WO2023041811A1 - Dispositivo purificador de aire y superficies - Google Patents

Dispositivo purificador de aire y superficies Download PDF

Info

Publication number
WO2023041811A1
WO2023041811A1 PCT/ES2021/070658 ES2021070658W WO2023041811A1 WO 2023041811 A1 WO2023041811 A1 WO 2023041811A1 ES 2021070658 W ES2021070658 W ES 2021070658W WO 2023041811 A1 WO2023041811 A1 WO 2023041811A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate panels
substrate
panels
openings
ultraviolet
Prior art date
Application number
PCT/ES2021/070658
Other languages
English (en)
French (fr)
Inventor
Pablo Antonio FERNÁNDEZ ROMERO-NIEVA
Original Assignee
Human Wellness Solutions Sl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Human Wellness Solutions Sl filed Critical Human Wellness Solutions Sl
Priority to PCT/ES2021/070658 priority Critical patent/WO2023041811A1/es
Priority to EP21957395.3A priority patent/EP4403841A1/en
Publication of WO2023041811A1 publication Critical patent/WO2023041811A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • F24F8/167Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means using catalytic reactions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light

Definitions

  • the present invention pertains to the field of removing pathogens and other harmful particles from air and surfaces.
  • the object of the present invention is a new air purifier based on the generation of hydrogen peroxide.
  • High Efficiency Particulate Air (HEPA) filtration systems are conventional systems for treating ambient air and removing suspended particles. While HEPA filtration systems can be useful for removing particles from the air, they have limitations common to all filtration systems, such as clogging of filters. Additionally, filtration-based systems are unable to deactivate chemicals, remove unwanted gases, or remove smaller odor-causing molecules. Another major drawback of this type of system is that it requires the air to be led into the device in order to pass it through the filter, so that it not only takes a long time to clean the air in a room, but also does not remove particles on surfaces.
  • ions are devices commonly referred to as “ionizers”, which are designed to emit negative ions into the surrounding air. These ions stick to positively charged pollutants like pollen and dust, making them heavier and making them more likely to settle or be easier to trap on a collection plate. However, since many of the contaminants simply fall to the floor or stick to walls instead of being removed, they can return to the air once the negative ions have dissipated or associated. Also, if a collection plate is used, it should be cleaned or replaced regularly as with any filtration system.
  • Air purification systems employing ultraviolet (UV) radiation to inactivate and/or degrade airborne contaminants are also known. To do this, the air is conducted to make it pass through the device together with one or more ultraviolet lamps, so that the ultraviolet light disinfects the air before being emitted back into the environment.
  • UV ultraviolet
  • These systems have the drawback that the destruction of many bacteria and contaminants, especially spores, requires more exposure time to ultraviolet light.
  • some volatile organic compounds can also be resistant to ultraviolet energy, or worse, reactive with ultraviolet light in a way that makes them more harmful or exposed to those nearby.
  • Photocatalytic Oxidation (PCO) air cleaners also use ultraviolet light.
  • PCO systems instead of using UV light to directly interact with passing contaminants, PCO systems direct UV light onto a catalytic material. Water molecules in ambient air interact with ultraviolet light and catalyst, for example titanium dioxide, to generate a variety of oxidants, such as hydroxyl (OH) radicals. Oxidants released into the air attack organic molecule pollutants and break them down into less harmful substances. Therefore, instead of trapping contaminants, PCO systems are capable of destroying and removing contaminants from the treated environment.
  • the present invention solves the previous problems thanks to a purifying device air and surfaces capable of generating a small amount of hydrogen peroxide that is released into the environment. Hydrogen peroxide lasts significantly longer than hydroxyl radicals, and is therefore capable of purifying both the air and the surfaces of the room being disinfected. Thus, a much higher level of disinfection is achieved than with conventional PCO systems.
  • An additional advantage of the present invention is that, due to the wavelengths of ultraviolet light emitted, ozone is not produced.
  • the absence of ozone is advantageous because it is known that ozone can be harmful to people's health due to irritation of the respiratory tract.
  • hydrogen peroxide in low concentrations is harmless to humans.
  • the device of the present invention can be used in the presence of people in the room without causing harm.
  • the present invention describes an air and surface purifying device that essentially comprises a pair of substrate panels, an ultraviolet emitter, and a frame to which the substrate panels and the ultraviolet emitter are attached. Each of these elements is defined in more detail below. a) Substrate panels
  • the substrate panels each of which comprises a plurality of openings for the passage of air therethrough.
  • the substrate panels are arranged parallel to one another so that a space between them forms an interior cavity.
  • at least one inner face of said substrate panels and an inner surface of said apertures in the substrate panels are coated with a photocatalytic material.
  • the interior face of the substrate panels is the one that is oriented towards the interior of the cavity, that is, towards the other substrate, while the interior surface of the openings are surfaces that have a contained normal. in a plane parallel to that of the plate itself. That is, it is the interior surfaces of each of the individual holes.
  • the panels will normally have an essentially rectangular shape whose thickness may range, for example, between approximately 5mm and 30mm.
  • the panels are made of aluminium, which ensures light weight while allowing impregnation with the required layers of photocatalytic material.
  • the openings are designed in such a way that they allow the passage of air through the panels with the lowest possible pressure loss, in order not to excessively slow down the air flow.
  • the openings have a configuration that maximizes the contact surface of the air in order to cause the greatest possible condensation of water on said surface. The reason is that the greater the amount of water condensed on the surface of the holes and the inner face of the panels, the greater the amount of hydrogen peroxide generated.
  • the substrate panels have a honeycomb shape where the openings are hexagonal. It has been proven that this shape is optimal for minimizing shading and obtaining the greatest amount of area on which to carry out the photocatalytic process, thus helping to maximize the absorption of water and its subsequent oxidation due to the greater amount of irradiated area per material surface. .
  • each hexagonal opening of the honeycomb substrate panels is also important, as too large a size causes a reduction in air contact surface while too small a size causes more shadowed surface, thus negatively affecting the effectiveness of the material.
  • photocatalytic material it is preferably arranged on those surfaces of the substrate panels where ultraviolet radiation falls, specifically the surface of the inner face of the substrate panels and the inner surface of the openings.
  • the photocatalytic material can be any as long as it promotes the oxidation reaction of the condensed water on said surfaces to give rise to hydrogen peroxide.
  • the photocatalytic material is impregnated by layers on the substrate panels, where each layer has a different composition according to its function in the process of oxidation of water and its conversion to hydrogen peroxide.
  • the coating photocatalytic material comprises an inner layer comprising titanium dioxide mixed with silver, rhodium and copper, an intermediate layer comprising silicon dioxide and manganese, and an outer layer comprising hydrophilic materials to facilitate the uptake of water from the air.
  • a special drying phase is carried out to achieve a medium roughness that facilitates the absorption of water and allows the irradiation of UV light at angles of up to 160 degrees, which allows the maximum penetration of light into the substrate to generate a greater amount of hydrogen peroxide.
  • the layers there is a mixing area between layers where the composition is mixed in different percentages to facilitate chemical reactions on the substrate and to be able to reflect UV light waves within the substrate when they impact the metals that make it up. the different frequencies. That is, between the inner layer and the intermediate layer, and between the intermediate layer and the outer layer, there are respective mixing zones where the compositions of the corresponding layers are mixed. This is achieved by means of a specially designed drying process. b) Ultraviolet emitter
  • the ultraviolet light emitted by the ultraviolet emitter is incident on the inside face of the substrate panels and on the surface of the apertures in the substrate panels.
  • the ultraviolet light emitted by the ultraviolet emitter has a frequency between 254 nm and 310 nm. This range of frequencies excites the photocatalytic material to cause the reaction of oxidation of the water molecules and, at the same time, intentionally avoids frequencies near 185 nm to ensure that ozone is not produced.
  • the ultraviolet emitter can in principle be of any type as long as it is capable of emitting ultraviolet light of the mentioned frequency and that, moreover, it reaches the largest possible part of the mentioned surface of the substrate panels.
  • a U-tube-shaped ultraviolet lamp extending along the cavity formed between the substrate panels.
  • an ultraviolet emitter based on a plurality of suitably configured UV LEDs for example also forming an elongated structure that essentially spans the entire length of the interior cavity.
  • the ultraviolet emitter is arranged within the interior cavity.
  • the emitter may be arranged outside the interior cavity adjacent to an exterior face of one of the substrate panels.
  • the frame constitutes a structure that supports the rest of the elements that make up the device, which may also include an electronic control board, as well as other electrical or electronic elements necessary for its operation.
  • the frame comprises two U-shaped frames entrapping the photocatalytic substrate panels, the two frames being attached to each other by an end plate. Additionally, in the case of using a plurality of UV LEDs, the frame comprises a third frame that traps the plate of UV LEDs. This shape ensures the creation of turbulence in the air flow that reduces its speed inside the holes and, therefore, promotes a greater uptake of water vapor for subsequent oxidation.
  • the U-shape of the frames allows part of the UV light to exit through the sides of the device, so that the heat generated by it is dissipated to avoid heating that would occur with a closed frame. This warming could not only be dangerous due to the risk of fire, but it would also deteriorate the oxidation process by increasing the internal temperature of the device if the frame were closed.
  • Fig. 1 shows a perspective view of a first example of a device according to the present invention in assembled state.
  • Fig. 2 shows a perspective view of the first example of the device of the present invention in exploded state.
  • Fig. 3 shows a schematic view of the openings of the device of the present invention.
  • Fig. 4 shows a cross section of the example device according to the present invention.
  • Fig. 5 shows a perspective view of a second example of a device according to the present invention in assembled state.
  • Fig. 6 shows a perspective view of the second example of the device of the present invention in exploded state.
  • the Figs. 1 and 2 show a first example of a device (1) according to the present invention.
  • the device (1) comprises two substrate panels (2) arranged in parallel and provided with a plurality of openings (3) oriented perpendicular to the plane containing each substrate panel (2).
  • the openings (3) as shown in greater detail in Fig. 3, have a hexagonal shape whose dimension between opposite edges is between 2 mm and 3 mm, while the thickness of the substrate panels (2) can be , for example, about 10 mm.
  • a frame (5) that comprises two U-shaped frames (51) in whose cavity the substrate panels (2) are fixed, so that both remain parallel, separated by one distance of a few centimeters, for example between 5 centimeters and 10 centimeters.
  • the two U-shaped frames (51) are fixed to each other at their base by means of an end plate (52) and at their free ends by means of a stiffening plate (53).
  • the stiffening plate (53) also has means for fixing the base of a UV lamp (4) that is U-shaped, so that the plane of said UV lamp (4) is parallel to the panels (2) of substratum.
  • the mounted device (1) therefore remains with the two parallel panels (2) separated by a distance of a few centimeters and the UV lamp (4) arranged, also parallel, at the midpoint of that distance between the panels (2). of substrate.
  • the inner faces of the two substrate panels (2) and the inner surfaces of the openings (3) are covered with several layers of photocatalytic material.
  • photocatalytic material consists of three layers, where the inner layer comprises titanium dioxide mixed with silver, rhodium and copper, the intermediate layer comprises silicon dioxide and manganese, and the outer layer comprises hydrophilic materials to facilitate the uptake of water from the air.
  • This photocatalytic coating is selected so that when the condensed water on the photocatalytic coating is illuminated with ultraviolet light emitted by the UV lamp (4), the condensed water is oxidized causing the generation of hydrogen peroxide.
  • this configuration ensures that the ultraviolet light emitted by the UV lamp (4) reaches most of the surface covered by the material, generating hydrogen peroxide that disinfects and sanitizes both the air and the surrounding surfaces.
  • the frequency of the ultraviolet light emitted by the lamp (4) between 254 and 310 nm, ensures that no ozone is generated at all, so this device (1) is compatible with the presence of people in the room. .
  • Fig. 4 schematically shows the operation of this device (1).
  • the air flow passes through the device (1) and causes condensation of water on the interior surfaces of the openings (3) of the substrate panels (2).
  • the air enters not only through the openings (3) but, since the cavity between both substrate panels (2) is open, it also enters through the space located above and below said cavity. This causes the generation of turbulence that improves the performance of the device (1).
  • the combination of condensed water on said surfaces, the UV radiation emitted by the UV lamp (4), and the photocatalytic material that coats the interior surfaces of the openings (3) and the interior face of the substrate panels (2), causes the generation of hydrogen peroxide that is dragged by the air current itself towards the area to be disinfected.
  • the Figs. 5 and 6 show a second example of device (1) according to the invention where a plurality of UV LEDs (4) are used instead of the UV lamp used in the previous example.
  • the plate containing the UV LEDs (4) is not placed inside the cavity between the two substrate panels (2), but is placed parallel to one of said external faces.
  • substrate panels (2) that is to say, a face opposite to that which is oriented towards the cavity.
  • the frame (5) in this case comprises three frames (51), two for the respective substrate panels (2) and one for the plate containing the UV LEDs (4).
  • the UV light emitted by the UV LEDs (4) illuminates the surfaces of the substrate panels (2) and the openings (3). ) covered by the photocatalytic material, and as a consequence the generation of hydrogen peroxide occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)

Abstract

La invención describe un dispositivo (1) purificador que comprende: un par de paneles de sustrato ubicados uno frente a otro y que comprenden una pluralidad de aberturas para el paso de aire, donde al menos una cara interior de dichos paneles y una superficie de dichas aberturas están recubiertos de un material fotocatalítico; un emisor ultravioleta que se extiende entre los paneles de sustrato, de manera que la luz ultravioleta emitida incide sobre la cara interior de los paneles de sustrato y sobre la superficie de las aberturas de los paneles de sustrato; y un bastidor al que están fijados los paneles de sustrato y el emisor ultravioleta. Así, cuando un flujo de aire pasa a través de las aberturas de los paneles de sustrato, se produce condensación de agua sobre el material fotocatalítico y dicha agua reacciona en presencia de la luz ultravioleta para generar moléculas de peróxido de hidrógeno.

Description

DESCRIPCIÓN
Dispositivo purificador de aire y superficies
OBJETO DE LA INVENCIÓN
La presente invención pertenece al campo de la eliminación de patógenos y otras partículas dañinas de aire y superficies.
El objeto de la presente invención es un nuevo purificador de aire basado en la generación de peróxido de hidrógeno.
ANTECEDENTES DE LA INVENCIÓN
Los sistemas de filtración de aire de partículas de alta eficiencia (HEPA, High Efficiency Particulate Air) son sistemas convencionales para tratar el aire ambiental y eliminar partículas en suspensión. Si bien los sistemas de filtración HEPA pueden ser útiles para eliminar partículas del aire, presentan las limitaciones comunes a todos los sistemas de filtración, como por ejemplo las relacionadas con la obstrucción de los filtros. Además, los sistemas basados en filtración son incapaces de desactivar productos químicos, eliminar gases no deseados o eliminar moléculas más pequeñas que causan olores. Otro importante inconveniente de este dipo de sistemas es que requieren el aire sea conducido hacia el dispositivo para hacerlo pasar por el filtro, de manera que no solo requiere bastante tiempo para limpiar el aire de una habitación, sino que además no elimina partículas en superficies.
Otros sistemas pueden utilizar filtros de carbón activado o filtros electrostáticos. Si bien estos sistemas pueden mejorar la capacidad de atrapar contaminantes y la efectividad de la filtración, siguen presentando las limitaciones mencionadas anteriormente comunes a los sistemas basados en filtración, como el reemplazo del filtro, degradación del rendimiento del filtro con el tiempo y la incapacidad para tratar la superficie.
También son conocidos los dispositivos comúnmente denominados "ionizadores", que están diseñados para emitir iones negativos al aire circundante. Estos iones se adhieren a contaminantes cargados positivamente como el polen y el polvo, haciéndolos más pesados y aumentando la probabilidad de que se asienten o sean más fáciles de atrapar en una placa de recolección. Sin embargo, puesto que muchos de los contaminantes simplemente caen al suelo o se adhieren a las paredes en lugar de ser eliminados, pueden retornar al aire una vez los iones negativos se han disipado o asociado. Además, si se usa una placa de recolección, ésta debe limpiarse o reemplazarse regularmente como con cualquier sistema de filtración.
Se conocen también los sistemas de purificación de aire que emplean radiación ultravioleta (UV) para inactivar y/o degradar los contaminantes transportados por el aire. Para ello, el aire se conduce para hacerlo pasar a través del dispositivo junto a una o más lámparas ultravioleta, de manera que la luz ultravioleta desinfecta el aire antes de ser de nuevo emitido al ambiente. Estos sistemas, sin embargo, presentan el inconveniente de que la destrucción de muchas bacterias y contaminantes, especialmente las esporas, requiere más tiempo de exposición a la luz ultravioleta. Además, algunos compuestos orgánicos volátiles también pueden ser resistentes a la energía ultravioleta o, peor aún, ser reactivos con la luz ultravioleta de una manera que los hace más dañinos o expuestos a las personas cercanas.
Los puhficadores de aire de oxidación fotocatalítica (PCO, PhotoCathalytic Oxidation) también utilizan luz ultravioleta. Sin embargo, en lugar de utilizar la luz ultravioleta para interactuar directamente con los contaminantes que pasan, los sistemas PCO dirigen la luz ultravioleta sobre un material catalizador. Las moléculas de agua en el aire ambiental interactúan con la luz ultravioleta y el catalizador, por ejemplo dióxido de titanio, para generar una variedad de oxidantes, como los radicales hidroxilo (OH). Los oxidantes emitidos al aire atacan a los contaminantes de moléculas orgánicas y los degradan en sustancias menos dañinas. Por lo tanto, en lugar de atrapar contaminantes, los sistemas de PCO son capaces de destruir y eliminar contaminantes del ambiente tratado.
Sin embargo, los sistemas PCO convencionales presentan varias limitaciones. Los radicales hidroxilo sólo son efectivos para eliminar patógenos en las proximidades del dispositivo, ya que su gran reactividad provoca que desaparezcan en milisegundos. Por lo tanto, este tipo de sistemas requieren también hacer pasar el aire a través del dispositivo. Como consecuencia, el tiempo requerido para desinfectar totalmente una habitación puede ser de entre 15-20 minutos. Además, debido a la corta duración de los radicales hidroxilo, este tipo de sistemas no pueden eliminar los patógenos depositados en superficies.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención resuelve los problemas anteriores gracias a un dispositivo puñficador de aire y superficies capaz de generar una pequeña cantidad de peróxido de hidrógeno que se emite al ambiente. El peróxido de hidrógeno tiene una duración sensiblemente mayor que los radicales hidroxilo, y por tanto es capaz de purificar tanto el aire como las superficies de la estancia que se desinfecta. Se consigue así un nivel de desinfección mucho mayor que con los sistemas PCO convencionales.
Una ventaja adicional de la presente invención es que, debido a las longitudes de onda de la luz ultravioleta emitida, no se produce ozono. La ausencia de ozono es ventajosa porque es conocido que el ozono puede resultar perjudicial para la salud de las personas debido a irritación de las vías respiratorias. Por el contrario, el peróxido de hidrógeno en bajas concentraciones es inocuo para el ser humano. De ese modo, el dispositivo de la presente invención puede utilizarse en presencia de personas en la habitación sin causar daños.
La presente invención describe un dispositivo puñficador de aire y superficies que comprende fundamentalmente un par de paneles de sustrato, un emisor ultravioleta, y un bastidor al que están fijados los paneles de sustrato y el emisor ultravioleta. A continuación, se define cada uno de estos elementos con mayor detalle. a) Paneles de sustrato
Se trata de un par de paneles de sustrato, cada uno de los cuales comprende una pluralidad de aberturas para el paso de aire a través de los mismos. Los paneles de sustrato están dispuestos en paralelo uno frente a otro de manera que un espacio entre ambos conforma una cavidad interior. Además, al menos una cara interior de dichos paneles de sustrato y una superficie interior de dichas aberturas de los paneles de sustrato están recubiertos de un material fotocatalítico. En este contexto, se entiende que la cara interior de los paneles de sustrato es aquella que está orientada hacia el interior de la cavidad, es decir, hacia el otro sustrato, mientras que la superficie interior de las aberturas son superficies que tienen una normal contenida en un plano paralelo al de la propia placa. Es decir, se trata de las superficies interiores de cada uno de los orificios individuales.
Normalmente los paneles tendrán una forma esencialmente rectangular cuyo espesor puede oscilar, por ejemplo, entre 5 mm y 30 mm aproximadamente. Los paneles están hechos de aluminio, lo que asegura un peso ligero al mismo tiempo que permite la impregnación con las capas de material fotocatalítico requeridas. Las aberturas están diseñadas de manera que permiten el paso del aire a través de los paneles con una pérdida de carga lo menor posible con el propósito de no frenar excesivamente el flujo de aire. Al mismo tiempo, las aberturas tienen una configuración que maximiza la superficie de contacto del aire para provocar que la condensación de agua sobre dicha superficie sea lo mayor posible. El motivo es que, cuanto mayor sea la cantidad de agua condensada sobre la superficie de los orificios y la cara interior de los paneles, mayor será la cantidad de peróxido de hidrógeno generado.
Según una realización particularmente preferida de la invención, los paneles de sustrato tienen una forma de panal de abeja donde las aberturas son hexagonales. Se ha comprobado que esta forma es óptima para minimizar sombreado y obtener la mayor cantidad de área sobre la que realizar el proceso fotocatalítico, ayudando así a maximizar la absorción de agua y su posterior oxidación debido a la mayor cantidad de área irradiada por superficie de material.
La dimensión de cada abertura hexagonal de los paneles de sustrato en forma de panal de abeja es también importante, ya que un tamaño demasiado grande provoca una reducción en la superficie de contacto con el aire mientras que un tamaño demasiado pequeño causa una mayor superficie sombreada, afectando así negativamente a la efectividad del material. Tras diversos estudios, se ha comprobado que los mejores resultados se obtienen con un tamaño de abertura de entre 2 milímetros y 3 milímetros, es decir, el diámetro del círculo que circunscribe cada abertura hexagonal tiene un diámetro de entre 2 milímetros y 3 milímetros.
En cuanto al recubrimiento de material fotocatalítico, éste se dispone preferentemente sobre aquellas superficies de los paneles de sustrato donde incide la radiación ultravioleta, concretamente la superficie de la cara interior de los paneles de sustrato y la superficie interior de las aberturas. El material fotocatalítico puede ser cualquiera siempre que promueva la reacción de oxidación del agua condensada sobre dichas superficies para dar lugar a peróxido de hidrógeno.
Según una realización preferida de la invención, el material fotocatalítico está impregnado por capas sobre los paneles de sustrato, donde cada capa tiene una composición diferente según su función en el proceso de oxidación del agua y su conversión a peróxido de hidrogeno. Más preferentemente, el recubrimiento de material fotocatalítico comprende una capa interior que comprende en dióxido de titanio mezclado con plata, rodio y cobre, una capa intermedia que comprende dióxido de silicio y manganeso, y una capa exterior que comprende materiales hidrófilos para facilitar la captación de agua del aire. Aún más preferentemente, durante la fabricación de la capa exterior de sustrato se realiza una fase de secado especial para conseguir una rugosidad media que facilita la absorción de agua y permite la irradiación de la luz UV a ángulos de hasta 160 grados, lo que permite la máxima penetración de la luz en el sustrato para generar una mayor cantidad de peróxido de hidrógeno.
Preferentemente, entre las capas existe una zona de mezcla entre capas donde la composición está mezclada en diferentes porcentajes para facilitar las reacciones químicas sobre el sustrato y para poder reflejar las ondas de luz UV dentro del sustrato al impactar éstas en los metales que lo componen a las diferentes frecuencias. Es decir, entre la capa interior y la capa intermedia, y entre la capa intermedia y la capa exterior, existen respectivas zonas de mezcla donde se mezclan las composiciones de las capas correspondientes. Esto se consigue por medio de un proceso de secado diseñado particularmente al efecto. b) Emisor ultravioleta
Se trata de un emisor ultravioleta que se extiende en paralelo al par de paneles de sustrato. De ese modo, la luz ultravioleta emitida por el emisor ultravioleta incide sobre la cara interior de los paneles de sustrato y sobre la superficie de las aberturas de los paneles de sustrato.
La combinación de agua condensada sobre dichas superficies con el material fotocatalítico sobre el que se encuentra y con la radiación ultravioleta emitida por el emisor da como resultado la generación de peróxido de hidrógeno debido a la oxidación del agua. Además, una adecuada selección de la frecuencia de la radiación ultravioleta emitida permite reducir o eliminar completamente la generación de ozono, evitándose los inconvenientes que ello conlleva.
En particular, según una realización preferida de la invención, la luz ultravioleta emitida por el emisor ultravioleta tiene una frecuencia de entre 254 nm y 310 nm. Este rango de frecuencias excita el material fotocatalítico para provocar la reacción de oxidación de las moléculas de agua y, al mismo tiempo, evita intencionadamente frecuencias cercanas a 185 nm para asegurar que no se produce ozono.
El emisor ultravioleta puede en principio ser de cualquier tipo siempre que sea capaz de emitir luz ultravioleta de la frecuencia mencionada y que, además, llegue a la mayor parte posible de la superficie mencionada de los paneles de sustrato. A modo de ejemplo, se puede mencionar una lámpara ultravioleta en forma de tubo en U que se extiende a lo largo de la cavidad formada entre los paneles de sustrato. Alternativamente, sería posible utilizar un emisor ultravioleta basado en una pluralidad de UV LEDs adecuadamente configurados, por ejemplo formando también una estructura alargada que abarque esencialmente toda la longitud de la cavidad interior.
De acuerdo con una realización preferida de la invención, el emisor ultravioleta está dispuesto dentro de la cavidad interior. Alternativamente, el emisor puede estar dispuesto en el exterior de la cavidad interior junto a una cara exterior de uno de los paneles de sustrato. c) Bastidor
Se trata de un bastidor al que están fijados los paneles de sustrato y el emisor ultravioleta. Es decir, el bastidor constituye una estructura que da soporte al resto de elementos que conforman el dispositivo, los cuales pueden además incluir una placa electrónica de control, así como otros elementos eléctricos o electrónicos necesarios para su funcionamiento.
El bastidor comprende dos marcos en forma de U que atrapan los paneles de sustrato fotocatalítico, estando los dos marcos fijados entre sí mediante una placa de extremo. Adicionalmente, en el caso de utilizarse una pluralidad de UV LEDs, el bastidor comprende un tercer marco que atrapa la placa de UV LEDs. Esta forma asegura la creación de turbulencias en el flujo de aire que reducen su velocidad en el interior de los orificios y, por tanto, promueven una mayor captación de vapor agua para su posterior oxidación. Además, la forma de U de los marcos permite que parte de la luz ultravioleta salga por los laterales del dispositivo, de modo que el calor generado por la misma se disipa para evitar el calentamiento que se produciría con un bastidor cerrado. Este calentamiento no solo podría resultar peligroso por el riesgo de incendio, sino que además deterioraría el proceso oxidativo al incrementar la temperatura interior del dispositivo en caso de que el bastidor fuese cerrado.
Gracias a esta configuración, cuando un flujo de aire pasa a través de las aberturas de los paneles de sustrato, se produce condensación de agua sobre el material fotocatalítico. Dicha agua reacciona en presencia de la luz ultravioleta para generar moléculas de peróxido de hidrógeno. El flujo de aire que atraviesa el dispositivo, por ejemplo impulsado por ventiladores o soplantes externos cuando éste está instalado en un sistema de aire acondicionado convencional, provoca que las moléculas de peróxido de hidrógeno se expulsen al ambiente del recinto a desinfectar. Las moléculas de peróxido de hidrógeno tienen una vida útil suficientemente larga como para viajar a través del recinto hasta incidir en paredes y otras superficies, por lo que higieniza tanto el aire del recinto como las superficies sin resultar perjudicial para el ser humano.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La Fig. 1 muestra una vista en perspectiva de un primer ejemplo de dispositivo según la presente invención en estado montado.
La Fig. 2 muestra una vista en perspectiva del primer ejemplo de dispositivo de la presente invención en estado despiezado.
La Fig. 3 muestra una vista esquemática de las aberturas del dispositivo de la presente invención.
La Fig. 4 muestra una sección transversal del ejemplo de dispositivo según la presente invención.
La Fig. 5 muestra una vista en perspectiva de un segundo ejemplo de dispositivo según la presente invención en estado montado.
La Fig. 6 muestra una vista en perspectiva del segundo ejemplo de dispositivo de la presente invención en estado despiezado.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN Se describen a continuación unos ejemplos de dispositivo (1) de acuerdo con la presente invención donde se aprecian las partes que lo componen.
Las Figs. 1 y 2 muestran un primer ejemplo de dispositivo (1 ) según la presente invención. Como se puede apreciar, el dispositivo (1) comprende dos paneles (2) de sustrato dispuestos en paralelo y dotados de una pluralidad de aberturas (3) orientadas en perpendicular al plano que contiene cada panel (2) de sustrato. Las aberturas (3), como se muestra con mayor detalle en la Fig. 3, tienen una forma hexagonal cuya dimensión entre aristas opuestas es de entre 2 mm y 3 mm, mientras que el espesor de los paneles (2) de sustrato puede ser, por ejemplo, de aproximadamente 10 mm. Para fijar los dos paneles (2) de sustrato se utiliza un bastidor (5) que comprende dos marcos (51) en forma de U en cuya cavidad se fijan los paneles (2) de sustrato, de manera que ambos quedan en paralelo separados una distancia de unos centímetros, por ejemplo entre 5 centímetros y 10 centímetros. Los dos marcos (51) en forma de U se fijan entre sí por su base mediante una placa de extremo (52) y por sus extremos libres mediante una placa de rigidización (53). La placa de rigidización (53) tiene además medios para la fijación de la base de una lámpara UV (4) que tiene forma de U, de manera que el plano de dicha lámpara UV (4) es paralelo a los paneles (2) de sustrato. El dispositivo (1 ) montado queda por tanto con los dos paneles (2) paralelos separados una distancia de unos pocos centímetros y la lámpara UV (4) dispuesta, también en paralelo, en el punto medio de esa distancia entre los paneles (2) de sustrato.
Por otra parte, aunque no se aprecia en las figuras, las caras interiores de los dos paneles (2) de sustrato y las superficies interiores de las aberturas (3) están recubiertos de varias capas de material foatocatalítico. En particular, se trata de tres capas, donde la capa interior comprende en dióxido de titanio mezclado con plata, rodio y cobre, la capa intermedia comprende dióxido de silicio y manganeso, y la capa exterior comprende materiales hidrófilos para facilitar la captación de agua del aire. Este recubrimiento fotocatalítico está seleccionado de manera que, cuando el agua condensada sobre el recubrimiento fotocatalítico es iluminado con la luz ultravioleta emitida por la lámpara UV (4), el agua condensada se oxida provocando la generación de peróxido de hidrógeno.
Así, esta configuración asegura que la luz ultravioleta emitida por la lámpara UV (4) llega a la mayor parte de la superficie recubierta por el material, generándose peróxido de hidrógeno que desinfecta e higieniza tanto el aire como las superficies circundantes. Además, la frecuencia de la luz ultravioleta emitida por la lámpara (4), de entre 254 y 310 nm, asegura que no se genera ozono en absoluto, por lo que este dispositivo (1) es compatible con la presencia de personas en la habitación.
La Fig. 4 muestra de manera esquemática el funcionamiento de este dispositivo (1 ). El flujo de aire atraviesa el dispositivo (1 ) y provoca la condensación de agua en las superficies interiores de las aberturas (3) de los paneles (2) de sustrato. Como se observa, el aire entra no solo a través de las aberturas (3) sino que, al estar abierta la cavidad entre ambos paneles (2) de sustrato, también entra por el espacio situado encima y debajo de dicha cavidad. Esto provoca la generación de turbulencias que mejoran el rendimiento del dispositivo (1). La combinación de agua condensada sobre dichas superficies, la radiación UV emitida por la lámpara UV (4), y el material fotocatalítico que recubre las superficies interiores de las aberturas (3) y la cara interior de los paneles (2) de sustrato, provoca la generación de peróxido de hidrógeno que es arrastrado por la propia corriente de aire hacia el recinto a desinfectar.
Las Figs. 5 y 6 muestran un segundo ejemplo de dispositivo (1 ) según la invención donde se utiliza una pluralidad de UV LEDs (4) en lugar de la lámpara UV usada en el ejemplo anterior. En este caso, como se aprecia, la placa que contiene los UV LEDs (4) no se dispone dentro de la cavidad entre los dos paneles (2) de sustrato, sino que se dispone en paralelo junto a una cara exterior de uno de dichos paneles (2) de sustrato, es decir, una cara opuesta a aquella que está orientada hacia la cavidad. El bastidor (5) en este caso comprende tres marcos (51 ), dos para los respectivos paneles (2) de sustrato y uno para la placa que contiene los UV LEDs (4). El resto del funcionamiento y elementos que componen el dispositivo (1 ) de este segundo ejemplo es equivalente al descrito anteriormente: la luz UV emitida por los UV LEDs (4) ilumina las superficies de los paneles (2) de sustrato y las aberturas (3) recubiertas por el material fotocatalítico, y como consecuencia se produce la generación de peróxido de hidrógeno.

Claims

REIVINDICACIONES
1 . Dispositivo (1 ) purificador de aire y superficies, caracterizado por que comprende:
- un par de paneles (2) de sustrato, donde cada panel (2) de sustrato comprende una pluralidad de aberturas (3) para el paso de aire a través de los mismos, estando dichos paneles (2) de sustrato dispuestos en paralelo uno frente a otro de manera que un espacio entre ambos conforma una cavidad interior, y donde al menos una cara interior de dichos paneles (2) de sustrato y una superficie interior de dichas aberturas (3) de los paneles (2) de sustrato están recubiertos de un material fotocatalítico;
- un emisor ultravioleta (4) que se extiende en paralelo al par de paneles (2) de sustrato, de manera que la luz ultravioleta emitida por el emisor ultravioleta (4) incide sobre la cara interior de los paneles (2) de sustrato y sobre la superficie interior de las aberturas (3) de los paneles (2) de sustrato;
- un bastidor (5) al que están fijados los paneles (2) de sustrato y el emisor ultravioleta (4), de manera que cuando un flujo de aire pasa a través de las aberturas () de los paneles () de sustrato se produce condensación de agua sobre el material fotocatalítico y dicha agua reacciona en presencia de la luz ultravioleta para generar moléculas de peróxido de hidrógeno.
2. Dispositivo (1 ) de acuerdo con la reivindicación 1 , donde los paneles (2) de sustrato tienen una forma de panal de abeja donde las aberturas (3) son hexagonales.
3. Dispositivo (1) de acuerdo con la reivindicación 2, donde las aberturas (3) tienen un tamaño de entre 2 mm y 3 mm.
4. Dispositivo (1 ) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el recubrimiento de material fotocatalítico está impregnado por capas sobre los paneles (2) de sustrato.
5. Dispositivo (1) de acuerdo con la reivindicación 4, donde el recubrimiento de material fotocatalítico comprende una capa interior que comprende en dióxido de titanio mezclado con plata, rodio y cobre, una capa intermedia que comprende dióxido de silicio y manganeso, y una capa exterior que comprende materiales hidrófilos para facilitar la captación de agua del aire.
6. Dispositivo (1 ) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el emisor ultravioleta (4) está dispuesto entre los dos paneles (2) de sustrato dentro de la cavidad interior.
7. Dispositivo (1) de acuerdo con la reivindicación 6, donde el emisor ultravioleta (4) comprende una lámpara de tubo en forma de U que se extiende en paralelo a los paneles (2) de sustrato.
8. Dispositivo (1) de acuerdo con cualquiera de las reivindicaciones 1-5, donde el emisor ultravioleta (4) está dispuesto fuera de la cavidad interior junto a una cara exterior de uno de los paneles (2) de sustrato.
9. Dispositivo (1) de acuerdo con la reivindicación 8, donde el emisor ultravioleta (4) comprende placa que comprende una pluralidad de UV LEDs dispuesta en paralelo a los paneles (2) de sustrato.
10. Dispositivo (1 ) de acuerdo con cualquiera de las reivindicaciones anteriores, donde la luz ultravioleta emitida por el emisor ultravioleta (4) tiene una frecuencia de entre 254 nm y 310 nm
11 . Dispositivo (1 ) de acuerdo con cualquiera de las reivindicaciones anteriores, donde el bastidor (5) comprende unos marcos (51) en forma de U que atrapan los paneles (2) de sustrato, estando los dos marcos fijados entre sí mediante una placa de extremo (52).
PCT/ES2021/070658 2021-09-14 2021-09-14 Dispositivo purificador de aire y superficies WO2023041811A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2021/070658 WO2023041811A1 (es) 2021-09-14 2021-09-14 Dispositivo purificador de aire y superficies
EP21957395.3A EP4403841A1 (en) 2021-09-14 2021-09-14 Air and surface purifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2021/070658 WO2023041811A1 (es) 2021-09-14 2021-09-14 Dispositivo purificador de aire y superficies

Publications (1)

Publication Number Publication Date
WO2023041811A1 true WO2023041811A1 (es) 2023-03-23

Family

ID=85601904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070658 WO2023041811A1 (es) 2021-09-14 2021-09-14 Dispositivo purificador de aire y superficies

Country Status (2)

Country Link
EP (1) EP4403841A1 (es)
WO (1) WO2023041811A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021108A1 (en) * 2007-08-07 2009-02-12 Lee Antimicrobial Solutions Llc Uv air treatment method and device
WO2010093796A1 (en) * 2009-02-13 2010-08-19 Lee Antimicorbial Solutions Llc Uv air treatment method and device
US20110183598A1 (en) * 2010-01-26 2011-07-28 Holt Alton R Method and System for Controlling Microbiological Contamination in Buildings
WO2015171633A1 (en) * 2014-05-05 2015-11-12 Lee Antimicrobial Solutions, Llc Purified hydrogen peroxide gas generation methods and devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021108A1 (en) * 2007-08-07 2009-02-12 Lee Antimicrobial Solutions Llc Uv air treatment method and device
WO2010093796A1 (en) * 2009-02-13 2010-08-19 Lee Antimicorbial Solutions Llc Uv air treatment method and device
US20110183598A1 (en) * 2010-01-26 2011-07-28 Holt Alton R Method and System for Controlling Microbiological Contamination in Buildings
WO2015171633A1 (en) * 2014-05-05 2015-11-12 Lee Antimicrobial Solutions, Llc Purified hydrogen peroxide gas generation methods and devices

Also Published As

Publication number Publication date
EP4403841A1 (en) 2024-07-24

Similar Documents

Publication Publication Date Title
KR102191144B1 (ko) 미세먼지제거, 세균 및 바이러스 살균, 습도조절, 산소 및 음이온 발생 기능을 가지는 다기능 공기정화장치
ES2661740T3 (es) Método y dispositivo para limpiar aire
RU2767873C2 (ru) Устройство для обработки текучей среды
US8557188B2 (en) Unitized photocatalytic air sterilization device
ES2703339T3 (es) Dispositivo para filtrado y purificación de aire
JP2008516652A (ja) 周囲空気を滅菌するための方法及び装置
KR102181069B1 (ko) 공기 살균 정화용 광촉매 정화 장치 및 이를 이용한 조명 장치
KR20170090209A (ko) 공기 살균 유닛 및 이를 포함하는 공기 청정기
KR20150124646A (ko) 공기청정기능이 구비된 해충 트랩 장치
CN115297901A (zh) 空气净化和灭菌单元
KR101353581B1 (ko) 자외선 발광 다이오드를 이용한 유체 정화 장치
US20060266221A1 (en) Air cleaning apparatus
JPH0838844A (ja) 空気中に存在するガス状不純物の除去方法と装置
KR20060019298A (ko) 핸드 드라이어기
WO2023041811A1 (es) Dispositivo purificador de aire y superficies
ES1249340U (es) Desinfeccion de salas mediante ultravioleta germicida
KR20050020065A (ko) 공기정화기
CN212179102U (zh) 一种杀菌装置与空气净化设备
KR20070036763A (ko) 피에이치아이 모듈을 적용한 조립식 환기유니트
JP2005342142A (ja) 空気清浄装置およびそれを用いた空気調和機
GB2597361A (en) An air purification apparatus and method
KR20130128094A (ko) 광섬유층 적용 항균 필터 및 이를 포함하는 공기청정기
ES2871201A1 (es) Dispositivo y procedimiento de tratamiento de aire
KR102627944B1 (ko) 상부형 자외선 살균 및 탈취장치
JP2007307542A (ja) 光照射レンズを用いた光触媒装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18691693

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021957395

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021957395

Country of ref document: EP

Effective date: 20240415