128 second seal unit 128a seal member 128b seal holder 130 labyrinth seal member 130a end surface 130b ridge portion 132 fan cover Member 132a Obstruction wall 134 Motor cover member 134a Obstruction wall 136 Orifice member 138 Temperature sensor 140 Nozzle 140a Connection part 140b Blowout port 140c Rear part 140d Front part 140e Connection port 140f Tip part 140g Inner peripheral surface 140h Inner peripheral surface 140i Constriction part 142 housing 142a air inlet 142b air outlet 144 drain pan 146 drain pan 148 part 150 part 152 part 154 part 156 base member 158 filter frame 202 housing 202h fourth intake port 202m crosspiece 202p hanging part 2236b seal holder 228b Orifice member A1 Indoor air A2 Outdoor air A3 Outdoor air A4 Outdoor air AP High pressure area C1 Rotation center line D Distance DP Drying part DR Rotation direction F1 Fan chamber F2 Fan chamber H Exhaust heat M1 Motor chamber P1 First flow path P1a Branch flow path P1b Branch channel P1c Main channel P1d Connecting channel P2 Second channel PL Labyrinth channel PLa Radial direction channel R1 Heat exchange chamber R2 Machine room Rin Indoor Rout Outdoor S1 First space S2 Second space S3 Third space S4 fourth space S5 space S6 isolated room

Claims (5)

  1.  室内機と室外機とを有する空気調和機であって、
     前記室外機が、
     室外空気を加熱するヒータと、
     第1の端面と第2の端面とを備え、前記ヒータによって加熱された室外空気が前記第1の端面から前記第2の端面に向かって通過する円盤状の吸収材と、
     前記吸収材の外周面を保持する円筒状部を備えて回転する吸収材ホルダと、
     前記吸収材ホルダの外周面に対して対向する対向部材と、
     前記吸収材を通過する室外空気の流れを発生させるファンと、
     前記吸収材ホルダの外周面と前記対向部材との間に、ラビリンス流路を形成するラビリンスシール部材と、を備え、
     前記吸収材ホルダが、拡径部を含み、
     前記ラビリンスシール部材が、前記ラビリンス流路の一部分として、前記吸収材ホルダの前記拡径部との間に前記吸収材の径方向に少なくとも延在する径方向流路を形成する端面を備える、
    空気調和機。
    An air conditioner having an indoor unit and an outdoor unit,
    The outdoor unit is
    a heater for heating outdoor air;
    a disk-shaped absorbent having a first end face and a second end face, through which the outdoor air heated by the heater passes from the first end face toward the second end face;
    an absorbent holder that rotates and has a cylindrical portion that holds the outer peripheral surface of the absorbent;
    a facing member that faces the outer peripheral surface of the absorbent holder;
    a fan for generating a flow of outdoor air through the absorbent;
    a labyrinth seal member that forms a labyrinth flow path between the outer peripheral surface of the absorbent holder and the opposing member;
    wherein the absorbent holder includes an enlarged diameter portion;
    The labyrinth seal member has an end face that forms a radial flow path extending at least in the radial direction of the absorbent between itself and the enlarged diameter portion of the absorbent holder as part of the labyrinth flow path,
    Air conditioner.
  2.  前記吸収材ホルダが、前記拡径部として、外歯と、前記第1の端面から遠い前記外歯の端面に設けられたフランジとを含み、
     前記ラビリンスシール部材の前記端面が、前記フランジとの間に前記径方向流路を形成する、
    請求項1に記載の空気調和機。
    The absorber holder includes, as the enlarged diameter portion, an external tooth and a flange provided on an end face of the external tooth far from the first end face,
    The end face of the labyrinth seal member forms the radial flow path with the flange,
    The air conditioner according to claim 1.
  3.  前記ラビリンスシール部材の前記端面に、前記吸収材ホルダの前記フランジに向かって突出する突条部が設けられている、
    請求項2に記載の空気調和機。
    The end face of the labyrinth seal member is provided with a ridge protruding toward the flange of the absorber holder,
    The air conditioner according to claim 2.
  4.  前記対向部材に、前記吸収材の前記第2の端面に間隔をあけて対向するように前記径方向に延在するリブが設けられている、
    請求項1から3のいずれか一項に記載の空気調和機。
    The opposing member is provided with ribs extending in the radial direction so as to face the second end surface of the absorbent material with a gap therebetween.
    The air conditioner according to any one of claims 1 to 3.
  5.  前記対向部材の前記リブの先端に、前記吸収材の前記第2の端面に向かって突出する突条部が設けられている、
    請求項4に記載の空気調和機。
    A ridge protruding toward the second end face of the absorbent is provided at the tip of the rib of the opposing member,
    The air conditioner according to claim 4.
PCT/JP2022/031997 2021-09-17 2022-08-25 Air conditioner WO2023042626A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280061266.XA CN117940709A (en) 2021-09-17 2022-08-25 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-151751 2021-09-17
JP2021151751A JP2023043972A (en) 2021-09-17 2021-09-17 air conditioner

Publications (1)

Publication Number Publication Date
WO2023042626A1 true WO2023042626A1 (en) 2023-03-23

Family

ID=85602148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031997 WO2023042626A1 (en) 2021-09-17 2022-08-25 Air conditioner

Country Status (3)

Country Link
JP (1) JP2023043972A (en)
CN (1) CN117940709A (en)
WO (1) WO2023042626A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501851A (en) * 1987-04-16 1990-06-21 フレークト・アクチボラグ rotatable heat exchanger
JP2005211811A (en) * 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd Dehumidifier
JP2006170514A (en) * 2004-12-15 2006-06-29 Samsung Electronics Co Ltd Dehumidification and humidification device
JP2014126341A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Humidification unit and outdoor unit
CN113276637A (en) * 2020-02-19 2021-08-20 本田技研工业株式会社 Purifying device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501851A (en) * 1987-04-16 1990-06-21 フレークト・アクチボラグ rotatable heat exchanger
JP2005211811A (en) * 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd Dehumidifier
JP2006170514A (en) * 2004-12-15 2006-06-29 Samsung Electronics Co Ltd Dehumidification and humidification device
JP2014126341A (en) * 2012-12-27 2014-07-07 Daikin Ind Ltd Humidification unit and outdoor unit
CN113276637A (en) * 2020-02-19 2021-08-20 本田技研工业株式会社 Purifying device for vehicle

Also Published As

Publication number Publication date
CN117940709A (en) 2024-04-26
JP2023043972A (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US7572179B2 (en) Ventilation system
EP2206977B1 (en) Humidity control device and ventilation device
WO2023042626A1 (en) Air conditioner
WO2023042633A1 (en) Air conditioner
WO2023042624A1 (en) Air conditioner
WO2023042632A1 (en) Air conditioner
WO2023042625A1 (en) Air conditioner
WO2004111545A1 (en) Humidity controller
WO2023058528A1 (en) Air conditioner
WO2023054496A1 (en) Air conditioner
WO2022172485A1 (en) Ventilator and air conditioner equipped with ventilator
CN118076839A (en) Air conditioner
JP4682667B2 (en) Humidity control device
JP2024046449A (en) air conditioner
JP2024046452A (en) Air conditioners
JP2024046450A (en) air conditioner
JP2024046454A (en) air conditioner
JP4706303B2 (en) Humidity control device
JPH10332174A (en) Air processing equipment
JP3407735B2 (en) Humidity control device
KR102449269B1 (en) System for dehumidification, ventilation and heating-cooling using solar heat and air heat, and operation method of the same
JP2017129318A (en) Humidity adjustment device
JP2024061400A (en) Air conditioners
JP2024060264A (en) Air conditioners
JPH09155143A (en) Dry ventilation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869773

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061266.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE