WO2023042543A1 - Laser processing device - Google Patents

Laser processing device Download PDF

Info

Publication number
WO2023042543A1
WO2023042543A1 PCT/JP2022/028232 JP2022028232W WO2023042543A1 WO 2023042543 A1 WO2023042543 A1 WO 2023042543A1 JP 2022028232 W JP2022028232 W JP 2022028232W WO 2023042543 A1 WO2023042543 A1 WO 2023042543A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
thin film
laser light
lens
optical
Prior art date
Application number
PCT/JP2022/028232
Other languages
French (fr)
Japanese (ja)
Inventor
哲司 高御堂
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023042543A1 publication Critical patent/WO2023042543A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment

Definitions

  • This disclosure relates to a laser processing apparatus.
  • a laser processing apparatus performs marking processing such as characters on the surface of a processing target by irradiating the processing target with a laser beam.
  • Some of such laser processing apparatuses have a laser light source that emits laser light, and a laser irradiation section that irradiates a processing object with the laser light emitted from the laser light source.
  • the laser irradiation unit has a scanning unit that scans the object to be processed by changing the direction of the laser light emitted from the laser light source based on, for example, a desired character or the like to be marked.
  • Each of the laser light source and the laser irradiation section has at least one optical element. Examples of optical elements include optical windows, lenses, filters, and galvanomirrors.
  • the output of the laser beam irradiated to the object to be processed may decrease. As a result, the desired processing state may not be obtained. Therefore, it is required to prevent impurities from adhering to the optical element.
  • the laser processing apparatus described in Patent Document 1 airtightly houses a wavelength conversion element inside a housing, which tends to reduce the output of laser light when impurities adhere to it. This prevents impurities in the air from entering the space where the wavelength conversion element is accommodated and where the ultraviolet light is transmitted in a narrow state.
  • sealing structure such as a hermetic seal.
  • sealing structures such as hermetic seals are effective for small optical components such as semiconductor light emitting devices (for example, laser diodes), they are technically difficult to apply to large laser processing apparatuses.
  • the hermetic sealing method has a problem of dew condensation due to moisture. In order to prevent dew condensation, it takes time and effort to arrange a dehumidifying agent in the space in which the optical element is accommodated, or to replace the dehumidifying agent. For these reasons, there is room for improvement in terms of the structure that prevents impurities from adhering to the optical element.
  • a laser processing apparatus of the present disclosure includes a laser light source that emits laser light for processing an object to be processed, and a scanning unit that scans the laser light emitted from the laser light source.
  • a laser irradiation unit that irradiates an object, and a control unit that controls the laser light source and the scanning unit, wherein each of the laser light source and the laser irradiation unit transmits or reflects the laser light. It has one optical element, and at least one of the optical elements has a thin film body that is integrally provided in a portion of the optical element that transmits or reflects the laser beam and that absorbs part of the laser beam.
  • adhesion of impurities to the optical element can be suppressed.
  • FIG. 1 is a schematic configuration diagram showing a laser processing apparatus according to one embodiment.
  • FIG. 2 is a side view schematically showing one of the optical elements in the same embodiment.
  • FIG. 3 is a side view schematically showing one of the optical elements in the laser processing apparatus of the modification.
  • FIG. 4 is a side view schematically showing one of the optical elements in the laser processing apparatus of the modification.
  • a laser processing apparatus 10 shown in FIG. 1 includes a laser emitting unit 11 and a laser head 12 .
  • the laser head 12 corresponds to an example of a "laser irradiation section".
  • the laser emission unit 11 has, for example, a control section 21 and a laser light source 22 .
  • the control unit 21 controls the overall operation of the laser processing device 10 .
  • the controller 21 is electrically connected to each of the laser light source 22 and the laser head 12 .
  • the controller 21 controls driving of the laser light source 22 .
  • the control unit 21 controls driving of the laser head 12 .
  • the laser light source 22 emits laser light LW containing a predetermined wavelength. This laser beam LW is for processing the object W to be processed.
  • the wavelengths contained in the laser light LW are, for example, wavelengths in the near-infrared region.
  • laser light LW includes a wavelength of 1064 nm.
  • the laser light source 22 is a laser light source such as a YAG laser, CO2 laser, fiber laser, or the like.
  • the laser light source 22 has an optical window 23 for emitting laser light LW.
  • the optical window 23 is one of a plurality of optical elements forming an optical system in the laser processing apparatus 10 .
  • the optical elements that make up the optical system in the laser processing apparatus 10 are not only general optical elements such as lenses, reflecting mirrors, and filters, but also optical windows and protective glass that transmit the laser beam LW. shall be included. That is, the optical element in this specification means a component that transmits the laser beam LW or reflects the laser beam LW.
  • the optical window 23 transmits laser light LW in the near-infrared region.
  • the laser light source 22 emits laser light LW that has passed through the optical window 23 .
  • the optical window 23 has an incident surface 23a on which the laser beam LW is incident and an output surface 23b from which the laser beam LW is emitted.
  • the incident surface 23a is the surface of the optical window 23 on which the laser beam LW is incident.
  • the exit surface 23b is the surface of the optical window 23 from which the laser beam LW is emitted.
  • the emission surface 23 b is exposed inside the laser head 12 .
  • the optical window 23 has an antireflection film (AR coat) 25 on the incident surface 23a. Further, the optical window 23 has an antireflection film 26 on the exit surface 23b. That is, the optical window 23 has antireflection films 25 and 26 on the surface of the optical window 23 .
  • optical window 23 has substrate 27 .
  • the base material 27 is, for example, a glass substrate.
  • the glass substrate is made of fused silica, for example.
  • the antireflection films 25 and 26 are integrally formed on the surface of the base material 27 .
  • the antireflection films 25 and 26 improve the amount of laser light transmitted through the base material 27 (transmittance) by reducing the amount of laser light reflected by the base material 27 (reflectance).
  • Each of the antireflection films 25 and 26 is a multilayer film composed of a plurality of thin films of materials such as oxides, metals and rare earth elements.
  • Each of the antireflection films 25 and 26 is composed of a thin film of, for example, aluminum oxide (Al 2 O 3 ), tantalum pentoxide (Ta 2 O 5 ), magnesium fluoride (MgF 2 ), or the like.
  • Each of the antireflection films 25 and 26 is integrally formed on the surface of the substrate 27 by vapor deposition.
  • the optical window 23 has a thin film body 28 that is integrally provided in a portion of the optical window 23 through which the laser beam LW is transmitted and absorbs part of the laser beam LW.
  • the thin film body 28 is provided integrally with the exit surface 23b of the optical window 23, for example.
  • the optical window 23 has, for example, a thin film 28 over at least the entire range through which the laser beam LW passes on the exit surface 23b. That is, the thin film 28 is provided at least on the exit surface 23b over the entire beam diameter range of the laser beam LW when the laser beam LW passes through the exit surface 23b.
  • the thin film 28 does not have to be provided in a region of the emission surface 23b of the optical window 23 other than the range through which the laser beam LW passes.
  • the optical window 23 may have a thin film 28 over the exit surface 23b.
  • the thin film body 28 is configured to generate heat up to a desired temperature by absorbing part of the laser beam LW.
  • the wavelength of the laser light absorbed by the thin film 28 and the thickness of the thin film 28 are such that the absorption amount of the laser light LW in the thin film 28 is the absorption amount that allows the thin film 28 to generate heat up to a desired temperature.
  • the laser beam absorptivity of the thin film 28 is a value that allows the thin film 28 to rise to a desired temperature range by absorbing a portion of the laser beam LW.
  • the gas inside the laser head 12 contains impurities.
  • Impurities include minute liquids and solid particles.
  • the impurities in the gas undergo an optical dust collection effect in which the impurities move toward the laser beam or the optical element irradiated with the laser beam.
  • the higher the intensity of the laser beam the greater the optical dust collection effect that the impurities receive.
  • impurities are in a gas with a temperature gradient, the impurities are subject to thermophoretic forces that move from the high temperature side to the low temperature side. The thermophoretic force that the impurities receive increases as the temperature gradient between the high temperature side and the low temperature side increases.
  • the thin film 28 By absorbing part of the laser beam LW, the thin film 28 exerts a thermophoretic force greater than the light dust collecting effect on the impurities contained in the gas inside the laser head 12 in the vicinity of the emission surface 23b. It is a configuration that raises the temperature as much as possible. That is, the above-mentioned "desioned "desioned “desioned “desioned “desired temperature” is a temperature at which a temperature gradient can be formed in the vicinity of the exit surface 23b so as to exert a thermophoretic force greater than the optical dust collecting effect on impurities drifting in the vicinity of the exit surface 23b. be.
  • the thin film body 28 absorbs a part of the laser beam LW and generates heat, so that the temperature is several degrees higher than the room temperature of the place where the laser processing apparatus 10 is arranged, for example, about 5 degrees Celsius higher. be. It is preferable that the thin film 28 does not generate enough heat to raise the ambient temperature of the laser light source 22, for example, the temperature of the entire interior of the laser head 12, even if it absorbs part of the laser beam LW. Further, the thin film body 28 is configured so as not to generate heat to a temperature higher than the heat-resistant temperature of the optical window 23 even if part of the laser beam LW is absorbed.
  • the thin film 28 is included in the antireflection film 26, for example.
  • the thin film body 28 is formed by vapor deposition when the antireflection film 26 is formed by vapor deposition. Therefore, the thin film body 28 is laminated on the surface of the substrate 27 together with a plurality of thin films forming the antireflection film 26 .
  • the thin film body 28 of the optical window 23 that transmits the laser light LW in the near-infrared region is, for example, a zinc oxide (ZnO)-based thin film.
  • the thin film body 28 When the thin film body 28 is included in the antireflection film 26 , the thin film body 28 may be laminated so as to be adjacent to any thin film among the plurality of thin films that constitute the antireflection film 26 .
  • the antireflection film 26 has a thin film different from the thin film 28 in the first layer that contacts the air around the optical window 23 , and a second layer adjacent to the first layer is the thin film 28 .
  • a third layer that is aligned with and adjacent to the surface of the substrate 27 may be a thin film different from the thin film body 28 .
  • the first layer and the third layer may be composed of only one thin film, or may be composed of a plurality of laminated thin films.
  • the antireflection film 26 has a thin film body 28 as a first layer in contact with the air around the optical window 23 and a thin film body 28 as a second layer adjacent to the first layer and adjacent to the surface of the substrate 27 . It may be a configuration that is a thin film different from.
  • the second layer has a structure in which a plurality of thin films are laminated.
  • the antireflection film 26 is composed of a thin film whose first layer that contacts the air around the optical window 23 is different from the thin film 28, and a second layer that is adjacent to the first layer and adjacent to the surface of the substrate 27. may be the thin film body 28 .
  • the first layer has a structure in which a plurality of thin films are laminated.
  • the wavelength of the laser light with the highest absorption rate in the thin film 28 is, for example, a wavelength different from the peak wavelength of the spectrum of the laser light LW that passes through the optical window 23 . More preferably, the wavelength of the laser light with the highest absorptivity in the thin film 28 is the flat part as far as possible from the peak of the spectrum of the laser light LW passing through the optical window 23 having the thin film 28. Set to wavelength. When there are multiple peaks on the spectrum of the same laser beam LW, the wavelength of the laser beam with the highest absorption rate in the thin film 28 should be as flat as possible in a portion distant from the peak or maximum point, that is, from the peak. It is preferable to set the wavelength of the remote, non-steep portion.
  • the material (material), the absorption wavelength, and the stacking order of the antireflection film 26 are selected so that a thermophoretic force greater than the light dust collection effect can be exerted on the impurities in the vicinity of the output surface 23b. etc. is set.
  • the laser head 12 has, for example, a beam expander 31, a focus adjustment section 32, a scanning section 33, and a protective glass .
  • the laser head 12 has a housing 35 .
  • the beam expander 31 , focus adjustment section 32 and scanning section 33 are housed inside a housing 35 .
  • the beam expander 31 is arranged between the laser light source 22 and the scanning section 33 .
  • the beam expander 31 expands the beam diameter of the laser light LW emitted from the laser light source 22 .
  • the beam expander 31 has multiple optical elements.
  • the beam expander 31 has two lenses, a first lens 41 into which the laser light LW is incident and a second lens 42 into which the laser light LW transmitted through the first lens 41 is incident.
  • Each of the first lens 41 and the second lens 42 is an optical element that constitutes an optical system in the laser processing apparatus 10 . That is, the beam expander 31 may have two optical elements.
  • the first lens 41 on the incident side in the beam expander 31 is, for example, a concave lens.
  • a second lens 42 on the output side of the beam expander 31 is a convex lens. Both the first lens 41 and the second lens 42 may be convex lenses.
  • the beam expander 31 expands the beam diameter of the incident laser light LW by a magnification according to the distance between the first lens 41 and the second lens 42, and emits the expanded beam.
  • the beam diameter of the laser light LW passing through the second lens 42 is larger than the beam diameter of the laser light LW passing through the first lens 41 .
  • the beam expander 31 has a housing 43 that holds the first lens 41 and the second lens 42 .
  • the beam expander 31 is, for example, a closed type. That is, the beam expander 31 is configured to prevent the air outside the housing 43 and impurities in the air from entering the housing 43 .
  • the first lens 41 has an incident surface 41a on which the laser beam LW is incident and an output surface 41b from which the laser beam LW is emitted.
  • the entrance surface 41 a and the exit surface 41 b are part of the surface of the first lens 41 .
  • the incident surface 41 a is exposed outside the housing 43 , that is, inside the laser head 12 .
  • the exit surface 41 b is exposed inside the housing 43 .
  • the second lens 42 has an incident surface 42a on which the laser beam LW transmitted through the first lens 41 is incident, and an output surface 42b from which the laser beam LW is emitted.
  • the entrance surface 42 a and the exit surface 42 b are part of the surface of the second lens 42 .
  • the incident surface 42 a is exposed inside the housing 43 .
  • the exit surface 42 b is exposed to the outside of the housing 43 .
  • the first lens 41 has an antireflection film 45 on the incident surface 41a.
  • the first lens 41 also has an antireflection film 46 on the exit surface 41b. That is, the first lens 41 has antireflection films 45 and 46 on the surface of the first lens 41 .
  • the second lens 42 has an antireflection film 47 on the incident surface 42a.
  • the second lens 42 also has an antireflection film 48 on the exit surface 42b. That is, the second lens 42 has antireflection films 47 and 48 on the surface of the second lens 42 .
  • the first lens 41 has a base material 51 .
  • the base material 51 is, for example, a glass substrate similar to the base material 27 .
  • the antireflection films 45 and 46 are integrally formed on the surface of the base material 51 .
  • Each of the antireflection films 45 and 46 is a multilayer film composed of a plurality of thin films of materials such as oxides, metals, and rare earth elements, similar to the antireflection films 25 and 26 .
  • Each of the antireflection films 45 and 46 may have the same structure as the antireflection film 25 or the antireflection film 26, or may have a different structure.
  • Each of the antireflection films 45 and 46 is integrally formed on the surface of the substrate 51 by vapor deposition.
  • the second lens 42 has a base material 52 .
  • the base material 52 is, for example, a glass substrate similar to the base material 51 .
  • the antireflection films 47 and 48 are integrally formed on the surface of the base material 52 .
  • Each of the antireflection films 47 and 48 is a multilayer film composed of a plurality of thin films of materials such as oxides, metals and rare earth elements, similar to the antireflection films 45 and 46 .
  • Each of the antireflection films 47 and 48 may have the same configuration as the antireflection film 46, or may have a different configuration.
  • Each of the antireflection films 47 and 48 is integrally formed on the surface of the base material 52 by vapor deposition.
  • the first lens 41 has a thin film body 53 that is integrally provided in a portion of the first lens 41 that transmits the laser beam LW and absorbs part of the laser beam LW.
  • the thin film body 53 is provided integrally with the incident surface 41a of the first lens 41, for example.
  • the first lens 41 has, for example, a thin film 53 over at least the entire range irradiated with the laser beam LW on the incident surface 41a. That is, the thin film 53 is provided at least on the incident surface 41a over the entire beam diameter range of the laser beam LW when the incident surface 41a is irradiated with the laser beam LW.
  • the thin film body 53 is not provided in a region of the incident surface 41a of the first lens 41 other than the range irradiated with the laser beam LW.
  • the first lens 41 may have a thin film 53 over the entrance surface 41a.
  • the thin film body 53 has the same configuration as the thin film body 28 that the optical window 23 has. That is, the thin film body 53 absorbs a part of the laser beam LW, so that the impurity contained in the gas inside the laser head 12 exerts a thermophoretic force larger than the light dust collection effect near the incident surface 41a. It is a configuration that raises the temperature as much as possible.
  • the thin film body 53 is included in the antireflection film 45, for example.
  • the thin film body 53 is formed by vapor deposition when the antireflection film 45 is formed by vapor deposition. Therefore, the thin film body 53 is laminated on the surface of the base material 51 together with a plurality of thin films forming the antireflection film 45 .
  • the thin film 53 of the first lens 41 that transmits the laser light LW in the near-infrared region is, for example, a zinc oxide (ZnO)-based thin film.
  • the thin film body 53 When the thin film body 53 is included in the antireflection film 45 , the thin film body 53 is adjacent to any of the thin films constituting the antireflection film 45 in the same manner as the thin film body 28 included in the antireflection film 26 . may be laminated as follows.
  • the wavelength of the laser light with the highest absorption rate in the thin film 53 is, for example, a wavelength different from the peak wavelength of the spectrum of the laser light LW that passes through the first lens 41 having the thin film 53 . More preferably, the wavelength of the laser light with the highest absorptivity in the thin film 53 is the flat part as far as possible from the peak of the spectrum of the laser light LW that passes through the first lens 41 having the thin film 53. set to the wavelength of When a plurality of peaks exist on the spectrum of the same laser beam LW, the wavelength of the laser beam with the highest absorption rate in the thin film 53 should be the flattest portion apart from the peak or the maximum point, that is, from the peak. It is preferable to set the wavelength of the remote, non-steep portion.
  • the material (material), the absorption wavelength, and the stacking order of the antireflection film 45 are selected so that a thermophoretic force greater than the light dust collection effect can be applied to the impurities in the vicinity of the incident surface 41a. etc. is set.
  • the optical window 23 and the first lens 41 are optical elements arranged on the optical path of the laser light LW before the beam diameter of the laser light LW is expanded by the beam expander 31 .
  • the intensity of the laser light LW is higher before the beam expander 31 expands the beam diameter of the laser light LW than after the beam expander 31 expands the beam diameter of the laser light LW. Therefore, the optical window 23 and the first lens 41 are arranged at a place where the intensity of the laser beam LW is high.
  • the focus adjustment section 32 has a lens section 61 and a driving section 62 .
  • Lens portion 61 includes at least two lenses.
  • the lens is an optical element that constitutes an optical system in the laser processing apparatus 10 .
  • Each lens is arranged on the optical path of the laser beam LW.
  • At least one lens included in the lens portion 61 is supported by a support member (not shown) such as a linear slider so as to be movable along the passage path of the laser light LW.
  • the drive unit 62 moves the movably supported lens along the passage path of the laser light LW.
  • the focus adjustment unit 32 adjusts the focal position of the laser beam LW.
  • the scanning unit 33 has galvanometer mirrors 63X and 63Y and a driving unit 64 .
  • Galvanomirrors 63X and 63Y reflect the laser beam LW.
  • Each of the galvanomirrors 63X and 63Y is an optical element that constitutes an optical system in the laser processing apparatus 10.
  • the drive unit 64 rotates the galvanomirrors 63X and 63Y.
  • the drive unit 64 is, for example, a motor.
  • the driving section 64 is controlled by the control section 21 .
  • the galvanomirrors 63X and 63Y and the drive unit 64 are configured to scan the laser light LW in two-dimensional directions.
  • the galvanomirror 63X and the drive unit 64 scan the laser light LW in the X-axis direction. Also, for example, the galvanomirror 63Y and the drive unit 64 scan the laser light LW in the Y-axis direction.
  • a protective glass 34 is attached to a housing 35 of the laser head 12 .
  • the housing 35 has an opening 35a through which the laser beam LW passes.
  • a protective glass 34 is attached to the housing 35 so as to close the opening 35a.
  • the protective glass 34 prevents objects (for example, organic matter) generated by processing and dust from entering the inside of the laser head 12 through the opening 35a.
  • the protective glass 34 is an optical element that constitutes an optical system in the laser processing apparatus 10 .
  • laser light source 22 emits laser light LW from optical window 23 .
  • the laser light LW emitted through the optical window 23 enters the first lens 41 of the beam expander 31 .
  • the beam diameter of the laser light LW is expanded by the first lens 41 and the second lens 42 , and the laser light LW is emitted from the second lens 42 .
  • the laser beam LW emitted from the second lens 42 is applied to the workpiece W through the lens portion 61 of the focus adjustment portion 32 , the galvanometer mirrors 63 X and 63 Y of the scanning portion 33 , and the protective glass 34 .
  • the workpiece W can be processed by this laser beam LW.
  • a thin film 28 that partially absorbs the laser beam LW is provided on the emission surface 23 b of the optical window 23 exposed inside the laser head 12 .
  • a thin film 53 that absorbs part of the laser beam LW is provided on the incident surface 23a of the first lens 41 exposed inside the laser head 12 .
  • the thin film 28 of the optical window 23 absorbs part of the laser beam LW and generates heat. Specifically, the portion of the thin film 28 through which the laser beam LW passes generates heat. Therefore, the temperature of the exit surface 23b of the optical window 23 provided with the thin film 28 rises. Then, the heat of the thin film 28 is transferred to the air in the vicinity of the portion of the emission surface 23b through which the laser beam LW passes. Therefore, the temperature rises locally in the vicinity of the portion of the emission surface 23b through which the laser beam LW passes. Then, a temperature difference occurs between the portion of the thin film 28 to which the heat is transmitted and the portion of the thin film 28 surrounding the portion to which the heat is not transmitted.
  • thermophoretic effect By creating such a temperature difference, a thermophoretic effect can be produced on impurities drifting in the heat-transferred portion of the thin film 28 in the vicinity of the exit surface 23b. Impurities floating in the heat-transferred portion of the thin film 28 in the vicinity of the output surface 23b are subject to thermophoretic force moving from the high temperature side to the low temperature side, that is, the thermophoretic force moving away from the output surface 23b.
  • the thin film 28 that has absorbed a part of the laser beam LW has a light dust collection effect that the thermophoretic force acting on the impurity near the emission surface 23b acts on the impurity by irradiating the inside of the laser head 12 with the laser beam LW. It generates enough heat to generate a temperature gradient in the vicinity of the output surface 23b. Therefore, impurities drifting in the vicinity of the output surface 23b are subjected to a thermophoretic force greater than the optical dust collection effect. Therefore, impurities drifting in the vicinity of the exit surface 23b move away from the exit surface 23b. Therefore, it is possible to prevent impurities drifting inside the laser head 12 from adhering to the emission surface 23b.
  • the thin film 53 of the first lens 41 When the laser light source 22 emits the laser light LW, the thin film 53 of the first lens 41 also generates heat by absorbing part of the laser light LW, similar to the thin film 28 . Like the impurities drifting near the exit surface 23b, the impurities drifting near the entrance surface 41a of the first lens 41 receive a thermophoretic force greater than the optical dust collection effect. Therefore, impurities floating in the vicinity of the incident surface 41a move away from the incident surface 41a. Therefore, it is possible to prevent impurities drifting inside the laser head 12 from adhering to the incident surface 41a.
  • the laser processing apparatus 10 includes a laser light source 22 that emits a laser beam LW for processing the object W to be processed.
  • the laser processing apparatus 10 has a scanning unit 33 for scanning the laser beam LW emitted from the laser light source 22, a laser head 12 for irradiating the workpiece W with the laser beam LW, the laser light source 22 and the scanning and a control unit 21 that controls the unit 33 .
  • the laser light source 22 has an optical window 23 that is an optical element that transmits the laser light LW.
  • the laser head 12 has a first lens 41 that is an optical element that transmits the laser beam LW.
  • the optical window 23 has a thin film body 28 that is integrally provided in a portion of the optical window 23 that transmits the laser beam LW and that absorbs part of the laser beam LW.
  • the first lens 41 has a thin film body 53 that is integrally provided in a portion of the first lens 41 that transmits the laser beam LW and absorbs part of the laser beam LW.
  • the thin films 28 and 53 generate heat by absorbing part of the laser beam LW.
  • the heat of the thin films 28 and 53 can act on the impurities floating in the gas near the thin films 28 and 53 with a thermophoretic force greater than the optical dust collection effect.
  • This thermophoretic force causes the impurities to move away from the thin films 28 and 53 . That is, the impurities move away from the optical window 23 and the first lens 41 . Therefore, it is possible to prevent impurities from adhering to the optical window 23 and the first lens 41 while the laser light source 22 is emitting the laser light LW. As a result, it is possible to suppress a decrease in the laser output of the laser beam LW emitted from the laser head 12 toward the object W to be processed.
  • the laser processing apparatus 10 requires maintenance such as cleaning and replacement of built-in optical elements.
  • the adhesion of impurities to the optical window 23 and the first lens 41 is reduced, so maintenance intervals for the optical window 23 and the first lens 41 can be lengthened.
  • a thin film 28 included in the optical window 23 is included in the antireflection film 26 .
  • the first lens 41 which is one of the optical elements forming the same optical system, has an antireflection film 45 on its surface.
  • the thin film 53 of the first lens 41 is included in the antireflection film 45 .
  • the antireflection film 26 has a thin film different from the thin film 28 in the first layer that contacts the air around the optical window 23 , and a second layer adjacent to the first layer is the thin film 28 .
  • the third layer, which is aligned with and adjacent to the surface of the substrate 27, is a thin film different from the thin film .
  • the antireflection film 26 has a thin film body 28 as a first layer in contact with the air around the optical window 23 and a thin film body 28 as a second layer adjacent to the first layer and adjacent to the surface of the substrate 27 .
  • the configuration may be a thin film different from the Further, for example, the antireflection film 26 is composed of a thin film whose first layer that contacts the air around the optical window 23 is different from the thin film 28, and a second layer that is adjacent to the first layer and adjacent to the surface of the substrate 27. is the thin film 28 in some cases.
  • the antireflection film 45 including the thin film 53 is the same is true for the antireflection film 45 including the thin film 53 .
  • these thin films 28 and 53 are selected so as to be able to exert a thermophoretic force on impurities that is greater than the light dust collecting effect in the vicinity of each of the thin films 28 and 53 .
  • the thin film body 28 can be formed in the same manner as the plurality of thin films forming the antireflection film 26, so that the thin film body 28 can be easily formed.
  • the thin film 28 is less likely to peel off from the surface of the optical window 23 than, for example, when the thin film 28 is formed by coating the surface of the optical window 23 with a material forming the thin film 28 .
  • the thin film 53 of the first lens 41 also has the same effect.
  • the optical window 23 and the first lens 41 transmit the laser light LW in the near-infrared region.
  • the thin film 28 of the optical window 23 and the thin film 53 of the first lens 41 are zinc oxide thin films.
  • each of the thin films 28 and 53 can easily absorb part of the laser light LW in the near-infrared region.
  • the laser head 12 has a beam expander 31 arranged between the laser light source 22 and the scanning unit 33 to expand the beam diameter of the laser light LW.
  • the beam expander 31 has multiple optical elements.
  • One optical element among the plurality of optical elements is the first lens 41 on which the laser beam LW is incident, and one optical element different from the first lens 41 among the plurality of optical elements is the first lens 41 is the second lens 42 into which the laser beam LW transmitted through is incident.
  • the first lens 41 has a thin film body 53 .
  • the first lens 41 on the incident side transmits laser light LW having a smaller beam diameter than the second lens 42 on the emitting side. Therefore, the intensity of the laser light LW is higher when passing through the first lens 41 than when passing through the second lens 42 . Therefore, the optical dust collection effect of impurities drifting in the vicinity of the first lens 41 is greater than the optical dust collection effect of impurities floating in the vicinity of the second lens 42 . Therefore, when the first lens 41 does not have the thin film 53 , impurities are more likely to adhere to the first lens 41 than to the second lens 42 . Therefore, the first lens 41 having the thin film 53 can suppress the adhesion of impurities to the first lens 41, which is highly likely to be contaminated with impurities. Since the first lens 41, which is an optical element more likely to be contaminated with impurities, has the thin film 53, the laser output of the laser light LW emitted from the laser head 12 toward the workpiece W is reduced. It is possible to more effectively suppress the decrease.
  • the laser light source 22 has an optical window 23 for emitting the laser light LW.
  • the optical window 23 is one of optical elements forming an optical system in the laser processing apparatus 10 .
  • the optical window 23 has an incident surface 23a on which the laser beam LW is incident and an output surface 23b from which the laser beam LW is emitted.
  • a thin film 28 is provided on the output surface 23b.
  • the thin film body 28 is provided on the emission surface 23b exposed inside the laser head 12 .
  • the gas inside the laser head 12 contains impurities. Therefore, there is concern that impurities may adhere to the emission surface 23b exposed inside the laser head 12 due to the photophoresis effect when the laser light source 22 emits the laser light LW. Therefore, by providing the thin film 28 on the exit surface 23b, the adhesion of impurities to the exit surface 23b can be suppressed by the thermophoretic effect.
  • the laser light LW transmitted through the optical window 23 is the laser light LW before the beam diameter is expanded by the beam expander 31 . Therefore, the intensity of the laser light LW transmitted through the optical window 23 is higher than the intensity of the laser light LW emitted from the beam expander 31 . Therefore, the optical dust collection effect received by impurities floating in the vicinity of the optical window 23 is greater than the optical dust collection effect caused by the laser light LW emitted from the beam expander 31 . Therefore, if the optical window 23 does not have the thin film 28, impurities are more likely to adhere to the optical window 23 than to an optical element that transmits or reflects the laser beam LW whose beam diameter has been expanded by the beam expander 31.
  • the optical window 23 with the thin film 28, it is possible to suppress the adhesion of impurities to the optical window 23, which is highly likely to be contaminated with impurities. Since the optical window 23, which is an optical element more susceptible to the attachment of impurities, has the thin film 28, the laser output of the laser light LW emitted from the laser head 12 toward the workpiece W is reduced. can be more effectively suppressed.
  • the optical window 23 has an incident surface 23a on which the laser beam LW is incident and an output surface 23b from which the laser beam LW is emitted.
  • the optical window 23 has a thin film 28 over at least the entire range through which the laser beam LW passes on one of the incident surface 23a and the exit surface 23b.
  • the first lens 41 has an incident surface 41a on which the laser beam LW is incident and an output surface 41b from which the laser beam LW is emitted.
  • the first lens 41 has a thin film 53 over at least the entire range irradiated with the laser beam LW on one of the entrance surface 41a and the exit surface 41b.
  • the range through which the laser beam LW passes on the exit surface 23b of the optical window 23 is the impurity caused by the optical dust collection effect caused by the laser beam LW in the vicinity of the exit surface 23b. is the part where it is easy to adhere.
  • the range irradiated with the laser beam LW on the incident surface 41a receives the optical dust collection effect caused by the laser beam LW in the vicinity of the incident surface 41a. This is a portion where impurities tend to adhere.
  • the laser head 12 when impurities adhere to the range through which the laser beam LW passes on the exit surface 23b of the optical window 23, the laser head 12 emits light from the laser head 12 toward the workpiece W more than when the impurities adhere to the outside of the range. It tends to affect the laser output of the laser light LW.
  • the distance from the laser head 12 to the workpiece W increases as compared with the case where the impurities adhere to the outside of the range. This tends to affect the laser output of the laser light LW emitted by the laser beam LW.
  • the optical window 23 has the thin film 28 over at least the entire range through which the laser beam LW passes on the output surface 23b, the laser output of the laser beam LW emitted from the laser head 12 toward the workpiece W can be reduced. The decrease can be suppressed more effectively.
  • the first lens 41 has the thin film 53 over at least the entire range irradiated with the laser beam LW on the incident surface 41a, the laser beam LW emitted from the laser head 12 toward the workpiece W A decrease in output can be suppressed more effectively.
  • the wavelength of the laser light with the highest absorption rate in the thin film 28 is a wavelength different from the peak wavelength of the spectrum of the laser light LW that passes through the optical window 23 having the thin film 28 . More preferably, the wavelength of the laser light with the highest absorptivity in the thin film 28 is the flat part as far as possible from the peak of the spectrum of the laser light LW passing through the optical window 23 having the thin film 28. Set to wavelength. When there are multiple peaks on the spectrum of the same laser beam LW, the wavelength of the laser beam with the highest absorption rate in the thin film 28 should be as flat as possible in a portion distant from the peak or maximum point, that is, from the peak. It is preferable to set the wavelength of the remote, non-steep portion.
  • the wavelength of the laser light with the highest absorption rate in the thin film 53 is different from the peak wavelength of the spectrum of the laser light LW that passes through the first lens 41 having the thin film 53 . More preferably, the wavelength of the laser light with the highest absorptivity in the thin film 53 is the flat part as far as possible from the peak of the spectrum of the laser light LW that passes through the first lens 41 having the thin film 53. set to the wavelength of When a plurality of peaks exist on the spectrum of the same laser beam LW, the wavelength of the laser beam with the highest absorption rate in the thin film 53 should be the flattest portion apart from the peak or the maximum point, that is, from the peak. It is preferable to set the wavelength of the remote, non-steep portion.
  • these thin films 28 and 53 are selected so as to be able to exert a thermophoretic force on impurities that is greater than the light dust collecting effect in the vicinity of each of the thin films 28 and 53 .
  • the optical window 23 has the thin film 28 and the first lens 41 has the thin film 53, so that the laser output of the laser processing apparatus 10 can be prevented from decreasing.
  • the optical window 23 and the first lens 41 have the thin films 28 and 53, respectively.
  • at least one of the plurality of optical elements constituting the optical system in the laser processing apparatus 10 is integrally provided in a portion of the optical element that transmits or reflects the laser beam LW. It is only necessary to have a thin film that absorbs part of the
  • the first lens 41 may not have the thin film 53 .
  • optical elements other than the optical window 23 and the first lens 41 may have thin films.
  • the second lens 42 may have the thin film 53 .
  • each of the galvanomirrors 63X and 63Y that reflect the laser light LW may have a thin film.
  • the incident surface into which the laser beam LW is incident and the exit surface from which the laser beam LW is emitted are the same surface.
  • an optical element on the optical path having the same beam diameter of the laser light LW, for example, parallel light from the optical window 23 to the first lens 41 and diffused light from the first lens 41, the optical window 23 and , the first lens 41 preferably has a thin film on at least the side of the incident surface 41a.
  • the at least one optical element that transmits or reflects laser light is an optical element (eg, first lens 41) disposed within housing 35 of laser head 12 and/or housing 35 of laser head 12. includes an optical element (eg, optical window 23) exposed to the interior of the .
  • at least one optical element that transmits or reflects laser light is arranged in the transmission path of the laser light LW between the laser light source 22 and the scanning section 33 .
  • all the optical elements that are arranged on the optical path of the laser beam LW and that transmit or reflect the laser beam LW have a thin film that partially absorbs the laser beam LW. may By doing so, it is possible to prevent impurities from adhering to all the optical elements.
  • the optical window 23 may have the thin film 28 only in a range through which the laser light LW passes on at least one of the entrance surface 23a and the exit surface 23b. Further, the optical window 23 may have a thin film 28 in a part of the range through which the laser light LW passes on at least one of the entrance surface 23a and the exit surface 23b.
  • the first lens 41 may have the thin film 53 only in the range irradiated with the laser light LW on at least one of the entrance surface 41a and the exit surface 41b. Further, the first lens 41 may have a thin film 53 in part of the range irradiated with the laser light LW on at least one of the entrance surface 41a and the exit surface 41b.
  • a thin film 28 may be provided on the incident surface 23 a of the optical window 23 .
  • the thin film body 53 may be provided in each of the entrance surface 41a and the output surface 41b. By doing so, it is possible to prevent impurities from adhering to both the entrance surface 41a and the exit surface 41b. For example, if the beam expander 31 is not a closed type, there is concern that impurities may also adhere to the output surface 41b. In this case, if the thin film 53 is provided on the emission surface 41b, the adhesion of the impurities to the emission surface 41b can be suppressed.
  • the beam expander 31 may have another optical element.
  • the thin film of the optical element that transmits the laser light LW in the near-infrared region does not necessarily have to be a zinc oxide-based thin film.
  • the thin film may be made of a material other than the zinc oxide-based material as long as it can absorb part of the laser light LW.
  • the laser light source 22 may emit laser light LW including wavelengths in the ultraviolet region.
  • the laser light source 22 has, for example, a laser oscillator that generates a fundamental wave and two wavelength conversion elements.
  • One wavelength conversion element generates a second harmonic wave having a higher frequency than the fundamental wave (SHG: Second Harmonic Generation).
  • the wavelength of the second harmonic is, for example, 532 nm.
  • the other wavelength conversion element generates a third harmonic wave having a higher frequency than the second harmonic wave (THG: Third Harmonic Generation).
  • the wavelength of the third harmonic is in the ultraviolet region, eg, 355 nm.
  • At least one of the optical elements constituting the optical system in the laser processing apparatus 10 transmits or reflects the laser light LW in the ultraviolet region.
  • the optical window 23 and the first lens 41 transmit the laser light LW in the ultraviolet range.
  • the galvanomirrors 63X and 63Y reflect the laser light LW in the ultraviolet region.
  • At least one of the optical elements that transmit or reflect the laser light LW in the ultraviolet region is a thin film body that is a titanium oxide (TiO 2 )-based thin film that absorbs a part of the laser light LW in the ultraviolet region. may have.
  • the thin films 28 and 53 of the optical window 23 and the first lens 41 are titanium oxide thin films. By doing so, each of the thin films 28 and 53 can easily absorb a part of the laser light LW in the ultraviolet region. Also, it is possible to prevent impurities from adhering to the optical window 23 and the first lens 41 .
  • the thin film is preferably a zinc oxide (ZnO)-based thin film.
  • the laser processing apparatus 10 may include an optical element having a high reflection film (HR coat).
  • the optical element may have a thin film on its surface that absorbs part of the laser beam LW.
  • the thin film may be included in the reflection enhancing film.
  • the thin film body can be formed in the same manner as the plurality of thin films forming the reflection enhancing film, so that the thin film body can be easily formed.
  • the thin film is less likely to peel off from the surface of the optical element than, for example, when the thin film is formed by coating the surface of the optical element with a material forming the thin film.
  • the thin film 28 may not be included in the antireflection film 26 .
  • the optical window 23 has an antireflection film 25 that does not include the thin film 28 on each of the entrance surface 23a and the exit surface 23b.
  • the thin film body 28 is integrally provided on the surface of the antireflection film 25 .
  • the thin film 28 is provided integrally with the optical window 23 by coating the surface of the antireflection film 25 after the antireflection film 25 is formed on the surface of the substrate 27 .
  • the surface of the antireflection film 25 is the surface of the antireflection film 25 opposite to the substrate 27 .
  • the thin film body 28 is provided on each of the entrance surface 23a and the exit surface 23b. good too.
  • the thin film 53 included in the first lens 41 may be similarly formed.
  • the optical window 23 may have a thin film 71 instead of the thin film 28 .
  • the thin film body 71 is integrally provided on the surface of the antireflection film 25 .
  • the thin film 71 is, for example, a titanium oxide-based thin film.
  • the thin film body 71 has, on the surface of the thin film body 71, an uneven structure portion 72 having a large number of fine unevenness that absorbs the laser light LW.
  • Each concave portion and each convex portion in the concave-convex structure portion 72 has a nanometer-order size.
  • the thin film body 71 is provided on each of the entrance surface 23a and the exit surface 23b, but the thin film body 71 is provided only on one of the entrance surface 23a and the exit surface 23b. may be
  • the uneven structure portion 72 may be provided on the surface of the antireflection film 25 .
  • the antireflection film 25 having the uneven structure portion 72 corresponds to a thin film that partially absorbs the laser light LW.
  • laser processing device 11 laser emission unit 12 laser head (laser irradiation unit) 21 control unit 22 laser light source 23 optical window 23a entrance surface 23b exit surface 25 antireflection film 26 antireflection film 27 base material 28 thin film body 31 beam expander 32 focus adjustment unit 33 scanning unit 34 protective glass 35 housing 35a opening 41 th 1 lens 41a entrance surface 41b exit surface 42 second lens 42a entrance surface 42b exit surface 43 housing 45 antireflection film 46 antireflection film 47, 48 antireflection film 51 base material 52 base material 53 thin film body 61 lens section 62 driving section 63X, 63Y Galvanomirror 64 Actuator 71 Thin film 72 Concavo-convex structure LW Laser beam W Object to be processed

Abstract

This laser processing device is provided with a laser light source for emitting laser light (LW) for processing a processing subject. In addition, this laser processing device is provided with a laser head, which has a scanning unit for scanning the laser light (LW) emitted from the laser light source, and which irradiates the processing subject with the laser light (LW), and a control unit, which controls the laser light source and the scanning unit. The laser light source has an optical window (23), which is an optical element through which the laser light (LW) passes. The optical window (23) has a thin-film body (28) for absorbing a portion of the laser light (LW).

Description

レーザ加工装置Laser processing equipment
 本開示は、レーザ加工装置に関するものである。 This disclosure relates to a laser processing apparatus.
 従来、レーザ加工装置は、加工対象物にレーザ光を照射することにより、当該加工対象物の表面に文字等のマーキング加工を行う。このようなレーザ加工装置は、レーザ光を出射するレーザ光源と、レーザ光源から出射されるレーザ光を加工対象物に照射するレーザ照射部とを有するものがある。レーザ照射部は、例えば、マーキング加工を行う所望の文字等に基づいてレーザ光源から出射されるレーザ光の方向を変更して加工対象物に対して走査する走査部を有する。レーザ光源及びレーザ照射部の各々は、少なくとも1つの光学素子を有する。光学素子としては、例えば、光学窓、レンズ、フィルタ、ガルバノミラーなどが挙げられる。 Conventionally, a laser processing apparatus performs marking processing such as characters on the surface of a processing target by irradiating the processing target with a laser beam. Some of such laser processing apparatuses have a laser light source that emits laser light, and a laser irradiation section that irradiates a processing object with the laser light emitted from the laser light source. The laser irradiation unit has a scanning unit that scans the object to be processed by changing the direction of the laser light emitted from the laser light source based on, for example, a desired character or the like to be marked. Each of the laser light source and the laser irradiation section has at least one optical element. Examples of optical elements include optical windows, lenses, filters, and galvanomirrors.
 ところで、塵埃等の空気中を漂う不純物が光学素子に付着すると、加工対象物に照射するレーザ光の出力が低下することがある。すると、所望の加工状態を得られない場合がある。このため、光学素子に不純物が付着することを抑制することが求められる。 By the way, when impurities floating in the air such as dust adhere to the optical element, the output of the laser beam irradiated to the object to be processed may decrease. As a result, the desired processing state may not be obtained. Therefore, it is required to prevent impurities from adhering to the optical element.
 例えば、特許文献1に記載されたレーザ加工装置は、不純物が付着するとレーザ光の出力の低下に影響を及ぼしやすい波長変換素子を、ハウジングの内部に気密状に収容している。これにより、波長変換素子が収容され、且つその紫外光が細い状態で伝送される部分の空間の内部に空気中の不純物が侵入することを抑制している。 For example, the laser processing apparatus described in Patent Document 1 airtightly houses a wavelength conversion element inside a housing, which tends to reduce the output of laser light when impurities adhere to it. This prevents impurities in the air from entering the space where the wavelength conversion element is accommodated and where the ultraviolet light is transmitted in a narrow state.
特開2019-106511号公報JP 2019-106511 A
 ところで、波長変換素子などの光学素子を含む部品が収容された空間に当該空間の外部の空気中を漂う不純物が侵入することを抑制するためには、ハーメチックシール等の封止構造を用いることが好ましい。しかしながら、ハーメチックシール等の封止構造は、例えば半導体発光素子(例えばレーザダイオード)等の小さな光学部品には有効である一方、大型なレーザ加工装置に適用するには技術的に難しい。また、気密封止する方法では、湿気による結露の問題が生じる。結露を防止するためには、光学素子が収容された空間に除湿剤を配置したり、当該除湿剤を交換したりするなどの手間が生じる。これらのことから、光学素子に不純物が付着することを抑制する構成について、改善の余地があった。 By the way, in order to prevent impurities floating in the air outside the space from entering the space in which components including optical elements such as wavelength conversion elements are accommodated, it is possible to use a sealing structure such as a hermetic seal. preferable. However, while sealing structures such as hermetic seals are effective for small optical components such as semiconductor light emitting devices (for example, laser diodes), they are technically difficult to apply to large laser processing apparatuses. In addition, the hermetic sealing method has a problem of dew condensation due to moisture. In order to prevent dew condensation, it takes time and effort to arrange a dehumidifying agent in the space in which the optical element is accommodated, or to replace the dehumidifying agent. For these reasons, there is room for improvement in terms of the structure that prevents impurities from adhering to the optical element.
 本開示のレーザ加工装置は、加工対象物を加工するためのレーザ光を出射するレーザ光源と、前記レーザ光源から出射された前記レーザ光を走査する走査部を有し前記レーザ光を前記加工対象物に対して照射するレーザ照射部と、前記レーザ光源及び前記走査部を制御する制御部と、を備え、前記レーザ光源及び前記レーザ照射部の各々は、前記レーザ光を透過させるもしくは反射する少なくとも1つの光学素子を有し、少なくとも1つの前記光学素子は、当該光学素子における前記レーザ光を透過させるもしくは反射する部分に一体的に設けられ前記レーザ光の一部を吸収する薄膜体を有する。 A laser processing apparatus of the present disclosure includes a laser light source that emits laser light for processing an object to be processed, and a scanning unit that scans the laser light emitted from the laser light source. A laser irradiation unit that irradiates an object, and a control unit that controls the laser light source and the scanning unit, wherein each of the laser light source and the laser irradiation unit transmits or reflects the laser light. It has one optical element, and at least one of the optical elements has a thin film body that is integrally provided in a portion of the optical element that transmits or reflects the laser beam and that absorbs part of the laser beam.
 本開示のレーザ加工装置によれば、光学素子に不純物が付着することを抑制できる。 According to the laser processing apparatus of the present disclosure, adhesion of impurities to the optical element can be suppressed.
図1は、一実施形態におけるレーザ加工装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a laser processing apparatus according to one embodiment. 図2は、同実施形態における光学素子の1つを模式的に示す側面図である。FIG. 2 is a side view schematically showing one of the optical elements in the same embodiment. 図3は、変更例のレーザ加工装置における光学素子の1つを模式的に示す側面図である。FIG. 3 is a side view schematically showing one of the optical elements in the laser processing apparatus of the modification. 図4は、変更例のレーザ加工装置における光学素子の1つを模式的に示す側面図である。FIG. 4 is a side view schematically showing one of the optical elements in the laser processing apparatus of the modification.
 以下、レーザ加工装置の一実施形態について説明する。
 なお、添付図面は、理解を容易にするために構成要素を拡大して示している場合がある。添付図面において、構成要素の寸法比率は、実際の構成要素の寸法比率と、または別の図中の構成要素の寸法比率と異なる場合がある。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内の全ての変更が含まれることが意図される。
An embodiment of the laser processing apparatus will be described below.
It should be noted that the attached drawings may show constituent elements on an enlarged scale for easy understanding. In the accompanying drawings, the dimensional proportions of components may differ from the dimensional proportions of actual components or from the dimensional proportions of components in separate figures. It should be noted that the present invention is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims.
 図1に示すレーザ加工装置10は、レーザ出射ユニット11と、レーザヘッド12とを備えている。レーザヘッド12は、「レーザ照射部」の一例に該当する。
 [レーザ出射ユニット11の構成]
 レーザ出射ユニット11は、例えば、制御部21と、レーザ光源22とを有している。制御部21は、レーザ加工装置10の全体の稼働を制御する。制御部21は、レーザ光源22及びレーザヘッド12の各々と電気的に接続されている。そして、制御部21は、レーザ光源22の駆動を制御する。また、制御部21は、レーザヘッド12の駆動を制御する。
A laser processing apparatus 10 shown in FIG. 1 includes a laser emitting unit 11 and a laser head 12 . The laser head 12 corresponds to an example of a "laser irradiation section".
[Configuration of Laser Emitting Unit 11]
The laser emission unit 11 has, for example, a control section 21 and a laser light source 22 . The control unit 21 controls the overall operation of the laser processing device 10 . The controller 21 is electrically connected to each of the laser light source 22 and the laser head 12 . The controller 21 controls driving of the laser light source 22 . Also, the control unit 21 controls driving of the laser head 12 .
 [レーザ光源22の構成]
 レーザ光源22は、所定の波長を含むレーザ光LWを出射する。このレーザ光LWは、加工対象物Wを加工するためのものである。レーザ光LWに含まれる波長は、例えば、近赤外線領域の波長である。例えば、レーザ光LWは、1064nmの波長を含む。レーザ光源22は、YAGレーザ、COレーザ、ファイバーレーザ、等のレーザ光源である。
[Configuration of laser light source 22]
The laser light source 22 emits laser light LW containing a predetermined wavelength. This laser beam LW is for processing the object W to be processed. The wavelengths contained in the laser light LW are, for example, wavelengths in the near-infrared region. For example, laser light LW includes a wavelength of 1064 nm. The laser light source 22 is a laser light source such as a YAG laser, CO2 laser, fiber laser, or the like.
 レーザ光源22は、レーザ光LWを出射する光学窓23を有する。光学窓23は、レーザ加工装置10における光学系を構成する複数の光学素子のうちの1つである。なお、本明細書において、レーザ加工装置10における光学系を構成する光学素子は、レンズ、反射鏡、フィルタなどの一般的な光学素子だけでなく、レーザ光LWを透過させる光学窓や保護ガラスも含まれるものとする。即ち、本明細書における光学素子は、レーザ光LWを透過させるもしくはレーザ光LWを反射する部品を意味する。光学窓23は、近赤外線領域のレーザ光LWを透過させる。レーザ光源22は、光学窓23を透過したレーザ光LWを出射する。 The laser light source 22 has an optical window 23 for emitting laser light LW. The optical window 23 is one of a plurality of optical elements forming an optical system in the laser processing apparatus 10 . In this specification, the optical elements that make up the optical system in the laser processing apparatus 10 are not only general optical elements such as lenses, reflecting mirrors, and filters, but also optical windows and protective glass that transmit the laser beam LW. shall be included. That is, the optical element in this specification means a component that transmits the laser beam LW or reflects the laser beam LW. The optical window 23 transmits laser light LW in the near-infrared region. The laser light source 22 emits laser light LW that has passed through the optical window 23 .
 図1及び図2に示すように、光学窓23は、レーザ光LWが入射する入射面23aと、レーザ光LWが出射する出射面23bとを有する。入射面23aは、光学窓23におけるレーザ光LWが入射する表面である。出射面23bは、光学窓23におけるレーザ光LWが出射する表面である。出射面23bは、レーザヘッド12の内部に露出する。光学窓23は、入射面23aに反射防止膜(ARコート)25を有する。また、光学窓23は、出射面23bに反射防止膜26を有する。即ち、光学窓23は、同光学窓23の表面に反射防止膜25,26を有する。 As shown in FIGS. 1 and 2, the optical window 23 has an incident surface 23a on which the laser beam LW is incident and an output surface 23b from which the laser beam LW is emitted. The incident surface 23a is the surface of the optical window 23 on which the laser beam LW is incident. The exit surface 23b is the surface of the optical window 23 from which the laser beam LW is emitted. The emission surface 23 b is exposed inside the laser head 12 . The optical window 23 has an antireflection film (AR coat) 25 on the incident surface 23a. Further, the optical window 23 has an antireflection film 26 on the exit surface 23b. That is, the optical window 23 has antireflection films 25 and 26 on the surface of the optical window 23 .
 図2に示すように、光学窓23は、基材27を有する。基材27は、例えばガラス基板である。ガラス基板は、例えば溶融石英から構成されている。反射防止膜25,26は、基材27の表面に一体的に形成されている。反射防止膜25,26は、基材27におけるレーザ光の反射量(反射率)を低減することにより、基材27におけるレーザ光の透過量(透過率)を向上させる。反射防止膜25,26の各々は、酸化物、金属、希土類元素、等の材料の複数の薄膜から構成された多層膜である。反射防止膜25,26の各々は、例えば、酸化アルミニウム(Al)、五酸化タンタル(Ta)、フッ化マグネシウム(MgF)、等の薄膜から構成される。反射防止膜25,26の各々は、蒸着により基材27の表面に一体的に形成されている。 As shown in FIG. 2, optical window 23 has substrate 27 . The base material 27 is, for example, a glass substrate. The glass substrate is made of fused silica, for example. The antireflection films 25 and 26 are integrally formed on the surface of the base material 27 . The antireflection films 25 and 26 improve the amount of laser light transmitted through the base material 27 (transmittance) by reducing the amount of laser light reflected by the base material 27 (reflectance). Each of the antireflection films 25 and 26 is a multilayer film composed of a plurality of thin films of materials such as oxides, metals and rare earth elements. Each of the antireflection films 25 and 26 is composed of a thin film of, for example, aluminum oxide (Al 2 O 3 ), tantalum pentoxide (Ta 2 O 5 ), magnesium fluoride (MgF 2 ), or the like. Each of the antireflection films 25 and 26 is integrally formed on the surface of the substrate 27 by vapor deposition.
 例えば、光学窓23は、光学窓23におけるレーザ光LWを透過させる部分に一体的に設けられレーザ光LWの一部を吸収する薄膜体28を有する。薄膜体28は、例えば、光学窓23の出射面23bに一体的に設けられている。光学窓23は、例えば、出射面23bにおける、少なくともレーザ光LWが通過する範囲の全体に、薄膜体28を有する。即ち、薄膜体28は、少なくとも、出射面23bにおいて、同出射面23bをレーザ光LWが通過するときの当該レーザ光LWのビーム径の範囲の全体にわたって設けられている。一例では、光学窓23の出射面23bにおけるレーザ光LWが通過する範囲以外の領域には薄膜体28が設けられていなくてもよい。他の例では、光学窓23は、出射面23bの全体にわたって薄膜体28を有してもよい。 For example, the optical window 23 has a thin film body 28 that is integrally provided in a portion of the optical window 23 through which the laser beam LW is transmitted and absorbs part of the laser beam LW. The thin film body 28 is provided integrally with the exit surface 23b of the optical window 23, for example. The optical window 23 has, for example, a thin film 28 over at least the entire range through which the laser beam LW passes on the exit surface 23b. That is, the thin film 28 is provided at least on the exit surface 23b over the entire beam diameter range of the laser beam LW when the laser beam LW passes through the exit surface 23b. In one example, the thin film 28 does not have to be provided in a region of the emission surface 23b of the optical window 23 other than the range through which the laser beam LW passes. Alternatively, the optical window 23 may have a thin film 28 over the exit surface 23b.
 薄膜体28は、レーザ光LWの一部を吸収することにより所望の温度まで発熱できる構成である。具体的には、例えば、薄膜体28が吸収するレーザ光の波長及び薄膜体28の膜厚は、薄膜体28におけるレーザ光LWの吸収量が、薄膜体28が所望の温度まで発熱できる吸収量となるように設定されている。即ち、薄膜体28のレーザ光の吸収率は、レーザ光LWの一部を吸収することにより同薄膜体28が所望の範囲の温度に上昇できる値である。 The thin film body 28 is configured to generate heat up to a desired temperature by absorbing part of the laser beam LW. Specifically, for example, the wavelength of the laser light absorbed by the thin film 28 and the thickness of the thin film 28 are such that the absorption amount of the laser light LW in the thin film 28 is the absorption amount that allows the thin film 28 to generate heat up to a desired temperature. is set to be That is, the laser beam absorptivity of the thin film 28 is a value that allows the thin film 28 to rise to a desired temperature range by absorbing a portion of the laser beam LW.
 ここで、レーザヘッド12の内部の気体には、不純物が含まれる。不純物は、微小な液体や、固体の粒子を含む。一般的に、不純物を含む気体中にレーザ光を照射すると、当該気体中の不純物は、レーザ光やレーザ光が照射された光学素子に向かって移動する光集塵効果を受ける。不純物が受ける光集塵効果は、レーザ光の強度が高いほど大きくなる。また、不純物が温度勾配を有する気体内にある場合、当該不純物は、高温側から低温側へ移動する熱泳動力を受ける。不純物が受ける熱泳動力は、高温側と低温側との温度勾配が大きいほど大きくなる。 Here, the gas inside the laser head 12 contains impurities. Impurities include minute liquids and solid particles. In general, when a gas containing impurities is irradiated with a laser beam, the impurities in the gas undergo an optical dust collection effect in which the impurities move toward the laser beam or the optical element irradiated with the laser beam. The higher the intensity of the laser beam, the greater the optical dust collection effect that the impurities receive. Also, when impurities are in a gas with a temperature gradient, the impurities are subject to thermophoretic forces that move from the high temperature side to the low temperature side. The thermophoretic force that the impurities receive increases as the temperature gradient between the high temperature side and the low temperature side increases.
 そして、薄膜体28は、レーザ光LWの一部を吸収することにより、レーザヘッド12の内部の気体に含まれる不純物に出射面23bの近傍で光集塵効果よりも大きな熱泳動力を働かせることができるだけの温度上昇をする構成である。即ち、上記の「所望の温度」は、出射面23bの近傍を漂う不純物に光集塵効果よりも大きな熱泳動力を働かせることができるだけの温度勾配を、出射面23bの近傍に形成できる温度である。例えば、薄膜体28は、レーザ光LWの一部を吸収して発熱することにより、レーザ加工装置10が配置される場所の室温よりも数度高い温度、例えば5℃程度高い温度になる構成である。なお、薄膜体28は、レーザ光LWの一部を吸収しても、レーザ光源22の周辺温度、例えばレーザヘッド12の内部全体の温度を上昇させるほどには発熱しない構成であることが好ましい。また、薄膜体28は、レーザ光LWの一部を吸収しても、光学窓23の耐熱温度以上の温度になるほどには発熱しない構成である。 By absorbing part of the laser beam LW, the thin film 28 exerts a thermophoretic force greater than the light dust collecting effect on the impurities contained in the gas inside the laser head 12 in the vicinity of the emission surface 23b. It is a configuration that raises the temperature as much as possible. That is, the above-mentioned "desired temperature" is a temperature at which a temperature gradient can be formed in the vicinity of the exit surface 23b so as to exert a thermophoretic force greater than the optical dust collecting effect on impurities drifting in the vicinity of the exit surface 23b. be. For example, the thin film body 28 absorbs a part of the laser beam LW and generates heat, so that the temperature is several degrees higher than the room temperature of the place where the laser processing apparatus 10 is arranged, for example, about 5 degrees Celsius higher. be. It is preferable that the thin film 28 does not generate enough heat to raise the ambient temperature of the laser light source 22, for example, the temperature of the entire interior of the laser head 12, even if it absorbs part of the laser beam LW. Further, the thin film body 28 is configured so as not to generate heat to a temperature higher than the heat-resistant temperature of the optical window 23 even if part of the laser beam LW is absorbed.
 薄膜体28は、例えば、反射防止膜26に含まれる。薄膜体28が反射防止膜26に含まれる場合、薄膜体28は、反射防止膜26を蒸着により形成する際に、蒸着により形成される。このため、薄膜体28は、反射防止膜26を構成する複数の薄膜とともに基材27の表面に積層されている。近赤外線領域のレーザ光LWを透過させる光学窓23が有する薄膜体28は、例えば、酸化亜鉛(ZnO)系の薄膜である。 The thin film 28 is included in the antireflection film 26, for example. When the thin film body 28 is included in the antireflection film 26, the thin film body 28 is formed by vapor deposition when the antireflection film 26 is formed by vapor deposition. Therefore, the thin film body 28 is laminated on the surface of the substrate 27 together with a plurality of thin films forming the antireflection film 26 . The thin film body 28 of the optical window 23 that transmits the laser light LW in the near-infrared region is, for example, a zinc oxide (ZnO)-based thin film.
 薄膜体28が反射防止膜26に含まれる場合、薄膜体28は、反射防止膜26を構成する複数の薄膜に対してどの薄膜と隣り合うように積層されてもよい。例えば、反射防止膜26は、光学窓23の周囲の空気に触れる第1層が薄膜体28とは異なる薄膜、当該第1層と隣り合う第2層が薄膜体28、当該第2層と隣り合い且つ基材27の表面と隣り合う第3層が薄膜体28とは異なる薄膜である構成であってもよい。この場合、第1層及び第3層は、1つの薄膜のみで構成されていてもよいし、複数の薄膜が積層された構成であってもよい。また、例えば、反射防止膜26は、光学窓23の周囲の空気に触れる第1層が薄膜体28、当該第1層と隣り合い且つ基材27の表面と隣り合う第2層が薄膜体28とは異なる薄膜である構成であってもよい。この場合、第2層は、複数の薄膜が積層された構成である。また、例えば、反射防止膜26は、光学窓23の周囲の空気に触れる第1層が薄膜体28とは異なる薄膜、当該第1層と隣り合い且つ基材27の表面と隣り合う第2層が薄膜体28である構成であってもよい。この場合、第1層は、複数の薄膜が積層された構成である。 When the thin film body 28 is included in the antireflection film 26 , the thin film body 28 may be laminated so as to be adjacent to any thin film among the plurality of thin films that constitute the antireflection film 26 . For example, the antireflection film 26 has a thin film different from the thin film 28 in the first layer that contacts the air around the optical window 23 , and a second layer adjacent to the first layer is the thin film 28 . A third layer that is aligned with and adjacent to the surface of the substrate 27 may be a thin film different from the thin film body 28 . In this case, the first layer and the third layer may be composed of only one thin film, or may be composed of a plurality of laminated thin films. Further, for example, the antireflection film 26 has a thin film body 28 as a first layer in contact with the air around the optical window 23 and a thin film body 28 as a second layer adjacent to the first layer and adjacent to the surface of the substrate 27 . It may be a configuration that is a thin film different from. In this case, the second layer has a structure in which a plurality of thin films are laminated. Further, for example, the antireflection film 26 is composed of a thin film whose first layer that contacts the air around the optical window 23 is different from the thin film 28, and a second layer that is adjacent to the first layer and adjacent to the surface of the substrate 27. may be the thin film body 28 . In this case, the first layer has a structure in which a plurality of thin films are laminated.
 また、薄膜体28における吸収率の最も高いレーザ光の波長は、例えば、光学窓23を透過するレーザ光LWのスペクトルのピーク波長とは異なる波長である。なお、より好ましくは、薄膜体28における吸収率の最も高いレーザ光の波長は、薄膜体28を有する光学窓23を透過するレーザ光LWのスペクトル上のピークから離れた部分のなるべく平坦な部分の波長に設定する。同レーザ光LWのスペクトル上にピークが複数存在する場合には、薄膜体28における吸収率の最も高いレーザ光の波長は、ピークや極大点から離れた部分のなるべく平坦な部分、つまり、ピークから離れた部分の急峻でない部分の波長に設定することが好ましい。 Also, the wavelength of the laser light with the highest absorption rate in the thin film 28 is, for example, a wavelength different from the peak wavelength of the spectrum of the laser light LW that passes through the optical window 23 . More preferably, the wavelength of the laser light with the highest absorptivity in the thin film 28 is the flat part as far as possible from the peak of the spectrum of the laser light LW passing through the optical window 23 having the thin film 28. Set to wavelength. When there are multiple peaks on the spectrum of the same laser beam LW, the wavelength of the laser beam with the highest absorption rate in the thin film 28 should be as flat as possible in a portion distant from the peak or maximum point, that is, from the peak. It is preferable to set the wavelength of the remote, non-steep portion.
 そして、この薄膜体28においては、出射面23bの近傍で光集塵効果よりも大きな熱泳動力を不純物に働かせることができるように、材料(材質)、吸収波長、反射防止膜26における積層順等が設定されている。 In the thin film body 28, the material (material), the absorption wavelength, and the stacking order of the antireflection film 26 are selected so that a thermophoretic force greater than the light dust collection effect can be exerted on the impurities in the vicinity of the output surface 23b. etc. is set.
 [レーザヘッド12の構成]
 図1に示すように、レーザヘッド12は、例えば、ビームエキスパンダ31と、焦点調整部32と、走査部33と、保護ガラス34とを有する。レーザヘッド12は、筐体35を有する。ビームエキスパンダ31、焦点調整部32及び走査部33は、筐体35の内部に収容されている。
[Configuration of laser head 12]
As shown in FIG. 1, the laser head 12 has, for example, a beam expander 31, a focus adjustment section 32, a scanning section 33, and a protective glass . The laser head 12 has a housing 35 . The beam expander 31 , focus adjustment section 32 and scanning section 33 are housed inside a housing 35 .
 [ビームエキスパンダ31の構成]
 ビームエキスパンダ31は、レーザ光源22と走査部33との間に配置されている。ビームエキスパンダ31は、レーザ光源22から出射されたレーザ光LWのビーム径を拡大する。ビームエキスパンダ31は、複数の光学素子を有する。例えば、ビームエキスパンダ31は、レーザ光LWが入射する第1レンズ41と、第1レンズ41を透過したレーザ光LWが入射する第2レンズ42との2つのレンズを有する。第1レンズ41及び第2レンズ42の各々は、レーザ加工装置10における光学系を構成する光学素子である。即ち、ビームエキスパンダ31は、光学素子を2つ有していてもよい。
[Configuration of beam expander 31]
The beam expander 31 is arranged between the laser light source 22 and the scanning section 33 . The beam expander 31 expands the beam diameter of the laser light LW emitted from the laser light source 22 . The beam expander 31 has multiple optical elements. For example, the beam expander 31 has two lenses, a first lens 41 into which the laser light LW is incident and a second lens 42 into which the laser light LW transmitted through the first lens 41 is incident. Each of the first lens 41 and the second lens 42 is an optical element that constitutes an optical system in the laser processing apparatus 10 . That is, the beam expander 31 may have two optical elements.
 ビームエキスパンダ31における入射側の第1レンズ41は、例えば凹レンズである。ビームエキスパンダ31における出射側の第2レンズ42は、凸レンズである。なお、第1レンズ41及び第2レンズ42は、共に凸レンズであってもよい。ビームエキスパンダ31は、第1レンズ41と第2レンズ42との間の距離に応じた倍率で、入射されるレーザ光LWのビーム径を拡大して出射する。第2レンズ42を透過するレーザ光LWのビーム径は、第1レンズ41を透過するレーザ光LWのビーム径よりも大きい。 The first lens 41 on the incident side in the beam expander 31 is, for example, a concave lens. A second lens 42 on the output side of the beam expander 31 is a convex lens. Both the first lens 41 and the second lens 42 may be convex lenses. The beam expander 31 expands the beam diameter of the incident laser light LW by a magnification according to the distance between the first lens 41 and the second lens 42, and emits the expanded beam. The beam diameter of the laser light LW passing through the second lens 42 is larger than the beam diameter of the laser light LW passing through the first lens 41 .
 ビームエキスパンダ31は、第1レンズ41及び第2レンズ42を保持する筐体43を有する。ビームエキスパンダ31は、例えば、密閉型のものである。即ち、ビームエキスパンダ31は、筐体43の内部に筐体43の外部の空気や当該空気中の不純物が侵入することが抑制される構成である。 The beam expander 31 has a housing 43 that holds the first lens 41 and the second lens 42 . The beam expander 31 is, for example, a closed type. That is, the beam expander 31 is configured to prevent the air outside the housing 43 and impurities in the air from entering the housing 43 .
 第1レンズ41は、レーザ光LWが入射する入射面41aと、レーザ光LWが出射する出射面41bとを有する。入射面41a及び出射面41bは、第1レンズ41の表面の一部である。入射面41aは、筐体43の外部、即ちレーザヘッド12の内部に露出している。出射面41bは、筐体43の内部に露出している。また、第2レンズ42は、第1レンズ41を透過したレーザ光LWが入射する入射面42aと、レーザ光LWが出射する出射面42bとを有する。入射面42a及び出射面42bは、第2レンズ42の表面の一部である。入射面42aは、筐体43の内部に露出している。出射面42bは、筐体43の外部に露出している。 The first lens 41 has an incident surface 41a on which the laser beam LW is incident and an output surface 41b from which the laser beam LW is emitted. The entrance surface 41 a and the exit surface 41 b are part of the surface of the first lens 41 . The incident surface 41 a is exposed outside the housing 43 , that is, inside the laser head 12 . The exit surface 41 b is exposed inside the housing 43 . The second lens 42 has an incident surface 42a on which the laser beam LW transmitted through the first lens 41 is incident, and an output surface 42b from which the laser beam LW is emitted. The entrance surface 42 a and the exit surface 42 b are part of the surface of the second lens 42 . The incident surface 42 a is exposed inside the housing 43 . The exit surface 42 b is exposed to the outside of the housing 43 .
 第1レンズ41は、入射面41aに反射防止膜45を有する。また、第1レンズ41は、出射面41bに反射防止膜46を有する。即ち、第1レンズ41は、同第1レンズ41の表面に反射防止膜45,46を有する。第2レンズ42は、入射面42aに反射防止膜47を有する。また、第2レンズ42は、出射面42bに反射防止膜48を有する。即ち、第2レンズ42は、同第2レンズ42の表面に反射防止膜47,48を有する。 The first lens 41 has an antireflection film 45 on the incident surface 41a. The first lens 41 also has an antireflection film 46 on the exit surface 41b. That is, the first lens 41 has antireflection films 45 and 46 on the surface of the first lens 41 . The second lens 42 has an antireflection film 47 on the incident surface 42a. The second lens 42 also has an antireflection film 48 on the exit surface 42b. That is, the second lens 42 has antireflection films 47 and 48 on the surface of the second lens 42 .
 第1レンズ41は、基材51を有する。基材51は、例えば基材27と同様のガラス基板である。反射防止膜45,46は、基材51の表面に一体的に形成されている。反射防止膜45,46の各々は、反射防止膜25,26と同様の、酸化物、金属、希土類元素、等の材料の複数の薄膜から構成された多層膜である。各反射防止膜45,46は、反射防止膜25もしくは反射防止膜26と同じ構成であってもよいし、異なる構成であってもよい。反射防止膜45,46の各々は、蒸着により基材51の表面に一体的に形成されている。 The first lens 41 has a base material 51 . The base material 51 is, for example, a glass substrate similar to the base material 27 . The antireflection films 45 and 46 are integrally formed on the surface of the base material 51 . Each of the antireflection films 45 and 46 is a multilayer film composed of a plurality of thin films of materials such as oxides, metals, and rare earth elements, similar to the antireflection films 25 and 26 . Each of the antireflection films 45 and 46 may have the same structure as the antireflection film 25 or the antireflection film 26, or may have a different structure. Each of the antireflection films 45 and 46 is integrally formed on the surface of the substrate 51 by vapor deposition.
 第2レンズ42は、基材52を有する。基材52は、例えば、基材51と同様のガラス基板である。反射防止膜47,48は、基材52の表面に一体的に形成されている。反射防止膜47,48の各々は、反射防止膜45,46と同様の、酸化物、金属、希土類元素、等の材料の複数の薄膜から構成された多層膜である。各反射防止膜47,48は、反射防止膜46と同じ構成であってもよいし、異なる構成であってもよい。反射防止膜47,48の各々は、蒸着により基材52の表面に一体的に形成されている。 The second lens 42 has a base material 52 . The base material 52 is, for example, a glass substrate similar to the base material 51 . The antireflection films 47 and 48 are integrally formed on the surface of the base material 52 . Each of the antireflection films 47 and 48 is a multilayer film composed of a plurality of thin films of materials such as oxides, metals and rare earth elements, similar to the antireflection films 45 and 46 . Each of the antireflection films 47 and 48 may have the same configuration as the antireflection film 46, or may have a different configuration. Each of the antireflection films 47 and 48 is integrally formed on the surface of the base material 52 by vapor deposition.
 例えば、第1レンズ41は、第1レンズ41におけるレーザ光LWを透過させる部分に一体的に設けられレーザ光LWの一部を吸収する薄膜体53を有する。薄膜体53は、例えば、第1レンズ41の入射面41aに一体的に設けられている。第1レンズ41は、例えば、入射面41aにおける、少なくともレーザ光LWが照射される範囲の全体に、薄膜体53を有する。即ち、薄膜体53は、少なくとも、入射面41aにおいて、同入射面41aにレーザ光LWが照射されるときの当該レーザ光LWのビーム径の範囲の全体にわたって設けられている。一例では、第1レンズ41の入射面41aにおけるレーザ光LWが照射される範囲以外の領域には薄膜体53が設けられていない。他の例では、第1レンズ41は、入射面41aの全体にわたって薄膜体53を有してもよい。 For example, the first lens 41 has a thin film body 53 that is integrally provided in a portion of the first lens 41 that transmits the laser beam LW and absorbs part of the laser beam LW. The thin film body 53 is provided integrally with the incident surface 41a of the first lens 41, for example. The first lens 41 has, for example, a thin film 53 over at least the entire range irradiated with the laser beam LW on the incident surface 41a. That is, the thin film 53 is provided at least on the incident surface 41a over the entire beam diameter range of the laser beam LW when the incident surface 41a is irradiated with the laser beam LW. In one example, the thin film body 53 is not provided in a region of the incident surface 41a of the first lens 41 other than the range irradiated with the laser beam LW. Alternatively, the first lens 41 may have a thin film 53 over the entrance surface 41a.
 薄膜体53は、光学窓23が有する薄膜体28と同様の構成である。即ち、薄膜体53は、レーザ光LWの一部を吸収することにより、レーザヘッド12の内部の気体に含まれる不純物に入射面41aの近傍で光集塵効果よりも大きな熱泳動力を働かせることができるだけの温度上昇をする構成である。 The thin film body 53 has the same configuration as the thin film body 28 that the optical window 23 has. That is, the thin film body 53 absorbs a part of the laser beam LW, so that the impurity contained in the gas inside the laser head 12 exerts a thermophoretic force larger than the light dust collection effect near the incident surface 41a. It is a configuration that raises the temperature as much as possible.
 薄膜体53は、例えば、反射防止膜45に含まれる。薄膜体53が反射防止膜45に含まれる場合、薄膜体53は、反射防止膜45を蒸着により形成する際に、蒸着により形成される。このため、薄膜体53は、反射防止膜45を構成する複数の薄膜とともに基材51の表面に積層されている。近赤外線領域のレーザ光LWを透過させる第1レンズ41が有する薄膜体53は、例えば、酸化亜鉛(ZnO)系の薄膜である。薄膜体53が反射防止膜45に含まれる場合、薄膜体53は、反射防止膜26に含まれる薄膜体28と同様に、反射防止膜45を構成する複数の薄膜に対してどの薄膜と隣り合うように積層されてもよい。 The thin film body 53 is included in the antireflection film 45, for example. When the thin film body 53 is included in the antireflection film 45, the thin film body 53 is formed by vapor deposition when the antireflection film 45 is formed by vapor deposition. Therefore, the thin film body 53 is laminated on the surface of the base material 51 together with a plurality of thin films forming the antireflection film 45 . The thin film 53 of the first lens 41 that transmits the laser light LW in the near-infrared region is, for example, a zinc oxide (ZnO)-based thin film. When the thin film body 53 is included in the antireflection film 45 , the thin film body 53 is adjacent to any of the thin films constituting the antireflection film 45 in the same manner as the thin film body 28 included in the antireflection film 26 . may be laminated as follows.
 また、薄膜体53における吸収率の最も高いレーザ光の波長は、例えば、薄膜体53を有する第1レンズ41を透過するレーザ光LWのスペクトルのピーク波長とは異なる波長である。なお、より好ましくは、薄膜体53における吸収率の最も高いレーザ光の波長は、薄膜体53を有する第1レンズ41を透過するレーザ光LWのスペクトル上のピークから離れた部分のなるべく平坦な部分の波長に設定する。同レーザ光LWのスペクトル上にピークが複数存在する場合には、薄膜体53における吸収率の最も高いレーザ光の波長は、ピークや極大点から離れた部分のなるべく平坦な部分、つまり、ピークから離れた部分の急峻でない部分の波長に設定することが好ましい。 Also, the wavelength of the laser light with the highest absorption rate in the thin film 53 is, for example, a wavelength different from the peak wavelength of the spectrum of the laser light LW that passes through the first lens 41 having the thin film 53 . More preferably, the wavelength of the laser light with the highest absorptivity in the thin film 53 is the flat part as far as possible from the peak of the spectrum of the laser light LW that passes through the first lens 41 having the thin film 53. set to the wavelength of When a plurality of peaks exist on the spectrum of the same laser beam LW, the wavelength of the laser beam with the highest absorption rate in the thin film 53 should be the flattest portion apart from the peak or the maximum point, that is, from the peak. It is preferable to set the wavelength of the remote, non-steep portion.
 そして、この薄膜体53においては、入射面41aの近傍で光集塵効果よりも大きな熱泳動力を不純物に働かせることができるように、材料(材質)、吸収波長、反射防止膜45における積層順等が設定されている。 In the thin film 53, the material (material), the absorption wavelength, and the stacking order of the antireflection film 45 are selected so that a thermophoretic force greater than the light dust collection effect can be applied to the impurities in the vicinity of the incident surface 41a. etc. is set.
 なお、光学窓23及び第1レンズ41は、ビームエキスパンダ31によってレーザ光LWのビーム径が拡大される前のレーザ光LWの光路上に配置された光学素子である。レーザ光LWの強度は、ビームエキスパンダ31によってレーザ光LWのビーム径が拡大された後よりも、ビームエキスパンダ31によってレーザ光LWのビーム径が拡大される前の方が高い。従って、光学窓23及び第1レンズ41は、レーザ光LWの強度の高い場所に配置されている。 The optical window 23 and the first lens 41 are optical elements arranged on the optical path of the laser light LW before the beam diameter of the laser light LW is expanded by the beam expander 31 . The intensity of the laser light LW is higher before the beam expander 31 expands the beam diameter of the laser light LW than after the beam expander 31 expands the beam diameter of the laser light LW. Therefore, the optical window 23 and the first lens 41 are arranged at a place where the intensity of the laser beam LW is high.
 [焦点調整部32の構成]
 焦点調整部32は、レンズ部61と、駆動部62とを有する。レンズ部61は、少なくとも2枚のレンズを含む。当該レンズは、レーザ加工装置10における光学系を構成する光学素子である。各レンズは、レーザ光LWの光路上に配置されている。レンズ部61に含まれる少なくとも1枚のレンズは、リニアスライダ等の図示しない支持部材によって、レーザ光LWの通過経路に沿って移動可能に支持されている。駆動部62は、制御部21からの制御により、移動可能に支持されたレンズをレーザ光LWの通過経路に沿って移動させる。これにより、焦点調整部32は、レーザ光LWの焦点位置を調整する。
[Configuration of focus adjustment unit 32]
The focus adjustment section 32 has a lens section 61 and a driving section 62 . Lens portion 61 includes at least two lenses. The lens is an optical element that constitutes an optical system in the laser processing apparatus 10 . Each lens is arranged on the optical path of the laser beam LW. At least one lens included in the lens portion 61 is supported by a support member (not shown) such as a linear slider so as to be movable along the passage path of the laser light LW. Under the control of the control unit 21, the drive unit 62 moves the movably supported lens along the passage path of the laser light LW. Thereby, the focus adjustment unit 32 adjusts the focal position of the laser beam LW.
 [走査部33の構成]
 走査部33は、ガルバノミラー63X,63Yと、駆動部64とを有する。ガルバノミラー63X,63Yは、レーザ光LWを反射する。ガルバノミラー63X,63Yの各々は、レーザ加工装置10における光学系を構成する光学素子である。駆動部64は、ガルバノミラー63X,63Yを回動させる。駆動部64は、例えばモータである。駆動部64は、制御部21により制御される。ガルバノミラー63X,63Y及び駆動部64は、レーザ光LWを2次元方向に走査するように構成されている。例えば、ガルバノミラー63X及び駆動部64は、レーザ光LWをX軸方向に走査する。また、例えば、ガルバノミラー63Y及び駆動部64は、レーザ光LWをY軸方向に走査する。
[Configuration of scanning unit 33]
The scanning unit 33 has galvanometer mirrors 63X and 63Y and a driving unit 64 . Galvanomirrors 63X and 63Y reflect the laser beam LW. Each of the galvanomirrors 63X and 63Y is an optical element that constitutes an optical system in the laser processing apparatus 10. As shown in FIG. The drive unit 64 rotates the galvanomirrors 63X and 63Y. The drive unit 64 is, for example, a motor. The driving section 64 is controlled by the control section 21 . The galvanomirrors 63X and 63Y and the drive unit 64 are configured to scan the laser light LW in two-dimensional directions. For example, the galvanomirror 63X and the drive unit 64 scan the laser light LW in the X-axis direction. Also, for example, the galvanomirror 63Y and the drive unit 64 scan the laser light LW in the Y-axis direction.
 [保護ガラス34の構成]
 保護ガラス34は、レーザヘッド12の筐体35に取り付けられている。筐体35は、レーザ光LWが通過する開口35aを有する。保護ガラス34は、開口35aを閉塞するように筐体35に取り付けられている。保護ガラス34は、開口35aからレーザヘッド12の内部へ、加工によって生じた物体(例えば有機物)や塵埃が侵入することを抑制する。保護ガラス34は、レーザ加工装置10における光学系を構成する光学素子である。
[Structure of protective glass 34]
A protective glass 34 is attached to a housing 35 of the laser head 12 . The housing 35 has an opening 35a through which the laser beam LW passes. A protective glass 34 is attached to the housing 35 so as to close the opening 35a. The protective glass 34 prevents objects (for example, organic matter) generated by processing and dust from entering the inside of the laser head 12 through the opening 35a. The protective glass 34 is an optical element that constitutes an optical system in the laser processing apparatus 10 .
 [実施形態の作用]
 本実施形態の作用について説明する。
 レーザ加工装置10では、レーザ光源22は、光学窓23からレーザ光LWを出射する。光学窓23を透過して出射されたレーザ光LWは、ビームエキスパンダ31の第1レンズ41に入射する。そして、レーザ光LWは、第1レンズ41及び第2レンズ42によってビーム径が拡大されるとともに、第2レンズ42から出射される。第2レンズ42から出射されたレーザ光LWは、焦点調整部32のレンズ部61、走査部33のガルバノミラー63X,63Y、及び保護ガラス34を介して加工対象物Wに照射される。このレーザ光LWによって加工対象物Wを加工できる。
[Action of Embodiment]
The operation of this embodiment will be described.
In laser processing apparatus 10 , laser light source 22 emits laser light LW from optical window 23 . The laser light LW emitted through the optical window 23 enters the first lens 41 of the beam expander 31 . The beam diameter of the laser light LW is expanded by the first lens 41 and the second lens 42 , and the laser light LW is emitted from the second lens 42 . The laser beam LW emitted from the second lens 42 is applied to the workpiece W through the lens portion 61 of the focus adjustment portion 32 , the galvanometer mirrors 63 X and 63 Y of the scanning portion 33 , and the protective glass 34 . The workpiece W can be processed by this laser beam LW.
 レーザ加工装置10においては、レーザヘッド12の内部に露出する光学窓23の出射面23bに、レーザ光LWの一部を吸収する薄膜体28が設けられている。また、レーザヘッド12の内部に露出する第1レンズ41の入射面23aに、レーザ光LWの一部を吸収する薄膜体53が設けられている。 In the laser processing apparatus 10 , a thin film 28 that partially absorbs the laser beam LW is provided on the emission surface 23 b of the optical window 23 exposed inside the laser head 12 . A thin film 53 that absorbs part of the laser beam LW is provided on the incident surface 23a of the first lens 41 exposed inside the laser head 12 .
 レーザ光源22がレーザ光LWを出射している時には、光学窓23が有する薄膜体28は、レーザ光LWの一部を吸収することにより発熱する。詳しくは、薄膜体28におけるレーザ光LWが通過する部分が発熱する。このため、薄膜体28が設けられている光学窓23の出射面23bの温度が上昇する。そして、薄膜体28の熱は、出射面23bにおけるレーザ光LWが通過する部分の近傍の空気に伝達される。このため、出射面23bにおけるレーザ光LWが通過する部分の近傍が局所的に温度上昇する。そして、薄膜体28の熱が伝達された部分と、当該部分の周囲の薄膜体28の熱が伝達されていない部分との間に、温度差が生じる。このような温度差を生じさせることにより、出射面23bの近傍で薄膜体28の熱が伝達された部分を漂う不純物に、熱泳動効果を生じさせることができる。出射面23bの近傍で薄膜体28の熱が伝達された部分を漂う不純物は、高温側から低温側へ移動する熱泳動力、即ち出射面23bから遠ざかる方向に移動する熱泳動力を受ける。 When the laser light source 22 emits the laser beam LW, the thin film 28 of the optical window 23 absorbs part of the laser beam LW and generates heat. Specifically, the portion of the thin film 28 through which the laser beam LW passes generates heat. Therefore, the temperature of the exit surface 23b of the optical window 23 provided with the thin film 28 rises. Then, the heat of the thin film 28 is transferred to the air in the vicinity of the portion of the emission surface 23b through which the laser beam LW passes. Therefore, the temperature rises locally in the vicinity of the portion of the emission surface 23b through which the laser beam LW passes. Then, a temperature difference occurs between the portion of the thin film 28 to which the heat is transmitted and the portion of the thin film 28 surrounding the portion to which the heat is not transmitted. By creating such a temperature difference, a thermophoretic effect can be produced on impurities drifting in the heat-transferred portion of the thin film 28 in the vicinity of the exit surface 23b. Impurities floating in the heat-transferred portion of the thin film 28 in the vicinity of the output surface 23b are subject to thermophoretic force moving from the high temperature side to the low temperature side, that is, the thermophoretic force moving away from the output surface 23b.
 レーザ光LWの一部を吸収した薄膜体28は、出射面23bの近傍で不純物に働く熱泳動力が、レーザヘッド12の内部にレーザ光LWを照射したことによって同不純物に働く光集塵効果よりも大きくなる温度勾配を出射面23bの近傍に生じさせるほどに発熱する。従って、出射面23bの近傍を漂う不純物は、光集塵効果よりも大きな熱泳動力を受ける。そのため、出射面23bの近傍を漂う不純物は、出射面23bから遠ざかる方向に移動する。従って、レーザヘッド12の内部を漂う不純物が出射面23bに付着することを抑制できる。 The thin film 28 that has absorbed a part of the laser beam LW has a light dust collection effect that the thermophoretic force acting on the impurity near the emission surface 23b acts on the impurity by irradiating the inside of the laser head 12 with the laser beam LW. It generates enough heat to generate a temperature gradient in the vicinity of the output surface 23b. Therefore, impurities drifting in the vicinity of the output surface 23b are subjected to a thermophoretic force greater than the optical dust collection effect. Therefore, impurities drifting in the vicinity of the exit surface 23b move away from the exit surface 23b. Therefore, it is possible to prevent impurities drifting inside the laser head 12 from adhering to the emission surface 23b.
 レーザ光源22がレーザ光LWを出射している時には、第1レンズ41が有する薄膜体53も、薄膜体28と同様に、レーザ光LWの一部を吸収することにより発熱する。そして、出射面23bの近傍を漂う不純物と同様に、第1レンズ41の入射面41aの近傍を漂う不純物は、光集塵効果よりも大きな熱泳動力を受ける。よって、入射面41aの近傍を漂う不純物は、入射面41aから遠ざかる方向に移動する。従って、レーザヘッド12の内部を漂う不純物が入射面41aに付着することを抑制できる。 When the laser light source 22 emits the laser light LW, the thin film 53 of the first lens 41 also generates heat by absorbing part of the laser light LW, similar to the thin film 28 . Like the impurities drifting near the exit surface 23b, the impurities drifting near the entrance surface 41a of the first lens 41 receive a thermophoretic force greater than the optical dust collection effect. Therefore, impurities floating in the vicinity of the incident surface 41a move away from the incident surface 41a. Therefore, it is possible to prevent impurities drifting inside the laser head 12 from adhering to the incident surface 41a.
 [実施形態の効果]
 本実施形態の効果について説明する。
 (1)レーザ加工装置10は、加工対象物Wを加工するためのレーザ光LWを出射するレーザ光源22を備える。また、レーザ加工装置10は、レーザ光源22から出射されたレーザ光LWを走査する走査部33を有しレーザ光LWを加工対象物Wに対して照射するレーザヘッド12と、レーザ光源22及び走査部33を制御する制御部21と、を備える。レーザ光源22は、レーザ光LWを透過させる光学素子である光学窓23を有する。レーザヘッド12は、レーザ光LWを透過させる光学素子である第1レンズ41を有する。光学窓23は、光学窓23におけるレーザ光LWを透過させる部分に一体的に設けられレーザ光LWの一部を吸収する薄膜体28を有する。第1レンズ41は、第1レンズ41におけるレーザ光LWを透過させる部分に一体的に設けられレーザ光LWの一部を吸収する薄膜体53を有する。
[Effects of Embodiment]
Effects of the present embodiment will be described.
(1) The laser processing apparatus 10 includes a laser light source 22 that emits a laser beam LW for processing the object W to be processed. In addition, the laser processing apparatus 10 has a scanning unit 33 for scanning the laser beam LW emitted from the laser light source 22, a laser head 12 for irradiating the workpiece W with the laser beam LW, the laser light source 22 and the scanning and a control unit 21 that controls the unit 33 . The laser light source 22 has an optical window 23 that is an optical element that transmits the laser light LW. The laser head 12 has a first lens 41 that is an optical element that transmits the laser beam LW. The optical window 23 has a thin film body 28 that is integrally provided in a portion of the optical window 23 that transmits the laser beam LW and that absorbs part of the laser beam LW. The first lens 41 has a thin film body 53 that is integrally provided in a portion of the first lens 41 that transmits the laser beam LW and absorbs part of the laser beam LW.
 この構成によれば、薄膜体28,53は、レーザ光LWの一部を吸収することにより発熱する。薄膜体28,53の熱によって、薄膜体28,53の近傍の気体中を漂う不純物に、光集塵効果よりも大きな熱泳動力を働かせることができる。この熱泳動力によって、当該不純物は、薄膜体28,53から遠ざかる方向に移動する。即ち、当該不純物は、光学窓23及び第1レンズ41から遠ざかる方向に移動する。従って、レーザ光源22がレーザ光LWを出射しているときに、不純物が光学窓23及び第1レンズ41に付着することを抑制できる。その結果、レーザヘッド12から加工対象物Wに向けて出射するレーザ光LWのレーザ出力が低下することを抑制できる。 According to this configuration, the thin films 28 and 53 generate heat by absorbing part of the laser beam LW. The heat of the thin films 28 and 53 can act on the impurities floating in the gas near the thin films 28 and 53 with a thermophoretic force greater than the optical dust collection effect. This thermophoretic force causes the impurities to move away from the thin films 28 and 53 . That is, the impurities move away from the optical window 23 and the first lens 41 . Therefore, it is possible to prevent impurities from adhering to the optical window 23 and the first lens 41 while the laser light source 22 is emitting the laser light LW. As a result, it is possible to suppress a decrease in the laser output of the laser beam LW emitted from the laser head 12 toward the object W to be processed.
 また、レーザ加工装置10は、内蔵する光学素子の清掃や交換等のメンテナンスが必要である。本実施形態では、光学窓23及び第1レンズ41に対する不純物の付着が低減されるため、光学窓23及び第1レンズ41についてのメンテナンス間隔を長くできる。 In addition, the laser processing apparatus 10 requires maintenance such as cleaning and replacement of built-in optical elements. In this embodiment, the adhesion of impurities to the optical window 23 and the first lens 41 is reduced, so maintenance intervals for the optical window 23 and the first lens 41 can be lengthened.
 (2)レーザ加工装置10における光学系を構成する光学素子の1つである光学窓23は、自身の表面に反射防止膜26を有する。光学窓23が有する薄膜体28は、反射防止膜26に含まれる。また、同光学系を構成する光学素子の1つである第1レンズ41は、自身の表面に反射防止膜45を有する。第1レンズ41が有する薄膜体53は、反射防止膜45に含まれる。 (2) The optical window 23, which is one of the optical elements forming the optical system in the laser processing apparatus 10, has an antireflection film 26 on its surface. A thin film 28 included in the optical window 23 is included in the antireflection film 26 . Also, the first lens 41, which is one of the optical elements forming the same optical system, has an antireflection film 45 on its surface. The thin film 53 of the first lens 41 is included in the antireflection film 45 .
 例えば、反射防止膜26は、光学窓23の周囲の空気に触れる第1層が薄膜体28とは異なる薄膜、当該第1層と隣り合う第2層が薄膜体28、当該第2層と隣り合い且つ基材27の表面と隣り合う第3層が薄膜体28とは異なる薄膜である構成になる場合がある。また、例えば、反射防止膜26は、光学窓23の周囲の空気に触れる第1層が薄膜体28、当該第1層と隣り合い且つ基材27の表面と隣り合う第2層が薄膜体28とは異なる薄膜である構成になる場合がある。また、例えば、反射防止膜26は、光学窓23の周囲の空気に触れる第1層が薄膜体28とは異なる薄膜、当該第1層と隣り合い且つ基材27の表面と隣り合う第2層が薄膜体28である構成になる場合がある。薄膜体53を含む反射防止膜45についても同様である。 For example, the antireflection film 26 has a thin film different from the thin film 28 in the first layer that contacts the air around the optical window 23 , and a second layer adjacent to the first layer is the thin film 28 . In some cases, the third layer, which is aligned with and adjacent to the surface of the substrate 27, is a thin film different from the thin film . Further, for example, the antireflection film 26 has a thin film body 28 as a first layer in contact with the air around the optical window 23 and a thin film body 28 as a second layer adjacent to the first layer and adjacent to the surface of the substrate 27 . In some cases, the configuration may be a thin film different from the Further, for example, the antireflection film 26 is composed of a thin film whose first layer that contacts the air around the optical window 23 is different from the thin film 28, and a second layer that is adjacent to the first layer and adjacent to the surface of the substrate 27. is the thin film 28 in some cases. The same is true for the antireflection film 45 including the thin film 53 .
 なお、これら薄膜体28,53には、各薄膜体28,53の近傍で光集塵効果よりも大きな熱泳動力を不純物に働かせることができるものが選択されていることは言うまでもない。 It goes without saying that these thin films 28 and 53 are selected so as to be able to exert a thermophoretic force on impurities that is greater than the light dust collecting effect in the vicinity of each of the thin films 28 and 53 .
 この構成によれば、反射防止膜26を構成する複数の薄膜と同様にして薄膜体28を形成できるため、薄膜体28を容易に形成できる。また、例えば光学窓23の表面に薄膜体28を構成する材料を塗布して薄膜体28を形成する場合に比べて、薄膜体28が光学窓23の表面から剥がれ難い。第1レンズ41が有する薄膜体53についても同様の効果を奏する。 According to this configuration, the thin film body 28 can be formed in the same manner as the plurality of thin films forming the antireflection film 26, so that the thin film body 28 can be easily formed. In addition, the thin film 28 is less likely to peel off from the surface of the optical window 23 than, for example, when the thin film 28 is formed by coating the surface of the optical window 23 with a material forming the thin film 28 . The thin film 53 of the first lens 41 also has the same effect.
 (3)光学窓23及び第1レンズ41は、近赤外線領域のレーザ光LWを透過させるものである。光学窓23が有する薄膜体28及び第1レンズ41が有する薄膜体53は、酸化亜鉛系の薄膜である。 (3) The optical window 23 and the first lens 41 transmit the laser light LW in the near-infrared region. The thin film 28 of the optical window 23 and the thin film 53 of the first lens 41 are zinc oxide thin films.
 この構成によれば、薄膜体28,53の各々は、近赤外線領域のレーザ光LWの一部を容易に吸収できる。
 (4)レーザヘッド12は、レーザ光源22と走査部33との間に配置されてレーザ光LWのビーム径を拡大するビームエキスパンダ31を有する。ビームエキスパンダ31は、複数の光学素子を有する。当該複数の光学素子のうち1つの光学素子は、レーザ光LWが入射する第1レンズ41であり、当該複数の光学素子のうち第1レンズ41とは異なる1つの光学素子は、第1レンズ41を透過したレーザ光LWが入射する第2レンズ42である。第1レンズ41は、薄膜体53を有する。
According to this configuration, each of the thin films 28 and 53 can easily absorb part of the laser light LW in the near-infrared region.
(4) The laser head 12 has a beam expander 31 arranged between the laser light source 22 and the scanning unit 33 to expand the beam diameter of the laser light LW. The beam expander 31 has multiple optical elements. One optical element among the plurality of optical elements is the first lens 41 on which the laser beam LW is incident, and one optical element different from the first lens 41 among the plurality of optical elements is the first lens 41 is the second lens 42 into which the laser beam LW transmitted through is incident. The first lens 41 has a thin film body 53 .
 この構成によれば、入射側の第1レンズ41は、出射側の第2レンズ42に比べてビーム径の小さいレーザ光LWを透過させる。そのため、レーザ光LWは、第2レンズ42を透過するときよりも第1レンズ41を透過するときの方が強度が高い。従って、第1レンズ41の近傍を漂う不純物が受ける光集塵効果は、第2レンズ42の近傍を漂う不純物が受ける光集塵効果に比べて大きい。そのため、第1レンズ41は、薄膜体53を有していない場合には、第2レンズ42に比べて不純物が付着しやすい。そこで、第1レンズ41が薄膜体53を有することにより、不純物が付着する懸念が大きい第1レンズ41について当該第1レンズ41への不純物の付着を抑制できる。そして、このように不純物の付着がより懸念される光学素子である第1レンズ41が薄膜体53を有することにより、レーザヘッド12から加工対象物Wに向けて出射するレーザ光LWのレーザ出力が低下することをより効果的に抑制できる。 According to this configuration, the first lens 41 on the incident side transmits laser light LW having a smaller beam diameter than the second lens 42 on the emitting side. Therefore, the intensity of the laser light LW is higher when passing through the first lens 41 than when passing through the second lens 42 . Therefore, the optical dust collection effect of impurities drifting in the vicinity of the first lens 41 is greater than the optical dust collection effect of impurities floating in the vicinity of the second lens 42 . Therefore, when the first lens 41 does not have the thin film 53 , impurities are more likely to adhere to the first lens 41 than to the second lens 42 . Therefore, the first lens 41 having the thin film 53 can suppress the adhesion of impurities to the first lens 41, which is highly likely to be contaminated with impurities. Since the first lens 41, which is an optical element more likely to be contaminated with impurities, has the thin film 53, the laser output of the laser light LW emitted from the laser head 12 toward the workpiece W is reduced. It is possible to more effectively suppress the decrease.
 (5)レーザ光源22は、レーザ光LWを出射する光学窓23を有する。光学窓23は、レーザ加工装置10における光学系を構成する光学素子の1つである。光学窓23は、レーザ光LWが入射する入射面23aと、レーザ光LWが出射する出射面23bとを有し、出射面23bに薄膜体28が設けられている。 (5) The laser light source 22 has an optical window 23 for emitting the laser light LW. The optical window 23 is one of optical elements forming an optical system in the laser processing apparatus 10 . The optical window 23 has an incident surface 23a on which the laser beam LW is incident and an output surface 23b from which the laser beam LW is emitted. A thin film 28 is provided on the output surface 23b.
 この構成によれば、レーザヘッド12の内部に露出する出射面23bに薄膜体28が設けられている。レーザヘッド12の内部の気体には、不純物が含まれている。従って、レーザヘッド12の内部に露出する出射面23bには、レーザ光源22がレーザ光LWを出射しているときに光泳動効果により不純物が付着することが懸念される。そこで、出射面23bに薄膜体28が設けられることにより、出射面23bに不純物が付着することを熱泳動効果によって抑制できる。 According to this configuration, the thin film body 28 is provided on the emission surface 23b exposed inside the laser head 12 . The gas inside the laser head 12 contains impurities. Therefore, there is concern that impurities may adhere to the emission surface 23b exposed inside the laser head 12 due to the photophoresis effect when the laser light source 22 emits the laser light LW. Therefore, by providing the thin film 28 on the exit surface 23b, the adhesion of impurities to the exit surface 23b can be suppressed by the thermophoretic effect.
 また、光学窓23を透過するレーザ光LWは、ビームエキスパンダ31によってビーム径が拡大される前のレーザ光LWである。このため、光学窓23を透過するレーザ光LWの強度は、ビームエキスパンダ31から出射されるレーザ光LWの強度よりも高い。従って、光学窓23の近傍を漂う不純物が受ける光集塵効果は、ビームエキスパンダ31から出射されるレーザ光LWによって生じる光集塵効果に比べて大きい。そのため、光学窓23は、薄膜体28を有していない場合には、ビームエキスパンダ31によってビーム径が拡大されたレーザ光LWを透過させるもしくは反射させる光学素子に比べて不純物が付着しやすい。そこで、光学窓23が薄膜体28を有することにより、不純物が付着する懸念が大きい光学窓23について当該光学窓23への不純物の付着を抑制できる。そして、このように不純物の付着がより懸念される光学素子である光学窓23が薄膜体28を有することにより、レーザヘッド12から加工対象物Wに向けて出射するレーザ光LWのレーザ出力が低下することをより効果的に抑制できる。 Also, the laser light LW transmitted through the optical window 23 is the laser light LW before the beam diameter is expanded by the beam expander 31 . Therefore, the intensity of the laser light LW transmitted through the optical window 23 is higher than the intensity of the laser light LW emitted from the beam expander 31 . Therefore, the optical dust collection effect received by impurities floating in the vicinity of the optical window 23 is greater than the optical dust collection effect caused by the laser light LW emitted from the beam expander 31 . Therefore, if the optical window 23 does not have the thin film 28, impurities are more likely to adhere to the optical window 23 than to an optical element that transmits or reflects the laser beam LW whose beam diameter has been expanded by the beam expander 31. Therefore, by providing the optical window 23 with the thin film 28, it is possible to suppress the adhesion of impurities to the optical window 23, which is highly likely to be contaminated with impurities. Since the optical window 23, which is an optical element more susceptible to the attachment of impurities, has the thin film 28, the laser output of the laser light LW emitted from the laser head 12 toward the workpiece W is reduced. can be more effectively suppressed.
 (6)光学窓23は、レーザ光LWが入射する入射面23aと、レーザ光LWが出射する出射面23bとを有する。光学窓23は、入射面23a及び出射面23bのうち一方の出射面23bにおける、少なくともレーザ光LWが通過する範囲の全体に、薄膜体28を有する。また、第1レンズ41は、レーザ光LWが入射する入射面41aと、レーザ光LWが出射する出射面41bとを有する。第1レンズ41は、入射面41a及び出射面41bのうち一方の入射面41aにおける、少なくともレーザ光LWが照射される範囲の全体に、薄膜体53を有する。 (6) The optical window 23 has an incident surface 23a on which the laser beam LW is incident and an output surface 23b from which the laser beam LW is emitted. The optical window 23 has a thin film 28 over at least the entire range through which the laser beam LW passes on one of the incident surface 23a and the exit surface 23b. Further, the first lens 41 has an incident surface 41a on which the laser beam LW is incident and an output surface 41b from which the laser beam LW is emitted. The first lens 41 has a thin film 53 over at least the entire range irradiated with the laser beam LW on one of the entrance surface 41a and the exit surface 41b.
 光学窓23が薄膜体28を有していない場合、光学窓23の出射面23bにおいてレーザ光LWが通過する範囲は、出射面23bの近傍でレーザ光LWによって生じる光集塵効果を受けた不純物が付着しやすい部分である。同様に、第1レンズ41が薄膜体53を有していない場合、入射面41aにおいてレーザ光LWが照射される範囲は、入射面41aの近傍でレーザ光LWによって生じる光集塵効果を受けた不純物が付着しやすい部分である。また、光学窓23の出射面23bにおいてレーザ光LWが通過する範囲に不純物が付着すると、当該範囲の外に不純物が付着する場合に比べて、レーザヘッド12から加工対象物Wに向けて出射するレーザ光LWのレーザ出力に影響を与えやすい。同様に、第1レンズ41の入射面41aにおいてレーザ光LWが照射される範囲に不純物が付着すると、当該範囲の外に不純物が付着する場合に比べて、レーザヘッド12から加工対象物Wに向けて出射するレーザ光LWのレーザ出力に影響を与えやすい。従って、光学窓23が、出射面23bにおける少なくともレーザ光LWが通過する範囲の全体に薄膜体28を有することにより、レーザヘッド12から加工対象物Wに向けて出射するレーザ光LWのレーザ出力が低下することを更に効果的に抑制できる。また、第1レンズ41が、入射面41aにおける少なくともレーザ光LWが照射される範囲の全体に薄膜体53を有することにより、レーザヘッド12から加工対象物Wに向けて出射するレーザ光LWのレーザ出力が低下することを更に効果的に抑制できる。 When the optical window 23 does not have the thin film 28, the range through which the laser beam LW passes on the exit surface 23b of the optical window 23 is the impurity caused by the optical dust collection effect caused by the laser beam LW in the vicinity of the exit surface 23b. is the part where it is easy to adhere. Similarly, when the first lens 41 does not have the thin film 53, the range irradiated with the laser beam LW on the incident surface 41a receives the optical dust collection effect caused by the laser beam LW in the vicinity of the incident surface 41a. This is a portion where impurities tend to adhere. Further, when impurities adhere to the range through which the laser beam LW passes on the exit surface 23b of the optical window 23, the laser head 12 emits light from the laser head 12 toward the workpiece W more than when the impurities adhere to the outside of the range. It tends to affect the laser output of the laser light LW. Similarly, when impurities adhere to the range irradiated with the laser beam LW on the incident surface 41a of the first lens 41, the distance from the laser head 12 to the workpiece W increases as compared with the case where the impurities adhere to the outside of the range. This tends to affect the laser output of the laser light LW emitted by the laser beam LW. Therefore, since the optical window 23 has the thin film 28 over at least the entire range through which the laser beam LW passes on the output surface 23b, the laser output of the laser beam LW emitted from the laser head 12 toward the workpiece W can be reduced. The decrease can be suppressed more effectively. In addition, since the first lens 41 has the thin film 53 over at least the entire range irradiated with the laser beam LW on the incident surface 41a, the laser beam LW emitted from the laser head 12 toward the workpiece W A decrease in output can be suppressed more effectively.
 (7)薄膜体28における吸収率の最も高いレーザ光の波長は、薄膜体28を有する光学窓23を透過するレーザ光LWのスペクトルのピーク波長とは異なる波長である。なお、より好ましくは、薄膜体28における吸収率の最も高いレーザ光の波長は、薄膜体28を有する光学窓23を透過するレーザ光LWのスペクトル上のピークから離れた部分のなるべく平坦な部分の波長に設定する。同レーザ光LWのスペクトル上にピークが複数存在する場合には、薄膜体28における吸収率の最も高いレーザ光の波長は、ピークや極大点から離れた部分のなるべく平坦な部分、つまり、ピークから離れた部分の急峻でない部分の波長に設定することが好ましい。 (7) The wavelength of the laser light with the highest absorption rate in the thin film 28 is a wavelength different from the peak wavelength of the spectrum of the laser light LW that passes through the optical window 23 having the thin film 28 . More preferably, the wavelength of the laser light with the highest absorptivity in the thin film 28 is the flat part as far as possible from the peak of the spectrum of the laser light LW passing through the optical window 23 having the thin film 28. Set to wavelength. When there are multiple peaks on the spectrum of the same laser beam LW, the wavelength of the laser beam with the highest absorption rate in the thin film 28 should be as flat as possible in a portion distant from the peak or maximum point, that is, from the peak. It is preferable to set the wavelength of the remote, non-steep portion.
 薄膜体53における吸収率の最も高いレーザ光の波長は、薄膜体53を有する第1レンズ41を透過するレーザ光LWのスペクトルのピーク波長とは異なる波長である。なお、より好ましくは、薄膜体53における吸収率の最も高いレーザ光の波長は、薄膜体53を有する第1レンズ41を透過するレーザ光LWのスペクトル上のピークから離れた部分のなるべく平坦な部分の波長に設定する。同レーザ光LWのスペクトル上にピークが複数存在する場合には、薄膜体53における吸収率の最も高いレーザ光の波長は、ピークや極大点から離れた部分のなるべく平坦な部分、つまり、ピークから離れた部分の急峻でない部分の波長に設定することが好ましい。 The wavelength of the laser light with the highest absorption rate in the thin film 53 is different from the peak wavelength of the spectrum of the laser light LW that passes through the first lens 41 having the thin film 53 . More preferably, the wavelength of the laser light with the highest absorptivity in the thin film 53 is the flat part as far as possible from the peak of the spectrum of the laser light LW that passes through the first lens 41 having the thin film 53. set to the wavelength of When a plurality of peaks exist on the spectrum of the same laser beam LW, the wavelength of the laser beam with the highest absorption rate in the thin film 53 should be the flattest portion apart from the peak or the maximum point, that is, from the peak. It is preferable to set the wavelength of the remote, non-steep portion.
 なお、これら薄膜体28,53には、各薄膜体28,53の近傍で光集塵効果よりも大きな熱泳動力を不純物に働かせることができるものが選択されていることは言うまでもない。 It goes without saying that these thin films 28 and 53 are selected so as to be able to exert a thermophoretic force on impurities that is greater than the light dust collecting effect in the vicinity of each of the thin films 28 and 53 .
 この構成によれば、光学窓23が薄膜体28を有するとともに、第1レンズ41が薄膜体53を有することによるレーザ加工装置10のレーザ出力の低下を抑制できる。
 (8)本実施形態では、不純物の付着を抑制したい光学素子、例えば、光学窓23及び第1レンズ41を気密状に収容しなくてもよい。従って、光学窓23及び第1レンズ41が配置された空間に、結露防止のための除湿剤を配置したり、当該除湿剤を交換したりしなくてもよい。従って、レーザ加工装置10のメンテナンスの負担を増大させることなく、光学窓23及び第1レンズ41に不純物が付着することを抑制できる。
According to this configuration, the optical window 23 has the thin film 28 and the first lens 41 has the thin film 53, so that the laser output of the laser processing apparatus 10 can be prevented from decreasing.
(8) In the present embodiment, it is not necessary to airtightly house optical elements, such as the optical window 23 and the first lens 41, for which adhesion of impurities is desired to be suppressed. Therefore, it is not necessary to place a dehumidifying agent for preventing dew condensation in the space where the optical window 23 and the first lens 41 are arranged, or to replace the dehumidifying agent. Therefore, it is possible to prevent impurities from adhering to the optical window 23 and the first lens 41 without increasing the maintenance burden of the laser processing apparatus 10 .
 (9)不純物の付着を抑制したい光学素子、例えば、光学窓23及び第1レンズ41の表面を薄膜体28,53の発熱により局所的に温度上昇させることにより、光学窓23及び第1レンズ41の表面に不純物が付着することを抑制している。そのため、光学窓23を保持する部品をヒータで全体的に加熱したり、第1レンズ41を保持する部品をヒータで全体的に加熱したりしなくてもよい。従って、レーザ光源22の内部の広い範囲が高温になったり、レーザヘッド12の内部の広い範囲が高温になったりし難い。そのため、レーザ光源22の動作温度や、レーザヘッド12の動作温度を考慮しなくとも、光学窓23及び第1レンズ41に不純物が付着することを抑制できる。更に、部品点数の増大を抑制しつつ、光学窓23及び第1レンズ41に不純物が付着することを抑制できる。 (9) By locally raising the temperature of the surface of the optical element whose adhesion of impurities is to be suppressed, for example, the optical window 23 and the first lens 41 by the heat generated by the thin films 28 and 53, the optical window 23 and the first lens 41 It suppresses the adhesion of impurities to the surface of the Therefore, it is not necessary to entirely heat the part holding the optical window 23 with a heater or entirely heat the part holding the first lens 41 with a heater. Therefore, it is difficult for a wide range inside the laser light source 22 to reach a high temperature, or for a wide range inside the laser head 12 to rise to a high temperature. Therefore, even if the operating temperature of the laser light source 22 and the operating temperature of the laser head 12 are not considered, it is possible to prevent impurities from adhering to the optical window 23 and the first lens 41 . Furthermore, it is possible to suppress the adhesion of impurities to the optical window 23 and the first lens 41 while suppressing an increase in the number of parts.
 [変更例]
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
[Change example]
This embodiment can be implemented with the following modifications. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・上記実施形態では、レーザ加工装置10における光学系を構成する複数の光学素子のうち、光学窓23及び第1レンズ41がそれぞれ薄膜体28,53を有する。しかし、レーザ加工装置10における光学系を構成する複数の光学素子のうち、少なくとも1つの光学素子が、当該光学素子におけるレーザ光LWを透過させるもしくは反射する部分に一体的に設けられてレーザ光LWの一部を吸収する薄膜体を有していればよい。例えば、光学窓23が薄膜体28を有する場合で、光学窓23から拡散光が出射される場合、第1レンズ41は、薄膜体53を有していなくてもよい。また、例えば、光学窓23及び第1レンズ41以外の光学素子が、薄膜体を有していてもよい。例えば、第2レンズ42が薄膜体53を有していてもよい。また、例えば、レーザ光LWを反射するガルバノミラー63X,63Yの各々が、薄膜体を有していてもよい。なお、ガルバノミラー63X,63Yの各々においては、レーザ光LWが入射する入射面とレーザ光LWが出射する出射面とは同じ面になる。因みに、レーザ光LWのビーム径が同様となる光路上の光学素子、例えば、光学窓23から第1レンズ41まで平行光で、第1レンズ41から拡散光となる場合には、光学窓23と、第1レンズ41の少なくとも入射面41a側とに、薄膜体を有することが好ましい。一例では、レーザ光を透過させるもしくは反射する少なくとも1つの光学素子は、レーザヘッド12の筐体35内に配置された光学素子(例えば、第1レンズ41)および/またはレーザヘッド12の筐体35の内部に露出する光学素子(例えば、光学窓23)を含む。一例では、レーザ光を透過させるもしくは反射する少なくとも1つの光学素子は、レーザ光源22と走査部33との間のレーザ光LWの伝達経路に配置されている。 · In the above embodiment, among the plurality of optical elements forming the optical system in the laser processing apparatus 10, the optical window 23 and the first lens 41 have the thin films 28 and 53, respectively. However, at least one of the plurality of optical elements constituting the optical system in the laser processing apparatus 10 is integrally provided in a portion of the optical element that transmits or reflects the laser beam LW. It is only necessary to have a thin film that absorbs part of the For example, when the optical window 23 has the thin film 28 and diffused light is emitted from the optical window 23 , the first lens 41 may not have the thin film 53 . Further, for example, optical elements other than the optical window 23 and the first lens 41 may have thin films. For example, the second lens 42 may have the thin film 53 . Further, for example, each of the galvanomirrors 63X and 63Y that reflect the laser light LW may have a thin film. In each of the galvanomirrors 63X and 63Y, the incident surface into which the laser beam LW is incident and the exit surface from which the laser beam LW is emitted are the same surface. Incidentally, an optical element on the optical path having the same beam diameter of the laser light LW, for example, parallel light from the optical window 23 to the first lens 41 and diffused light from the first lens 41, the optical window 23 and , the first lens 41 preferably has a thin film on at least the side of the incident surface 41a. In one example, the at least one optical element that transmits or reflects laser light is an optical element (eg, first lens 41) disposed within housing 35 of laser head 12 and/or housing 35 of laser head 12. includes an optical element (eg, optical window 23) exposed to the interior of the . In one example, at least one optical element that transmits or reflects laser light is arranged in the transmission path of the laser light LW between the laser light source 22 and the scanning section 33 .
 また、例えば、レーザ加工装置10において、レーザ光LWの光路上に配置されてレーザ光LWを透過させるもしくは反射する全ての光学素子が、レーザ光LWの一部を吸収する薄膜体を有していてもよい。このようにすると、全ての光学素子において、不純物が付着することを抑制できる。 Further, for example, in the laser processing apparatus 10, all the optical elements that are arranged on the optical path of the laser beam LW and that transmit or reflect the laser beam LW have a thin film that partially absorbs the laser beam LW. may By doing so, it is possible to prevent impurities from adhering to all the optical elements.
 ・光学窓23は、入射面23a及び出射面23bのうち少なくとも一方の面における、レーザ光LWが通過する範囲にのみ薄膜体28を有していてもよい。また、光学窓23は、入射面23a及び出射面23bのうち少なくとも一方の面における、レーザ光LWが通過する範囲の一部に薄膜体28を有していてもよい。 - The optical window 23 may have the thin film 28 only in a range through which the laser light LW passes on at least one of the entrance surface 23a and the exit surface 23b. Further, the optical window 23 may have a thin film 28 in a part of the range through which the laser light LW passes on at least one of the entrance surface 23a and the exit surface 23b.
 同様に、第1レンズ41は、入射面41a及び出射面41bのうち少なくとも一方の面における、レーザ光LWが照射される範囲にのみ薄膜体53を有していてもよい。また、第1レンズ41は、入射面41a及び出射面41bのうち少なくとも一方の面における、レーザ光LWが照射される範囲の一部に薄膜体53を有していてもよい。 Similarly, the first lens 41 may have the thin film 53 only in the range irradiated with the laser light LW on at least one of the entrance surface 41a and the exit surface 41b. Further, the first lens 41 may have a thin film 53 in part of the range irradiated with the laser light LW on at least one of the entrance surface 41a and the exit surface 41b.
 ・光学窓23の入射面23aには薄膜体28が設けられていてもよい。
 ・第1レンズ41は、入射面41a及び出射面41bの各々に薄膜体53が設けられていてもよい。このようにすると、入射面41a及び出射面41bの両方の面に不純物が付着することを抑制できる。例えば、ビームエキスパンダ31が密閉型ではない場合には、出射面41bにも不純物の付着が懸念される。この場合において、出射面41bに薄膜体53が設けられていると、当該不純物の出射面41bへの付着を抑制できる。
- A thin film 28 may be provided on the incident surface 23 a of the optical window 23 .
- As for the 1st lens 41, the thin film body 53 may be provided in each of the entrance surface 41a and the output surface 41b. By doing so, it is possible to prevent impurities from adhering to both the entrance surface 41a and the exit surface 41b. For example, if the beam expander 31 is not a closed type, there is concern that impurities may also adhere to the output surface 41b. In this case, if the thin film 53 is provided on the emission surface 41b, the adhesion of the impurities to the emission surface 41b can be suppressed.
 ・ビームエキスパンダ31は、第1レンズ41及び第2レンズ42に加えて、更に別の光学素子を有していてもよい。
 ・近赤外線領域のレーザ光LWを透過させる光学素子が有する薄膜体は、必ずしも酸化亜鉛系の薄膜でなくてもよい。レーザ光LWの一部を吸収できるのであれば、当該薄膜体は、酸化亜鉛系の材料以外の材料よりなるものであってもよい。
- In addition to the 1st lens 41 and the 2nd lens 42, the beam expander 31 may have another optical element.
- The thin film of the optical element that transmits the laser light LW in the near-infrared region does not necessarily have to be a zinc oxide-based thin film. The thin film may be made of a material other than the zinc oxide-based material as long as it can absorb part of the laser light LW.
 ・レーザ光源22は、紫外線領域の波長を含むレーザ光LWを出射してもよい。この場合、レーザ光源22は、例えば、基本波を生成するレーザ発振器と、2つの波長変換素子とを有する。一方の波長変換素子は、基本波よりも高い周波数を有する第2高調波を生成する(SHG:Second Harmonic Generation)。第2高調波の波長は、例えば532nmである。他方の波長変換素子は、第2高調波よりも高い周波数を有する第3高調波を生成する(THG:Third Harmonic Generation)。第3高調波の波長は、紫外線領域の波長であって、例えば355nmである。 · The laser light source 22 may emit laser light LW including wavelengths in the ultraviolet region. In this case, the laser light source 22 has, for example, a laser oscillator that generates a fundamental wave and two wavelength conversion elements. One wavelength conversion element generates a second harmonic wave having a higher frequency than the fundamental wave (SHG: Second Harmonic Generation). The wavelength of the second harmonic is, for example, 532 nm. The other wavelength conversion element generates a third harmonic wave having a higher frequency than the second harmonic wave (THG: Third Harmonic Generation). The wavelength of the third harmonic is in the ultraviolet region, eg, 355 nm.
 この場合において、レーザ加工装置10における光学系を構成する光学素子のうちの少なくとも1つは、紫外線領域のレーザ光LWを透過させるもしくは反射するものである。例えば、光学窓23及び第1レンズ41は、紫外線領域のレーザ光LWを透過させる。また、ガルバノミラー63X,63Yは、紫外線領域のレーザ光LWを反射する。そして、紫外線領域のレーザ光LWを透過させるもしくは反射する光学素子のうちの少なくとも1つは、紫外線領域のレーザ光LWの一部を吸収する酸化チタン(TiO)系の薄膜である薄膜体を有していてもよい。例えば、光学窓23及び第1レンズ41が有する薄膜体28,53は、酸化チタン系の薄膜である。このようにすると、薄膜体28,53の各々は、紫外線領域のレーザ光LWの一部を容易に吸収できる。そして、光学窓23及び第1レンズ41に不純物が付着することを抑制できる。 In this case, at least one of the optical elements constituting the optical system in the laser processing apparatus 10 transmits or reflects the laser light LW in the ultraviolet region. For example, the optical window 23 and the first lens 41 transmit the laser light LW in the ultraviolet range. Also, the galvanomirrors 63X and 63Y reflect the laser light LW in the ultraviolet region. At least one of the optical elements that transmit or reflect the laser light LW in the ultraviolet region is a thin film body that is a titanium oxide (TiO 2 )-based thin film that absorbs a part of the laser light LW in the ultraviolet region. may have. For example, the thin films 28 and 53 of the optical window 23 and the first lens 41 are titanium oxide thin films. By doing so, each of the thin films 28 and 53 can easily absorb a part of the laser light LW in the ultraviolet region. Also, it is possible to prevent impurities from adhering to the optical window 23 and the first lens 41 .
 なお、この場合において、レーザ発振器が有する光学素子及び第2高調波を生成する波長変換素子が薄膜体を有する場合、当該薄膜体は、酸化亜鉛(ZnO)系の薄膜であることが好ましい。 In this case, if the optical element of the laser oscillator and the wavelength conversion element that generates the second harmonic have a thin film, the thin film is preferably a zinc oxide (ZnO)-based thin film.
 ・レーザ加工装置10は、増反射膜(HRコート)を有する光学素子を備えてもよい。そして、当該光学素子は、自身の表面に、レーザ光LWの一部を吸収する薄膜体を有していてもよい。この場合、薄膜体は、増反射膜に含まれてもよい。このようにすると、増反射膜を構成する複数の薄膜と同様にして薄膜体を形成できるため、薄膜体を容易に形成できる。また、例えば光学素子の表面に薄膜体を構成する材料を塗布して薄膜体を形成する場合に比べて、薄膜体が光学素子の表面から剥がれ難い。 · The laser processing apparatus 10 may include an optical element having a high reflection film (HR coat). The optical element may have a thin film on its surface that absorbs part of the laser beam LW. In this case, the thin film may be included in the reflection enhancing film. In this way, the thin film body can be formed in the same manner as the plurality of thin films forming the reflection enhancing film, so that the thin film body can be easily formed. In addition, the thin film is less likely to peel off from the surface of the optical element than, for example, when the thin film is formed by coating the surface of the optical element with a material forming the thin film.
 ・図3に示すように、薄膜体28は、反射防止膜26に含まれていなくてもよい。図3に示す例では、光学窓23は、入射面23a及び出射面23bの各々に、薄膜体28を含まない反射防止膜25を有する。そして、薄膜体28は、反射防止膜25の表面に一体的に設けられている。例えば、薄膜体28は、反射防止膜25が基材27の表面に形成された後に、反射防止膜25の表面に塗布されることにより光学窓23に一体的に設けられている。なお、反射防止膜25の表面は、反射防止膜25における基材27と反対側の面である。図3に示す例では、入射面23a及び出射面23bの各々に薄膜体28が設けられているが、薄膜体28は、入射面23a及び出射面23bのいずれか一方の面にのみ設けられてもよい。第1レンズ41が有する薄膜体53についても同様にしてもよい。 · As shown in FIG. 3, the thin film 28 may not be included in the antireflection film 26 . In the example shown in FIG. 3, the optical window 23 has an antireflection film 25 that does not include the thin film 28 on each of the entrance surface 23a and the exit surface 23b. The thin film body 28 is integrally provided on the surface of the antireflection film 25 . For example, the thin film 28 is provided integrally with the optical window 23 by coating the surface of the antireflection film 25 after the antireflection film 25 is formed on the surface of the substrate 27 . The surface of the antireflection film 25 is the surface of the antireflection film 25 opposite to the substrate 27 . In the example shown in FIG. 3, the thin film body 28 is provided on each of the entrance surface 23a and the exit surface 23b. good too. The thin film 53 included in the first lens 41 may be similarly formed.
 ・図4に示すように、光学窓23は、薄膜体28に変えて薄膜体71を有していてもよい。薄膜体71は、反射防止膜25の表面に一体的に設けられている。レーザ光LWの波長が近赤外線領域の波長を含む場合、薄膜体71は、例えば酸化チタン系の薄膜である。そして、薄膜体71は、当該薄膜体71の表面にレーザ光LWを吸収する多数の微細な凹凸を有する凹凸構造部72を有する。凹凸構造部72における各凹部及び各凸部は、ナノメートルオーダーのサイズのものである。このようにすると、凹凸構造部72においてレーザ光LWの一部を吸収できる。従って、上記実施形態の(1)と同様の効果を奏することができる。なお、図4に示す例では、入射面23a及び出射面23bの各々に薄膜体71が設けられているが、薄膜体71は、入射面23a及び出射面23bのいずれか一方の面にのみ設けられてもよい。 · As shown in FIG. 4 , the optical window 23 may have a thin film 71 instead of the thin film 28 . The thin film body 71 is integrally provided on the surface of the antireflection film 25 . When the wavelength of the laser light LW includes a wavelength in the near-infrared region, the thin film 71 is, for example, a titanium oxide-based thin film. The thin film body 71 has, on the surface of the thin film body 71, an uneven structure portion 72 having a large number of fine unevenness that absorbs the laser light LW. Each concave portion and each convex portion in the concave-convex structure portion 72 has a nanometer-order size. In this way, part of the laser beam LW can be absorbed in the concave-convex structure portion 72 . Therefore, the same effect as (1) of the above embodiment can be obtained. In the example shown in FIG. 4, the thin film body 71 is provided on each of the entrance surface 23a and the exit surface 23b, but the thin film body 71 is provided only on one of the entrance surface 23a and the exit surface 23b. may be
 また、反射防止膜25の表面に凹凸構造部72を設けてもよい。この場合、凹凸構造部72を有する反射防止膜25は、レーザ光LWの一部を吸収する薄膜体に該当する。
 ・明細書及び/又は特許請求の範囲に開示された全ての特徴は、当初の開示の目的のために、ならびに、実施形態及び/又は特許請求の範囲における特徴の組み合わせから独立して特許請求の範囲に記載の発明を限定する目的のために、互いに別個にかつ独立して開示されることを意図したものである。全ての数値範囲又は構成要素の集合を表す記載は、当初の開示の目的のため、ならびに特許請求の範囲に記載の発明を限定する目的のために、特に数値範囲の限定として、全ての可能な中間値又は中間的構成要素を開示するものである。
Further, the uneven structure portion 72 may be provided on the surface of the antireflection film 25 . In this case, the antireflection film 25 having the uneven structure portion 72 corresponds to a thin film that partially absorbs the laser light LW.
- All features disclosed in the specification and/or claims are for the purposes of the original disclosure and claimed independently of any combination of features in the embodiments and/or claims. They are intended to be disclosed separately and independently of each other for the purpose of limiting the scope of the invention. Statements representing all numerical ranges or collections of elements are for the purposes of the initial disclosure and for the purposes of limiting the claimed invention, and specifically as limitations on numerical ranges, all possible Intermediate values or intermediate components are disclosed.
 10 レーザ加工装置
 11 レーザ出射ユニット
 12 レーザヘッド(レーザ照射部)
 21 制御部
 22 レーザ光源
 23 光学窓
 23a 入射面
 23b 出射面
 25 反射防止膜
 26 反射防止膜
 27 基材
 28 薄膜体
 31 ビームエキスパンダ
 32 焦点調整部
 33 走査部
 34 保護ガラス
 35 筐体
 35a 開口
 41 第1レンズ
 41a 入射面
 41b 出射面
 42 第2レンズ
 42a 入射面
 42b 出射面
 43 筐体
 45 反射防止膜
 46 反射防止膜
 47,48 反射防止膜
 51 基材
 52 基材
 53 薄膜体
 61 レンズ部
 62 駆動部
 63X,63Y ガルバノミラー
 64 駆動部
 71 薄膜体
 72 凹凸構造部
 LW レーザ光
 W 加工対象物
10 laser processing device 11 laser emission unit 12 laser head (laser irradiation unit)
21 control unit 22 laser light source 23 optical window 23a entrance surface 23b exit surface 25 antireflection film 26 antireflection film 27 base material 28 thin film body 31 beam expander 32 focus adjustment unit 33 scanning unit 34 protective glass 35 housing 35a opening 41 th 1 lens 41a entrance surface 41b exit surface 42 second lens 42a entrance surface 42b exit surface 43 housing 45 antireflection film 46 antireflection film 47, 48 antireflection film 51 base material 52 base material 53 thin film body 61 lens section 62 driving section 63X, 63Y Galvanomirror 64 Actuator 71 Thin film 72 Concavo-convex structure LW Laser beam W Object to be processed

Claims (11)

  1.  加工対象物を加工するためのレーザ光を出射するレーザ光源と、
     前記レーザ光源から出射された前記レーザ光を走査する走査部を有し前記レーザ光を前記加工対象物に対して照射するレーザ照射部と、
     前記レーザ光源及び前記走査部を制御する制御部と、
    を備え、
     前記レーザ光源及び前記レーザ照射部の各々は、前記レーザ光を透過させるもしくは反射する少なくとも1つの光学素子を有し、
     少なくとも1つの前記光学素子は、当該光学素子における前記レーザ光を透過させるもしくは反射する部分に一体的に設けられ前記レーザ光の一部を吸収する薄膜体を有するレーザ加工装置。
    a laser light source that emits laser light for processing an object;
    a laser irradiation unit having a scanning unit for scanning the laser light emitted from the laser light source and irradiating the laser light onto the object to be processed;
    a control unit that controls the laser light source and the scanning unit;
    with
    Each of the laser light source and the laser irradiation unit has at least one optical element that transmits or reflects the laser light,
    The laser processing apparatus, wherein at least one of the optical elements has a thin film that is integrally provided in a portion of the optical element that transmits or reflects the laser beam and that absorbs part of the laser beam.
  2.  少なくとも1つの前記光学素子は、自身の表面に反射防止膜を有し、
     前記薄膜体は、前記反射防止膜に含まれる請求項1に記載のレーザ加工装置。
    at least one optical element has an antireflection coating on its surface;
    2. The laser processing apparatus according to claim 1, wherein said thin film is included in said antireflection film.
  3.  少なくとも1つの前記光学素子は、自身の表面に増反射膜を有し、
     前記薄膜体は、前記増反射膜に含まれる請求項1または請求項2に記載のレーザ加工装置。
    at least one of the optical elements has a reflection enhancing film on its surface;
    3. The laser processing apparatus according to claim 1, wherein the thin film is included in the reflection-increasing film.
  4.  少なくとも1つの前記光学素子は、紫外線領域の前記レーザ光を透過させるもしくは反射するものであり、当該光学素子が有する前記薄膜体は、酸化チタン系の薄膜である請求項1から請求項3のいずれか1項に記載のレーザ加工装置。 4. Any one of claims 1 to 3, wherein at least one optical element transmits or reflects the laser light in the ultraviolet region, and the thin film body included in the optical element is a titanium oxide-based thin film. 1. The laser processing apparatus according to claim 1.
  5.  少なくとも1つの前記光学素子は、近赤外線領域の前記レーザ光を透過させるもしくは反射するものであり、当該光学素子が有する前記薄膜体は、酸化亜鉛系の薄膜である請求項1から請求項4のいずれか1項に記載のレーザ加工装置。 At least one optical element transmits or reflects the laser light in the near-infrared region, and the thin film body included in the optical element is a zinc oxide-based thin film. The laser processing apparatus according to any one of items 1 to 3.
  6.  前記レーザ照射部は、前記レーザ光源と前記走査部との間に配置されて前記レーザ光のビーム径を拡大するビームエキスパンダを有し、
     前記ビームエキスパンダは、複数の前記光学素子を有するとともに、当該複数の前記光学素子のうち1つの前記光学素子は、前記レーザ光が入射する第1レンズであり、当該複数の前記光学素子のうち前記第1レンズとは異なる1つの前記光学素子は、前記第1レンズを透過した前記レーザ光が入射する第2レンズであり、
     前記第1レンズは、前記薄膜体を有する請求項1から請求項5のいずれか1項に記載のレーザ加工装置。
    The laser irradiation unit has a beam expander arranged between the laser light source and the scanning unit to expand the beam diameter of the laser light,
    The beam expander has a plurality of the optical elements, one of the plurality of the optical elements is a first lens into which the laser beam is incident, and The one optical element different from the first lens is a second lens on which the laser beam transmitted through the first lens is incident,
    The laser processing apparatus according to any one of claims 1 to 5, wherein the first lens has the thin film body.
  7.  前記第1レンズは、前記レーザ光が入射する入射面と、前記レーザ光が出射する出射面とを有し、前記第1レンズの前記入射面及び前記第1レンズの前記出射面の各々に前記薄膜体が設けられている請求項6に記載のレーザ加工装置。 The first lens has an incident surface on which the laser beam is incident and an exit surface from which the laser beam is emitted, and the incident surface of the first lens and the exit surface of the first lens each have the 7. The laser processing apparatus according to claim 6, wherein the thin film body is provided.
  8.  前記レーザ光源は、前記レーザ光を出射する光学窓である前記光学素子を有し、
     前記光学窓は、前記レーザ光が入射する入射面と、前記レーザ光が出射する出射面とを有し、前記光学窓の前記出射面に前記薄膜体が設けられている請求項1から請求項7のいずれか1項に記載のレーザ加工装置。
    The laser light source has the optical element which is an optical window for emitting the laser light,
    The optical window has an incident surface on which the laser light is incident and an output surface from which the laser light is emitted, and the thin film is provided on the output surface of the optical window. 8. The laser processing apparatus according to any one of 7.
  9.  少なくとも1つの前記光学素子は、前記レーザ光が入射する入射面と、前記レーザ光が出射する出射面とを有するとともに、当該光学素子の前記入射面及び当該光学素子の前記出射面の少なくとも一方の面における、少なくとも前記レーザ光が照射されるもしくは通過する範囲の全体に、前記薄膜体を有する請求項1から請求項8のいずれか1項に記載のレーザ加工装置。 The at least one optical element has an incident surface on which the laser light is incident and an output surface from which the laser light is emitted, and at least one of the incident surface of the optical element and the output surface of the optical element 9. The laser processing apparatus according to any one of claims 1 to 8, wherein the thin film body is provided over at least the entire range of the surface through which the laser beam is irradiated or passes.
  10.  前記レーザ光の光路上に配置されて前記レーザ光を透過させるもしくは反射する全ての前記光学素子は、前記薄膜体を有する請求項1から請求項9のいずれか1項に記載のレーザ加工装置。 The laser processing apparatus according to any one of claims 1 to 9, wherein all the optical elements that are arranged on the optical path of the laser beam and transmit or reflect the laser beam have the thin film body.
  11.  前記薄膜体における吸収率の最も高いレーザ光の波長は、当該薄膜体を有する前記光学素子を透過するもしくは当該薄膜体を有する前記光学素子が反射する前記レーザ光のスペクトルのピーク波長とは異なる波長である請求項1から請求項10のいずれか1項に記載のレーザ加工装置。 The wavelength of the laser light with the highest absorption rate in the thin film is a wavelength different from the peak wavelength of the spectrum of the laser light that is transmitted through the optical element having the thin film or reflected by the optical element having the thin film. The laser processing apparatus according to any one of claims 1 to 10, wherein:
PCT/JP2022/028232 2021-09-16 2022-07-20 Laser processing device WO2023042543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021151503A JP2023043726A (en) 2021-09-16 2021-09-16 Laser machining device
JP2021-151503 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023042543A1 true WO2023042543A1 (en) 2023-03-23

Family

ID=85602677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028232 WO2023042543A1 (en) 2021-09-16 2022-07-20 Laser processing device

Country Status (2)

Country Link
JP (1) JP2023043726A (en)
WO (1) WO2023042543A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277713A (en) * 1988-09-14 1990-03-16 Hitachi Ltd Laser power adjustor
JP2000135583A (en) * 1998-10-30 2000-05-16 Fanuc Ltd Laser light collector
JP2003205384A (en) * 2002-01-11 2003-07-22 Ricoh Microelectronics Co Ltd Laser machining device
JP2010052033A (en) * 2008-08-29 2010-03-11 Sunx Ltd Laser beam machining apparatus
JP2012206162A (en) * 2011-03-30 2012-10-25 Panasonic Industrial Devices Sunx Co Ltd Laser beam machining device
JP2012218054A (en) * 2011-04-12 2012-11-12 Panasonic Industrial Devices Sunx Co Ltd Laser beam machining device
JP2019204860A (en) * 2018-05-23 2019-11-28 三菱重工業株式会社 Laser apparatus and machining apparatus
JP2021034450A (en) * 2019-08-20 2021-03-01 日亜化学工業株式会社 Semiconductor laser device and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277713A (en) * 1988-09-14 1990-03-16 Hitachi Ltd Laser power adjustor
JP2000135583A (en) * 1998-10-30 2000-05-16 Fanuc Ltd Laser light collector
JP2003205384A (en) * 2002-01-11 2003-07-22 Ricoh Microelectronics Co Ltd Laser machining device
JP2010052033A (en) * 2008-08-29 2010-03-11 Sunx Ltd Laser beam machining apparatus
JP2012206162A (en) * 2011-03-30 2012-10-25 Panasonic Industrial Devices Sunx Co Ltd Laser beam machining device
JP2012218054A (en) * 2011-04-12 2012-11-12 Panasonic Industrial Devices Sunx Co Ltd Laser beam machining device
JP2019204860A (en) * 2018-05-23 2019-11-28 三菱重工業株式会社 Laser apparatus and machining apparatus
JP2021034450A (en) * 2019-08-20 2021-03-01 日亜化学工業株式会社 Semiconductor laser device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2023043726A (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP6052823B2 (en) Method for forming a vacuum insulated glass window with glass protrusion spacers
US7672343B2 (en) System and method for high power laser processing
US3871739A (en) System for protection from laser radiation
EP2167272B1 (en) Pyrometer for laser annealing system compatible with amorphous carbon optical absorber layer
JP5998968B2 (en) Glass substrate cutting method, glass substrate and near infrared cut filter glass
US20130250403A1 (en) High infrared transmission window with self cleaning hydrophilic surface
TW201546566A (en) Optical element and optical arrangement therewith
WO2012094737A1 (en) Laser reinforced direct bonding of optical components
TW201214059A (en) Lithographic apparatus and device manufacturing method
KR20220111321A (en) Optical element with protective coating, method for manufacturing such optical element and optical arrangement
JP2015527276A (en) Production of thin glass products using growth-limited glass convex spacers
US3982206A (en) System for protection from laser radiation
WO2023042543A1 (en) Laser processing device
CN111032271B (en) Laser processing head with an optical element for filtering ultraviolet process radiation and corresponding laser processing method
US11233370B2 (en) Device for generating laser radiation
US20150138636A1 (en) Self-cleaning optical system
WO2022190661A1 (en) Laser processing device
US11968767B2 (en) EUV light source with a separation device
JP4293113B2 (en) Carbon dioxide laser device
CN112518104B (en) Integrated vision system and laser equipment for preventing back light source from being damaged
WO2023162616A1 (en) Optical component and laser machining apparatus
JP2023139523A (en) Optical unit, spectroscopic analyzer, optical device, and method of manufacturing optical unit
CN115867408A (en) Laser processing device for processing a workpiece by means of a laser beam
JP2015140262A (en) Laser treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869691

Country of ref document: EP

Kind code of ref document: A1