WO2023040546A1 - 一种导管泵、辅助泵血系统及导管泵的控制方法和装置 - Google Patents

一种导管泵、辅助泵血系统及导管泵的控制方法和装置 Download PDF

Info

Publication number
WO2023040546A1
WO2023040546A1 PCT/CN2022/112696 CN2022112696W WO2023040546A1 WO 2023040546 A1 WO2023040546 A1 WO 2023040546A1 CN 2022112696 W CN2022112696 W CN 2022112696W WO 2023040546 A1 WO2023040546 A1 WO 2023040546A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
catheter pump
pressure difference
curve
driving motor
Prior art date
Application number
PCT/CN2022/112696
Other languages
English (en)
French (fr)
Inventor
周方兵
吴向军
闫小珅
Original Assignee
苏州心岭迈德医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州心岭迈德医疗科技有限公司 filed Critical 苏州心岭迈德医疗科技有限公司
Publication of WO2023040546A1 publication Critical patent/WO2023040546A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/13Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel by means of a catheter allowing explantation, e.g. catheter pumps temporarily introduced via the vascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • A61M60/546Regulation using real-time blood pump operational parameter data, e.g. motor current of blood flow, e.g. by adapting rotor speed

Definitions

  • This specification relates to the technical field of medical devices, in particular to a control method and device for a catheter pump, an auxiliary blood pumping system and a catheter pump.
  • the perfusion flow of the heart will be reduced compared with normal people. Sustained low perfusion flow can lead to symptoms of dyspnea, dizziness, and palpitation in patients with heart failure.
  • the decrease in cardiac perfusion flow may also lead to hypoperfusion of multiple organs in the human body, leading to the failure of the corresponding organs.
  • the decreased perfusion flow of the heart may cause insufficient perfusion pressure of the kidneys, and sustained low perfusion pressure may cause kidney cells to infarct due to ischemia, leading to kidney failure.
  • Patients with heart failure usually use a catheter pump for auxiliary treatment.
  • the catheter pump is a pumping device used to guide the aorta (or other vascular parts) and provide circulatory support for the heart. It can assist the heart to increase the perfusion pressure of the aorta, thereby increasing the heart rate. perfusion flow.
  • a catheter pump for assisting blood pumping, comprising: a housing provided with a fluid inlet and a fluid outlet; an impeller disposed in the housing and used to adjust the flow rate of the catheter pump; driving The motor is used to drive the impeller to rotate.
  • the drive motor includes a stator side and an output shaft, the stator side is fixed to the housing, and the output shaft is fixed to the impeller; a rectification device is sleeved on the The output rotating shaft of the driving motor is outside, and is fixedly connected with the stator side of the driving motor.
  • auxiliary blood pumping system comprising: the catheter pump according to any embodiment of the present specification; a control device electrically connected to the drive motor of the catheter pump, and the control device is used to control parameters to send control instructions to the drive motor.
  • One aspect of the specification provides a method for controlling a catheter pump, the method comprising: obtaining a target pressure difference curve or a target effective pressure difference of the catheter pump; obtaining a target rotational speed of a drive motor of the catheter pump; or the target effective pressure difference, and the target rotational speed, and adjust the output value of the control parameter of the drive motor.
  • One aspect of the present specification provides a control device for a catheter pump, including a processor configured to execute the control method for a catheter pump according to any embodiment of the present specification.
  • One aspect of the present specification provides a computer-readable storage medium, the storage medium stores computer instructions, and after the processor reads the computer instructions in the storage medium, the processor executes the catheter pump according to any embodiment of the present specification control method.
  • Figure 1 is a schematic diagram of an exemplary catheter pump according to some embodiments of the present specification
  • Figure 2 is an exploded schematic view of an exemplary catheter pump according to some embodiments of the present specification
  • Fig. 3 is a schematic diagram of an exemplary rectification device according to some embodiments of the present specification.
  • Fig. 4 is a schematic diagram of an exemplary rectification device according to other embodiments of the present specification.
  • Figure 5 is a partial cross-sectional view of an exemplary catheter pump according to some embodiments of the present specification.
  • Fig. 6 is a schematic diagram of an exemplary catheter pump according to some embodiments of the present specification, wherein the bracket of the catheter pump is in a folded state;
  • Figure 7 is a schematic diagram of an exemplary catheter pump according to other embodiments of the present specification.
  • Fig. 8A is an assembly diagram of a bracket and a housing of an exemplary catheter pump according to some embodiments of the present specification
  • Figure 8B is an exploded schematic view of the bracket and housing of an exemplary catheter pump according to some embodiments of the present specification
  • Figure 9 is a schematic diagram of an exemplary catheter pump according to still other embodiments of the present specification.
  • Figure 10 is a schematic diagram of an exemplary auxiliary blood pump system according to some embodiments of the present specification.
  • Fig. 11 is a schematic diagram of an application scenario of an exemplary auxiliary blood pumping system according to some embodiments of the present specification.
  • Fig. 12 is a schematic diagram of an application scenario of an exemplary auxiliary blood pumping system according to another embodiment of the present specification.
  • Fig. 13 is an exemplary flow chart of a method for controlling a catheter pump according to some embodiments of the present specification
  • Fig. 14 is an exemplary flowchart of a method for determining a target pressure difference according to some embodiments of the present specification
  • Fig. 15 is an exemplary flowchart of a method for determining a target rotational speed according to some embodiments of the present specification
  • Fig. 16 is an exemplary flowchart of a method for adjusting control parameters according to some embodiments of the present specification
  • Fig. 17 is an exemplary flow chart of a control parameter adjustment method according to another embodiment of the present specification.
  • Fig. 18 is an exemplary flow chart of a control parameter adjustment method according to yet another embodiment of the present specification.
  • Fig. 19 is a schematic structural diagram of an exemplary control device according to some embodiments of the present specification.
  • 100 is a catheter pump
  • 1 is a casing
  • A is a central axis
  • 11 is a fluid inlet
  • 12 is a fluid outlet
  • 13 is a head
  • 14 is a support rod
  • 2 is an impeller
  • 3 is a driving motor
  • 31 is a stator 32 is the output shaft
  • 4 is the rectifier
  • 41 is the core
  • 411 is the through hole
  • 412 is the small end
  • 413 is the big end
  • 42 is the blade
  • 43 is the installation part
  • C is the central symmetry axis
  • 51 is the first A seal
  • 52 is the second seal
  • 6 is the bracket
  • 61 is the leg
  • 611 is the first end
  • 612 is the second end
  • 613 is the contact pin
  • 614 is the connecting part
  • 62 is the mesh support
  • 71 is the second end
  • 72 is the second pressure sensor
  • 73 is the third pressure sensor
  • 74 is the fourth pressure sensor
  • 200 is the auxiliary
  • system means for distinguishing different components, elements, components, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • Catheter pump is a pumping device used to guide the aorta (or other vascular parts) of patients with heart failure and provide circulatory support for the heart. It can assist the heart to increase the perfusion pressure of the aorta, thereby achieving the purpose of treating heart failure.
  • the catheter pump can be implanted into the aorta (or other vascular parts) of the human body through catheters and other delivery devices, and the pressure difference between the two sides of the catheter pump can be increased through self-rotation, thereby increasing the perfusion pressure of the aorta, which can provide a boost for the failing heart.
  • the catheter pump includes a straightening device, which can be used to release the swirl pressure exerted by the catheter pump on the blood in the blood vessel, and/or reduce the impact force of the blood on the blood vessel, and help maintain the stability of the catheter pump sex.
  • the auxiliary blood pumping system further includes a control device, which can adjust the control parameters of the catheter pump according to the collected signals. Compared with the scheme of setting control parameters based on the doctor's experience, the accuracy is higher and the response speed is faster. Reduce mistakes in the treatment process, which is conducive to the rapid recovery of patients.
  • Some embodiments of this specification also provide a control method for a catheter pump, which can adjust the output value of the control parameter of the driving motor of the catheter pump according to the actual perfusion flow rate and the target perfusion flow rate of the patient, thereby improving the reliability of the output value of the control parameter sex.
  • the control device can monitor the actual perfusion flow rate of the patient to update the output value of the control parameter of the drive motor, so that the output value of the control parameter can accurately match the change of the patient's physiological index, which is conducive to the rapid recovery of the patient.
  • catheter pumps of the present description may be implanted in blood vessels or transfusion organs.
  • blood vessels may include arteries or veins.
  • Arteries may include, but are not limited to, the ascending aorta, descending aorta, abdominal aorta, pulmonary aorta, and the like.
  • Veins may include, but are not limited to, the superior vena cava or inferior vena cava, among others.
  • Transfusing organs can include the heart.
  • a catheter pump can be implanted in either the left ventricle or the right ventricle. Among them, when the catheter pump is applied in the aorta connected to the left ventricle, the fluid inlet is connected to the left ventricle.
  • the catheter pump can improve the internal hemodynamic performance of the heart, increase the cardiac output or assist high-risk cardiac surgery ;
  • the catheter pump When the catheter pump is applied to the descending aorta connected with the renal blood vessels, it can increase the renal perfusion pressure in the descending aorta to prevent renal failure caused by acute heart failure; when the catheter pump is applied to the superior vena cava, inferior vena cava Venous or pulmonary artery, etc., can increase the internal pressure of blood vessels and improve blood perfusion.
  • patients in this specification include but are not limited to heart failure patients, kidney failure patients, liver disease patients, and cerebral infarction patients.
  • Figure 1 is a schematic diagram of an exemplary catheter pump 100 according to some embodiments of the present specification.
  • FIG. 2 is an exploded schematic illustration of an exemplary catheter pump 100 according to some embodiments of the present specification.
  • the catheter pump 100 may include a casing 1 , an impeller 2 , a driving motor 3 and a straightening device 4 .
  • the impeller 2 is arranged in the casing 1
  • the driving motor 3 is used to drive the impeller 2 to rotate
  • the impeller 2 provides pumping power for the catheter pump 100 through the rotation
  • the rectifying device 4 is used to adjust the flow pattern of the blood passing through the impeller 2, for example, to adjust the impeller
  • the turbulent flow caused by 2 releases the swirling pressure exerted by the catheter pump 100 on the blood in the blood vessel 250, and/or reduces the impact force of the blood on the blood vessel.
  • the housing 1 may be an enclosure providing support or protection for the impeller 2 , the driving motor 3 and/or the fairing 4 .
  • the housing 1 has a chamber that allows fluid to flow through.
  • the housing 1 is provided with a fluid inlet 11 and a fluid outlet 12. The fluid enters the chamber from the fluid inlet 11 and flows out from the fluid outlet 12, wherein,
  • the fluid may be blood in the blood vessel 250 , etc., and the flow direction of the blood may refer to the direction indicated by the arrow D in FIG. 1 .
  • the casing 1 can be a cylindrical casing, the inflow inlet 11 is arranged on the end surface of the cylindrical casing (such as the end surface of one end), and the fluid outlet 12 is arranged on the side surface of the cylindrical casing (such as the end surface of the other end). side).
  • the radial size (such as diameter) of the housing 1 can be in the range of 3 mm to 7 mm (such as 3 mm, 4 mm, 5 mm, 5.5 mm, 6 mm, 7 mm, etc.), the radial dimension The dimension refers to the dimension perpendicular to the central axis A of the housing 1 .
  • the impeller 2 is disposed in a chamber allowing fluid to flow therethrough for regulating the flow rate of the catheter pump 100 .
  • the impeller 2 includes helical blades arranged around its axis of rotation. When the impeller 2 rotates, under the action of the helical blades, the velocity and pressure of the fluid in the housing 1 can be increased, so that The fluid outlet 12 outputs fluid with a higher flow rate and pressure, so as to form a pressure difference between the fluid inlet 11 and the fluid outlet 12 , thereby increasing the perfusion flow of the blood vessel 250 .
  • the driving motor 3 is used to drive the impeller 2 to rotate.
  • the driving motor 3 can include a stator side 31 and an output shaft 32, the stator side 31 can be a stationary part of the driving motor 3, such as a stator core, a stator winding and a frame, etc., and the output shaft 32 can be a axis of rotation.
  • the stator side 31 of the drive motor 3 is fixed to the housing 1 , and the output shaft 32 of the drive motor 3 is fixed to the impeller 2 .
  • the stator side 31 is fixed on the housing 1 near the end of the fluid outlet 12, the output shaft 32 extends into the housing 1 and is fixed with the impeller 2 in the housing 1, and the rotation of the output shaft 32 can drive The impeller 2 rotates.
  • the radial dimension of the stator side 31 may be in the range of 3 mm to 7 mm (eg, 3 mm, 4 mm, 5 mm, 5.5 mm, 6 mm, 7 mm, etc.).
  • the radial dimension (eg, diameter) of the stator side 31 may be equal to the radial dimension of the housing 1 . In some embodiments, the radial dimension of the stator side 31 may not be equal to the radial dimension of the housing 1 . In some embodiments, the radial dimension of the stator side 31 may be smaller than the radial dimension of the housing 1 , so as to reduce the resistance to the fluid and facilitate better fluid circulation.
  • the housing 1 and the impeller 2 can be injection-molded with plastic materials to reduce the overall weight of the catheter pump 100 .
  • the casing 1 and the impeller 2 can be machined from metal materials.
  • the metal materials can include but not limited to cobalt-chromium alloy, stainless steel, etc.
  • the casing 1 and the impeller 2 made of metal have high strength and can be used long life.
  • the casing 1 and the impeller 2 can be made of the same material.
  • the housing 1 and the impeller 2 can be made of different materials.
  • the rectifier 4 is sleeved outside the output shaft 32 of the drive motor 3 and fixedly connected to the stator side 31 of the drive motor 3, that is, the rectifier 4 remains relatively stationary relative to the stator side 31, and the output shaft 32 passes through
  • the rectifying device 4 is connected with the impeller 2 .
  • the straightening device 4 can buffer the impact force of the fluid and guide the direction of the fluid flow.
  • the drive motor 3 drives the output rotating shaft 32 to rotate
  • the output rotating shaft 32 drives the impeller 2 to rotate, so that the fluid in the casing 1 rotates with the impeller 2 to generate whirling pressure.
  • the rectifying device 4 After the fluid flows through the rectifying device 4, the rectifying device 4.
  • the swirling flow pattern or turbulent flow pattern of the fluid can be adjusted to a straight flow pattern along the blood vessel 250, so as to release the swirl pressure of the fluid and reduce the impact force of the fluid on the blood vessel 250.
  • the straightening device 4 is arranged at the fluid outlet 12 to facilitate rectification of the fluid at the fluid outlet 12 and reduce the swirling pressure of the fluid at the fluid outlet 12 .
  • Fig. 3 is a schematic diagram of an exemplary rectifying device 4 according to some embodiments of the present specification.
  • Fig. 4 is a schematic diagram of an exemplary rectifying device 4 according to other embodiments of the present specification.
  • the rectifying device 4 includes a core 41, the core 41 is configured as a centrally symmetrical block, and the centrally symmetrical block means that the core 41 can overlap with itself after rotating around the central symmetrical axis C at any angle.
  • Blocky structure the core 41 includes a small end 412 and a large end 413 , and the cross section from the small end 412 to the large end 413 increases gradually.
  • the cross section from the small end 412 to the large end 413 can increase linearly. For example, referring to FIG.
  • the cross-section from the small end 412 to the large end 413 can increase non-linearly. For example, referring to FIG. For big endian 413.
  • the small end 412 is disposed close to the impeller 2
  • the large end 413 is disposed close to the drive motor 3
  • the core 41 is further provided with a mounting portion 43 for fixing with the stator side 31 of the drive motor 3 .
  • the mounting portion 43 is configured as a cylinder, the mounting portion 43 is disposed on the large end 413 and the axis of the mounting portion 43 is arranged in line with the central symmetry axis C of the core 41 .
  • the cross section of the mounting portion 43 is smaller than the cross section of the big end 413 .
  • the cross section of the mounting portion 43 is equal to the cross section of the large end 413 .
  • the mounting part 43 is fixed to the stator side 31 of the driving motor 3 by various fixing methods such as laser welding, bonding, and threaded connection, which are not limited in this specification.
  • the core 41 defines a through hole 411 for avoiding the output shaft 32 , and the through hole 411 runs through the small end 412 to the large end 413 along the central axis of symmetry C.
  • the diameter of the through hole 411 of the core 41 is larger than the diameter of the output shaft 32 of the driving motor 3 .
  • the straightening device 4 further includes a plurality of vanes 42 arranged at intervals around the central symmetry axis C of the core 41 on the outer surface of the core 41 , and the plurality of vanes 42 are used to release The whirling pressure exerted by the impeller 2 on the blood.
  • the blades 42 When the swirling or turbulent fluid impacts on the straightening device 4, the blades 42 have a drainage effect on the fluid, thereby changing and adjusting the flow direction of the fluid and releasing its whirling pressure.
  • the number of vanes 42 can be set as required, for example, there can be two, three or four vanes 42 , which is not limited in this specification.
  • the included angles formed by adjacent vanes 42 and the central axis of symmetry C may be equal, that is, the vanes 42 may be arranged around the core 41 at equal intervals relative to the central axis of symmetry C. In some embodiments, the included angles formed by adjacent vanes 42 and the central axis of symmetry C may be unequal.
  • the blades 42 may be arranged on the outer surface of the core 41 in a swirl shape, and the rotation direction of the blades 42 may be opposite to that of the blades of the impeller 2, so as to better counteract the swirl pressure of the fluid.
  • the vanes 42 may be arranged on the outer surface of the core 41 in an arc shape, and the vanes 42 may have a larger curvature radius to improve the rectifying effect.
  • the vanes 42 can be arranged on the outer surface of the core 41 in a straight line, that is, the vanes 42 extend straight from the small end 412 of the core 41 to the large end 413 of the core 41, thereby adjusting the flow through the straightening device 4 The fluid continues to flow along the direction of the central axis of symmetry C of the straightening device 4 as far as possible.
  • the blades 42 of the straightening device 4 can avoid the fluid outlet 12 of the housing 1 , avoiding partial blocking or blocking of the fluid outlet 12 .
  • a plurality of fluid outlets 12 can be arranged on the housing 1 along the circumference, and the distance between adjacent fluid outlets 12 is the same as the thickness of the blades 42 of the straightening device 4, and the blades 42 of the straightening device 4 abut against the On the side of the housing 1 between adjacent fluid outlets 12 , the fluid outlets 12 are avoided.
  • the rectification device 4 may not be provided with blades 42 , but directly utilizes the surface radian of the core 41 to buffer the impact force of the fluid and play a rectification role.
  • the straightening device 4 can be injection-molded with plastic material to reduce the overall weight of the catheter pump 100 .
  • the rectification device 4 can be machined from metal materials, such as metal materials including but not limited to cobalt-chromium alloy, stainless steel, etc. The rectification device 4 made of metal has high strength and long service life.
  • FIG. 5 is a partial cross-sectional view of an exemplary catheter pump 100 according to some embodiments of the present specification.
  • a seal is provided between the rectification device 4 and the drive motor 3 , and the seal is used to prevent blood from entering the drive motor 3 and causing failures such as rust, leakage, and short circuit of the drive motor 3 .
  • the number of sealing elements can be determined according to the structure and sealing level of the driving motor 3 .
  • the sealing member includes a first sealing member 51 and a second sealing member 52 , and the first sealing member 51 and the second sealing member 52 assist each other to increase the sealing performance of the driving motor 3 .
  • the first seal 51 is disposed between the rectification device 4 and the output shaft 32 of the drive motor 3 to prevent blood from entering the drive motor 3 from the gap between the rectification device 4 and the output shaft 32 .
  • the first sealing member 51 is configured as an annular structure, and an accommodation chamber is formed inside the rectifying device 4 , and the first sealing member 51 is disposed in the accommodation chamber and is in sliding contact with the output shaft 32 , so that the first sealing member 51 The member 51 can block the gap between the output shaft 32 and the rectifying device 4 .
  • the first seal 51 can be made of polytetrafluoroethylene (Teflon or PTFE), so that the first seal 51 has the advantages of tightness, high lubrication and non-stickiness, etc., and the high lubrication of the first seal 51
  • Teflon or PTFE polytetrafluoroethylene
  • the non-viscosity makes the frictional force of the output rotating shaft 32 very small when it is in sliding contact with it, and the loss to the output rotating shaft 32 is very small.
  • the second seal 52 is arranged between the rectification device 4 and the stator side 31 of the drive motor 3 to prevent blood from entering the drive motor 3 from the installation gap between the rectification device 4 and the stator side 31 .
  • the second sealing member 52 is configured in a disc shape, and the disc-shaped second sealing member 52 includes a flat bottom plate and a protrusion formed along the edge of the flat bottom plate, and the flat bottom plate seals the stator side of the drive motor 3 The end surface of 31 is protrudingly blocked at the connection between the mounting part 43 of the rectifying device 4 and the stator side 31, thereby improving the sealing of the connection.
  • the second sealing member 52 may be made of materials such as medical rubber, medical silicone or polytetrafluoroethylene, which is not limited in this specification.
  • medical silicone grease can be coated between the seal and the rectifier 4, and between the seal and the drive motor 3, and the medical silicone grease can lubricate and seal, for example, it can reduce the first seal.
  • FIG. 6 is a schematic diagram of an exemplary catheter pump 100 according to some embodiments of the present specification, wherein the bracket 6 of the catheter pump 100 is in a collapsed state.
  • FIG. 7 is a schematic diagram of an exemplary catheter pump 100 according to other embodiments of the present specification.
  • Fig. 8A is an assembly schematic diagram of the bracket 6 and the casing 1 of the exemplary catheter pump 100 according to some embodiments of the present specification
  • Fig. 8B is the bracket 6 and the casing of the exemplary catheter pump 100 shown according to some embodiments of the specification Schematic diagram of the explosion of body 1.
  • FIG. 9 is a schematic diagram of an exemplary catheter pump 100 according to still other embodiments of the present specification.
  • the catheter pump 100 also includes a bracket 6, which is used to fix the casing 1 in the blood vessel 250 or the blood transfusion organ, and increase the relative strength of the catheter pump 100 to the blood vessel 250 or the blood transfusion organ. organ stability.
  • the stent 6 includes a folded state and an unfolded state: referring to FIG. 6 , in the folded state, the maximum radial dimension of the stent 6 is less than or equal to the radial dimension of the casing 1, so that the catheter pump 100 can accommodate In the catheter 230, and implanted into the blood vessel 250 or the blood transfusion organ through the catheter 230; see FIG. 1, FIG. 7 and FIG.
  • the radial direction refers to a direction perpendicular to the central axis A of the casing 1 .
  • the maximum radial dimension of the stent 6 in the deployed state may range from 20 mm to 30 mm (such as 20 mm, 22 mm, 25 mm, 30 mm, etc.), which is not limited in this specification.
  • the support 6 may have certain elasticity, so that it can be switched between the folded state and the unfolded state.
  • the stent 6 can be in a collapsed state under the action of external pressure (such as the binding force of the catheter 230 ); the stent 6 can automatically become an expanded state when there is no external pressure (such as extending the catheter 230 ).
  • the bracket 6 can be made of memory alloy (such as nickel-titanium alloy) or the like.
  • the bracket 6 includes a plurality of legs 61 , the legs 61 are rod-shaped with a first end 611 and a second end 612 , and the first end 611 is opposite to the fluid inlet 11
  • the second end 612 is away from the casing 1 to form a free end, and the free end of the leg 61 is used to abut against the inner wall of the blood vessel 250 to fix the catheter pump 100 in the blood vessel 250 .
  • the legs 61 are gathered and arranged from the first end 611 to the second end 612 along the central axis A of the housing 1 , and in the unfolded state, the legs 61 are arranged obliquely outward in the radial direction from the first end 611 to the second end 612 arrangement, wherein radially outward refers to a direction away from the central axis A of the housing 1 .
  • the second end 612 of the leg 61 is provided with a contact leg 613, and the contact leg 613 is configured in a shape such as a disc, a sphere, or an ellipsoid, which can increase the distance between the second end 612 of the leg 61 and the vessel wall. contact area, reduce the local stress of the blood vessel wall, and avoid stabbing the blood vessel wall when the leg 61 is fixed.
  • the distance between the second end 612 of the leg 61 and the central axis A of the housing 1 is smaller than the distance between the first end 611 of the leg 61 and the central axis A of the housing 1
  • the distance A that is, the stent 6 forms an end with a smaller radial dimension at the second end 612 , can reduce the pushing resistance of the stent 6 in the catheter 230 or the blood vessel 250 , thereby reducing the risk of being stuck during pushing.
  • the legs 61 are arranged obliquely inwardly from the first end 611 to the second end 612, so that the distance between the second end 612 and the central axis A of the housing 1 is smaller than the distance between the first end 611 and the housing 1 .
  • the distance from the central axis A of 1, radially inward refers to the direction close to the central axis A of the housing 1.
  • the end of the second end 612 of the leg 61 has a bent section, and the bent section is arranged such that: in the folded state, the distance between the second end 612 of the leg 61 and the central axis A of the housing 1 is less than The distance between the first end 611 of the leg 61 and the central axis A of the housing 1 .
  • the bent section can be configured as an L-shaped bent section, and the L-shaped bent section is directed from the end of the second end 612 of the leg 61 toward the central axis A of the housing 1
  • the bent, L-shaped bent section occupies less space at the end of the second end 612 and has strong stability. Referring to Fig.
  • the bending section can be configured as a straight-line bending section, and the straight-line bending section is bent from the end of the second end 612 of the leg 61 toward the central axis A of the housing 1, and the straight-line bending section
  • the smooth configuration of the folding section is beneficial to reduce the propulsion resistance of the catheter pump 100 and is easy to process.
  • the bracket 6 may include a plurality of legs 61 and connecting parts 614, and more details of the legs 61 may refer to Fig. 6 and Fig. 7 and related descriptions, and the connecting parts 614 are arranged on the legs
  • the first end 611 of the leg 61 is used to connect the leg 61 to the housing 1 .
  • the connecting portion 614 is configured as a cylindrical structure, the first end 611 of the leg 61 is connected to one end of the connecting portion 614 , and the other end of the connecting portion 614 is connected to the fluid inlet 11 of the casing 1 .
  • a hollow channel is formed inside the connecting portion 614 to allow fluid to flow through, and fluids such as blood flow from the hollow channel to the fluid inlet 11 of the housing 1 .
  • the connecting portion 614 may be connected to the housing 1 in various ways such as threaded connection, clamping connection, adhesive bonding and the like.
  • the leg 61 can be made of materials such as nickel-titanium alloy to meet the requirement of elastic deformation capability.
  • the connection part 614 can be made of blood-compatible metal materials such as cobalt-chromium alloy and stainless steel, or blood-compatible polymer materials to meet the requirements of strength and blood compatibility.
  • the catheter pump 100 further includes a head 13 and a support rod 14 , one end of the support rod 14 is fixed to the housing 1 , and the other end is fixed to the head 13 .
  • the support rod 14 is a straight rod, one end of which is fixed at the fluid inlet 11 of the housing 1 , and the other end is fixed to the head 13 and provides support for the head 13 .
  • the head 13 is configured as a cone to reduce the resistance of the catheter pump 100 to advance and the resistance of the head to the fluid.
  • the bracket 6 includes a mesh bracket 62 disposed between the head 13 and the casing 1 , one end of the mesh bracket 62 is fixed to the head 13 , and the other end is fixed to the casing 1 .
  • the mesh support 62 may be a cage-like structure made of wire mesh, and the cage-like structure is surrounded by the support rod 14 (such as sleeved on the outside of the support rod 14 ).
  • the mesh stent 62 can have self-expanding properties, and the mesh stent 62 is formed into a spindle shape in the unfolded state, and the spindle shape can be a shape in which the middle is enlarged and the two ends are gathered.
  • the mesh stent 62 The middle part is used to abut against the inner wall of the blood vessel 250 to fix the catheter pump 100 .
  • the contact area between the stent 6 and the inner wall of the blood vessel can be increased, effectively preventing the stent 6 from causing damage to the inner wall of the blood vessel.
  • the surface of the catheter pump 100 that can be in contact with blood is coated with a heparin coating to prevent the occurrence of local thrombus.
  • the casing 1 , the driving motor 3 , the rectifying device 4 , the impeller 2 and the bracket 6 of the catheter pump 100 can all be coated with heparin coating.
  • the catheter pump 100 further includes a first pressure sensor 71, and the first pressure sensor 71 is arranged upstream of the fluid inlet 11, wherein the upstream is relative to the flow direction D of the blood, and the upstream of the fluid inlet 11 can be It is a position opposite to the flow direction D of the blood, taking the fluid inlet 11 as a reference point.
  • first pressure sensor 71 may detect blood pressure upstream of fluid inlet 11 .
  • the first pressure sensor 71 is separated from the fluid inlet 11 by a first preset distance range, so that the first pressure sensor 71 The turbulent flow area is avoided to improve the accuracy of the data collected by the first pressure sensor 71 .
  • the first pressure sensor 71 may be disposed at a distance between 20 mm and 60 mm (such as 20 mm, 30 mm, 40 mm, 45 mm, 60 mm, etc.) from the fluid inlet 11 .
  • the first pressure sensor 71 may be disposed at an end of the bracket 6 away from the casing 1 .
  • the first pressure sensor 71 may be disposed at the second end 612 of the leg 61 .
  • the first pressure sensor 71 may be disposed on the head 13 of the catheter pump 100 .
  • the catheter pump 100 further includes a second pressure sensor 72, and the second pressure sensor 72 is arranged downstream of the fluid outlet 12, wherein, the downstream is relative to the flow direction D of the blood, and the downstream of the fluid outlet 12 can be It is a position in the same direction as the blood flow D with the fluid outlet 12 as a reference point.
  • second pressure sensor 72 may detect blood pressure downstream of fluid outlet 12 .
  • the second pressure sensor 72 is separated from the fluid outlet 12 by a second preset distance range, so that the second pressure sensor 72 The turbulent flow area is avoided to improve the accuracy of the data collected by the second pressure sensor 72 .
  • the turbulent flow area passing through the fluid outlet 12 of the catheter pump 100 may be larger than the turbulent flow area at the fluid inlet 11
  • the second predetermined distance range may be greater than the first predetermined distance range.
  • the second pressure sensor 72 can be arranged at a distance between 30 mm and 70 mm (such as 30 mm, 40 mm, 45 mm, 60 mm, 70 mm, etc.) from the fluid inlet 11 .
  • the second pressure sensor 72 may be disposed on the outer surface of the stator side 31 of the drive motor 3 . In some embodiments, the second pressure sensor 72 may be disposed on the outer surface of the cable 240 that provides electrical signals for the driving motor 3 .
  • catheter pump 100 may include both first pressure sensor 71 and second pressure sensor 72 . In some embodiments, catheter pump 100 may include only first pressure sensor 71 . In some embodiments, catheter pump 100 may include only second pressure sensor 72 . In some embodiments, the first pressure sensor 71 and/or the second pressure sensor 72 may be various types of pressure sensors such as strain gauge pressure sensors, diffused silicon pressure sensors, and piezoelectric pressure sensors. By arranging the first pressure sensor 71 and/or the second pressure sensor 72, the fluid pressure at the upstream and/or downstream positions of the catheter pump 100 can be easily known, so that the performance and clinical effect of the catheter pump can be monitored and used to guide Catheter pumps work better.
  • FIG. 10 is a schematic diagram of an exemplary auxiliary blood pump system according to some embodiments of the present specification.
  • the auxiliary blood pump system 200 may be a system that provides additional blood circulation power for patients with heart failure.
  • the auxiliary blood pumping system 200 may include the catheter pump 100 and the control device 210 described above.
  • the catheter pump 100 is used to be implanted in the blood vessel 250 and/or the blood transfusion organ to increase the pumping pressure of the blood vessel 250 and/or the blood transfusion organ.
  • the specific details of the catheter pump 100 can refer to the content described above.
  • control device 210 is configured to be placed outside the body and to control the operation of the catheter pump 100 .
  • the control device 210 is electrically connected with the driving motor 3 of the catheter pump 100 , for example, through a cable 240 .
  • the control device 210 is used to send control instructions to the drive motor 3 based on the control parameters, so as to realize the control of the catheter pump 100 .
  • the control device 210 may send control instructions to the driving motor 3 based on the control parameters set manually.
  • the control device 210 can automatically determine control parameters and send control instructions to the drive motor 3, thereby avoiding interference from human factors.
  • control parameters may include but not limited to the voltage, current, driving speed, power, etc. of the driving motor 3, and the control device 210 can send control instructions to make the driving motor 3 operate according to the control parameters.
  • control device 210 may be integrated within catheter pump 100 .
  • the catheter pump 100 includes a first pressure sensor 71 and a second pressure sensor 72
  • the first pressure sensor 71 is arranged upstream of the fluid inlet 11, and is used to detect the pressure upstream of the fluid inlet 11 and generate a corresponding signal
  • the second pressure sensor 72 is arranged downstream of the fluid outlet 12 for detecting the pressure downstream of the fluid outlet 12 and generating a corresponding signal.
  • control device 210 can be used to acquire the signals of the first pressure sensor 71 and the second pressure sensor 72 .
  • the control device 210 has a signal connection (such as an electrical connection) with the first pressure sensor 71 and the second pressure sensor 72, and the first pressure sensor 71 and the second pressure sensor 72 measure the blood pressure and send the signal to The control device 210 acquires the signal and processes the signal.
  • control device 210 can adjust the output value of the control parameter of the driving motor 3 based on the signals of the first pressure sensor 71 and the second pressure sensor 72 . In some embodiments, the control device 210 can calculate and obtain the control parameters according to the signals of the first pressure sensor 71 and the second pressure sensor 72 , and then adjust the control parameters of the drive motor 3 based on the control commands sent by the control parameters to the drive motor 3 output value. In some embodiments, the control device 210 may use the value of the control parameter as an output value of the control parameter for driving the motor 3 .
  • control device 210 may include a storage medium 212 and a processor 214 .
  • control device 210 may include a storage medium 212 and a processor 214 .
  • FIG. 19 For more details about the control device 210, please refer to FIG. 19 and related descriptions.
  • Fig. 11 is a schematic diagram of an application scenario of an exemplary auxiliary blood pumping system according to some embodiments of the present specification.
  • the auxiliary blood pumping system 200 may include a third pressure sensor 73 and a fourth pressure sensor 74 for replacing the functions of the first pressure sensor 71 and the second pressure sensor 72 respectively.
  • the third pressure sensor 73 can be implanted or inserted into the upstream of the catheter pump 100 alone, and kept at a distance from the catheter pump 100.
  • the fourth pressure sensor 73 Sensor 74 may be implanted or pierced separately downstream of catheter pump 100 and spaced from catheter pump 100 .
  • the third pressure sensor 73 and the fourth pressure sensor 74 separately from the catheter pump 100 can simplify the structure of the catheter pump 100, and the positions of the third pressure sensor 73 and the fourth pressure sensor 74 are not limited by the catheter pump 100, and can It is easier to avoid the turbulent flow area around the catheter pump 100, improving the accuracy of detection.
  • the third pressure sensor 73 when the catheter pump 100 is placed at the position of the descending aorta, can be set at the position of the radial artery, and the fourth pressure sensor 74 can be set at the position of the femoral artery.
  • FIG. 10 and related descriptions please refer to FIG. 10 and related descriptions.
  • a cable 240 is connected downstream of the catheter pump 100 , and the cable 240 is connected to the control device 210 for providing electrical energy and control signals to the catheter pump 100 .
  • the fourth pressure sensor 74 can be set in the branch blood vessel 250 downstream of the catheter pump 100 , and the branch blood vessel 250 avoids the blood vessel 250 that the cable 240 passes through, so as to prevent the cable 240 from affecting the detection accuracy of the fourth pressure sensor 74 .
  • control device 210 can be used to obtain a current signal for driving the motor 3 .
  • the driving motor 3 can feed back the current signal to the control device 210 .
  • control device 210 may use the current parameter among the control parameters as the control current for driving the motor 3 .
  • the control device 210 can be used to determine whether the catheter pump 100 is working abnormally according to the current signal.
  • the control device 210 can preset a safe current range value (or threshold value), and after obtaining the current signal driving the motor 3, compare the current signal with the safe current range value (or threshold value): if the current If the signal is within the safe current range value (or less than the threshold value), the control device 210 generates a judgment result that the catheter pump 100 is working normally; if the current signal is outside the safe current range value (or greater than the threshold value), the control device 210 210 Generate a determination result that the catheter pump 100 is working abnormally.
  • the control device 210 determines that the catheter pump 100 is working abnormally, it can send an alarm message, so as to carry out maintenance or correction in time.
  • Fig. 12 is a schematic diagram of an application scenario of an exemplary auxiliary blood pumping system according to some embodiments of the present specification.
  • the auxiliary blood pumping system 200 may include a catheter (not shown in FIG. 12 ), through which the catheter pump 100 and the cable 240 are implanted into the blood vessel 250 of the human body. As shown in FIG. 12 , a part of the cable 240 can enter the body with the catheter pump 100 , and the other part is located outside the body and connected to the control device 210 .
  • the catheter pump 100 is first delivered to a designated position through the catheter, and then the catheter is retracted so that the catheter pump 100 protrudes from the catheter, and the bracket 6 on the catheter pump 100 is then deployed to fix the catheter pump 100 on the catheter. Specify the location.
  • the auxiliary blood pumping system 200 further includes a sterile protection device 220, which can protect the catheter and cable 240 of the extracorporeal part.
  • the cable 240 is sealed in a sterile environment, ensuring cleanliness of the catheter and cable 240 .
  • the sterile protective device 220 may include a sterile sleeve 221 , a protective sheath 225 , and a first sealing joint 222 , a second sealing joint 223 and a third sealing joint 224 . Both ends of the sterile bag 221 are respectively connected to the second sealing joint 223 and the third sealing joint 224 , the first sealing joint 222 is connected to one end of the protective sheath 225 ; the first sealing joint 222 and the second sealing joint 223 are connected to each other.
  • the sterile bag 221 and the second sealing joint 223 and the third sealing joint 224 can be connected by glue or pre-embedded injection molding.
  • the seal between the first sealing joint 222 and the cable 240 or the conduit is maintained by a seal (such as a sealing ring).
  • the sealing between the third sealing joint 224 and the cable 240 or the conduit is maintained by a sealing member (such as a sealing ring).
  • the first sealing joint 222 is a male joint
  • the second sealing joint 223 is a female joint.
  • the first sealing joint 222 and the second sealing joint 223 are used to connect each other (such as clamping, threaded connection, etc.) to form a seal.
  • the protective sheath 225 and the sterile sleeve 221 can be connected together through the first sealing joint 222 and the second sealing joint 223, so that the catheter and the cable of the extracorporeal part can be connected through the protective sheath 225 and the sterile sleeve 221 240 for better cladding.
  • the other end of the protective sheath 225 can be implanted into the human body to further ensure the sealing of the catheter and the cable 240 .
  • the other end of the protective sheath 225 can have a shape whose cross section gradually decreases toward the head end; thus, when the other end is implanted into the human body, the implantation port can be effectively blocked to prevent blood from flowing out .
  • Fig. 13 is an exemplary flowchart of a method for controlling a catheter pump according to some embodiments of the present specification.
  • the method 1200 for controlling a catheter pump can be used to control a catheter pump (such as the catheter pump 100 in any of the above embodiments).
  • the catheter pump control method 1200 can be executed by the control device 210 (such as the processor 214).
  • the control method 1200 of the catheter pump will be described by taking the catheter pump installed in the aorta as an example. It should be noted that the catheter pump control method 1200 can also be applied to situations where the catheter pump is arranged in other locations.
  • the control method 300 of the catheter pump may include:
  • Step 1210 acquiring the target pressure difference curve or the target effective pressure difference of the catheter pump 100 .
  • the target pressure difference curve may be a curve of the desired pressure difference between the upstream and downstream of the catheter pump 100 versus time.
  • the target pressure difference curve may be various types of curves such as a linear continuous curve, a nonlinear continuous curve, or a segmented curve.
  • the target effective pressure difference may be an effective value of the desired pressure difference between upstream and downstream of catheter pump 100 .
  • the effective value of the pressure difference refers to an equivalent pressure value obtained by converting the changing target pressure difference curve through calculation.
  • the target effective pressure difference may be an average (eg, a weighted average) of desired pressure differences between upstream and downstream of the catheter pump 100 .
  • the processor 214 may obtain the target pressure difference curve or the target effective pressure difference in various ways.
  • the target pressure difference curve or the target effective pressure difference can be set by users (such as medical personnel).
  • multiple target pressure difference curves or target effective pressure differences may be stored in the storage medium 212 .
  • the processor 214 may retrieve the corresponding target pressure difference curve or target effective pressure difference from the storage medium 212 according to the information input by the user.
  • the processor 214 can retrieve the corresponding target pressure difference curve or target effective pressure difference from the storage medium 212 according to the patient's physiological indicators (such as heart failure degree, cardiac output, etc.).
  • the processor 214 can determine the target pressure difference curve or the target effective pressure difference of the catheter pump 100 according to the patient's target perfusion flow rate and the actual aortic pressure curve. In some embodiments, the processor 214 can obtain the patient's target perfusion flow, and determine the aortic pressure curve according to the target perfusion flow; further, the processor 214 can obtain the patient's actual aortic pressure curve, and determine the aortic pressure curve according to the target pressure curve and the actual The pressure curve, which determines the target pressure difference curve or the target effective pressure difference of the catheter pump. For more details about the determination method of the target pressure difference (such as the target pressure difference curve or the target effective pressure difference), please refer to FIG. 14 and its related descriptions.
  • Step 1220 acquiring the target rotational speed of the drive motor 3 of the catheter pump 100 .
  • the target rotational speed may be the desired rotational speed of the drive motor 3 .
  • the target rotational speed can be determined by the patient's actual perfusion flow and the target perfusion flow.
  • the processor 214 may determine the auxiliary perfusion flow rate according to the actual perfusion flow rate and the target perfusion flow rate, and determine the target rotational speed of the driving motor according to the auxiliary perfusion flow rate and the target effective pressure difference of the catheter pump. For more details about the method for determining the target rotational speed, please refer to FIG. 13 and its related descriptions.
  • Step 1230 adjust the output value of the control parameter of the drive motor 3 according to the target pressure difference curve or the target effective pressure difference, and the target speed.
  • control parameters of the drive motor 3 of the catheter pump 100 may include control current and control voltage.
  • control voltage may be the voltage applied (or intended to be applied) on both ends of the drive motor 3 ;
  • control current may be the current flowing (or intended to flow) through the drive motor 3 .
  • the processor 214 may adjust the current curve or current value of the control current according to the target pressure difference curve or the target effective pressure difference.
  • the processor 214 can adjust the voltage value of the control voltage according to the target rotational speed.
  • the processor 214 may adjust the current profile of the control current according to the target pressure difference profile.
  • the target pressure difference curve can represent the change over time of the auxiliary pumping pressure that the catheter pump 100 needs to provide for the patient's blood, and the auxiliary pumping pressure can be achieved by driving the driving motor 3 of the catheter pump 100 .
  • the control voltage of the driving motor 3 is constant, the rotational speed of the driving motor 3 is relatively constant. At this time, by adjusting the control current of the driving motor, the torque of the output shaft 32 of the motor can be adjusted, thereby adjusting the torque provided by the catheter pump. Auxiliary pumping pressure.
  • the processor 214 can adjust the current curve of the control current according to the positive correlation between the control current and the auxiliary pumping pressure at a specific voltage, so that the current change of the driving motor 3 can meet the target pressure difference curve.
  • the catheter pump can be accurately matched to changes in the patient's physiological indicators (such as cardiac output), as well as to accurately match the periodic changes in vascular pressure caused by the beating cycle of the heart, thereby improving the catheter pump 100. Auxiliary pumping effect.
  • the processor 214 may adjust the current value of the control current according to the target effective pressure difference.
  • the principle of adjusting the control current based on the target effective pressure difference may refer to the principle of adjusting the current curve based on the target pressure difference curve described above.
  • the auxiliary pumping pressure provided by the catheter pump 100 to the patient based on the target effective pressure difference is relatively equivalent to the auxiliary pumping pressure provided by the catheter pump 100 to the patient based on the target pressure difference curve (for example, from a period of time (such as 1min) from the perspective of auxiliary pump blood flow, the two are equivalent).
  • the processor 214 can adjust the current value of the control current so that the torque of the driving motor 3 can meet the blood pumping demand of the patient, and make the pressure difference between the upstream and downstream of the catheter pump 100 reach the target effective pressure difference.
  • a relatively equivalent auxiliary blood pumping effect can be achieved through a constant current value, which reduces the processing and control difficulty of the control device 210 .
  • the processor 214 can adjust the voltage value of the control voltage according to the target rotational speed. In some embodiments, the greater the control voltage of the drive motor 3 is, the greater its output rotational speed is. Therefore, the processor 214 can adjust the voltage value of the control voltage to make the rotation speed of the driving motor 3 reach the target rotation speed.
  • the processor 214 may obtain control parameter measurements of the drive motor. In some embodiments, the processor 214 can determine the target value of the control parameter of the driving motor according to the target pressure difference curve or the target effective pressure difference, and the target speed; further, the processor 214 can adjust the The control parameter output value of the drive motor.
  • the processor 214 may obtain the actual pressure differential of the catheter pump. In some embodiments, the processor 214 may determine the adjustment value of the control parameter of the driving motor according to the target pressure difference curve or the target effective pressure difference, as well as the actual pressure difference and the target rotational speed. Further, the processor 214 may adjust the output value of the control parameter of the driving motor according to the control parameter adjustment value. In some embodiments, the processor 214 can obtain the actual rotational speed of the driving motor; and further determine the control parameter adjustment value of the driving motor according to the target pressure difference curve or the target effective pressure difference, the actual pressure difference, the target rotational speed and the actual rotational speed.
  • control parameter adjustment method For more details about the control parameter adjustment method, please refer to FIGS. 16-18 and their related descriptions.
  • Fig. 14 is an exemplary flowchart of a method for determining a target pressure difference according to some embodiments of the present specification.
  • the target pressure difference determining method 1300 can be executed by the control device 210 (such as the processor 214 ).
  • the processor 214 may determine a target pressure difference curve or a target effective pressure difference of the catheter pump based on the target pressure difference determining method 1300 , thereby implementing step 1210 .
  • the target pressure difference determination method 1300 may include:
  • Step 1310 obtaining the target perfusion flow rate of the patient.
  • the target perfusion flow rate may be an expected blood volume flowing through a certain cross-section of the blood vessel 250 per unit time.
  • the target perfusion flow rate may be the expected blood volume injected by the heart into a certain section of the aorta per minute.
  • the target perfusion flow can be determined according to the patient's physiological indicators (such as the degree of heart failure). For example, when the perfusion flow rate of a patient with mild heart failure reaches 3.5 L/min under the assistance of the catheter pump 100, its physiological indicators can be maintained within the normal range (such as the blood supply, oxygen supply and metabolic indicators of various organs). If the physiological index is maintained within the normal range), the processor 214 may determine the perfusion flow rate of 3.5 L/min as the target perfusion flow rate of the patient.
  • physiological indicators such as the degree of heart failure
  • the target perfusion flow can be determined according to the standard perfusion flow of normal people, for example, the standard perfusion flow of normal people can be 5L/min, then the control device 210 can determine the perfusion flow of 5L/min as the target perfusion flow.
  • the target perfusion flow may correspond to the patient's physiological index (such as the degree of heart failure).
  • the storage medium 212 may store the corresponding relationship between the patient's heart failure degree and the target perfusion flow rate, and the processor 214 may retrieve the corresponding target perfusion flow rate from the storage medium 212 according to the patient's heart failure degree (such as input by medical personnel). flow.
  • Step 1320 determine the aortic target pressure curve according to the target perfusion flow.
  • the target pressure profile may be a profile of the desired blood pressure in the patient's aorta versus time.
  • the target pressure curve may be a pressure curve of the blood pressure expected to be achieved after using the catheter pump 100 to assist in pumping blood.
  • the target pressure curve may be a pressure curve expected to be achieved by the blood downstream of the fluid outlet 12 of the catheter pump 100 .
  • the processor 214 can obtain standard perfusion flow and standard pressure curves of normal people. On this basis, the processor 214 can modify (such as proportionally reduce) the standard pressure curve of normal people based on the difference or proportional relationship between the standard perfusion flow of normal people and the target perfusion flow of heart failure patients, thereby Determine the aortic target pressure curve.
  • the processor 214 can pre-establish the corresponding relationship between the perfusion flow rate and the aortic pressure curve according to the experimental data. For example, the processor 214 may establish a corresponding relationship between the perfusion flow rate and the aortic pressure curve according to the measured perfusion flow rates and the measured aortic pressure curves of multiple historical patients. On this basis, the processor 214 may call the corresponding aortic pressure curve as the aortic target pressure curve according to the target perfusion flow rate.
  • Step 1330 acquiring the patient's actual aortic pressure curve.
  • the actual pressure curve of the aorta may be a curve of actual blood pressure in the aorta as a function of time.
  • the actual pressure profile may be the pressure profile located upstream of the fluid inlet 11 of the catheter pump 100 .
  • the actual pressure curve can be determined by modifying the standard pressure curve of a normal person.
  • the processor 214 may correct the standard pressure curve based on the deviation of the patient's physiological index (such as blood pressure) from the normal range, so as to obtain the patient's actual pressure curve.
  • the processor 214 may obtain the proportional relationship between the patient's blood pressure and the standard blood pressure of a normal person, and adjust the standard pressure curve (such as proportional reduction) based on the proportional relationship, so as to obtain the actual pressure curve of the aorta.
  • catheter pump 100 may include a first pressure sensor 71 disposed upstream of fluid inlet 11 of catheter pump 100 for detecting blood pressure upstream of fluid inlet 11 of catheter pump 100 (regarding For more details of the first pressure sensor 71, please refer to FIGS. 6 to 9 and their related descriptions).
  • the auxiliary blood pumping system 200 may include a third pressure sensor 73; the third pressure sensor 73 may be implanted or pierced separately upstream of the catheter pump 100 and spaced from the catheter pump 100 (regarding the third pressure More details of the sensor 73 can be found in FIG. 11 and its related description).
  • the processor 214 may acquire the signal of pressure changing with time collected by the first pressure sensor 71 or the third pressure sensor 73 as an actual pressure curve.
  • the actual pressure curve determined by the sensor detection can more accurately reflect the actual blood perfusion pressure of the patient and improve the reliability of the actual pressure curve, so that the target pressure difference curve or the target effective pressure difference of the catheter pump can be determined more accurately.
  • Step 1340 according to the target pressure curve and the actual pressure curve, determine the target pressure difference curve or the target effective pressure difference of the catheter pump.
  • the processor 214 can determine the target pressure difference curve or the target effective pressure difference of the catheter pump 100 according to the target pressure curve and the actual pressure curve in steps 1310 to 1330 .
  • the target pressure difference curve of the catheter pump 100 can be obtained by subtracting the target pressure curve from the actual pressure curve.
  • the processor 214 may further match the target pressure difference curve with the heart beat cycle according to the patient's electrocardiogram signal, so as to determine the periodic change over time The target pressure difference curve.
  • the processor 214 can calculate the target effective pressure difference according to the target pressure difference curve. In some embodiments, the processor 214 may determine the target effective pressure according to the target pressure curve, determine the actual effective pressure according to the actual pressure curve, and then calculate the difference between the target effective pressure and the actual effective pressure to obtain the target effective pressure difference.
  • Fig. 15 is an exemplary flowchart of a method for determining a target rotational speed according to some embodiments of the present specification.
  • the method 1400 for determining the target speed can be executed by the control device 210 (such as the processor 214 ).
  • the processor 214 may determine the target rotational speed of the driving motor based on the method for determining the target rotational speed, thereby implementing step 1220 .
  • the method 1400 for determining the target speed may include:
  • Step 1410 obtain the actual perfusion flow rate of the patient.
  • the actual perfusion flow rate may be the actual blood volume flowing through a certain cross-section of the blood vessel 250 per unit time.
  • the actual perfusion flow rate may be the actual blood volume injected by the heart into a certain section of the aorta per minute.
  • the patient's actual perfusion flow may be the patient's cardiac output.
  • the actual perfusion flow of heart failure patients is generally lower than that of normal people.
  • the actual perfusion flow rate of normal people can be 5 L/min, and the actual perfusion flow rate of heart failure patients can be 3 L/min.
  • the actual perfusion flow rate can be measured by various detection techniques, such as indicator dilution method, impedance method, ultrasound imaging method or magnetic resonance imaging method, and the processor 214 can obtain various detection techniques to detect The actual perfusion flow of the patient.
  • various detection techniques such as indicator dilution method, impedance method, ultrasound imaging method or magnetic resonance imaging method
  • Step 1420 obtaining the target perfusion flow rate of the patient.
  • the target perfusion flow is generally greater than the actual perfusion flow and less than the standard perfusion flow of a normal person.
  • the actual perfusion flow rate of patients with heart failure is 3 L/min
  • the standard perfusion flow rate of normal people can be 5 L/min
  • the target perfusion flow rate can be between 3 L/min and 5 L/min (such as 3.5 L/min or 4 L/min, etc. ).
  • obtaining the patient's target perfusion flow rate is similar to step 1310, and for more details, please refer to step 1310 and related descriptions.
  • Step 1430 determine the auxiliary perfusion flow rate according to the actual perfusion flow rate and the target perfusion flow rate.
  • the auxiliary perfusion flow may be the difference between the actual perfusion flow and the target perfusion flow.
  • the actual perfusion flow rate of a heart failure patient is 3 L/min
  • the target perfusion flow rate is 3.5 L/min
  • the auxiliary perfusion flow rate can be 0.5 L/min.
  • auxiliary perfusion flow can be achieved by the pumping action of catheter pump 100 .
  • Step 1440 determine the target rotational speed of the driving motor according to the auxiliary perfusion flow rate and the target effective pressure difference of the catheter pump.
  • the processor 214 may determine the target rotational speed of the driving motor 3 according to the auxiliary perfusion flow rate determined in step 1430 and the target effective pressure difference of the catheter pump 100 obtained in step 1210 .
  • the following formula 1 is satisfied among the flow rate, pressure and rotational speed of the catheter pump:
  • F p is the flow rate of the catheter pump
  • ⁇ P is the pressure difference of the catheter pump
  • is the rotational speed of the driving motor 3
  • b 0 , b 1 , b 2 are empirical constants.
  • auxiliary perfusion flow rate of the catheter pump is the target effective differential pressure of the catheter pump, is the target rotational speed of the drive motor 3 .
  • Processor 214 can be based on this formula 3, according to auxiliary perfusion flow and the target effective pressure difference of the catheter pump Determining the target speed of the drive motor
  • the processor 214 can monitor the actual perfusion flow rate of the patient; when the actual perfusion flow rate changes, the processor 214 can update the target speed according to the changed actual perfusion flow rate, and then update and adjust the control parameter output value of the drive motor .
  • the function of the heart of the heart failure patient gradually recovers and improves, and various physiological indicators (such as cardiac output) of the patient will also change accordingly.
  • the processor 214 can monitor the actual perfusion flow of the patient, and when the actual perfusion flow changes, the processor 214 can re-execute steps 1410-1440 according to the changed actual perfusion flow to update the target speed.
  • the auxiliary blood pumping effect of the catheter pump 100 can be dynamically adjusted following the actual physiological conditions of the patient, which is more in line with the physiological needs of the patient.
  • the processor 214 can maintain the target perfusion flow rate of the patient stably, thereby contributing to the stable recovery of the patient.
  • Fig. 16 is an exemplary flowchart of a control parameter adjustment method according to some embodiments of the present specification.
  • the control parameter adjustment method 1500 may be executed by the control device 210 (such as the processor 214).
  • the processor 214 may adjust the output value of the control parameter of the driving motor based on the control parameter adjustment method 1500 , thereby implementing step 1230 .
  • the control parameter adjustment method 1500 may include:
  • Step 1510 according to the target pressure difference curve or the target effective pressure difference, and the target speed, determine the target value of the control parameter of the drive motor.
  • control parameter target value may be a control parameter value expected to be achieved by the drive motor 3 .
  • target value of the control parameter of the drive motor 3 may include a target current curve or a target current value, and a target voltage.
  • the processor 214 may determine a target voltage for driving the motor based on the target rotational speed. In some embodiments, the corresponding relationship between the control voltage of the driving motor and the rotational speed can be determined in advance through experiments and stored in the storage medium 212 . The processor 214 can retrieve the corresponding target voltage from the storage medium 212 based on the target rotational speed.
  • the processor 214 may determine the target current profile based on the target pressure difference profile and the target rotational speed. In some embodiments, at a specific rotational speed (such as a target rotational speed), the corresponding relationship between the pressure difference curve and the current curve of the driving motor can be determined in advance through experiments and stored in the storage medium 212 . The processor 214 can retrieve the corresponding target current curve from the storage medium 212 based on the target rotational speed and the target pressure difference curve.
  • the processor 214 may determine the target current value based on the target effective pressure difference and the target rotational speed. In some embodiments, at a specific rotational speed (such as a target rotational speed), the corresponding relationship between the effective pressure difference and the current value of the driving motor can be determined in advance through experiments and stored in the storage medium 212 . The processor 214 can retrieve the corresponding target current value from the storage medium 212 based on the target rotational speed and the target effective pressure difference.
  • a specific rotational speed such as a target rotational speed
  • Step 1520 acquire the measured value of the control parameter of the drive motor.
  • the measured value of the control parameter of the driving motor 3 may include a measured voltage and a measured current value or a measured current curve. In some embodiments, the measured voltage and measured current value or measured current curve can be obtained through the feedback of the drive motor 3 itself.
  • Step 1530 adjust the output value of the control parameter of the driving motor according to the target value of the control parameter and the measured value.
  • control parameter output value of the drive motor 3 may include a voltage output value and a current output value (or a current output curve).
  • the output value of the control parameter of the drive motor 3 can be adjusted through a PID (Proportion Integration Differentiation) control algorithm.
  • the control device 210 (such as the processor 214) can calculate the error between the measured value of the control parameter and the target value of the control parameter, perform proportional calculation, integral calculation and differential calculation on the error to obtain an updated control parameter value, and use The updated control parameter value controls the drive motor, and detects the control parameter output value of the drive motor 3 .
  • control device 210 may use the detected control parameter output value as the updated control parameter measurement value, continue to calculate the error between the updated control parameter measurement value and the control parameter target value, and perform PID control algorithm calculation on the error Afterwards, the updated control parameter value is obtained and the drive motor 3 is controlled.
  • the control device 210 continuously repeats the above process to iteratively adjust the output value of the control parameter of the driving motor 3 so that the output value of the control parameter of the driving motor approaches or reaches the target value of the control parameter of the driving motor. This method can overcome the error caused by the internal loss of the driving motor, and improve the control accuracy of the driving motor 3 by the control device 210 .
  • control device 210 may first adjust the voltage output value of the drive motor 3 according to the target voltage and the measured voltage, so that the voltage output value reaches the target voltage. Then the control device 210 can stop adjusting the voltage output value, and adjust the current output value (or current output curve) of the driving motor according to the target current curve or target current value. By first adjusting the control voltage and then adjusting the control current, the control logic can be made simpler and the control result more accurate.
  • Fig. 17 is an exemplary flow chart of a control parameter adjustment method according to another embodiment of the present specification.
  • the control parameter adjustment method 1600 may be executed by the control device 210 (such as the processor 214).
  • the processor 214 may adjust the output value of the control parameter of the drive motor based on the control parameter adjustment method 1600 , thereby implementing step 1230 .
  • the control parameter adjustment method 1600 may include:
  • Step 1610 acquire the actual pressure difference of the catheter pump 100.
  • the catheter pump 100 includes a first pressure sensor 71 and a second pressure sensor 72
  • the first pressure sensor 71 is arranged upstream of the fluid inlet 11 of the catheter pump 100 for detecting
  • the second pressure sensor 72 is arranged downstream of the fluid outlet 12 of the catheter pump 100 for detecting the blood pressure downstream of the fluid outlet 12 of the catheter pump 100 (more about the first pressure sensor 71 and the second pressure sensor 72 More details can be found in the above Figures 6 to 9 and their related descriptions).
  • the control device 210 can acquire the pressure value signals of the first pressure sensor 71 and the second pressure sensor 72, and the actual pressure difference can be the difference between the pressure value of the second pressure sensor 72 and the pressure value of the first pressure sensor 71. difference.
  • the auxiliary blood pumping system 200 may include a third pressure sensor 73 and a fourth pressure sensor 74 .
  • the third pressure sensor 73 can be implanted or pierced into the upstream of the catheter pump 100 separately, and kept spaced from the catheter pump 100
  • the fourth pressure sensor 74 can be implanted or pierced into the catheter pump 100 separately. Downstream and spaced from the catheter pump 100. (For more details about the third pressure sensor 73 and the fourth pressure sensor 74, please refer to FIG. 11 and its related description).
  • control device 210 can acquire the pressure value signals of the third pressure sensor 73 and the fourth pressure sensor 74, and the actual pressure difference can be the difference between the pressure value of the fourth pressure sensor 74 and the pressure value of the third pressure sensor 73. difference.
  • the actual pressure difference of the catheter pump 100 may include an actual pressure difference curve and/or an actual effective pressure difference of the catheter pump.
  • Step 1620 determine the adjustment value of the control parameter of the driving motor according to the target pressure difference curve or the target effective pressure difference, the actual pressure difference and the target speed.
  • control parameter adjustment value may be the value of the control parameter that needs to be adjusted to drive the motor 3 .
  • the adjusted value of the control parameter of the drive motor 3 may be an adjusted current curve or an adjusted current value.
  • the adjusted current value may be "increased by 0.1A".
  • the adjusted current curve may be a curve of the current value to be adjusted at each time point relative to time.
  • the processor 214 may determine the adjusted current curve based on the difference between the target pressure difference curve and the actual pressure difference (eg, the actual pressure difference curve).
  • the processor 214 may determine the adjusted current value based on the difference between the target effective pressure difference and the actual pressure difference (eg, the actual effective pressure difference).
  • the corresponding relationship between the difference between the target pressure difference curve and the actual pressure difference and the adjusted current curve can be determined in advance through experiments or experience, and stored in the memory Medium 212.
  • the processor 214 may retrieve the corresponding adjusted current curve from the storage medium 212 based on the difference between the target pressure difference curve and the actual pressure difference.
  • the corresponding relationship between the difference between the target effective pressure difference and the actual pressure difference and the adjusted current value can be determined in advance through experiments or experience, and stored in the memory Medium 212.
  • the processor 214 may retrieve the corresponding adjusted current value from the storage medium 212 based on the difference between the target effective pressure difference and the actual pressure difference.
  • Step 1630 adjust the output value of the control parameter of the driving motor according to the adjustment value of the control parameter.
  • control device 210 (such as the processor 214 ) can adjust the output value of the control parameter of the drive motor 3 according to the control parameter adjustment value. In some embodiments, the control device 210 can adjust the input current of the driving motor 3 according to the adjusted current curve or the adjusted current value, so that the actual pressure difference of the catheter pump 100 matches the target pressure difference curve or the target effective pressure difference.
  • the first pressure sensor 71 and the second pressure sensor 72 can periodically (such as every 0.05 seconds, 0.1 seconds, 0.5 seconds, 3 seconds, etc.) detect the actual pressure difference of the catheter pump 100 and feed it back to the control device 210, the control device 210 Based on the actual pressure difference and the target pressure difference curve or the target effective pressure difference, the adjustment value of the control parameter is determined again and the output value of the control parameter is further adjusted.
  • the control device 210 continuously repeats the above process to more accurately control the actual pressure difference of the catheter pump 100, making it approach or reach the target pressure difference curve or the target effective pressure difference, so as to meet the auxiliary blood pumping demand of the catheter pump and improve the treatment of patients. Effect.
  • Fig. 18 is an exemplary flow chart of a method for adjusting a control parameter according to yet another embodiment of the present specification.
  • the control parameter adjustment method 1700 may be executed by the control device 210 (such as the processor 214).
  • the processor 214 may adjust the output value of the control parameter of the drive motor based on the control parameter adjustment method 1700 , thereby implementing step 1230 .
  • the control parameter adjustment method 1700 may include:
  • Step 1710 acquire the actual pressure difference of the catheter pump 100.
  • the actual pressure difference of the catheter pump 100 may include an actual pressure difference curve and/or an actual effective pressure difference of the catheter pump.
  • the implementation manner of obtaining the actual pressure difference of the catheter pump 100 is similar to that of step 1610, and for specific details, please refer to step 1610 and related descriptions.
  • Step 1720 acquire the actual rotational speed of the driving motor.
  • the actual rotational speed of the driving motor 3 refers to the rotational speed of the output shaft 32 .
  • the back electromotive force of the driving motor 3 is directly proportional to the actual rotational speed, and the control device 210 can calculate and obtain the actual rotational speed based on the back electromotive force of the driving motor 3 .
  • the actual rotational speed of the drive motor 3 can be measured by a sensor. Since the output shaft 32 of the drive motor 3 and the impeller 2 rotate synchronously, the sensor can be used to measure the rotational speed of the output shaft 32, or to measure the speed of the impeller 2. Rotating speed.
  • the control device 210 can obtain the actual rotational speed of the driving motor 3 based on the sensor signal.
  • the sensors for measuring the driving motor 3 may include but not limited to photoelectric sensors, rotary transformers, Hall sensors and the like.
  • Step 1730 determine the control parameter adjustment value of the drive motor according to the target pressure difference curve or the target effective pressure difference, as well as the actual pressure difference, the target speed and the actual speed.
  • the adjusted value of the control parameter of the drive motor 3 may include an adjusted voltage value, an adjusted current curve, or an adjusted current value.
  • the adjusted voltage value may be "increase 0.1V".
  • the control device 210 may determine the adjusted voltage value based on the difference between the target rotational speed and the actual rotational speed.
  • the control device 210 may determine the adjusted current curve based on the difference between the target pressure difference curve and the actual pressure difference.
  • the control device 210 may determine the adjusted current value based on the difference between the target effective pressure difference and the actual pressure difference.
  • the corresponding relationship between the difference between the target rotational speed and the actual rotational speed and the adjusted voltage value can be determined in advance through experiments or experience, and stored in the storage medium 212 .
  • the processor 214 can retrieve the corresponding adjusted voltage value from the storage medium 212 based on the difference between the target speed and the actual speed.
  • the corresponding relationship between the difference between the target pressure difference curve and the actual pressure difference curve and the adjusted current curve can be determined in advance through experiments or experience, and stored in the storage medium 212.
  • the processor 214 can retrieve the corresponding adjustment current curve from the storage medium 212 based on the target speed or the actual speed, and the difference between the target pressure difference curve and the actual pressure difference.
  • the corresponding relationship between the difference between the target effective pressure difference and the actual pressure difference and the adjusted current value can be determined in advance through experiments or experience, and stored in the storage medium 212.
  • the processor 214 can retrieve the corresponding adjusted current value from the storage medium 212 based on the target rotational speed or the actual rotational speed, and the difference between the target effective pressure difference and the actual pressure difference.
  • Step 1740 adjust the output value of the control parameter of the driving motor according to the adjustment value of the control parameter.
  • the implementation of adjusting the output value of the control parameter of the driving motor according to the adjustment value of the control parameter is similar to that of step 1630.
  • step 1630 the implementation of adjusting the output value of the control parameter of the driving motor according to the adjustment value of the control parameter is similar to that of step 1630.
  • control device 210 can periodically (such as every 0.05 seconds, 0.1 seconds, 0.5 seconds, 3 seconds, etc.) obtain the actual speed of the drive motor, and re-based on the difference between the target speed and the actual speed, determine Adjust the voltage value.
  • the control device 210 can continuously repeat the above adjustment process, so as to control the actual speed of the driving motor to approach or reach the target speed.
  • the control device 210 may first adjust the control voltage (for example, perform steps 1720, 1730 and 1740 iteratively), so that the actual speed of the driving motor reaches the target speed. Then the control device 210 can stop adjusting the control voltage, and adjust the control current (such as performing steps 1710, 1730 and 1740 iteratively), so that the actual pressure difference of the catheter pump approaches or reaches the target pressure difference curve or the target effective pressure difference .
  • the control device 210 may first adjust the control current, and then adjust the control voltage.
  • the control device 210 may adjust the control voltage and the control current synchronously or alternately.
  • Fig. 19 is a schematic structural diagram of an exemplary control device according to some embodiments of the present specification.
  • the control device 210 of the catheter pump may include a storage medium 212 , a processor 214 and a communication bus.
  • the processor 214 and the storage medium 212 can implement a communication process through a communication bus.
  • the processor 214 may be used to execute the catheter pump control method provided in any one of the above embodiments of the present application.
  • the processor 214 may be implemented by a central processing unit, a server, a terminal device or any other possible processing device.
  • the above-mentioned central processing unit, server, terminal device or other processing devices may be implemented on a cloud platform.
  • the above-mentioned central processing unit, server or other processing devices can be interconnected with various terminal devices, and the terminal devices can complete information processing work or part of information processing work.
  • storage medium 212 may store data and/or instructions.
  • the storage medium 212 may store computer instructions, and the processor 214 (or computer) may execute the catheter pump control method provided in any embodiment of this specification by reading the computer instructions.
  • the storage device may include mass storage, removable storage, volatile read-write storage, read-only memory (ROM), etc., or any combination thereof.
  • the storage device can be implemented on a cloud platform.
  • the catheter pump includes a rectification device, which can be used to release the swirl pressure exerted by the catheter pump on the blood in the blood vessel, which can reduce the impact force of the blood on the blood vessel , and is conducive to maintaining the stability of the catheter pump;
  • the auxiliary blood pumping system includes a control device, which can adjust the control parameters of the catheter pump according to the collected signal, which is more accurate than the scheme of setting control parameters based on the doctor's experience , can reduce mistakes in the treatment process, and is conducive to the rapid recovery of patients;
  • the control method of the catheter pump can adjust the control parameter output value of the drive motor of the catheter pump according to the actual perfusion flow rate and the target perfusion flow rate of the patient, which improves the control.
  • the reliability of the parameter output value (4)
  • the control device can monitor the actual perfusion flow of the patient to update the control parameter output value of the drive motor, so that the control parameter output value can accurately match the change of the patient's physiological index, which is conducive to the rapid recovery of the patient .
  • the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
  • aspects of this specification can be illustrated and described by several patentable categories or situations, including any new and useful process, machine, product or combination of substances, or any combination of them Any new and useful improvements.
  • various aspects of this specification may be entirely executed by hardware, may be entirely executed by software (including firmware, resident software, microcode, etc.), or may be executed by a combination of hardware and software.
  • the above hardware or software may be referred to as “block”, “module”, “engine”, “unit”, “component” or “system”.
  • aspects of this specification may be embodied as a computer product comprising computer readable program code on one or more computer readable media.
  • a computer storage medium may contain a propagated data signal embodying a computer program code, for example, in baseband or as part of a carrier wave.
  • the propagated signal may have various manifestations, including electromagnetic form, optical form, etc., or a suitable combination.
  • a computer storage medium may be any computer-readable medium, other than a computer-readable storage medium, that can be used to communicate, propagate, or transfer a program for use by being coupled to an instruction execution system, apparatus, or device.
  • Program code residing on a computer storage medium may be transmitted over any suitable medium, including radio, electrical cable, fiber optic cable, RF, or the like, or combinations of any of the foregoing.
  • the computer program codes required for the operation of each part of this manual can be written in any one or more programming languages, including object-oriented programming languages such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB.NET, Python etc., conventional procedural programming languages such as C language, VisualBasic, Fortran2003, Perl, COBOL2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may run entirely on the user's computer, or as a stand-alone software package, or run partly on the user's computer and partly on a remote computer, or entirely on the remote computer or processing device.
  • the remote computer can be connected to the user computer through any form of network, such as a local area network (LAN) or wide area network (WAN), or to an external computer (such as through the Internet), or in a cloud computing environment, or as a service Use software as a service (SaaS).
  • LAN local area network
  • WAN wide area network
  • SaaS service Use software as a service

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

一种导管泵(100)、辅助泵血系统(200)及导管泵的控制方法(1200)和控制装置(210)。导管泵(100)用于辅助泵血,包括:壳体(1),设置有流体入口(11)和流体出口(12);叶轮(2),设置在壳体(1)内,用于调节导管泵(100)的流量;驱动电机(3),用于驱动叶轮(2)转动,驱动电机(3)包括定子侧(31)和输出转轴(32),定子侧(31)与壳体(1)固定,输出转轴(32)与叶轮(2)固定;整流装置(4),套设在驱动电机(3)的输出转轴(32)外,并且与驱动电机(3)的定子侧(31)固定相连;通过设置整流装置(4)可释放导管泵(100)对血管内的血液施加的回旋压力,减轻血液对血管的冲击力,有利于维持导管泵(100)的稳定性。

Description

一种导管泵、辅助泵血系统及导管泵的控制方法和装置
交叉引用
本申请要求2021年09月16日提交的名称为“一种导管泵、辅助泵血系统及导管泵的控制方法和装置”的中国专利申请202111086810.X的优先权,该申请的全部内容以引用方式并入本文。
技术领域
本说明书涉及医疗器械技术领域,特别涉及一种导管泵、辅助泵血系统及导管泵的控制方法和装置。
背景技术
心衰患者或者心脏功能不全的患者,其心脏的灌注流量相对于正常人会降低。持续的低灌注流量会导致心衰患者出现呼吸困难、头晕和心慌的症状。心脏灌注流量的下降还可能导致人体多个器官灌注不足,从而引发相应器官的衰竭。例如,由于心脏的灌注流量下降可能引起肾脏的灌注压力不足,持续的低灌注压力可能导致肾脏细胞因缺血而梗死,引发肾脏衰竭。对心衰患者通常采用导管泵进行辅助治疗,导管泵是用于导入主动脉(或其他血管部位)并为心脏提供循环支持的泵送装置,能够辅助心脏增加主动脉的灌注压力,从而增加心脏的灌注流量。
发明内容
本说明书的一个方面提供一种导管泵,用于辅助泵血,包括:壳体,设置有流体入口和流体出口;叶轮,设置在所述壳体内,用于调节所述导管泵的流量;驱动电机,用于驱动所述叶轮转动,所述驱动电机包括定子侧和输出转轴,所述定子侧与所述壳体固定,所述输出转轴与所述叶轮固定;整流装置,套设在所述驱动电机的输出转轴外,并且与所述驱动电机的定子侧固定相连。
本说明书的一个方面提供一种辅助泵血系统,包括:如本说明书任一实施例所述的导管泵;控制装置,与所述导管泵的驱动电机电连接,所述控制装置用于基于控制参数向所述驱动电机发送控制指令。
本说明书的一个方面提供一种导管泵的控制方法,所述方法包括:获取导管泵的目标压力差曲线或目标有效压力差;获取导管泵的驱动电机的目标转速;根据所述目标压力差曲线或目标有效压力差,以及所述目标转速,调整所述驱动电机的控制参数输出值。
本说明书的一个方面提供一种导管泵的控制装置,包括处理器,所述处理器用于执行如本说明书任一实施例所述的导管泵的控制方法。
本说明书的一个方面提供一种计算机可读存储介质,所述存储介质存储计算机指令,当处理器读取存储介质中的计算机指令后,处理器执行如本说明书任一实施例所述的导管泵的控制方法。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的示例性导管泵的示意图;
图2是根据本说明书一些实施例所示的的示例性导管泵的爆炸示意图;
图3是根据本说明书一些实施例所示的示例性整流装置的示意图;
图4是根据本说明书另一些实施例所示的示例性整流装置的示意图;
图5是根据本说明书一些实施例所示的示例性导管泵的局部剖视图;
图6是根据本说明书一些实施例所示的示例性导管泵的示意图,其中,导管泵的支架处于收拢状态;
图7是根据本说明书另一些实施例所示的示例性导管泵的示意图;
图8A是根据本说明书一些实施例所示的示例性导管泵的支架和壳体的装配示意图;
图8B是根据本说明书一些实施例所示的示例性导管泵的支架和壳体的爆炸示意图;
图9是根据本说明书又一些实施例所示的示例性导管泵的示意图;
图10是根据本说明书一些实施例所示的示例性辅助泵血系统的示意图;
图11是根据本说明书一些实施例所示的示例性辅助泵血系统的应用场景示意图;
图12是根据本说明书另一实施例所示的示例性辅助泵血系统的应用场景示意图;
图13是根据本说明书一些实施例所示的导管泵的控制方法的示例性流程图;
图14是根据本说明书一些实施例所示的目标压力差确定方法的示例性流程图;
图15是根据本说明书一些实施例所示的目标转速确定方法的示例性流程图;
图16是根据本说明书一些实施例所示的控制参数调整方法的示例性流程图;
图17是根据本说明书又一实施例所示的控制参数调整方法的示例性流程图;
图18是根据本说明书再一实施例所示的控制参数调整方法的示例性流程图;
图19是根据本说明书一些实施例所示的控制装置的示例性结构示意图。
图中,100为导管泵,1为壳体,A为中心轴线,11为流体入口,12为流体出口,13为头部,14为支撑杆,2为叶轮,3为驱动电机,31为定子侧,32为输出转轴,4为整流装置,41为芯部,411为过孔,412为小端,413为大端,42为叶片,43为安装部,C为中心对称轴线,51为第一密封件,52为第二密封件,6为支架,61为支脚,611为第一端,612为第二端,613为接触脚,614为连接部,62为网状支架,71为第一压力传感器,72为第二压力传感器,73为第三压力传感器,74为第四压力传感器,200为辅助泵血系统,210为控制装置,212为存储介质,214为处理器,220为无菌保护装置,221为无菌套袋,222为第一密封接头,223为第二密封接头,224为第三密封接头,225为保护鞘管,230为导管,240为线缆,250为血管。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
虽然本说明书对根据本说明书的实施例的系统中的某些模块或单元做出了各种引用,然而,任何数量的不同模块或单元可以被使用并运行在客户端和/或服务器上。所述模块仅是说明性的,并且所述系统和方法的不同方面可以使用不同模块。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
导管泵是用于导入心衰患者的主动脉(或其他血管部位)并为其心脏提供循环支持的泵送装置,能够辅助心脏增加主动脉的灌注压力,从而达到治疗心衰目的。在一些实施例中,导管泵可以通过导管等输送装置植入人体主动脉(或其他血管部位),通过自身旋转增加导管泵两侧的压力差,从而增加主动脉的灌注压力,为衰竭的心脏提供动力支持。
本说明书的一些实施例提供一种导管泵、辅助泵血系统及导管泵的控制方法和装置。在一些实施例中,导管泵包括整流装置,整流装置可以用于释放导管泵对血管内的血液施加的回旋压力,和/或能够减轻血液对血管的冲击力,并且有利于维持导管泵的稳定性。在一些实施例中,辅助泵血系统还包括控制装置,控制装置能够根据采集的信号调整导管泵的控制参数,相对于根据医生经验设置控制参数的方案准确性更高、响应速度更快,能够减少治疗过程中的失误,有利于患者的快速恢复。
本说明书的一些实施例还提供一种导管泵的控制方法,该控制方法可以根据患者的实际灌注流量和目标灌注流量调节导管泵的驱动电机的控制参数输出值,提高了控制参数输出值的可靠性。在一些实施例中,控制装置可以监测患者的实际灌注流量来更新驱动电机的控制参数输出值,使得控制参数输出值可以精准匹配患者的生理指标的变化,有利于患者的快速康复。
在一些实施例中,本说明书的导管泵可以植入血管或输血器官中。其中,血管可以包括动脉或静脉。动脉可以包括但不限于升主动脉、降主动脉、腹主动脉、肺主动脉等。静脉可以包括但不限于上腔静脉或下腔静脉等。输血器官可以包括心脏。在一些实施例中,导管泵可以植入到左心室或右心室内。其中,当导管泵应用于与左心室连接的主动脉内时,流体入口与左心室连通,导管泵能够改善心脏内部血流动力学性能,增大心输出量或者用于辅助高风险的心脏手术;当导管泵应用于与肾血管连通的降主动脉内时,可以提高降主动脉内的肾脏灌注压,用于防止急性心衰导致的肾衰竭;当导管泵应用于上腔静脉、下腔静脉或者肺动脉内部等,可增加血管内部压力,提高血流灌注。在一些实施例中,本说明书的患者包括但不限于心衰患者、肾衰竭患者、肝病患者和脑梗患者等。
图1是根据本说明书一些实施例所示的示例性导管泵100的示意图。图2是根据本说明书一些实施例所示的示例性导管泵100的爆炸示意图。
参见图1和图2,导管泵100可以包括壳体1、叶轮2、驱动电机3和整流装置4。叶轮2设置在壳体1内,驱动电机3用于驱动叶轮2转动,叶轮2通过转动为导管泵100提供泵送动力,整流装置4用于调整经过叶轮2的血液的流动形态,例如调整叶轮2引起的紊流形态,释放导管泵100对血管250内的血液施加的回旋压力,和/或减轻血液对血管的冲击力。
在一些实施例中,壳体1可以是为叶轮2、驱动电机3和/或整流装置4提供支撑或保护的外壳。在一些实施例中,壳体1内部具有允许流体流过的腔室,壳体1设置有流体入口11和流体出口12,流体从流体入口11进入腔室,并从流体出口12流出,其中,流体可以是血管250内的血液等,血液的流向可参见图1中的箭头D所指示的方向。在一些实施例中,壳体1可以是筒状壳体,流入入口11设置在筒状壳体的端面(如一端的端面),流体出口12设置在筒状壳体的侧面(如另一端的侧面)。在一些实施例中,壳体1的径向尺寸(如直径)可以在3毫米~7毫米范围内(如3毫米、4毫米、5毫米、5.5毫米、6毫米、7毫米等),径向尺寸是指垂直于壳体1的中心轴线A的尺寸。
在一些实施例中,叶轮2设置在允许流体流过的腔室内,用于调节导管泵100的流量。在一些实施例中,叶轮2包括绕其旋转轴线布置的螺旋形旋叶,叶轮2转动时在螺旋形旋叶的作用下能够带动壳体1内的流体的速度增加和回旋压力增加,从而在流体出口12处输出流速和压力更高的流体,以在流体入口11和流体出口12之间形成压力差,进而提高血管250的灌注流量。
在一些实施例中,驱动电机3用于驱动叶轮2转动。驱动电机3可以包括定子侧31和输出转轴32,定子侧31可以是驱动电机3静止不动的部件,例如定子铁芯、定子绕组和机座等,输出转轴32可以是能够相对于定子侧31转动的轴。
在一些实施例中,驱动电机3的定子侧31与壳体1固定,驱动电机3的输出转轴32与叶轮2固定。在一些实施例中,定子侧31固定在壳体1上靠近流体出口12的一端,输出转轴32伸入到壳体1内且与壳体1内的叶轮2固定,输出转轴32的转动能够带动叶轮2转动。在一些实施例中,定子侧31的径向尺寸可以在3毫米~7毫米范围内(如3毫米、4毫米、5毫米、5.5毫米、6毫米、7毫米等)。在一些实施例中,定子侧31的径向尺寸(如直径)可以等于壳体1的径向尺寸。在一些实施例中,定子侧31的径向尺寸可以不等于壳体1的径向尺寸。在一些实施例中,定子侧31的径向尺寸可以小于壳体1的径向尺寸,从而减小对流体的阻挡,便于流体更好地流通。
在一些实施例中,壳体1和叶轮2可以采用塑料材质注塑成型,以降低导管泵100整体重量。在一些实施例中,壳体1和叶轮2可以由金属材料机加工而成,例如金属材料可以包括但不限于钴铬合金、不锈钢材料等,金属材质的壳体1和叶轮2强度高,使用寿命长。在一些实施例中,壳体1和叶轮2可以选用相同的材质制成。在一些实施例中,壳体1和叶轮2可以选用不同的材质制成。
在一些实施例中,整流装置4套设在驱动电机3的输出转轴32外,并且与驱动电机3的定子侧31固定相连,即整流装置4相对于定子侧31保持相对静止,输出转轴32穿过整流装置4与叶轮2相连。在一些实施例中,整流装置4可以缓冲流体的冲击力,并引导流体流动的方向。在一些实施例中,驱动电机3驱动输出转轴32转动时,输出转轴32带动叶轮2旋转,使壳体1内的流体随叶轮2旋转而产生回旋压力,流体流经整流装置4后,整流装置4可以将流体的旋转流动形态或紊流形态调整为沿血管250的直线流动形态,从而释放流体的回旋压力,降低流体对血管250的冲击力。
在一些实施例中,整流装置4布置在流体出口12处,以方便对流体出口12的流体进行整流,减缓流体出口12处的流体回旋压力。
图3是根据本说明书一些实施例所示的示例性整流装置4的示意图。图4是根据本说明书另一些实施例所示的示例性整流装置4的示意图。
参见图3和图4,整流装置4包括芯部41,芯部41构造为中心对称的块体,中心对称的块体是指芯部41绕中心对称轴线C旋转任意角度后能够与自身重合的块状结构。在一些实施例中,芯部41包括小端412和大端413,小端412至大端413的横截面逐渐增大。在一些实施例中,小端412至大端413的横截面可以呈线性增加,例如参见图3,芯部41构造为圆台状,圆台顶部为小端412,圆台底部为大端413。在一些实施例中,小端412至大端413的横截面可以呈非线性增加,例如参见图4,芯部41构造为半球体,半球体的顶部设置为小端412,半球体的底部设置为大端413。
在一些实施例中,小端412靠近叶轮2布置,大端413靠近驱动电机3布置。在一些实施例中,芯部41上还设置有用于与驱动电机3的定子侧31固定的安装部43。在一些实施例中,安装部43构造为圆柱体,安装部43设置在大端413且安装部43的轴线与芯部41的中心对称轴线C共线布置。在一些实施例中,参见图3,安装部43的横截面小于大端413的横截面。在一些实施例中,参见图4,安装部43的横截面等于大端413的横截面。
在一些实施例中,安装部43与驱动电机3的定子侧31固定,可以采用激光焊接、粘接、螺纹连接等多种固定方式,本说明书对此不作限制。
在一些实施例中,芯部41开设有用于避让输出转轴32的过孔411,该过孔411从小端412沿中心对称轴线C贯穿至大端413。在一些实施例中,芯部41的过孔411的孔径大于驱动电机3的输出转轴32的直径。
在一些实施例中,参见图3,整流装置4还包括多个叶片42,多个叶片42围绕芯部41的中心对称轴线C间隔布置在芯部41的外表面,多个叶片42用于释放叶轮2对血液施加的回旋压力。当旋转流态或紊流态的流体冲击到整流装置4上时,叶片42对流体具有引流作用,从而改变和调整流体的流向,达到释放其回旋压力的目的。
在一些实施例中,叶片42的数量可以根据需要设置,例如叶片42可以为两个、三个或四个等,本说明书对此不作限制。在一些实施例中,相邻叶片42与中心对称轴线C形成的夹角可以相等,即叶片42可以相对于中心对称轴线C呈等间隔角度围绕芯部41布置。在一些实施例中,相邻叶片42与中心对称轴线C形成的夹角可以不相等。
在一些实施例中,叶片42可以成旋流状布置在芯部41的外表面,叶片42的旋向可以与叶轮2的旋叶的旋向相反,从而更好的抵消流体的回旋压力。在一些实施例中,叶片42可以成弧状布置在芯部41的外表面,叶片42可以具有较大的曲率半径,以提高整流效果。在一些实施例中,叶片42可以成直线状布置在芯部41的外表面,即叶片42从芯部41的小端412直线延伸到芯部41的大端413,从而调整流经整流装置4的流体尽量沿整流装置4的中心对称轴线C的方向继续流动。
在一些实施例中,结合图1和图3,整流装置4的叶片42可以避开壳体1的流体出口12,避免对流体出口12造成局部遮挡或封堵。在一些实施例中,壳体1上可以沿周向设置多个流体出口12,相邻流体出口12之间的间距与整流装置4的叶片42的厚度相同,整流装置4的叶片42抵接在相邻流体出口12之间的壳体1侧面上,避开流体出口12布置。
在一些实施例中,参见图4,整流装置4可以不设置叶片42,而直接利用芯部41的表面弧度来缓冲流体的冲击力,起到整流作用。
在一些实施例中,整流装置4可以采用塑料材质注塑成型,以降低导管泵100整体重量。在一些实施例中,整流装置4可以由金属材料机加工而成,例如金属材料包括但不限于钴铬合金、不锈钢材料等,金属材质的整流装置4强度高,使用寿命长。
图5是根据本说明书一些实施例所示的示例性导管泵100的局部剖视图。
在一些实施例中,参见图5,整流装置4与驱动电机3之间设置有密封件,密封件用于防止血液浸入驱动电机3而造成驱动电机3生锈、漏电、短路等故障。在一些实施例中,密封件的数量可以根据驱动电机3的结构和密封等级确定。
在一些实施例中,密封件包括第一密封件51和第二密封件52,第一密封件51和第二密封件52相互辅助,以增加驱动电机3的密封性。
在一些实施例中,第一密封件51设置在整流装置4和驱动电机3的输出转轴32之间,避免血液从整流装置4和输出转轴32之间的间隙浸入驱动电机3。在一些实施例中,第一密封件51构造为环状结构,整流装置4的内部形成有容纳腔,第一密封件51设置在容纳腔中并且与输出转轴32滑动接触,这样,第一密封件51能够封挡输出转轴32和整流装置4之间的间隙。在一些实施例中,第一密封件51可以由聚四氟乙烯(Teflon或PTFE)制成,使得第一密封件51具有密封性、高润滑不粘性等优 点,第一密封件51的高润滑不粘性使得输出转轴32与其滑动接触时摩擦力非常小,对输出转轴32的损耗非常小。
在一些实施例中,第二密封件52设置在整流装置4和驱动电机3的定子侧31之间,避免血液从整流装置4和定子侧31的安装间隙浸入驱动电机3。在一些实施例中,第二密封件52构造为圆盘状,圆盘状的第二密封件52包括平底盘和沿平底盘边缘形成的凸起,平底盘封挡在驱动电机3的定子侧31的端面,凸起封挡在整流装置4的安装部43和定子侧31连接处,从而提高连接处的密封性。在一些实施例中,第二密封件52可以由医用橡胶、医用硅胶或聚四氟乙烯等材料制成,本说明书对此不作限制。
在一些实施例中,密封件和整流装置4之间、以及密封件与驱动电机3之间可以涂设有医用硅脂,该医用硅脂起到润滑和密封作用,例如可以减小第一密封件51和输出转轴32之间的摩擦力。
图6是根据本说明书一些实施例所示的示例性导管泵100的示意图,其中,导管泵100的支架6处于收拢状态。图7是根据本说明书另一些实施例所示的示例性导管泵100的示意图。图8A是根据本说明书一些实施例所示的示例性导管泵100的支架6和壳体1的装配示意图,图8B是根据本说明书一些实施例所示的示例性导管泵100的支架6和壳体1的爆炸示意图。图9是根据本说明书又一些实施例所示的示例性导管泵100的示意图。
参见图1、图2、图6至图9所示,导管泵100还包括支架6,支架6用于将壳体1固定在血管250或输血器官中,增加导管泵100相对于血管250或输血器官的稳定性。在一些实施例中,支架6包括收拢状态和展开状态:参见图6所示,在收拢状态,支架6的最大径向尺寸小于或等于壳体1的径向尺寸,这样,导管泵100能够容纳在导管230中,并通过导管230植入到血管250或输血器官中;参见图1、图7和图9所示,在展开状态,支架6的至少部分径向尺寸大于壳体1的径向尺寸,此时支架6的至少部分能够用于抵接在血管250(或输血器官)的内壁,使导管泵100锚定在血管250内。其中,径向是指垂直于壳体1的中心轴线A的方向。
在一些实施例中,支架6在展开状态时的最大径向尺寸范围可以为20毫米~30毫米之间(如20毫米、22毫米、25毫米、30毫米等),本说明书对此不作限制。
在一些实施例中,支架6可以具有一定的弹性,使其能够在收拢状态和展开状态之间切换。在一些实施例中,支架6可以在外部压力(如导管230的束缚力)的作用下处于收拢状态;支架6可以在没有外部压力(如伸出导管230)时自动变为展开状态。在一些实施例中,支架6可以选用记忆合金(如镍钛合金)材料等制成。
在一些实施例中,参见图1、图6和图7,支架6包括多个支脚61,支脚61为具有第一端611和第二端612的杆状,第一端611与流体入口11相对固定,第二端612远离壳体1以形成自由端,支脚61的自由端用于与血管250的内壁抵接,以将导管泵100固定在血管250内。在收拢状态,支脚61从第一端611至第二端612沿壳体1的中心轴线A聚拢布置,在展开状态,支脚61从第一端611至第二端612沿径向向外倾斜展开布置,其中,径向向外是指远离壳体1的中心轴线A的方向。
在一些实施例中,支脚61的第二端612设置有接触脚613,接触脚613构造为圆盘状、球状或椭球状等形状,这样能增加支脚61的第二端612和血管壁之间的接触面积,减小血管壁的局部应力,避免支脚61在固定时刺伤血管壁。
在一些实施例中,参见图6所示,支架6在收拢状态,支脚61的第二端612与壳体1的中心轴线A的距离小于支脚61的第一端611与壳体1的中心轴线A的距离,即支架6在第二端612形成径向尺寸更小的端部,能够减小支架6在导管230或血管250中的推送阻力,从而降低在推送时卡死的风险。
在一些实施例中,支脚61从第一端611至第二端612沿径向向内倾斜聚拢布置,使得第二端612与壳体1的中心轴线A的距离小于第一端611与壳体1的中心轴线A的距离,径向向内是指靠近壳体1的中心轴线A的方向。
在一些实施例中,支脚61的第二端612的端部具有弯折段,弯折段的设置使得:在收拢状态,支脚61的第二端612与壳体1的中心轴线A的距离小于支脚61的第一端611与壳体1的中心轴线A的距离。参见图1、图2和图6所示,弯折段可以构造为L型弯折段,L型弯折段从支脚61的第二端612的端部朝向壳体1的中心轴线A的方向弯折,L型弯折段占用第二端612的端部的空间小,且稳定性强。参见图7所示,弯折段可以构造为直线型弯折段,直线型弯折段从支脚61的第二端612的端部朝向壳体1的中心轴线A的方向弯折,直线型弯折段构型流畅,有利于减小导管泵100的推进阻力,并且易于加工。
参见图8A和图8B,在一些实施例中,支架6可以包括多个支脚61和连接部614,支脚61的更多细节可以参见图6和图7及其相关描述,连接部614设置在支脚61的第一端611,用于将支脚61连接在壳体1上。在一些实施例中,连接部614构造为筒状结构,支脚61的第一端611连接在连接部614的一端,连接部614的另一端与壳体1的流体入口11相连。在一些实施例中,连接部614的内部形成允许流体流过的中空通道,血液等流体从中空通道流至壳体1的流体入口11。在一些实施例中,连接部614可以通过螺纹连接、卡接、粘接等各种方式与壳体1相连。
在一些实施例中,支脚61可以通过镍钛合金等材料制成,以满足弹性变型能力的需求。在一些实施例中,连接部614可以通过钴铬合金、不锈钢等具有血液相容性的金属材料或者具有血液相容性的高分子材料制成,以满足强度及血液相容性的需求。
在一些实施例中,参见图9所示,导管泵100还包括头部13和支撑杆14,支撑杆14的一端与壳体1固定,另一端固定头部13。在一些实施例中,支撑杆14为直线型杆状,其一端固定在壳体1的流体入口11处,另一端与头部13固定,并且为头部13提供支撑。在一些实施例中,支撑杆14可以为一个或多个,例如一个、两个、三个或四个等。在一些实施例中,头部13构造为圆锥体,以减小导管泵100前进的阻力以及头部对流体形成的阻力。
在一些实施例中,支架6包括网状支架62,网状支架62设置在头部13和壳体1之间,网状支架62的一端与头部13固定,另一端与壳体1固定。在一些实施例中,网状支架62可以是由金属丝网制成的笼状结构,笼状结构围设在支撑杆14的附近(如套设在支撑杆14的外部)。在一些实施例中,网状支架62可以具有自膨胀性能,网状支架62在展开状态形成为纺锤体状,纺锥体状可以是中间膨大、两端收拢的形状,此时网状支架62的中间部分用于抵接在血管250的内壁上以固定导管泵100。通过设置网状支架62,可以增大支架6与血管内壁的接触面积,有效避免支架6对血管内壁造成损伤。
在一些实施例中,导管泵100能够与血液接触的表面涂设有肝素涂层,用于防止局部血栓的出现。例如,导管泵100的壳体1、驱动电机3、整流装置4、叶轮2和支架6等部件上均可以涂覆肝素涂层。
在一些实施例中,导管泵100还包括第一压力传感器71,第一压力传感器71设置在流体入口11的上游,其中,上游是相对于血液的流向D而言的,流体入口11的上游可以是以流体入口11为参考点,与血液的流向D相反的方向的位置。在一些实施例中,第一压力传感器71可以检测流体入口11上游的血液压力。
在一些实施例中,由于流体入口11处可能出现紊流区域而影响第一压力传感器71的检测精度,第一压力传感器71与流体入口11相距第一预设距离范围,使第一压力传感器71避开紊流区域,提高第一压力传感器71采集的数据的准确性。在一些实施例中,第一压力传感器71可以设置在与流体入口11间距20毫米~60毫米范围(如20毫米、30毫米、40毫米、45毫米、60毫米等)的位置。在一些实施例中,第一压力传感器71可以设置在支架6远离壳体1的一端。例如,参见图6或图7,第一压力传感器71可以设置在支脚61的第二端612。再例如,参见图9,第一压力传感器71可以设置在导管泵100的头部13。
在一些实施例中,导管泵100还包括第二压力传感器72,第二压力传感器72设置在流体出口12的下游,其中,下游是相对于血液的流向D而言的,流体出口12的下游可以是以流体出口12为参考点,与血液的流向D相同的方向的位置。在一些实施例中,第二压力传感器72可以检测流体出口12的下游的血液压力。
在一些实施例中,由于流体出口12处可能出现紊流区域而影响第二压力传感器72的检测精度,第二压力传感器72与流体出口12相距第二预设距离范围,使第二压力传感器72避开紊流区域,提高第二压力传感器72采集的数据的准确性。在一些实施例中,由于经过导管泵100的流体出口12的紊流区域范围可能大于流体入口11处的紊流区域,第二预设距离范围可以大于第一预设距离范围。例如,第二压力传感器72可以设置在与流体入口11间距30毫米~70毫米范围(如30毫米、40毫米、45毫米、60毫米、70毫米等)的位置。在一些实施例中,第二压力传感器72可以设置在驱动电机3的定子侧31的外表面。在一些实施例中,第二压力传感器72可以设置在为驱动电机3提供电信号的线缆240的外表面。
在一些实施例中,导管泵100可以同时包括第一压力传感器71和第二压力传感器72。在一些实施例中,导管泵100可以仅包括第一压力传感器71。在一些实施例中,导管泵100可以仅包括第二压力传感器72。在一些实施例中,第一压力传感器71和/或第二压力传感器72可以是应变片式压力传感器、扩散硅式压力传感器、压电式压力传感器等各种类型的压力传感器。通过设置第一压力传感器71 和/或第二压力传感器72,能够方便地获知导管泵100上游和/或下游位置的流体压力,从而能够监控导管泵的做功情况以及临床效果,并可以以此指导导管泵更好的工作。
图10是根据本说明书一些实施例所示的示例性辅助泵血系统的示意图。
参见图10,辅助泵血系统200可以是为心衰患者提供附加的血液循环动力的系统。辅助泵血系统200可以包括上文所描述的导管泵100和控制装置210。
在一些实施例中,导管泵100用于植入人体血管250和/或输血器官中,增加血管250和/或输血器官的泵送压力,导管泵100的具体细节可以参见上文描述的内容。
在一些实施例中,控制装置210用于设置在人体之外,并且控制导管泵100的运行。在一些实施例中,控制装置210与导管泵100的驱动电机3电连接,例如通过线缆240电连接。在一些实施例中,控制装置210用于基于控制参数向驱动电机3发送控制指令,以实现导管泵100的控制。在一些实施例中,控制装置210可以基于人为设定的控制参数向驱动电机3发送控制指令。在一些实施例中,控制装置210可以自动确定控制参数并向驱动电机3发送控制指令,从而能够避免人为因素的干扰。在一些实施例中,控制参数可以包括但不限于驱动电机3的电压、电流、驱动转速、功率等,控制装置210能够发送控制指令使驱动电机3按照控制参数运行。在一些替代性实施例中,控制装置210可以集成在导管泵100内。
在一些实施例中,导管泵100包括第一压力传感器71和第二压力传感器72,第一压力传感器71设置在流体入口11的上游,用于检测流体入口11上游的压力,并生成相应信号,第二压力传感器72设置在流体出口12的下游,用于检测流体出口12下游的压力,并生成相应信号。第一压力传感器71和第二压力传感器72的相关细节可以参见上文的描述,在此不再赘述。
在一些实施例中,控制装置210可以用于获取第一压力传感器71和第二压力传感器72的信号。在一些实施例中,控制装置210与第一压力传感器71和第二压力传感器72具有信号连接(如电连接),第一压力传感器71和第二压力传感器72测量出血液压力并将信号发送至控制装置210,控制装置210获取该信号并对该信号进行处理。
在一些实施例中,控制装置210可以基于第一压力传感器71和第二压力传感器72的信号调整驱动电机3的控制参数输出值。在一些实施例中,控制装置210可以根据第一压力传感器71和第二压力传感器72的信号计算获得控制参数,基于该控制参数向驱动电机3发送的控制指令,从而调整驱动电机3的控制参数输出值。在一些实施例中,控制装置210可以将控制参数的值作为驱动电机3的控制参数输出值。
在一些实施例中,控制装置210可以包括存储介质212和处理器214。关于控制装置210的更多细节可以参见图19及其相关描述。
图11是根据本说明书一些实施例所示的示例性辅助泵血系统的应用场景示意图。
参见图11,辅助泵血系统200可以包括第三压力传感器73和第四压力传感器74,用于分别代替第一压力传感器71和第二压力传感器72的功能。在一些实施例中,导管泵100植入到人体血管250后,第三压力传感器73可以单独植入或刺入到导管泵100的上游,并与导管泵100保持间隔,同样地,第四压力传感器74可以单独植入或刺入到导管泵100的下游,并与导管泵100保持间隔。将第三压力传感器73和第四压力传感器74与导管泵100分离设置,可以简化导管泵100的结构,且第三压力传感器73和第四压力传感器74的位置不受导管泵100的限制,可以更容易地避开导管泵100周围的紊流区域,提高检测的准确性。在一些实施例中,当导管泵100放置在降主动脉位置时,第三压力传感器73可以设置在桡动脉位置,第四压力传感器74可以设置在股动脉位置。关于辅助泵血系统200的其他细节可以参见图10及其相关描述。
在一些实施例中,导管泵100的下游连接有线缆240,线缆240与控制装置210相连,用于为导管泵100提供电能和控制信号。第四压力传感器74可以设置在导管泵100下游的分支血管250中,该分支血管250避开线缆240所经过的血管250,从而能够避免线缆240影响第四压力传感器74的检测准确性。
在一些实施例中,控制装置210可以用于获取驱动电机3的电流信号。在一些实施例中,驱动电机3可以将电流信号反馈至控制装置210。在一些实施例中,控制装置210可以将控制参数中的电流参数作为驱动电机3的控制电流。
在一些实施例中,控制装置210可以用于根据电流信号判断导管泵100是否工作异常。在一些实施例中,控制装置210可以预先设置安全电流范围值(或阈值),在获取驱动电机3的电流信号后,将该电流信号与安全电流范围值(或阈值)进行比较:若该电流信号在安全电流范围值之内(或小于该 阈值),则控制装置210生成导管泵100工作正常的判定结果;若该电流信号在安全电流范围值之外(或大于该阈值),则控制装置210生成导管泵100工作异常的判定结果。在一些实施例中,控制装置210判断导管泵100工作异常时,可以发出报警信息,以便及时进行检修或修正。
图12是根据本说明书一些实施例所示的示例性辅助泵血系统的应用场景示意图。
在一些实施例中,辅助泵血系统200可以包括导管(图12中未示出),导管泵100和线缆240经由导管植入到人体的血管250中。如图12所示,线缆240的一部分可以随导管泵100进入体内,另一部分位于体外并连接控制装置210。在进行植入手术时,先将导管泵100经由导管输送到指定位置,然后回撤导管,使得导管泵100从导管中伸出,导管泵100上的支架6随即展开以将导管泵100固定在指定位置。在一些实施例中,为了在植入手术以及回收过程中避免导管和线缆240被细菌污染,辅助泵血系统200还包括无菌保护装置220,无菌保护装置220能够将体外部分的导管和线缆240密封在无菌环境中,保证导管和线缆240的清洁性。
在一些实施例中,无菌保护装置220可以包括无菌套袋221、保护鞘管225以及第一密封接头222、第二密封接头223和第三密封接头224。无菌套袋221两端分别与第二密封接头223和第三密封接头224连接,第一密封接头222与保护鞘管225的一端连接;第一密封接头222与第二密封接头223相互连接。在一些实施例中,无菌套袋221与第二密封接头223和第三密封接头224可以通过胶粘或者预埋注塑的方式实现连接。在一些实施例中,第一密封接头222与线缆240或导管之间通过密封件(如密封圈)保持密封。第三密封接头224与线缆240或导管之间通过密封件(如密封圈)保持密封。
在一些实施例中,第一密封接头222为凸接头,第二密封接头223为凹接头,第一密封接头222和第二密封接头223用于彼此连接(如卡接、螺纹连接等)形成密封,通过第一密封接头222和第二密封接头223可以将保护鞘管225与无菌套袋221连接在一起,使得通过保护鞘管225和无菌套袋221能够将体外部分的导管和线缆240更好的包覆。在一些实施例中,保护鞘管225的另一端可以植入人体,以进一步保证导管和线缆240的密封性。在一些实施例中,保护鞘管225的另一端可以为横截面向头端逐渐缩小的形状;从而在将该另一端植入人体时能够有效保证对植入口进行封堵,以防止血液流出。
图13是根据本说明书一些实施例所示的导管泵的控制方法的示例性流程图。
在一些实施例中,导管泵的控制方法1200可以用于对导管泵(如上述任一实施例的导管泵100)进行控制。在一些实施例中,导管泵的控制方法1200可以由控制装置210(如处理器214)执行。下文中导管泵的控制方法1200将以导管泵设置在主动脉为例进行说明。值得注意的是,该导管泵的控制方法1200同样能够适用于导管泵设置在其他位置的情况。如图13所示,导管泵的控制方法300可以包括:
步骤1210,获取导管泵100的目标压力差曲线或目标有效压力差。
在一些实施例中,目标压力差曲线可以是导管泵100的上游和下游之间期望达到的压力差跟随时间变化的曲线。在一些实施例中,目标压力差曲线可以是线性连续曲线、非线性连续曲线或者分段曲线等各种类型的曲线。
在一些实施例中,目标有效压力差可以是导管泵100的上游和下游之间期望达到的压力差的有效值。在一些实施例中,压力差的有效值是指将变化的目标压力差曲线通过计算转换得到的等效的压力值。在一些实施例中,目标有效压力差可以是导管泵100的上游和下游之间期望达到的压力差的平均值(如加权平均值)。
在一些实施例中,处理器214可以通过多种方式获取目标压力差曲线或目标有效压力差。在一些实施例中,目标压力差曲线或目标有效压力差可以由用户(如医护人员)设定。在一些实施例中,存储介质212中可以存有多个目标压力差曲线或目标有效压力差。在一些实施例中,处理器214可以根据用户输入的信息从存储介质212中调取相应的目标压力差曲线或目标有效压力差。在一些实施例中,处理器214可以根据患者的生理指标(如心衰程度、心输出量等)从存储介质212中调取对应的目标压力差曲线或目标有效压力差。
在一些实施例中,处理器214可以根据患者的目标灌注流量和主动脉实际压力曲线确定导管泵100的目标压力差曲线或目标有效压力差。在一些实施例中,处理器214可以获取患者的目标灌注流量,并根据目标灌注流量确定主动脉压力曲线;进一步,处理器214可以获取患者的主动脉实际压力曲线,并根据目标压力曲线和实际压力曲线,确定导管泵的目标压力差曲线或目标有效压力差。关于目标压力差(如目标压力差曲线或目标有效压力差)确定方法的更多细节可以参见图14及其相关描述。
步骤1220,获取导管泵100的驱动电机3的目标转速。
在一些实施例中,目标转速可以是驱动电机3期望达到的转速。在一些实施例中,目标转速可以通过患者的实际灌注流量和目标灌注流量确定。在一些实施例中,处理器214可以根据实际灌注流量和目标灌注流量,确定辅助灌注流量,并根据辅助灌注流量和导管泵的目标有效压力差确定驱动电机的目标转速。关于目标转速确定方法的更多细节可以参见图13及其相关描述。
步骤1230,根据目标压力差曲线或目标有效压力差,以及目标转速,调整驱动电机3的控制参数输出值。
在一些实施例中,导管泵100的驱动电机3的控制参数可以包括控制电流和控制电压。其中,控制电压可以是加载(或拟加载)在驱动电机3两端的电压;控制电流可以是流过(或拟流过)驱动电机3的电流。在一些实施例中,处理器214可以根据目标压力差曲线或目标有效压力差,调整控制电流的电流曲线或电流值。在一些实施例中,处理器214可以根据目标转速,调整控制电压的电压值。
在一些实施例中,处理器214可以根据目标压力差曲线调整控制电流的电流曲线。在一些实施例中,目标压力差曲线可以表示导管泵100需要为患者的血液提供的辅助泵送压力随时间的变化情况,该辅助泵送压力可以通过导管泵100的驱动电机3驱动实现。在一些实施例中,当驱动电机3的控制电压一定时,驱动电机3的转速相对恒定,此时通过调节驱动电机的控制电流,能够调节电机输出转轴32的扭矩,进而调节导管泵所提供的辅助泵送压力。因此,处理器214可以根据特定电压下控制电流和辅助泵送压力的正相关关系,来调整控制电流的电流曲线,使驱动电机3的电流变化能够满足目标压力差曲线。通过调整控制电流以匹配目标压力差曲线,能够使导管泵精准匹配患者的生理指标(如心输出量)的变化,以及精准匹配心脏的跳动周期引起的血管压力的周期变化,进而提高导管泵100辅助泵血的效果。
在一些实施例中,处理器214可以根据目标有效压力差,调整控制电流的电流值。在一些实施例中,基于目标有效压力差调整控制电流的原理可以参见上文描述的基于目标压力差曲线调整电流曲线的原理。在一些实施例中,导管泵100基于目标有效压力差为患者提供的辅助泵送压力与导管泵100基于目标压力差曲线为患者提供的辅助泵送压力相对等效(例如,从一段时间(如1min)辅助泵血流量的角度看,两者等效)。处理器214可以调整控制电流的电流值使驱动电机3的扭矩能够满足患者的血液泵送需求,并使导管泵100的上游和下游之间的压力差能够达到目标有效压力差。通过根据目标有效压力差调整控制电流,能够通过恒定的电流值达到相对等效的辅助泵血效果,降低了控制装置210的处理和控制难度。
在一些实施例中,处理器214可以根据目标转速,调整控制电压的电压值。在一些实施例中,驱动电机3的控制电压越大,其输出的转速越大。因此,处理器214可以通过调整控制电压的电压值,使驱动电机3的转速达到目标转速。
在一些实施例中,处理器214可以获取驱动电机的控制参数测量值。在一些实施例中,处理器214可以根据目标压力差曲线或目标有效压力差,以及目标转速,确定驱动电机的控制参数目标值;进一步,处理器214可以根据控制参数目标值和测量值,调整驱动电机的控制参数输出值。
在一些实施例中,处理器214可以获取导管泵的实际压力差。在一些实施例中,处理器214可以根据目标压力差曲线或目标有效压力差,以及实际压力差和目标转速确定驱动电机的控制参数调整值。进一步,处理器214可以根据控制参数调整值,调整驱动电机的控制参数输出值。在一些实施例中,处理器214可以获取驱动电机的实际转速;并进一步根据目标压力差曲线或目标有效压力差,以及实际压力差、目标转速和实际转速确定驱动电机的控制参数调整值。
关于控制参数调整方法的更多细节可以参见图16-图18及其相关描述。
图14是根据本说明书一些实施例所示的目标压力差确定方法的示例性流程图。在一些实施例中,目标压力差确定方法1300可以由控制装置210(如处理器214)执行。处理器214可以基于目标压力差确定方法1300确定出导管泵的目标压力差曲线或目标有效压力差,从而实现步骤1210。如图14所示,目标压力差确定方法1300可以包括:
步骤1310,获取患者的目标灌注流量。
在一些实施例中,目标灌注流量可以是每单位时间内流经血管250某一横截面期望达到的血量。例如,目标灌注流量可以为在每分钟内心脏射入主动脉某一截面期望达到的血量。
在一些实施例中,目标灌注流量可以通过根据患者的生理指标(如心衰程度)确定。例如,当轻度心衰患者在导管泵100的辅助作用下的灌注流量达到3.5L/min时,其生理指标可以维持在正常范围内(如各个器官的供血量、供氧量和代谢指标等生理指标维持在正常范围内),则处理器214可以将3.5L/min的灌注流量确定为该患者的目标灌注流量。在一些实施例中,目标灌注流量可以根据正常人的 标准灌注流量确定,例如正常人的标准灌注流量可以为5L/min,则控制装置210可以将5L/min的灌注流量确定为目标灌注流量。在一些实施例中,目标灌注流量可以与患者的生理指标(如心衰程度)相对应。例如,存储介质212中可以存储有患者的心衰程度与目标灌注流量的对应关系,处理器214可以根据患者的心衰程度(如由医护人员输入)从存储介质212中调取对应的目标灌注流量。
步骤1320,根据目标灌注流量,确定主动脉目标压力曲线。
在一些实施例中,目标压力曲线可以是患者主动脉中期望达到的血液压力随时间变化的曲线。例如对于心衰患者而言,目标压力曲线可以是在使用导管泵100辅助泵血之后所期望达到的血液压力的压力曲线。具体而言,目标压力曲线可以是导管泵100流体出口12的下游的血液所期望达到的压力曲线。
在一些实施例中,处理器214可以获取正常人的标准灌注流量和标准压力曲线。在此基础上,处理器214可以基于正常人的标准灌注流量和心衰患者的目标灌注流量之间的差值或比例关系,对正常人的标准压力曲线进行修正(如等比例缩减),从而确定主动脉目标压力曲线。
在一些实施例中,处理器214可以根据实验数据预先建立灌注流量与主动脉压力曲线的对应关系。例如,处理器214可以根据多名历史患者的实测的灌注流量与实测的主动脉压力曲线建立灌注流量与主动脉压力曲线的对应关系。在此基础上,处理器214可以根据目标灌注流量,调用对应的主动脉压力曲线作为主动脉目标压力曲线。
步骤1330,获取患者的主动脉实际压力曲线。
在一些实施例中,主动脉实际压力曲线可以是主动脉中实际的血液压力随时间变化的曲线。在一些实施例中,实际压力曲线可以是位于导管泵100的流体入口11的上游的压力曲线。
在一些实施例中,实际压力曲线可以由正常人的标准压力曲线修正确定。在一些实施例中,处理器214可以基于患者的生理指标(如血压)相对于正常范围的偏差对标准压力曲线修正,从而获得患者的实际压力曲线。例如,处理器214可以获取患者的血压与正常人的标准血压之间的比例关系,并基于该比例关系调整标准压力曲线(如等比例缩减),从而获得主动脉实际压力曲线。通过对正常人的标准压力曲线进行修正而获得实际压力曲线的方式,无需在导管泵100上设置压力传感器来检测血管250压力,精简了导管泵100和/或辅助泵血系统200的结构,同时减少了控制装置210的控制工作量。
在一些实施例中,实际压力曲线可以由传感器检测确定。在一些实施例中,导管泵100可以包括第一压力传感器71,第一压力传感器71设置在导管泵100的流体入口11的上游,用于检测导管泵100的流体入口11上游的血液压力(关于第一压力传感器71的更多细节可以参见图6至图9及其相关描述)。在一些实施例中,辅助泵血系统200可以包括第三压力传感器73;第三压力传感器73可以单独植入或刺入到导管泵100的上游,并与导管泵100保持间隔(关于第三压力传感器73的更多细节可以参见图11及其相关描述)。在一些实施例中,处理器214可以获取第一压力传感器71或第三压力传感器73采集的压力随时间变化的信号作为实际压力曲线。通过传感器检测确定的实际压力曲线可以更准确的反映患者的实际血液灌注压力,提高实际压力曲线的可靠性,从而能够更准确的确定导管泵的目标压力差曲线或目标有效压力差。
步骤1340,根据目标压力曲线和实际压力曲线,确定导管泵的目标压力差曲线或目标有效压力差。
在一些实施例中,处理器214可以根据步骤1310至步骤1330中的目标压力曲线和实际压力曲线,确定出导管泵100的目标压力差曲线或目标有效压力差。在一些实施例中,导管泵100的目标压力差曲线可以由目标压力曲线和实际压力曲线相减获得。在一些实施例中,当确定出导管泵100的目标压力差曲线后,处理器214可以进一步根据患者的心电图信号,将目标压力差曲线与心脏跳动周期相匹配,从而确定出随时间周期性变化的目标压力差曲线。
在一些实施例中,处理器214可以根据目标压力差曲线计算出目标有效压力差。在一些实施例中,处理器214可以根据目标压力曲线确定目标有效压力,根据实际压力曲线确定实际有效压力,然后计算目标有效压力和实际有效压力之间的差值获得目标有效压力差。
图15是根据本说明书一些实施例所示的目标转速确定方法的示例性流程图。在一些实施例中,目标转速确定方法1400可以由控制装置210(如处理器214)执行。处理器214可以基于目标转速确定方法确定出驱动电机的目标转速,从而实现步骤1220。如图15所示,目标转速确定方法1400可以包括:
步骤1410,获取患者的实际灌注流量。
在一些实施例中,实际灌注流量可以是每单位时间内流经血管250某一横截面的实际血量。例如,实际灌注流量可以为每分钟内心脏射入主动脉某一截面的实际血量。在一些实施例中,患者的实际灌注流量可以为患者的心输出量。在一些实施例中,心衰患者的实际灌注流量一般低于正常人的实际灌注流量。例如,正常人的实际灌注流量可以为5L/min,心衰患者的实际灌注流量可以为3L/min。
在一些实施例中,实际灌注流量可以通过各种检测技术进行测量,诸如指示剂稀释法、阻抗法、超声成像法或磁共振成像法等检测技术,处理器214可以获取各种检测技术检测出来的患者的实际灌注流量。
步骤1420,获取患者的目标灌注流量。
在一些实施例中,目标灌注流量通常大于实际灌注流量且小于正常人的标准灌注流量。例如心衰患者的实际灌注流量为3L/min,正常人的标准灌注流量可以为5L/min,目标灌注流量可以在3L/min~5L/min之间(如3.5L/min或4L/min等)。在一些实施例中,获取患者的目标灌注流量与步骤1310类似,更多细节可以参见步骤1310及其相关描述。
步骤1430,根据实际灌注流量和目标灌注流量,确定辅助灌注流量。
在一些实施例中,辅助灌注流量可以是实际灌注流量和目标灌注流量之间的差值。例如心衰患者的实际灌注流量为3L/min,目标灌注流量为3.5L/min,则辅助灌注流量可以为0.5L/min。在一些实施例中,辅助灌注流量可以通过导管泵100的泵送作用来实现。
步骤1440,根据辅助灌注流量和导管泵的目标有效压力差确定驱动电机的目标转速。
在一些实施例中,处理器214可以根据步骤1430中确定的辅助灌注流量和步骤1210中获取的导管泵100的目标有效压力差确定驱动电机3的目标转速。
在一些实施例中,导管泵的流量、压力和转速之间满足以下公式1:
Figure PCTCN2022112696-appb-000001
其中,F p是导管泵的流量,ΔP是导管泵的压力差,ω是驱动电机3的转速,b 0、b 1、b 2是经验常数。根据上述公式,在将导管泵的流量F p看作是常量(如辅助灌注流量),以及将导管泵的压力差ΔP看作是常量(如目标有效压力差)的情况下,可以进一步推导出:
Figure PCTCN2022112696-appb-000002
也即,
Figure PCTCN2022112696-appb-000003
其中,
Figure PCTCN2022112696-appb-000004
是导管泵的辅助灌注流量,
Figure PCTCN2022112696-appb-000005
是导管泵的目标有效压力差,
Figure PCTCN2022112696-appb-000006
是驱动电机3的目标转速。
处理器214可以基于该公式3,根据辅助灌注流量
Figure PCTCN2022112696-appb-000007
和导管泵的目标有效压力差
Figure PCTCN2022112696-appb-000008
确定驱动电机的目标转速
Figure PCTCN2022112696-appb-000009
在一些实施例中,处理器214可以监测患者的实际灌注流量;当实际灌注流量变化时,处理器214可以根据变化后的实际灌注流量更新目标转速,并进而更新调整驱动电机的控制参数输出值。
在一些实施例中,心衰患者在导管泵100的辅助作用下(或者结合其他治疗手段),心脏的功能逐渐恢复和改善,患者的各项生理指标(如心输出量)也会相应变化。在一些实施例中,处理器214可以监测患者的实际灌注流量,当实际灌注流量变化时,处理器214可以根据变化后的实际灌注流量重新执行步骤1410-1440以更新目标转速。通过监测患者的实际灌注流量动态更新目标转速,进而更新驱动电机3的控制参数输出值,可以使导管泵100的辅助泵血作用跟随患者的实际生理情况进行动态调节,更符合患者的生理需求,有助于患者快速康复。在一些实施例中,在监测患者的实际灌注流量并动态更新目标转速的过程中,处理器214可以维持患者的目标灌注流量稳定,从而有助于患者稳定的康复。
图16是根据本说明书一些实施例所示的控制参数调整方法的示例性流程图。在一些实施例中,控制参数调整方法1500可以由控制装置210(如处理器214)执行。处理器214可以基于控制参数调整方法1500调整驱动电机的控制参数输出值,从而实现步骤1230。如图16所示,控制参数调整方法1500可以包括:
步骤1510,根据目标压力差曲线或目标有效压力差,以及目标转速,确定驱动电机的控制参数目标值。
在一些实施例中,控制参数目标值可以是驱动电机3期望达到的控制参数值。在一些实施例中,驱动电机3的控制参数目标值可以包括目标电流曲线或目标电流值,以及目标电压。
在一些实施例中,处理器214可以基于目标转速,确定驱动电机的目标电压。在一些实施例中,驱动电机的控制电压与转速的对应关系可以预先通过实验确定并存储在存储介质212中。处理器214可以基于目标转速从存储介质212中调取对应的目标电压。
在一些实施例中,处理器214可以基于目标压力差曲线以及目标转速确定目标电流曲线。在一些实施例中,在特定的转速(如目标转速)下,压力差曲线与驱动电机的电流曲线的对应关系可以预先通过实验确定并存储在存储介质212中。处理器214可以基于目标转速以及目标压力差曲线,从存储介质212中调取对应的目标电流曲线。
在一些实施例中,处理器214可以基于目标有效压力差以及目标转速确定目标电流值。在一些实施例中,在特定的转速(如目标转速)下,有效压力差与驱动电机的电流值的对应关系可以预先通过实验确定并存储在存储介质212中。处理器214可以基于目标转速以及目标有效压力差,从存储介质212中调取对应的目标电流值。
步骤1520,获取驱动电机的控制参数测量值。
在一些实施例中,驱动电机3的控制参数测量值可以包括测量电压以及测量电流值或测量电流曲线。在一些实施例中,测量电压以及测量电流值或测量电流曲线可以通过驱动电机3自身反馈获得。
步骤1530,根据控制参数目标值和测量值,调整驱动电机的控制参数输出值。
在一些实施例中,驱动电机3的控制参数输出值可以包括电压输出值和电流输出值(或电流输出曲线)。在一些实施例中,驱动电机3的控制参数输出值可以通过PID(Proportion Integration Differentiation)控制算法进行调整。具体地,控制装置210(如处理器214)可以计算控制参数测量值和控制参数目标值之间的误差,将该误差进行比例运算、积分运算和微分运算后获得更新后的控制参数值,利用该更新后的控制参数值控制驱动电机,并检测驱动电机3的控制参数输出值。进一步地,控制装置210可以将检测的控制参数输出值作为更新后的控制参数测量值,继续计算更新后的控制参数测量值和控制参数目标值之间的误差,对该误差进行PID控制算法计算后获得更新后的控制参数值并控制驱动电机3。控制装置210不断重复上述过程,以迭代调整驱动电机3的控制参数输出值,使得驱动电机的控制参数输出值逼近或达到驱动电机的控制参数目标值。这种方式可以克服驱动电机的内部损耗所带来的误差,提高控制装置210对驱动电机3的控制精度。
在一些实施例中,控制装置210可以先根据目标电压和测量电压,调整驱动电机3的电压输出值,以使得电压输出值达到目标电压。然后控制装置210可以停止对电压输出值的调整,并根据目标电流曲线或目标电流值,调整驱动电机的电流输出值(或电流输出曲线)。通过先调整控制电压再调整控制电流的方式,可以使得控制逻辑更加简单、控制结果更加准确。
图17是根据本说明书又一实施例所示的控制参数调整方法的示例性流程图。在一些实施例中,控制参数调整方法1600可以由控制装置210(如处理器214)执行。处理器214可以基于控制参数调整方法1600调整驱动电机的控制参数输出值,从而实现步骤1230。如图17所示,控制参数调整方法1600可以包括:
步骤1610,获取导管泵100的实际压力差。
在一些实施例中,导管泵100包括第一压力传感器71和第二压力传感器72,第一压力传感器71设置在导管泵100的流体入口11的上游,用于检测导管泵100的流体入口11上游的血液压力,第二压力传感器72设置在导管泵100的流体出口12的下游,用于检测导管泵100的流体出口12下游的血液压力(关于第一压力传感器71和第二压力传感器72的更多细节可以参见上文图6至图9及其相关描述)。在一些实施例中,控制装置210可以获取第一压力传感器71和第二压力传感器72的压力值信号,实际压力差可以是第二压力传感器72的压力值和第一压力传感器71的压力值的差值。
在一些实施例中,辅助泵血系统200可以包括第三压力传感器73和第四压力传感器74。在一些实施例中,第三压力传感器73可以单独植入或刺入到导管泵100的上游,并与导管泵100保持间隔,第四压力传感器74可以单独植入或刺入到导管泵100的下游,并与导管泵100保持间隔。(关于第三压力传感器73和第四压力传感器74的更多细节可以参见图11及其相关描述)。在一些实施例中,控制装置210可以获取第三压力传感器73和第四压力传感器74的压力值信号,实际压力差可以是第四压力传感器74的压力值和第三压力传感器73的压力值的差值。
在一些实施例中,导管泵100的实际压力差可以包括导管泵的实际压力差曲线和/或实际有效压力差。
步骤1620,根据目标压力差曲线或目标有效压力差,以及实际压力差和目标转速确定驱动电机的控制参数调整值。
在一些实施例中,控制参数调整值可以是驱动电机3需要调整的控制参数的值。在一些实施例中,驱动电机3的控制参数调整值可以是调整电流曲线或调整电流值。例如,调整电流值可以为“增大0.1A”。又例如,调整电流曲线可以为在各个时间点所需调整的电流值相对于时间变化的曲线。在一些实施例中,处理器214可以基于目标压力差曲线和实际压力差(如实际压力差曲线)之间的差异,确定调整电流曲线。在一些实施例中,处理器214可以基于目标有效压力差和实际压力差(如实际有效压力差)之间的差异,确定调整电流值。
在一些实施例中,在特定的转速(如目标转速)下,目标压力差曲线和实际压力差之间的差异与调整电流曲线之间的对应关系可以预先通过实验或经验确定,并存储在存储介质212中。处理器214可以基于目标压力差曲线和实际压力差之间的差异,从存储介质212中调取对应的调整电流曲线。
在一些实施例中,在特定的转速(如目标转速)下,目标有效压力差和实际压力差之间的差异与调整电流值之间的对应关系可以预先通过实验或经验确定,并存储在存储介质212中。处理器214可以基于目标有效压力差和实际压力差之间的差异,从存储介质212中调取对应的调整电流值。
步骤1630,根据控制参数调整值,调整驱动电机的控制参数输出值。
在一些实施例中,控制装置210(如处理器214)可以根据控制参数调整值,调整驱动电机3的控制参数输出值。在一些实施例中,控制装置210可以根据调整电流曲线或调整电流值,来调整驱动电机3的输入电流,使导管泵100的实际压力差匹配目标压力差曲线或目标有效压力差。此时第一压力传感器71和第二压力传感器72可以定期(如每隔0.05秒、0.1秒、0.5秒、3秒等)检测导管泵100的实际压力差并反馈至控制装置210,控制装置210基于实际压力差和目标压力差曲线或目标有效压力差,再次确定控制参数调整值并进一步调整控制参数输出值。控制装置210不断重复上述过程,以更精准的控制导管泵100的实际压力差,使其逼近或达到目标压力差曲线或目标有效压力差,从而达到导管泵的辅助泵血需求,提高患者的治疗效果。
图18是根据本说明书再一实施例所示的控制参数调整方法的示例性流程图。在一些实施例中,控制参数调整方法1700可以由控制装置210(如处理器214)执行。处理器214可以基于控制参数调整方法1700调整驱动电机的控制参数输出值,从而实现步骤1230。如图18所示,控制参数调整方法1700可以包括:
步骤1710,获取导管泵100的实际压力差。
在一些实施例中,导管泵100的实际压力差可以包括导管泵的实际压力差曲线和/或实际有效压力差。在一些实施例中,获取导管泵100的实际压力差的实现方式与步骤1610类似,具体细节可以参见步骤1610及其相关描述。
步骤1720,获取驱动电机的实际转速。
在一些实施例中,驱动电机3的实际转速是指输出转轴32的转速。在一些实施例中,驱动电机3的反电动势和实际转速成正比关系,控制装置210可以基于驱动电机3的反电动势计算获得实际转速。在一些实施例中,驱动电机3的实际转速可以通过传感器测量,由于驱动电机3的输出转轴32和叶轮2同步转动,因此传感器可以用于测量输出转轴32的转速,或者用于测量叶轮2的转速。控制装置210可以基于传感器的信号获得驱动电机3的实际转速。在一些实施例中,测量驱动电机3的传感器可以包括但不限于光电传感器、旋转变压器和霍尔传感器等。
步骤1730,根据目标压力差曲线或目标有效压力差,以及实际压力差、目标转速和实际转速确定驱动电机的控制参数调整值。
在一些实施例中,驱动电机3的控制参数调整值可以包括调整电压值、调整电流曲线或调整电流值。例如,调整电压值可以为“增加0.1V”。在一些实施例中,控制装置210可以基于目标转速和实际转速之间的差值,确定调整电压值。在一些实施例中,控制装置210可以基于目标压力差曲线和实际压力差之间的差异,确定调整电流曲线。在一些实施例中,控制装置210可以基于目标有效压力差和实际压力差之间的差异,确定调整电流值。
在一些实施例中,目标转速和实际转速之间的差值与调整电压值之间的对应关系可以预先通过实验或经验确定,并存储在存储介质212中。处理器214可以基于目标转速和实际转速之间的差值,从存储介质212中调取对应的调整电压值。
在一些实施例中,在特定的转速(如目标转速或实际转速)下,目标压力差曲线和实际压力差之间的差异与调整电流曲线之间的对应关系可以预先通过实验或经验确定,并存储在存储介质212中。 处理器214可以基于目标转速或实际转速,以及目标压力差曲线和实际压力差之间的差异,从存储介质212中调取对应的调整电流曲线。
在一些实施例中,在特定的转速(如目标转速或实际转速)下,目标有效压力差和实际压力差之间的差异与调整电流值之间的对应关系可以预先通过实验或经验确定,并存储在存储介质212中。处理器214可以基于目标转速或实际转速,以及目标有效压力差和实际压力差之间的差异,从存储介质212中调取对应的调整电流值。
步骤1740,根据控制参数调整值,调整驱动电机的控制参数输出值。
在一些实施例中,根据控制参数调整值,调整驱动电机的控制参数输出值的实现方式与步骤1630类似,具体细节可以参见步骤1630及其相关描述。
在一些实施例中,控制装置210可以定期(如每隔0.05秒、0.1秒、0.5秒、3秒等)获取驱动电机的实际转速,并重新基于目标转速和实际转速之间的差值,确定调整电压值。控制装置210可以不断重复上述调整过程,以控制驱动电机的实际转速逼近或达到目标转速。
在一些实施例中,控制装置210可以先对控制电压进行调整(如迭代执行步骤1720、1730和1740),以使得驱动电机的实际转速达到目标转速。然后控制装置210可以停止对控制电压的调整,并对控制电流进行调整(如迭代执行步骤1710、1730和1740),以使得导管泵的实际压力差逼近或达到目标压力差曲线或目标有效压力差。通过先调整控制电压再调整控制电流的方式,可以使得控制逻辑更加简单、控制结果更加准确。在一些替代性实施例中,控制装置210可以先对控制电流进行调整,再对控制电压进行调整。在一些替代性实施例中,控制装置210可以对控制电压和控制电流进行同步或交替调整。
图19是根据本说明书一些实施例所示的控制装置的示例性结构示意图。如图19所示,导管泵的控制装置210可以包括存储介质212、处理器214和通信总线。处理器214和存储介质212可以通过通信总线实现通信过程。处理器214可以用于执行本申请上述任一实施例提供的导管泵的控制方法。
在一些实施例中,处理器214可以采用中央处理器、服务器、终端设备或其他任何可能的处理设备来实现。在一些实施例中,上述中央处理器、服务器、终端设备或其他处理设备可以在云平台上实施。在一些实施例中,上述中央处理器、服务器或其他处理设备可以与各种终端设备互联,终端设备可以完成信息处理工作或部分信息处理工作。
在一些实施例中,存储介质212(或计算机可读存储介质)可以储存数据和/或指令。在一些实施例中,存储介质212可以存储有计算机指令,处理器214(或计算机)可以通过读取该计算机指令以执行本说明书任一实施例提供的导管泵的控制方法。在一些实施例中,存储设备可包括大容量存储器、可移动存储器、易失性读写存储器、只读存储器(ROM)等或其任意组合。在一些实施例中,存储设备可在云平台上实现。
本说明书实施例可能带来的有益效果包括但不限于:(1)导管泵包括整流装置,整流装置能够用于释放导管泵对血管内的血液施加的回旋压力,可以减轻血液对血管的冲击力,以及有利于维持导管泵的稳定性;(2)辅助泵血系统包括控制装置,控制装置能够根据采集的信号调整导管泵的控制参数,相对于根据医生经验设置控制参数的方案准确性更高,可以减少治疗过程中的失误,有利于患者的快速恢复;(3)导管泵的控制方法可以根据患者的实际灌注流量和目标灌注流量调节导管泵的驱动电机的控制参数输出值,提高了控制参数输出值的可靠性;(4)控制装置可以监测患者的实际灌注流量来更新驱动电机的控制参数输出值,使得控制参数输出值可以精准匹配患者的生理指标的变化,有利于患者的快速康复。需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本说明书的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本说明书的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本说明书的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
计算机存储介质可能包含一个内含有计算机程序编码的传播数据信号,例如在基带上或作为载波的一部分。该传播信号可能有多种表现形式,包括电磁形式、光形式等,或合适的组合形式。计算机存储介质可以是除计算机可读存储介质之外的任何计算机可读介质,该介质可以通过连接至一个指令执行系统、装置或设备以实现通讯、传播或传输供使用的程序。位于计算机存储介质上的程序编码可以通过任何合适的介质进行传播,包括无线电、电缆、光纤电缆、RF、或类似介质,或任何上述介质的组合。
本说明书各部分操作所需的计算机程序编码可以用任意一种或多种程序语言编写,包括面向对象编程语言如Java、Scala、Smalltalk、Eiffel、JADE、Emerald、C++、C#、VB.NET、Python等,常规程序化编程语言如C语言、VisualBasic、Fortran2003、Perl、COBOL2002、PHP、ABAP,动态编程语言如Python、Ruby和Groovy,或其他编程语言等。该程序编码可以完全在用户计算机上运行、或作为独立的软件包在用户计算机上运行、或部分在用户计算机上运行部分在远程计算机运行、或完全在远程计算机或处理设备上运行。在后种情况下,远程计算机可以通过任何网络形式与用户计算机连接,比如局域网(LAN)或广域网(WAN),或连接至外部计算机(例如通过因特网),或在云计算环境中,或作为服务使用如软件即服务(SaaS)。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的处理设备或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (26)

  1. 一种导管泵,用于辅助泵血,其特征在于,包括:
    壳体,设置有流体入口和流体出口;
    叶轮,设置在所述壳体内,用于调节所述导管泵的流量;
    驱动电机,用于驱动所述叶轮转动,所述驱动电机包括定子侧和输出转轴,所述定子侧与所述壳体固定,所述输出转轴与所述叶轮固定;
    整流装置,套设在所述驱动电机的输出转轴外,并且与所述驱动电机的定子侧固定相连。
  2. 如权利要求1所述的导管泵,其特征在于,所述整流装置包括芯部,所述芯部构造为中心对称的块体,所述芯部包括小端和大端,所述小端至所述大端的横截面逐渐增大,所述小端靠近所述叶轮布置,所述大端靠近所述驱动电机布置,所述芯部开设有用于避让所述输出转轴的过孔。
  3. 如权利要求2所述的导管泵,其特征在于,所述整流装置还包括多个叶片,所述多个叶片围绕所述芯部的中心轴线间隔布置在所述芯部的外表面,所述多个叶片用于释放所述叶轮对血液施加的回旋压力。
  4. 如权利要求1所述的导管泵,其特征在于,所述整流装置布置在所述流体出口处。
  5. 如权利要求1所述的导管泵,其特征在于,所述整流装置与所述驱动电机之间设置有第一密封件和第二密封件,所述整流装置的内部形成有容纳腔,所述第一密封件设置在所述容纳腔中并且与所述输出转轴滑动接触,所述第二密封件设置在所述整流装置与所述定子侧之间。
  6. 如权利要求1所述的导管泵,其特征在于,所述导管泵还包括支架,所述支架用于将所述壳体固定在血管或输血器官中,所述支架包括收拢状态和展开状态,在所述收拢状态,所述支架的最大径向尺寸小于或等于所述壳体的径向尺寸,在所述展开状态,所述支架的至少部分径向尺寸大于所述壳体的径向尺寸。
  7. 如权利要求6所述的导管泵,其特征在于,所述支架包括多个支脚,所述支脚为具有第一端和第二端的杆状,所述第一端与所述流体入口相对固定,所述第二端远离所述壳体以形成自由端,在所述收拢状态,所述第二端与所述壳体的中心轴线的距离小于所述第一端与所述壳体的中心轴线的距离。
  8. 如权利要求7所述的导管泵,其特征在于,所述第二端的端部具有弯折段,所述弯折段的设置使得:在所述收拢状态,所述第二端与所述壳体的中心轴线的距离小于所述第一端与所述壳体的中心轴线的距离。
  9. 如权利要求7所述的导管泵,其特征在于,所述第二端设置有接触脚,所述接触脚构造为圆盘状、球状或椭球状。
  10. 如权利要求7所述的导管泵,其特征在于,所述支架还包括连接部,所述连接部构造为具有中空通道的筒状结构,所述连接部的一端与所述支脚的所述第一端连接,所述连接部的另一端与所述壳体的所述流体入口相连。
  11. 如权利要求6所述的导管泵,其特征在于,所述支架包括网状支架,所述导管泵还包括头部和支撑杆,所述支撑杆的一端与所述壳体固定,另一端固定所述头部,所述网状支架设置在所述头部和所述壳体之间,所述网状支架的一端与所述头部固定,另一端与所述壳体固定,所述网状支架在展开状态形成为纺锤体状。
  12. 如权利要求1所述的导管泵,其特征在于,所述导管泵还包括第一压力传感器和第二压力传感器,所述第一压力传感器设置在所述流体入口的上游,所述第二压力传感器设置在所述流体出口的下游。
  13. 如权利要求12所述的导管泵,其特征在于,所述第一压力传感器与所述流体入口相距第一预设距离范围,所述第二压力传感器与所述流体出口相距第二预设距离范围。
  14. 一种辅助泵血系统,其特征在于,包括:
    如权利要求1-13中任一项所述的导管泵;
    控制装置,与所述导管泵的驱动电机电连接,所述控制装置用于基于控制参数向所述驱动电机发送控制指令。
  15. 如权利要求14所述的辅助泵血系统,其特征在于,
    所述导管泵包括第一压力传感器和第二压力传感器,所述第一压力传感器设置在所述流体入口的上游,所述第二压力传感器设置在所述流体出口的下游;
    所述控制装置还用于:获取所述第一压力传感器和第二压力传感器的信号;基于所述第一压力传感器和第二压力传感器的信号调整所述驱动电机的控制参数输出值。
  16. 如权利要求14所述的辅助泵血系统,其特征在于,所述控制装置还用于:
    获取所述驱动电机的电流信号;
    根据所述电流信号判断所述导管泵是否工作异常。
  17. 一种导管泵的控制方法,其特征在于,所述方法包括:
    获取导管泵的目标压力差曲线或目标有效压力差;
    获取导管泵的驱动电机的目标转速;
    根据所述目标压力差曲线或目标有效压力差,以及所述目标转速,调整所述驱动电机的控制参数输出值。
  18. 如权利要求17所述的导管泵的控制方法,其特征在于,所述获取导管泵的目标压力差曲线或目标有效压力差包括:
    获取患者的目标灌注流量;
    根据所述目标灌注流量,确定主动脉目标压力曲线;
    获取患者的主动脉实际压力曲线;
    根据所述目标压力曲线和所述实际压力曲线,确定所述导管泵的目标压力差曲线或目标有效压力差。
  19. 如权利要求17所述的导管泵的控制方法,其特征在于,所述获取驱动电机的目标转速包括:
    获取患者的实际灌注流量和目标灌注流量;
    根据所述实际灌注流量和所述目标灌注流量,确定辅助灌注流量;
    根据所述辅助灌注流量和所述导管泵的目标有效压力差确定驱动电机的目标转速。
  20. 如权利要求19所述的导管泵的控制方法,其特征在于,所述方法还包括:
    监测所述患者的实际灌注流量;
    当所述实际灌注流量变化时,根据变化后的实际灌注流量更新所述目标转速,进而更新调整所述驱动电机的控制参数输出值。
  21. 如权利要求17所述的导管泵的控制方法,其特征在于,所述方法还包括:获取驱动电机的控制参数测量值;
    所述根据所述目标压力差曲线或目标有效压力差,以及所述目标转速,调整所述驱动电机的控制参数输出值包括:
    根据所述目标压力差曲线或目标有效压力差,以及所述目标转速,确定驱动电机的控制参数目标值;
    根据所述控制参数目标值和所述控制参数测量值,调整所述驱动电机的控制参数输出值。
  22. 如权利要求17所述的导管泵的控制方法,其特征在于,所述方法还包括:获取导管泵的实际压力差;
    所述根据所述目标压力差曲线或目标有效压力差,以及所述目标转速,调整所述驱动电机的控制参数输出值包括:
    根据所述目标压力差曲线或所述目标有效压力差,以及所述实际压力差和所述目标转速确定驱动电机的控制参数调整值;
    根据所述控制参数调整值,调整所述驱动电机的控制参数输出值。
  23. 如权利要求22所述的导管泵的控制方法,其特征在于,所述方法还包括:获取驱动电机的实际转速;
    所述根据所述目标压力差曲线或所述目标有效压力差,以及所述实际压力差和所述目标转速确定驱动电机的控制参数调整值包括:
    根据所述目标压力差曲线或所述目标有效压力差,以及所述实际压力差、所述目标转速和所述实际转速确定驱动电机的控制参数调整值。
  24. 如权利要求17所述的导管泵的控制方法,其特征在于,所述驱动电机的控制参数包括控制电流和控制电压;
    所述根据所述目标压力差曲线或目标有效压力差,以及所述目标转速,调整所述驱动电机的控制参数输出值包括:
    根据所述目标压力差曲线或目标有效压力差,调整所述控制电流的电流曲线或电流值;以及
    根据所述目标转速,调整所述控制电压的电压值。
  25. 一种导管泵的控制装置,其特征在于,包括处理器,所述处理器用于执行权利要求17-24中任一项所述的导管泵的控制方法。
  26. 一种计算机可读存储介质,所述存储介质存储计算机指令,当处理器读取存储介质中的计算机指令后,处理器执行如权利要求17~24中任一项所述的导管泵的控制方法。
PCT/CN2022/112696 2021-09-16 2022-08-16 一种导管泵、辅助泵血系统及导管泵的控制方法和装置 WO2023040546A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111086810.X 2021-09-16
CN202111086810.XA CN113769260A (zh) 2021-09-16 2021-09-16 一种导管泵、辅助泵血系统及导管泵的控制方法和装置

Publications (1)

Publication Number Publication Date
WO2023040546A1 true WO2023040546A1 (zh) 2023-03-23

Family

ID=78851547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112696 WO2023040546A1 (zh) 2021-09-16 2022-08-16 一种导管泵、辅助泵血系统及导管泵的控制方法和装置

Country Status (2)

Country Link
CN (1) CN113769260A (zh)
WO (1) WO2023040546A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117323558A (zh) * 2023-12-01 2024-01-02 安徽通灵仿生科技有限公司 一种心室辅助设备的自适应控制方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113769260A (zh) * 2021-09-16 2021-12-10 苏州心岭迈德医疗科技有限公司 一种导管泵、辅助泵血系统及导管泵的控制方法和装置
CN114984444A (zh) * 2022-05-24 2022-09-02 苏州心岭迈德医疗科技有限公司 一种导管介入心脏泵
CN115394163B (zh) * 2022-08-23 2024-04-02 南方医科大学 一种离体器官灌注模拟装置及方法
CN117282017B (zh) * 2023-10-07 2024-06-14 心擎医疗(苏州)股份有限公司 介入泵流量估算方法、装置、设备及心室辅助装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176822B1 (en) * 1998-03-31 2001-01-23 Impella Cardiotechnik Gmbh Intracardiac blood pump
CN103520786A (zh) * 2013-10-16 2014-01-22 上海工程技术大学 一种血液净化蠕动泵流量的控制方法
CN103877630A (zh) * 2014-04-15 2014-06-25 长治市久安人工心脏科技开发有限公司 轴向磁力卸载式轴流泵心脏辅助装置
CN104069555A (zh) * 2014-06-27 2014-10-01 长治市久安人工心脏科技开发有限公司 一种心脏辅助轴流式血泵
CN104274873A (zh) * 2014-10-13 2015-01-14 长治市久安人工心脏科技开发有限公司 一种微型心尖轴流式血泵及植入方法
US20160325034A1 (en) * 2014-01-22 2016-11-10 Fresenius Medical Care Deutschland Gmbh Device and method for regulating and presetting the pump rate of blood pumps
CN108136092A (zh) * 2015-08-24 2018-06-08 柏林心脏有限公司 心脏泵和用于操作心脏泵的方法
CN112569467A (zh) * 2020-11-27 2021-03-30 浙江迪远医疗器械有限公司 血液泵
CN112807564A (zh) * 2021-01-27 2021-05-18 清华大学 一种微创介入式人工心脏轴流血泵
WO2021113389A1 (en) * 2019-12-03 2021-06-10 Procyrion, Inc. Blood pumps
CN113101516A (zh) * 2021-02-08 2021-07-13 苏州心岭迈德医疗科技有限公司 一种辅助泵血导管泵
CN113769260A (zh) * 2021-09-16 2021-12-10 苏州心岭迈德医疗科技有限公司 一种导管泵、辅助泵血系统及导管泵的控制方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527699B1 (en) * 2000-06-02 2003-03-04 Michael P. Goldowsky Magnetic suspension blood pump
EP3324840A4 (en) * 2015-07-20 2019-03-20 Tc1 Llc MEASURING TEST STRIPS FOR FLOW ESTIMATION

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6176822B1 (en) * 1998-03-31 2001-01-23 Impella Cardiotechnik Gmbh Intracardiac blood pump
CN103520786A (zh) * 2013-10-16 2014-01-22 上海工程技术大学 一种血液净化蠕动泵流量的控制方法
US20160325034A1 (en) * 2014-01-22 2016-11-10 Fresenius Medical Care Deutschland Gmbh Device and method for regulating and presetting the pump rate of blood pumps
CN103877630A (zh) * 2014-04-15 2014-06-25 长治市久安人工心脏科技开发有限公司 轴向磁力卸载式轴流泵心脏辅助装置
CN104069555A (zh) * 2014-06-27 2014-10-01 长治市久安人工心脏科技开发有限公司 一种心脏辅助轴流式血泵
CN104274873A (zh) * 2014-10-13 2015-01-14 长治市久安人工心脏科技开发有限公司 一种微型心尖轴流式血泵及植入方法
CN108136092A (zh) * 2015-08-24 2018-06-08 柏林心脏有限公司 心脏泵和用于操作心脏泵的方法
WO2021113389A1 (en) * 2019-12-03 2021-06-10 Procyrion, Inc. Blood pumps
CN112569467A (zh) * 2020-11-27 2021-03-30 浙江迪远医疗器械有限公司 血液泵
CN112807564A (zh) * 2021-01-27 2021-05-18 清华大学 一种微创介入式人工心脏轴流血泵
CN113101516A (zh) * 2021-02-08 2021-07-13 苏州心岭迈德医疗科技有限公司 一种辅助泵血导管泵
CN113769260A (zh) * 2021-09-16 2021-12-10 苏州心岭迈德医疗科技有限公司 一种导管泵、辅助泵血系统及导管泵的控制方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117323558A (zh) * 2023-12-01 2024-01-02 安徽通灵仿生科技有限公司 一种心室辅助设备的自适应控制方法及装置
CN117323558B (zh) * 2023-12-01 2024-03-12 安徽通灵仿生科技有限公司 一种心室辅助设备的自适应控制方法及装置

Also Published As

Publication number Publication date
CN113769260A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023040546A1 (zh) 一种导管泵、辅助泵血系统及导管泵的控制方法和装置
EP3423125B1 (en) Biomedical apparatus with a pressure-regulated blood pump
US8657875B2 (en) Method and apparatus for pumping blood
US20190314563A1 (en) Prevention of Aortic Valve Fusion
JP4179634B2 (ja) 心内血液ポンプ
US20060229488A1 (en) Blood pressure detecting device and system
EP2796156A1 (en) Biomedical apparatus for pumping blood of a human or an animal patient through a secondary intra- or extracorporeal blood circuit
US20100222634A1 (en) Blood flow meter
WO2023226779A1 (zh) 一种导管介入心脏泵
JP4769937B2 (ja) 遠心ポンプの流量及び揚程測定装置、及び、拍動する循環系の循環状態評価装置
US20100222878A1 (en) Blood pump system with arterial pressure monitoring
US20100222635A1 (en) Maximizing blood pump flow while avoiding left ventricle collapse
US11684769B2 (en) Implantable blood pump assembly including pressure sensor and methods of assembling same
Slaughter et al. Transapical miniaturized ventricular assist device: design and initial testing
CN217828630U (zh) 一种导管介入心脏泵
CN215841206U (zh) 一种导管泵及辅助泵血系统
Goodwin et al. Implantable continuous-flow blood pump technology and features
Vercaemst et al. Impella: a miniaturized cardiac support system in an era of minimal invasive cardiac surgery
Ganapathi et al. Left ventricular assist devices: description of available technologies
US11944804B2 (en) Systems and methods for pump-assisted blood circulation
Princer Pump Design and Mechanics
CN116328173A (zh) 一种辅助心脏泵血的监测导管、监测系统及方法
AU2004257347B2 (en) Blood pressure detecting device and system
Moscato et al. Engineering and clinical considerations in rotary blood pumps
CN116867541A (zh) 心室辅助装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE