WO2023041961A1 - 一种接触器 - Google Patents

一种接触器 Download PDF

Info

Publication number
WO2023041961A1
WO2023041961A1 PCT/IB2021/058532 IB2021058532W WO2023041961A1 WO 2023041961 A1 WO2023041961 A1 WO 2023041961A1 IB 2021058532 W IB2021058532 W IB 2021058532W WO 2023041961 A1 WO2023041961 A1 WO 2023041961A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
contactor
electric
electrical
bellows
Prior art date
Application number
PCT/IB2021/058532
Other languages
English (en)
French (fr)
Inventor
郑宇程
Original Assignee
郑宇程
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑宇程 filed Critical 郑宇程
Priority to PCT/IB2021/058532 priority Critical patent/WO2023041961A1/zh
Priority to PCT/IB2022/058797 priority patent/WO2023042163A1/zh
Priority to CN202280005862.6A priority patent/CN116210068A/zh
Priority to KR1020247012442A priority patent/KR20240070576A/ko
Publication of WO2023041961A1 publication Critical patent/WO2023041961A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/023Details concerning sealing, e.g. sealing casing with resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/64Driving arrangements between movable part of magnetic circuit and contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/10Sockets for co-operation with pins or blades

Definitions

  • the present invention relates to a contactor device, in particular to a motion-controlled array multi-contact contactor device. Background technique
  • a contactor is usually a switch device in which two external wiring boards are respectively connected to a power supply or a load, and two electrical contacts are connected internally. The two electrical contacts are electrically connected so that the two external wiring boards are electrically connected, In this way, the power supply is opened to supply power to the load, and the key equipment for implementing power distribution, management, safe power supply and protection for users or loads.
  • the multi-contact contact interface formed by the array type electric cannula/electric pin socket method increases the current capacity, disperses the arc intensity and its damage; according to the application environment, it is convenient to set different The contact interface opening distance; the first bellows is used to build the contact chamber, the second bellows is used to build the moving device, and the moving contact and its transparent electrical cannula between the two constitute a self-circulating bidirectional pump, and It is isolated from the atmosphere and is filled with arc extinguishing gas or oil, and with the movement of the moving contact, the two bellows expand and contract alternately, and the arc extinguishing gas or oil flows through the contact end of the electric cannula and the electric pin The arc is extinguished between the two bellows and flows back and forth in the two bellows to balance the pressure, and the electrical cannula and electrical pins that constitute the contacts are kept in a clean environment from pollution and oxidation; the microprocessor-
  • the present invention provides an array-distributed electric pin/electric intubation contact type multi-contact, an intelligent AC-DC contactor for contact through motion control.
  • a contactor comprising: a structural housing, providing an installation space for the functional components of the contactor, a structural support, and a protective shell; a contact chamber, providing a contact space between the moving contact and the static contact isolated from the atmosphere; a device, which attaches the movable contact, drives its movement to make contact with and disengages from the static contact; and a controller, which controls the switching operation of the contactor, monitors the function of the contactor and communicates with the power control center.
  • the structural shell includes: a bracket structure, including an upper layer of the bracket and a lower layer of the bracket, the upper layer of the bracket is provided with a contact chamber and a moving device, and is composed of a top plate, a middle partition and four columns, and the lower layer of the bracket,
  • the controller is set, which is composed of the middle partition, the bottom plate and four hexagonal columns; and the casing, which includes two side covers or an upper cover and a lower cover, which are mutually fitted and fixed and the flanges of the top plate and the bottom plate are fixed.
  • the contact chamber includes a static contact, a moving contact and a first bellows.
  • the static contact includes: two horizontally arranged small semicircular first and second electrical conductors; a first terminal board (Terminal 1) and a second terminal board (Terminal 1) formed by horizontally extending from the small semicircular arc surfaces of the electrical conductors respectively.
  • Terminal board (Terminal) A power supply current sensor provided on the first terminal board detects the amount of current provided by the power supply to the load; the first and second electrical conductors are respectively provided with an array composed of a plurality of electrical pins; And static contact ceramic plate (optional electrical plastic).
  • the first and second electrical conductors are encapsulated in the ceramic disc of the static contact, wherein the first and second wiring boards respectively protrude from the side wall of the ceramic disc of the static contact and protrude from the contactor Outside the casing, a static contact of a double terminal block is formed; wherein the electric contact pin protrudes from the surface of the ceramic disc of the static contact, and its contact end is provided with a plurality of radial and equally divided notches and finger-shaped ends interspersed with it; Wherein the bottom of the ceramic disc of the static contact is fixed on the bottom surface of the top plate of the upper layer of the bracket.
  • the two electrical conductors are replaced by a static contact conduction disc, and the side of the conductance disc extends horizontally to form a single first terminal board (Terminal!), constituting a single terminal board static contact; wherein the conductance disc
  • the disc is provided with an array of electrical pins and is packaged in the ceramic disc of the static contact, wherein the contact end of the electrical pin protrudes from the surface of the ceramic disc of the static contact, and the first terminal board protrudes from the ceramic disc of the static contact.
  • the movable contact includes: a conductive disc of the movable contact; a plurality of electrical intubation arrays that are coaxially paired one-to-one with the electrical pins of the static contact provided on the conductive disc; and
  • the ceramic disk of the static contact is coaxially opposite to the ceramic disk of the movable contact (electrical plastic is optional).
  • the conductive disc of the moving contact is packaged in the ceramic disc of the moving contact; the nozzle at the bottom of the electrical cannula is flush with the bottom surface of the ceramic disc of the moving contact and opened, and the contact end of the electrical cannula Protruding from the surface of the ceramic disk of the movable contact, the contact end of the electric cannula is provided with a plurality of radial and equally divided notches and bamboo petal-shaped ends interspersed with them, and two narrow sections are provided at different depths of the nozzle.
  • the contact ends of the electrical cannula are simultaneously socketed one-to-one with the contact ends of the electrical pins to implement contact with the contactor.
  • the bamboo petal-like ends of the electric cannula are equal in number to the finger-like ends of the electric pins and are arranged to be orthogonally staggered, so that one finger-like end of the electric pin is facing the notch of the electric cannula and is connected with the bamboo petals on both sides of the notch.
  • the ends form a double-contact electrical connection, so when the number of slots is N, a pair of electrical pins/electrical inserts form 2N contact points,
  • the contact interface is formed by an array of P electrical pins/cannula pairs (Pairs), and the number of contact points is 2*N*P. If the electrical cannula has two narrow sections, the total number of contact points is 4 *N*P.
  • the moving contact and the static contact of the double terminal board constitute one of the embodiments of the present invention: a double terminal board static contact contactor, wherein there are two series-connected electrical pins/electric insertion tubes between the two terminal boards
  • the array contact interface is therefore also known as a double contact interface contactor, or a single pole single throw double break (Single Pole Single Throw, Double Breaks, or SPST, DB) contactor.
  • the side of the conductive disk of the movable contact extends horizontally to form a second terminal, and is paired with the static contact of the single terminal to form the second embodiment of the present invention: the static contact of the single terminal Head contactor, in which there is only one electrical pin/electrical tube array contact interface between the two wiring boards, so it is also called: single contact interface contactor, or single pole single throw single break (SPST, Single Break) contactor .
  • the moving contact can be provided with two separate electrical conductors and its electrical insertion tube array and two terminal blocks, and can be combined with the static contact of the double terminal block to form a double-pole single-throw single-break (DPST, SB) contact device.
  • the first bellows includes: a first nozzle of the first bellows, fixed on the ceramic disc of the static contact; a second nozzle of the first bellows, fixed on the ceramic disc of the movable contact; And the first bellows tube wall constitutes the side wall of the contact chamber, so that the contact chamber is isolated from the atmospheric environment.
  • the movement device includes a lifting movement member, a second bellows and a drive motor assembly.
  • the lifting movement component includes: a sleeve casting, which sleeves the second nozzle of the first bellows and is fixed on the ceramic disc of the movable contact, and the sleeve casting also includes the first section of the sleeve, the first and the second short arm, the first and second bearing sleeves, the second section of the sleeve, the beam and the screw holes of the beam; the first and second linear bearings are installed in the first and second bearing sleeves; and the first and the second bearing guide rail are sleeved in the shaft holes of the first and second linear bearings.
  • the second bellows includes: a first nozzle of the second bellows, fixed on the sleeve casting, wherein the second section of the sleeve; a second nozzle of the second bellows, fixed on the base of the second bellows, The base is fixed on the intermediate partition on the upper layer of the bracket; and the second bellows tube wall constitutes the inner space of the second bellows, accommodates the drive motor assembly, and connects the electric insertion tube with the moving contact through the moving contact.
  • the contact chamber is communicated and isolated from the atmosphere, and the interior is set as a vacuum, or filled with an inert arc-extinguishing gas (such as SF6) or injected with arc-extinguishing oil.
  • the driving motor assembly is fixed on the middle partition, including: a screw, engaging the beam screw hole of the sleeve casting; a reduction gear box, forming a linkage and reduction device between the motor and the screw; and a motor, The sleeve casting and the moving contact are driven up and down by a screw.
  • the moving contact moves toward the static contact, the electrical insert moves toward the electrical pin, the first bellows compresses and the second bellows elongates, and the arc extinguishing gas or arc extinguishing oil Pass between the electric socket and the electric pin and flow to the second bellows until the electric socket is socketed on the electric socket and the contactor is opened; and the moving contact breaks away from the static contact
  • the electric cannula is separated from the electric pin, the first bellows and the second bellows are restored, and the arc extinguishing gas or arc extinguishing oil flows back through the electric cannula and the electric pin to the first Bellows.
  • the moving device can optionally use an external lever structure instead of the screw driving structure, and use a manpower, electromagnetic or pneumatic device to apply force to the lever and drive the sleeve casting and the moving contact to move up and down;
  • an external drive motor assembly is selected to drive two linked screw rods to drive the movement of the sleeve casting; and, due to the external drive motor assembly, a static contact is added on the middle partition, and the dynamic
  • the upper and lower sides of the contact are provided with electrical inserts, and the static contact and the movable contact are provided with a plurality of electrical conductors (more than two) and various shapes (such as fan-shaped) and the movable contact without a wiring board is arranged as Rotatable, will be combined to produce Multiple Poles Multiple Throws (Multiple Poles Multiple Throws) switch type contactors and power multiplex switches (Multiplexer).
  • the controller includes: a microprocessor, which controls and implements functions of communication, data acquisition, contactor switch and circuit breaker based on a program; a communication module, the microprocessor communicates with the power supply control center via wired and wireless communication modules Communication, receiving instructions and contactor parameter setting data and sending data, alarms or requests to it; Motor drive circuit, controlled by a microprocessor and providing armature drive currents of different directions and sizes to the motor; Moving contact locker, Locking the position of the movable contact in the open state of the contactor to prevent accidental sliding or disengagement; the controller power supply, which provides electric energy to the controller, and is configured with a battery as an auxiliary power supply; and the sensor system.
  • a microprocessor which controls and implements functions of communication, data acquisition, contactor switch and circuit breaker based on a program
  • a communication module the microprocessor communicates with the power supply control center via wired and wireless communication modules Communication, receiving instructions and contactor parameter setting data and sending data, alarms or requests to it
  • Motor drive circuit controlled
  • the sensor system includes: a static contact ceramic disc temperature sensor for monitoring the temperature of the static contact ceramic disc; an inert gas pressure sensor for detecting the pressure of the inert gas in the contact chamber and its change; an arc photoelectric sensor for detecting the contactor The arc and its changes in the contact chamber when it is turned on, especially when it is turned off; the controller power supply voltage sensor monitors the controller power supply (including power storage device) voltage and its changes; the power supply voltage and current sensor monitors the power supply provided by the power supply to the load The power voltage, current and its change, provide the contactor moving contact and static contact contact or disengagement state signal; the first and second position sensor, provide the first and second position signal, or the stroke of the moving contact Starting point and end point signal; motor current and speed sensor, detect motor armature current, use timer and pulse counter method to calculate motor speed, and refer to the first or second point to provide the third point, that is, the electric intubation distance information The position where the pin is closest and does not generate an arc; and the sensor conditioning circuit, which amp
  • the contactor involved in the present invention also provides a control method, including: regularly detecting the contactor sensor signal and uploading data to the power supply control center, including contactor state data; receiving the power supply control center data, Set the parameters of the contactor function; Receive the command of the power supply control center, execute the opening and closing of the contactor and upload the data; directly receive the (manual) auxiliary switch signal and control code from the port of the microprocessor, and execute the opening and closing of the contactor break function; and compare the sensor data with the parameters set by the contactor to determine whether to automatically execute the contactor shut-off function, that is, the function of the circuit breaker.
  • the control method for opening and closing the contactor is as follows: Opening of the contactor: The moving contact locker is energized and opened, and the moving contact moves from the first position to the static contact at a normal second speed, When the third point or arc signal appears, the moving contact moves at a high speed at the first speed, and when the first and second wiring boards are connected, the moving contact moves at a slower third speed until the second When the position signal appears, stop and disconnect the power supply of the moving contact locker; and the contactor is turned off: the moving contact locker is energized and opened, the moving contact is separated from the fixed contact at a first speed in the reverse direction, and the second When the three-point signal appears, it moves at the reverse second speed, and when it reaches the first point, it stops and disconnects the current of the moving contact locker.
  • FIG. 1 is a top view of a double-contact interface contactor in an off state according to one embodiment of the present invention.
  • Fig. 2 is a structural diagram of the open interior of Fig. 1 .
  • Fig. 3 is a cross-sectional view of the central axis of the static contact 200a and the movable contact 200b of the double contact interface contactor.
  • Figure 4 is a diagram of the core electrical structure of the static contact and the moving contact of the double-contact interface contactor hiding the ceramic disc.
  • Figure 5 is an exploded view of a dual contact interface contactor.
  • Fig. 6 is a side bottom view of the second embodiment of the present invention: a single-contact interface contactor in an open state.
  • Fig. 1 is a top view of a double-contact interface contactor in an off state according to one embodiment of the present invention.
  • Fig. 2 is a structural diagram of the open interior of Fig. 1 .
  • Fig. 3 is a cross-sectional view of the central axi
  • FIG. 7 is a cross-sectional view of the central axis of the static contact 200a and the movable contact 200b of the single-contact interface contactor.
  • Fig. 8 is a diagram of the core electrical structure of the static contact and the moving contact of the hidden ceramic disc of the single-contact interface contactor.
  • Figure 9 is an exploded view of a single contact interface contactor.
  • Fig. 10 is a structural view of the electrical pin and the contact end of the electrical cannula.
  • Fig. 11 is an electrical connection diagram of an electrical prong socketed with an electrical pin.
  • Fig. 12 is a cross-sectional view of an electrical prong socketed with an electrical pin.
  • Fig. 13 is an axial sectional view of the electrical socket socketed with the electrical pin.
  • FIG. 14 is a dynamic diagram of gas or liquid movement during the process of the electric cannula being inserted into the electric pin.
  • Fig. 15 is a dynamic diagram of gas or liquid movement during the process of the electrical cannula detaching from the electrical pin.
  • Figure 16 is a block diagram of the controller.
  • Fig. 17 is a flowchart of the main program of the microprocessor in the controller.
  • Fig. 18 is a flow chart of the remote command interruption program.
  • Figure 19 is a flow chart of the (manual) auxiliary switch interrupt routine.
  • Fig. 20 is a flow chart of the contactor opening subroutine.
  • Figure 21 is a flow chart of the contactor shutdown subroutine.
  • Figures 1 to 5 show one of the embodiments of the present invention: the overall and partial structure diagram of the double-contact interface contactor in the off (disconnected) state.
  • Fig. 1 is an overall top view of the contactor of one embodiment
  • Fig. 2 is an internal open structure diagram of Fig. 1
  • Fig. 3 is a cross-sectional view of the central axis of the static contact 200a and the moving contact 200b
  • Fig. 4 shows the static contact after the ceramic disc is removed and the core electrical structure of the moving contact
  • FIG. 5 is an exploded view of the contactor in one embodiment, showing all its structures and their interrelationships.
  • FIG. 1 is a top view of a double contact interface contactor, including: a structural housing, a contact chamber 200, a moving device 300 and a controller 400 (not shown).
  • the structural casing includes a support structure 100 and a casing (not shown).
  • the bracket structure 100 includes a bracket upper layer 101 and a bracket lower layer 102o.
  • the bracket upper layer is provided with a contact chamber 200 and a moving device 300, including a top plate 103, a middle partition plate 104, and flanged first, second, third and fourth cylinders 105, 106, 107 and 108, the threaded section at the top of the cylinder passes through the top plate 103 and is fixed by nuts 109 (4 pieces in total), wherein the first cylinder 105 and the third cylinder 107 are also used as bearing guide rails.
  • the contact chamber 200 is arranged above the movement device 300; optionally, the contact chamber 200 and the movement device 300 can be set upside down as a whole.
  • the lower bracket 102 is provided with a controller 400 (not shown), including a middle partition 104, a flanged hexagonal column 110 and a bottom plate 111, four hexagonal columns 110 are attached to columns 105-108 and fix the middle partition 104, and the hexagonal column 110
  • the lower end threaded section and nuts 112 (4 pieces in total) fix the bottom plate H E
  • the central cabinet plate 104 is also provided with an airtight wire hole to provide sensors and motor drive cables (not shown) and a covered valve (Schrader Valve) (not shown out) for contact chamber vacuum treatment, inert gas filling and arc extinguishing oil injection.
  • the housing (not shown) includes two side covers or an upper cover and a lower cover that are paired and fixed to each other, and then fixed on the vertical flange 113 of the top plate and the vertical flange 114 of the bottom plate
  • the contact chamber 200 includes a static contact 200a, a moving contact 200b and a first bellows 207, see FIGS. 2 and 5.
  • the first bellows 207 is a A thin metal (such as stainless steel, copper or copper alloy) elastic bellows, including: the first nozzle 207a, the lower part of the side wall 217b of the static contact ceramic disc is sleeved, the sleeve is sealed, and the first nozzle 207a is sleeved
  • the first hoop 208 is fixed to the screw hole 217c of the ceramic plate of the static contact by a screw 209; the side wall of the first corrugated tube 207b constitutes the side wall of the contact chamber 200; and the second nozzle 207c is sleeved on the upper part of the side wall of the moving contact 218a, the sleeve is sealed, refer to Figure 2, 3, 5.
  • the moving device 300 includes: a lifting moving member, a second bellows and a drive motor assembly.
  • the lifting motion components include a sleeve casting 302, first and second linear bearings 311 and 312, and first and second bearing guide rails 105 and 107.
  • the sleeve casting 302 is cast from aluminum metal or aluminum alloy, including: the first section 303 of the sleeve, the first and second short arms 307 and 308 radially and symmetrically extending from both sides of the first section 303 of the sleeve, The first and second bearing sleeves 309 and 310 connecting the first and second short arms, the second sleeve section 304 axially extending from the first section of the sleeve, and the beam 305 spanning the inner opening of the second section of the sleeve As well as the beam screw hole 306, refer to Figure 5o.
  • the first section 303 of the sleeve is sleeved with the second nozzle 207c of the first bellows and the lower part 218b of the side wall of the ceramic disk of the moving contact.
  • Hole 218c refer to Figures 1, 2, 3, 5o
  • the second corrugated pipe comprises: the first nozzle 313a of the second corrugated pipe, which is sleeved on the upper part of the side wall of the second joint 304 of the sleeve and sealed, and the second hoop 314 is sleeved outside it, and is fixed on the The screw hole 318 of the second section of the sleeve, refer to Figures 1 and 5; the second nozzle 313c of the second bellows is sleeved outside the cylinder of the second bellows base 315, and the sleeve is sealed, and the second nozzle of the second bellows 313c, a third hoop 316 is sheathed, which is fixed to the cylindrical screw hole 320 of the second bellows base 315 by screws 319, wherein the flange part of the second bellows base 315 is set on the middle partition 104, sealed and fixed by screws Fixed, refer to Figures 1 and 5; and the second bellows side wall 313b constitutes
  • the driving motor assembly is housed in the second bellows 313, fixed on the middle partition 104 ⁇ , and includes a screw 321, a reduction gear box 322 and a motor 323; wherein, the screw 321 engages the beam screw hole 306 of the sleeve casting for reference Figure 2, 5.
  • the motor 323 passes through the power transmission chain: motor 323-reduction gear box 322-screw rod 321-beam screw hole 306-beam 305 ... sleeve second section 304-sleeve first section 303-moving contact 200b and first and second
  • the linear bearings 311, 312 and their first and second bearing guide rails 105, 106 drive the moving contact up and down. Referring to FIGS.
  • the casting 302 can also carry out lifting movement through the principle of leverage, and the screw driving structure of the moving device is replaced by a lever structure.
  • the force point of the lever is set at two symmetrical points on the radial line of the first section 303 of the sleeve, the fulcrum and the force application point It is arranged at an equidistant point (not shown) between the two force-bearing points, and the force generated by manpower, electromagnetic or pneumatic devices acts directly on the force-applying point.
  • two synchronously interlocking screw rods arranged between the top plate 103 and the middle partition plate 104 are driven by an external drive motor assembly, wherein the two screw nuts are respectively connected to the above two stress points.
  • the second bellows left empty by the driving motor assembly can be provided with a controller, especially a microprocessor module, and the empty structural shell support lower layer 102 can be provided with the external driving motor assembly and its driver (not shown). out).
  • a static contact can be added in the second bellows and on the middle partition 104 to form a second static contact (not shown), which is symmetrical to the first static contact 200a , while the moving contact electrical cannula is set to have upper and lower bidirectional contact ends (not shown),
  • the movable contact makes contact with the first static contact 200a when it rises, contacts the second static contact when it descends, stays between the two, does not make contact, and the contactor is completely disconnected.
  • the two static contacts and the moving contacts are provided with multiple electrical conductors (more than two) with different sizes and various shapes (such as fan-shaped), which will be combined to produce different types of Multiple Poles Double Throws (Multiple Poles Double Throws) ) switch type contactor, power type multiplexer (Multiplexer); and selectively set the moving contact as a digitally controlled rotation without a wiring board (not shown) and the moving contact is regionally differentiated
  • the contact end of the electric plug can be arranged as one-way up, one-way down or two-way, so that the electric pins of the first and second static contacts can be selectively socketed with electric plugs of different positions and shapes due to the rotation of the moving contact.
  • Tube arrays (not shown), different coded or programmable composite power switches will be obtained.
  • Fig. 2 shows the internal structure of the contact chamber 200 and the second bellows shown after removing a part of the first bellows 207, the second bellows 313, the first section 303 of the sleeve and the second section 304 of the sleeve, It includes the static contact 200a, the moving contact 200b and the driving motor assembly.
  • the static contact 200a is installed on the bottom surface of the top plate 103, and is fixed by the screw 202 and the fixed contact screw hole 217a, referring to FIG. 5; the second section of the sleeve is provided with a beam 305 and a beam screw hole 306; and the drive motor assembly includes Screw 321, reduction gear box 322 and motor 323, refer to Fig. 5.
  • FIG. 3 shows a cross-sectional view of the central axis of the static contact 200a and the moving contact 200b
  • FIG. 4 shows the core electrical structure of the static contact and the moving contact after the ceramic disc is removed.
  • the static contact 200a includes: two separate (no electrical connection) first and second electrical conductors 210, 211 in the shape of a small semicircle, each of which is provided with a plurality of vertically downward equidistantly distributed first and second electrical conductors.
  • the first wiring board 203 and the second wiring board 204 outside the device housing (not shown), the latter are respectively connected to one end of the power supply and one end of the load. According to the different directions of the power supply connection and the load connection, the angles of the two wiring boards are set to 90° accordingly.
  • the multiples of the contactor in one embodiment of the present invention show that the angle of the two wiring boards is 180. .
  • the moving contact 200b includes: a moving contact conduction disc 214, a moving contact ceramic disc 218 encapsulating the moveable contact conduction disc, and a pair of electric contact pins that penetrate the surface of the moving contact conduction disc and are coaxially paired with the electrical pins.
  • the upper surface 218d of the ceramic disc constitutes the bottom of the contact chamber 200
  • the first corrugated tube wall 207b constitutes the side wall of the contact chamber 200, referring to FIGS. 2, 3, and 5.
  • the electric pin and the electric conductor of the static contact, as well as the electric cannula and the electric conduction disk of the moving contact are obtained by fixing by welding or stamping, or by integral casting and reprocessing.
  • the contact chamber 200 communicates with the inside of the second corrugated tube through the moving contact electrical insertion tube arrays 215, 216 and the electrical insertion tube bottom nozzle 219 opened at the bottom 218e of the moving contact ceramic disc, and is isolated from the atmospheric environment.
  • FIG. 5 is an exploded view of a dual-contact interface contactor according to an embodiment of the present invention.
  • the center of the static contact ceramic plate 217 is provided with a hole 217e, which is connected with the center hole 115 of the top plate 103, and is used for installing the temperature-pressure-photoelectric sensor assembly 206, including the pressure-photoelectric detection tube 206a, whose nozzle communicates with the contact chamber. Detect the inert gas pressure in the contact chamber and the arc that occurs when the electric cannula is socketed with the electric pin, and the temperature sensor 206b of the base of the sensor assembly to detect the temperature of the ceramic disc of the static contact.
  • a power supply current sensor 205 is provided between the first electrical conductors 210.
  • the current sensor 205 adopts two C-shaped silicon steel laminations 205a and 205b to form a ring magnetic circuit structure.
  • An alcove is provided below 205a and above 205b to form a space electromagnetically isolated from the outside, and a linear Hall sensor chip 205c is built in it to detect the open-loop current of the power provided by the power supply to the load.
  • coils are respectively wound on the horizontal arms of the silicon steel laminations 205a and 205b and connected in series, and form a closed-loop current detection device with the Hall sensor, and a Rogowski coil (Rogowski Coil) can also be used for current detection.
  • Rogowski coil Rogowski Coil
  • the drive motor assembly drives the sleeve casting 302 to rise or fall, the movable contact 200b contacts or disengages from the static contact 200a, the electrical cannula arrays 215, 216 are respectively socketed or disengaged from the electrical pin arrays 212, 213, and the contact is implemented. switch on or off.
  • the contact chamber 200 and the moving device 300 form a self-circulation reciprocating pump (Self-circulation Reciprocating Pump): the moving contact moves to the static contact, and the gas or liquid in the contact chamber flows to the second bellows; the moving contact leaves the static contact When the head moves, the gas or liquid in the second bellows flows back into the contact chamber, refer to Figures 1 and 2.
  • the arc extinguishing medium in the contact chamber 200 and the second bellows 313 flows between the two and obtains a pressure balance, which will not cause continuous movement of the moving contact 200b and the driving motor, and there will be no pressure difference between the two.
  • the non-linear enhanced resistance is caused, and only the elastic resistance of the bellows constitutes the continuous and linearly changing resistance to the moving contact 200b and the resistance caused by the short-term pressure difference fluctuation.
  • the steps are as follows: When the moving contact 200b rises, the first bellows 207 is compressed, the second bellows 313 is stretched, and the inert gas in the contact chamber 200 flows to the second bellows 313 through the nozzle 219 at the bottom of the moving contact electric insertion tube , when the electric cannula is close to the electric pin and before the two contact, an arc may be generated. At this time, the contact end of the electric cannula is blocked by the end of the electric pin, so the airway is narrow, and the airflow speed increases rapidly.
  • the airflow mainly flows through the gap between the end nozzle of the electric cannula and the electric pin, the airflow speed increases rapidly due to the high-speed movement of the motor at the moment the two are separated, and directly flows to the outer periphery of the finger-like end of the electric pin and The notch impacts, so that the airflow rushes into the electric cannula to produce a stronger arc extinguishing effect than when the two are close to each other, until the electric cannula is completely detached from the electric pin, the first terminal board 203 and the second terminal board 204 are disconnected, and the The contacts are reset and the contactor is turned off.
  • the bearing and its guide rail in the contact chamber (not shown), so that the bearing and its guide rail include electric pins,
  • the electric insertion tube and the drive motor assembly are arranged in the clean environment of the contact chamber and the second bellows, which will increase the reliability and service life of the mechanical and electrical components.
  • the airflow velocity between the electric cannula and the electric pin is proportional to the cross-sectional area of the bellows and the moving speed of the lifting motion casting 302, and is proportional to the number of electric cannula and the distance between the electric cannula and the electric pin.
  • the size of the gap is inversely proportional to the slot width of the electric cannula and electric pin; the movement speed of the sleeve casting 302 is directly proportional to the pitch of the screw 321 and the rotational speed of the motor, and inversely proportional to the reduction ratio of the reduction gear box.
  • the speed of the drive motor is increased in a short time, and the airflow velocity in the gap between the electric cannula and the electric pin will increase significantly, which can improve the arc extinguishing effect, and the motor can withstand Heating caused by short-term high-current armature input.
  • the intensity of the arc photoelectric signal can be indirectly used as the reference data for the speed control of the motor.
  • arc extinguishing oil can be selected as the arc extinguishing medium.
  • the arc extinguishing effect of the flowing arc extinguishing oil is based on the direct absorption and transfer of the arc and its heat.
  • liquid arc extinguishing oil is used as the arc extinguishing medium, and the load power is much greater than that of gas, so the power of the moving device needs to be increased, and the contact chamber and moving device (without the second static contact) are installed upside down as a whole, which will reduce the
  • the method of moving the load power of the small moving contact is as follows: the static contact is set on the middle partition 104 ⁇ , the moving device is set under the top plate 103, and the arc extinguishing oil in the contact chamber reaches a certain height, so that the moving contact can move during the entire moving stroke. Only the arc extinguishing oil flows between the electric socket and the electric pin, no air bubbles are generated, and the remaining space of the contact chamber (below) including the second bellows (on the top) is filled with gas (not shown) o
  • the degree of damage of the arc is also related to the magnitude of the arc current generated by the (one) contact.
  • the contactor involved in the present invention has a plurality of electrical pin/cannula pairs (Pairs) for performing electrical connection tasks, and each pair of electrical pins/electrical cannula can also form multiple contact points. If the contacts between all the electrical pins/electrical socket pairs contact or disengage at the same time during the contact process of the contactor, the generated arc current will be shunted to all the contacts, and the current of a single contact will be significantly reduced , the heat generated by the current is dispersed and cooled faster.
  • the movement accuracy of the moving contact is high, so that the electric pin/electric cannula is always in a precise coaxial relationship during the contact process, such as for One or two punched corner codes (not shown) are set at the upper corners of the structural shell bracket to strengthen the rigidity of the upper layer 101 of the contactor bracket, and three or even four short arms and their attached parts are set for the first section 303 of the sleeve
  • the bearing sleeve is equipped with a linear bearing and its bearing guide rail to improve the movement accuracy of the sleeve casting; 2)
  • the ends of the electric pin and the electric cannula have precise structures such as the same number of notches, and the contact end structure (the electric cannula bamboo valve and the finger-like end of the electric pin) axisymmetric, equiangular staggered and coaxial setting of the electric pin/electric cannula notch, so that the shortest distance between each point of the electric pin and the electric cann
  • the contactor When the contactor satisfies the simultaneous contact and disengagement conditions of multiple contacts, it will make up for the fact that the travel time required for the contactor to make contact with motion control in the present invention is longer than the travel time for commercial contactors to make contact through electromagnetic actuation. resulting problems or defects. As far as arc extinguishing is concerned, the quick contact and separation of the contacts is only meaningful within the critical distance where the contact and separation of the contacts are prone to arcing. Within this effective distance, the contactor involved in the present invention drives the motor at a high speed in a short period of time to drive the electric pin/electrical tube to contact and disengage quickly, and uses a slower speed outside this critical distance to rapidly cool the motor and its power drives die temperature. Relatively speaking, the contactor using electromagnetic actuation operates at high speed without distinction throughout the entire actuation stroke, which may result in relatively large volume, high power consumption, high noise, high cost and even short life of this type of contactor .
  • Figures 6 to 9 are the second embodiment of the present invention: the single-contact interface contactor is in the open (closed) state and its partial structure diagram, showing the structure of the contactor from different angles, to facilitate a more comprehensive understanding of the contactor involved in the present invention device structure.
  • the static contact 200a>the moving contact 200b and the sleeve casting 330, the first segment 331 of the sleeve is respectively the same as the static contact 200a, the moving contact 200b, and the sleeve of the dual-contact interface contactor in the first embodiment.
  • the first section 303 of the sleeve is different, and other parts, structural relationships and control methods are the same as those of the dual-contact interface contactor in one of the embodiments, and the structural names, reference signs and descriptions of the same parts will be Referring to the contactor in the foregoing embodiment, it will not be repeated here.
  • Fig. 6 and Fig. 9 have shown the side bottom view of the overall structure of single-contact interface contactor and its exploded view
  • Fig. 7 has shown its internal structure of static contact 200a and moving contact 200b entity with central axis sectional view
  • Fig. 8 shows Figure 7 shows the core electrical structure with the ceramic disk removed.
  • the static contact 200a is provided with a wiring board, that is, the first wiring board 220, which passes through the side wall of the static contact ceramic disc 225 and the contactor housing (not shown), and the moving contact 200b is provided with
  • the second wiring board 221 passes through the side wall of the ceramic disk 227 of the movable contact and the contactor housing (not shown), as shown in FIG. 7 .
  • the two wiring boards are respectively connected to one end of the power supply and one end of the load. According to the different directions of the power supply connection and the load connection, the angles of the two terminal boards are set to 0° or multiples of 90°.
  • Figures 6 to 9 show that the angles of the two terminal boards are 180° o
  • the static contact ceramic disc 225 and The external structure of the movable contact ceramic disk 227 and the method of attaching it to the first bellows are the same as those in the first embodiment.
  • Fig. 6 shows that the moving contact 200b rises to contact the static contact 200a, and the contactor is in the open state, wherein the first bellows 207 is compressed and the arc extinguishing gas or arc extinguishing oil passes through the bottom nozzle 228 of the electric insertion tube of the moving contact (refer to Fig. 7 ⁇ 9) flow to the second bellows, and the second bellows 313 is extended to receive arc extinguishing gas or arc extinguishing oil.
  • the first segment 331 of the sleeve is provided with a sleeve notch 332, which constitutes the outlet channel of the second terminal plate 221; the upper part of the sleeve notch 332 is embedded with a notch sealing plate 333, which is covered with a sealing plate reinforcement 334, And it is fixed on the ceramic disc of the movable contact and the screw hole 335 on the second short arm, so as to prevent the sealing problem of the bellows and the insufficient strength of the sleeve casting caused by the notch 332 of the sleeve, refer to FIG. 9 .
  • Fig. 8 shows that the first wiring board 220 is formed by the horizontal extension of the static contact conduction disk 222, and the latter is provided with the electric pin array 224;
  • the second wiring board 221 is formed by the horizontal extension of the movable contact conduction disk 223 , the latter is provided with an electrical insertion tube array 226 that forms a one-to-one coaxial relationship with the static contact electrical pin array 224; It is electrically connected with the second wiring board 221, and the contactor is opened.
  • One of the embodiments of the present invention is the same as the second embodiment of the contactor in the control, motion and arc extinguishing methods, but there are differences in structure.
  • the difference between the two embodiments is that:
  • the first wiring board 203 and the second wiring board 204 of the contactor are connected in series through two sets of electrical pin/electrical insertion tube arrays 212/215 and 213/216
  • the first wiring board 220 and the second wiring board 221 of the second embodiment of the contactor form an electrical connection through a set of socketed electrical pins/electrical insertion tube arrays 224/226, which is equivalent to one of the embodiments.
  • Embodiment 2 Two sets of electrical pin/cannula arrays connected in series are converted into parallel in Embodiment 2. Based on the same size and specifications, the current capacity and power of Embodiment 2 are more than twice that of Embodiment 1. Moreover, the second wiring board 221 of the contactor of the second embodiment will move together with the movable contact 200b and the sleeve casting 330 during the contact and disengagement process of the contactor, while the two wiring boards of the contactor of the first embodiment Fixed.
  • the contactor in Embodiment 1 will be conveniently configured as a sealed housing (not shown), which is moisture-proof, dust-proof and rust-proof for the controller, bearings and guide rails, and the contactor in Embodiment 2 is suitable for higher power capacity but allow minor movement of the second terminal block.
  • the electric pin and the electric cannula are arranged in a closed space containing pure inert arc extinguishing gas or arc extinguishing oil or vacuum, which are dust-proof, rust-proof, moisture-proof and significantly reduce the arc generated by gas ionization .
  • FIGS. 10 to 13 show the structure of the contact end of the electric pin and the electric cannula and its contact mode.
  • Figure 10 shows that the electrical contact pin 231 is a solid circular conductor, and its contact end is provided with six finger-like ends 232, six equiangular, equal-width, cross-section radial notches 233 and a central shallow hole 234o. The number of ends depends on the diameter of the electric contact pin, the process cost and the application environment, and is usually an even number.
  • the electric insertion tube 235 is a tubular conductor, which communicates at both ends, and is connected and fixed to the electric conduction disk or the electric conductor of the moving contact.
  • the conductor remains transparent when it is packaged in the movable contact ceramic disc, so that the upper and lower communication of the movable contact.
  • the contact end of the electric cannula 235 is provided with six bamboo petal-like ends 236 equal in number to the finger-like ends of the electric pin, and six notches 237 with equal angles, equal widths, and radial cross-sections.
  • the inner diameter of the electric cannula pipe is 238
  • the outer diameter is slightly smaller than that of the electric pin 231 so that there is a certain contact point pressure when the two are in contact; the notch 237 of the electric cannula is narrow, so that the arc-extinguishing gas is not easy to flow out of the notch before the electric pin/electrical cannula is in contact or after it is separated.
  • the loss is concentrated between the electric pin and the electric cannula, that is, the space where arc is prone to occur.
  • FIG. 11 shows that the electrical pin 231 enters and contacts the electrical cannula 235 to complete contact and electrical connection.
  • 12 shows a cross-sectional view of the electrical pin 231 in contact with the contact end of the electrical cannula 235 .
  • the finger-like end 232 of the electric pin is located in the middle of the two adjacent bamboo-shaped ends 236a and 236b of the electric cannula, forming two electrical contact points and their contact pressures are equal, wherein the bamboo-shaped end of the electric cannula is also located at the two In the middle of the two adjacent finger-like ends of the electric pin, two electrical contacts are formed, and the contact pressure should also be about the same, so that 12 electrical contacts are formed between the electric pin/electric cannula pair (Pair), the contact Point balance, evenness.
  • FIG. 13 shows a cut-away view of the center line of the socketed electrical cannula/electrical pin contact end in contact state, wherein the bamboo petal-shaped end of the electrical cannula is provided with a first narrow section 236c and a second narrow section 236d, which are respectively connected to the electrical plug
  • the tip 232a of the finger-like end and its root 232b are in contact, so that a pair of electrical pins/electrical cannula forms two sets of contact points, each set of 12 contact points, a total of 24 contact points; and, the electrical cannula bamboo
  • the narrow section 236c of the valve-shaped end is more elastic than the narrow section 236d
  • the tip 232a of the finger-shaped end of the electric pin is more elastic than the root 232b, so that the electric cannula and the electric pin are within a certain range of socket depth.
  • a double-contact interface contactor when the total number of its electric pins/electrical intubation pairs (Pairs) is Pi, there are two between the double terminal boards (Terminal K Terminal), each of which has Pi/ Two socketed electric pins/electrical cannula contact interfaces are connected in series, if the contact resistance of one electric pin/electrical cannula pair is R.
  • non-contact resistance is the original (excluding electric conductors, conductance discs and wiring board resistance), the resistance between the double wiring boards is 4 R+RQ /P3
  • single contact interface contactor for There are a total of R electrical pin/electrical tube pairs, and there is a pair of electric pins/electrical tubes formed by P 2 sockets between the first terminal board (Terminal 1) and the second terminal board (Terminal). contact interface, and if the contact resistance of an electrical pin/cannula pair is R.
  • the non-contact resistance is R
  • the resistance between the two wiring boards is (Re+Rne)/P 2 o
  • Fig. 14 ⁇ 15 is that the contactor involved in the present invention is driven by the drive device to implement the opening and closing of the electric cannula socket and the process of breaking away from the electric pin and the dynamic illustration of the arc extinguishing gas movement, wherein Fig. 14 It is the opening process of the contactor, and Fig. 15 is the closing process.
  • FIG. 14 shows that the electric cannula 235 starts the first positive stroke 240 from the first position 1 in the off state, and the motor moves at a rated power so that the electric cannula moves toward the electric pin at a second speed 241; the first The forward stroke 240 is the longest to ensure that the distance between the electric cannula and the electric pin in the off position will not cause natural discharge.
  • the inert gas 242 enters the nozzle 238 of the contact end of the electric cannula , flows out 243 through the bottom nozzle of the electric cannula; when the electric cannula is close to the electric pin, if an arc signal 2 is detected, the motor drives the electric cannula to move at a high speed at the first speed 244 of excess power, so as to quickly complete the second positive direction Stroke 245, reduce the damage caused by the arc; the flow rate of the airflow 246 at the bottom of the electric intubation tube depends on the movement speed of the electric intubation tube, The closer the electric cannula is to the electric pin, the smaller the gap area between the two contact ends, the higher the flow velocity of the arc extinguishing air flow 247, and at the same time, the closer the two are, the stronger the arc is, so the arc and arc extinguishing are in a dynamic balance , so that even if the arc occurs, it is always at
  • 2 is selectively set to be positioned by the motor current and speed sensor through the pulse counting method, and the position 2 is set at the point where the electric cannula is closest to the electric pin but does not generate
  • the critical position of the arc makes the electric cannula move into the second forward stroke 245 at a high speed at the first speed 244 from the position 2, actively perform arc extinguishing and increase the switching speed. If the motor can bear it, the high-speed 244 movement can be started from the first position to complete the first and second forward strokes 240, 245, and the switching speed can be further increased.
  • Fig. 15 shows that the electric cannula enters the first reverse stroke 253 at a high speed from the position 4 in full contact with the electric pin at the reverse first speed 252 and begins to break away from the electric pin at a high speed, and the gas 254 flows from the second bellows (not shown) into the bottom nozzle of the electric cannula at high speed (Fig. 3 in 219 or Fig. 7 in 228).
  • the pin finger end 232 and its shallow hole 234 and notch 233 form a high-speed airflow 255 to implement active arc extinguishing; when reaching point 2, the motor moves with rated power so that the electric cannula moves at a normal reverse second speed 256 Enter the reverse second stroke 257, the gas 258 enters from the bottom nozzle of the electric cannula, and the gas 259 flows out from the end tube 238 of the electric cannula at the same speed, and continues to cool the electric cannula and the end of the electric pin (if an arc occurs) , and finally the electric cannula returns to the position where the contactor is turned off 1, and the electric cannula is detached from the electric pin and the contactor is turned off.
  • FIG. 16 is a block diagram of the controller.
  • the controller 400 includes a microprocessor 401, a communication module 402, a motor driver 403, a position locker 404, a controller power supply 405 and a sensor system.
  • Sensor system comprises: static contact ceramic disc temperature sensor 406, detects static contact ceramic disc temperature, this temperature is relevant to the electric current size that power supply provides to load, and power supply current is too large when temperature is too high, if exceed certain temperature, will start the function of the cutout; the inert gas pressure sensor 407, detects the pressure of the inert gas in the contact chamber and its change, so as to judge whether there is gas leakage in the contact chamber including the second bellows; the arc photoelectric sensor 408, detects that the contactor is in Whether there is arc generation, intensity and change during the contact or disengagement process, indicating the arc extinguishing effect and adjusting the motion control, long-term changes indicate the aging of the contacts, combined with other sensor data to analyze the cause of the arc change, such as the arc
  • the sudden increase may be caused by the change of load type (motor load proportion change), or the change of load power; the controller power supply voltage sensor 409, detects whether the voltage of the controller power supply is normal, and prompts for the voltage change
  • the microprocessor uses the signals of these positions to implement the switching process control of the contactor, including the implementation of the arc extinguishing method ;
  • the motor current and speed sensor 412 detects the motor drive current in the drive device and calculates its speed through the timer and pulse counting method, and prompts the resistance change encountered by the motor based on the relationship between the current and speed and the change, and prompts the contactor contact process Whether it is normal, including damage to the end of the electric cannula/electric pin, contact welding, etc., and use the pulse counting method and refer to the first or second position sensor to detect any movement within the moving contact (electrical cannula) position, such as the third position 2: the critical position where the electric cannula is the closest to the electric pin without generating an arc; and the sensor conditioning circuit 413 processes the above-mentioned sensor signal, including analog signal amplification, filtering or It is set to integrate digital sensors, etc., and the signal line and the data line 414 are respectively connected to the digital/analog (
  • the contactor of the present invention installed outdoors can also be equipped with atmospheric environment sensors such as sound, light, temperature, humidity, wind speed, wind direction, radiation, image and functional modules such as GPS. All these sensor data are regularly detected by the microprocessor and regularly sent to the power supply control center, which will process these data including statistics, analysis and judgment of the contactor function status, sending instructions to the contactor and issuing maintenance or emergency information and alarms etc.
  • atmospheric environment sensors such as sound, light, temperature, humidity, wind speed, wind direction, radiation, image and functional modules such as GPS.
  • the static contact ceramic disk temperature sensor 406, the inert gas pressure sensor 407 and the arc photoelectric sensor 408 are integrated in a temperature-pressure-photoelectric sensor assembly 206 (Fig. 1, 5 and 9), and are arranged in the center of the static contact ceramic disk In the hole 217e and the center hole 115 of the top plate, the temperature of the ceramic disk of the static contact is sensed by conduction, and the pressure-photodetection tube 206a is opened to the contact chamber to detect the air pressure and arc in the contact chamber, refer to Figures 2, 5, and 9 .
  • FIG. 16 shows that the communication module 402 is provided with an antenna 415, through a mobile wireless platform (low-orbit satellite network, unmanned aerial vehicle), a distributed platform (WiFi, mobile network Cellular Networks), etc. and a wired serial interface 416 (wired network, optical fiber, RS485, etc.) to carry out two-way data communication with the power supply control center, send contactor status, sensor data and receive control center including instructions, contactor parameter setting data, such as cutout permission and its parameter range setting, Manual auxiliary switch allows etc.
  • the communication module 402 exchanges data with the microprocessor through an interrupt.
  • the contactor involved in the present invention can also input the interrupt signal 418 and coded signal 419 into the port of the microprocessor 401 through a manual (auxiliary) switch (not shown) to perform direct (external) interrupt mode to switch the contactor: open or close broken.
  • the motor driver 403 is controlled by the microprocessor 401 and provides armature drives with different current magnitudes and directions, thereby controlling the direction and speed of the motor.
  • the microprocessor 401 supplies power to the magnetic coil through the electronic switch or relay to open the locking mechanism, release the moving contact to move, and when the power is off, the locking position rebounds to block the sleeve casting and the movement of the moving contact, so as to lock the moving contact and its electrical insert to prevent it from sliding or shifting from the electrical pin, which will affect the quality of the electrical connection.
  • the controller power supply 405 is the working power supply of the controller, which is obtained from the power supply or the public grid through voltage conversion, and is equipped with a backup battery or supercapacitor (not shown) and charged by the controller power supply, photovoltaic panels, etc.
  • the controller power-off It can be used as a backup power supply when the power is on, it can complete the in-progress but unfinished operations, save the on-site data, and can maintain the power required for the contactor switch operation in a short time, protect the power supply and load end users, and especially send data to the power supply control center emergency information.
  • Microprocessor 401 is provided with a basic program for the first and second contactors of the present invention, including: main program 420 (FIG. 17), remote command interruption program 430 (FIG. 18), auxiliary switch interruption program 440 (FIG. 19), a contactor opening subroutine 450 ( FIG. 20 ), a contactor closing subroutine 460 ( FIG. 21 ), and a data sending subroutine 423 (not shown).
  • the main program 420 starts initialization 421 when the microprocessor is reset, including: recovering working parameters, determining the position of the moving contact and completing operations that may be terminated due to power failure and other reasons according to the recovered parameters, and supplying
  • the power control center requests the latest instructions and executes switching operations according to the latest instructions; then the program enters into collecting sensor data 422, sending data 423: including sending sensor data, contactor status, and operation execution results, etc., and then enters to verify whether the data is abnormal 424, if not The exception is returned to the loop entry through delay 425, and if the abnormality exceeds the range set by the circuit breaker to start, then check the cutoff permission 426, and if it is allowed, execute the function of the independent cutout, enter the contactor shutdown subroutine 460 and send it to execute Results and sensor data, or send data only (ie not allowed to perform the cutout function) back to the loop entry.
  • the communication module When the communication module receives the remote data packet from the power supply control center, it enters the remote command interruption program 430 (FIG. 18): reads the data packet 431, determines whether it is a shutdown command 432, and executes the contactor shutdown subroutine 460 if so , if no, then judge whether it is the contactor opening instruction 433, if so, execute the contactor opening subroutine 450; then enter to judge whether (control center) whether the data packet contains the contactor data upload instruction 434, if yes, send data 423, if no, then Judging whether there is parameter setting command 435, if so, execute parameter setting 436, including: (manual) auxiliary switch operation permission, cut-off function permission, cut-off conditions include voltage and current range and static contact ceramic plate temperature limit, main Program cycle delay time, contactor switch state preset when the power supply is cut off, etc.
  • FIG. 16 shows that the port of the microprocessor 401 receives (manual) auxiliary switch (not shown) data 418 and 419 to perform manual switch operations: contactor opening and closing.
  • signal 418 is an external interrupt signal
  • signal 419 is switch encoding data.
  • Figure 19 is the manual auxiliary switch interrupt program 440, including: 441 is to read the port data (419, Figure 16), 442 is to check whether the data is the code for manually closing the contactor, if so, enter 443 to check whether the setting is allowed to be manually closed contactor, if it is allowed to execute the contactor shutdown subroutine 460, otherwise end the interrupt program; if the result of the inspection data in 442 is the non-manual shutdown contactor code, then check whether the data is the manual opening contactor code 444, if so, enter 445 inspection setting Determine whether to be allowed to manually open the contactor, if so, execute the contactor opening subroutine 450, otherwise end the interrupt program.
  • Fig. 20 is that contactor is opened subroutine 450, carries out whether 451 detection contactors are in shut-off state, if no promptly contactor is in shut-off state, finishes; So promptly contactor is in shut-off state, opens movable contact locker (Electromagnetic device) 452, the moving contact starts to move from the first position to the second speed 453 (+ is positive), and then the arc signal enters 454 or the third position signal enters 455, the moving contact is activated to Passive or active arc extinguishing at the first rate of high-speed movement, until the contactor opening signal (the moment when the electric cannula is connected to the electric pin) appears, the moving contact enters the slowest positive third speed 456 and continues to move, making the electric cannula Sleeve the electric pin in place 457, turn off the motor and disconnect the magnetic coil current of the moving contact locker to lock the moving contact 458, and complete the opening of the contactor.
  • movable contact locker Electromagnetic device
  • the contactor shutdown subroutine 460 (Fig. 21), after confirming that the contactor 461 is in the open state, opens the starting contact Locker (electromagnetic device) 452, the moving contact starts to break away from the static contact 462 at a high speed from the second position (contactor off) in the reverse direction (- is reverse) at the first speed, and then to the third position signal 463 Appears to start to enter the reverse second speed 464 to drive the movable contact back to the first position 465, disconnect the magnetic coil current 458 of the electromagnetic device of the movable contact locker, and complete the contactor shutdown. list of reference signs
  • the present invention relates to a contactor comprising: a bracket structure 100, a contact chamber 200, a moving device 300 (FIGS. 1-5) and a controller 400 (not shown).
  • Support structure body 100
  • 217b The lower part of the side wall of the static contact ceramic disc
  • 217c Screw hole of static contact ceramic disc
  • Moving contact ceramic disc
  • the first bearing guide rail (the first cylinder);
  • the reference numeral listed above is one of the embodiments of the present invention: the structural part of the double contact interface contactor, and the second embodiment of the present invention is listed below: the single contact interface contactor which is different from one of the embodiments part, the same part is omitted (Fig. 6 ⁇ 9).
  • Movement device 300 Sleeve casting 330:
  • Electric cannula and electric pin contact end structure (Fig. 10 ⁇ 13):
  • 236b bamboo petal-shaped terminal structures for electrical catheterization II;
  • 236c Electric cannula first narrow segment
  • 236d Electrical cannula second narrow segment

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Contacts (AREA)

Abstract

本发明涉及一种以运动控制实施接触的阵列式多触点智能接触器,包括:支架结构体、触头室、运动装置以及控制器。触头室包括:静触头设有多个阵列分布的电插针,动触头设有多个电插管,以及第一波纹管通过电插管与第二波纹管相通,内含灭弧惰性气体或灭弧油或设为真空。运动装置驱动动触头向静触头运动,电插针插入电插管,接线板及电连接,接触器开通;所述动触头脱离静触头,所述接触器关断;其间灭弧气体或油通过电插管在波纹管及之间流动,并在电插管及电插针之间快速流动实施灭弧。

Description

一种接触器 技术领域
[0001] 本发明涉及接触器设备, 尤其涉及运动控制的阵列式多触点接触器设备。 背景技术
[0002] 接触器, 通常是由二个外部接线板分别连接供电源或负载、 内部分别连接二个电 触头的开关装置, 两个电触头电连接使得二个外部接线板实施电连接, 从而开通供电源向 负载供电, 以及实施电能分配、 管理、 安全供电以及对用户或负载提供保护的关键设备。 技术问题
[0003] 随着经济及社会发展, 电网系统中各个节点如城市、 工业及社区电力入口、 配电 以及绿色能源发电作业, 对接触器设备存在远距离及分布式管理以及自动化操作的需求; 而电力机车、 电动车动力电池总闸等涉及较为频繁操作以及接近人体的开关设备, 其可靠 性、 可控性及安全性要求高。 这些接触器被要求具备接触电阻小、 灭弧功能、 气动或电磁 装置执行开关动作。 然而, 目前这些接触器设备的触点数量少、 触点易于磨损变形、 微小 火花积累导致的老化、 大气环境导致污损, 使得接触电阻增加、 可能引起触点发生发热、 电弧、 焊接、 烧毁等导致开关功能失效, 或引发安全问题; 这些接触器气动及电磁操动装 置及其灭弧机构使得接触器体积庞大而复杂, 还存在噪声大、 电耗高、 电磁操动发出电磁 干扰并易受电磁冲击导致误操作等问题。 问题的解决方案
[0004] 本发明涉及的接触器, 通过阵列式电插管/电插针套接方法形成的多触点接触界 面, 增加电流容量, 分散电弧强度及其损害; 根据应用环境, 方便设定不同的接触界面开 距; 通过第一波纹管构建触头室, 第二波纹管构建运动装置, 以及两者之间的动触头及其 通透的电插管, 构成一个自循环双向泵, 与大气环境隔绝, 其内部充入灭弧气体或灭弧油, 并随着动触头运动, 二个波纹管交替伸缩, 灭弧气体或灭弧油流经电插管及电插针接触端 之间进行灭弧, 并在二个波纹管内来回流动以便平衡压力, 以及构成触点的电插管及电插 针保持在洁净环境免受污染及氧化; 微处理器为核心的控制器通过运动装置对触点的接触 实施精密控制, 管理传感器系统对接触器进行监测, 通讯系统与电力控制中心双向通讯, 接收遥控开关操作指令及设定控制器参数使得接触器能自主进行断流等功能, 以及电力控 制中心接收、 分析、 统计控制器发送的接触器传感器数据, 评估接触器功能状态, 对分布 式接触器实施系统管理; 本发明涉及的接触器技术, 将显著较小接触器体积、 噪声、 不良 电磁效应以及提高使用寿命, 并且适用于交直流、 高低容量多种规格的接触器设备。 发明内容
[0005] 本发明提供一种阵列分布的电插针/电插管接触式多触点、 通过运动控制进行接 触的智能交直流接触器。
[0006] 一种接触器, 包括: 结构壳体, 提供接触器功能部件的安装空间、 结构支撑以及 保护外壳; 触头室, 提供与大气环境隔绝的动触头与静触头接触空间; 运动装置, 附接动 触头、 驱动其运动与静触头接触及脱离; 以及控制器, 控制接触器开关操作、 监测接触器 功能以及与电力控制中心通讯。
[0007] 所述结构壳体包括: 支架结构体, 包括支架上层及支架下层, 所述支架上层设置 触头室及运动装置, 由顶板、 中隔板及四个圆柱构成, 所述支架下层, 设置控制器, 由所 述中隔板、 底板以及四个六角柱构成; 以及壳体, 包括二个侧盖或上盖及下盖, 两者相互 对合固定并固定顶板及底板的折边。
[0008] 所述触头室包括静触头、 动触头以及第一波纹管。 所述静触头包括: 二个水平设 置的小半圆形第一及第二电导体; 分别从所述电导体小半圆形弧面水平地延伸形成的第一 接线板 (Terminal 1)及第二接线板 (Terminal); 所述第一接线板设有的一个供电源电流传 感器, 检测供电源向负载提供的电流量; 第一、 第二电导体分别设有多个电插针组成的阵 列; 以及静触头陶瓷盘 (可选电工塑料)。 其中, 所述第一、 第二电导体封装在所述静触头 陶瓷盘中, 其中所述第一及第二接线板分别突出所述静触头陶瓷盘侧壁以及伸出所述接触 器壳体外, 构成双接线板静触头; 其中所述电插针突出所述静触头陶瓷盘盘面, 其接触端 设有多个径向及等分的槽口及与其相间的指状末端; 其中所述静触头陶瓷盘底部固定在所 述支架上层的顶板底面。 可选地, 二个电导体由一个静触头电导圆盘取代, 该电导圆盘侧 面水平地延伸形成单一的第一接线板 (Terminal!) , 构成单接线板静触头; 其中所述电导 圆盘设有一个电插针阵列并封装在所述静触头陶瓷盘中, 其中所述电插针接触端突出所述 静触头陶瓷盘盘面, 所述第一接线板突出所述静触头陶瓷盘侧壁以及伸出所述接触器壳体 外。
[0009] 所述动触头包括: 动触头电导圆盘; 所述电导圆盘设有的多个与所述静触头电插 针一对一同轴配对的电插管阵列; 以及与所述静触头陶瓷盘同轴相对的动触头陶瓷盘 (可 选电工塑料)。 其中, 所述动触头电导圆盘封装在所述动触头陶瓷盘中; 所述电插管底部 管口与所述动触头 陶瓷盘底面平齐并开通, 所述电插管接触端突出所述动触头陶瓷盘盘 面, 所述电插管接触端设有多个径向及等分的槽口及与其相间的竹瓣状末端, 管口不同深 度设有 2个狭窄段。 所述动触头向所述静触头运动时, 所述电插管接触端同时一对一套接 所述电插针接触端, 实施所述接触器接触。 所述电插管竹瓣状末端与所述电插针指状末端 数量相等并设置为正交交错, 使得一个电插针指状末端正对电插管槽口并与槽口两边的竹 瓣末端构成双触点电连接, 因此槽口数量为 N时, 一对电插针 /电插管构成 2N个接触点, 数量为 P的电插针/电插管对 (Pairs)阵列构成的接触界面, 接触点数量为 2*N*P, 所述电 插管如有 2个所述狭窄段, 接触点总数为 4*N*P。 所述动触头与所述双接线板静触头构成 本发明实施例之一: 双接线板静触头接触器, 其中二个接线板之间有二个串联的电插针/ 电插管阵列接触界面, 因此也称为双接触界面接触器, 或单刀单掷双断点 (Single Pole Single Throw, Double Breaks, 或 SPST, DB) 接触器。 可选地, 所述动触头电导圆盘侧 面水平地延伸形成第二接线板 (Terminal) ,并与所述单接线板静触头配对, 构成本发明实 施例之二: 单接线板静触头接触器, 其中二个接线板之间只有一个电插针/电插管阵列接 触界面, 因此也称为: 单接触界面接触器,或单刀单掷单断点 (SPST, Single Break) 接触 器。 并且, 动触头可以设有分开的二个电导体及其电插管阵列以及二个接线板, 并且与所 述双接线板静触头组合成双刀单掷单断口 (DPST, SB)接触器。
[0010] 所述第一波纹管, 包括: 第一波纹管第一管口, 固定在所述静触头陶瓷盘; 第一 波纹管第二管口, 固定在所述动触头陶瓷盘; 以及第一波纹管管壁, 构成所述触头室侧壁, 使得触头室与大气环境隔绝。
[0011] 所述运动装置, 包括升降运动构件、 第二波纹管以及驱动电机组件。 所述升降运 动构件包括: 套筒铸件, 套设所述第一波纹管第二管口并固定在所述动触头陶瓷盘, 所述 套筒铸件还包括套筒第一节、 第一及第二短臂、 第一及第二轴承套管、 套筒第二节、 横梁 以及横梁螺孔; 第一及第二直线轴承, 安装在所述第一及第二轴承套管内; 以及第一及第 二轴承导轨, 套设在所述第一及第二直线轴承轴孔内。 所述第二波纹管包括: 第二波纹管 第一管口, 固定在所述套筒铸件其中所述套筒第二节; 第二波纹管第二管口, 固定在第二 波纹管底座, 该底座固定于所述支架上层的中隔板上; 以及第二波纹管管壁, 构成第二波 纹管内部空间, 收纳所述驱动电机组件, 并通过所述动触头电插管与所述触头室相通, 与 大气环境隔绝, 内部设置为真空, 或充入惰性灭弧气体 (比如 SF6)或注入灭弧油。 所述驱 动电机组件固定在所述中隔板上, 包括: 螺杆, 啮合所述套筒铸件的所述横梁螺孔; 减速 齿轮箱, 构成电机及螺杆之间的联动及减速装置; 以及电机, 通过螺杆驱动所述套筒铸件 及动触头升降运动。 所述动触头向所述静触头运动, 所述电插管向所述电插针运动, 所述 第一波纹管压缩及第二波纹管伸长, 所述灭弧气体或灭弧油通过所述电插管及电插针之间 并流向所述第二波纹管, 直至所述电插管套接所述电插针以及所述接触器开通; 以及所述 动触头脱离静触头运动,所述电插管脱离所述电插针,所述第一波纹管及第二波纹管复原, 灭弧气体或灭弧油通过所述电插管及电插针之间回流第一波纹管。可选地,所述运动装置, 可以选择性地采用外置的杠杆结构取代螺杆驱动结构, 并以人力、 电磁或气动装置对杠杆 施力并驱动所述套筒铸件及动触头升降运动; 进一步地, 选择一个外置驱动电机组件驱动 二个联动丝杆驱动所述套筒铸件运动; 并且, 因外置驱动电机组件, 在所述中隔板上增加 一个静触头, 而所述动触头上、 下双面设有电插管, 并且所述静触头及动触头设有多个电 导体 (二个以上)且形状多样 (比如扇形)以及无接线板动触头设置成可转动, 将组合产生多 刀双掷 (Multiple Poles Multiple Throws)开关类型接触器及功率型多路复用开关 (Multiplexer)。
[0012] 所述控制器, 包括: 微处理器, 基于程序控制并实施通讯、 数据采集、 接触器开 关及断流器功能; 通讯模块, 微处理器经有线及无线通讯模块与供电源控制中心通讯, 接 收指令及接触器参数设定数据并向其发送数据、 警报或请求; 电机驱动电路, 由微处理器 控制并向电机提供不同方向及大小的电枢驱动电流; 动触头锁定器, 对接触器开通状态的 动触头实施位置锁定, 防止意外滑动或脱离; 控制器电源, 向所述控制器提供电能, 并被 配置一个蓄电池作为辅助电源; 以及传感器系统。 所述传感器系统, 包括: 静触头陶瓷盘 温度传感器, 监测静触头陶瓷盘温度; 惰性气体压力传感器, 检测所述触头室内惰性气体 压力及其变化; 电弧光电传感器, 检测所述接触器开通尤其关断时触头室内的电弧及其变 化; 控制器电源电压传感器, 监测所述控制器电源(包括蓄电装置)电压及其变化; 供电源 电压及电流传感器, 监测供电源对负载提供的电力电压、 电流及其变化, 提供所述接触器 动触头及静触头接触或脱离状态信号;第一及第二位置传感器,提供第一及第二位点信号, 或动触头行程起点及终点信号; 电机电流及转速传感器, 检测电机电枢电流, 以定时器及 脉冲计数器法计算电机转速, 以及参照所述第一或第二位点提供第三位点即电插管距离电 插针最近而不产生电弧的位点; 以及传感器调理电路, 对传感器模拟信号进行放大、 滤波 及数字化处理等。
[0013] 本发明涉及的接触器还提供了一种控制方法, 包括: 定时检测所述接触器传感器 信号并向供电源控制中心上传数据,其中包括接触器状态数据;接收供电源控制中心数据, 对接触器功能进行参数设定; 接收供电源控制中心指令, 执行接触器开通、 关断以及数据 上传; 从微处理器端口直接接收(手动)辅助开关信号及控制码, 执行接触器开通及关断功 能; 以及对传感器数据与接触器被设定的参数进行比较, 决定是否自主执行接触器关断, 即断流器功能。 其中所述接触器的开通及关断的控制方法如下: 接触器开通: 所述动触头 锁定器通电打开, 所述动触头从第一位点以正常第二速率向静触头运动, 所述第三位点或 电弧信号出现时, 所述动触头以第一速率高速运动, 第一及第二接线板接通时, 动触头以 较慢的第三速率运动, 直至第二位点信号出现时停止并断开动触头锁定器供电; 以及接触 器关断: 所述动触头锁定器通电打开, 所述动触头以反向第一速率高速脱离静触头, 第三 位点信号出现时以反向第二速率运动, 到第一位点时停止并断开动触头锁定器电流。 附图说明 图 1为本发明实施例之一: 双接触界面接触器关断状态俯视图。 图 2是图 1内部开放的结构图。 图 3是双接触界面接触器其中静触头 200a及动触头 200b中轴线剖视图。 图 4是双接触界面接触器隐藏陶瓷盘的静触头及动触头核心电气结构图。 图 5是双接触界面接触器分解图。 图 6为本发明实施例之二: 单接触界面接触器开通状态侧面仰视图。 图 7是单接触界面接触器静触头 200a及动触头 200b中轴线剖视图。 图 8是单接触界面接触器隐藏陶瓷盘的静触头及动触头核心电气结构图。 图 9是单接触界面接触器分解图。 图 10是电插针及电插管接触末端结构图。 图 11是电插管套接电插针实施电连接图。 图 12是电插管套接电插针的横断面图。 图 13是电插管套接电插针的轴线切面图。 图 14是电插管套接电插针过程中气体或液体运动动态图。 图 15是电插管脱离电插针过程中气体或液体运动动态图。 图 16是控制器框图。 图 17是控制器其中微处理器主程序流程图。 图 18是远程指令中断程序流程图。 图 19是(手动)辅助开关中断程序流程图。 图 20是接触器开通子程序流程图。 图 21是接触器关断子程序流程图。 实施方法
[0014] 图 1〜 5显示本发明实施例之一: 双接触界面接触器在关断(断开)状态的整体及 其局部结构图。 图 1为实施例之一接触器整体俯视图, 图 2为图 1内部开放结构图, 图 3 为静触头 200a及动触头 200b中轴线剖视图, 图 4显示移除了陶瓷盘后静触头及动触头核 心电气结构, 以及图 5为实施例之一接触器分解图, 显示其所有结构及其相互关系。
[0015] 图 1为双接触界面接触器俯视图, 包括: 结构壳体、 触头室 200、 运动装置 300 及控制器 400(未示出)。 结构壳体包括支架结构体 100及壳体(未示出)。 支架结构体 100 包括支架上层 101及支架下层 102o 支架上层设置触头室 200及运动装置 300, 包括顶板 103、 中隔板 104以及带法兰第一、 第二、 第三及第四圆柱 105、 106、 107及 108, 圆柱顶 端螺纹段穿过顶板 103由螺帽 109(总数 4枚)固定, 其中第一圆柱 105及第三圆柱 107兼 用作轴承导轨。 触头室 200设置在运动 300装置上方; 选择性地, 触头室 200及运动装置 300可以整体倒置设置。 支架下层 102设置控制器 400(未示出), 包括中隔板 104、 带法 兰六角柱 110及底板 111 , 四个六角柱 110附接圆柱 105—108并固定中隔板 104, 六角柱 110下端螺纹段及螺帽 112 (总数 4枚)固定底板 H E 中阁板 104还设有气密线孔提供传 感器及电机驱动线缆(未示出)以及有盖气门嘴(Schrader Valve)(未示出)用于触头室真空 处理、 惰性气体充入以及灭弧油注入作业。 壳体(未示出), 包括二个侧盖或上盖及下盖对 合并相互固定, 再固定在顶板竖直折边 113及底板竖直折边 114o
[0016] 图 1中第一接线板 203及第二接线板 204分别连接供电源及负载。触头室 200包 括静触头 200a、 动触头 200b以及第一波纹管 207, 参考图 2、 5。 第一波纹管 207, 是一 种薄金属(比如不锈钢、 铜或铜合金)弹性波纹管, 包括: 第一管口 207a, 套设静触头陶瓷 盘侧壁下部 217b, 套设处密封, 第一管口 207a外再套设第一环箍 208并由螺钉 209固定 在静触头陶瓷盘螺孔 217c; 第一波纹管侧壁 207b构成了触头室 200侧壁; 以及第二管口 207c套设动触头侧壁上部 218a, 套设处密封, 参考图 2、 3、 5。
[0017] 运动装置 300包括: 升降运动构件、 第二波纹管以及驱动电机组件。 升降运动构 件包括套筒铸件 302、第一及第二直线轴承 311及 312以及第一及第二轴承导轨 105及 107。 其中套筒铸件 302, 由铝金属或铝合金铸造而成, 包括: 套筒第一节 303、 从套筒第一节 303两侧径向对称延伸的第一及第二短臂 307及 308、 连接第一及第二短臂的第一及第二 轴承套管 309及 310、 从套筒第一节轴向延伸的套筒第二节 304、 跨接套筒第二节内口的 横梁 305以及横梁螺孔 306, 参考图 5o 套筒第一节 303套设第一波纹管第二管口 207c以 及动触头陶瓷盘侧壁下部 218b, 密封并由螺钉 301固定在动触头陶瓷盘螺孔 218c, 参考 图 1、 2、 3、 5o
[0018] 第二波纹管包括:第二波纹管第一管口 313a,套设在套筒第二节 304侧壁上部并 密封, 其外再套设第二环箍 314, 由螺钉 317固定在套筒第二节螺孔 318, 参考图 1、 5; 第二波纹管第二管口 313c, 套设第二波纹管底座 315圆筒外, 套设处密封, 第二波纹管第 二管口 313c外再套设第三环箍 316,由螺钉 319固定在第二波纹管底座 315圆筒螺孔 320, 其中第二波纹管底座 315法兰部分设置在中隔板 104上,密封并由螺钉固定,参考图 1、 5; 以及第二波纹管侧壁 313b构成与大气隔绝的空间,并通过动触头 200b电插管与触头室 200 相通, 参考图 2o
[0019] 驱动电机组件, 收纳在第二波纹管 313内, 固定在中隔板 104 ±,包括螺杆 321、 减速齿轮箱 322及电机 323; 其中, 螺杆 321啮合套筒铸件的横梁螺孔 306参考图 2、 5。 电机 323通过动力传动链:电机 323-减速齿轮箱 322-螺杆 321-横梁螺孔 306-横梁 305 … 套筒第二节 304 -套筒第一节 303 -动触头 200b以及第一及第二直线轴承 311、 312及 其第一及第二轴承导轨 105、 106, 驱动动触头升降运动, 参考图 1、 2、 5o 选择性地, 第 二、 第四圆柱 106及 108, 其中之一或共同被添加为轴承导轨, 使得套筒第一节 303被相 应地配置三或四个短臂、 轴承套管以及直线轴承, 加强动触头直线运动精确度, 参考图 1、 5o 并且, 套筒铸件 302还可以通过杠杆原理进行升降运动, 由杠杆结构代替所述运动装 置的螺杆驱动结构, 方法如下: 杠杆受力点设置在套筒第一节 303径线上对称两点, 支点 及施力点设置在二个受力点的等距点上(未示出), 由人力、 电磁或气动装置产生的力直接 作用在施力点上。进一步地, 由外置的驱动电机组件驱动两个设置在顶板 103、 中隔板 104 之间的同步联动的丝杆, 其中二个丝杆螺母分别连接上述的两个受力点。 驱动电机组件因 外置而留空的第二波纹管可以设置控制器尤其微处理器模块, 而留空的结构壳体支架下层 102可 以设置所述的外置驱动电机组件及其驱动器(未示出)。 另一方面, 因外置驱动电机 组件,可以在第二波纹管内以及中隔板 104上增加一个静触头,构成第二静触头(未示出), 并与第一静触头 200a对称, 而动触头电插管则设置成具有上、 下双向接触端(未示出), 使得动触头上升时与第一静触头 200a发生接触, 下降时与第二静触头接触, 停留在两者 之间, 不进行接触, 接触器完全断开。进一步地, 二个静触头及动触头设有多个电导体(二 个以上)且大小不等及形状多样(比如扇形), 将组合产生不同类型的多刀双掷(Multiple Poles Double Throws)开关类型接触器、 功率型多路复用开关(Multiplexer); 以及选择 性地将动触头设置成无 接线板而可进行数字化控制的转动(未示出)并且动触头区域性差 别化地设置成单向朝上、 单向朝下或双向电插管接触端, 使得第一及第二静触头电插针因 动触头转动可以选择性地套接不同部位及形状的电插管阵列(未示出), 将获得不同的编码 式或程控式复合功率开关。
[0020] 图 2显示了移除一部分第一波纹管 207、 第二波纹管 313以及套筒第一节 303及 套筒第二节 304后显示的触头室 200及第二波纹管内部结构, 其中包括静触头 200a、动触 头 200b以及驱动电机组件。 静触头 200a安装在顶板 103底面, 由螺钉 202及静触头固定 螺孔 217a进行固定, 参考图 5; 套筒第二节设有横梁 305及其横梁螺孔 306; 以及驱动电 机组件其中包括螺杆 321、 减速齿轮箱 322以及电机 323, 参考图 5。
[0021] 图 3显示静触头 200a及动触头 200b的中轴线剖视图, 图 4显示移除了陶瓷盘后 的静触头及动触头核心电气结构。 静触头 200a包括: 两个分开(无电连接)、 形状呈小半 圆形的第一、 第二电导体 210、 211 , 各自分别设有多个垂直向下的等距分布的第一、 第二 电插针阵列 212、 213, 封装第一及第二电导体的静触头陶瓷盘 217, 以及分别从二个电导 体 210、 211 水平地延伸并突出静触头陶瓷盘侧壁上部及接触器壳体(未示出)外的第一接 线板 203及第二接线板 204, 后者分别连接供电源一端及负载一端。 根据供电源连线及负 载连线的方向不同, 二个接线板角度相应地设置为 90。 的倍数, 本发明实施例之一接触器 (包括图 1〜 5)显示二个接线板角度为 180。 。动触头 200b包括: 动触头电导圆盘 214, 封 装动触头电导圆盘的动触头陶瓷盘 218,以及穿透动触头电导圆盘盘面并与电插针一一同 轴配对的第一及第二电插管阵列 215、 216。电插针阵列 212及 213、静触头陶瓷盘底面 217d 以及温度-压力-光电传感器组件 206其中的压力 -光电探测管 206a构成触头室 200顶部, 电插管阵列 215及 216以及动触头陶瓷盘上面 218d构成触头室 200底部, 以及第一波纹 管管壁 207b构成触头室 200侧壁, 参考图 2、 3、 5。 其中, 电插针与静触头电导体以及电 插管与动触头电导圆盘通过焊接或冲压方法进行固定或整体铸造再加工的方法获得。 触头 室 200通过动触头电插管阵列 215、 216以及动触头陶瓷盘底部 218e开通的电插管底部管 口 219与第二波纹管内部相通, 与大气环境隔绝, 参考图 2、 3o
[0022] 图 5为本发明实施例之一双接触界面接触器分解图。静触头陶瓷盘 217中心设有 孔位 217e, 与顶板 103中心孔 115接合, 用于安装温度-压力-光电传感器组件 206, 包括 压力 -光电探测管 206a, 其管口与触头室相通, 检测触头室内惰性气体压力及电插管套接 电插针时发生的电弧, 以及该传感器组件圆台底座温度传感器 206b, 检测静触头陶瓷盘温 度, 参考图 1、 2o 第一接线板 203及第一电导体 210之间设有供电源电流传感器 205, 电 流传感器 205采用二个 C形硅钢片叠片 205a、 205b对合构成环形磁路结构, 硅钢片叠片 205a 下面、 205b 上面均设有一个凹室, 合成一个与外部电磁隔离的空间, 其中内置一个 线性霍尔传感器芯片 205c, 对供电源向负载提供的电力进行开环电流检测。 选择性地, 硅 钢片叠片 205a、 205b 横臂各自绕设线圈并串联, 与其中霍尔传感器组成闭环电流检测装 置, 还可以利用罗氏线圈 (Rogowski Coil)进行电流检测。
[0023] 驱动电机组件驱动套筒铸件 302上升或下降, 动触头 200b与静触头 200a接触或 脱离, 电插管阵列 215、 216分别套接或脱离电插针阵列 212、 213, 实施接触器开通或关 断。触头室 200与运动装置 300构成一个内循环往复泵 (Self-circulation Reciprocating Pump) : 动触头向静触头运动, 触头室内气体或液体向第二波纹管流动; 动触头离开静触 头运动时, 第二波纹管内气体或液体回流触头室, 参考图 1、 2。 其中, 触头室 200及第二 波纹管 313 内灭弧介质在两者之间流动并获得压力平衡, 不会对动触头 200b 以及驱动电 机的运动造成持续的、 两者之间因压力差造成非线性增强的阻力, 只存在波纹管的弹性阻 力构成对动触头 200b 持续、 线性变化的阻力以及短暂的压力差波动导致的阻力。 步骤如 下: 动触头 200b上升时, 第一波纹管 207压缩, 第二波纹管 313伸长, 触头室 200内惰 性气体通过动触头电插管底部管口 219向第二波纹管 313流动, 在电插管接近电插针并在 两者接触前瞬间可能产生电弧, 而此时电插管接触末端管口因电插针接触末端阻挡而气道 狭小, 气流速度迅速加大, 电弧在高速气流冲击下受到压制, 直至电插管套接电插针致使 电弧消失, 气流持续直至电插管套接电插针到位, 完成第一、 第二电导体 210、 211 电连 接, 以及第一接线板 203及第二接线板 204电连接, 接触器开通; 动触头 200b脱离静触 头 200a运动时, 第一波纹管 207伸长复原, 第二波纹管 313回缩复原, 第二波纹管 313 内部惰性气体通过动触头电插管底部管口 219向触头室 200流动, 特别在两者脱离瞬间, 电插管竹瓣状末端因电插针抽出而收拢而使得电插管槽口变窄, 气流主要从电插管末端管 口及电插针之间间隙流过, 该气流在两者脱离瞬间因电机高速运动使得气流速度迅速加大 并直接向电插针指状末端外周及其槽口冲击, 从而比两者接近时气流冲向电插管内产生更 强灭弧效果, 直至电插管完全脱离电插针, 第一接线板 203及第二接线板 204断开, 动触 头复位, 完成接触器关断。 惰性灭弧气体气流速度越高灭弧效果越好: 高速气流不仅具有 拉长电弧长度达到减弧作用, 惰性气体如 SF6还难以被电离形成电弧电流, 并且还有冷却 电弧从而减小电弧损害的效应, 并且惰性气体保护接触器触点不被污染、 氧化以及腐蚀, 基于这个理由, 可以考虑将轴承及其导轨设置在触头室内 (未示出), 使得轴承及其导轨包 括电插针、 电插管及驱动电机组件设置在触头室及第二波纹管内的洁净环境中, 将增加机 械及电气部件的可靠性及其使用寿命。
[0024] 一般地, 电插管与电插针之间气流速度与波纹管的横截面面积以及升降运动铸件 302 运动速度成正比, 与电插管数量及其电插管与电插针之间空隙大小及电插管、 电插针 槽口宽度成反比; 其中套筒铸件 302运动速度与螺杆 321螺距及电机转速成正比, 与减速 齿轮箱减速比成反比。 在电插针及电插管接触及脱离瞬间, 在短时间内提高驱动电机的转 速, 电插管与电插针之间间隙气流速度将大幅上升, 可以提升灭弧效果, 而电机可以承受 短时间大电流电枢输入所引起的发热。 精确设定动触头 200b 运动行程中不同行程及其运 动速度, 并监测电流与转速的关系防止电机烧毁, 同时可以利用电弧光电信号强度间接用 作电机的速度控制参考数据。 除了惰性灭弧气体, 可以选择灭弧油作为灭弧介质, 流动的 灭弧油发挥灭弧作用是基于直接吸收并转移电弧及其热量。 需要注意的是, 液体状灭弧油 作为灭弧介质, 负载功率比气体大得多, 需提升运动装置功率, 并且触头室及运动装置(无 第二静触头)被整体倒置安装将减小动触头运动负载功率, 方法如下: 静触头设置在中隔 板 104 ±, 运动装置设置在顶板 103下, 并且触头室内灭弧油达到一个高度, 使得动触头 在整个运动行程中只有灭弧油在电插管及电插针之间流动 , 无气泡产生, 而触头室(在下 方)剩余空间包括第二波纹管(在上方)内充入气体(未示出) o
[0025] 电弧的损害程度还与(一个)触点产生的电弧电流大小有关。 本发明涉及的接触 器, 具有多个执行电连接任务的电插针/电插管对(Pairs), 每一对电插针/电插管还可以 形成多个接触点。 如果接触器执行接触过程中, 所有的电插针 /电插管对之间的触点同时 发生接触或脱离, 产生的电弧电流将分流到所有的触点上, 单个触点电流将显著减小, 电 流产生的热量分散、也更快冷却。要实现所有的触点在同一时刻发生接触与脱离, 须具备: 1) 动触头的运动精度高, 使得电插针/电插管在接触过程中, 始终处于精确的同轴关系, 比如对结构壳体支架上层角位 设置一个或二个冲压角码(未示出), 加强接触器支架上层 101刚性, 以及对套筒第一节 303设置三个甚至四个短臂及其附接的轴承套管并配置直线 轴承及其轴承导轨, 以便提高套筒铸件运动精确度; 2) 电插针及电插管其末端具有精密 结构比如槽口数量相同, 接触末端结构(电插管竹瓣及电插针指状末端)轴对称、 电插针/ 电插管槽口等角交错以及同轴设定, 使得电插针每一点与电插管的最近距离均相等, 电弧 将分散或游移而不集中在一个点上。 当接触器满足多触点同时刻接触及脱离条件时, 将会 弥补本发明涉及接触器 以运动控制实施接触所需的行程时间相对于商用接触器通 过电磁 操动实施接触的行程时间较长而产生的问题或缺陷。 就灭弧而言, 在触点接触及脱离容易 发生电弧的关键距离内, 触点的快速接触及脱离才有意义。 在这个有效距离内, 本发明涉 及的接触器在短时间内对电机实施高速驱动 , 驱使电插针 /电插管快速接触及脱离, 而在 这个关键距离外采用较慢的速度以便迅速冷却电机及其功率驱动芯片温度。 相对而言, 采 用电磁操动的接触器在整个操动行程内无差别地高速运行, 可能造成该类型接触器体积相 对较大、 耗电较高、 噪声较大、 成本更高甚至寿命较短。
[0026] 图 6〜 9为本发明实施例之二: 单接触界面接触器处于开通(闭合)状态整体及其 局部结构图, 从不同角度显示接触器结构, 便于更全面了解本发明涉及的接触器结构。 单 接触界面接触器其中静触头 200a> 动触头 200b以及套筒铸件 330其中的套筒第一节 331 分别与实施例之一双接触界面接触器静触头 200a、 动触头 200b以及套筒铸件 302其中套 筒第一节 303不同, 除这些结构之外的其他部分、 结构关系以及控制方法与实施例之一的 双接触界面接触器相同, 相同部分的结构名称、 引用标记及其说明将参照前述的实施例之 一接触器, 在此不作重复。 [0027] 图 6及图 9显示了单接触界面接触器整体结构侧面仰视图及其分解图, 图 7以中 轴线剖视图显示其静触头 200a及动触头 200b实体内部结构, 以及图 8显示图 7在移除了 陶瓷盘后其核心电气结构。
[0028] 静触头 200a设有一个接线板即第一接线板 220,该接线板穿出静触头陶瓷盘 225 侧壁及接触器壳体(未示出)外, 动触头 200b设有第二接线板 221 , 穿出动触头陶瓷盘 227 侧壁及接触器壳体(未示出)外, 参考图 7。 二个接线板分别连接供电源一端及负载一端。 根据供电源连线及负载连线的方向不同, 二个接线板角度被设置为 0° 或 90° 的倍数, 图 6〜 9显示二个接线板角度为 180° o 静触头陶瓷盘 225及动触头陶瓷盘 227外部结构及其 与第一波纹管的附接方法与实施例之一相 同。 图 6 显示了动触头 200b 上升接触静触头 200a, 接触器处于开通状态, 其中第一波纹管 207压缩以及灭弧气体或灭弧油通过动触头 电插管底部管口 228(参考图 7〜 9)流向了第二波纹管, 第二波纹管 313伸长并接纳灭弧气 体或灭弧油。 套筒铸件 330其中套筒第一节 331设有一个套筒缺口 332, 构成第二接线板 221的出口通道;套筒缺口 332上部嵌入一个缺口封口板 333,其外覆盖封口板加固件 334, 并固定于动触头陶瓷盘以及位于第二短臂的螺孔 335, 防止因套筒缺口 332造成波纹管密 封问题及套筒铸件强度不足, 参考图 9。
[0029] 图 8显示了第一接线板 220由静触头电导圆盘 222水平延伸形成,后者设有电插 针阵列 224; 第二接线板 221由动触头电导圆盘 223水平延伸形成, 后者设有与静触头电 插针阵列 224构成一对一同轴关系的电插管阵列 226; 以及电插管阵列 226一对一套接电 插针阵列 224, 第一接线板 220与第二接线板 221电连接, 接触器开通。
[0030] 本发明实施例之一与实施例之二接触器在控制、运动以及灭弧方法相同, 在结构 上存在差别。 二个实施例的不同之处还在于: 实施例之一接触器第一接线板 203及第二接 线板 204通过两组套接的电插针 /电插管阵列 212/215及 213/216串联而构成电连接, 而 实施例之二接触器第一接线板 220及第二接线板 221通过一组套接的电插针 /电插管阵列 224/226构成电连接,相当于实施例之一两组串联的电插针/电插管阵列在实施例之二中转 变成并联, 基于相同尺寸及规格, 实施例之二相对于实施例之一的电流容量及功率在两倍 以上。 并且, 实施例之二接触器第二接线板 221在接触器的接触及脱离过程中, 会随着动 触头 200b以及套筒铸件 330一起运动, 而实施例之一接触器的二个接线板固定不动。 因 此实施例之一接触器将方便地配置为密封壳体(未示出), 对控制器及轴承及其导轨具有防 潮、 防尘及防锈蚀, 实施例之二接触器则适用于更大功率容量但允许第二接线板微小移动 的应用环境。 两个实施例中电插针及电插管被设置在含有纯净惰性灭弧气体或灭弧油或真 空的密闭空间, 均具有防尘、 防锈、 防潮及显著减小因气体电离产生的电弧。
[0031] 图 10〜 13显示电插针及电插管接触端结构及其接触模式。图 10显示,电插针 231 为实心圆形导体, 其接触端设有六个指状末端 232、 六个等角、 等宽、 横断面呈辐射状槽 口 233以及一个中心浅孔 234o 指状末端数量视电插针直径、 工艺成本及应用环境而定, 通常为偶数。 电插管 235为管状导体, 两头相通, 并在连接并固定在动触头电导圆盘或电 导体以及随其封装在动触头陶瓷盘中时保持通透, 使得动触头上、 下相通。 电插管 235接 触端设有与电插针指状末端数量相等的六个竹瓣状末端 236, 以及六个等角、 等宽、 横断 面呈辐射状槽口 237,电插管管道内径 238比电插针 231外径稍小使得两者接触时有一定接 触点压力; 电插管槽口 237较窄, 使得电插针 /电插管接触前或脱离后, 灭弧气体不易从 槽口流失而集中在电插针与电插管之间, 即容易发生电弧的空间。 图 11 显示电插针 231 进入并接触电插管 235完成接触及电连接。 图 12显示电插针 231与电插管 235接触端处 于接触状态的横断面图。 其中电插针指状末端 232位于电插管其中两个邻近竹瓣状末端 236a及 236b的中间, 形成两个电接触点及其接触压力相当, 其中电插管竹瓣状末端同样 位于两个电插针的两个邻近指状末端中间, 形成两个电触点, 触点压力也应该不相上下, 从而电插针/电插管对 (Pair)之间形成 12个电触点, 触点平衡、 均匀。 图 13显示套接的 电插管 /电插针接触端处于接触状态的中心线切面图, 其中电插管竹瓣状末端设有第一狭 窄段 236c及第二狭窄段 236d, 分别与电插针指状末端尖部 232a及其根部 232b接触, 从 而一对电插针 /电插管形成二组接触点, 每一组为 12个接触点, 总共 24个接触点; 并且, 电插管竹瓣状末端狭窄段 236c 比狭窄段 236d更具弹性, 以及电插针指状末端尖部 232a 比其根部 232b更具弹性, 使得电插管与电插针在一定的套接深度变化范围内, 两者之间 的接触点不会减少, 接触点压力不会有显著差别。 因此本发明涉及的接触器开通时, 将产 生总共为 4*N*P个电触点,其中 N为电插针或电插管槽口数量, P为电插针/电插管对 (Pairs) 数量。 针对本发明实施例之一: 双接触界面接触器, 其电插针/电插管对 (Pairs) 总数为 Pi时, 双接线板 (Terminal K Terminal)之间有二个其中每一个有 Pi/2个套接的电插针/ 电插管接触界面串联在一起, 如果一个电插针/电插管对的触点电阻为 R。、 非触点电阻为 原 (不计电导体、 电导圆盘及接线板电阻), 双接线板之间的电阻为 4 R+RQ /P3 针对本发 明实施例之 二: 单接触界面接触器, 对于总数为 R的电插针 /电插管对, 第一接线板 (Terminal 1)与第二接线板 (Terminal)之间有一个由 P2个套接的电插针/电插管对形成的 接触界面, 并且如果一个电插针/电插管对的触点电阻为 R。、 非触点电阻为虹, 二个接线 板之间的电阻为 (Re+Rne) /P2o对于相同规格及尺寸的本发明实施例接触器, 通常 P^P2, 因 此双接触界面接触器比单接触界面接触器的接触器电阻及功耗至少大 4倍。
[0032] 图 14〜 15为本发明涉及的接触器在驱动装置驱动下实施开通及关断中电插管套 接及脱离电插针过程及其灭弧气体运动动态图示说明, 其中图 14为接触器开通过程, 图 15为其关断过程。
[0033] 图 14显示, 电插管 235从关断状态第一位点 ①开始第一正向行程 240, 电机以额 定功率运动使得电插管以第二速率 241向电插针运动; 第一正向行程 240最长, 保证电插 管在关断位置上与电插针之间的开距不会导致自然放电,第一正向行程 240中惰性气体 242 进入电插管接触端管口 238, 经电插管底部管口流出 243; 电插管接近电插针时如检测到 电弧信号 ②时, 电机以超额功率的第一速率 244驱动电插管高速运动, 以便快速完成第二 正向行程 245, 减小电弧造成损害; 电插管底部管口气流 246流速处决于电插管运动速度, 而电插管越接近电插针时, 两者接触端之间间隙面积越小, 灭弧气流 247流速越高, 同时, 两者越接近电弧也越强, 因此电弧与灭弧处于一个动态平衡, 使得电弧即使出现也一直处 于平稳的水平, 直至电插管与电插针电连接信号③出现, 电弧熄灭进入第三正向行程 248, 电机以低于额定功率运动使得电插管以低于第二速率的第三速率 249继续套接电插针, 流 出电插管气体 250速度最小, 流入的气体 251因电插管末端管口被电插针完全堵截而仅从 电插针槽口 233及电插管槽口 237进入, 继续消除或因电弧产生的热量, 直至第四位点信 号④出现, 电插管 235套接电插针 231到位(电插管二个狭窄段与电插针发生接触)并形成 接触点压力, 完成接触器开通。 另一方面,电插管进入第一正向行程 240 到电插管接触到 电插针位置③过程中, 也可能无电弧产生, 继而电插管将转换成较慢的第三速率 249运动 完成第三正向行程 248, 直至第四位点信号④出现, 接触器开通。 电弧发生存在不确定性, 其发生的位置②也可能偏移, 越早发生电弧强度也越高。 为了尽量减小电弧的发生及其损 害, 选择性地将 ②设置成由电机电流及速度传感器通过脉冲计数法进行定位, 并且将位点 ②设置在电插管距离电插针最近但不会产生电弧的临界位置, 使得电插管从位点②开始以 第一速率 244高速运动进入第二正向行程 245, 主动执行灭弧并提高开关速度。 如果电机 能够承受, 可以从第一位点就开始高速 244运动完成第一及第二正向行程 240、 245, 进一 步提高开关速度。
[0034] 图 15显示, 电插管从与电插针完全接触的位置④以反向第一速率 252进入第一 反向行程 253开始高速脱离电插针, 气体 254从第二波纹管(未示出)高速进入电插管底部 管口(219图 3或 228图 7), 先从电插管及电插针槽口继而高速吹袭电插管末端管口及电 插针之间、 电插针指状末端 232及其浅孔 234及槽口 233, 形成高速气流 255实施主动灭 弧; 当到达位点 ②时, 电机以额定功率运动使得电插管以正常的反向第二速率 256进入反 向第二行程 257, 气体 258从电插管底部管口进入, 气体 259以相同速度从电插管末端管 □ 238流出, 继续冷却电插管及电插针末端(如发生了电弧), 最后电插管回到接触器关断 的位置①, 完成电插管脱离电插针以及接触器关断。 接触器关断过程吹弧方向向外, 而开 通过程吹弧方向向内(电插管内), 吹弧效果有差别, 但与两个过程电弧发生强度匹配。 [0035] 图 16为控制器框图。 控制器 400包括微处理器 401、 通讯模块 402、 电机驱动器 403、 位置锁定器 404、 控制器电源 405以及传感器系统。
[0036] 传感器系统包括: 静触头陶瓷盘温度传感器 406, 检测静触头陶瓷盘温度, 该温 度与供电源向负载提供的电流大小有关,温度过高时供电源电流过大,如果超过一定温度, 将启动断流器功能; 惰性气体压力传感器 407, 检测触头室内惰性气体压力及其变化, 以 此判断触头室包括第二波纹管内是否漏气; 电弧光电传感器 408, 检测接触器在接触或脱 离过程中是否有电弧产生、 强度及其变化, 提示灭弧效果并可以此对运动控制进行调整, 长期的变化提示触头老化, 结合其他传感器数据分析引起电弧变化的原因, 比如电弧的突 然加剧, 可能是负载类型(电机类负载比重变化)的改变引起, 也可能是负载功率的变化; 控制器电源电压传感器 409, 检测控制器电源的电压是否正常, 辅助蓄电池电压变化提示 蓄电池是否老化需更换等信息; 供电源电压电流传感器 410, 提供供电源的电压及电流值, 向供电源控制中心发送供电源电压及电流数据, 以便进行电力管理及商业结算, 此外还提 供接触器开通及关断过程中动触头电插管与静触头电插针的接触或脱离的状态信号; 位置 传感器, 包括第一及第二位置传感器组 411 , 提供动触头及其电插管第一及第二位点信号 或动触头(或电插管)行程起点及终点信号, 其中第一位点(①,图 14、 15)通常为接触器关 断位置, 第二位点(④,图 14、 15)为接触器开通位置即电插管套接电插针完成电连接的位 置, 微处理器利用这些位点信号, 实施接触器的开关过程控制, 包括灭弧方法的实施; 电 机电流及转速传感器 412, 检测驱动装置中的电机驱动电流以及通过定时器及脉冲计数法 计算其转速, 基于电流与转速的关系及其变化提示电机遇到的阻力变化, 提示接触器接触 过程是否正常, 包括电插管 /电插针末端损坏、 发生触点焊接等, 并且以脉冲计数法并参 照第一或第二位点传感器, 对动触头(电插管)运动行程内的任何位点进行定位, 比如第三 位点②: 电插管离电插针距离最近而不会产生电弧的临界位置; 以及传感器调理电路 413, 对上述传感器信号进行处理, 包括模拟信号放大、 滤波或设置为集成数字式传感器等, 分 别由信号线及数据线 414连接微处理器数/模(A/D)端口及串行通讯端口。 户外安装的本发 明涉及的接触器, 还可以配置大气环境传感器如声、 光、 温度、 湿度、 风速、 风向、 辐射、 图像以及功能模块如 GPS等。 所有这些传感器数据由微处理器定时检测、 定期地向供电源 控制中心发送, 后者将对这些数据进行处理包括统计、 分析并判断接触器功能状态、 对接 触器发送指令以及发出维护或紧急信息及警报等。
[0037] 静触头陶瓷盘温度传感器 406、惰性气体压力传感器 407以及电弧光电传感器 408 集成在一个温度-压力-光电传感器组件 206(图 1、5及 9) ,设置在静触头陶瓷盘中心孔 217e 及顶板中心孔 115 内, 通过传导方式感测静触头陶瓷盘温度, 以及通过压力 -光电探测管 206a向触头室内开放, 检测触头室内气压及电弧, 参考图 2、 5、 9。
[0038] 图 16显示, 通讯模块 402设有天线 415, 通过移动无线平台(低轨道卫星网、 无 人机)、 分布式平台(WiFi、 移动网络 Cellular Networks )等以及有线串行接口 416(有线 网络、 光纤、 RS485 等) 与供电源控制中心进行双向数据通讯, 发送接触器状态、 传感器 数据以及接收控制中心包括指令、 接触器参数设定数据, 比如断流器允许及其参数范围设 定、 手动辅助开关允许等。 通讯模块 402通过中断方式与微处理器进行数据交换。 本发明 涉及的接触器, 还可以通过手动(辅助)开关(未示出)中断信号 418及编码信号 419输入微 处理器 401端口进行直接(外部)中断方式对接触器进行开关操作: 开通或关断。 电机驱动 器 403由微处理器 401控制并提供电流大小、 方向不同的电枢驱动, 从而控制电机的方向 及速度。针对动触头位置锁定器 404其中电磁装置,微处理器 401通过电子开关或继电器, 对其磁吸线圈供电开启卡位机构, 放行动触头运动, 断电时卡位回弹挡住套筒铸件及动触 头运动, 从而锁定动触头及其电插管防止其从电插针滑动或移位, 影响电连接质量。 控制 器电源 405为控制器的工作电源, 由供电源或公用电网经电压转换获得, 并配备一个备用 蓄电池或超级电容器(未示出)并由控制器电源、 光伏板等充电(未示出), 在控制器电源断 电时充当备用电源, 能够完成进行中但未完成的操作, 现场数据保存, 并能短时维持接触 器开关操作所需电能, 保护供电源及负载端用户, 尤其还能向供电源控制中心发送紧急信 息。
[0039] 微处理器 401 针对本发明实施之一及之二接触器设有基础程序, 包括: 主程序 420(图 17)、 远程指令中断程序 430(图 18)、 辅助开关中断程序 440(图 19)、 接触器开通 子程序 450(图 20)、 接触器关断子程序 460(图 21)以及数据发送子程序 423(未示出)。
[0040] 主程序 420(图 17)在微处理器复位时开始初始化 421 , 包括: 恢复工作参数、 确 定动触头所在位置及根据恢复的参数完成可能因断电等原因中止的操作、 向供电源控制中 心请求最新指令以及按照最新指令执行开关操作; 然后程序进入采集传感器数据 422、 发 送数据 423: 包括发送传感器数据、 接触器状态以及操作执行结果等, 继而进入验证数据 是否异常 424, 如无异常经延迟 425回到循环入口, 如异常并超出断流器启动所设定的范 围再检验断流允许 426, 如允许则执行自主断流器功能, 进入接触器关断子程序 460并发 送执行结果及传感器数据, 或只发送数据(即不被允许执行断流器功能)再回到循环入口。
[0041] 通讯模块接收到供电源控制中心远程数据包时, 进入远程指令中断程序 430(图 18): 读取数据包 431 , 判断是否为关断指令 432, 如是执行接触器关断子程序 460, 如否 再判断是否为接触器开通指令 433,如是执行接触器开通子程序 450;然后进入判断是否(控 制中心)该数据包是否包含接触器数据上传指令 434, 如是发送数据 423, 如否再判断是否 有参数设定指令 435, 如是执行参数设定 436, 包括: (手动)辅助开关操作允许、 断流功 能允许、断流条件包括电压及电流范围以及静触头陶瓷盘温度限值、主程序循环延迟时间、 供电源断电时接触器开关状态预置等设定等。
[0042] 图 16显示微处理器 401端口接收(手动)辅助开关(未示出)数据 418及 419从而 进行手动开关操作: 接触器开通及关断。 其中信号 418为外部中断信号, 419为开关编码 数据。 图 19为手动辅助开关中断程序 440, 包括: 441为读取端口数据(419,图 16), 442 为检验数据是否为手动关断接触器编码, 如是进入 443检验设定是否被允许手动关断接触 器, 如允许执行接触器关断子程序 460, 否则结束中断程序; 如果 442检验数据结果为非 手动关断接触器编码, 再检验数据是否为手动开通接触器编码 444, 如是进入 445检验设 定是否被允许手动开通接触器, 如是执行接触器开通子程序 450, 否则结束中断程序。
[0043] 图 20为接触器开通子程序 450,执行 451检测接触器是否处于关断状态,如否即 接触器处于开通 状态, 结束; 如是即接触器处于关断状态, 打开动触头锁定器(电磁装 置)452, 动触头开始从第一位点以正向第二速率运动 453( +为正向), 然后由电弧信号进入 454或第三位点信号进入 455, 启动动触头以第一速率高速运动进行被动或主动灭弧, 直 至接触器开通信号(电插管套接电插针瞬间)出现,动触头进入最慢的正向第三速率 456继 续运动, 使得电插管套接电插针到位 457, 关闭电机及断开动触头锁定器磁吸线圈电流从 而锁定动触头 458, 完成接触器开通。
[0044] 接触器关断子程序 460(图 21), 经确认接触器 461处于开通状态后, 开启动触头 锁定器(电磁装置) 452, 动触头开始从第二位点(接触器关断)以反向(-为反向)第一速率高 速脱离静触头 462, 然后到第三位点信号 463出现开始进入反向第二速率 464驱动动触头 回到第一位点 465, 断开动触头锁定器电磁装置的磁吸线圈电流 458, 完成接触器关断。 附图标记清单
[0045] 本发明涉及接触器包括: 支架结构体 100, 触头室 200, 运动装置 300(图 1〜 5) 以及控制器 400(未示出)。
[0046] 支架结构体 100:
101: 支架上层;
102: 支架下层;
103: 顶板;
104: 中隔板;
105: 第一圆柱;
106: 第一圆柱;
107: 第三圆柱;
108: 第四圆柱;
109: 螺帽(4枚);
110: 带法兰六角柱;
111: 底板;
112: 螺帽(4枚);
113: 顶板折边;
114: 底板折边;
115: 顶板中心孔。
[0047] 触头室 200:
202: 螺钉(4枚);
205: 供电源电流传感器;
206: 温度 -压力 -光电传感器组件:
206a: 压力-光电探测管;
206b: 圆台底座温度传感器
208: 第一环箍;
209: 螺钉(6枚);
1)静触头 200a:
203: 第一接线板;
204: 第二接线板;
210: 静触头第一电导体; 211: 静触头第二电导体;
212: 静触头第一电插针阵列;
213: 静触头第二电插针阵列;
217: 静触头陶瓷盘:
217a: 静触头固定螺孔;
217b: 静触头陶瓷盘侧壁下部;
217c: 静触头陶瓷盘螺孔;
217d: 静触头陶瓷盘盘面;
217e: 静触头陶瓷盘中心孔;
2)动触头 200b:
214: 动触头电导圆盘;
215: 动触头第一电插管阵列;
216: 动触头第二电插管阵列;
218: 动触头陶瓷盘:
218a: 动触头陶瓷盘侧壁上部;
218b: 动触头陶瓷盘侧壁下部:
218c: 动触头陶瓷盘螺孔;
218d: 动触头陶瓷盘盘面;
218e: 动触头陶瓷盘底面;
219: 电插管底部管口
3)第一波纹管 207:
207a: 第一波纹管第一管口;
207b: 第一波纹管管壁;
207c: 第一波纹管第二管口。
[0048] 运动装置 300:
301: 套筒铸件动触头固定螺钉(6枚);
314: 第二环箍;
317: 螺钉(6枚);
316: 第三环箍;
319: 螺钉(6枚);
315: 第二波纹管底座;
320: 第二波纹管底座螺孔;
1)升降运动构件:
302: 套筒铸件:
303: 套筒第一节; 304: 套筒第二节;
305: 横梁;
306: 横梁螺孔;
307: 第一短臂;
308: 第二短臂;
309: 第一轴承套管;
310: 第二轴承套管;
311: 第一直线轴承;
312: 第二直线轴承;
105: 第一轴承导轨(第一圆柱);
106: 第二轴承导轨(第三圆柱);
2) 第二波纹管 313:
313a: 第二波纹管第一管口;
313b: 第二波纹管管壁;
313c: 第二波纹管第二管口;
3)驱动电机组件
321: 螺杆;
322: 减速齿轮箱;
323: 电机。
[0049] 上面列出的附图标记为本发明实施例之一: 双接触界面接触器的结构部分, 下面 列出本发明实施例之二: 单接触界面接触器其中与实施例之一不同的部分, 相同的部分省 略(图 6〜 9)。
[0050] 触头室 200:
1)静触头 200a:
220: 第一接线板;
222: 静触头电导圆盘:
224: 静触头电插针阵列;
225: 静触头陶瓷盘;
2) 动触头 200b:
221: 第二接线板;
223: 动触头电导圆盘;
226: 动触头电插管阵列;
227: 动触头陶瓷盘;
228: 电插管底部管口。 [0051] 运动装置 300: 套筒铸件 330:
331: 套筒第一节;
332: 套筒缺口:
333: 套筒缺口封口板
334: 缺口封口板;
335: 封口板加固件。
[0052] 电插管及电插针接触端结构(图 10〜 13):
1) 电插针 231:
232: 电插针指状末端:
232a: 指状末端尖部;
232b: 指状末端根部;
233: 电插针槽口;
234: 电插针浅孔;
2) 电插管 235:
236: 电插管竹瓣状末端:
236a: 电插管竹瓣状末端结构之一;
236b: 电插管竹瓣状末端结构之二;
236c: 电插管第一狭窄段;
236d: 电插管第二狭窄段;
237: 电插管槽口;
238: 电插管管道。

Claims

权利要求书
1.本申请涉及一种接触器, 其特征在于: 阵列电插针 /电插管式多触点通过运动控制实 施智能大电流开关功能, 包括: 结构壳体, 提供接触器功能部件的安装空间、 结构支撑以及保护外壳; 触头室, 提供与大气环境隔绝的动触头与静触头接触空间; 运动装置, 附接动触头,驱动其运动与静触头接触及脱离; 以及 控制器, 控制接触器开关操作、 监测接触器功能以及与电力控制中心通讯。
2.根据权利要求 1所述接触器, 其中所述结构壳体还包括: 支架结构体, 包括支架上层及支架下层, 所述支架上层设置触头室及运动装置, 由顶 板、 中隔板及四个圆柱构成, 所述支架下层, 设置控制器, 由所述中隔板、 底板以及四个 六角柱构成; 以及 壳体, 包括二个侧盖或上盖及下盖, 两者相互对合固定并固定顶板及底板的折边。
3.根据权利要求 1所述接触器, 其中所述触头室包括静触头、动触头以及第一波纹管。
4.根据权利要 3所述触头室, 其中所述静触头包括: 二个水平设置的小半圆形第一及第二电导体; 分别从所述电导体小半圆形弧面水平地延伸形成的第一接线板 (Terminal!)及第二接 线板 (Terminal2); 所述第一接线板设有的一个供电源电流传感器, 检测供电源向负载提供的电流量; 第一、 第二电导体分别设有多个电插针组成的阵列; 以及 静触头陶瓷盘 (可选电工塑料); 其中 所述第一、 第二电导体封装在所述静触头陶瓷盘中, 其中所述第一及第二接线板分别 突出所述静触头陶瓷盘侧壁以及伸出所述接触器壳体外, 构成双接线板静触头; 其中所述 电插针突出所述静触头陶瓷盘盘面, 其接触端设有多个径向及等分的槽口及与其相间的指 状末端; 其中所述静触头陶瓷盘底部固定在所述支架上层的顶板底面; 可选地, 二个电导体由一个静触头电导圆盘取代, 该电导圆盘侧面水平地延伸形成单 一的第一接线板 (Terminal!), 构成单接线板静触头; 其中所述电导圆盘设有一个电插针 阵列并封装在所述静触头陶瓷盘中, 其中所述电插针接触端突出所述静触头陶瓷盘盘面, 所述第一接线板突出所述静触头陶瓷盘侧壁以及伸出所述接触器壳体外。
5.根据权利要求 3所述触头室, 其中所述动触头包括: 动触头电导圆盘; 所述电导圆盘设有的多个与所述静触头电插针一对一同轴配对的电插管阵列; 以及 与所述静触头陶瓷盘同轴相对的动触头陶瓷盘 (可选电工塑料); 其中 所述动触头电导圆盘封装在所述动触头陶瓷盘中; 所述电插管底部管口与所述动触头 陶瓷盘底面平齐并开通, 所述电插管接触端突出所述动触头陶瓷盘盘面, 所述电插管接触 端设有多个径向及等分的槽口及与其相间的竹瓣状末端, 管口不同深度设有 2个狭窄段; 其中 所述动触头向所述静触头运动时, 所述电插管接触端同时一对一套接所述电插针接触 端, 实施所述接触器接触; 其中所述电插管竹瓣状末端与所述电插针指状末端数量相等并 设置为正交交错, 使得一个电插针指状末端正对电插管槽口并与槽口两边的竹瓣末端构成 双触点电连接, 因此槽口数量为 N时, 一对电插针 /电插管构成 2N个接触点, 数量为 P的 电插针/电插管对 (Pairs)阵列构成的接触界面, 接触点数量为 2*N*P, 所述电插管如有 2 个所述狭窄段, 接触点总数为 4*N*P; 其中 所述动触头与所述双接线板静触头构成本发明实施例之一: 双接线板静触头接触器, 其中二个接线板之间有二个串联的 电插针/电插管阵列接触界面, 因此也称为双接触界面 接触器, 或单刀单掷双断点 (Single Pole Single Throw, Double Breaks, 或 SPST, DB) 接触器; 可选地, 所述动触头电导圆盘侧面水平地延伸形成第二接线板 (Terminal) ,并与所述 单接线板静触头配对, 构成本发明实施例之二: 单接线板静触头接触器, 其中二个接线板 之间只有一个电插针/电插管阵列接触界面, 因此也称为: 单接触界面接触器,或单刀单掷 单断点 (SPST, Single Break) 接触器; 以及 动触头设有分开的二个电导体及其电插管阵列以及二个接线板, 并且与所述双接线板 静触头组合成双刀单掷单断口 (DPST, SB)接触器。
6.根据权利要求 3所述触头室, 其中所述第一波纹管还包括: 第一波纹管第一管口, 固定在所述静触头陶瓷盘; 第一波纹管第二管口, 固定在所述动触头陶瓷盘; 以及 第一波纹管管壁, 构成所述触头室侧壁, 使得触头室与大气环境隔绝。
7.根据权利要求 1所述运动装置, 包括升降运动构件、第二波纹管以及驱动电机组件。
8.根据权利要求 7所述运动装置, 其中所述升降运动构件包括: 套筒铸件, 套设所述第一波纹管第二管口并固定在所述动触头陶瓷盘, 所述套筒铸件 包括套筒第一节、 第一及第二短臂、 第一及第二轴承套管、 套筒第二节、 横梁以及横梁螺 孔; 第一及第二直线轴承, 安装在所述第一及第二轴承套管内; 以及 第一及第二轴承导轨, 套设在所述第一及第二直线轴承轴孔内。
9.根据权利要求 7所述运动装置, 其中所述第二波纹管包括: 第二波纹管第一管口, 固定在所述套筒铸件其中所述套筒第二节; 第二波纹管第二管口, 固定在第二波纹管底座, 该底座固定于所述支架上层的中隔板 上; 以及 第二波纹管管壁, 构成第二波纹管内部空间, 收纳所述驱动电机组件, 并通过所述动 触头电插管与所述触头室相通, 与大气环境隔绝, 内部设置为真空, 或充入惰性灭弧气体 (比如 SF6)或注入灭弧油。
10.根据权利要求 7所述运动装置,其中所述驱动电机组件固定在所述中隔板上,包括: 螺杆, 啮合所述套筒铸件的所述横梁螺孔; 减速齿轮箱, 电机及螺杆之间的联动及减速装置; 以及 电机, 通过螺杆驱动所述套筒铸件及动触头升降运动; 其中 所述动触头向所述静触头运动, 所述电插管向所述电插针运动, 所述第一波纹管压缩 及第二波纹管伸长, 所述灭弧气体或灭弧油通过所述电插管及电插针之间并流向所述第二 波纹管, 直至所述电插管套接所述电插针以及所述接触器开通; 所述动触头脱离静触头运动, 所述电插管脱离所述电插针, 所述第一波纹管及第二波 纹管复原, 灭弧气体或灭弧油通过所述电插管及电插针之间回流第一波纹管; 以及 所述波 纹管、 动触头以及运动装置构 成了一个与大气 环境隔绝的 自循环双向泵 (Self-circulation Reciprocating Pump)。 可选地, 所述运动装置, 可以选择性地采用外置的杠杆结构取代螺杆驱动结构, 并以 人力、 电磁或气动装置对杠杆施力并驱动所述套筒铸件及动触头升降运动; 进一步地, 选择一个外置驱动电机组件驱动二个联动丝杆驱动所述套筒铸件运动; 以 及 因外置驱动电机组件, 在所述中隔板上增加一个静触头, 而所述动触头上、 下双面设 有电插管, 并且所述静触头及动触头设有多个电导体(二个以上)且形状多样(比如扇形)以 及无接线板动触头设置成可转动,将组合产生多刀双掷(Multiple Poles Multiple Throws) 开关类型接触器及功率型多路复用开关(Multiplexer) o
11.根据权利要求 1所述接触器, 其中所述控制器, 包括: 微处理器, 基于程序控制并实施通讯、 数据采集、 接触器开关及断流器功能; 通讯模块, 微处理器经有线及无线通讯模块与供电源控制中心通讯, 接收指令及接触 器参数设定数据并向其发送数据、 警报或请求; 电机驱动电路, 由微处理器控制并向电机提供不同方向及大小的电枢驱动电流; 动触头锁定器, 对接触器开通状态的动触头实施位置锁定, 防止意外滑动或脱离; 控制器电源, 向所述控制器提供电能, 并被配置一个蓄电池作为辅助电源; 以及 传感器系统, 包括: 静触头陶瓷盘温度传感器, 监测静触头陶瓷盘温度; 惰性气体压力传感器, 检测所述触头室内惰性气体压力及其变化; 电弧光电传感器, 检测所述接触器开通尤其关断时触头室内的电弧及其变化; 控制器电源电压传感器, 监测所述控制器电源(包括蓄电装置)电压及其变化; 供电源电压及电流传感器, 监测供电源对负载提供的电力电压、 电流及其变化, 提供 所述接触器动触头及静触头接触或脱离状态信号; 第一及第二位置传感器, 提供第一及第二位点信号, 或动触头行程起点及终点信号; 电机电流及转速传感器, 检测电机电枢电流, 以定时器及脉冲计数器法计算电机转速, 以及参照所述第一或第 二位点提供第三位点即电插管距离电插针最近而不产生 电弧的位 点; 以及 传感器调理电路, 对传感器模拟信号进行放大、 滤波及数字化处理等。
12.根据权利要求 11所述控制器, 其特征在于包括: 定时检测所述接触器传感器信号并向供电源控制中心上传数据, 其中包括接触器状态 数据; 接收供电源控制中心数据, 对接触器功能进行参数设定; 接收供电源控制中心指令, 执行接触器开通、 关断以及数据上传; 从微处理器端口直接接收(手动)辅助开关信号及控制码,执行接触器开通及关断功能; 以及 对传感器数据与接触器被设定的参数进行比较, 决定是否自主执行接触器关断, 即断 流器功能。
13.一种接触器的控制方法, 包括: 接触器开通: 所述动触头锁定器通电打开, 所述动触头从第一位点以正常第二速率向 静触头运动, 所述第三位点或电弧信号出现时, 所述动触头以第一速率高速运动, 第一及 第二接线板接通时, 动触头以较慢的第三速率运动, 直至第二位点信号出现时停止并断开 动触头锁定器供电; 以及 接触器关断: 所述动触头锁定器通电打开, 所述动触头以反向第一速率高速脱离静触 头, 第三位点信号出现时以反向第二速率运动, 到第一位点时停止并断开动触头锁定器电 流。
22
PCT/IB2021/058532 2021-09-20 2021-09-20 一种接触器 WO2023041961A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/IB2021/058532 WO2023041961A1 (zh) 2021-09-20 2021-09-20 一种接触器
PCT/IB2022/058797 WO2023042163A1 (zh) 2021-09-20 2022-09-20 一种接触器
CN202280005862.6A CN116210068A (zh) 2021-09-20 2022-09-20 一种接触器
KR1020247012442A KR20240070576A (ko) 2021-09-20 2022-09-20 접촉기 및 그 통용 스위치 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2021/058532 WO2023041961A1 (zh) 2021-09-20 2021-09-20 一种接触器

Publications (1)

Publication Number Publication Date
WO2023041961A1 true WO2023041961A1 (zh) 2023-03-23

Family

ID=85601909

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2021/058532 WO2023041961A1 (zh) 2021-09-20 2021-09-20 一种接触器
PCT/IB2022/058797 WO2023042163A1 (zh) 2021-09-20 2022-09-20 一种接触器

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/058797 WO2023042163A1 (zh) 2021-09-20 2022-09-20 一种接触器

Country Status (3)

Country Link
KR (1) KR20240070576A (zh)
CN (1) CN116210068A (zh)
WO (2) WO2023041961A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117175499B (zh) * 2023-11-03 2024-01-23 山西晋阳碳素有限公司 大功率有载调压变压器综合保护装置
CN117665400B (zh) * 2023-12-05 2024-05-24 安徽农业大学 一种基于温度检测的开关触点接触电阻在线检测系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2384806Y (zh) * 1999-08-23 2000-06-28 苏州小羚羊电动车有限公司 电动车用多点接触联接器
US6814632B1 (en) * 2002-06-04 2004-11-09 Raytheon Company Electrical connector system having contact body with integral nonmetallic sleeve
CN103456566A (zh) * 2013-08-21 2013-12-18 福州大学 数字化全过程动态控制智能交流接触器
CN106683947A (zh) * 2016-12-20 2017-05-17 北京双杰电气股份有限公司 一种直流接触器
CN207052801U (zh) * 2017-07-06 2018-02-27 深圳尼索科连接技术有限公司 可换装插孔的接触件装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268995B1 (en) * 2000-06-08 2001-07-31 Jennings Technology Double-bellows vacuum variable capacitor
CN1234140C (zh) * 2001-11-05 2005-12-28 刘卫歧 断流开关
CN105244198A (zh) * 2015-10-29 2016-01-13 国网山西省电力公司电力科学研究院 高压断路器动绕组式变气隙永磁直线电机操动机构
CN112735901B (zh) * 2020-12-01 2023-02-17 平高集团有限公司 一种带复合触头结构的真空灭弧室

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2384806Y (zh) * 1999-08-23 2000-06-28 苏州小羚羊电动车有限公司 电动车用多点接触联接器
US6814632B1 (en) * 2002-06-04 2004-11-09 Raytheon Company Electrical connector system having contact body with integral nonmetallic sleeve
CN103456566A (zh) * 2013-08-21 2013-12-18 福州大学 数字化全过程动态控制智能交流接触器
CN106683947A (zh) * 2016-12-20 2017-05-17 北京双杰电气股份有限公司 一种直流接触器
CN207052801U (zh) * 2017-07-06 2018-02-27 深圳尼索科连接技术有限公司 可换装插孔的接触件装置

Also Published As

Publication number Publication date
KR20240070576A (ko) 2024-05-21
WO2023042163A1 (zh) 2023-03-23
CN116210068A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
WO2023041961A1 (zh) 一种接触器
CN107171431B (zh) 无间断调电设备、系统及控制方法
WO2004107375A1 (fr) Commutateur electrique
CN104779549B (zh) 智能全封闭永磁真空断路器
CN206834527U (zh) 一种智能高压配电柜
CN102484022A (zh) 直流断路器
CN207304136U (zh) 无间断调电设备及系统
CN201698956U (zh) 一种采用永磁操作机构的高压真空断路器
CN216648185U (zh) 一种低压调节型断路器
CN212695103U (zh) 一种断路器手动分合闸机构
CN112908769B (zh) 一种环网柜三工位手动隔离装置及其控制方法
RU100670U1 (ru) Высоковольтный вакуумный выключатель
CN212392177U (zh) 一种永磁机构断路器
CN201075355Y (zh) 户外高压永磁机构真空断路器
CN102903565B (zh) 具有功能选择性的真空开关
CN212392176U (zh) 一种断路器极柱拉杆的连接结构
CN201327791Y (zh) 固定侧装式真空断路器
CN208738846U (zh) 一种智能换相开关
CN202978079U (zh) 一种智能型真空断路器
CN106449288A (zh) 一种智能低压断路器及其灭弧室
CN112327102B (zh) 一种用于智能配电网户外断路检修装置
CN212365893U (zh) 一种断路器自动分闸装置
CN115752766B (zh) 一种变电站无线温度在线监测系统
CN216794331U (zh) 一种便于故障维修检测的开关柜
CN117081019B (zh) 一种快速限流装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE