WO2023042519A1 - Device, program, and control method for executing efficient load balancing control - Google Patents

Device, program, and control method for executing efficient load balancing control Download PDF

Info

Publication number
WO2023042519A1
WO2023042519A1 PCT/JP2022/025723 JP2022025723W WO2023042519A1 WO 2023042519 A1 WO2023042519 A1 WO 2023042519A1 JP 2022025723 W JP2022025723 W JP 2022025723W WO 2023042519 A1 WO2023042519 A1 WO 2023042519A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
ric
node
quality
information
Prior art date
Application number
PCT/JP2022/025723
Other languages
French (fr)
Japanese (ja)
Inventor
忍 難波
晴久 平山
伸吾 渡辺
Original Assignee
Kddi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kddi株式会社 filed Critical Kddi株式会社
Publication of WO2023042519A1 publication Critical patent/WO2023042519A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution

Definitions

  • the present invention relates to load adjustment control technology in wireless communication.
  • O-RAN Open-RAN
  • intelligent RAN is realized by controlling a plurality of E2 nodes connected to terminal devices by a RAN intelligent controller (RIC).
  • the RIC includes Near-RT RIC, which generally performs real-time (RT) control, and Non-RT RIC, which performs non-real-time control.
  • the Non-RT RIC performs RAN analysis and policy management, etc., and the Near-RT RIC controls the E2 node according to the policy determined by the Non-RT RIC.
  • the control by the Near-RT RIC includes load distribution control between cells provided by the E2 node. This prevents traffic from concentrating on some E2 nodes and improves communication efficiency.
  • the present invention provides efficient load regulation control technology.
  • a control method is a control method executed by a Near-RT (Real Time) RIC (RAN Intelligent Controller) of an O-RAN (Open-Radio Access Network), wherein the terminal in the O-RAN Information indicating that an E2 node that provides wireless communication to a device should change the requested quality of at least one of the first communication being executed by the E2 node and the newly received second communication. including providing
  • a control method is a control method executed by an E2 node that provides wireless communication to a terminal device in an O-RAN (Open-Radio Access Network), the Near-RT (Real Time) Acquiring from RIC (RAN Intelligent Controller) information indicating that the requested quality of at least one of the first communication being executed by the E2 node and the newly accepted second communication should be changed; and performing control to change requested quality of at least one of the first communication and the second communication based on the information.
  • O-RAN Open-Radio Access Network
  • RIC Radio Intelligent Controller
  • load adjustment control can be performed efficiently.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 2 is a diagram showing a hardware configuration example of the device.
  • FIG. 3 is a diagram showing a functional configuration example of the Non-RT RIC.
  • FIG. 4 is a diagram showing a functional configuration example of the Near-RT RIC.
  • FIG. 5 is a diagram illustrating a functional configuration example of an E2 node.
  • FIG. 6 is a diagram illustrating an example of the flow of processing performed by Non-RT RIC.
  • FIG. 7 is a diagram illustrating an example of the flow of processing performed by the Near-RT RIC.
  • FIG. 8 is a diagram illustrating an example of the flow of processing performed by an E2 node.
  • FIG. 1 shows a configuration example of a wireless communication system according to this embodiment.
  • the radio communication system of this embodiment is configured by adopting, for example, an O-RAN (Open-Radio Access Network) architecture.
  • O-RAN Open-Radio Access Network
  • FIG. 1 schematically shows only the Non-RT RIC 101, the Near-RT RIC 102, and the E2 node 103 as part of the functions of the O-RAN in order to simplify the explanation.
  • the system may of course have all the functions specified for the general O-RAN architecture.
  • RT is an acronym for Real Time
  • RIC is an acronym for RAN Intelligent Controller.
  • the E2 node has the function of establishing a wireless connection with a terminal device and actually providing the wireless communication service to the terminal device.
  • the Near-RT RIC is a control device that controls a plurality of E2 nodes, monitors the state of the RAN (E2 nodes) in short cycles of, for example, less than 1 second, and based on the monitoring results, the E2 nodes controls the behavior of The Non-RT RIC, for example, analyzes the state of the RAN at a long cycle of 1 second or more and determines the policy.
  • An interface called an A1 interface is established between the Non-RT RIC and the Near-RT RIC, and control messages are transmitted and received between these elements via this A1 interface.
  • An interface called an E2 interface is established between the Near-RT RIC and the E2 node, and control messages are transmitted and received between these elements via this E2 interface.
  • an O1 interface is established between the Non-RT RIC, the Near-RT RIC, and the E2 node, and control messages are transmitted between these elements via this O1 interface. Transmission and reception may occur.
  • the load distribution control of the E2 node is performed in the configuration as shown in FIG.
  • the Non-RT RIC determines that load distribution control should be executed based on the congestion situation in the cell deployed by the E2 node.
  • the Non-RT RIC then notifies the Near-RT RIC of information indicating that load distribution should be executed as policy information (A1 policy).
  • the Near-RT RIC receives the policy information, it monitors the load on the E2 node under its own control, and executes load distribution control as necessary. For example, when the Near-RT RIC determines that the load of an E2 node is greater than a predetermined value, it gives an instruction (E2 Policy/Control) to the relevant E2 nodes.
  • the Non-RT RIC may notify the Near-RT RIC of the first policy information during non-congestion and the second policy information during congestion.
  • the second policy information can be information indicating that the above-described load distribution should be performed.
  • the first policy information includes, for example, communication requirements (QoS) to be satisfied for each QoS (Quality of Service) flow in a network slice, and Near-RT RIC is configured to satisfy the QoS so that the UE connection control. The Near-RT RIC can then monitor the E2 node and perform load distribution control in response to a particular cell becoming congested.
  • QoS communication requirements
  • the Near-RT RIC can then monitor the E2 node and perform load distribution control in response to a particular cell becoming congested.
  • Non-RT RIC based on the analysis of the long-term load by Non-RT RIC, it is determined that the load should be distributed roughly, and according to the decision, by Near-RT RIC, the load is adjusted according to the actual load situation. Decentralized control is provided. In this way, load distribution control is controlled by the Non-RT RIC and the Near-RT RIC that collectively control multiple E2 nodes that directly provide wireless connections to the UE, so that between multiple E2 nodes Higher level load distribution control can be performed as compared with direct load distribution.
  • the Near-RT RIC monitors all communications in the controlled E2 node and performs load distribution control, the processing load for that control becomes excessive, resulting in deterioration of efficiency and accuracy of control. deterioration may occur.
  • non-RT RIC notifies policy information that limits the control targets in Near-RT RIC.
  • the Non-RT RIC can notify the Near-RT RIC that only a predetermined cell (E2 node) is subject to load distribution control.
  • the Non-RT RIC can notify the Near-RT RIC by including a list of identification information of cells to be processed (cell ID list) in policy information indicating that load distribution should be executed during congestion.
  • the Non-RT RIC stores the A1 policy in which information indicating that load distribution control should be performed during congestion and a list of cell identification information are stored in association with each other as the above-mentioned second policy information, and the Near-RT RIC provide to Then, the Near-RT RIC monitors the cell to be processed based on this information, and if the load exceeds a predetermined value, the UE connected to that cell is handed over to another cell to reduce the load. disperse Note that the Near-RT RIC may control the E2 node so that the handover is performed within the range of the cells listed in the policy information, or the listed cells The E2 node may be controlled such that a handover to a non-existent cell is performed.
  • the cells listed in the policy information may or may not include cells to which the load is to be offloaded.
  • the Near-RT RIC can monitor the load only for the notified E2 node and execute load distribution control at that E2 node. can. Therefore, the Near-RT RIC does not need to monitor all the E2 nodes under its control, and can appropriately distribute the load with a low processing load.
  • the Non-RT RIC monitors each of the multiple E2 nodes on the O1 interface, and uses artificial intelligence (AI), for example, to determine the load within a predetermined period from the trend of traffic volume fluctuations. Detect areas where is expected to be high. Then, according to the detection results, the Non-RT RIC lists the E2 nodes corresponding to areas where the load is expected to be high, and the listed E2 nodes should be subject to load distribution control. Near-RT RIC can be notified. In addition, Non-RT RIC identifies congested areas for each day of the week and time period from the history of past traffic volume, and distributes the E2 nodes corresponding to the areas identified on that day of the week and time period for load distribution control.
  • AI artificial intelligence
  • Non-RT RIC may notify the Near-RT RIC of what should be covered. Also, when Non-RT RIC acquires advance information that a large number of UEs are expected to gather in a specific area, for example at a concert or sporting event, based on that advance information, the time and area to be congested identifiable. The Non-RT RIC may then notify the Near-RT RIC that the E2 node corresponding to the specified area at the specified time should be subject to load distribution control. It should be noted that such information that can specify the congestion time and area in advance may be obtained by directly inputting it to the Non-RT RIC from the network operator, etc., or may be obtained from the Non-RT RIC or other nodes may be acquired by searching via the Internet or the like. Also, a server may be prepared to accumulate such information, and the Non-RT RIC may acquire the information by periodically referring to the server.
  • the target of load distribution control may be limited from a point of view other than the cell.
  • a specific network slice may be subject to load distribution control.
  • Near-RT RIC monitors the communication of UEs communicating in a specific network slice, and if the load due to that communication is concentrated in a specific cell, some or all of the UEs It can control the E2 node to handover to another cell.
  • there may be network slices where it is assumed that the UE does not move or has a small amount of movement. In such a case, this network slice is not subject to load distribution control, and UEs that are unlikely to be subjected to handover are excluded in advance, thereby reducing processing loads such as monitoring for load distribution control.
  • the Non-RT RIC can notify the Near-RT RIC by including the identification information (slice ID) of the network slice to be processed in the policy information indicating that load distribution should be executed during congestion.
  • the slice ID is S-NSSAI (Single-Network Slice Selection Assistance Information). That is, the Non-RT RIC stores the A1 policy in which the information indicating that load distribution control should be performed during congestion and the identification information of the network slice are associated and stored as the above-mentioned second policy information, and the Near-RT RIC provide to It should be noted that whether or not to be subject to load distribution control may be specified in units of QoS classes instead of in units of network slices.
  • the identification information (QoS ID) of at least one of one or more QoS flows contained in the network slice is used to limit the UEs targeted for load distribution control.
  • the QoS ID is, for example, 5QI (5G QoS Indicator) or QCI (QoS Class Identifier).
  • one or more specific UEs may be specified to limit the target of load distribution control.
  • a list of identification information (UE IDs) for identifying UEs or identification information (group IDs) for identifying groups of UEs may be used to limit the UEs targeted for load distribution control. That is, the Near-RT RIC may be notified of an A1 policy that associates various identification information such as QoS ID, UE ID, and group ID with information for executing load distribution control during congestion.
  • the Non-RT RIC may send the policy information indicating that the load distribution control will not be performed to the Near-RT RIC, or it may request that the load distribution control be executed. policy information indicating that the previously provided policy information should be invalidated to the Near-RT RIC. Further, the policy information may be provided with an expiration date, and the policy information may be invalidated when the expiration date elapses.
  • the Near-RT RIC Based on the policy information obtained from the Non-RT RIC, the Near-RT RIC monitors the communication of the E2 nodes subject to load distribution control and the UEs connected to the E2 nodes under control. Then, the Near-RT RIC has a predetermined value indicating the load of the cell designated as the target of load distribution control, the network slice subject to load distribution control, or the cell to which the UE performing communication of the QoS class belongs. If the value exceeds the value, it is determined to execute load distribution control. Also, the Near-RT RIC may determine to execute load balancing control, for example, when there is a network slice that cannot satisfy the SLA (Service Level Agreement) in the E2 node subject to load balancing control. .
  • SLA Service Level Agreement
  • Near-RT RIC through all E2 nodes, when there is a network slice that cannot satisfy the SLA in UE communication that is not specified as a target of load distribution control (that is, not subject to handover, etc.) , it may be determined to execute load distribution control.
  • the Near-RT RIC determines to execute load distribution control, it controls the E2 node so that the UE communicating in the controlled cell is handed over to another cell.
  • handover in this embodiment may be handover to a cell in the same frequency band, or handover to a cell in a different frequency band.
  • Near-RT RIC determines, for example, which UEs belonging to a congested cell should be moved to another cell.
  • Near-RT RIC identifies, for example, the magnitude of load by each UE in a congested cell (for example, the number of physical resource blocks (PRB) used for communication of that UE), and based on the identification result , estimate the loads of the source and destination cells, respectively, when each UE hands over to another cell.
  • PRB physical resource blocks
  • the Near-RT RIC determines, for example, which UE is handed over so that the respective loads in the handover source and handover destination cells do not exceed a predetermined value. select the target UE. The Near-RT RIC can then send an instruction to handover the UE selected as the target of handover to the E2 node to which the UE is connected and the E2 node to which the handover is to be made.
  • the Near-RT RIC controls the E2 node by sending policy information and control information (E2 policy/control) to the E2 node.
  • This policy information and control information is, for example, handover control for each UE, carrier aggregation (CA) for each UE secondary cell on / off, etc.
  • Information for connecting the UE to a specific E2 node and communicating. can contain
  • policy information and control information are, for example, parameters that serve as criteria for handover and cell reselection for each cell and each UE (for example, parameters for handing over a specific UE to a specific cell or for selecting a specific cell ) may be included.
  • the Near-RT RIC must satisfy the required quality (SLA) for each network slice according to the A1 policy for non-congested (normal time) obtained from the Non-RT RIC when it is not congested.
  • SLA required quality
  • the E2 node is controlled by, for example, transmitting policy information or control information indicating to the E2 node.
  • Near-RT RIC can, for example, select UEs to perform handover based on the criteria that the loads in the handover source and handover destination cells do not exceed a predetermined value as described above, but is not limited to this.
  • Near-RT RIC in addition to or instead of this, states that, for example, the SLA achievement rate of network slices in cells targeted for load distribution control (cells before and after handover) improves (at least does not deteriorate) after handover. Criteria may be used to select UEs for which handover is to be performed.
  • Near-RT RIC uses a predetermined evaluation function such as a weighted addition value or a simple addition value of multiple SLA achievement rate values for multiple network slices, and the output value of the evaluation function improves ( UEs to perform handovers may be selected so as to at least not degrade).
  • the network slice to be evaluated here can be the network slice to be subjected to load distribution control.
  • the SLA achievement rate of the entire cell or network slice may be used to select a UE to perform handover, or the SLA achievement rate of a specific UE may be used instead.
  • UEs to be handed over may be selected so that the SLA achievement rate of a specific UE does not deteriorate (while allowing the SLA achievement rate of other UEs to deteriorate). Also, in these cases, UEs to be subjected to handover may be selected on the condition that communication quality such as throughput, error rate, delay amount, etc., is not degraded, rather than the SLA achievement rate. Also, a UE to be subjected to handover may be selected based on the quality required for each QoS flow and its sufficiency rate, or based on the output value of an evaluation function whose argument is a value such as a sufficiency rate.
  • Near-RT RIC identifies UEs that have poor radio quality in congested cells and that require a large amount of resources for communication as candidates for handover, and from among those UEs, the above-mentioned In this way, a UE can be selected that does not degrade indicators such as load, SLA achievement rate, and communication quality in a cell involved when handover is performed.
  • the Near-RT RIC may obtain feedback from the E2 node regarding the changes in the above-described indicators obtained as a result of this handover, and update the evaluation criteria.
  • the weighting factors in the weighted summation value described above can be updated.
  • the evaluation function described above may be obtained by machine learning, and the evaluation function is updated based on the index value obtained as a result of the handover and the index value estimated in advance. may
  • the E2 node can notify the Near-RT RIC of information for determining the necessity of handover and the UE to be handed over as described above.
  • the E2 node has the number of PDU (Protocol Data Unit) sessions per cell, the number of UEs per cell, the amount of PDCP (Packet Data Convergence Protocol) traffic per cell, the PRB utilization rate per cell, the CCE (Control Channel Element) usage rate and other information to Near-RT RIC. For example, based on these information the load of the cell can be determined.
  • the E2 node may notify the Near-RT RIC of detailed information on each of the above information for each network slice and each QoS class.
  • the acceptability of handover for each cell can be specified.
  • these information may be notified from the E2 node to the Non-RT RIC via the O1 interface for long-term analysis.
  • the E2 node reports values such as throughput, packet delay, packet error rate average value, minimum value, and/or variance for each QoS class and slice to Non-RT RIC and Near-RT RIC. You may Based on this information, the SLA achievement rate for network slices can be calculated.
  • Non-RT RIC and Near-RT RIC determine policies or control E2 nodes based on this information.
  • the required quality of communication should be satisfied (for example, high-priority QoS flow communication, communication by a UE that has a predetermined contract), if the required quality cannot be met, for example, the communication quality of other communications can be reduced so that the specified communication can meet the required quality.
  • a given communication may be allowed to meet its quality requirements by de-prioritizing the QoS of the QoS flows for which the quality requirements are not to be met.
  • QoS flow communication for which the required quality should not be satisfied can be changed to best-effort communication in which communication speed and the like are not guaranteed.
  • this change may be made by the instruction of the Near-RT RIC, or may be executed independently by the E2 node. Also, at the time of this change, an inquiry may be made to the UE whose communication quality is scheduled to deteriorate as to whether or not to accept the deterioration of communication quality. Note that if the deterioration of communication quality is unacceptable, the Near-RT RIC or E2 node may disconnect the communication. It should be noted that, during the communication quality reduction control, while maintaining the network slice, the communication quality of at least a part of the QoS flows belonging to the network slice may be reduced, or the communication quality of the entire network slice may be reduced. may be lowered.
  • the Near-RT RIC or E2 node is not a predetermined communication from the UE in a situation where the predetermined communication cannot satisfy the required quality (for example, the predetermined network slice to be prioritized is not specified)
  • the UE that requested new communication is presented that it can be accepted if the communication does not satisfy the requested quality (that the requested communication quality is not guaranteed), and the communication is performed. You may inquire whether or not to do so. Then, if the Near-RT RIC or E2 node rejects communication that does not satisfy the requested quality from the UE, it can avoid executing that communication.
  • the best-effort communication in the above description is an example, and any network slice or QoS class that is assumed to be acceptable based on the load state of the E2 node, other than the predetermined communication that should satisfy the required quality. Communication can be controlled to take place.
  • the Near-RT RIC or E2 node after executing the control to lower the required quality of communication, when the UE executing the predetermined communication moves to another location or when the communication ends, etc. Restores the lowered requested quality to the original level (if communication starts with lower quality than the requested quality, improves the quality to the requested quality) and re-changes the requested quality when there is a free space. you can go In this case, the UE may be notified that the communication quality is improved.
  • the process of changing and re-changing the requested quality includes, for example, information indicating that there is a change in QoS, and information indicating the network slice/QoS flow/UE to be changed in QoS and the QoS after change in association with each other.
  • information can be included in the message indicating to change the QoS flow to another QoS class with lower priority.
  • information can be included in the message indicating that the network slice used for communication of a particular UE should be moved to another network slice (eg, best effort network slice).
  • information indicating that the QoS class of the new QoS flow should be changed to a lower priority QoS class (to best effort type in some cases), and the network used for communication of the newly connected UE Information may be included indicating that the slice should be moved to another network slice (eg, a best effort network slice).
  • the non-RT RIC may change and re-change the required quality by transmitting policy information to the Near-RT RIC.
  • identification information specifying at least one of a network slice, QoS class, cell, UE, and QoS flow designates the target of change and re-change of the requested quality, and how to handle existing communication and new communication
  • An A1 policy containing information indicating whether to do so may be provided to the Near-RT RIC. For example, whether new communications should be accepted with a prescribed quality requirement such as best effort or with a prescribed network slice with low required quality can be included in the A1 policy as information indicating how new communications should be handled. can be included.
  • changing the requested quality of existing communication to a predetermined requested quality such as best effort or transitioning to a predetermined network slice with lower requested quality determines how existing communication should be handled. It can be included in the A1 policy as information to indicate.
  • the Near-RT RIC can generate policy information/control information according to this A1 policy and provide it to the E2 node. Based on the policy information/control information, the E2 node can change the requested quality of new communication or existing communication.
  • the E2 node has the traffic volume per UE QoS flow, the load per UE such as the number of PRBs used per UE, the traffic volume per network slice per cell and the load per network slice such as the number of PRBs used.
  • the load per UE such as the number of PRBs used per UE
  • the traffic volume per network slice per cell and the load per network slice such as the number of PRBs used.
  • information on received signal quality such as reference signal received power (RSRP), reference signal received quality (RSRQ), and CQI in the serving cell and neighboring cells is reported to Non-RT RIC and Near-RT RIC. sell.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • CQI CQI in the serving cell and neighboring cells
  • Non-RT RIC and Near-RT RIC use this information to ensure quality in a given communication in which the required quality should be satisfied by lowering the required quality of which UE/which network slice.
  • Non-RT RIC and Near-RT RIC specify the magnitude of the load reduction effect when the required quality is reduced for communication of network slices and QoS flows with low priority, and A decision can be made to lower the required quality of communication.
  • Near-RT RIC repeatedly determines the UE and network slices/QoS flows that reduce the required quality until the communication quality for all predetermined communications that should satisfy the required quality can be satisfied. I can.
  • Non-RT RIC and Near-RT RIC for example, after satisfying the communication quality for all predetermined communication that should satisfy the required quality, any other UE or network slice / QoS flow can be determined based on the above information.
  • the Near-RT RIC performs load distribution control for all predetermined communications that should meet the required quality, controls the reduction of required quality for ongoing communications, and controls the reduction of required quality when new communication requests are accepted. may be performed by the E2 node.
  • the change and re-change control of the required quality may be performed independently of the load distribution control such as handover. That is, for example, when the required quality of a predetermined communication with a high priority is not satisfied, only the change and re-change control of the required quality are performed, and the load distribution control by handover or the like may not be performed. Also, the change and re-change processing of the required quality may be executed only for either existing communication or new communication. That is, maintain the required quality for existing communications and accept new communications with the required quality lowered, or lower the required quality for existing communications and accept new communications with the required quality. , and the like may be performed. Also, in the above description, it is explained that the requested quality is lowered, but at least part of the communication may be disconnected or rejected.
  • Non-RT RIC the Near-RT RIC
  • E2 node the E2 node
  • These devices can be realized by general-purpose computers and servers with communication functions. Note that the Non-RT RIC, the Near-RT RIC, and the E2 node need only be logically separated, and two or more of them may be included in one device.
  • These devices can be configured, for example, as communication devices having a hardware configuration as shown in FIG.
  • the communication device in one example, includes a processor 201 , a ROM 202 , a RAM 203 , a storage device 204 and a communication circuit 205 .
  • the processor 201 is a computer including one or more processing circuits such as a general-purpose CPU (Central Processing Unit) and ASIC (Application Specific Integrated Circuit). By reading and executing the program stored in the device, the overall processing of the device and each of the above-described processings are executed.
  • a ROM 202 is a read-only memory that stores information such as programs and various parameters related to processing executed by the apparatus.
  • a RAM 203 is a random access memory that functions as a work space when the processor 501 executes programs and stores temporary information.
  • the storage device 204 is configured by, for example, a detachable external storage device or the like.
  • the communication circuit 205 includes, for example, a communication circuit for executing wireless communication or wired communication, and an antenna as necessary.
  • the communication circuitry 205 of the E2 node includes circuitry for wireless communication conforming to cellular communication standards. Non-RT RICs, Near-RT RICs and E2 nodes may also include communication circuitry 205 for communication between each other.
  • Non-RT RIC includes, for example, an A1 communication unit 301, an O1 communication unit 302, an information analysis unit 303, and a policy information setting unit 304 as its functions.
  • the A1 communication unit 301 sets the A1 interface with the Near-RT RIC to perform communication.
  • the O1 communication unit 302 sets the O1 interface between the E2 node and the Near-RT RIC to perform communication.
  • the information analysis unit 303 acquires the above information from the E2 node, for example, estimates the cell load, the SLA achievement rate of the network slice, and whether the handover of the UE can be accepted, Perform various analyses, such as identifying cells that are likely to be congested.
  • the policy information setting unit 304 determines the policy to be set for the Near-RT RIC based on the result of the analysis by the information analysis unit 303, and sets the policy information indicating the policy as A1 policy to the A1 communication unit 301. Notify Near-RT RIC via. For example, when the policy information setting unit 304 determines from the analysis by the information analysis unit 303 that there is a network slice whose load is equal to or greater than a predetermined value and whose SLA achievement rate is equal to or less than a predetermined threshold, the policy information setting unit 304 targets the cell. Send A1 policy indicating that load distribution control should be executed to Near-RT RIC.
  • the policy information setting unit 304 can also set policy information that notifies the quality requirements for each QoS flow for communication during non-congested times, and transmit it to the Near-RT RIC as A1 policy. That is, the policy information setting unit 304 can transmit, for example, A1 policy for quality control for each QoS flow during non-congestion and A1 policy for load balancing control during congestion to the Near-RT RIC.
  • A1 policy during non-congestion includes a list of slice identification information and QoS IDs to which the policy information is applied, a list of cells, and a control target cell, network slice, and QoS class specified by those information. It contains information indicating the required quality such as guaranteed flow bit rate, packet delay amount, and packet error rate.
  • the A1 policy during congestion includes information indicating that load distribution control should be performed, and information for specifying the control target (for example, slice identification information, QoS ID, cell list, or combinations thereof) are associated with and included.
  • load distribution control is described in this embodiment, the information indicating the control to be executed by the Near-RT RIC is replaced with the information indicating that the load distribution control should be executed. may be included in and notified to Near-RT RIC.
  • Fig. 4 shows an example of the functional configuration of Near-RT RIC.
  • the Near-RT RIC includes, for example, an A1 communication unit 401, an E2 communication unit 402, an O1 communication unit 403, a policy information acquisition unit 404, and a load distribution control unit 405 as its functions.
  • the A1 communication unit 401 sets the A1 interface with the Non-RT RIC to perform communication.
  • the E2 communication unit 402 sets an E2 interface and performs communication with the E2 node.
  • the O1 communication unit 403 sets the O1 interface with the Non-RT RIC to perform communication.
  • the policy information acquisition unit 404 acquires policy information (A1 policy) from the Non-RT RIC.
  • the load distribution control unit 405 acquires load identifiable information from a large number of E2 nodes under its control via the E2 communication unit 402, and determines whether load distribution control should be executed based on the information. do. For example, the load distribution control unit 405 determines that load distribution control should be executed when the load in a cell or network slice/QoS class designated as a target for load distribution control by the A1 policy exceeds a predetermined threshold. I can. Note that the load distribution control unit 405, for example, collects information and calculates load values for cells and network slices/QoS classes that are not specified as targets for which load distribution control should be performed by the A1 policy. You don't have to.
  • the E2 node that provides the communication can execute load balancing control with surrounding E2 nodes. As a result, load distribution can be performed locally.
  • the Near-RT RIC executing this load distribution control, it is possible to perform load distribution control that considers a wide range of E2 nodes compared to the case where E2 nodes locally execute load distribution control. Therefore, more efficient load distribution can be performed.
  • the load distribution control unit 405 determines that load distribution control is necessary in the target cell or network slice/QoS class of load distribution control, as described above, which UE is to be handed over to which cell. Make a decision and notify the E2 node of the outcome of that decision. Note that this notification is transmitted to the E2 node by the E2 communication unit 402 via the E2 interface as policy information or control information.
  • the load distribution control unit 405 if the communication quality to be satisfied is not obtained even if the load distribution control is executed (when the SLA achievement rate is insufficient in each network slice), some networks Control can be performed to reduce the communication quality of the slice/QoS flow communication.
  • the load distribution control unit 405 can control the E2 nodes to communicate with QoS with lower quality requirements for QoS flows included in a certain network slice.
  • the load distribution control unit 405 can control the E2 node to perform a new communication request at a lower requested quality than the quality requested by the UE.
  • the load distribution control unit 405 can control the E2 nodes to perform best-effort communication for which the required quality should be lowered. Since the details and modifications of this control are as described above, they will not be repeated here.
  • Fig. 5 shows an example of the functional configuration of the E2 node.
  • the E2 node includes, for example, an E2 communication unit 501, an O1 communication unit 502, a communication state information providing unit 503, and a load distribution processing unit 504 as its functions.
  • the E2 communication unit 501 sets the E2 interface with the Near-RT RIC to perform communication.
  • the O1 communication unit 502 sets the O1 interface with the Non-RT RIC to perform communication.
  • the communication state information providing unit 503 provides information indicating the state of communication in its own device to the Non-RT RIC via the O1 interface and to the Near-RT RIC via the E2 interface.
  • Non-RT RIC is for long-term analysis such as 1 second or longer
  • the information provided to Near-RT RIC is for short-term analysis such as less than 1 second. It is information for Since examples of information are as described above, they will not be repeated here.
  • the load distribution processing unit 504 receives control from the Near-RT RIC and executes processing for handing over the designated UE to another designated cell. In addition, even if the load distribution processing unit 504 is not controlled by the Near-RT RIC, the load distribution processing unit 504 exchanges information with other surrounding E2 nodes and executes local load distribution processing. good too.
  • the load distribution processing unit 504 if the communication quality to be satisfied is not obtained even if the load distribution control is executed (when the SLA achievement rate is insufficient in each network slice), some network slice/QoS flow communication quality control can be performed. Also, the load distribution processing unit 504 can control the E2 node to perform a new communication request with a lower requested quality than the quality requested by the UE. These controls can be executed, for example, by at least one of the load distribution control unit 405 of the Near-RT RIC and the load distribution processing unit 504 of the E2 node.
  • the E2 node has a function as a general base station device, and processes such as allocation of physical resource blocks to UEs are performed in the E2 node.
  • the E2 node executes load distribution control according to the control of the Near-RT RIC, but the control by the Near-RT RIC only issues instructions, and the processing of connection control and resource allocation with each UE is performed by the E2 node. Nodes can run independently.
  • FIG. 6 shows an example of the flow of processing executed by Non-RT RIC.
  • Non-RT RIC receives information indicating the state of communication from the E2 node (load state for each cell, UE, slice, information that can identify the SLA achievement rate for each network slice, received signal quality at the UE information, etc.), and for example, information such as congestion prediction information based on events and communication history is acquired from network operators, etc., and based on that information, the cells / network slices / A QoS class is determined (S601). It should be noted that it is sufficient if the target of load distribution control in the Near-RT RIC can be restricted, and the restriction does not necessarily have to be made by the cell/network slice/QoS class.
  • the Non-RT RIC generates policy information (A1 policy) containing information indicating the control target determined in S601 and information indicating that load distribution control should be executed, and the Near-RT RIC (S602).
  • A1 policy policy information containing information indicating the control target determined in S601 and information indicating that load distribution control should be executed
  • the Near-RT RIC S602
  • the Non-RT RIC may periodically execute this process, and notify the Near-RT RIC of the information each time it is necessary to update the controlled object or the process to be executed.
  • the A1 policy may have an expiration date, and the Non-RT RIC may update the A1 policy before the expiration date.
  • Fig. 7 shows an example of the flow of processing executed by Near-RT RIC.
  • the Near-RT RIC acquires the A1 policy from the Non-RT RIC, it controls the subordinate E2 nodes based on the A1 policy.
  • the Near-RT RIC monitors objects (cells/network slices/QoS classes) specified as objects of load distribution control according to the A1 policy for congestion (S701).
  • Near-RT RIC based on the results of its monitoring, decides to execute load distribution control (S702), for example, based on information obtained from the E2 node under its control, the other A UE to be handed over to the cell is determined, and an instruction (policy information/control information) is transmitted to the E2 node to execute handover processing for the UE (S703).
  • S702 load distribution control
  • Near-RT RIC will monitor changes in the congestion status of the E2 nodes under its control and the improvement status of the SLA achievement rate, etc., and will be the target of handover in S703 when executing the processing in FIG. 7 again after that.
  • UE decision criteria e.g., the weighting factor of the evaluation function
  • the Near-RT RIC can be used even if the UE determined in S703 is handed over, if the high load state continues with respect to the target of load distribution control (for example, the load of the cell in the high load state has not decreased sufficiently). If so), for at least some of the currently communicating network slices/QoS flows/UEs, a process of lowering the requested quality (changing to another acceptable network slice/QoS class) is performed (S704). As described above, for example, control is performed such that some network slices/QoS flows/UE communications are performed on a best-effort basis.
  • Near-RT RIC before lowering the requested quality, performs negotiation with the UE subject to the lowering of the requested quality, and if the requested quality lowering is accepted, the request Quality reduction control may be performed.
  • a process of disconnecting communication may be performed when the reduction in required quality is unacceptable.
  • the Near-RT RIC can set the requested quality of the communication to be lower than the quality requested by the UE. In this case, too, negotiation of a lower quality connection may be performed before the requested quality reduction process is actually performed.
  • Whether or not the high load state continues can be determined, for example, after the completion of handover processing, when the probability of satisfying the required quality in communication of one or more predetermined network slices/QoS flows with high priority is equal to or greater than a predetermined value.
  • the Near-RT RIC re-changes the requested quality of the communication whose requested quality has been changed in accordance with the load reduction and improvement of the high load state (S705).
  • Near-RT RIC restores the required quality (or increases the required quality within an acceptable range and does not exceed the original required quality) for communications that have lowered the required quality. .
  • communication of a network slice/QoS flow with a low priority can be continued with the required quality lowered, and as the load condition improves, the communication can be provided in line with the original required quality. be able to.
  • FIG. 8 shows an example of the flow of processing executed by the E2 node.
  • the E2 node notifies the Non-RT RIC and the Near-RT RIC of information indicating the state of communication between the E2 node and the UE (S801).
  • the E2 node provides non-RT RIC with information that enables analysis of long-term traffic fluctuations, etc., and near-RT RIC can execute short-term load distribution control. can provide information to Examples of the information provided are as described above and will not be repeated here.
  • the E2 node executes load distribution processing under the control of the Near-RT RIC (S802).
  • the E2 node when the E2 node receives policy information/control information indicating that the connected UE should be handed over to another cell from the Near-RT RIC, based on that information, the UE is designated Execute the process of handing over to the cell. Also, the E2 node can perform connection processing for a UE handed over from another cell based on the policy information/control information received from the Near-RT RIC. Also, when the high load state continues after the UE is handed over, the E2 node requests a specific network slice/QoS flow/UE based on the policy information/control information received from the Near-RT RIC. Quality may be reduced (S803).
  • the E2 node executes processing to autonomously lower the required quality of communication for a specific network slice/QoS flow, for example, for the UE connected to its own device, without following instructions from the Near-RT RIC. good too.
  • the E2 node changes again the requested quality of the communication whose requested quality has been changed based on the policy information/control information received from the Near-RT RIC in response to the improvement of the high load state ( S804).
  • This process may also be autonomously executed by the E2 node.
  • the policy setting by the Non-RT RIC enables the Near-RT RIC to perform load distribution control in consideration of the communication status of many E2 nodes.
  • the Non-RT RIC can specify the cells and network slices/QoS classes that are subject to load distribution control in the Near-RT RIC so that load distribution can be performed within a limited range.
  • load distribution control it is possible to perform load distribution control that considers the conditions of a large number of E2 nodes while suppressing the control load of the Near-RT RIC.
  • communication services are provided by lowering the required quality for low priority communications (for example, communications in network slices that allow service outages). By performing the control, it becomes possible to provide a communication service that satisfies the required quality for high-priority communication while securing the communication opportunity for that communication.

Abstract

In the present invention, a near-RT (real time) RIC (RAN intelligent controller) of an O-RAN (open-radio access network) provides, to an E2 node providing wireless communication to a terminal device in the O-RAN, information indicating that the required quality of first communication executed at the E2 node and/or newly received second communication should be changed.

Description

効率的な負荷分散制御を実行するための制御方法、装置、及びプログラムControl method, device, and program for executing efficient load distribution control
 本発明は、無線通信における負荷調整制御技術に関する。 The present invention relates to load adjustment control technology in wireless communication.
 無線アクセスネットワーク(RAN)をオープン化/インテリジェント化するO-RAN(Open-RAN)の標準化が進められている。O-RANでは、端末装置と接続する複数のE2ノードをRANインテリジェントコントローラ(RIC)によって制御することにより、RANのインテリジェント化を実現する。なお、RICは、概ねリアルタイム(RT)の制御を行うNear-RT RICと、非リアルタイムの制御を行うNon-RT RICを含む。Non-RT RICは、RANの分析やポリシ管理などを行い、Near-RT RICは、Non-RT RICが定めたポリシに従ってE2ノードを制御する。なお、Near-RT RICによる制御には、E2ノードが提供するセル間での負荷分散制御が含まれる。これにより、一部のE2ノードにトラフィックが集中することを防ぎ、通信の効率を向上させることができる。 The standardization of O-RAN (Open-RAN), which makes the radio access network (RAN) open/intelligent, is underway. In O-RAN, intelligent RAN is realized by controlling a plurality of E2 nodes connected to terminal devices by a RAN intelligent controller (RIC). Note that the RIC includes Near-RT RIC, which generally performs real-time (RT) control, and Non-RT RIC, which performs non-real-time control. The Non-RT RIC performs RAN analysis and policy management, etc., and the Near-RT RIC controls the E2 node according to the policy determined by the Non-RT RIC. Note that the control by the Near-RT RIC includes load distribution control between cells provided by the E2 node. This prevents traffic from concentrating on some E2 nodes and improves communication efficiency.
 負荷分散制御を行っても、E2ノード間で負荷を十分に分散できないことがありうる。その場合、混雑しているE2ノードにおける通信品質が劣化してしまうことが想定される。 Even if load distribution control is performed, it is possible that the load cannot be sufficiently distributed between the E2 nodes. In that case, it is assumed that the communication quality at the congested E2 node will deteriorate.
 本発明は、効率的な負荷調整制御技術を提供する。 The present invention provides efficient load regulation control technology.
 本発明の一態様による制御方法は、O-RAN(Open-Radio Access Network)のNear-RT(Real Time) RIC(RAN Intelligent Controller)によって実行される制御方法であって、前記O-RANにおいて端末装置へ無線通信を提供するE2ノードに対して、当該E2ノードで実行されている第1の通信と新規に受け付けられる第2の通信との少なくともいずれかの要求品質を変更させるべきことを示す情報を提供することを含む。 A control method according to one aspect of the present invention is a control method executed by a Near-RT (Real Time) RIC (RAN Intelligent Controller) of an O-RAN (Open-Radio Access Network), wherein the terminal in the O-RAN Information indicating that an E2 node that provides wireless communication to a device should change the requested quality of at least one of the first communication being executed by the E2 node and the newly received second communication. including providing
 本発明の別の一態様による制御方法は、O-RAN(Open-Radio Access Network)において端末装置へ無線通信を提供するE2ノードによって実行される制御方法であって、Near-RT(Real Time) RIC(RAN Intelligent Controller)から、当該E2ノードで実行されている第1の通信と新規に受け付けられる第2の通信との少なくともいずれかの要求品質を変更させるべきことを示す情報を取得することと、前記情報に基づいて、前記第1の通信と前記第2の通信との少なくともいずれかの要求品質を変更する制御を実行することと、を含む。 A control method according to another aspect of the present invention is a control method executed by an E2 node that provides wireless communication to a terminal device in an O-RAN (Open-Radio Access Network), the Near-RT (Real Time) Acquiring from RIC (RAN Intelligent Controller) information indicating that the requested quality of at least one of the first communication being executed by the E2 node and the newly accepted second communication should be changed; and performing control to change requested quality of at least one of the first communication and the second communication based on the information.
 本発明によれば、効率的に負荷調整制御を行うことができる。 According to the present invention, load adjustment control can be performed efficiently.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar configurations are given the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、無線通信システムの構成例を示す図である。 図2は、装置のハードウェア構成例を示す図である。 図3は、Non-RT RICの機能構成例を示す図である。 図4は、Near-RT RICの機能構成例を示す図である。 図5は、E2ノードの機能構成例を示す図である。 図6は、Non-RT RICによって実行される処理の流れの例を示す図である。 図7は、Near-RT RICによって実行される処理の流れの例を示す図である。 図8は、E2ノードによって実行される処理の流れの例を示す図である。
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
FIG. 1 is a diagram illustrating a configuration example of a wireless communication system. FIG. 2 is a diagram showing a hardware configuration example of the device. FIG. 3 is a diagram showing a functional configuration example of the Non-RT RIC. FIG. 4 is a diagram showing a functional configuration example of the Near-RT RIC. FIG. 5 is a diagram illustrating a functional configuration example of an E2 node. FIG. 6 is a diagram illustrating an example of the flow of processing performed by Non-RT RIC. FIG. 7 is a diagram illustrating an example of the flow of processing performed by the Near-RT RIC. FIG. 8 is a diagram illustrating an example of the flow of processing performed by an E2 node.
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴は任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. It should be noted that the following embodiments do not limit the invention according to the claims, and not all combinations of features described in the embodiments are essential to the invention. Two or more of the features described in the embodiments may be combined arbitrarily. Also, the same or similar configurations are denoted by the same reference numerals, and redundant explanations are omitted.
 (無線通信システムの構成)
 図1に、本実施形態に係る無線通信システムの構成例を示す。本実施形態の無線通信システムは、例えば、O-RAN(Open-Radio Access Network)のアーキテクチャを採用して構成される。なお、図1は、説明を簡単にするため、O-RANの一部の機能として、Non-RT RIC101、Near-RT RIC102、及びE2ノード103のみを概略的に示しているが、本無線通信システムは、一般的なO-RANのアーキテクチャとして規定される全ての機能を当然に有しうる。なお、RTはReal Timeの頭字語であり、RICは、RAN Intelligent Controllerの頭字語である。E2ノードは、端末装置との無線接続を確立して、その端末装置に対して実際に無線通信サービスを提供する機能を有する。Near-RT RICは、複数のE2ノードを制御する制御装置であり、例えば1秒未満の短い周期の短い周期でRAN(E2ノード)の状態を監視し、その監視の結果に基づいて、E2ノードの動作を制御する。Non-RT RICは、例えば、1秒以上の長い周期でRANの状態を分析し、ポリシを決定する。なお、Non-RT RICとNear-RT RICとの間には、A1インタフェースと呼ばれるインタフェースが確立され、このA1インタフェースを介してこれらの要素間での制御メッセージの送受信が行われる。また、Near-RT RICとE2ノードとの間には、E2インタフェースと呼ばれるインタフェースが確立され、このE2インタフェースを介してこれらの要素間での制御メッセージの送受信が行われる。なお、図1には示していないが、Non-RT RICとNear-RT RIC及びE2ノードとの間には、O1インタフェースが確立され、このO1インタフェースを介してこれらの要素間での制御メッセージの送受信が行われうる。
(Configuration of wireless communication system)
FIG. 1 shows a configuration example of a wireless communication system according to this embodiment. The radio communication system of this embodiment is configured by adopting, for example, an O-RAN (Open-Radio Access Network) architecture. Note that FIG. 1 schematically shows only the Non-RT RIC 101, the Near-RT RIC 102, and the E2 node 103 as part of the functions of the O-RAN in order to simplify the explanation. The system may of course have all the functions specified for the general O-RAN architecture. Note that RT is an acronym for Real Time, and RIC is an acronym for RAN Intelligent Controller. The E2 node has the function of establishing a wireless connection with a terminal device and actually providing the wireless communication service to the terminal device. The Near-RT RIC is a control device that controls a plurality of E2 nodes, monitors the state of the RAN (E2 nodes) in short cycles of, for example, less than 1 second, and based on the monitoring results, the E2 nodes controls the behavior of The Non-RT RIC, for example, analyzes the state of the RAN at a long cycle of 1 second or more and determines the policy. An interface called an A1 interface is established between the Non-RT RIC and the Near-RT RIC, and control messages are transmitted and received between these elements via this A1 interface. An interface called an E2 interface is established between the Near-RT RIC and the E2 node, and control messages are transmitted and received between these elements via this E2 interface. Although not shown in FIG. 1, an O1 interface is established between the Non-RT RIC, the Near-RT RIC, and the E2 node, and control messages are transmitted between these elements via this O1 interface. Transmission and reception may occur.
 本実施形態では、図1のような構成において、E2ノードの負荷分散制御を行う。例えば、Non-RT RICは、E2ノードが展開するセルにおける混雑状況などに基づいて、負荷分散制御を実行すべきことを決定する。そして、Non-RT RICは、負荷分散を実行すべきことを示す情報をポリシ情報(A1 policy)として、Near―RT RICへ通知する。Near―RT RICは、そのポリシ情報を受信すると、自装置の制御下に置かれているE2ノードにおける負荷を監視し、必要に応じて負荷分散制御を実行する。例えば、Near―RT RICは、あるE2ノードの負荷が所定値より大きいと判定した場合に、そのE2ノードに接続中の端末装置(UE)を、他のE2ノードに接続させるための指示(E2 Policy/Control)を、関連するE2ノードへ送信する。 In this embodiment, the load distribution control of the E2 node is performed in the configuration as shown in FIG. For example, the Non-RT RIC determines that load distribution control should be executed based on the congestion situation in the cell deployed by the E2 node. The Non-RT RIC then notifies the Near-RT RIC of information indicating that load distribution should be executed as policy information (A1 policy). When the Near-RT RIC receives the policy information, it monitors the load on the E2 node under its own control, and executes load distribution control as necessary. For example, when the Near-RT RIC determines that the load of an E2 node is greater than a predetermined value, it gives an instruction (E2 Policy/Control) to the relevant E2 nodes.
 なお、Non-RT RICは、Near-RT RICに対して、非混雑時の第1のポリシ情報と混雑時の第2のポリシ情報とを通知してもよい。この場合、第2のポリシ情報が、上述の負荷分散を実行すべきことを示す情報でありうる。なお、第1のポリシ情報は、例えば、ネットワークスライスにおけるQoS(Quality of Service)フローごとに満たされるべき通信の要件(QoS)を含み、Near-RT RICは、そのQoSが満たされるように、UEの接続制御を実行する。そして、Near-RT RICは、E2ノードを監視して、特定のセルが混雑状態となったことに応じて、負荷分散制御を実行しうる。 Note that the Non-RT RIC may notify the Near-RT RIC of the first policy information during non-congestion and the second policy information during congestion. In this case, the second policy information can be information indicating that the above-described load distribution should be performed. Note that the first policy information includes, for example, communication requirements (QoS) to be satisfied for each QoS (Quality of Service) flow in a network slice, and Near-RT RIC is configured to satisfy the QoS so that the UE connection control. The Near-RT RIC can then monitor the E2 node and perform load distribution control in response to a particular cell becoming congested.
 このように、Non-RT RICによる長期的な負荷の分析に基づいて大まかに負荷分散がなされるべきことが決定され、Near-RT RICによって、その決定に従って、実際の負荷の状況に応じた負荷分散制御が行われる。このように、UEに対して無線接続を直接提供する複数のE2ノードを統括的に制御するNon-RT RIC及びNear-RT RICによって負荷分散制御が制御されることにより、複数のE2ノード間で直接負荷分散する場合と比して高度な負荷分散制御を行うことができる。 In this way, based on the analysis of the long-term load by Non-RT RIC, it is determined that the load should be distributed roughly, and according to the decision, by Near-RT RIC, the load is adjusted according to the actual load situation. Decentralized control is provided. In this way, load distribution control is controlled by the Non-RT RIC and the Near-RT RIC that collectively control multiple E2 nodes that directly provide wireless connections to the UE, so that between multiple E2 nodes Higher level load distribution control can be performed as compared with direct load distribution.
 一方、Near-RT RICが、制御対象のE2ノードにおける通信の全てを監視して負荷分散制御を行うと、その制御のための処理負荷が過大になってしまい、効率の劣化や、制御の精度の劣化などが生じうる。本実施形態では、このような事情に鑑みて、Non-RT RICがNear-RT RICにおける制御の対象を限定するようなポリシ情報を通知するようにする。 On the other hand, if the Near-RT RIC monitors all communications in the controlled E2 node and performs load distribution control, the processing load for that control becomes excessive, resulting in deterioration of efficiency and accuracy of control. deterioration may occur. In this embodiment, in view of such circumstances, non-RT RIC notifies policy information that limits the control targets in Near-RT RIC.
 例えば、Non-RT RICは、所定のセル(E2ノード)のみを、負荷分散制御の対象とすることをNear-RT RICへ通知しうる。例えば、Non-RT RICは、混雑時に負荷分散を実行すべきことを示すポリシ情報に、処理対象とするセルの識別情報のリスト(cell ID List)を含めてNear-RT RICへ通知しうる。すなわち、Non-RT RICは、上述の第2のポリシ情報として、混雑時に負荷分散制御をすべきことを示す情報とセル識別情報のリストとが関連付けて格納されたA1 policyを、Near-RT RICへ提供する。そして、Near-RT RICは、この情報に基づいて、処理対象のセルを監視して、負荷が所定値を超える場合に、そのセルに接続中のUEを他のセルにハンドオーバさせることにより、負荷を分散させる。なお、Near-RT RICは、ポリシ情報においてリストアップされているセルの範囲内でハンドオーバが実行されるようにE2ノードを制御してもよいし、そのリストアップされているセルからリストアップされていないセルへのハンドオーバが実行されるようにE2ノードを制御してもよい。すなわち、ポリシ情報においてリストアップされるセルは、負荷のオフロード先のセルを含んでもよいし、含まなくてもよい。このように、負荷分散の対象とするセルを限定することにより、Near-RT RICは、通知されたE2ノードのみを対象として負荷の監視を行い、そのE2ノードにおいて負荷分散制御を実行することができる。このため、Near-RT RICは、配下の全てのE2ノードを監視する必要がなくなり、低い処理負荷で、適切に負荷分散を実行することが可能となる。 For example, the Non-RT RIC can notify the Near-RT RIC that only a predetermined cell (E2 node) is subject to load distribution control. For example, the Non-RT RIC can notify the Near-RT RIC by including a list of identification information of cells to be processed (cell ID list) in policy information indicating that load distribution should be executed during congestion. That is, the Non-RT RIC stores the A1 policy in which information indicating that load distribution control should be performed during congestion and a list of cell identification information are stored in association with each other as the above-mentioned second policy information, and the Near-RT RIC provide to Then, the Near-RT RIC monitors the cell to be processed based on this information, and if the load exceeds a predetermined value, the UE connected to that cell is handed over to another cell to reduce the load. disperse Note that the Near-RT RIC may control the E2 node so that the handover is performed within the range of the cells listed in the policy information, or the listed cells The E2 node may be controlled such that a handover to a non-existent cell is performed. That is, the cells listed in the policy information may or may not include cells to which the load is to be offloaded. In this way, by limiting the cells targeted for load distribution, the Near-RT RIC can monitor the load only for the notified E2 node and execute load distribution control at that E2 node. can. Therefore, the Near-RT RIC does not need to monitor all the E2 nodes under its control, and can appropriately distribute the load with a low processing load.
 なお、Non-RT RICは、例えば、O1インタフェースで複数のE2ノードのそれぞれを監視し、例えば人工知能(AI)を用いて、そのトラフィック量の変動の傾向から、以降の所定の期間内に負荷が高くなると想定されるエリアを検出する。そして、Non-RT RICは、その検出結果に応じて、負荷が高くなると想定されるエリアに対応するE2ノードをリストアップし、そのリストアップしたE2ノードを負荷分散制御の対象とすべきことをNear-RT RICへ通知しうる。また、Non-RT RICは、過去のトラフィック量の履歴から、曜日や時間帯ごとに混雑するエリアを特定し、その曜日や時間帯において特定されたエリアに対応するE2ノードを、負荷分散制御の対象とすべきことをNear-RT RICへ通知してもよい。また、Non-RT RICは、例えばコンサートやスポーツイベントなどの多数のUEが特定のエリアに集まることが予測される事前情報を取得した場合に、その事前情報に基づいて、混雑する時間及びエリアを特定しうる。そして、Non-RT RICは、その特定された時間において特定されたエリアに対応するE2ノードを負荷分散制御の対象とすべきことをNear-RT RICへ通知してもよい。なお、そのような事前に混雑する時間及びエリアを特定可能な情報は、ネットワーク事業者等からNon-RT RICに直接入力されることによって取得されてもよいし、Non-RT RICや他のノードによるインターネット等を介した検索によって取得されてもよい。また、そのような情報を蓄積するサーバが用意され、Non-RT RICは、そのサーバを定期的に参照することによって、その情報を取得してもよい。 In addition, the Non-RT RIC, for example, monitors each of the multiple E2 nodes on the O1 interface, and uses artificial intelligence (AI), for example, to determine the load within a predetermined period from the trend of traffic volume fluctuations. Detect areas where is expected to be high. Then, according to the detection results, the Non-RT RIC lists the E2 nodes corresponding to areas where the load is expected to be high, and the listed E2 nodes should be subject to load distribution control. Near-RT RIC can be notified. In addition, Non-RT RIC identifies congested areas for each day of the week and time period from the history of past traffic volume, and distributes the E2 nodes corresponding to the areas identified on that day of the week and time period for load distribution control. You may notify the Near-RT RIC of what should be covered. Also, when Non-RT RIC acquires advance information that a large number of UEs are expected to gather in a specific area, for example at a concert or sporting event, based on that advance information, the time and area to be congested identifiable. The Non-RT RIC may then notify the Near-RT RIC that the E2 node corresponding to the specified area at the specified time should be subject to load distribution control. It should be noted that such information that can specify the congestion time and area in advance may be obtained by directly inputting it to the Non-RT RIC from the network operator, etc., or may be obtained from the Non-RT RIC or other nodes may be acquired by searching via the Internet or the like. Also, a server may be prepared to accumulate such information, and the Non-RT RIC may acquire the information by periodically referring to the server.
 また、負荷分散制御の対象は、セル以外の観点で限定されてもよい。例えば、特定のネットワークスライスのみを、負荷分散制御の対象とするようにしてもよい。この場合、Near-RT RICは、特定のネットワークスライスでの通信を行うUEの通信を監視して、その通信による負荷が特定のセルに集中している場合に、そのUEの一部又は全部を他のセルにハンドオーバさせるようにE2ノードを制御しうる。一例として、UEが移動しない又は移動量が少ないことが想定されるネットワークスライスが存在しうる。このような場合、このネットワークスライスについては負荷分散制御の対象外として、ハンドオーバの対象となりにくいUEを事前に除いて、負荷分散制御のための監視などの処理負荷を軽減することができる。例えば、Non-RT RICは、混雑時に負荷分散を実行すべきことを示すポリシ情報に、処理対象とするネットワークスライスの識別情報(slice ID)を含めてNear-RT RICへ通知しうる。なお、slice IDは、一例において、S-NSSAI(Single-Network Slice Selection Assistance Information)である。すなわち、Non-RT RICは、上述の第2のポリシ情報として、混雑時に負荷分散制御をすべきことを示す情報とネットワークスライスの識別情報とが関連付けて格納されたA1 policyを、Near-RT RICへ提供する。なお、ネットワークスライス単位ではなく、QoSクラス単位で、負荷分散制御の対象とするか否かが指定されてもよい。例えば、ネットワークスライスの識別情報に代えて、ネットワークスライス内に含まれる1つ以上のQoSフローの少なくともいずれかの識別情報(QoS ID)を用いて、負荷分散制御の対象とするUEを限定してもよい。QoS IDは、例えば、5QI(5G QoS Indicator)や、QCI(QoS Class Identifier)である。また、特定の1つ以上のUEを指定して負荷分散制御の対象を限定してもよい。例えば、UEを識別する識別情報(UE ID)のリストや、UEのグループを識別する識別情報(group ID)を用いて、負荷分散制御の対象とするUEが限定されてもよい。すなわち、QoS ID、UE ID、group IDなどの各種識別情報と、混雑時には負荷分散制御を実行すべき情報とが関連付けられたA1 policyがNear-RT RICへ通知されてもよい。 Also, the target of load distribution control may be limited from a point of view other than the cell. For example, only a specific network slice may be subject to load distribution control. In this case, Near-RT RIC monitors the communication of UEs communicating in a specific network slice, and if the load due to that communication is concentrated in a specific cell, some or all of the UEs It can control the E2 node to handover to another cell. As an example, there may be network slices where it is assumed that the UE does not move or has a small amount of movement. In such a case, this network slice is not subject to load distribution control, and UEs that are unlikely to be subjected to handover are excluded in advance, thereby reducing processing loads such as monitoring for load distribution control. For example, the Non-RT RIC can notify the Near-RT RIC by including the identification information (slice ID) of the network slice to be processed in the policy information indicating that load distribution should be executed during congestion. In one example, the slice ID is S-NSSAI (Single-Network Slice Selection Assistance Information). That is, the Non-RT RIC stores the A1 policy in which the information indicating that load distribution control should be performed during congestion and the identification information of the network slice are associated and stored as the above-mentioned second policy information, and the Near-RT RIC provide to It should be noted that whether or not to be subject to load distribution control may be specified in units of QoS classes instead of in units of network slices. For example, instead of the identification information of the network slice, the identification information (QoS ID) of at least one of one or more QoS flows contained in the network slice is used to limit the UEs targeted for load distribution control. good too. The QoS ID is, for example, 5QI (5G QoS Indicator) or QCI (QoS Class Identifier). Also, one or more specific UEs may be specified to limit the target of load distribution control. For example, a list of identification information (UE IDs) for identifying UEs or identification information (group IDs) for identifying groups of UEs may be used to limit the UEs targeted for load distribution control. That is, the Near-RT RIC may be notified of an A1 policy that associates various identification information such as QoS ID, UE ID, and group ID with information for executing load distribution control during congestion.
 なお、Non-RT RICは、負荷分散制御に関するポリシ情報を取り消す場合、負荷分散制御を行わないことを示すポリシ情報をNear-RT RICへ送信してもよいし、負荷分散制御を実行することを示し、先に提供されたポリシ情報を無効とすべきことを示すポリシ情報をNear-RT RICへ送信してもよい。また、ポリシ情報には有効期限が設けられ、有効期限の経過によって、ポリシ情報が無効化されてもよい。 In addition, when canceling the policy information related to load distribution control, the Non-RT RIC may send the policy information indicating that the load distribution control will not be performed to the Near-RT RIC, or it may request that the load distribution control be executed. policy information indicating that the previously provided policy information should be invalidated to the Near-RT RIC. Further, the policy information may be provided with an expiration date, and the policy information may be invalidated when the expiration date elapses.
 Near-RT RICは、Non-RT RICから取得したポリシ情報に基づいて、負荷分散制御の対象となるE2ノードや、制御下にあるE2ノードに接続中のUEの通信を監視する。そして、Near-RT RICは、負荷分散制御の対象として指定されたセルや、負荷分散制御の対象となるネットワークスライス又はQoSクラスの通信を行っているUEが属するセルの、負荷を示す値が所定値を超えた場合に、負荷分散制御を実行すると判定する。また、Near-RT RICは、例えば、負荷分散制御の対象となるE2ノードにおいてSLA(Service Level Agreement)を満たすことができないネットワークスライスが存在する場合に、負荷分散制御を実行すると判定してもよい。また、Near-RT RICは、全E2ノードを通じて、負荷分散制御の対象として指定されていない(すなわち、ハンドオーバ等の対象としない)UEの通信においてSLAを満たすことができないネットワークスライスが存在する場合に、負荷分散制御を実行すると判定してもよい。 Based on the policy information obtained from the Non-RT RIC, the Near-RT RIC monitors the communication of the E2 nodes subject to load distribution control and the UEs connected to the E2 nodes under control. Then, the Near-RT RIC has a predetermined value indicating the load of the cell designated as the target of load distribution control, the network slice subject to load distribution control, or the cell to which the UE performing communication of the QoS class belongs. If the value exceeds the value, it is determined to execute load distribution control. Also, the Near-RT RIC may determine to execute load balancing control, for example, when there is a network slice that cannot satisfy the SLA (Service Level Agreement) in the E2 node subject to load balancing control. . In addition, Near-RT RIC, through all E2 nodes, when there is a network slice that cannot satisfy the SLA in UE communication that is not specified as a target of load distribution control (that is, not subject to handover, etc.) , it may be determined to execute load distribution control.
 Near-RT RICは、負荷分散制御を実行すると判定した場合に、制御対象のセルで通信中のUEを他のセルへハンドオーバさせるように、E2ノードを制御する。なお、本実施形態でのハンドオーバは、同じ周波数帯のセルへのハンドオーバであってもよいし、異なる周波数帯のセルへのハンドオーバであってもよい。Near-RT RICは、例えば、混雑しているセルに属するUEの中からどのUEを他のセルに移動させるかを決定する。Near-RT RICは、例えば混雑しているセルにおける各UEによる負荷の大きさ(例えば、そのUEの通信に使用される物理リソースブロック(PRB)の数)を特定し、その特定結果に基づいて、各UEが別のセルにハンドオーバした場合の、ハンドオーバ元及びハンドオーバ先のセルの負荷をそれぞれ推定する。そして、Near-RT RICは、例えば、いずれのUEをハンドオーバさせることにより、ハンドオーバ元及びハンドオーバ先のセルにおけるそれぞれの負荷が所定値を超えないようにすることができるかを判定することにより、ハンドオーバの対象とするUEを選択する。そして、Near-RT RICは、ハンドオーバの対象として選択したUEをハンドオーバさせるための指示を、そのUEが接続中のE2ノード及びハンドオーバ先のE2ノードへ送信しうる。 When the Near-RT RIC determines to execute load distribution control, it controls the E2 node so that the UE communicating in the controlled cell is handed over to another cell. Note that handover in this embodiment may be handover to a cell in the same frequency band, or handover to a cell in a different frequency band. Near-RT RIC determines, for example, which UEs belonging to a congested cell should be moved to another cell. Near-RT RIC identifies, for example, the magnitude of load by each UE in a congested cell (for example, the number of physical resource blocks (PRB) used for communication of that UE), and based on the identification result , estimate the loads of the source and destination cells, respectively, when each UE hands over to another cell. Then, the Near-RT RIC determines, for example, which UE is handed over so that the respective loads in the handover source and handover destination cells do not exceed a predetermined value. select the target UE. The Near-RT RIC can then send an instruction to handover the UE selected as the target of handover to the E2 node to which the UE is connected and the E2 node to which the handover is to be made.
 なお、Near-RT RICは、ポリシ情報や制御情報(E2 policy/control)をE2ノードへ送信することなどによって、E2ノードを制御する。このポリシ情報や制御情報は、例えば、UEごとのハンドオーバ制御、UEごとのキャリアアグリゲーション(CA)のセカンダリセルのオン/オフなどの、UEを特定のE2ノードに接続させて通信させるための情報を含みうる。また、ポリシ情報や制御情報は、例えば、セルごと及びUEごとのハンドオーバやセル再選択の基準となるパラメータ(例えば、特定のUEを特定のセルへハンドオーバさせる又は特定のセルを選択させるためのパラメータ)を含んでもよい。なお、Near-RT RICは、非混雑時においては、Non-RT RICから取得した、非混雑時(通常時)用のA1 polocyに従って、各ネットワークスライスについての要求品質(SLA)を満たすべきこと等を示すポリシ情報や制御情報をE2ノードへ送信することなどによって、E2ノードを制御する。 Note that the Near-RT RIC controls the E2 node by sending policy information and control information (E2 policy/control) to the E2 node. This policy information and control information is, for example, handover control for each UE, carrier aggregation (CA) for each UE secondary cell on / off, etc. Information for connecting the UE to a specific E2 node and communicating. can contain In addition, policy information and control information are, for example, parameters that serve as criteria for handover and cell reselection for each cell and each UE (for example, parameters for handing over a specific UE to a specific cell or for selecting a specific cell ) may be included. In addition, the Near-RT RIC must satisfy the required quality (SLA) for each network slice according to the A1 policy for non-congested (normal time) obtained from the Non-RT RIC when it is not congested. The E2 node is controlled by, for example, transmitting policy information or control information indicating to the E2 node.
 Near-RT RICは、例えば、上述のようにハンドオーバ元及びハンドオーバ先のセルにおける負荷がそれぞれ所定値を超えないようにするという基準でハンドオーバを実行させるUEを選択しうるが、これに限られない。Near-RT RICは、これに加えて又はこれに代えて、例えば、負荷分散制御の対象のセル(ハンドオーバ前後のセル)におけるネットワークスライスのSLAの達成率がハンドオーバ後に改善する(少なくとも劣化しない)という基準によりハンドオーバを実行させるUEを選択してもよい。また、Near-RT RICは、複数のネットワークスライスについての複数のSLAの達成率の値の加重加算値又は単純加算値などの所定の評価関数を用いて、その評価関数の出力値が改善する(少なくとも劣化しない)ように、ハンドオーバを実行させるUEを選択してもよい。なお、ここで評価の対象とするネットワークスライスは、負荷分散制御の対象とするネットワークスライスでありうる。また、セルやネットワークスライスの全体のSLAの達成率を、ハンドオーバを実行させるUEの選択に使用してもよいし、特定のUEにおけるSLA達成率を代替的に使用してもよい。すなわち、特定のUEにおけるSLA達成率の劣化が生じないように(一方で、それ以外のUEにおけるSLA達成率の劣化は許容して)、ハンドオーバの対象とするUEを選択してもよい。また、これらの場合に、SLA達成率ではなくスループット、誤り率、遅延量等の通信品質が劣化しないことを条件に、ハンドオーバの対象とするUEの選択が行われてもよい。また、QoSフローごとの要求品質やその充足率に基づいて、又は、充足率等の値を引数とする評価関数の出力値に基づいて、ハンドオーバを実行させるUEの選択が行われてもよい。 Near-RT RIC can, for example, select UEs to perform handover based on the criteria that the loads in the handover source and handover destination cells do not exceed a predetermined value as described above, but is not limited to this. . Near-RT RIC, in addition to or instead of this, states that, for example, the SLA achievement rate of network slices in cells targeted for load distribution control (cells before and after handover) improves (at least does not deteriorate) after handover. Criteria may be used to select UEs for which handover is to be performed. In addition, Near-RT RIC uses a predetermined evaluation function such as a weighted addition value or a simple addition value of multiple SLA achievement rate values for multiple network slices, and the output value of the evaluation function improves ( UEs to perform handovers may be selected so as to at least not degrade). Note that the network slice to be evaluated here can be the network slice to be subjected to load distribution control. Also, the SLA achievement rate of the entire cell or network slice may be used to select a UE to perform handover, or the SLA achievement rate of a specific UE may be used instead. That is, UEs to be handed over may be selected so that the SLA achievement rate of a specific UE does not deteriorate (while allowing the SLA achievement rate of other UEs to deteriorate). Also, in these cases, UEs to be subjected to handover may be selected on the condition that communication quality such as throughput, error rate, delay amount, etc., is not degraded, rather than the SLA achievement rate. Also, a UE to be subjected to handover may be selected based on the quality required for each QoS flow and its sufficiency rate, or based on the output value of an evaluation function whose argument is a value such as a sufficiency rate.
 なお、Near-RT RICは、ハンドオーバの対象の候補として、混雑しているセルにおいて無線品質が良好でなく、通信に必要なリソースの量が多いUEを特定し、そのUEの中から、上述のように、ハンドオーバをさせた場合に関与するセルにおける負荷、SLA達成率、通信品質等の指標が劣化しないようなUEを選択しうる。なお、Near-RT RICは、このハンドオーバの結果として得られた上述の指標の変化に関するフィードバックをE2ノードから取得し、評価の基準を更新してもよい。一例において、上述の加重加算値における重み係数が更新されうる。また、上述の評価関数は、機械学習によって取得されてもよく、ハンドオーバの結果として得られた指標の値と、事前に推定した指標の値とに基づいて、その評価関数が更新されるようにしてもよい。 In addition, Near-RT RIC identifies UEs that have poor radio quality in congested cells and that require a large amount of resources for communication as candidates for handover, and from among those UEs, the above-mentioned In this way, a UE can be selected that does not degrade indicators such as load, SLA achievement rate, and communication quality in a cell involved when handover is performed. Note that the Near-RT RIC may obtain feedback from the E2 node regarding the changes in the above-described indicators obtained as a result of this handover, and update the evaluation criteria. In one example, the weighting factors in the weighted summation value described above can be updated. Also, the evaluation function described above may be obtained by machine learning, and the evaluation function is updated based on the index value obtained as a result of the handover and the index value estimated in advance. may
 E2ノードは、上述のような、ハンドオーバ要否やハンドオーバの対象となるUEの決定のための情報を、Near-RT RICへ通知しうる。例えば、E2ノードは、セルごとのPDU(Protocol Data Unit)セッションの数、セルごとのUEの数、セルごとのPDCP(Packet Data Convergence Protocol)トラフィックの量、セルごとのPRBの使用率、セルごとのCCE(Control Channel Element)の使用率等の情報をNear-RT RICへ送信する。例えばこれらの情報に基づいて、セルの負荷が特定されうる。また、E2ノードは、上述の各情報をネットワークスライスごと、QoSクラスごとに詳細化した情報を、Near-RT RICへ通知してもよい。例えばこれらの情報に基づいて、セルごとのハンドオーバの受け入れの可否が特定されうる。一例において、優先順位の低いネットワークスライスの通信が多数である場合、その通信に関する通信品質を落とすことによって、SLAが満たされるべきネットワークスライスの通信を受け入れることができるか否かが判定されうる。なお、これらの情報は、長期的な分析のために、O1インタフェースを介して、E2ノードからNon-RT RICへ通知されてもよい。また、E2ノードは、QoSクラスごと、スライスごとの、スループット、パケット遅延、パケットエラーレートの平均値、最小値、及び/又は、分散などの値を、Non-RT RICやNear-RT RICへ報告してもよい。この情報に基づき、ネットワークスライスのSLA達成率が計算されうる。Non-RT RICやNear-RT RICは、これらの情報に基づいて、ポリシを決定し、又は、E2ノードの制御を行う。 The E2 node can notify the Near-RT RIC of information for determining the necessity of handover and the UE to be handed over as described above. For example, the E2 node has the number of PDU (Protocol Data Unit) sessions per cell, the number of UEs per cell, the amount of PDCP (Packet Data Convergence Protocol) traffic per cell, the PRB utilization rate per cell, the CCE (Control Channel Element) usage rate and other information to Near-RT RIC. For example, based on these information the load of the cell can be determined. In addition, the E2 node may notify the Near-RT RIC of detailed information on each of the above information for each network slice and each QoS class. For example, based on these pieces of information, the acceptability of handover for each cell can be specified. In one example, if there are a large number of low-priority network slice communications, it can be determined whether a network slice communication whose SLA is to be met can be accepted by reducing the communication quality for that communication. Note that these information may be notified from the E2 node to the Non-RT RIC via the O1 interface for long-term analysis. Also, the E2 node reports values such as throughput, packet delay, packet error rate average value, minimum value, and/or variance for each QoS class and slice to Non-RT RIC and Near-RT RIC. You may Based on this information, the SLA achievement rate for network slices can be calculated. Non-RT RIC and Near-RT RIC determine policies or control E2 nodes based on this information.
 なお、Near-RT RICは、Non-RT RICから通知されたポリシ情報に基づいて負荷分散制御を実行しても、要求品質が満たされるべき所定の通信(例えば優先順位の高いQoSフローの通信や所定の契約をしたUEによる通信)について、その要求品質を満たすことができない場合、例えば、他の通信の通信品質を低下させてその所定の通信が要求品質を満たすことができるように制御しうる。例えば、要求品質が満たされるべき対象でないQoSフローのQoSの優先順位を下げることにより、所定の通信が要求品質を満たすことができるようにし得る。一例において、要求品質が満たされるべき対象でないQoSフローの通信を、通信速度等が保証されないベストエフォートの通信に変更しうる。なお、この変更は、Near-RT RICの指示によって行われてもよいし、E2ノードが独自に実行してもよい。また、この変更の際に、通信品質の低下が予定されているUEに対して、通信品質の低下を受け入れるか否かの問い合わせを行ってもよい。なお、通信品質の低下が受け入れられない場合、Near-RT RIC又はE2ノードは、その通信を切断してもよい。なお、通信品質の低下制御の際には、ネットワークスライスを維持しながら、そのネットワークスライスに属する少なくとも一部のQoSフローの通信品質を低下させるようにしてもよいし、ネットワークスライス全体の通信品質を低下させてもよい。 Furthermore, even if the Near-RT RIC executes load balancing control based on the policy information notified from the Non-RT RIC, the required quality of communication should be satisfied (for example, high-priority QoS flow communication, communication by a UE that has a predetermined contract), if the required quality cannot be met, for example, the communication quality of other communications can be reduced so that the specified communication can meet the required quality. . For example, a given communication may be allowed to meet its quality requirements by de-prioritizing the QoS of the QoS flows for which the quality requirements are not to be met. In one example, QoS flow communication for which the required quality should not be satisfied can be changed to best-effort communication in which communication speed and the like are not guaranteed. Note that this change may be made by the instruction of the Near-RT RIC, or may be executed independently by the E2 node. Also, at the time of this change, an inquiry may be made to the UE whose communication quality is scheduled to deteriorate as to whether or not to accept the deterioration of communication quality. Note that if the deterioration of communication quality is unacceptable, the Near-RT RIC or E2 node may disconnect the communication. It should be noted that, during the communication quality reduction control, while maintaining the network slice, the communication quality of at least a part of the QoS flows belonging to the network slice may be reduced, or the communication quality of the entire network slice may be reduced. may be lowered.
 また、Near-RT RIC又はE2ノードは、所定の通信が要求品質を満たすことができない状況において、例えば、UEから所定の通信ではない(例えば優先されるべき所定のネットワークスライスが指定されていない)通信の要求が受信された場合に、例えばベストエフォートなどの、UEによる要求よりも低い品質の通信として受け付けるようにしてもよい。なお、この場合にも、新規の通信を要求したUEに対して、要求された品質が満たされない通信であれば受け入れ可能であること(要求通信品質が担保されないこと)を提示し、その通信を行うか否かを問い合わせてもよい。そして、Near-RT RIC又はE2ノードは、UEから、要求された品質が満たされない通信を拒否された場合は、その通信を実行しないようにしうる。なお、上述の説明におけるベストエフォートの通信は一例であり、E2ノードにおける負荷の状態に基づいて受け付け可能と想定される任意のネットワークスライスやQoSクラスで、要求品質が満たされるべき所定の通信以外の通信が実行されるように制御されうる。 In addition, the Near-RT RIC or E2 node is not a predetermined communication from the UE in a situation where the predetermined communication cannot satisfy the required quality (for example, the predetermined network slice to be prioritized is not specified) When a request for communication is received, it may be accepted as communication of quality lower than that requested by the UE, such as best effort. In this case also, the UE that requested new communication is presented that it can be accepted if the communication does not satisfy the requested quality (that the requested communication quality is not guaranteed), and the communication is performed. You may inquire whether or not to do so. Then, if the Near-RT RIC or E2 node rejects communication that does not satisfy the requested quality from the UE, it can avoid executing that communication. Note that the best-effort communication in the above description is an example, and any network slice or QoS class that is assumed to be acceptable based on the load state of the E2 node, other than the predetermined communication that should satisfy the required quality. Communication can be controlled to take place.
 なお、Near-RT RIC又はE2ノードは、通信の要求品質を低下させる制御を実行後に、所定の通信を実行するUEが他の位置へ移動した場合や通信が終了した場合など、リソースに十分な空きが生じた場合などに、低下させた要求品質を元に戻す(要求より低い品質で通信が開始された場合には、品質を要求された品質まで向上させる)、要求品質の再変更制御を行ってもよい。なお、この場合に、UEに対して、通信品質が改善することが通知されてもよい。 It should be noted that the Near-RT RIC or E2 node, after executing the control to lower the required quality of communication, when the UE executing the predetermined communication moves to another location or when the communication ends, etc. Restores the lowered requested quality to the original level (if communication starts with lower quality than the requested quality, improves the quality to the requested quality) and re-changes the requested quality when there is a free space. you can go In this case, the UE may be notified that the communication quality is improved.
 要求品質の変更および再変更の処理は、例えば、QoSの変更があることを示す情報と、QoSの変更対象のネットワークスライス/QoSフロー/UE及び変更後のQoSを示す情報とを関連付けて含んだポリシ情報/制御情報がNear-RT RICからE2ノードへ送信されることを含む。一例において、QoSフローを優先順位の低い別のQoSクラスに変更することを示す情報がメッセージに含められうる。また、一例において、特定のUEの通信に用いるネットワークスライスを、別のネットワークスライス(例えばベストエフォートのネットワークスライス)へ移すべきことを示す情報がメッセージに含められうる。さらに、新規のQoSフローのQoSクラスを、より低い優先順位のQoSクラスへと(場合によってはベストエフォート型へと)変更すべきことを示す情報や、新規に接続されるUEの通信に用いるネットワークスライスを、別のネットワークスライス(例えばベストエフォートのネットワークスライス)へ移すべきことを示す情報を含んでもよい。 The process of changing and re-changing the requested quality includes, for example, information indicating that there is a change in QoS, and information indicating the network slice/QoS flow/UE to be changed in QoS and the QoS after change in association with each other. Including policy/control information sent from the Near-RT RIC to the E2 node. In one example, information can be included in the message indicating to change the QoS flow to another QoS class with lower priority. Also, in one example, information can be included in the message indicating that the network slice used for communication of a particular UE should be moved to another network slice (eg, best effort network slice). Furthermore, information indicating that the QoS class of the new QoS flow should be changed to a lower priority QoS class (to best effort type in some cases), and the network used for communication of the newly connected UE Information may be included indicating that the slice should be moved to another network slice (eg, a best effort network slice).
 なお、Non-RT RICが、ポリシ情報をNear-RT RICへ送信することによって、要求品質の変更および再変更が行われるようにしてもよい。例えば、ネットワークスライス、QoSクラス、セル、UE、及びQoSフローの少なくともいずれかを指定する識別情報によって要求品質の変更および再変更の対象を指定し、既存の通信や新規の通信をどのように扱うべきかを示す情報を含んだA1 policyがNear-RT RICへ提供されてもよい。例えば、新規の通信をベストエフォートなどの所定の要求品質で受け入れるべきことや要求品質の低い所定のネットワークスライスで受け入れるべきことが、新規の通信をどのように扱うべきかを示す情報としてA1 policyに含まれうる。同様に、既存の通信の要求品質をベストエフォートなどの所定の要求品質に変更すべきことや要求品質の低い所定のネットワークスライスに遷移させるべきことが、既存の通信をどのように扱うべきかを示す情報としてA1 policyに含まれうる。Near-RT RICは、このA1 policyに従って、ポリシ情報/制御情報を生成して、E2ノードへ提供しうる。E2ノードは、そのポリシ情報/制御情報に基づいて、新規の通信や既存の通信の要求品質の変更処理を行いうる。 It should be noted that the non-RT RIC may change and re-change the required quality by transmitting policy information to the Near-RT RIC. For example, identification information specifying at least one of a network slice, QoS class, cell, UE, and QoS flow designates the target of change and re-change of the requested quality, and how to handle existing communication and new communication An A1 policy containing information indicating whether to do so may be provided to the Near-RT RIC. For example, whether new communications should be accepted with a prescribed quality requirement such as best effort or with a prescribed network slice with low required quality can be included in the A1 policy as information indicating how new communications should be handled. can be included. Similarly, changing the requested quality of existing communication to a predetermined requested quality such as best effort or transitioning to a predetermined network slice with lower requested quality determines how existing communication should be handled. It can be included in the A1 policy as information to indicate. The Near-RT RIC can generate policy information/control information according to this A1 policy and provide it to the E2 node. Based on the policy information/control information, the E2 node can change the requested quality of new communication or existing communication.
 なお、E2ノードは、UEのQoSフローごとのトラフィック量や、UEごとのPRB使用数などのUEごとの負荷、セル単位でのネットワークスライスごとのトラフィック量やPRB使用数などのネットワークスライスごとの負荷、及び、UEごとの、サービングセル及び隣接セルにおける参照信号受信電力(RSRP)や参照信号受信品質(RSRQ)、CQIなどの受信信号品質の情報を、Non-RT RICやNear-RT RICへ報告しうる。これにより、Non-RT RICやNear-RT RICは、UEごとやネットワークスライスごとの無線通信環境を認識することができ、どのUEの/どのネットワークスライスの、通信の要求品質を低下させるかを決定することができる。すなわち、Non-RT RICやNear-RT RICは、どのUEの/どのネットワークスライスの要求品質を低下させることによって、要求品質が満たされるべき所定の通信において品質を担保するかを、これらの情報に基づいて判定しうる。Non-RT RICやNear-RT RICは、例えば、事前の契約により通信品質を低下させることが許容されるユーザに関連付けられたUEによる通信のうち、要求品質を満たさないことによるE2ノードの負荷軽減効果が大きい通信を特定し、その通信の要求品質を低下させうる。また、Non-RT RICやNear-RT RICは、例えば、優先順位の低いネットワークスライスやQoSフローの通信について、要求品質を低下させた場合の負荷低減効果の大きさを特定し、その効果の大きい通信の要求品質を低下させるように決定しうる。なお、Near-RT RICは、要求品質を低下させるUEやネットワークスライス/QoSフローの決定を、要求品質が満たされるべき全ての所定の通信についての通信品質を満たすことができるようになるまで繰り返し実行しうる。また、Non-RT RICやNear-RT RICは、例えば、要求品質が満たされるべき全ての所定の通信についての通信品質を満たした上で、それ以外のUEやネットワークスライス/QoSフローのうちのいずれの要求品質を満たすかを上述の情報に基づいて決定してもよい。また、Near-RT RICは、要求品質が満たされるべき全ての所定の通信に関して負荷分散制御を実行し、実行中の通信の要求品質の低下制御や通信要求の新規受け付け時の要求品質の低下制御は、E2ノードによって実行されてもよい。 In addition, the E2 node has the traffic volume per UE QoS flow, the load per UE such as the number of PRBs used per UE, the traffic volume per network slice per cell and the load per network slice such as the number of PRBs used. , and, for each UE, information on received signal quality such as reference signal received power (RSRP), reference signal received quality (RSRQ), and CQI in the serving cell and neighboring cells is reported to Non-RT RIC and Near-RT RIC. sell. As a result, Non-RT RIC and Near-RT RIC can recognize the wireless communication environment for each UE and each network slice, and decide which UE/network slice to reduce the required communication quality. can do. In other words, Non-RT RIC and Near-RT RIC use this information to ensure quality in a given communication in which the required quality should be satisfied by lowering the required quality of which UE/which network slice. can be determined based on Non-RT RIC and Near-RT RIC, for example, reduce the load on the E2 node by not satisfying the required quality of communications by UEs associated with users who are allowed to reduce the communication quality by prior agreement. A communication with a large effect can be identified and the required quality of the communication can be lowered. In addition, Non-RT RIC and Near-RT RIC, for example, specify the magnitude of the load reduction effect when the required quality is reduced for communication of network slices and QoS flows with low priority, and A decision can be made to lower the required quality of communication. Note that Near-RT RIC repeatedly determines the UE and network slices/QoS flows that reduce the required quality until the communication quality for all predetermined communications that should satisfy the required quality can be satisfied. I can. In addition, Non-RT RIC and Near-RT RIC, for example, after satisfying the communication quality for all predetermined communication that should satisfy the required quality, any other UE or network slice / QoS flow can be determined based on the above information. In addition, the Near-RT RIC performs load distribution control for all predetermined communications that should meet the required quality, controls the reduction of required quality for ongoing communications, and controls the reduction of required quality when new communication requests are accepted. may be performed by the E2 node.
 なお、要求品質の変更及び再変更制御は、ハンドオーバ等による負荷分散制御と独立して行われてもよい。すなわち、例えば優先順位の高い所定の通信の要求品質が満たされない場合に、要求品質の変更及び再変更制御のみが行われ、ハンドオーバ等による負荷分散制御が行われなくてもよい。また、要求品質の変更および再変更処理は、既存の通信と新規の通信とのいずれかに対してのみ実行されるようにしてもよい。すなわち、既存の通信については要求品質を維持し、新規の通信については要求品質を低下させて受け入れる、又は、既存の通信については要求品質を低下させ、新規の通信については要求された品質で受け入れる、などの制御が行われてもよい。また、上述の説明では、要求品質を低下させると説明したが、少なくとも一部の通信が切断又は拒否されてもよい。  The change and re-change control of the required quality may be performed independently of the load distribution control such as handover. That is, for example, when the required quality of a predetermined communication with a high priority is not satisfied, only the change and re-change control of the required quality are performed, and the load distribution control by handover or the like may not be performed. Also, the change and re-change processing of the required quality may be executed only for either existing communication or new communication. That is, maintain the required quality for existing communications and accept new communications with the required quality lowered, or lower the required quality for existing communications and accept new communications with the required quality. , and the like may be performed. Also, in the above description, it is explained that the requested quality is lowered, but at least part of the communication may be disconnected or rejected.
 (装置構成)
 続いて、上述のNon-RT RIC、Near-RT RIC、及びE2ノードの構成について説明する。これらの装置は、通信機能を有する汎用のコンピュータやサーバによって実現されうる。なお、Non-RT RIC、Near-RT RIC、及びE2ノードは、論理的に分離されていれば足り、これらのうちの2つ以上が1つの装置に含まれて構成されてもよい。これらの装置は、例えば、図2のようなハードウェア構成の通信装置として構成されうる。通信装置は、一例において、プロセッサ201、ROM202、RAM203、記憶装置204、及び通信回路205を含んで構成される。プロセッサ201は、汎用のCPU(中央演算装置)や、ASIC(特定用途向け集積回路)等の、1つ以上の処理回路を含んで構成されるコンピュータであり、ROM202や記憶装置204に記憶されているプログラムを読み出して実行することにより、装置の全体の処理や、上述の各処理を実行する。ROM202は、装置が実行する処理に関するプログラムや各種パラメータ等の情報を記憶する読み出し専用メモリである。RAM203は、プロセッサ501がプログラムを実行する際のワークスペースとして機能し、また、一時的な情報を記憶するランダムアクセスメモリである。記憶装置204は、例えば着脱可能な外部記憶装置等によって構成される。通信回路205は、例えば、無線通信又は有線通信を実行するための通信回路や必要に応じてアンテナを含んで構成される。例えば、E2ノードの通信回路205は、セルラ通信規格に準拠した無線通信用の回路を含む。また、Non-RT RIC、Near-RT RICおよびE2ノードは、互いの間の通信のための通信回路205を含みうる。
(Device configuration)
Next, configurations of the Non-RT RIC, the Near-RT RIC, and the E2 node will be described. These devices can be realized by general-purpose computers and servers with communication functions. Note that the Non-RT RIC, the Near-RT RIC, and the E2 node need only be logically separated, and two or more of them may be included in one device. These devices can be configured, for example, as communication devices having a hardware configuration as shown in FIG. The communication device, in one example, includes a processor 201 , a ROM 202 , a RAM 203 , a storage device 204 and a communication circuit 205 . The processor 201 is a computer including one or more processing circuits such as a general-purpose CPU (Central Processing Unit) and ASIC (Application Specific Integrated Circuit). By reading and executing the program stored in the device, the overall processing of the device and each of the above-described processings are executed. A ROM 202 is a read-only memory that stores information such as programs and various parameters related to processing executed by the apparatus. A RAM 203 is a random access memory that functions as a work space when the processor 501 executes programs and stores temporary information. The storage device 204 is configured by, for example, a detachable external storage device or the like. The communication circuit 205 includes, for example, a communication circuit for executing wireless communication or wired communication, and an antenna as necessary. For example, the communication circuitry 205 of the E2 node includes circuitry for wireless communication conforming to cellular communication standards. Non-RT RICs, Near-RT RICs and E2 nodes may also include communication circuitry 205 for communication between each other.
 図3に、Non-RT RICの機能構成例を示す。Non-RT RICは、その機能として、例えば、A1通信部301、O1通信部302、情報分析部303、及びポリシ情報設定部304を含んで構成される。A1通信部301は、Near-RT RICとの間でA1インタフェースを設定して通信を行う。O1通信部302は、E2ノード及びNear-RT RICとの間でO1インタフェースを設定して通信を行う。情報分析部303は、E2ノードから、上述のような情報を取得して、例えば、セルの負荷や、ネットワークスライスのSLAの達成率、UEのハンドオーバを受け入れ可能であるか否かを推定し、混雑することが想定されるセルを特定するなど、各種分析を実行する。 Fig. 3 shows an example of the functional configuration of Non-RT RIC. Non-RT RIC includes, for example, an A1 communication unit 301, an O1 communication unit 302, an information analysis unit 303, and a policy information setting unit 304 as its functions. The A1 communication unit 301 sets the A1 interface with the Near-RT RIC to perform communication. The O1 communication unit 302 sets the O1 interface between the E2 node and the Near-RT RIC to perform communication. The information analysis unit 303 acquires the above information from the E2 node, for example, estimates the cell load, the SLA achievement rate of the network slice, and whether the handover of the UE can be accepted, Perform various analyses, such as identifying cells that are likely to be congested.
 ポリシ情報設定部304は、情報分析部303による分析の結果に基づいて、Near-RT RICに対して設定されるべきポリシを決定し、そのポリシを示すポリシ情報をA1 policyとしてA1通信部301を介してNear-RT RICへ通知する。ポリシ情報設定部304は、例えば、情報分析部303による分析により、負荷が所定値以上であり、SLAの達成率が所定の閾値以下のネットワークスライスが存在すると判定した場合に、そのセルを対象として負荷分散制御を実行すべきことを示すA1 policyをNear-RT RICへ送信する。また、ポリシ情報設定部304は、非混雑時の通信のために、QoSフローごとの品質要件を通知するポリシ情報をも設定して、A1 policyとしてNear-RT RICへ送信しうる。すなわち、ポリシ情報設定部304は、例えば、非混雑時のQoSフローごとの品質管理のためのA1 policyと、混雑時の負荷分散制御のためのA1 policyを、Near-RT RICへ送信しうる。 The policy information setting unit 304 determines the policy to be set for the Near-RT RIC based on the result of the analysis by the information analysis unit 303, and sets the policy information indicating the policy as A1 policy to the A1 communication unit 301. Notify Near-RT RIC via. For example, when the policy information setting unit 304 determines from the analysis by the information analysis unit 303 that there is a network slice whose load is equal to or greater than a predetermined value and whose SLA achievement rate is equal to or less than a predetermined threshold, the policy information setting unit 304 targets the cell. Send A1 policy indicating that load distribution control should be executed to Near-RT RIC. In addition, the policy information setting unit 304 can also set policy information that notifies the quality requirements for each QoS flow for communication during non-congested times, and transmit it to the Near-RT RIC as A1 policy. That is, the policy information setting unit 304 can transmit, for example, A1 policy for quality control for each QoS flow during non-congestion and A1 policy for load balancing control during congestion to the Near-RT RIC.
 例えば、非混雑時のA1 policyには、そのポリシ情報が適用されるスライス識別情報及びQoS IDとセルのリストと、それらの情報によって指定される制御の対象のセルやネットワークスライス及びQoSクラスと関連付けられた、保証フロービットレート、パケット遅延量、パケット誤り率などの要求品質を示す情報が含まれる。一方、混雑時のA1 policyには、負荷分散制御を実行すべきことを示す情報と、その制御の対象を特定するための情報(例えば、スライス識別情報、QoS ID、セルのリストのいずれか又はその組み合わせなど)とが関連付けられて含められる。なお、本実施形態では、負荷分散制御を対象として説明しているが、Near-RT RICに実行させるべき制御を示す情報が、負荷分散制御を実行すべきことを示す情報に代えて、A1 policyに含められてNear-RT RICへ通知されてもよい。 For example, A1 policy during non-congestion includes a list of slice identification information and QoS IDs to which the policy information is applied, a list of cells, and a control target cell, network slice, and QoS class specified by those information. It contains information indicating the required quality such as guaranteed flow bit rate, packet delay amount, and packet error rate. On the other hand, the A1 policy during congestion includes information indicating that load distribution control should be performed, and information for specifying the control target (for example, slice identification information, QoS ID, cell list, or combinations thereof) are associated with and included. In addition, although load distribution control is described in this embodiment, the information indicating the control to be executed by the Near-RT RIC is replaced with the information indicating that the load distribution control should be executed. may be included in and notified to Near-RT RIC.
 図4に、Near-RT RICの機能構成例を示す。Near-RT RICは、その機能として、例えば、A1通信部401、E2通信部402、O1通信部403、ポリシ情報取得部404、及び負荷分散制御部405を含んで構成される。A1通信部401は、Non-RT RICとの間でA1インタフェースを設定して通信を行う。E2通信部402は、E2ノードとの間で、E2インタフェースを設定して通信を行う。O1通信部403は、Non-RT RICとの間でO1インタフェースを設定して通信を行う。ポリシ情報取得部404は、Non-RT RICからポリシ情報(A1 policy)を取得する。 Fig. 4 shows an example of the functional configuration of Near-RT RIC. The Near-RT RIC includes, for example, an A1 communication unit 401, an E2 communication unit 402, an O1 communication unit 403, a policy information acquisition unit 404, and a load distribution control unit 405 as its functions. The A1 communication unit 401 sets the A1 interface with the Non-RT RIC to perform communication. The E2 communication unit 402 sets an E2 interface and performs communication with the E2 node. The O1 communication unit 403 sets the O1 interface with the Non-RT RIC to perform communication. The policy information acquisition unit 404 acquires policy information (A1 policy) from the Non-RT RIC.
 負荷分散制御部405は、E2通信部402を介して、配下の多数のE2ノードから負荷を特定可能な情報を取得して、その情報に基づいて、負荷分散制御を実行すべきか否かを判定する。例えば、負荷分散制御部405は、A1 policyによって負荷分散制御を実行すべき対象として指定されたセルやネットワークスライス/QoSクラスにおける負荷が所定の閾値を超えた場合に、負荷分散制御を実行すると判定しうる。なお、負荷分散制御部405は、例えば、A1 policyによって負荷分散制御を実行すべき対象として指定されていないセルやネットワークスライス/QoSクラスについては、情報収集や負荷の値の算出などの処理を行わないでもよい。なお、このような対象外のセルやネットワークスライス/QoSクラスにおいても、その通信を提供するE2ノードが、周囲のE2ノードとの間で負荷分散制御を実行しうる。これにより、局所的に負荷分散を行うことができる。一方で、Near-RT RICがこの負荷分散制御を実行することにより、E2ノードが局所的に負荷分散制御を実行する場合と比して、広範囲のE2ノードを考慮した負荷分散制御を行うことができるため、より効率的な負荷分散を行うことができる。負荷分散制御部405は、負荷分散制御の対象のセルやネットワークスライス/QoSクラスにおいて負荷分散制御が必要であると判定した場合に、上述のようにして、どのUEをどのセルにハンドオーバさせるかを決定して、E2ノードへその決定の結果を通知する。なお、この通知は、ポリシ情報又は制御情報として、E2インタフェースを介して、E2通信部402によってE2ノードへ送信される。 The load distribution control unit 405 acquires load identifiable information from a large number of E2 nodes under its control via the E2 communication unit 402, and determines whether load distribution control should be executed based on the information. do. For example, the load distribution control unit 405 determines that load distribution control should be executed when the load in a cell or network slice/QoS class designated as a target for load distribution control by the A1 policy exceeds a predetermined threshold. I can. Note that the load distribution control unit 405, for example, collects information and calculates load values for cells and network slices/QoS classes that are not specified as targets for which load distribution control should be performed by the A1 policy. You don't have to. It should be noted that even in such non-target cells and network slices/QoS classes, the E2 node that provides the communication can execute load balancing control with surrounding E2 nodes. As a result, load distribution can be performed locally. On the other hand, with the Near-RT RIC executing this load distribution control, it is possible to perform load distribution control that considers a wide range of E2 nodes compared to the case where E2 nodes locally execute load distribution control. Therefore, more efficient load distribution can be performed. When the load distribution control unit 405 determines that load distribution control is necessary in the target cell or network slice/QoS class of load distribution control, as described above, which UE is to be handed over to which cell. Make a decision and notify the E2 node of the outcome of that decision. Note that this notification is transmitted to the E2 node by the E2 communication unit 402 via the E2 interface as policy information or control information.
 負荷分散制御部405は、オプションとして、負荷分散制御を実行しても満たされるべき通信品質を得られない場合(各ネットワークスライスにおいてSLA達成率が不十分な値となる場合)、一部のネットワークスライス/QoSフローの通信の通信品質を低下させる制御を実行しうる。例えば、負荷分散制御部405は、あるネットワークスライスに含まれるQoSフローについて、より要求品質の低いQoSで通信するようにE2ノードを制御しうる。また、負荷分散制御部405は、新規の通信の要求について、その通信をUEによって要求された品質より低い要求品質で実行するようにE2ノードを制御しうる。一例において、負荷分散制御部405は、要求品質を下げるべき通信をベストエフォートで行うように、E2ノードを制御しうる。なお、この制御の詳細や変形例は上述の通りであるため、ここでは繰り返さない。 As an option, the load distribution control unit 405, if the communication quality to be satisfied is not obtained even if the load distribution control is executed (when the SLA achievement rate is insufficient in each network slice), some networks Control can be performed to reduce the communication quality of the slice/QoS flow communication. For example, the load distribution control unit 405 can control the E2 nodes to communicate with QoS with lower quality requirements for QoS flows included in a certain network slice. Also, the load distribution control unit 405 can control the E2 node to perform a new communication request at a lower requested quality than the quality requested by the UE. In one example, the load distribution control unit 405 can control the E2 nodes to perform best-effort communication for which the required quality should be lowered. Since the details and modifications of this control are as described above, they will not be repeated here.
 図5に、E2ノードの機能構成例を示す。E2ノードは、その機能として、例えば、E2通信部501、O1通信部502、通信状態情報提供部503、及び負荷分散処理部504を含んで構成される。E2通信部501は、Near-RT RICとの間でE2インタフェースを設定して通信を行う。O1通信部502は、Non-RT RICとの間でO1インタフェースを設定して通信を行う。通信状態情報提供部503は、自装置における通信の状態を示す情報を、O1インタフェースを介してNon-RT RICへ、また、E2インタフェースを介してNear-RT RICへ提供する。なお、Non-RT RICへ提供される情報は、1秒以上などの長期的な分析のための情報であり、Near-RT RICへ提供される情報は、1秒未満などの短期的な分析のための情報である。なお、情報の例については上述の通りであるため、ここでは繰り返さない。負荷分散処理部504は、Near-RT RICによる制御を受けて、指定されたUEを指定された他のセルへハンドオーバさせるための処理を実行する。また、負荷分散処理部504は、Near-RT RICによる制御を受けない場合であっても、周囲の他のE2ノードとの間で情報を交換して、局所的な負荷分散処理を実行してもよい。また、負荷分散処理部504は、オプションとして、負荷分散制御を実行しても満たされるべき通信品質を得られない場合(各ネットワークスライスにおいてSLA達成率が不十分な値となる場合)、一部のネットワークスライス/QoSフローの通信の通信品質を低下させる制御を実行しうる。また、負荷分散処理部504は、新規の通信の要求について、その通信をUEによって要求された品質より低い要求品質で実行するようにE2ノードを制御しうる。これらの制御は、例えば、上述のNear-RT RICの負荷分散制御部405とE2ノードの負荷分散処理部504との少なくともいずれかが実行しうる。  Fig. 5 shows an example of the functional configuration of the E2 node. The E2 node includes, for example, an E2 communication unit 501, an O1 communication unit 502, a communication state information providing unit 503, and a load distribution processing unit 504 as its functions. The E2 communication unit 501 sets the E2 interface with the Near-RT RIC to perform communication. The O1 communication unit 502 sets the O1 interface with the Non-RT RIC to perform communication. The communication state information providing unit 503 provides information indicating the state of communication in its own device to the Non-RT RIC via the O1 interface and to the Near-RT RIC via the E2 interface. The information provided to Non-RT RIC is for long-term analysis such as 1 second or longer, and the information provided to Near-RT RIC is for short-term analysis such as less than 1 second. It is information for Since examples of information are as described above, they will not be repeated here. The load distribution processing unit 504 receives control from the Near-RT RIC and executes processing for handing over the designated UE to another designated cell. In addition, even if the load distribution processing unit 504 is not controlled by the Near-RT RIC, the load distribution processing unit 504 exchanges information with other surrounding E2 nodes and executes local load distribution processing. good too. In addition, as an option, the load distribution processing unit 504, if the communication quality to be satisfied is not obtained even if the load distribution control is executed (when the SLA achievement rate is insufficient in each network slice), some network slice/QoS flow communication quality control can be performed. Also, the load distribution processing unit 504 can control the E2 node to perform a new communication request with a lower requested quality than the quality requested by the UE. These controls can be executed, for example, by at least one of the load distribution control unit 405 of the Near-RT RIC and the load distribution processing unit 504 of the E2 node.
 なお、E2ノードは、一般的な基地局装置としての機能を有し、UEへの物理リソースブロックの割り当て等の処理はE2ノードにおいて行われる。すなわち、E2ノードでは、Near-RT RICの制御に応じて負荷分散制御が実行されるが、Near-RT RICによる制御は指示を出すにとどまり、各UEとの接続制御やリソース割り当ての処理はE2ノードが独自に実行しうる。 It should be noted that the E2 node has a function as a general base station device, and processes such as allocation of physical resource blocks to UEs are performed in the E2 node. In other words, the E2 node executes load distribution control according to the control of the Near-RT RIC, but the control by the Near-RT RIC only issues instructions, and the processing of connection control and resource allocation with each UE is performed by the E2 node. Nodes can run independently.
 (処理の流れ)
 図6に、Non-RT RICが実行する処理の流れの例を示す。Non-RT RICは、E2ノードから、通信の状態を示す情報(セルごと、UEごと、スライスごとの負荷の状態、ネットワークスライスごとのSLAの達成率を特定可能な情報、UEにおける受信信号品質の情報など)を取得し、また、例えばネットワーク事業者等からイベントや通信の履歴に基づく混雑予想情報などの情報を取得し、その情報に基づいて、負荷分散制御の対象とするセル/ネットワークスライス/QoSクラスを決定する(S601)。なお、Near-RT RICにおける負荷分散制御の対象を制限することができれば足り、必ずしも、セル/ネットワークスライス/QoSクラスにより、その制限がなされなければならないわけではない。また、ここではNear-RT RIC及びE2ノードにおいて実行される処理が負荷分散制御である場合について説明しているが、他の処理に関して、その処理の対象が決定されてもよい。そして、Non-RT RICは、S601で決定した制御の対象を示す情報と、負荷分散制御を実行すべきことを示す情報とを含んだポリシ情報(A1 policy)を生成して、Near-RT RICへ通知する(S602)。なお、Non-RT RICは、この処理を周期的に実行し、制御対象や実行すべき処理の更新が必要となるたびに、その情報をNear-RT RICへ通知してもよい。なお、A1 policyは、有効期限が設定されてもよく、Non-RT RICは、有効期限が経過する前にA1 policyを更新するようにしてもよい。
(Processing flow)
FIG. 6 shows an example of the flow of processing executed by Non-RT RIC. Non-RT RIC receives information indicating the state of communication from the E2 node (load state for each cell, UE, slice, information that can identify the SLA achievement rate for each network slice, received signal quality at the UE information, etc.), and for example, information such as congestion prediction information based on events and communication history is acquired from network operators, etc., and based on that information, the cells / network slices / A QoS class is determined (S601). It should be noted that it is sufficient if the target of load distribution control in the Near-RT RIC can be restricted, and the restriction does not necessarily have to be made by the cell/network slice/QoS class. Also, although the case where the processing executed in the Near-RT RIC and the E2 node is load distribution control is described here, the target of the processing may be determined with respect to other processing. Then, the Non-RT RIC generates policy information (A1 policy) containing information indicating the control target determined in S601 and information indicating that load distribution control should be executed, and the Near-RT RIC (S602). Note that the Non-RT RIC may periodically execute this process, and notify the Near-RT RIC of the information each time it is necessary to update the controlled object or the process to be executed. The A1 policy may have an expiration date, and the Non-RT RIC may update the A1 policy before the expiration date.
 図7に、Near-RT RICが実行する処理の流れの例を示す。Near-RT RICは、Non-RT RICからA1 policyを取得すると、そのA1 Policyに基づいて、配下のE2ノードの制御を行う。本実施形態では、Near-RT RICは、混雑時のためのA1 policyに従って、負荷分散制御の対象として指定された対象(セル/ネットワークスライス/QoSクラス)を監視する(S701)。Near-RT RICは、その監視の結果に基づいて、負荷分散制御を実行することを決定する(S702)と、例えば配下のE2ノードから取得した情報に基づいて、混雑しているセルから他のセルへハンドオーバさせるUEを決定し、そのUEのハンドオーバ処理を実行するようにE2ノードへ指示(ポリシ情報/制御情報)を送信する(S703)。なお、Near-RT RICは、その後の配下のE2ノードにおける混雑状況の変化やSLAの達成率の改善状況などを監視して、以後に図7の処理を再度実行する際のS703におけるハンドオーバの対象のUEの決定の基準(例えば評価関数の重み係数など)の更新を行ってもよい。 Fig. 7 shows an example of the flow of processing executed by Near-RT RIC. When the Near-RT RIC acquires the A1 policy from the Non-RT RIC, it controls the subordinate E2 nodes based on the A1 policy. In this embodiment, the Near-RT RIC monitors objects (cells/network slices/QoS classes) specified as objects of load distribution control according to the A1 policy for congestion (S701). Near-RT RIC, based on the results of its monitoring, decides to execute load distribution control (S702), for example, based on information obtained from the E2 node under its control, the other A UE to be handed over to the cell is determined, and an instruction (policy information/control information) is transmitted to the E2 node to execute handover processing for the UE (S703). In addition, Near-RT RIC will monitor changes in the congestion status of the E2 nodes under its control and the improvement status of the SLA achievement rate, etc., and will be the target of handover in S703 when executing the processing in FIG. 7 again after that. UE decision criteria (e.g., the weighting factor of the evaluation function) may be updated.
 また、Near-RT RICは、S703で決定したUEをハンドオーバさせても、負荷分散制御の対象に関して高負荷状態が継続している場合(例えば、高負荷状態のセルの負荷が十分に低下しなかった場合)、現在通信中のネットワークスライス/QoSフロー/UEの少なくとも一部について、その要求品質を低下させる(受け入れ可能な別のネットワークスライス/QoSクラスに変更する)処理を実行する(S704)。上述のように、例えば、一部のネットワークスライス/QoSフロー/UEの通信を、ベストエフォートで行うような制御が行われる。このとき、Near-RT RICは、要求品質を低下させる前に、その要求品質の低下の対象となるUEとの間で、ネゴシエーションを実行し、要求品質の低下が受け入れられたことに応じて要求品質の低下制御を行ってもよい。なお、一例において、要求品質の低下が受け入れられない場合には通信を切断する処理が行われてもよい。また、Near-RT RICは、高負荷状態が継続している間に新規の通信が要求された場合に、その通信の要求品質を、UEから要求された品質より低く設定しうる。この場合も、要求品質の低下処理が実際に行われる前に、低い品質での接続になることについてのネゴシエーションが行われてもよい。なお、高負荷状態が継続しているか否かは、例えば、ハンドオーバ処理が完了した後に、優先順位の高い1つ以上の所定のネットワークスライス/QoSフローの通信における要求品質の充足確率が所定値以上であるか否かによって判定されうる。その後、Near-RT RICは、負荷が低減し、高負荷状態が改善されたことに応じて、要求品質が変更されていた通信の要求品質を再変更する(S705)。すなわち、Near-RT RICは、要求品質を低下させた通信について、要求品質を元に戻す(又は、受け入れ可能な範囲かつ元の要求品質を超えない範囲で要求品質を上昇させる)制御を実行する。これにより、例えば優先順位の低いネットワークスライス/QoSフローの通信が要求品質を低下させて継続されると共に、負荷状態の改善に伴い、その通信が本来の要求品質に沿って提供されるようにすることができる。 In addition, the Near-RT RIC can be used even if the UE determined in S703 is handed over, if the high load state continues with respect to the target of load distribution control (for example, the load of the cell in the high load state has not decreased sufficiently). If so), for at least some of the currently communicating network slices/QoS flows/UEs, a process of lowering the requested quality (changing to another acceptable network slice/QoS class) is performed (S704). As described above, for example, control is performed such that some network slices/QoS flows/UE communications are performed on a best-effort basis. At this time, Near-RT RIC, before lowering the requested quality, performs negotiation with the UE subject to the lowering of the requested quality, and if the requested quality lowering is accepted, the request Quality reduction control may be performed. Note that, in one example, a process of disconnecting communication may be performed when the reduction in required quality is unacceptable. Also, when a new communication is requested while the high load state continues, the Near-RT RIC can set the requested quality of the communication to be lower than the quality requested by the UE. In this case, too, negotiation of a lower quality connection may be performed before the requested quality reduction process is actually performed. Whether or not the high load state continues can be determined, for example, after the completion of handover processing, when the probability of satisfying the required quality in communication of one or more predetermined network slices/QoS flows with high priority is equal to or greater than a predetermined value. can be determined by whether or not After that, the Near-RT RIC re-changes the requested quality of the communication whose requested quality has been changed in accordance with the load reduction and improvement of the high load state (S705). In other words, Near-RT RIC restores the required quality (or increases the required quality within an acceptable range and does not exceed the original required quality) for communications that have lowered the required quality. . As a result, for example, communication of a network slice/QoS flow with a low priority can be continued with the required quality lowered, and as the load condition improves, the communication can be provided in line with the original required quality. be able to.
 図8に、E2ノードが実行する処理の流れの例を示す。E2ノードは、自装置とUEとの間の通信の状態を示す情報を、Non-RT RIC及びNear-RT RICへ通知する(S801)。なお、E2ノードは、Non-RT RICへは、長期的なトラフィックの変動などの分析が可能となるような情報を提供し、Near-RT RICへは、短期的な負荷分散制御を実行可能とするための情報を提供しうる。提供される情報の例は上述のようなものであるため、ここでは繰り返さない。その後、E2ノードは、Near-RT RICによる制御に基づいて、負荷分散処理を実行する(S802)。例えば、E2ノードは、Near-RT RICから、接続中のUEを他のセルにハンドオーバさせるべきことを指示するポリシ情報/制御情報を受信した場合、その情報に基づいて、そのUEを指定されたセルにハンドオーバさせる処理を実行する。また、E2ノードは、Near-RT RICから受信したポリシ情報/制御情報に基づいて、他のセルからハンドオーバしてくるUEの接続処理を実行しうる。また、E2ノードは、UEをハンドオーバさせた後に高負荷状態が継続している場合に、Near-RT RICから受信したポリシ情報/制御情報に基づいて、特定のネットワークスライス/QoSフロー/UEの要求品質を低下させうる(S803)。なお、E2ノードは、自装置に接続中のUEについて、Near-RT RICの指示によらずに、例えば特定のネットワークスライス/QoSフローの通信の要求品質を自律的に低下させる処理を実行してもよい。その後、E2ノードは、高負荷状態が改善されたことに応じて、Near-RT RICから受信したポリシ情報/制御情報に基づいて、要求品質が変更されていた通信の要求品質を再変更する(S804)。この処理も、E2ノードが自律的に実行してもよい。 FIG. 8 shows an example of the flow of processing executed by the E2 node. The E2 node notifies the Non-RT RIC and the Near-RT RIC of information indicating the state of communication between the E2 node and the UE (S801). In addition, the E2 node provides non-RT RIC with information that enables analysis of long-term traffic fluctuations, etc., and near-RT RIC can execute short-term load distribution control. can provide information to Examples of the information provided are as described above and will not be repeated here. After that, the E2 node executes load distribution processing under the control of the Near-RT RIC (S802). For example, when the E2 node receives policy information/control information indicating that the connected UE should be handed over to another cell from the Near-RT RIC, based on that information, the UE is designated Execute the process of handing over to the cell. Also, the E2 node can perform connection processing for a UE handed over from another cell based on the policy information/control information received from the Near-RT RIC. Also, when the high load state continues after the UE is handed over, the E2 node requests a specific network slice/QoS flow/UE based on the policy information/control information received from the Near-RT RIC. Quality may be reduced (S803). In addition, the E2 node executes processing to autonomously lower the required quality of communication for a specific network slice/QoS flow, for example, for the UE connected to its own device, without following instructions from the Near-RT RIC. good too. After that, the E2 node changes again the requested quality of the communication whose requested quality has been changed based on the policy information/control information received from the Near-RT RIC in response to the improvement of the high load state ( S804). This process may also be autonomously executed by the E2 node.
 以上のようにして、Non-RT RICによるポリシの設定により、Near-RT RICが多数のE2ノードの通信の状況を考慮して負荷分散制御を実行することができる。このときに、Non-RT RICは、Near-RT RICにおいて負荷分散制御の対象とするセルやネットワークスライス/QoSクラスを指定して、限定的な範囲での負荷分散を行うようにしうる。これにより、Near-RT RICの制御の負荷を抑制しながら、多数のE2ノードの状況を考慮した負荷分散制御を実行することができる。また、UEのハンドオーバによる負荷分散制御に加えて、又はこれに代えて、優先順位の低い通信(例えばサービス停止を許容可能なネットワークスライスでの通信)について、要求品質を下げて通信サービスを提供する制御を行うことにより、その通信のための通信機会を確保しながら、優先順位の高い通信については要求品質を満たした通信サービスを提供することが可能となる。 As described above, the policy setting by the Non-RT RIC enables the Near-RT RIC to perform load distribution control in consideration of the communication status of many E2 nodes. At this time, the Non-RT RIC can specify the cells and network slices/QoS classes that are subject to load distribution control in the Near-RT RIC so that load distribution can be performed within a limited range. As a result, it is possible to perform load distribution control that considers the conditions of a large number of E2 nodes while suppressing the control load of the Near-RT RIC. In addition to or instead of load distribution control by UE handover, communication services are provided by lowering the required quality for low priority communications (for example, communications in network slices that allow service outages). By performing the control, it becomes possible to provide a communication service that satisfies the required quality for high-priority communication while securing the communication opportunity for that communication.
 なお、これにより、例えば移動通信システムにおける総合的なサービス品質の向上を実現することができることから、国連が主導する持続可能な開発目標(SDGs)の目標9「レジリエントなインフラを整備し、持続可能な産業化を推進するとともに、イノベーションの拡大を図る」に貢献することが可能となる。 As a result, it will be possible to improve overall service quality in mobile communication systems, for example. It will be possible to contribute to the promotion of industrialization and the expansion of innovation.
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。 The invention is not limited to the above embodiments, and various modifications and changes are possible within the scope of the invention.
 本願は、2021年9月14日提出の日本国特許出願特願2021-149559を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority based on Japanese Patent Application No. 2021-149559 submitted on September 14, 2021, and the entire contents of the description are incorporated herein.

Claims (14)

  1.  O-RAN(Open-Radio Access Network)のNear-RT(Real Time) RIC(RAN Intelligent Controller)によって実行される制御方法であって、
     前記O-RANにおいて端末装置へ無線通信を提供するE2ノードに対して、当該E2ノードで実行されている第1の通信と新規に受け付けられる第2の通信との少なくともいずれかの要求品質を変化させるべきことを示す情報を提供することを含む、
     制御方法。
    A control method executed by a Near-RT (Real Time) RIC (RAN Intelligent Controller) of an O-RAN (Open-Radio Access Network),
    Change the required quality of at least one of the first communication being executed by the E2 node and the newly accepted second communication for the E2 node that provides wireless communication to the terminal device in the O-RAN including providing information indicating what should be done;
    control method.
  2.  前記情報は、前記第1の通信と前記第2の通信との少なくともいずれかの通信について、当該通信で要求される品質より低い要求品質のネットワークスライスへ遷移させるべきことを示す、請求項1に記載の制御方法。 2. The method according to claim 1, wherein the information indicates that at least one of the first communication and the second communication should be transitioned to a network slice with a required quality lower than the quality required for the communication. Described control method.
  3.  前記ネットワークスライスは、ベストエフォートの通信を行うネットワークスライスである、請求項2に記載の制御方法。 The control method according to claim 2, wherein the network slice is a network slice that performs best-effort communication.
  4.  前記情報は、前記第1の通信と前記第2の通信との少なくともいずれかの通信について、QoS(Quality of Service)フローのQoSを低下させるべきことを示す、請求項1から3のいずれか1項に記載の制御方法。 4. Any one of claims 1 to 3, wherein the information indicates that QoS of a QoS (Quality of Service) flow should be reduced for at least one of the first communication and the second communication. The control method described in the item.
  5.  前記QoSは、ベストエフォートに対応する、請求項4に記載の制御方法。 The control method according to claim 4, wherein the QoS corresponds to best effort.
  6.  O-RAN(Open-Radio Access Network)において端末装置へ無線通信を提供するE2ノードによって実行される制御方法であって、
     Near-RT(Real Time) RIC(RAN Intelligent Controller)から、当該E2ノードで実行されている第1の通信と新規に受け付けられる第2の通信との少なくともいずれかの要求品質を変更させるべきことを示す情報を取得することと、
     前記情報に基づいて、前記第1の通信と前記第2の通信との少なくともいずれかの要求品質を変更する制御を実行することと、
     を含む制御方法。
    A control method performed by an E2 node that provides wireless communication to a terminal device in an O-RAN (Open-Radio Access Network),
    Near-RT (Real Time) RIC (RAN Intelligent Controller) to change the requested quality of at least one of the first communication executed by the E2 node and the newly accepted second communication obtaining information indicative of
    executing control to change the requested quality of at least one of the first communication and the second communication based on the information;
    Control method including.
  7.  前記第1の通信と前記第2の通信との少なくともいずれかの通信の要求品質を変更する前に当該通信に関連する端末装置との間でネゴシエーションを実行することをさらに含む、請求項6に記載の制御方法。 7. The method according to claim 6, further comprising performing negotiation with a terminal device associated with said communication before changing the requested quality of at least one of said first communication and said second communication. Described control method.
  8.  前記情報は、前記第1の通信と前記第2の通信との少なくともいずれかの通信を、当該通信で要求される品質より低い要求品質のネットワークスライスへ遷移させるべきことを示し、
     前記第1の通信と前記第2の通信との少なくともいずれかの通信について、前記情報に基づいて、ネットワークスライスを遷移させる処理を実行することをさらに含む、
     請求項6又は7に記載の制御方法。
    The information indicates that at least one of the first communication and the second communication should be transitioned to a network slice with a required quality lower than the quality required for the communication,
    For at least one of the first communication and the second communication, based on the information, further comprising performing a process of transitioning a network slice,
    The control method according to claim 6 or 7.
  9.  前記情報は、前記第1の通信と前記第2の通信との少なくともいずれかの通信について、QoS(Quality of Service)フローのQoSを低下させるべきことを示し、
     前記第1の通信と前記第2の通信との少なくともいずれかの通信について、前記情報に基づいて、QoSを低下させる処理を実行することをさらに含む、
     請求項6から8のいずれか1項に記載の制御方法。
    the information indicates that QoS (Quality of Service) of at least one of the first communication and the second communication should be lowered;
    For at least one of the first communication and the second communication, based on the information, further comprising executing a process to reduce QoS,
    The control method according to any one of claims 6 to 8.
  10.  前記E2ノードにおける負荷が低減したことに基づいて、前記変更した要求品質を再変更することをさらに含む、請求項6から9のいずれか1項に記載の制御方法。 The control method according to any one of claims 6 to 9, further comprising re-changing the changed requested quality based on a reduction in the load on the E2 node.
  11.  O-RAN(Open-Radio Access Network)のNear-RT(Real Time) RIC(RAN Intelligent Controller)として機能する装置であって、
     前記O-RANにおいて端末装置へ無線通信を提供するE2ノードに対して、当該E2ノードで実行されている第1の通信と新規に受け付けられる第2の通信との少なくともいずれかの要求品質を変更させるべきことを示す情報を提供する提供手段を有する、
     装置。
    A device that functions as an O-RAN (Open-Radio Access Network) Near-RT (Real Time) RIC (RAN Intelligent Controller),
    Changing the required quality of at least one of the first communication being executed by the E2 node and the newly accepted second communication for the E2 node that provides wireless communication to the terminal device in the O-RAN having means for providing information indicating what to do,
    Device.
  12.  O-RAN(Open-Radio Access Network)において端末装置へ無線通信を提供するE2ノードとして機能する装置であって、
     Near-RT(Real Time) RIC(RAN Intelligent Controller)から、当該E2ノードで実行されている第1の通信と新規に受け付けられる第2の通信との少なくともいずれかの要求品質を変更させるべきことを示す情報を取得する取得手段と、
     前記情報に基づいて、前記第1の通信と前記第2の通信との少なくともいずれかの要求品質を変更する制御を実行する実行手段と、
     を有する装置。
    A device that functions as an E2 node that provides wireless communication to a terminal device in an O-RAN (Open-Radio Access Network),
    Near-RT (Real Time) RIC (RAN Intelligent Controller) to change the requested quality of at least one of the first communication executed by the E2 node and the newly accepted second communication an acquisition means for acquiring information indicating
    execution means for executing control to change the required quality of at least one of the first communication and the second communication based on the information;
    A device with
  13.  O-RAN(Open-Radio Access Network)のNear-RT(Real Time) RIC(RAN Intelligent Controller)として機能する装置に備えられたコンピュータに、
     前記O-RANにおいて端末装置へ無線通信を提供するE2ノードに対して、当該E2ノードで実行されている第1の通信と新規に受け付けられる第2の通信との少なくともいずれかの要求品質を変更させるべきことを示す情報を提供させる、
     ためのプログラム。
    A computer provided in a device that functions as an O-RAN (Open-Radio Access Network) Near-RT (Real Time) RIC (RAN Intelligent Controller),
    Changing the required quality of at least one of the first communication being executed by the E2 node and the newly accepted second communication for the E2 node that provides wireless communication to the terminal device in the O-RAN to provide information indicating what to do,
    program for.
  14.  O-RAN(Open-Radio Access Network)において端末装置へ無線通信を提供するE2ノードとして機能する装置に備えられたコンピュータに、
     Near-RT(Real Time) RIC(RAN Intelligent Controller)から、当該E2ノードで実行されている第1の通信と新規に受け付けられる第2の通信との少なくともいずれかの要求品質を変更させるべきことを示す情報を取得させ、
     前記情報に基づいて、前記第1の通信と前記第2の通信との少なくともいずれかの要求品質を変更する制御を実行させる、
     ためのプログラム。
    A computer provided in a device that functions as an E2 node that provides wireless communication to terminal devices in O-RAN (Open-Radio Access Network),
    Near-RT (Real Time) RIC (RAN Intelligent Controller) to change the requested quality of at least one of the first communication executed by the E2 node and the newly accepted second communication get the information shown,
    Based on the information, executing control to change the required quality of at least one of the first communication and the second communication;
    program for.
PCT/JP2022/025723 2021-09-14 2022-06-28 Device, program, and control method for executing efficient load balancing control WO2023042519A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021149559A JP2023042318A (en) 2021-09-14 2021-09-14 Control method, device, and program for executing efficient load distribution control
JP2021-149559 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023042519A1 true WO2023042519A1 (en) 2023-03-23

Family

ID=85602721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025723 WO2023042519A1 (en) 2021-09-14 2022-06-28 Device, program, and control method for executing efficient load balancing control

Country Status (2)

Country Link
JP (1) JP2023042318A (en)
WO (1) WO2023042519A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042451A (en) * 2006-08-04 2008-02-21 Nec Corp Wireless lan network system, policy control device, access point, and load control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042451A (en) * 2006-08-04 2008-02-21 Nec Corp Wireless lan network system, policy control device, access point, and load control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
O-RAN ALLIANCE: "LS on O-RAN Alliance & 3GPP Coordination on O-RAN Alliance Outputs", 3GPP DRAFT; S1-193206, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG1, no. Reno, Nevada, USA; 20191118 - 20191122, 10 November 2019 (2019-11-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051824255 *

Also Published As

Publication number Publication date
JP2023042318A (en) 2023-03-27

Similar Documents

Publication Publication Date Title
CN110383877B (en) System and method for network policy optimization
US11917481B2 (en) Load balancing method and apparatus
EP3596969B1 (en) Slice-compliant handover control
US8958812B2 (en) Cell load balancing method and devices thereof
Addali et al. Dynamic mobility load balancing for 5G small-cell networks based on utility functions
US8155617B2 (en) Lightweight MRRM with radio agnostic access selection in the core network
US10111135B2 (en) Offloading traffic of a user equipment communication session from a cellular communication network to a wireless local area network (WLAN)
US9713077B2 (en) Method and apparatus for distributing handoff control in wireless networks via programmable black and white lists
JP2014523159A (en) Performing measurements in digital cellular radio telecommunications networks
JP2014523159A5 (en)
KR20180127842A (en) Apparatus and method for controling transmission power of cell in a multi-carrier system
US10735173B2 (en) Carrier aggregation inter eNB activation
EP3962171A1 (en) User equipment centric wide area optimization method and system thereof
JP2015507418A (en) Group terminal mobility management method, mobility management system, and mobility management apparatus
US9264960B1 (en) Systems and methods for determinng access node candidates for handover of wireless devices
WO2023042519A1 (en) Device, program, and control method for executing efficient load balancing control
WO2023042459A1 (en) Control method, device, and program for executing efficient load balancing control
Eli-Chukwu et al. A Systematic Review of Artificial Intelligence Applications in Cellular Networks.
EP2945293B1 (en) Wireless communication network management
Zalghout et al. SDRAN-based user association and resource allocation in heterogeneous wireless networks
Mihovska et al. Requirements and algorithms for cooperation of heterogeneous radio access networks
EP2456255B1 (en) Device and method for communications in a communication network
US20230308939A1 (en) Technique for controlling performance management depending on network load
CN114401531A (en) Load balancing method, device, system and storage medium
WO2024044494A1 (en) Intelligent anchor point handover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869668

Country of ref document: EP

Kind code of ref document: A1