WO2023042321A1 - Backlash eliminating mechanism and rotation angle detecting device - Google Patents

Backlash eliminating mechanism and rotation angle detecting device Download PDF

Info

Publication number
WO2023042321A1
WO2023042321A1 PCT/JP2021/034005 JP2021034005W WO2023042321A1 WO 2023042321 A1 WO2023042321 A1 WO 2023042321A1 JP 2021034005 W JP2021034005 W JP 2021034005W WO 2023042321 A1 WO2023042321 A1 WO 2023042321A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
pinion
stepped
teeth
rotatably held
Prior art date
Application number
PCT/JP2021/034005
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 村北
Original Assignee
村北ロボテクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村北ロボテクス株式会社 filed Critical 村北ロボテクス株式会社
Priority to PCT/JP2021/034005 priority Critical patent/WO2023042321A1/en
Priority to JP2022517942A priority patent/JP7130296B1/en
Publication of WO2023042321A1 publication Critical patent/WO2023042321A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • F16H55/18Special devices for taking up backlash
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/12Arrangements for adjusting or for taking-up backlash not provided for elsewhere

Definitions

  • the present invention relates to a backlash removal mechanism and a rotation angle detection device using the mechanism.
  • Devices for detecting the rotation angle of rotational motion are widely known, and for example, the magnetic type described in Document 1, the capacitance type described in Document 2, and the optical type are known.
  • Documents 3 to 5 use two gears with different numbers of teeth to enable multi-rotation measurement based on the so-called vernier principle.
  • Patent No. 6626476 U.S. Patent Application Publication No. 2002/000129 JP 2000-283704 JP 2004-354075 JP 2007-155698 Patent No. 3882167 JP 2004-044620
  • the present invention provides, in summary, the following.
  • a substrate, a large gear, a first small gear, a second small gear, a planetary gear, and an urging mechanism wherein the large gear is rotatably held by the substrate;
  • the small gear is rotatably held by the base while meshing with the large gear
  • the second small gear is rotatably held by the base while meshing with the large gear
  • the planetary gears are the first small gear and the second While meshing with both of the small gears, the first small gear, the second small gear, and the planetary gear are rotatably held by the biasing mechanism at a position where the respective rotation axes of the first and second small gears and the planetary gears are aligned approximately on the same plane.
  • the planetary gear is a stepped planetary gear, further comprising a first stepped gear and a second stepped gear, the large gear being rotatably held by a base material, and the first stage gear
  • the lower stage of the stepped gear is rotatably held by the base material while meshing with the large gear
  • the lower stage of the second stepped gear is rotatably held by the base material while meshing with the large gear
  • the first small gear is
  • the second pinion is rotatably held by the base material while meshing with the upper stage of the first stepped gear
  • the second pinion is rotatably held by the base material while meshing with the upper stage of the second stepped gear.
  • the number of teeth of the upper stage of the stepped gear is the same as the number of teeth of the upper stage of the second stepped gear, and the ratio of the number of teeth of the lower stage to the number of teeth of the upper stage of the stepped planetary gear is equal to the number of teeth of the first stage. equal to the ratio of the number of teeth of the lower stage of the second stepped gear to the number of teeth of the lower stage of the stepped gear, said stepped planetary gear having its lower stage meshing with the first pinion and its upper stage meshing with the second pinion.
  • a first stepped gear is a first stepped gear train that connects the large gear and the first pinion
  • a second stepped gear is the gear that connects the large gear and the second pinion.
  • a second stepped gear train coupled to the pinion gears, all gears in these gear trains being rotatably retained on respective substrates to urge said stepped planetary gears to The backlash removing mechanism according to [1] or [2], which removes all backlash between rows.
  • FIG. 1 shows the principle of the present invention, comprising a substrate 1, a large gear 2, a first pinion 3, a second pinion 4, a planetary gear 5 and a biasing mechanism 6.
  • the large gear 2 is rotatably held by the base material 1
  • the first small gear 3 is rotatably held by the base material 1 while meshing with the large gear 2
  • the second small gear 4 is meshed with the large gear 2.
  • the planetary gear 5 meshes with both the first small gear 3 and the second small gear 4, and the first small gear 3 and the second small gear 4 and the planets
  • the rotation axes of the gears 5 are rotatably held by the biasing mechanism 6 at a position in which the rotation axes of the gears 5 are aligned approximately on the same plane.
  • a backlash removing mechanism characterized in that the movement has a restoring force and urges the planetary gear 5 to remove backlash.
  • the biasing mechanism 6 may be, for example, a known invention such as a spring-biased swing arm (Reference 7), and as shown in FIG. 6d, the block 6a rotatably retains the planetary gear 5 and slides along a path defined by a guide 6b fixed to the substrate 1, a compression spring 6c biases the block 6a, and an anchor 6d.
  • a biasing mechanism that is fixed to the base material 1 and supports the reaction force of the compression spring 6c may be used.
  • the first small gear 3 when the planetary gear 5 is urged in the direction toward the rotation axis of the large gear 2, the first small gear 3 produces counterclockwise torque and the second small gear 4 produces clockwise torque. of torque is applied. Since the small gear 3 and the small gear 4 are torqued in opposite directions, the forces are balanced without rotating the large gear 2 .
  • the first pinion 3 contacts only the tooth flank that contacts when the large gear 2 is rotated clockwise, and conversely, the second pinion 4 contacts when the large gear 2 is rotated counterclockwise. contact only with the tooth flank that is in contact with This action eliminates the backlash.
  • the biasing mechanism may not only push, but also pull, in which case the contacting tooth flanks are reversed.
  • the gear train is meshed with each other, the planetary gear 5 or the biasing mechanism 6 is displaced only in a very small range, but within that range the pinion gears 3 and 4 and the planetary gear 5 form a differential mechanism. It eliminates backlash caused by static errors during gear manufacturing and dynamic errors such as wear and thermal expansion.
  • the biasing mechanism 6 does not necessarily have to be a linear motion mechanism, and as described above, it may be approximately linearly moved by a rotating mechanism such as a swing arm.
  • the term "gear” refers to a mechanism that transmits power through meshing of teeth.
  • the tooth profile may be involute, cycloid, trochoid, or the like.
  • the backlash removing mechanism includes a case where the large gear 2 is an internal gear, and a rack as a special case where the number of teeth of the large gear 2 is infinite. If the gear 2 is regarded as a rack, its motion can be regarded as linear motion rather than rotary motion. Further, the large gear 2 does not necessarily have to be circular, and may be provided with teeth on a free curve as long as it can be properly meshed with the small gears 3 and 4 .
  • the tooth width of the small gear 3 and the small gear 4 is increased, and the engagement position between the small gear 3 and the small gear 4 and the planetary gear 5 is adjusted. may be shifted in the tooth trace direction to avoid interference.
  • the small gears 3 and 4 do not necessarily have the same number of teeth. Rather, if different numbers of teeth are selected and absolute encoders are provided for each, they can be used as a multi-rotation rotation angle detector.
  • An absolute encoder means a device that can measure the absolute value of the rotation angle within the range of one rotation.
  • the rotation angle of the first pinion 3 and the rotation angle of the second pinion 4 show a unique combination within the range of the least common multiple of the number of teeth, it is possible to measure multiple rotations within that range. Become. For example, if the number of teeth of the first pinion is 19 and the number of teeth of the second pinion is 17, it is possible to measure up to 323 teeth. At this time, if the number of teeth of the large gear is 323, the second small gear can measure the rotation angle of the large gear with 19 times the resolution.
  • the number of teeth of the pinion is a product of suitable prime numbers
  • the number of rotations of the large gear can be measured up to 10 rotations.
  • the prime factors are selected from the sequence of prime numbers 2, 3, 5, and 7, which are selected in order from the smallest prime number, without duplication. has a special meaning in terms of design at the point where the is the minimum and at the point where the number of teeth is approximately equal. If the number of teeth is too small, they may be multiplied by any common natural number, ie the ratio of the number of teeth is 14:15.
  • the backlash removing mechanism includes a base material 1, a large gear 2, a first small gear 3, a second small gear 4, a stepped planetary gear 5, and an urging mechanism 6. , a first stepped gear 7 and a second stepped gear 8, the large gear 2 is rotatably held on the base material 1, and the lower stage of the first stepped gear 7 meshes with the large gear 2. The lower stage of the second stepped gear 8 is rotatably held by the base 1 while meshing with the large gear 2, and the first small gear 3 is held by the first stepped gear.
  • the second small gear 4 is rotatably held by the base material 1 while meshing with the upper stage of the second stepped gear 8 , and the stepped planetary gear 5 While the lower stage meshes with the first small gear 3 and the upper stage meshes with the second small gear 4, the rotation axes of the first small gear 3, the second small gear 4 and the stepped planetary gear 5 are approximately the same. It is rotatably held by an urging mechanism 6 at a position aligned on a plane, and the urging mechanism 6 is a mechanism with one degree of freedom that moves on a plane parallel to the rotation plane of the large gear 2, and the movement is a restoring force. and urging the stepped planetary gear 5 to remove the backlash.
  • the gears located on the far side of the paper are the lower gears
  • the gears on the front side of the paper are the upper gears.
  • This configuration has the effect of increasing the number of teeth of the pinion gears 3 and 4 in the configuration of FIG. can be done.
  • the reduction ratio of the gear train from the planetary gear 5 to the large gear 2 must be selected so as to match between the first and second trains. Therefore, planetary gears generally need to be stepped gears (including special cases in which the number of teeth of the upper and lower stages are the same and become ordinary spur gears).
  • the number of teeth of the upper and lower stages of the stepped planetary gear 5 can be derived from a simple calculation of the reduction ratio.
  • the product of the number of teeth of the upper stage of the second stepped gear 8 is the number of teeth of the upper stage of the stepped planetary gear 5 , the number of teeth of the lower stage of the second stepped gear 7 , and the first stepped gear 8 . and the number of teeth of the upper stage of .
  • the number of teeth of the lower stage of the first stepped gear 7 is 15, the number of teeth of the first pinion 3 is 11, the number of teeth of the second stepped gear 8 is 14, and the number of teeth of the second pinion 4 is 14. is 13, and the number of teeth of the upper stage of the stepped gear 7 and the stepped gear 8 is the same arbitrary number of teeth (for example, when the number of teeth of each is 10), the upper part of the stepped planetary gear 5
  • the number of teeth of the lower stage should be 15 and 14, respectively.
  • the prime factors of 11, 13, 14, and 15 teeth shown in the example are selected from the sequence of prime numbers 2, 3, 5, 7, 11, and 13, which are selected in order from the smallest prime number, so as not to overlap, and in the sense of the least common multiple
  • the point with the smallest number of teeth and the point with approximately the same number of teeth have special significance in terms of design. If the number of teeth is too small, they may be multiplied by any common natural number, ie the ratio of the number of teeth should be 11:13:14:15 regardless of the order.
  • suitable combinations include 13:14:15:17, 14:15:17:19, 17:19:21:22, 19:21:22:23.
  • any gear may be driven, and in that case, it can be used as a speed reducer while measuring the rotation angle.
  • a multi-stage speed reducer can be constructed, as shown in FIG. 4 are the stepped gear train 10 and the stepped gear train 11 that connect the large gear 2, the small gear 3 and the small gear 4, respectively, and A reduction gear with a large reduction ratio can be obtained by using a backlash removing mechanism characterized in that each gear in the row is rotatably held on the base material 1 .
  • This configuration is effective because it is possible to remove the backlash of all the gears with a single biasing mechanism. Since the stepped gear train can be replaced with a virtual stepped gear with the same reduction ratio in terms of the reduction ratio, multi-rotation measurement is possible on the same principle as the configuration of FIG.
  • the value expressed by the number of advanced teeth is referred to as the tooth angle.
  • the tooth angle of the second gear when the tooth angle of the first gear is aligned with 0 is specifically called the reference tooth angle. Since the reference tooth angle C indicates 182 unique numerical values that do not overlap with respect to the number of rotations N, the number of rotations and the angle of rotation of the first gear can be known by reading these combinations. In this case, it is desirable to create a lookup table such as that shown in FIG.
  • the rotation speed and rotation angle of the first pinion can be calculated based on the following procedure.
  • the ratio of the number of rotations of the first and second gears is changed from 11:13 to 165:182 by the action of the stepped gear, as if the first and second gears Since the number of teeth may be 165 and 182, respectively, when using a stepped gear or stepped gear train, the following first and second gears are these virtual gears.
  • An initial state in which the tooth angles of the first pinion (the number of teeth is Z) and the second pinion (the number of teeth is Y) are set to 0 is appropriately determined.
  • the number of rotations of the large gear can be easily calculated according to the reduction ratio with the first gear, but if the large gear is also provided with a third encoder, the measurable number of rotations can be further increased. . Since the number of teeth of the first and second small gears can be measured up to 30,030, they can be regarded as gears with 30,030 teeth. Since the relationship between the virtual gear and the large gear is the same as the relationship between the first and second small gears, based on the above procedure, the number of teeth of the large gear and the number of teeth of the least common multiple of 30030 are calculated. can be measured. For example, if the number of teeth of the large gear is a prime number such as 17, 19, or 23 that does not overlap with a prime factor of 30,030, then up to 30,030 revolutions can be measured.
  • a common method for removing gear backlash is the so-called scissor gear, but it must be used for all gear stages, and the biasing mechanism itself rotates, making it difficult to adjust and assemble. was the problem. According to this backlash removing mechanism, the backlash of the gear train can be removed centrally, and the biasing force can be varied as needed, which is a great advantage.
  • the backlash elimination mechanism can also be used as a speed reducer, or can constitute a multi-rotation goniometer using its constituent elements.
  • the goniometer and speed reducer are often used together, so it is highly effective in that they can be realized using the components of the backlash elimination mechanism.
  • FIG. 4 is a diagram showing an example in which the stepped gear in FIG. 4 is a stepped gear train;
  • FIG. 4 is a diagram showing an embodiment of a rotation angle detection device to which a backlash removal mechanism is applied;
  • FIG. 7 is an exploded view of the detection portion of FIG. 6; It is the figure which extracted and showed the biasing mechanism of FIG.
  • FIG. 4 is a diagram showing an example of a lookup table;
  • FIG. 6 shows an example in which the present invention is implemented as a rotation angle detection device, and FIG. , a second small gear 4, a planetary gear 5, and an urging mechanism 6.
  • the large gear 2 is rotatably held by a base (not shown but coupled to the base 1a).
  • the first small gear 3 is rotatably held on the base 1 while meshing with the large gear 2
  • the second small gear 4 is rotatably held on the base 1 while meshing with the large gear 2
  • the planetary gear 5 While meshing with both the first pinion 3 and the second pinion 4, the respective rotation axes of the first pinion 3 and the second pinion 4 and the planetary gear 5 are aligned approximately on the same plane.
  • the rotation angle detection device is characterized in that the planetary gear 5 is energized to eliminate backlash.
  • the base material 1 includes a lower case 1a, an upper case 1b, a set screw 1c, and a bearing 1f. It connects with the upper case 1b.
  • the first small gear 3 has a main body 3a and a permanent magnet 3b
  • the second small gear 4 also has a main body 4a and a permanent magnet 4b, which are rotatably held on the base material 1 via bearings 1f. .
  • a circuit board 9 is fixed to the screw hole 1e, and has a magnetic encoder 9a on its back surface to read the rotation angles of the permanent magnets 3b and 4b.
  • FIG. 8 is an extracted view of the biasing mechanism.
  • a convex block 6a is provided with a rotating shaft 6f, which rotatably holds the planetary gear 5 and guides it into the same shaped slot of the substrate 1.
  • the leaf spring 6c slides against the apex of the leaf spring 6c, and the end of the leaf spring 6c has a smooth arc shape and slides in contact with the base material 1, and the restoring force due to the deflection of the leaf spring 6c slides down the block 6a.
  • An urging mechanism characterized by urging.

Abstract

[Problem] To provide a backlash eliminating mechanism and a rotation angle detecting device using the backlash eliminating mechanism. [Solution] Provided is a backlash eliminating mechanism characterized by comprising a base material 1, a large gear 2, a first small gear 3, a second small gear 4, a planetary gear 5, and a biasing mechanism 6, wherein the biasing mechanism 6 is a one-degree-of-freedom mechanism that moves on a surface parallel to the rotation surface of the large gear 2, the movement is provided with a restoring force, and the planetary gear 5 is biased to eliminate backlash.

Description

バックラッシ除去機構および回転角検出装置Backlash removal mechanism and rotation angle detector
バックラッシ除去機構および、それを応用した回転角検出装置に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a backlash removal mechanism and a rotation angle detection device using the mechanism.
回転運動の回転角を検出する装置は広く公知であり、例えば文献1の磁気式、文献2の静電容量式、その他、光学式などが知られている。 Devices for detecting the rotation angle of rotational motion are widely known, and for example, the magnetic type described in Document 1, the capacitance type described in Document 2, and the optical type are known.
いずれの方式も1回転を越える多回転を計測するためには、角度に加えて回転数も計測する必要がある。通常、回転数のデータは装置の電源が切れると失われるため、それを記憶保持するための補助電源が必要となる。 In any method, in order to measure multiple rotations exceeding one rotation, it is necessary to measure the number of rotations in addition to the angle. Since rpm data is normally lost when the device is powered off, an auxiliary power source is required to store it.
補助電源の維持管理は容易ではないため、いわゆるバッテリレスの装置も発明されている。例えば文献3~5は、歯数の異なる2つの歯車を利用し、いわゆるバーニアの原理に基づいて多回転計測を可能としている。 Since it is not easy to maintain the auxiliary power supply, so-called batteryless devices have also been invented. For example, Documents 3 to 5 use two gears with different numbers of teeth to enable multi-rotation measurement based on the so-called vernier principle.
しかし、歯車のバックラッシは検出精度を悪化させるため、これを除去することは長年の課題となっている(例えば文献6)。 However, since the backlash of the gear deteriorates the detection accuracy, its removal has been a long-standing problem (for example, Document 6).
特許第6626476号Patent No. 6626476 米国特許出願公開第2002/000129号U.S. Patent Application Publication No. 2002/000129 特開2000-283704JP 2000-283704 特開2004-354075JP 2004-354075 特開2007-155698JP 2007-155698 特許第3882167号Patent No. 3882167 特開2004-044620JP 2004-044620
そこで、バックラッシ除去機構および、それを応用した回転角検出装置を提供する。 Therefore, a backlash removal mechanism and a rotation angle detection device using the same are provided.
よって、本発明は、要旨、以下のものを提供する。
〔1〕 基材と、大歯車と、第1の小歯車と、第2の小歯車と、遊星歯車と、付勢機構とを備え、大歯車は回転自在に基材に保持され、第1の小歯車は大歯車と噛み合いながら回転自在に基材に保持され、第2の小歯車は大歯車と噛み合いながら回転自在に基材に保持され、遊星歯車は、第1の小歯車および第2の小歯車の両方に噛み合いながら、第1の小歯車および第2の小歯車および遊星歯車のそれぞれの回転軸がおおよそ同一平面上に並ぶ位置で、回転自在に付勢機構に保持され、付勢機構は大歯車の回転面と平行な面上を運動する1自由度の機構であって、該運動は復元力を備え、遊星歯車を付勢してバックラッシを除去する、バックラッシ除去機構。
〔2〕 前記遊星歯車が段付遊星歯車であって、第1の段付歯車と第2の段付歯車とをさらに備え、前記大歯車は回転自在に基材に保持され、第1の段付歯車の下段は前記大歯車と噛み合いながら回転自在に基材に保持され、第2の段付歯車の下段は前記大歯車と噛み合いながら回転自在に基材に保持され、第1の小歯車は第1の段付歯車の上段と噛み合いながら回転自在に基材に保持され、第2の小歯車は第2の段付歯車の上段と噛み合いながら回転自在に基材に保持され、第1の段付歯車の上段の歯数と、第2の段付歯車の上段の歯数とが同じであって、前記段付遊星歯車の上段の歯数に対する下段の歯数の比が、第1の段付歯車の下段の歯数に対する第2の段付歯車の下段の歯数の比と等しく、前記段付遊星歯車は、その下段が第1の小歯車にかみ合いながら且つその上段が第2の小歯車に噛み合いながら、第1の小歯車および第2の小歯車および前記段付遊星歯車のそれぞれの回転軸がおおよそ同一平面上に並ぶ位置で、回転自在に付勢機構に保持される、〔1〕に記載のバックラッシ除去機構。
〔3〕 第1の段付歯車が、前記大歯車と第1の小歯車とを連結する第1の段付歯車列であって、第2の段付歯車が、前記大歯車と第2の小歯車とを連結する第2の段付歯車列であって、これらの歯車列内のすべての歯車は、それぞれが基材に回転自在に保持され、前記段付遊星歯車を付勢して歯車列間の全てのバックラッシを除去する、〔1〕または〔2〕に記載のバックラッシ除去機構。
〔4〕 第1の小歯車と、第2の小歯車とが、それぞれアブソリュートエンコーダを備えることを特徴とする、〔1〕~〔3〕のいずれかに記載のバックラッシ除去機構。
〔5〕 〔1〕~〔4〕のいずれかに記載のバックラッシ除去機構を備える回転角検出装置。
〔6〕 〔1〕~〔4〕のいずれかに記載のバックラッシ除去機構を備える減速機。
〔7〕 本明細書中に記載の第1の小歯車の回転数ならびに回転角度を、次の手順1~4に基づいて求める方法。
(1)第1の小歯車(歯数をZとする)、第2の小歯車(歯数をYとする)の歯角をそれぞれ0とする初期状態を適当に定める。
(2)任意の回転状態において、第1の小歯車の歯角Aと第2の小歯車の歯角Bをそれぞれ計測する。
(3)第2の小歯車の歯角Bから第1の小歯車の歯角Aを減算し、参照歯角Cを求める。
(4)C=Z×N mod Yの関係から、参照歯角Cに対する第1の小歯車の回転数Nを求める。
Accordingly, the present invention provides, in summary, the following.
[1] A substrate, a large gear, a first small gear, a second small gear, a planetary gear, and an urging mechanism, wherein the large gear is rotatably held by the substrate; The small gear is rotatably held by the base while meshing with the large gear, the second small gear is rotatably held by the base while meshing with the large gear, and the planetary gears are the first small gear and the second While meshing with both of the small gears, the first small gear, the second small gear, and the planetary gear are rotatably held by the biasing mechanism at a position where the respective rotation axes of the first and second small gears and the planetary gears are aligned approximately on the same plane. A backlash eliminating mechanism, wherein the mechanism is a one degree of freedom mechanism that moves in a plane parallel to the plane of rotation of the gear, the motion having a restoring force and urging the planetary gears to eliminate backlash.
[2] The planetary gear is a stepped planetary gear, further comprising a first stepped gear and a second stepped gear, the large gear being rotatably held by a base material, and the first stage gear The lower stage of the stepped gear is rotatably held by the base material while meshing with the large gear, the lower stage of the second stepped gear is rotatably held by the base material while meshing with the large gear, and the first small gear is The second pinion is rotatably held by the base material while meshing with the upper stage of the first stepped gear, and the second pinion is rotatably held by the base material while meshing with the upper stage of the second stepped gear. The number of teeth of the upper stage of the stepped gear is the same as the number of teeth of the upper stage of the second stepped gear, and the ratio of the number of teeth of the lower stage to the number of teeth of the upper stage of the stepped planetary gear is equal to the number of teeth of the first stage. equal to the ratio of the number of teeth of the lower stage of the second stepped gear to the number of teeth of the lower stage of the stepped gear, said stepped planetary gear having its lower stage meshing with the first pinion and its upper stage meshing with the second pinion. While meshing with the gears, the first small gear, the second small gear, and the stepped planetary gear are rotatably held by an urging mechanism at a position where the respective rotation axes of the first small gear and the second small gear and the stepped planetary gear are aligned approximately on the same plane. ].
[3] A first stepped gear is a first stepped gear train that connects the large gear and the first pinion, and a second stepped gear is the gear that connects the large gear and the second pinion. a second stepped gear train coupled to the pinion gears, all gears in these gear trains being rotatably retained on respective substrates to urge said stepped planetary gears to The backlash removing mechanism according to [1] or [2], which removes all backlash between rows.
[4] The backlash removing mechanism according to any one of [1] to [3], wherein the first pinion and the second pinion each include an absolute encoder.
[5] A rotation angle detection device comprising the backlash removing mechanism according to any one of [1] to [4].
[6] A reduction gear comprising the backlash removing mechanism according to any one of [1] to [4].
[7] A method of determining the rotation speed and rotation angle of the first pinion described in this specification based on the following procedures 1-4.
(1) An initial state in which the tooth angles of the first pinion (the number of teeth is Z) and the second pinion (the number of teeth is Y) are set to 0 is appropriately determined.
(2) Measure the tooth angle A of the first pinion and the tooth angle B of the second pinion in an arbitrary rotating state.
(3) Subtract the tooth angle A of the first pinion from the tooth angle B of the second pinion to obtain the reference tooth angle C.
(4) From the relationship C=Z×N mod Y, the rotation speed N of the first pinion with respect to the reference tooth angle C is obtained.
図1は本発明の原理を示しており、基材1と、大歯車2と、第1の小歯車3と、第2の小歯車4と、遊星歯車5と、付勢機構6とを備え、大歯車2は回転自在に基材1に保持され、第1の小歯車3は大歯車2と噛み合いながら回転自在に基材1に保持され、第2の小歯車4は大歯車2と噛み合いながら回転自在に基材1に保持され、遊星歯車5は、第1の小歯車3および第2の小歯車4の両方に噛み合いながら、第1の小歯車3および第2の小歯車4および遊星歯車5のそれぞれの回転軸がおおよそ同一平面上に並ぶ位置で回転自在に付勢機構6に保持され、付勢機構6は大歯車2の回転面と平行な面上を運動する1自由度の機構であって、該運動は復元力を備え、遊星歯車5を付勢してバックラッシを除去することを特徴とするバックラッシ除去機構である。 FIG. 1 shows the principle of the present invention, comprising a substrate 1, a large gear 2, a first pinion 3, a second pinion 4, a planetary gear 5 and a biasing mechanism 6. , the large gear 2 is rotatably held by the base material 1, the first small gear 3 is rotatably held by the base material 1 while meshing with the large gear 2, and the second small gear 4 is meshed with the large gear 2. While being rotatably held by the base material 1, the planetary gear 5 meshes with both the first small gear 3 and the second small gear 4, and the first small gear 3 and the second small gear 4 and the planets The rotation axes of the gears 5 are rotatably held by the biasing mechanism 6 at a position in which the rotation axes of the gears 5 are aligned approximately on the same plane. A backlash removing mechanism characterized in that the movement has a restoring force and urges the planetary gear 5 to remove backlash.
付勢機構6は、例えば、ばねで付勢したスイングアーム(文献7)などの公知発明を用いればよく、図1に示したように、ブロック6aと、案内6bと、圧縮ばね6cと、アンカー6dとを備え、ブロック6aは遊星歯車5を回転自在に保持し、基材1に固定された案内6bが定める経路を摺動し、圧縮ばね6cはブロック6aを押して付勢し、アンカー6dは基材1に固定され、圧縮ばね6cの反力を支承することを特徴とする付勢機構を用いてもよい。 The biasing mechanism 6 may be, for example, a known invention such as a spring-biased swing arm (Reference 7), and as shown in FIG. 6d, the block 6a rotatably retains the planetary gear 5 and slides along a path defined by a guide 6b fixed to the substrate 1, a compression spring 6c biases the block 6a, and an anchor 6d. A biasing mechanism that is fixed to the base material 1 and supports the reaction force of the compression spring 6c may be used.
この構成によれば、遊星歯車5が、大歯車2の回転軸に向かう方向に付勢されたとき、第1の小歯車3は反時計回りのトルクを、第2の小歯車4は時計まわりのトルクが与えられる。小歯車3および小歯車4は互いに反対方向のトルクが与えられるため、大歯車2を回転させることなく力が釣り合う。このとき、第1の小歯車3は大歯車2を時計回りに回転させるときに接する歯面にしか接せず、逆に第2の小歯車4は大歯車2を反時計回りに回転させるときに接する歯面にしか接しない。この作用によってバックラッシが解消される。なお、付勢機構は押すだけではなく引いてもよく、この場合は上記の接する歯面は逆向きになる。 According to this configuration, when the planetary gear 5 is urged in the direction toward the rotation axis of the large gear 2, the first small gear 3 produces counterclockwise torque and the second small gear 4 produces clockwise torque. of torque is applied. Since the small gear 3 and the small gear 4 are torqued in opposite directions, the forces are balanced without rotating the large gear 2 . At this time, the first pinion 3 contacts only the tooth flank that contacts when the large gear 2 is rotated clockwise, and conversely, the second pinion 4 contacts when the large gear 2 is rotated counterclockwise. contact only with the tooth flank that is in contact with This action eliminates the backlash. Note that the biasing mechanism may not only push, but also pull, in which case the contacting tooth flanks are reversed.
歯車列は互いに噛み合っているため、遊星歯車5あるいは付勢機構6は、ごくわずかな範囲でしか変位しないが、その範囲において、小歯車3および小歯車4と遊星歯車5とは差動機構を構成し、歯車の製造時の静的誤差や、摩耗や熱膨張などによる動的誤差に起因するバックラッシを除去する。 Since the gear train is meshed with each other, the planetary gear 5 or the biasing mechanism 6 is displaced only in a very small range, but within that range the pinion gears 3 and 4 and the planetary gear 5 form a differential mechanism. It eliminates backlash caused by static errors during gear manufacturing and dynamic errors such as wear and thermal expansion.
小歯車3および小歯車4と遊星歯車5とが差動機構を構成するためには、それぞれの回転軸がおおよそ同一平面上に並ぶ位置で遊星歯車5の回転を保持する必要がある。遊星歯車5の回転軸の位置をおおよそとしたのは、平歯車がある程度の軸間距離の変動に対して頑健なためである。したがって、付勢機構6は必ずしも直動機構でなくてもよく、前述したようにスイングアームなどの回転機構で近似的に直線運動をさせてもよい。また、本明細書において、歯車とは、歯の噛み合いで動力を伝達する機構のことを言い、バックラッシを内包する歯車である限り、平歯車のほかに、はすば歯車、やまば歯車などを用いてもよく、その歯形もインボリュートのほか、サイクロイドやトロコイドなどであってもよい。 In order for the pinion gears 3 and 4 and the planetary gears 5 to form a differential mechanism, it is necessary to hold the rotation of the planetary gears 5 at a position where their respective rotation axes are aligned approximately on the same plane. The reason why the positions of the rotation axes of the planetary gears 5 are approximated is that the spur gears are robust against variations in the distance between the axes to some extent. Therefore, the biasing mechanism 6 does not necessarily have to be a linear motion mechanism, and as described above, it may be approximately linearly moved by a rotating mechanism such as a swing arm. In this specification, the term "gear" refers to a mechanism that transmits power through meshing of teeth. The tooth profile may be involute, cycloid, trochoid, or the like.
図2に示すように、バックラッシ除去機構は、大歯車2が内歯車である場合も含み、大歯車2の歯数を無限大とした特殊な場合としてラックである場合も含む。大歯車2をラックとみなした場合、その運動は回転運動ではなく直線運動とみなすことができる。また、小歯車3および小歯車4との適切な噛み合いが得られる条件であれば、大歯車2は必ずしも円形である必要はなく、自由曲線に歯を設けたものであってもよい。 As shown in FIG. 2, the backlash removing mechanism includes a case where the large gear 2 is an internal gear, and a rack as a special case where the number of teeth of the large gear 2 is infinite. If the gear 2 is regarded as a rack, its motion can be regarded as linear motion rather than rotary motion. Further, the large gear 2 does not necessarily have to be circular, and may be provided with teeth on a free curve as long as it can be properly meshed with the small gears 3 and 4 .
図3に示すように、遊星歯車5の歯数や径を大きくしたい場合は、小歯車3および小歯車4の歯幅を大きくし、小歯車3および小歯車4と遊星歯車5との噛み合い位置を歯筋方向にずらすことで干渉を避けてもよい。 As shown in FIG. 3, when it is desired to increase the number of teeth and the diameter of the planetary gear 5, the tooth width of the small gear 3 and the small gear 4 is increased, and the engagement position between the small gear 3 and the small gear 4 and the planetary gear 5 is adjusted. may be shifted in the tooth trace direction to avoid interference.
小歯車3および小歯車4は必ずしも同じ歯数である必要はなく、むしろ異なる歯数を選び、それぞれにアブソリュートエンコーダを備えれば、多回転の回転角検出装置として利用することができる。アブソリュートエンコーダとは、1回転の範囲内で回転角の絶対値計測が可能な装置を意味する。 The small gears 3 and 4 do not necessarily have the same number of teeth. Rather, if different numbers of teeth are selected and absolute encoders are provided for each, they can be used as a multi-rotation rotation angle detector. An absolute encoder means a device that can measure the absolute value of the rotation angle within the range of one rotation.
第1の小歯車3の回転角と、第2の小歯車4の回転角は、それぞれの歯数の最小公倍数の範囲で固有の組み合わせを示すため、その範囲内で多回転の計測が可能となる。例えば第1の小歯車の歯数が19、第2の小歯車の歯数が17の場合は、323の歯数まで計測することができる。その際、大歯車の歯数を323とした場合、第2の小歯車は19倍の分解能で大歯車の回転角を計測することができる。 Since the rotation angle of the first pinion 3 and the rotation angle of the second pinion 4 show a unique combination within the range of the least common multiple of the number of teeth, it is possible to measure multiple rotations within that range. Become. For example, if the number of teeth of the first pinion is 19 and the number of teeth of the second pinion is 17, it is possible to measure up to 323 teeth. At this time, if the number of teeth of the large gear is 323, the second small gear can measure the rotation angle of the large gear with 19 times the resolution.
さらに小歯車の歯数を適当な素数の積とすると、大歯車に種々の寸法を選択することができる。例えば第1の小歯車の歯数が2×7=14、第2の小歯車の歯数が3×5=15の場合は、210の歯数まで計測することができる。その際、大歯車の歯数を210(=2×3×5×7)とした場合は1回転、105(=3×5×7)とした場合は2回転、70(=2×5×7)とした場合は3回転、42(2×3×7)とした場合は5回転、35(=5×7)とした場合は6回転、30(=2×3×5)とした場合は7回転、21(=3×7)とした場合は10回転まで大歯車の回転数を計測することができる。 Furthermore, if the number of teeth of the pinion is a product of suitable prime numbers, various sizes can be selected for the large gear. For example, if the number of teeth of the first pinion is 2×7=14 and the number of teeth of the second pinion is 3×5=15, up to 210 teeth can be measured. At that time, if the number of teeth of the large gear is 210 (= 2 x 3 x 5 x 7), 1 rotation, if it is 105 (= 3 x 5 x 7), 2 rotations, 70 (= 2 x 5 x 3 rotations if 7), 5 rotations if 42 (2 x 3 x 7), 6 rotations if 35 (= 5 x 7), 30 (= 2 x 3 x 5) is 7 rotations, and if 21 (=3×7), the number of rotations of the large gear can be measured up to 10 rotations.
ここで、小歯車の歯数が14および15の場合、素因数は最小の素数から順に選んだ素数列2,3,5,7から重複しないように選んでおり、上記最小公倍数の意味で歯数が最小になる点と、おおよそ歯数が等しくなる点とにおいて設計上の特段の意味をもつ。歯数が小さすぎる場合は任意の共通の自然数をそれぞれに乗じてもよく、すなわち歯数の比が14:15となるようにすればよい。 Here, when the number of teeth of the pinion is 14 and 15, the prime factors are selected from the sequence of prime numbers 2, 3, 5, and 7, which are selected in order from the smallest prime number, without duplication. has a special meaning in terms of design at the point where the is the minimum and at the point where the number of teeth is approximately equal. If the number of teeth is too small, they may be multiplied by any common natural number, ie the ratio of the number of teeth is 14:15.
図4に示すように、バックラッシ除去機構は、基材1と、大歯車2と、第1の小歯車3と、第2の小歯車4と、段付遊星歯車5と、付勢機構6と、第1の段付歯車7と、第2の段付歯車8とを備え、大歯車2は回転自在に基材1に保持され、第1の段付歯車7の下段は大歯車2と噛み合いながら回転自在に基材1に保持され、第2の段付歯車8の下段は大歯車2と噛み合いながら回転自在に基材1に保持され、第1の小歯車3は第1の段付歯車7の上段と噛み合いながら回転自在に基材1に保持され、第2の小歯車4は第2の段付歯車8の上段と噛み合いながら回転自在に基材1に保持され、段付遊星歯車5の下段は、第1の小歯車3、上段は第2の小歯車4に噛み合いながら、第1の小歯車3および第2の小歯車4および段付遊星歯車5のそれぞれの回転軸がおおよそ同一平面上に並ぶ位置で回転自在に付勢機構6に保持され、付勢機構6は大歯車2の回転面と平行な面上を運動する1自由度の機構であって、該運動は復元力を備え、段付遊星歯車5を付勢してバックラッシを除去することを特徴とするバックラッシ除去機構であってもよい。ここで、紙面の奥側に位置する歯車を下段、紙面の手前側にある歯車を上段としているが、全ての歯車で上下の方向を統一していれば、上下段は入れ替えても良い。 As shown in FIG. 4, the backlash removing mechanism includes a base material 1, a large gear 2, a first small gear 3, a second small gear 4, a stepped planetary gear 5, and an urging mechanism 6. , a first stepped gear 7 and a second stepped gear 8, the large gear 2 is rotatably held on the base material 1, and the lower stage of the first stepped gear 7 meshes with the large gear 2. The lower stage of the second stepped gear 8 is rotatably held by the base 1 while meshing with the large gear 2, and the first small gear 3 is held by the first stepped gear. The second small gear 4 is rotatably held by the base material 1 while meshing with the upper stage of the second stepped gear 8 , and the stepped planetary gear 5 While the lower stage meshes with the first small gear 3 and the upper stage meshes with the second small gear 4, the rotation axes of the first small gear 3, the second small gear 4 and the stepped planetary gear 5 are approximately the same. It is rotatably held by an urging mechanism 6 at a position aligned on a plane, and the urging mechanism 6 is a mechanism with one degree of freedom that moves on a plane parallel to the rotation plane of the large gear 2, and the movement is a restoring force. and urging the stepped planetary gear 5 to remove the backlash. Here, the gears located on the far side of the paper are the lower gears, and the gears on the front side of the paper are the upper gears.
この構成によれば、図1の構成における小歯車3および小歯車4の歯数を素数倍にする効果があるため、装置の寸法を小さく保ちつつ、計測可能な回転数の範囲を大きく増すことができる。ただし、遊星歯車5から大歯車2に至る歯車列の減速比は、第1および第2の系列で一致するように選ばなければならない。そのため遊星歯車は、一般的に、段付歯車(上下段の歯数が一致して普通の平歯車になる特殊な場合も含む)とする必要がある。 This configuration has the effect of increasing the number of teeth of the pinion gears 3 and 4 in the configuration of FIG. can be done. However, the reduction ratio of the gear train from the planetary gear 5 to the large gear 2 must be selected so as to match between the first and second trains. Therefore, planetary gears generally need to be stepped gears (including special cases in which the number of teeth of the upper and lower stages are the same and become ordinary spur gears).
段付遊星歯車5の上下段の歯数は減速比の簡単な計算から導くことができ、段付遊星歯車5の下段の歯数と、第1の段付歯車7の下段の歯数と、第2の段付歯車8の上段の歯数との積が、段付遊星歯車5の上段の歯数と、第2の段付歯車7の下段の歯数と、第1の段付歯車8の上段の歯数との積と一致するようにすればよい。この条件下では、段付歯車7の上段の歯数と、段付歯車8の上段の歯数とを任意の歯数に一致させたとき、段付遊星歯車5の上段の歯数に対する段付遊星歯車5の下段の歯数の比は、段付歯車7の下段の歯数に対する段付歯車8の下段の歯数の比と一致する。 The number of teeth of the upper and lower stages of the stepped planetary gear 5 can be derived from a simple calculation of the reduction ratio. The product of the number of teeth of the upper stage of the second stepped gear 8 is the number of teeth of the upper stage of the stepped planetary gear 5 , the number of teeth of the lower stage of the second stepped gear 7 , and the first stepped gear 8 . and the number of teeth of the upper stage of . Under this condition, when the number of teeth of the upper stage of the stepped gear 7 and the number of teeth of the upper stage of the stepped gear 8 are matched with an arbitrary number of teeth, The ratio of the number of teeth of the lower stage of the planetary gear 5 matches the ratio of the number of teeth of the lower stage of the stepped gear 8 to the number of teeth of the lower stage of the stepped gear 7 .
例えば、第1の段付歯車7の下段の歯数を15、第1の小歯車3の歯数を11、第2の段付歯車8の下段の歯数を14、第2の小歯車4の歯数を13、段付歯車7および段付歯車8の上段の歯数を同一の任意の歯数(例えば、歯数をそれぞれ10としたとき)としたとき、段付遊星歯車5の上下段の歯数はそれぞれ15,14とすればよい。この場合、第1の小歯車の回転数と第2の小歯車の回転数との比率は、図1の構成において第1の小歯車の歯数を(15×11=165)、第2の小歯車の歯数を(14×13=182)とした場合の比率と等しくなり、両歯数の最小公倍数30030までの歯数を計測することができる。 For example, the number of teeth of the lower stage of the first stepped gear 7 is 15, the number of teeth of the first pinion 3 is 11, the number of teeth of the second stepped gear 8 is 14, and the number of teeth of the second pinion 4 is 14. is 13, and the number of teeth of the upper stage of the stepped gear 7 and the stepped gear 8 is the same arbitrary number of teeth (for example, when the number of teeth of each is 10), the upper part of the stepped planetary gear 5 The number of teeth of the lower stage should be 15 and 14, respectively. In this case, the ratio between the number of revolutions of the first pinion and the number of revolutions of the second pinion is the number of teeth of the first pinion (15×11=165) in the configuration of FIG. It is equal to the ratio when the number of teeth of the pinion is (14×13=182), and the number of teeth up to 30030, which is the least common multiple of both numbers of teeth, can be measured.
例示した歯数11,13,14,15の素因数は、最小の素数から順に選んだ素数列2,3,5,7,11,13から重複しないように選んでおり、上記最小公倍数の意味で歯数が最小になる点と、おおよそ歯数が等しくなる点とにおいて設計上の特段の意味をもつ。歯数が小さすぎる場合は任意の共通の自然数をそれぞれに乗じてもよく、すなわち歯数の比が順番を問わず11:13:14:15となるようにすればよい。同様に好適な組み合わせとして、13:14:15:17、14:15:17:19、17:19:21:22、19:21:22:23などがある。 The prime factors of 11, 13, 14, and 15 teeth shown in the example are selected from the sequence of prime numbers 2, 3, 5, 7, 11, and 13, which are selected in order from the smallest prime number, so as not to overlap, and in the sense of the least common multiple The point with the smallest number of teeth and the point with approximately the same number of teeth have special significance in terms of design. If the number of teeth is too small, they may be multiplied by any common natural number, ie the ratio of the number of teeth should be 11:13:14:15 regardless of the order. Similarly suitable combinations include 13:14:15:17, 14:15:17:19, 17:19:21:22, 19:21:22:23.
上記いずれの構成においても、いずれの歯車も駆動してもよく、その際は回転角を計測しながら減速機として使用することができる。例えば図4に示した構成では、基材に回転自在に固定された第2の小歯車4が駆動しやすい。 In any of the configurations described above, any gear may be driven, and in that case, it can be used as a speed reducer while measuring the rotation angle. For example, in the configuration shown in FIG. 4, it is easy to drive the second pinion 4 rotatably fixed to the base material.
第1のバックラッシ除去機構のいずれかの歯車と第2のバックラッシ除去機構のいずれかの歯車とを同一回転軸上で適当に結合すれば多段の減速機とすることができるが、図5に示すように、上記図4に示したバックラッシ除去機構の段付歯車が、大歯車2と小歯車3および小歯車4とをそれぞれ連結する段付歯車列10および段付歯車列11であって、歯車列内の歯車は、それぞれ基材1に回転自在に保持されることを特徴とするバックラッシ除去機構を用いても減速比の大きな減速機を得ることができる。この構成であれば、ひとつの付勢機構で全ての歯車のバックラッシを除去できるため効果的である。段付歯車列は、減速比の点において、減速比が等しい仮想の段付歯車に置き換えることができるため、図4の構成と同じ原理で多回転計測が可能である。 If any one gear of the first backlash removing mechanism and one of the gears of the second backlash removing mechanism are properly connected on the same rotating shaft, a multi-stage speed reducer can be constructed, as shown in FIG. 4 are the stepped gear train 10 and the stepped gear train 11 that connect the large gear 2, the small gear 3 and the small gear 4, respectively, and A reduction gear with a large reduction ratio can be obtained by using a backlash removing mechanism characterized in that each gear in the row is rotatably held on the base material 1 . This configuration is effective because it is possible to remove the backlash of all the gears with a single biasing mechanism. Since the stepped gear train can be replaced with a virtual stepped gear with the same reduction ratio in terms of the reduction ratio, multi-rotation measurement is possible on the same principle as the configuration of FIG.
本明細書において、歯車の回転角度を、進んだ歯の数で表した値を歯角とする。例えば歯数182の歯車が90度回転したときの歯角は182×90/360=45.5、180度回転したときの歯角は182×180/360=91である。 In this specification, the value expressed by the number of advanced teeth is referred to as the tooth angle. For example, when a gear with 182 teeth is rotated by 90 degrees, the tooth angle is 182×90/360=45.5, and when it is rotated by 180 degrees, the tooth angle is 182×180/360=91.
前述の例示と同様に、第1の小歯車および第2の小歯車の歯数をそれぞれ165、182とした場合、第1の小歯車がN回転(Nは負でない整数)したときの第2の小歯車の歯角Cは、除算の余りから容易に計算することができ、C=165×N mod 182となる。このように、第1の歯車の歯角を0に整列したときの第2の歯車の歯角を、特別に、参照歯角と呼ぶことにする。参照歯角Cは回転数Nに対して重複しない182通りの固有の数値を示すため、これらの組み合わせを読み取ることで第1の歯車の回転数と回転角をそれぞれ知ることができる。その際、参照歯角Cから回転数Nを逆引きするために、例えば図9のようなルックアップテーブルを事前に作成しておくことが望ましい。 As in the above example, when the numbers of teeth of the first pinion and the second pinion are set to 165 and 182, respectively, when the first pinion rotates N (N is a non-negative integer), the second The tooth angle C of the pinion can be easily calculated from the remainder of the division, and becomes C=165×N mod 182. Thus, the tooth angle of the second gear when the tooth angle of the first gear is aligned with 0 is specifically called the reference tooth angle. Since the reference tooth angle C indicates 182 unique numerical values that do not overlap with respect to the number of rotations N, the number of rotations and the angle of rotation of the first gear can be known by reading these combinations. In this case, it is desirable to create a lookup table such as that shown in FIG.
以上の方法によれば、次の手順に基づいて、第1の小歯車の回転数と回転角度とを計算することができる。ただし、前述の例示のように、第1および第2の歯車の回転数の比を、段付歯車の作用によって、11:13から165:182に変更し、あたかも第1および第2の歯車の歯数がそれぞれ165、182になったかのような効果が得られることもあることから、段付歯車または段付歯車列を用いる場合は、下記第1および第2の歯車は、これら仮想の歯車を指すものとする。
(1)第1の小歯車(歯数をZとする)、第2の小歯車(歯数をYとする)の歯角をそれぞれ0とする初期状態を適当に定める。
(2)任意の回転状態において、第1の小歯車の歯角Aと第2の小歯車の歯角Bをそれぞれ計測する。
(3)第2の小歯車の歯角Bから第1の小歯車の歯角Aを減算し、参照歯角Cを求める。
(4)C=Z×N mod Yの関係から、参照歯角Cに対する第1の小歯車の回転数Nを求める。
According to the above method, the rotation speed and rotation angle of the first pinion can be calculated based on the following procedure. However, as in the example above, the ratio of the number of rotations of the first and second gears is changed from 11:13 to 165:182 by the action of the stepped gear, as if the first and second gears Since the number of teeth may be 165 and 182, respectively, when using a stepped gear or stepped gear train, the following first and second gears are these virtual gears. shall point to
(1) An initial state in which the tooth angles of the first pinion (the number of teeth is Z) and the second pinion (the number of teeth is Y) are set to 0 is appropriately determined.
(2) Measure the tooth angle A of the first pinion and the tooth angle B of the second pinion in an arbitrary rotating state.
(3) Subtract the tooth angle A of the first pinion from the tooth angle B of the second pinion to obtain the reference tooth angle C.
(4) From the relationship C=Z×N mod Y, the rotation speed N of the first pinion with respect to the reference tooth angle C is obtained.
例えば、Z=165、Y=182とし、10ビット(0~1023の整数値を示す)の絶対値エンコーダを用い、第1の小歯車の読取値が99、第2の小歯車の読取値が298であったとすると、上記(2)の歯角はそれぞれ、A=165×99/1024=15.
95、B=182×298/1024=52.96である。ルックアップテーブルを読み取るには、第1の小歯車の歯角を0に整列する必要があるから、上記(3)に記載したように参照歯角Cを求めると、C=52.96-15.96=37となる。図9で、一の位7、十の位30の参照歯角に対応する回転数を読み取ると、N=137を示すことがわかる。よって、第1の歯車はN=137回転後、歯数A=15.95だけ進んだ状態であることがわかる。検算すると、第1の歯車が進めた歯数は、137×165+15.95=22620.95、両者は大歯車で連結されていて同じ歯数だけ進むから、第2の歯車の歯角は、22620.95 mod 182=52.95となり、エンコーダの誤差を考慮すると上記の計算と一致していると言える。なお、回転数が負になる場合は回転数に182を加えればよく、例えばN=-3の状態は、N=182-3=179の状態と等しく扱うことができる。
For example, Z = 165, Y = 182, using a 10-bit (indicating an integer value from 0 to 1023) absolute encoder, the reading of the first pinion is 99, the reading of the second pinion is 298, the tooth angles in (2) above are A=165×99/1024=15.
95, and B=182×298/1024=52.96. In order to read the lookup table, it is necessary to align the tooth angle of the first pinion to zero. .96=37. In FIG. 9, it can be seen that N=137 when reading the number of revolutions corresponding to the reference tooth angles in the ones place 7 and the tens place 30. Therefore, it can be seen that the first gear is advanced by the number of teeth A=15.95 after N=137 revolutions. By calculation, the number of teeth advanced by the first gear is 137 x 165 + 15.95 = 22620.95. Since both are connected by a large gear and advance by the same number of teeth, the tooth angle of the second gear is 22620. .95 mod 182=52.95, which agrees with the above calculation considering the encoder error. If the number of revolutions becomes negative, 182 should be added to the number of revolutions. For example, the state of N=-3 can be treated equally to the state of N=182-3=179.
大歯車の回転数は第1の歯車との減速比に応じて容易に計算することができるが、大歯車にも第3のエンコーダを設ければ、計測可能な回転数をさらに増す事ができる。第1、第2の小歯車は30030の歯数まで計測することができるため、歯数30030の歯車とみなすことができる。その仮想の歯車と大歯車との関係は前記第1、第2の小歯車の関係と同じであるから、前記の手順に基づいて、大歯車の歯数と30030の最小公倍数の歯数までを計測することができる。例えば大歯車の歯数を30030の素因数と重複しない17、19、23などの素数とすると、30030回転まで計測することができる。 The number of rotations of the large gear can be easily calculated according to the reduction ratio with the first gear, but if the large gear is also provided with a third encoder, the measurable number of rotations can be further increased. . Since the number of teeth of the first and second small gears can be measured up to 30,030, they can be regarded as gears with 30,030 teeth. Since the relationship between the virtual gear and the large gear is the same as the relationship between the first and second small gears, based on the above procedure, the number of teeth of the large gear and the number of teeth of the least common multiple of 30030 are calculated. can be measured. For example, if the number of teeth of the large gear is a prime number such as 17, 19, or 23 that does not overlap with a prime factor of 30,030, then up to 30,030 revolutions can be measured.
歯車のバックラッシを除去する一般的な方法には、いわゆるシザーズギヤがあるが、全ての歯車段にそれを用いなければならない点と、付勢機構自体が回転するため、その調整や組み付けが容易でない点が課題であった。本バックラッシ除去機構によれば、歯車列のバックラッシを一元的に除去することができ、付勢力も必要に応じて可変とすることができる点で効果が大きい。 A common method for removing gear backlash is the so-called scissor gear, but it must be used for all gear stages, and the biasing mechanism itself rotates, making it difficult to adjust and assemble. was the problem. According to this backlash removing mechanism, the backlash of the gear train can be removed centrally, and the biasing force can be varied as needed, which is a great advantage.
本バックラッシ除去機構は、その構成要素を用いて多回転角度計を構成することもでき、減速機として使用することもできる。実用的な実施においては、角度計と減速機は併用されることが多いため、バックラッシ除去機構の構成要素を用いてそれらが実現できる点において効果が高い。 The backlash elimination mechanism can also be used as a speed reducer, or can constitute a multi-rotation goniometer using its constituent elements. In practical implementation, the goniometer and speed reducer are often used together, so it is highly effective in that they can be realized using the components of the backlash elimination mechanism.
バックラッシ除去機構の原理を示した図である。It is the figure which showed the principle of a backlash removal mechanism. 大歯車が内歯車である場合のバックラッシ除去機構を示した図である。It is the figure which showed the backlash removal mechanism in case a large gear is an internal gear. 大歯車と遊星歯車とが干渉しない状態を示した図である。It is the figure which showed the state which a large gear and a planetary gear do not interfere. 大歯車と小歯車との間に段付歯車を設けた例を示した図である。It is the figure which showed the example which provided the stepped gear between the large gear and the small gear. 図4の段付歯車を段付歯車列とした例を示した図である。5 is a diagram showing an example in which the stepped gear in FIG. 4 is a stepped gear train; FIG. バックラッシ除去機構を応用した回転角検出装置の実施例を示した図である。FIG. 4 is a diagram showing an embodiment of a rotation angle detection device to which a backlash removal mechanism is applied; 図6の検出部分の展開図である。FIG. 7 is an exploded view of the detection portion of FIG. 6; 図7の付勢機構を抜き出して示した図である。It is the figure which extracted and showed the biasing mechanism of FIG. ルックアップテーブルの例を示した図である。FIG. 4 is a diagram showing an example of a lookup table;
図6は本発明を回転角検出装置として実施した例であって、図7は大歯車を除いた検出部分の展開図を示し、基材1と、大歯車2と、第1の小歯車3と、第2の小歯車4と、遊星歯車5と、付勢機構6とを備え、大歯車2は回転自在に基材(図示していないが基材1aと結合している)に保持され、第1の小歯車3は大歯車2と噛み合いながら回転自在に基材1に保持され、第2の小歯車4は大歯車2と噛み合いながら回転自在に基材1に保持され、遊星歯車5は、第1の小歯車3および第2の小歯車4の両方に噛み合いながら、第1の小歯車3および第2の小歯車4および遊星歯車5のそれぞれの回転軸がおおよそ同一平面上に並ぶ位置で、回転自在に付勢機構6に保持され、付勢機構6は大歯車2の回転面と平行な面上を運動する1自由度の機構であって、該運動は復元力を備え、遊星歯車5を付勢してバックラッシを除去することを特徴とする回転角検出装置を示したものである。 FIG. 6 shows an example in which the present invention is implemented as a rotation angle detection device, and FIG. , a second small gear 4, a planetary gear 5, and an urging mechanism 6. The large gear 2 is rotatably held by a base (not shown but coupled to the base 1a). , the first small gear 3 is rotatably held on the base 1 while meshing with the large gear 2, the second small gear 4 is rotatably held on the base 1 while meshing with the large gear 2, and the planetary gear 5 While meshing with both the first pinion 3 and the second pinion 4, the respective rotation axes of the first pinion 3 and the second pinion 4 and the planetary gear 5 are aligned approximately on the same plane. position, it is rotatably held by a biasing mechanism 6, the biasing mechanism 6 being a one-degree-of-freedom mechanism that moves on a plane parallel to the plane of rotation of the gear wheel 2, the motion having a restoring force, The rotation angle detection device is characterized in that the planetary gear 5 is energized to eliminate backlash.
基材1は、下ケース1aと、上ケース1bと、止めねじ1cと、軸受1fとを含み、上ケース1bは歯車窓1dを備え、止めねじ1cはネジ穴1eを介して下ケース1aと上ケース1bとを結合する。 The base material 1 includes a lower case 1a, an upper case 1b, a set screw 1c, and a bearing 1f. It connects with the upper case 1b.
第1の小歯車3は本体3aと永久磁石3bとを備え、第2の小歯車4も本体4aと永久磁石4bとを備え、それぞれ軸受1fを介して回転自在に基材1に保持される。 The first small gear 3 has a main body 3a and a permanent magnet 3b, and the second small gear 4 also has a main body 4a and a permanent magnet 4b, which are rotatably held on the base material 1 via bearings 1f. .
回路基板9はネジ穴1eに固定され、裏面に磁気式エンコーダ9aを備え、永久磁石3b、4bの回転角を読み取る。 A circuit board 9 is fixed to the screw hole 1e, and has a magnetic encoder 9a on its back surface to read the rotation angles of the permanent magnets 3b and 4b.
図8は付勢機構を抜き出して示したものであり、凸型のブロック6aは回転軸6fを備え、回転軸6fは遊星歯車5を回転自在に保持し、基材1の同形のスロットに案内されて摺動し、「ひ」形の板ばね6cの頂点に当接し、板ばね6cの端部は滑らかな弧状で、基材1に当接して滑り、そのたわみによる復元力でブロック6aを付勢することを特徴とする付勢機構である。 FIG. 8 is an extracted view of the biasing mechanism. A convex block 6a is provided with a rotating shaft 6f, which rotatably holds the planetary gear 5 and guides it into the same shaped slot of the substrate 1. The leaf spring 6c slides against the apex of the leaf spring 6c, and the end of the leaf spring 6c has a smooth arc shape and slides in contact with the base material 1, and the restoring force due to the deflection of the leaf spring 6c slides down the block 6a. An urging mechanism characterized by urging.

Claims (7)

  1. 基材と、大歯車と、第1の小歯車と、第2の小歯車と、遊星歯車と、付勢機構とを備え、大歯車は回転自在に基材に保持され、第1の小歯車は大歯車と噛み合いながら回転自在に基材に保持され、第2の小歯車は大歯車と噛み合いながら回転自在に基材に保持され、遊星歯車は、第1の小歯車および第2の小歯車の両方に噛み合いながら、第1の小歯車および第2の小歯車および遊星歯車のそれぞれの回転軸がおおよそ同一平面上に並ぶ位置で、回転自在に付勢機構に保持され、付勢機構は大歯車の回転面と平行な面上を運動する1自由度の機構であって、該運動は復元力を備え、遊星歯車を付勢してバックラッシを除去する、バックラッシ除去機構。 A substrate, a large gear, a first pinion, a second pinion, a planetary gear, and a biasing mechanism, wherein the large gear is rotatably held by the substrate and the first pinion is rotatably held on the base while meshing with the large gear; a second pinion is rotatably held on the base while meshing with the large gear; planetary gears are the first pinion and the second pinion; While meshing with both, the first small gear, the second small gear, and the planetary gear are rotatably held by the biasing mechanism at a position where the respective rotation axes are aligned approximately on the same plane, and the biasing mechanism is a large A backlash elimination mechanism, a one degree of freedom mechanism for motion in a plane parallel to the plane of rotation of the gear, the motion having a restoring force to urge the planetary gear to eliminate backlash.
  2. 前記遊星歯車が段付遊星歯車であって、第1の段付歯車と第2の段付歯車とをさらに備え、前記大歯車は回転自在に基材に保持され、第1の段付歯車の下段は前記大歯車と噛み合いながら回転自在に基材に保持され、第2の段付歯車の下段は前記大歯車と噛み合いながら回転自在に基材に保持され、第1の小歯車は第1の段付歯車の上段と噛み合いながら回転自在に基材に保持され、第2の小歯車は第2の段付歯車の上段と噛み合いながら回転自在に基材に保持され、第1の段付歯車の上段の歯数と、第2の段付歯車の上段の歯数とが同じであって、前記段付遊星歯車の上段の歯数に対する下段の歯数の比が、第1の段付歯車の下段の歯数に対する第2の段付歯車の下段の歯数の比と等しく、前記段付遊星歯車は、その下段が第1の小歯車にかみ合いながら且つその上段が第2の小歯車に噛み合いながら、第1の小歯車および第2の小歯車および前記段付遊星歯車のそれぞれの回転軸がおおよそ同一平面上に並ぶ位置で、回転自在に付勢機構に保持される、請求項1に記載のバックラッシ除去機構。 The planetary gear is a stepped planetary gear, further comprising a first stepped gear and a second stepped gear, wherein the large gear is rotatably held by a base material and the first stepped gear The lower stage is rotatably held by the base material while meshing with the large gear, the lower stage of the second stepped gear is rotatably held by the base material while meshing with the large gear, and the first pinion is held by the first gear. The second pinion is rotatably held by the base while meshing with the upper stage of the stepped gear, the second pinion is rotatably held by the base while meshing with the upper stage of the second stepped gear, and the first stepped gear The number of teeth of the upper stage is the same as the number of teeth of the upper stage of the second stepped gear, and the ratio of the number of teeth of the lower stage to the number of teeth of the upper stage of the stepped planetary gear is equal to that of the first stepped gear. equal to the ratio of the number of teeth of the lower stage of the second step gear to the number of teeth of the lower stage, said stepped planetary gear having its lower stage meshing with the first pinion and its upper stage meshing with the second pinion 2. The urging mechanism according to claim 1, wherein the rotation axes of the first pinion, the second pinion, and the stepped planetary gear are rotatably held by the biasing mechanism in a position where the rotation axes of the first pinion, the second pinion, and the stepped planetary gear are aligned approximately on the same plane. backlash elimination mechanism.
  3. 第1の段付歯車が、前記大歯車と第1の小歯車とを連結する第1の段付歯車列であって、第2の段付歯車が、前記大歯車と第2の小歯車とを連結する第2の段付歯車列であって、これらの歯車列内のすべての歯車は、それぞれが基材に回転自在に保持され、前記段付遊星歯車を付勢して歯車列間の全てのバックラッシを除去する、請求項1または2に記載のバックラッシ除去機構。 A first stepped gear is a first stepped gear train connecting the large gear and the first small gear, and a second stepped gear is the large gear and the second small gear. wherein all the gears in these gear trains are each rotatably supported on a substrate to urge the stepped planetary gears to move between the gear trains 3. A backlash elimination mechanism according to claim 1 or 2, which eliminates all backlash.
  4. 第1の小歯車と、第2の小歯車とが、それぞれアブソリュートエンコーダを備えることを特徴とする、請求項1~3のいずれかに記載のバックラッシ除去機構。 4. The backlash removing mechanism according to claim 1, wherein each of the first pinion and the second pinion has an absolute encoder.
  5. 請求項1~4のいずれかに記載のバックラッシ除去機構を備える回転角検出装置。 A rotation angle detection device comprising the backlash removing mechanism according to any one of claims 1 to 4.
  6. 請求項1~4のいずれかに記載のバックラッシ除去機構を備える減速機。 A speed reducer comprising the backlash removing mechanism according to any one of claims 1 to 4.
  7. 請求項1~4のいずれかに記載の第1の小歯車の回転数ならびに回転角度を、次の手順1~4に基づいて求める方法。
    (1)第1の小歯車(歯数をZとする)、第2の小歯車(歯数をYとする)の歯角をそれぞれ0とする初期状態を適当に定める。
    (2)任意の回転状態において、第1の小歯車の歯角Aと第2の小歯車の歯角Bをそれぞれ計測する。
    (3)第2の小歯車の歯角Bから第1の小歯車の歯角Aを減算し、参照歯角Cを求める。
    (4)C=Z×N mod Yの関係から、参照歯角Cに対する第1の小歯車の回転数Nを求める。
    A method for determining the rotation speed and rotation angle of the first pinion according to any one of claims 1 to 4 based on the following procedures 1 to 4.
    (1) An initial state in which the tooth angles of the first pinion (the number of teeth is Z) and the second pinion (the number of teeth is Y) are set to 0 is appropriately determined.
    (2) Measure the tooth angle A of the first pinion and the tooth angle B of the second pinion in an arbitrary rotating state.
    (3) Subtract the tooth angle A of the first pinion from the tooth angle B of the second pinion to obtain the reference tooth angle C.
    (4) From the relationship C=Z×N mod Y, the rotation speed N of the first pinion with respect to the reference tooth angle C is obtained.
PCT/JP2021/034005 2021-09-15 2021-09-15 Backlash eliminating mechanism and rotation angle detecting device WO2023042321A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/034005 WO2023042321A1 (en) 2021-09-15 2021-09-15 Backlash eliminating mechanism and rotation angle detecting device
JP2022517942A JP7130296B1 (en) 2021-09-15 2021-09-15 Backlash removal mechanism and rotation angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034005 WO2023042321A1 (en) 2021-09-15 2021-09-15 Backlash eliminating mechanism and rotation angle detecting device

Publications (1)

Publication Number Publication Date
WO2023042321A1 true WO2023042321A1 (en) 2023-03-23

Family

ID=83152211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034005 WO2023042321A1 (en) 2021-09-15 2021-09-15 Backlash eliminating mechanism and rotation angle detecting device

Country Status (2)

Country Link
JP (1) JP7130296B1 (en)
WO (1) WO2023042321A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025990U (en) * 1995-12-18 1996-06-25 祐司 澤木 Backlash removal equipment
JP2002500330A (en) * 1997-12-30 2002-01-08 ネクストロム・ホールディング・ソシエテ・アノニム Transmission device
JP2007155698A (en) * 2005-12-08 2007-06-21 Bei Sensors & Systems Co Inc Multi-turn non-contact angular position sensor
JP2012154417A (en) * 2011-01-26 2012-08-16 Nachi Fujikoshi Corp Backlash adjustment system
JP2015190842A (en) * 2014-03-28 2015-11-02 オリエンタルモーター株式会社 Rotation angle detection device using gear support mechanism that holds gear at proper position

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953173U (en) * 1972-08-25 1974-05-10
FR2221981A5 (en) * 1973-03-14 1974-10-11 France Etat
JPS60139945A (en) * 1983-12-12 1985-07-24 ユナイテツド・テクノロジーズ・コーポレイシヨン Composite power gear device
JP4953173B2 (en) 2005-06-14 2012-06-13 純一 武野 Awareness system
US20070295136A1 (en) * 2006-05-05 2007-12-27 The Regents Of The University Of California Anti-backlash gear system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025990U (en) * 1995-12-18 1996-06-25 祐司 澤木 Backlash removal equipment
JP2002500330A (en) * 1997-12-30 2002-01-08 ネクストロム・ホールディング・ソシエテ・アノニム Transmission device
JP2007155698A (en) * 2005-12-08 2007-06-21 Bei Sensors & Systems Co Inc Multi-turn non-contact angular position sensor
JP2012154417A (en) * 2011-01-26 2012-08-16 Nachi Fujikoshi Corp Backlash adjustment system
JP2015190842A (en) * 2014-03-28 2015-11-02 オリエンタルモーター株式会社 Rotation angle detection device using gear support mechanism that holds gear at proper position

Also Published As

Publication number Publication date
JP7130296B1 (en) 2022-09-05
JPWO2023042321A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
CN108444700B (en) Cylindrical gear meshing rigidity static measurement device and test method
JP5112779B2 (en) Absolute position measuring device
JP2004077483A (en) Multiturn goniometer
JP2010269667A (en) Multi-rotation angle detection device
WO2023042321A1 (en) Backlash eliminating mechanism and rotation angle detecting device
JP6808474B2 (en) Absolute encoder for motor with gear
JPH1089443A (en) Elliptic gear
JP2006292498A (en) Backlash of gearing measuring device
JP2012191769A (en) Drive unit and electronic device provided with the same
CN111089530B (en) Measuring device and measuring method for return clearance of planetary gear motor
CN105136006A (en) Gear quality detection device
JP3186963B2 (en) Gear tooth thickness measurement method
KR101881047B1 (en) Position measurement system and method using plural absolute encoders
JP2010101447A (en) Speed reducer with rotation detector
Kim et al. Torsional rigidity of a cycloid drive considering finite bearing and Hertz contact stiffness
JP5304570B2 (en) Linear motor position detection system
JP7441099B2 (en) absolute encoder
JP2001255240A (en) Performance test method for plastic gear and device for the method
JP2003159635A (en) Index device
JP2004150950A (en) Rotation angle detector
JPH11258116A (en) Gear set testing machine
US3449977A (en) Gear meshing arrangement
JPWO2023042321A5 (en)
BE1014105A5 (en) Angular displacement measurement uses pinion linked to rack to determine angular movement of machine tool component
JP6278066B2 (en) Gear tooth surface abnormality detection device and gear tooth surface abnormality detection method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022517942

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957503

Country of ref document: EP

Kind code of ref document: A1