WO2023040583A1 - 一种静电释放保护电路、保护单元以及芯片和装置 - Google Patents

一种静电释放保护电路、保护单元以及芯片和装置 Download PDF

Info

Publication number
WO2023040583A1
WO2023040583A1 PCT/CN2022/113710 CN2022113710W WO2023040583A1 WO 2023040583 A1 WO2023040583 A1 WO 2023040583A1 CN 2022113710 W CN2022113710 W CN 2022113710W WO 2023040583 A1 WO2023040583 A1 WO 2023040583A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic discharge
protection circuit
diode
discharge protection
diode assembly
Prior art date
Application number
PCT/CN2022/113710
Other languages
English (en)
French (fr)
Inventor
周扬
沈百林
李蒙
Original Assignee
中兴光电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴光电子技术有限公司 filed Critical 中兴光电子技术有限公司
Publication of WO2023040583A1 publication Critical patent/WO2023040583A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers

Definitions

  • the application relates to the field of silicon-based optoelectronics, in particular to an electrostatic discharge protection circuit, a protection unit, a chip and a device.
  • silicon photonics chips Due to its high integration and other advantages, silicon photonics chips are widely used in optical communications, data centers and other fields.
  • the components inside the silicon photonics chip are divided into active devices and passive devices according to whether they need to work through external voltage.
  • active devices are extremely prone to electrostatic discharge.
  • Electrostatic discharge is also called Electro-Static discharge, or ESD for short.
  • the damage and damage caused by electrostatic discharge to electronic products have sudden damage and potential Two types of damage.
  • the so-called sudden damage refers to the serious damage of the device and the loss of function; this kind of damage can usually be found in the quality inspection during the production process, so the main cost to the factory is the cost of rework and repair.
  • electrostatic discharge refers to the part of the device is damaged, the function has not been lost, and it is difficult to be found in the inspection of the production process, but it will make the product unstable during use, and it will be good and bad, thus forming a greater impact on product quality. great harm. Therefore, electrostatic discharge is considered to be the biggest potential killer of electronic product quality, and electrostatic protection has also become an important content of electronic product quality control.
  • the existing electrostatic discharge protection circuits are mostly composed of MOS transistors and their peripheral circuits. This protection circuit device is complex, which easily affects the integration of the chip, and the process is complicated and the manufacturing cost is high. With the development of technology, the industry's requirements for chip integration and cost are getting higher and higher, so a new electrostatic discharge protection circuit is urgently needed.
  • Embodiments of the present application provide an electrostatic discharge protection circuit, an electrostatic discharge protection unit, a chip, and a device.
  • the embodiment of the present application provides an electrostatic discharge protection circuit, the electrostatic discharge protection circuit is arranged in parallel with active devices; the electrostatic discharge protection circuit includes a first diode assembly and a second diode component; the first diode component is connected in reverse series with the second diode component; or the electrostatic discharge protection circuit includes a third diode component and a fourth diode component; the third diode component in antiparallel with the fourth diode assembly.
  • an embodiment of the present application provides an electrostatic discharge protection unit, the electrostatic discharge protection circuit and the active device are arranged in parallel on a silicon photonics chip substrate.
  • an embodiment of the present application provides a chip, including at least one electrostatic discharge protection unit described in the foregoing embodiments.
  • an embodiment of the present application provides a device, including at least one chip described in the foregoing embodiments.
  • FIG. 1 is an overall connection diagram of an electrostatic discharge protection circuit in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a circuit structure of an electrostatic discharge protection circuit in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an electrostatic discharge protection circuit on a silicon chip in an embodiment of the present application
  • FIG. 4 is a schematic diagram of another circuit structure of the electrostatic discharge protection circuit in the embodiment of the present application.
  • orientation such as the orientation or positional relationship indicated by up and down, etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the application and simplifying the description , rather than indicating or implying that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and thus should not be construed as limiting the application.
  • a plurality refers to two or more. If the description of the first and second is only for the purpose of distinguishing the technical features, it cannot be understood as indicating or implying the relative importance or implicitly indicating the number of the indicated technical features or implicitly indicating the order of the indicated technical features relation.
  • the terms “installation”, “installation”, “connection”, and “connection” should be understood in a broad sense, for example, it can be a fixed connection, or It can be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • installation can be a fixed connection, or It can be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components.
  • Static electricity is an objective natural phenomenon. There are many ways to produce it, such as contact, friction, induction between electrical appliances, etc. Static electricity is characterized by long-term accumulation, high voltage, low power, low current and short action time. Electrostatic discharge refers to electrostatic discharge. Since static electricity has the characteristics of high voltage and short action time, electrostatic discharge is extremely harmful to circuits or devices. For silicon photonic chips or other integrated circuits, because they are mainly composed of semiconductor devices, In silicon photonics chips, active devices include optical modulators, detectors, optical attenuators, and resistors, among which optical modulators are key devices for high-speed and short-distance optical communications, and are also one of the most important integrated optical devices.
  • Optical modulators can be divided into electro-optic, thermo-optic, acousto-optic, all-optical, etc. according to their modulation principles. Keldysh effect, quantum well Stark effect, carrier dispersion effect, etc.
  • the electro-optic modulator is a device that ultimately regulates the refractive index, absorption rate, amplitude or phase of the output light through changes in voltage or electric field. It is superior to other types of modulators in terms of loss, power consumption, speed, and integration.
  • the light modulator In the process of light emission, transmission and reception of the overall optical communication, the light modulator is used to control the intensity of light, and its function is very important.
  • the optical attenuator is a very important fiber optic active device.
  • the electrostatic discharge protection circuit of the embodiment of the present application is set in parallel with the active device, and the protection of the active device is realized by using the characteristics of the parallel circuit.
  • the specific connection diagram can refer to Figure 1.
  • the protection circuit 1 is connected to the active device.
  • the devices 2 are connected in parallel; the protection circuit 1 is connected with the active device 2 through conductive electrodes arranged at both ends of the active device 2 . Since in the manufacture of integrated circuit technology, the smaller the thickness of the electrode, the greater the impedance of the electrode.
  • the conductive electrode is selected The material is a metal electrode. In an integrated circuit, the impedance of each device may affect the realization of the function.
  • the material made of general conductive materials has the risk of being oxidized. Once the metal electrode is oxidized, the conductivity of the metal will become poor, and the impedance will become larger. Input and output functions will be affected. Therefore, in the embodiment of the present application, the material of the electrode can be copper, which is a metal with stable chemical properties, good electrical conductivity, and not easily oxidized, so it can effectively reduce the impedance of the pins in the integrated circuit. At the same time improve the oxidation resistance of the pin.
  • the specific circuit structure of the protection circuit 1 can refer to FIG. 2.
  • the protection circuit is composed of a first diode assembly and a second diode assembly.
  • the first diode assembly and the second diode assembly can be composed of one or more diodes.
  • the number of diodes in the first diode assembly and the second diode assembly are designed to be the same.
  • Figure 2 illustrates the case where the first diode assembly and the second diode assembly are both a Zener diode, and the protection circuit 1 and the active device 2 are connected in parallel through two metal electrodes.
  • the protection circuit 1 is composed of the first diode The tube component and the second diode component are connected in reverse series.
  • the reverse series can be that the anode of the first diode component is connected to the cathode of the second diode component.
  • the first diode component The anode of the diode assembly is connected to the left electrode, and the anode of the second diode assembly is connected to the right electrode.
  • the anode of the pole tube assembly is connected, the cathode of the first diode assembly is connected to the left electrode, and the cathode of the second diode assembly is connected to the right electrode, wherein the first diode assembly and the second diode assembly are both It is a zener diode, the first electrode 31 on the left is the anode of the active device, the second electrode 32 on the right is the cathode of the active device, the anode of the first zener diode 11 is connected to the first electrode 31, the first The cathode of the Zener diode 11 is connected to the cathode of the second Zener diode 12, and the anode of the second Zener diode 12 is connected to the second electrode 32, wherein the first Zener diode 11 and the second Zener diode 12
  • the electrical parameters are the same, such as forward voltage drop, reverse breakdown voltage, junction capacitance, P-pole thickness, doped ion concentration, N-pole thickness and doped ion
  • the electrostatic discharge protection circuit in the embodiment of the present application can be integrated with the active device on the same silicon chip, and made by semiconductor processes such as ion implantation, epitaxy, exposure, development and etching.
  • the protection circuit can be composed of an N well and at least one P+ ion implantation region, and when there are multiple P+ implantation regions, multiple P+ implantation regions can form a plurality of reversely connected Zener diode. Therefore, as an example, the embodiment of the present application takes two P+ ion implantation regions as an example, and its specific structure can refer to FIG. 3. In FIG.
  • the two P+ ion implantation regions can implant excess ions in the N well 113 through an ion implantation process, wherein the ion implantation process can control the ion concentration and thickness of the implantation regions.
  • the ions implanted in the N well 112 can be trivalent ions of boron, gallium or other elements, and the implanted trivalent ions can be combined with the pentavalent ions of the N well itself. , and then the excess trivalent ions can form a P+ ion implantation region.
  • the first P+ ion implantation region 111 is located on the left side of the N well 112
  • the second P+ ion implantation region 113 is located on the right side of the N well 112
  • the first P+ ion implantation region 111 is not connected to the P+ second ion implantation region 113
  • the doping concentrations of the two P+ ion implantation regions are equal, while the doping concentration of the N well 112 is n+ doping.
  • the first P+ ion implantation regions 111 and 112 form a forward Zener diode, and the second P+ ion implantation region A reverse Zener diode is formed with the N well 112 , and the two diodes can be electrically connected with the ion movement in the N well through the P+ implantation region.
  • the protection circuit 1 When there is no electrostatic discharge phenomenon, since the operating voltage of the active device 2 is lower than the breakdown voltage of the first Zener diode 11 and the second Zener diode 12, the protection circuit 1 always has a Zener diode in a reverse biased state.
  • the protection circuit 1 connected in parallel to the active device 2 can be regarded as an open circuit, and the protection circuit 1 will not affect the work of the active device 2 and the normal test work.
  • the electrostatic discharge phenomenon occurs during chip manufacturing, welding or use, since the impedance of the protection circuit 1 is smaller than the active device 2 connected in parallel with it, the static electricity acts on the protection circuit 1 first.
  • the Zener diode is a diode specially designed to operate in the reverse breakdown region and has good power dissipation.
  • the Zener diode has a very high resistance until the critical reverse breakdown voltage.
  • the resistance of the Zener diode When the voltage across the diode exceeds the critical reverse breakdown voltage, the resistance of the Zener diode will be reduced to a very small value, while The voltage across the Zener diode can remain constant, which is the voltage stabilization characteristic of the Zener diode.
  • the voltage at both ends of the positive and negative poles of the active device 2 can be stabilized at the voltage designed for the Zener diode, so that the voltage of the active device 2 can be stabilized.
  • the voltage at both ends is kept within a rated range, so as to realize the protection effect on the active device 2 and improve the stability of the active device 2 .
  • the embodiment of the present application can reduce the huge voltage generated by static electricity discharge to realize the protection function, effectively improve the service life of the active device 2, improve the quality of the chip, and reduce the The cost of production.
  • the zener diode will not be damaged like other diodes after reverse breakdown, which can also increase the practicability of the entire protection unit.
  • the number of Zener diodes can also be increased, and the specific increase method can be forward series connection between the positive pole of the first Zener diode and the positive pole of the active device One and a Zener diode, and a Zener diode is connected in series between the cathode of the active device and the anode of the second Zener diode, and a wider protection range can be obtained by connecting four Zener diodes in series, further improving the protection circuit. Static protection capability.
  • the number of Zener diodes can be appropriately increased, and designers can make different adjustments according to specific device parameters.
  • the protection circuit 1 may include a third diode assembly 13 and a fourth diode assembly 14, wherein the two diode assemblies are connected in antiparallel. Since different active devices 2 have different impedances and voltages, in some embodiments of the present application, the number of diodes in the third diode assembly 13 and the fourth diode assembly 14 can be one or more, and in order to realize Its unidirectional conductivity, when the number of connected diodes is multiple, multiple diodes are connected in series in the same direction, and the specific number of series connection can be determined according to different requirements of the designer.
  • the third diode assembly 13 and the fourth diode assembly 14 both have four diodes as an example, and the specific circuit structure may refer to FIG. 4 .
  • the first electrode 31 on the left side of the active device 2 is the positive pole
  • the second electrode 32 is the negative pole
  • the positive pole of the third diode assembly 13 is connected with the first electrode 31 of the active device 2
  • the third The cathode of the diode assembly 13 is connected to the second electrode 32 of the active device 2
  • the cathode of the fourth diode assembly 14 is connected to the first electrode 31 of the active device 2
  • the anode of the fourth diode assembly 14 is connected to the first electrode 31 of the active device 2.
  • the second electrode 32 of the active device 2 is connected.
  • the P region and the N region of the diode in the embodiment of the present application are lightly doped during the manufacturing process, and the P region and the N region are both Lightly doped region, lightly doped can effectively reduce the current of the forward bias of the PN junction.
  • the number of PN junction diodes in the third diode assembly 13 and the fourth diode assembly 14 is the same, and the same number of PN junction diodes can be Keep the pressure drop in both positive and negative directions the same.
  • the protection circuit is connected in parallel with the active device, wherein the protection device includes a third diode assembly and a fourth diode assembly, the third diode assembly and the fourth diode assembly Diode assemblies each consist of four common diodes. Unlike Zener diodes, ordinary diodes have unidirectional conductivity due to the blocking effect of the electric field in the PN junction, and their reverse breakdown voltage is therefore very high. It is generally difficult to break down the static electricity generated in integrated circuits.
  • the electrostatic voltage that is, the voltage difference generated by the potential of the first electrode 31 higher than the potential of the second electrode 32 is applied to the two ends of the protection circuit 1 connected to the active device 2, due to the on-resistance of the protection circuit 1 Smaller than the active device 2, the electrostatic voltage will act on the protection circuit 1 first.
  • the third diode assembly 13 is forward-conducting, and the fourth diode assembly 14 is reverse-blocking.
  • the active device 2 Since the active device 2 is connected in series with the protection circuit 1, four of the third diode assembly 13 After the forward conduction of the series diodes in the same direction, its impedance is smaller than the impedance of the active device, and the current flows through the branch where the third diode assembly 13 is located to realize the protection of the active device 2; similarly, when external static electricity is generated
  • the reverse voltage of the protection circuit 1 is applied to both ends of the connection between the protection circuit 1 and the active device 2
  • the third diode assembly 13 is reversely cut off, the fourth diode assembly 14 is forward-conducting, and the fourth diode assembly 14 after conduction
  • the impedance of the branch circuit where the tube assembly 14 is located is smaller than that of the active device 2 , and the current flows through the branch circuit where the fourth diode assembly 14 is located, realizing electrostatic protection for the active device 2 .
  • the number of ordinary diodes of the third diode assembly 13 and the fourth diode assembly 14 The quantity can be adjusted according to different active devices, and the specific adjustment method can be to add one or more diodes to the third diode assembly and the fourth diode assembly at the same time. In order to increase the voltage drop of the diode assembly, the added diode needs to be connected in series with the previous diode in the same direction.
  • the electrostatic discharge protection circuit of the present application realizes the protection function of electrostatic discharge by using multiple diodes or diode components in different connection modes, so that when the active device connected in parallel with the electrostatic discharge protection circuit encounters static electricity, its The working status is not affected, which improves the life of the active chip and enables the active device to be used in many different scenarios.
  • the protection circuit of the present application can use diodes, and both the diodes and the protected active devices can be produced through the same semiconductor process, which can reduce manufacturing costs, save space and improve integration while improving production efficiency.
  • the present application also provides an electrostatic discharge protection unit.
  • the unit includes active devices and the electrostatic discharge protection circuit described in the above embodiments.
  • the active device can be a device or a combination of devices in modulator, detector, optical attenuator or active resistor, and the active device is connected in parallel with the electrostatic discharge protection circuit described in the above embodiment and all of them are set on a silicon photonics chip.
  • the electrostatic discharge protection unit is integrated on the silicon photonics chip, which can facilitate the integration of other devices on the chip, save the space of the chip, and improve the integration degree of the chip.
  • the application also provides a chip.
  • the chip includes at least one electrostatic discharge protection unit described in the above-mentioned embodiments.
  • the electrostatic discharge protection unit can protect different modules in the chip and improve the stability of the chip.
  • the two parts of the electrostatic discharge protection unit can be arranged on the silicon substrate, and can be manufactured using the same production process while manufacturing the chip, which reduces the production cost, and in the increasingly high integration requirements Today, setting the protection unit on the silicon substrate can also improve the integration level of the chip.
  • the application also provides a device.
  • the device includes at least one chip described in the above implementations. Since the device may generate different static electricity during the process of manufacturing and using, the chip with the electrostatic discharge protection unit has a good anti-static ability in the device, which can prevent the device from being damaged by the chip during manufacture and operation affect the function of the device.
  • the embodiments of the present application provide an electrostatic discharge protection circuit, an electrostatic discharge protection unit, a chip, and a device.
  • the embodiment of the present application provides an electrostatic discharge protection circuit, the electrostatic discharge protection circuit is arranged in parallel with active devices; the electrostatic discharge protection circuit includes a first diode assembly and a second diode component; the first diode component is connected in reverse series with the second diode component; or the electrostatic discharge protection circuit includes a third diode component and a fourth diode component; the third diode component in antiparallel with the fourth diode assembly.
  • an electrostatic discharge protection circuit may also have the following additional technical features:
  • the first diode assembly includes one or more diodes; the second diode assembly includes one or more diodes.
  • the number of diodes in the first diode assembly is the same as the number of diodes in the second diode assembly.
  • the first diode assembly includes an N well and at least one P+ ion implantation region; the P+ ion implantation region is connected to the N well.
  • the diode is a Zener diode.
  • the third diode assembly includes one or more diodes; the fourth diode assembly includes one or more diodes.
  • the diode includes a P region and an N region; the P region and the N region are lightly doped regions.
  • the number of diodes in the third diode assembly is the same as that in the fourth diode assembly.
  • an embodiment of the present application provides an electrostatic discharge protection unit, the electrostatic discharge protection circuit and the active device are arranged in parallel on a silicon photonics chip substrate.
  • the active device includes at least one device among a modulator, a detector, an optical attenuator, or an active resistor.
  • an embodiment of the present application provides a chip, including at least one electrostatic discharge protection unit described in the foregoing embodiments.
  • an embodiment of the present application provides a device, including at least one chip described in the foregoing embodiments.
  • the protection circuit by connecting a protection circuit composed of several diode components in parallel on the active device, the risk of static electricity damage to the active device of the silicon photonics chip can be reduced, and the quality of the silicon photonics chip can be improved; moreover, the protection circuit has a simple structure , can reduce packaging cost while improving chip integration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本申请公开了一种静电释放保护电路、保护单元以及芯片和装置,该静电释放保护电路被设置成与有源器件(2)并联,所述静电释放保护电路包括第一二极管组件(11)和第二二极管组件(12);所述第一二极管组件(11)与所述第二极管组件(12)反向串联;或者所述静电释放保护电路包括第三二极管组件(13)和第四二极管组件(14);所述第三二极管组件(13)与所述第四二极管组件(14)的反向并联。

Description

一种静电释放保护电路、保护单元以及芯片和装置
相关申请的交叉引用
本申请基于申请号为202111092240.5、申请日为2021年09月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及硅基光电子领域,特别是一种静电释放保护电路、保护单元以及芯片和装置。
背景技术
硅光芯片因其高集成度等优点,在光通信、数据中心等领域有着越来越广泛的应用。硅光芯片内部的元件根据是否需要通过外部电压来工作而又区分为有源器件和无源器件。在硅光芯片的实际使用过程中,有源器件极其容易出现静电释放现象,静电释放也叫Electro-Static discharge,简称ESD,静电释放对电子产品造成的破坏和损伤有突发性损伤和潜在性损伤两种。所谓突发性损伤,指的是器件被严重损坏,功能丧失;这种损伤通常能够在生产过程中的质量检测中能够发现,因此给工厂带来的主要是返工维修的成本。而潜在性损伤指的是器件部分被损,功能尚未丧失,且在生产过程的检测中难以被发现,但在使用当中会使产品变得不稳定,时好时坏,因而对产品质量构成更大的危害。因此,静电释放被认为是电子产品质量最大的潜在杀手,静电防护也成为电子产品质量控制的一项重要内容。在硅光芯片制造行业中,现有的静电释放保护电路多由MOS管及其外围电路组成,这种保护电路器件复杂,容易影响芯片的集成度,而且工艺复杂,制造成本高。随着技术的发展,业内对于芯片集成度和成本的要求也越来越高,因此亟需一种新的静电释放保护电路。
发明内容
本申请实施例提供一种静电释放保护电路、静电释放保护单元以及芯片和装置。
第一方面,本申请实施例提供了一种静电释放保护电路,该静电释放保护电路被设置成与有源器件并联;所述静电释放保护电路包括第一二极管组件和第二二极管组件;所述第一二极管组件与所述第二极管组件反向串联;或者所述静电释放保护电路包括第三二极管组件和第四二极管组件;所述第三二极管组件与所述第四二极管组件的反向并联。
另一方面,本申请实施例提供一种静电释放保护单元,所述静电释放保护电路和所述有源器件并联设置于硅光芯片衬底上。
另一方面,本申请实施例提供一种芯片,包括至少一个上述实施例中所述的静电释放保护单元。
另一方面,本申请实施例提供一种装置,包括至少一个上述实施例中的所述的芯片。
本申请的优点和有益效果将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请实施例中一种静电释放保护电路的整体连接图;
图2是本申请实施例中静电释放保护电路的一种电路结构示意图;
图3是本申请实施例中一种静电释放保护电路在硅片上的结构示意图;
图4是本申请实施例中静电释放保护电路的另一种电路结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,涉及到方位描述,例如上、下等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,多个指的是两个以上。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
静电是一种客观存在的自然现象。其产生的方式有多种,如接触、摩擦、电器间感应等。静电的特点是长时间积聚、高电压、低电量、小电流和作用时间短。静电释放是指静电释放,由于静电具有高电压和作用时间短的特点,静电释放对于电路或者器件的危害极大,而对于硅光芯片或者其他集成电路,由于其主要是由半导体的器件组成,而在硅光芯片中,有源器件有光调制器,探测器、光衰减器和电阻等,其中光调制器是高速、短距离光通信的关键器件,也是最重要的集成光学器件之一。光调制器按照其调制原理来讲,可分为电光、热光、声光、全光等,它们所依据的基本理论是各种不同形式的电光效应、声光效应、磁光效应、Franz-Keldysh效应、量子阱Stark效应、载流子色散效应等。其中电光调制器是通过电压或电场的变化最终调控输出光的折射率、吸收率、振幅或相位的器件,它在损耗、功耗、速度、集成性等方面都优于其他类型的调制器。在整体光通信的光发射、传输、接收过程中,光调制器被用于控制光的强度,其作用是非常重要的。而光衰减器是一种非常重要的纤维光学有源器件,它可按用户的要求将光信号能量进行预期地衰减,常用于吸收或反射掉光功率余量、评估系统的损耗及各种测试中,其具有体积小、精度高、稳定性好、使用方便等特点是光电行业常用的器件。正是由于有源器件在光电芯片中的巨大作用,有源器件一旦遭到静电释放现象,造成的危害不仅是芯片成本的增加,更是下游产品对应功能的缺失,这将严重影响产品的品质和企业的声誉,因此在芯片制造,焊接和应用中,相关人员都会对芯片进行必要的静电释放防护。而本申请提供了一种静电释放的保护电路,该静电释放保护电路可以集成于硅光芯片上,与其他有源器件经过同一套工艺制成,可以提高芯片集成度的同时还可以降低 封装成本。
本申请实施例的静电释放保护电路被设置成与有源器件并联,利用并联电路特点实现对有源器件的保护,具体的连接图可参照图1,在图1中,保护电路1与有源器件2并联;保护电路1通过设置于有源器件2两端的导电电极与有源器件2连接。由于在集成电路技术制造中,电极的厚度越小,电极的阻抗越大,为了减少电极的阻抗,减少不必要的能量消耗和提高电极的稳定性,在本申请实施例中,导电电极选用的材料为金属电极。在集成电路中,每个器件的阻抗都可能影响功能的实现,一般的导电材料做成的材料存在被氧化的风险,一旦金属电极被氧化,金属的导电能力变差,阻抗变大,芯片的输入输出功能将受到影响。因此,在本申请的实施例中,电极的材料可以选用铜,铜是一种的化学性质稳定、导电性好,不易被氧化的金属,因此其在集成电路中可以有效减少引脚的阻抗的同时提高引脚的抗氧化能力。
在本申请的一些实施例中,保护电路1的具体电路结构可参照图2,在图2中,保护电路由第一二极管组件和第二二极管组件组成,其中,在本申请实施例中,第一二极管组件与第二二极管组件可以由一个或者多个二极管组成。而为了使正反向的保护能力一致,本申请实施例中将第一二极管组件与第二二极管组件中二极管的数量设计为相同。图2以第一二极管组件与第二二极管组件都是一个齐纳二极管,保护电路1与有源器件2通过两个金属电极并联为例进行说明,保护电路1由第一二极管组件与第二二极管组件反向串联组成,在申请实施例中,反向串联可以为第一二极管组件的正极与第二二极管组件的负极连接,第一二极管组件的正极和左侧电极连接,第二二极管组件的正极和右侧电极连接,在本申请的另一些实施例中,反向串联还可以为第一二极管组件的正极与第二二极管组件的正极连接,第一二极管组件的负极和左侧电极连接,第二二极管组件的负极和右侧电极连接,其中第一二极管组件与第二二极管组件均为一个齐纳二极管,左侧的第一电极31为有源器件的正极,右侧第二电极32为有源器件的负极,第一齐纳二极管11的正极与第一电极31连接,第一齐纳二极管11的负极与第二齐纳二极管12的负极连接,而第二齐纳二极管12的正极则与第二电极32连接,其中,第一齐纳二极管11与第二齐纳二极管12的电气参数相同,如正向的压降,反向击穿电压,结电容、P极的厚度、掺杂的离子浓度,N极的厚度和掺杂的离子浓度等。
本申请实施例中的静电释放保护电路可以与有源器件集成于同一块硅片上,通过离子注入、外延、曝光、显影和刻蚀等半导体的工艺制成。其中,在本申请实施例中,保护电路可以由一个N阱和至少一个P+离子注入区组成,而当P+注入区为多个时,多个P+注入区可以形成多个反向连接的齐纳二极管。因此,示例性地,本申请实施例以两个P+离子注入区为例,其具体的结构可参照图3,在图3中,第一P+离子注入区111与第二P+离子注入区113均镶嵌于N阱112中,两个P+离子注入区可以通过离子注入工艺在N阱113中注入过量的离子,其中,离子注入工艺可以控制注入区的离子浓度和厚度。在半导体工艺中,在一些实施例中,在N阱112中注入的离子可以是硼、镓或者其他的元素的三价离子,而注入的三价离子可以与N阱本身的五价的离子结合,之后过量的三价离子可以形成P+离子注入区。第一P+离子注入区111位于N阱112的左侧,第二P+离子注入区113位于N阱112的右侧,而第一P+离子注入区111与P+第二离子注入区113并不相连,两个P+离子注入区的掺杂浓度相等,而N阱112的掺杂浓度则为n+掺杂,第一 P+离子注入区111与112形成一个正向的齐纳二极管,第二P+离子注入区与N阱112则形成反向的齐纳二极管,两个二极管可通过P+注入区与N阱中的离子运动实现电气的连接。
当不存在静电释放现象时,由于有源器件2的工作电压小于第一齐纳二极管11和第二齐纳二极管12的击穿电压,保护电路1始终有一个齐纳二极管处于反偏状态,此时并联于有源器件2的保护电路1可以视为断路,保护电路1不会影响到有源器件2的工作以及正常测试工作。当芯片在制造,焊接或者使用过程中发生静电释放现象时,由于保护电路1的阻抗小于与其并联的有源器件2,静电先作用于保护电路1,如果静电的压降为正,即第一电极31的电位比第二电极32的电位高,保护电路1中的第一齐纳二极管11正向导通,而第二齐纳二极管12则发生反向击穿,一般的二极管在被反向击穿后,PN结将被损坏,单向导电性消失,整个二极管的阻抗将变得很小。而齐纳二极管则是一个专门被设计在反向击穿区操作,具有良好功率散逸的二极管。齐纳二极管在一种直到临界反向击穿电压前都具有很高电阻,当二极管两端的电压超过这个临界在反向击穿电压,齐纳二极管的电阻将会降低到很小的数值,而齐纳二极管两端的电压则可以保持恒定,这就是齐纳二极管的稳压特性。根据齐纳二极管的这个特性,当第二齐纳二极管12发生反向击穿时,可以使有源器件2的正负极两端的电压稳定在齐纳二极管设计的电压,使有源器件2的两端的电压保持在一个额定的范围里,从而实现了对有源器件2的保护作用,提高了有源器件2的稳定性。此外当静电的压降为负时,即第一电极31的对地电位比第二电极32的对地电位低,保护电路1中的第二齐纳二极管12导通,而第一齐纳二极管11发生反向击穿,反向击穿的第一齐纳二极管11可以使有源器件2两端电压保持在有源器件额定的电压范围内进而保护有源器件。因此,不管外部注入保护电路1的静电的极性如何,本申请实施例都可以将静电释放产生的巨大电压降低从而实现保护功能,有效提高有源器件2的使用寿命,提高芯片的品质,降低生产的成本。此外,齐纳二极管被反向击穿后并不会像其他二极管那样损坏,也可以增加整个保护单元的实用性。需要说明的是,在本申请的另一些实施例中,齐纳二极管的数量也可以增加,其具体的增加方式可以是在第一齐纳二极管的正极与有源器件的正极之间正向串联一个与齐纳二极管,同时在有源器件的负极与第二齐纳二极管的正极之间串联一个齐纳二极管,通过四个齐纳二极管的串联可以获得更宽的保护范围,进一步提高保护电路的静电保护能力。当然可以理解的是,在本申请的某些实施例中,齐纳二极管的数量还能适当地增加,设计者可根据具体的器件的参数做出不同的调整。
在本申请的另一些实施例中,保护电路1可以包括第三二极管组件13和第四二极管组件14,其中两个二极管组件反向并联连接。由于不同的有源器件2的阻抗和电压不同,在本申请的一些实施例中,第三二极管组件13与第四二极管组件14的二极管数量可以是一个或者多个,而为了实现其单向导电性,当接入的二极管的数量为多个时,多个二极管为同向串联,具体的串联数量可根据设计者不同的要求而确定。下面以第三二极管组件13与第四二极管组件14都是四个二极管为例说明,具体的电路结构可参照图4。在图4中,以有源器件2左侧的第一电极31为正极,第二电极32为负极,第三二极管组件13的正极与有源器件2的第一电极31连接,第三二极管组件13的负极与有源器件2的第二电极32连接,第四二极管组件14的负极与有源器件2的第一电极31连接,第 四二极管组件14的正极与有源器件2的第二电极32连接。其中,为了使二极管的正向压降稳定在一定的数值,本申请实施例中的二极管在生产制造的过程中P区和N区都采用了轻掺杂的工艺,P区和N区均为轻掺杂区,轻掺杂可以有效减小PN结正偏的电流。而为了使得两个组件的防护能力相同,在本申请的一些实施例中,第三二极管组件13与第四二极管组件14中PN结二极管的数量相同,相同数量的PN结二极管可使得正负两个方向的压降保持相同。
以有源器件2的第一电极31为正极为例,保护电路与有源器件并联,其中保护器件包括第三二极管组件和第四二极管组件,第三二极管组件和第四二极管组件均由四个普通二极管组成。与齐纳二极管不同,普通二极管由于PN结内电场的阻挡作用,其具备单向导电性,而其反向击穿电压也因此很高,在集成电路中产生的静电一般很难将其击穿,当正向静电电压,即第一电极31的电位高于第二电极32的电位产生的压差施加于保护电路1与有源器件2连接的两端时,由于保护电路1的导通阻抗比有源器件2小,静电电压会先作用于保护电路1。在静电电压的作用下,第三二极管组件13正向导通,第四二极管组件14反向截止,由于有源器件2与保护电路1串联,第三二极管组件13的四个同向串联二极管正向导通后,其阻抗小于有源器件的阻抗,电流从第三二极管组件13所在支路流过从而实现了对有源器件2的保护;同样地,当外部静电产生的反向电压施加于保护电路1与有源器件2连接的两端时,第三二极管组件13反向截止,第四二极管组件14正向导通,导通后的第四二极管组件14所在的支路的阻抗小于有源器件2,电流从第四二极管组件14所在支路流过,实现了对有源器件2的静电保护。此外,需要说明的是,由于不同的有源器件的阻抗或者工作电压不一样,在本申请的一些实施例中,第三二极管组件13与第四二极管组件14的普通二极管的数量可根据不同的有源器件调整其数量,具体的调整的方式可以是在第三二极管组件与第四二极管组件中同时增加一个或者多个的二极管。而为了实现二极管组件压降的增加,增加的二极管需与之前的二极管同向串联。
综上所述,本申请的静电释放保护电路利用多个二极管或者二极管组件不同的连接方式,实现了静电释放的保护功能,使与静电释放保护电路并联的有源器件在遇到静电时,其工作状态不受影响,提高了有源芯片的寿命,使有源器件可以应用于很多不同的场景。而且本申请的保护电路可以采用二极管,二极管与被保护的有源器件均可以通过同一个半导体工艺流程生产,可以降低生产制造的成本,在提高生产的效率同时节约空间,提高集成度。
本申请还提供一种静电释放保护单元。该单元包括有源器件和上述实施例所述的静电释放保护电路。其中,有源器件可以是调制器、探测器、光衰减器或者有源电阻中的一种器件或者多种器件的组合,有源器件与上述实施例所述的静电释放保护电路并联且均设置在硅光芯片上。静电释放保护单元集成于硅光芯片上,可以便于芯片上的其他器件集成,节约芯片的空间,提高芯片的集成度。
本申请还提供一种芯片。该芯片包括至少一个上述实施例所述的静电释放保护单元。静电释放保护单元可以保护芯片中的不同模块,提高芯片的稳定性。而且静电释放保护单元的两个部分可以均设置于硅衬底上,在制造芯片的同时,可以使用同一种生产工艺制造出来, 降低了生产的成本,而且在对集成度要求越来越高的今天,保护单元设置于硅衬底上也可以提高芯片的集成度。
本申请还提供一种装置。该装置包括至少一个上述实施中所述的芯片。由于装置在制造和使用的过程中,都有可能产生不同的静电,具有静电释放保护单元的芯片在装置中有很好的防静电能力,可以使得装置在制造,运行中不会因芯片被损坏而影响装置的功能。
综上所述,本申请实施例提供了一种静电释放保护电路、静电释放保护单元以及芯片和装置。
第一方面,本申请实施例提供了一种静电释放保护电路,该静电释放保护电路被设置成与有源器件并联;所述静电释放保护电路包括第一二极管组件和第二二极管组件;所述第一二极管组件与所述第二极管组件反向串联;或者所述静电释放保护电路包括第三二极管组件和第四二极管组件;所述第三二极管组件与所述第四二极管组件的反向并联。
另外,根据本申请中上述实施例的一种静电释放保护电路,还可以有以下附加的技术特征:
本申请实施例中,所述第一二极管组件包括一个或者一个以上的二极管;所述第二二极管组件包括一个或者一个以上的二极管。
本申请实施例中,所述第一二极管组件中二极管的数量与所述第二二极管组件中二极管的数量相同。
本申请实施例中,所述第一二极管组件包括一个N阱与至少一个P+离子注入区;所述P+离子注入区与所述N阱连接。
本申请实施例中,所述二极管为齐纳二极管。
本申请实施例中,所述第三二极管组件包括一个或者一个以上的二极管;所述第四二极管组件包括一个或者一个以上的二极管。
本申请实施例中,所述二极管包括P区与N区;所述P区与所述N区为轻掺杂区。
本申请实施例中,所述第三二极管组件与所述第四二极管组件中二极管的数量相同。
另一方面,本申请实施例提供一种静电释放保护单元,所述静电释放保护电路和所述有源器件并联设置于硅光芯片衬底上。
本申请实施例中,所述有源器件包括调制器、探测器、光衰减器或有源电阻中的至少一种器件。
另一方面,本申请实施例提供一种芯片,包括至少一个上述实施例中所述的静电释放保护单元。
另一方面,本申请实施例提供一种装置,包括至少一个上述实施例中的所述的芯片。
本申请实施例通过在有源器件上并联由若干个二极管组件组成的保护电路,可以降低硅光芯片的有源器件遭到静电损坏的风险,提高硅光芯片的品质;而且该保护电路结构简单,可以在提高芯片集成度的同时降低封装成本。
在本说明书的上述描述中,参考术语“一个实施方式/实施例”、“另一实施方式/实施例”或“某些实施方式/实施例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
以上是对本申请的若干实施例进行了具体说明,但本申请并不限于实施例,熟悉本领域的技术人员在不违背本申请精神的前提下可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (13)

  1. 一种静电释放保护电路,其中,该静电释放保护电路被设置成与有源器件并联;所述静电释放保护电路包括第一二极管组件和第二二极管组件;所述第一二极管组件与所述第二极管组件反向串联;
    或者所述静电释放保护电路包括第三二极管组件和第四二极管组件;所述第三二极管组件与所述第四二极管组件的反向并联。
  2. 根据权利要求1所述的静电释放保护电路,其中,所述第一二极管组件包括一个或者一个以上的二极管;所述第二二极管组件包括一个或者一个以上的二极管。
  3. 根据权利要求2所述的静电释放保护电路,其中,所述第一二极管组件中二极管的数量与所述第二二极管组件中二极管的数量相同。
  4. 根据权利要求1所述的静电释放保护电路,其中,所述第一二极管组件包括一个N阱与至少一个P+离子注入区;所述P+离子注入区与所述N阱连接。
  5. 根据权利要求3所述的静电释放保护电路,其中,所述二极管为齐纳二极管。
  6. 根据权利要求1所述的静电释放保护电路,其中,所述第三二极管组件包括一个或者一个以上的二极管;所述第四二极管组件包括一个或者一个以上的二极管。
  7. 根据权利要求6所述的静电释放保护电路,其中,所述二极管包括P区与N区;所述P区与所述N区为轻掺杂区。
  8. 据权利要求6所述的静电释放保护电路,其中,所述第三二极管组件中二极管的数量与所述第四二极管组件中二极管的数量相同。
  9. 一种静电释放保护单元,包括有源器件和权利要求1-8任一项所述的静电释放保护电路。
  10. 根据权利要求9所述的静电释放保护单元,其中,所述静电释放保护电路和所述有源器件并联设置于硅光芯片衬底上。
  11. 根据权利要求10所述的静电释放保护单元,其中,所述有源器件包括调制器、探测器、光衰减器或有源电阻中的至少一种器件。
  12. 一种芯片,包括至少一个权利要求9-11所述的静电释放保护单元。
  13. 一种装置,包括至少一个权利要求12所述的芯片。
PCT/CN2022/113710 2021-09-17 2022-08-19 一种静电释放保护电路、保护单元以及芯片和装置 WO2023040583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111092240.5 2021-09-17
CN202111092240.5A CN115831956A (zh) 2021-09-17 2021-09-17 一种静电释放保护电路、保护单元以及芯片和装置

Publications (1)

Publication Number Publication Date
WO2023040583A1 true WO2023040583A1 (zh) 2023-03-23

Family

ID=85515203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113710 WO2023040583A1 (zh) 2021-09-17 2022-08-19 一种静电释放保护电路、保护单元以及芯片和装置

Country Status (2)

Country Link
CN (1) CN115831956A (zh)
WO (1) WO2023040583A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041634A1 (en) * 1997-12-31 2000-10-04 Siliconix Incorporated Power MOSFET having voltage-clamped gate
US6172383B1 (en) * 1997-12-31 2001-01-09 Siliconix Incorporated Power MOSFET having voltage-clamped gate
CN101312189A (zh) * 2007-05-21 2008-11-26 万国半导体股份有限公司 与半导体功率器件集成的多级静电放电保护电路的优化布图结构
CN209526516U (zh) * 2019-02-01 2019-10-22 地太科特电子制造(北京)有限公司 一种esd防护电路以及探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041634A1 (en) * 1997-12-31 2000-10-04 Siliconix Incorporated Power MOSFET having voltage-clamped gate
US6172383B1 (en) * 1997-12-31 2001-01-09 Siliconix Incorporated Power MOSFET having voltage-clamped gate
CN101312189A (zh) * 2007-05-21 2008-11-26 万国半导体股份有限公司 与半导体功率器件集成的多级静电放电保护电路的优化布图结构
CN209526516U (zh) * 2019-02-01 2019-10-22 地太科特电子制造(北京)有限公司 一种esd防护电路以及探测器

Also Published As

Publication number Publication date
CN115831956A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US7619284B2 (en) Over charge protection device
US20100158426A1 (en) Electro-optic modulator
KR20010102184A (ko) 양방향 디바이스 및 다이오드와 보호된 회로 장치
KR100506743B1 (ko) 트랜지스터를 구비한 플립칩 구조 발광장치용 서브 마운트
US20200089076A1 (en) Optical modulator
CN106098684A (zh) 一种静电防护电路
WO2023040583A1 (zh) 一种静电释放保护电路、保护单元以及芯片和装置
US9172239B2 (en) Methods and apparatus related to a precision input power protection device
CA2778625C (en) High speed lasing device
US10580764B2 (en) Transient voltage suppressor
US10355144B1 (en) Heat-dissipating Zener diode
TW202107792A (zh) 靜電放電防護裝置與方法
CN212848411U (zh) 相同电压不同浪涌功率的双路双向tvs保护芯片
JP2019201133A (ja) 光検出器
US10607983B2 (en) Transient voltage suppressor
CN114400993A (zh) 一种具有双向过压保护的模拟开关电路
CN102468646A (zh) 用于usb模拟开关的带电/掉电情况下的过压保护电路
JP2018181918A (ja) 光検出器
CN212848412U (zh) 非对称电压的双路双向tvs保护器件
CN112433395A (zh) 硅光调制器及其制造方法
Wang et al. Gate-controlled silicon controlled rectifier with adjustable clamping voltage using a photoelectric mechanism
JP2016536778A (ja) 改善された逆サージ能力及び削減されたリーク電流のポリシリコン層を有するツェナーダイオード
CN204992563U (zh) 一种用于光模块的静电防护电路
CN116017808B (zh) 具高耐压能力的照明装置保护电路
CN208580942U (zh) 绿色固体激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE