WO2023040403A1 - 一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法 - Google Patents

一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法 Download PDF

Info

Publication number
WO2023040403A1
WO2023040403A1 PCT/CN2022/101105 CN2022101105W WO2023040403A1 WO 2023040403 A1 WO2023040403 A1 WO 2023040403A1 CN 2022101105 W CN2022101105 W CN 2022101105W WO 2023040403 A1 WO2023040403 A1 WO 2023040403A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
alkali metal
atomic
number density
matrix
Prior art date
Application number
PCT/CN2022/101105
Other languages
English (en)
French (fr)
Inventor
郭强
张宁
李梓文
王子轩
张梦诗
于婷婷
Original Assignee
之江实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 之江实验室 filed Critical 之江实验室
Priority to US17/889,802 priority Critical patent/US11867778B2/en
Publication of WO2023040403A1 publication Critical patent/WO2023040403A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect

Definitions

  • the present invention requires the application number of 202111071312.8 submitted to the Chinese Patent Office on September 14, 2021, and the title of the invention is "a test system and method for the spatial distribution uniformity of alkali metal atomic number density of an atomic magnetometer" Chinese patent application Priority, the entire contents of which are hereby incorporated by reference.
  • the invention belongs to the technical field of precision measurement, in particular to a test system and method for the uniformity of spatial distribution of alkali metal atomic number density of an atomic magnetometer.
  • the alkali metal atomic magnetometer without spin exchange relaxation effect has extremely high magnetic field measurement sensitivity, and has been widely used in basic physics research, biomedicine, geomagnetic detection and other fields.
  • the alkali metal atomic gas chamber is the core device of the atomic magnetometer. It needs to be heated to increase the atomic number density of the alkali metal vapor during use. This is because the atomic number density is proportional to the sum of the strength of the output signal and the square of the basic sensitivity Inversely proportional, so the greater the atomic number density, the stronger the output signal, and the smaller the minimum magnetic field that can be measured; and when the atomic number density is high, the collision damage between atoms will be suppressed. If the temperature distribution of the heating oven is not uniform, the distribution of the atomic number density will be uneven, and the common mode noise of the gradient differential detection will become larger.
  • the commonly used methods for testing the atomic number density include the Faraday optical rotation effect method, the magnetic resonance linewidth method, and the spectral absorption method: the Faraday optical rotation angle method needs to apply a large magnetic field, which cannot make the magnetometer work without spin exchange. In the relaxed state; the magnetic resonance linewidth method requires very low atomic polarizability, otherwise the magnetic resonance linewidth is also affected by the spin destruction rate.
  • the spectral absorption method is more commonly used, but it can only measure the overall value of the atomic number density of the gas cell, and cannot measure the spatial distribution of the atomic number density. Therefore homogeneity cannot be analyzed.
  • the object of the present invention is to address the above technical problems, to propose a test system and method for the uniformity of the spatial distribution of the alkali metal atomic number density of an atomic magnetometer.
  • a test system for the uniformity of the spatial distribution of the alkali metal atomic number density of an atomic magnetometer including a detection light laser, a laser beam expander, and a polarizer arranged in sequence according to the direction in which the detection light advances , a diaphragm, a beam splitting prism, an alkali metal atomic gas chamber, and a first beam profile camera, the exterior of the alkali metal atomic gas chamber is sequentially covered with an oven, a vacuum chamber, a magnetic compensation coil, and a magnetic shielding system;
  • the laser wavelength generated by the detection light laser is the D1/D2 line of the alkali metal atoms used, which meets the frequency requirements of the optical absorption principle;
  • the laser light output by the detection light laser passes through the laser beam expander, polarizer, diaphragm and beam splitting prism, and is divided by the beam splitting prism into two beams of refracted light with the same power and shape, and one beam of refracted light enters the second beam profile camera , measure the light intensity distribution matrix I(0) of the incident light, another beam of refracted light passes through the alkali metal atom gas chamber and its external oven, vacuum chamber, magnetic compensation coil, and magnetic shielding system, and is captured by the first beam profile camera Receive, measure the light intensity matrix I(l) of the outgoing light, and use the following formula to calculate the matrix of the atomic number density n on the pixel lattice:
  • r e is the classical atomic radius
  • c is the speed of light
  • f is the resonance strength
  • ⁇ L is the pressure broadening
  • l is the travel of light in the gas chamber
  • is the variance of matrix n
  • X is the mean of all elements of matrix n.
  • the test effective area of the first beam profile camera is 11.3mm*11.3mm, a total of 2048 ⁇ 2048 units, and the size of each unit is 5.5um.
  • the test effective area of the second beam profile camera is 11.3mm*11.3mm, with a total of 2048 ⁇ 2048 units, and the size of each unit is 5.5um.
  • the alkali metal atom gas chamber is a regular cubic glass bubble to ensure that the optical path at each pixel point is consistent, and the gas chamber is dripped with alkali metal liquid and filled with buffer gas and quenching gas.
  • the magnetic shielding system includes a five-layer permalloy magnetic shielding barrel and a three-axis Helmholtz coil.
  • the present invention also provides a method for testing the spatial distribution uniformity of the alkali metal atomic number density of an atomic magnetometer, specifically as follows: the laser light output by the detection light laser passes through a laser beam expander, a polarizer, an aperture and After the splitting prism, it is divided into two beams of light with the same power and shape. One beam enters the second beam profile camera to measure the light intensity distribution matrix I(0) of the incident light, and the other beam passes through the alkali metal atomic gas cell and its After the external oven, vacuum cavity, magnetic compensation coil, and magnetic shielding system are received by the first beam profile camera, the light intensity matrix I(l) of the outgoing light is measured, and the atomic number density n is calculated on the pixel lattice by the following formula The matrix:
  • r e is the classical atomic radius
  • c is the speed of light
  • f is the resonance strength
  • ⁇ L is the pressure broadening
  • l is the travel of light in the gas chamber
  • is the variance of matrix n
  • X is the mean of all elements of matrix n.
  • the present invention calculates the two-dimensional distribution of atomic number density in space by using a beam profile camera with um-level pixels to test the attenuation of linearly polarized light intensity before and after passing through the alkali metal atomic gas chamber, and analyzes it with the discrete coefficient method Uniformity of atomic number density distribution.
  • the invention is simple to operate and easy to implement, and can be directly realized without changing the original optical path of the atomic magnetometer, and can test the uniformity of the atomic number density in space with high precision, which is beneficial to analyze the sensitivity of the atomic magnetometer, In particular, common-mode interference of multi-channel differential magnetometers is suppressed.
  • Fig. 1 is the structural representation of testing system of the present invention
  • Accompanying drawing 1 marks list as follows: 1-detection light laser, 2-laser beam expander, 3-polarizer, 4-diaphragm, 5-beam splitting prism, 6-second beam profile camera, 7-magnetic shielding system , 8-magnetic compensation coil, 9-vacuum chamber, 10-first beam profile camera, 11-alkali metal atom gas chamber, 12-oven.
  • the present invention proposes a test system for the uniformity of the alkali metal atomic number density spatial distribution of an atomic magnetometer, including a detection light laser 1, a laser beam expander 2, a laser beam expander 2, and a detection light arranged in sequence according to the detection light advancing direction.
  • the exterior of the alkali metal atomic gas chamber 11 is covered with oven 12, vacuum chamber 9, Magnetic compensation coil 8, magnetic shielding system 7;
  • the laser wavelength produced by the detection light laser 1 is the D1/D2 line of the alkali metal atoms used, which meets the frequency requirements of the optical absorption principle;
  • the alkali metal atom gas chamber 11 is placed in the oven 12 Inside, the inside of the alkali metal atom gas chamber 11 is changed by controlling the temperature of the oven 12, the oven 12 is placed inside the vacuum chamber 9, and the magnetic shielding system 7 ensures that the alkali metal atom gas chamber 11 is in a non-magnetic environment.
  • the detection light that described detection light laser 1 sends passes through laser beam expander 2, polarizer 3, aperture 4, and the effect of polarizer 3 is to guarantee that laser is linearly polarized light, and aperture 4 makes detection light form suitable for
  • the circular light spot of the size of the alkali metal atomic gas cell 11 is then split into two beams of light with the same power and shape after passing through the beam splitter 5, and one beam of light enters the beam profile camera 6, and the light intensity of the incident light is measured on 2048*2048 units
  • the light intensity distribution matrix I(0) of the other beam of light is received by the beam profile camera 10 after passing through the gas chamber with an oven, and the light intensity matrix I(l) of the outgoing light is measured.
  • n on the pixel lattice that is, the two-dimensional distribution of the atomic number density in space, where r e is the classical atomic radius, c is the speed of light, f is the resonance intensity, and ⁇ L is the pressure Broadening, l is the stroke of light in the air chamber, that is, the diameter of the air chamber;
  • r e is the classical atomic radius
  • c is the speed of light
  • f is the resonance strength
  • ⁇ L is the pressure broadening
  • l is the travel of light in the gas chamber
  • is the variance of matrix n
  • X is the mean of all elements of matrix n.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及测试方法,测试系统包括按光前进方向依次设置的检测激光器(1)、激光扩束器(2)、起偏器(3)、光阑(4)、分光棱镜(5)、碱金属原子气室(11)和第一光束轮廓相机(10),测试方法测试通过碱金属原子气室(11)前后的线偏振光光强衰减,计算出原子数密度在空间上的二维分布矩阵,并用离散系数分析原子数密度分布的均匀性。测试系统及测试方法可以在不改变原子磁强计光路的基础上直接测试,高精度地测试出原子数密度在空间分布的均匀性,有利于提高测量灵敏度、抑制多通道差分磁强计的共模干扰。

Description

一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法
交叉引用
本发明要求于2021年9月14日向中国专利局提交的申请号为202111071312.8、发明名称为“一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法”中国专利申请的优先权,其全部内容通过引用,合并于此。
技术领域
本发明属于精密测量技术领域,具体是一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法。
背景技术
无自旋交换弛豫效应的碱金属原子磁强计有着极高的磁场测量灵敏度,在基础物理研究,生物医疗、地磁探测等领域得到了广泛的应用。碱金属原子气室是原子磁强计的核心器件,在使用时需要加热以提高碱金属蒸汽的原子数密度,这是因为原子数密度和输出信号的强弱和成正比,和基础灵敏度的平方成反比,所以原子数密度越大,输出信号越强,能够测量的最小磁场越小;且原子数密度较高时,原子间的碰撞破坏会被抑制。如果加热烤箱的温度分布不均匀,会导致原子数密度分布的不均匀,梯度差分检测的共模噪声会变大。
目前,常用的测试原子数密度的方法有法拉第光旋效应法、磁共振线宽法以及光谱吸收法:法拉第光旋角法需要施加很大的磁场,无法使磁强计工作在无自旋交换弛豫状态下;磁共振线宽法要求原子极化率很低,否则磁共振线宽还受到自旋破坏率影响。光谱吸收法较为常用,但也只能测试出气室原子数密度的整体数值,无法测量原子数密度的空间分布。因此无法分析均匀性。
发明内容
本发明的目的在于针对上述技术问题,提出一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法。
本发明通过以下技术方案来实现:一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统,包括按检测光前进方向依次设置的检测光激光器、激光扩束器、起偏器、光阑、分光棱镜、碱金属原子气室、第一光束轮廓相机,所述碱金属原子气室外部从内到外依次包覆有烤箱、真空腔、磁补偿线圈、磁屏蔽系统;所述的检测光激光器产生的激光波长为 所用碱金属原子的D1/D2线,满足光学吸收原理的频率要求;
所述的检测光激光器输出的激光经过激光扩束器、起偏器、光阑和分光棱镜后,被分光棱镜分成相同功率和形状的两束折射光,一束折射光进入第二光束轮廓相机,测量入射光的光强分布矩阵I(0),另一束折射光穿过碱金属原子气室以及其外部的烤箱、真空腔、磁补偿线圈、磁屏蔽系统后,被第一光束轮廓相机接收,测量出射光的光强矩阵I(l),用如下公式计算出原子数密度n在像素点阵上的矩阵:
Figure PCTCN2022101105-appb-000001
上述公式中:r e是经典原子半径,c是光速,f是谐振强度,Γ L是压力展宽,l是光在气室内的行程;
将n写成矩阵形式
Figure PCTCN2022101105-appb-000002
用离散系数法分析n分布的均匀性,计算公式如下:
Figure PCTCN2022101105-appb-000003
σ是矩阵n的方差,X是矩阵n所有元素的平均值。
作为优选,所述的第一光束轮廓相机的测试有效面积为11.3mm*11.3mm,共2048×2048个单元,每个单元的大小为5.5um。
作为优选,所述的第二光束轮廓相机的测试有效面积为11.3mm*11.3mm,共2048×2048个单元,每个单元的大小为5.5um。
作为优选,所述的碱金属原子气室为正立方体玻璃泡,保证在每个像素点上的光程一致,气室内滴入碱金属液体、并充有缓冲气体和淬灭气体。
[0011]作为优选,所述的磁屏蔽系统包括五层坡莫合金磁屏蔽桶和三轴亥姆霍兹线圈。
本发明还提供了一种原子磁强计的碱金属原子数密度空间分布均匀性的测试方法,具体如下:所述的检测光激光器输出的激光经过激光扩束器、起偏器、光阑和分光棱镜后,分成相同功率和形状的两束光,一束光进入第二光束轮廓相机,测量入射光的光强分布矩阵I(0),另一束光穿过碱金属原子气室以及其外部的烤箱、真空腔、磁补偿线圈、磁屏蔽系统后,被第一光束轮廓相机接收,测量出射光的光强矩阵I(l),用如下公式计算出原子数密度n在像素点阵上的矩阵:
Figure PCTCN2022101105-appb-000004
上述公式中:r e是经典原子半径,c是光速,f是谐振强度,Γ L是压力展宽,l是光在气室内的行程;
将n写成矩阵形式
Figure PCTCN2022101105-appb-000005
用离散系数法分析n分布的均匀性,计算公式如下:
Figure PCTCN2022101105-appb-000006
σ是矩阵n的方差,X是矩阵n所有元素的平均值。
本发明基于光学吸收原理,通过用像素为um级别的光束轮廓相机测试通过碱金属原子气室前后的线偏光光强衰减,计算出原子数密度在空间上的二维分布,用离散系数法分析原子数密度分布的均匀性。本发明操作简单,易于实施,可在不改变原子磁强计原有光路的基础上直接实现,高精度的测试出原子数密度在空间分布的均匀性,有利于分析原子磁强计的灵敏度,尤其是抑制多通道差分磁强计的共模干扰。
附图说明
图1为本发明测试系统的结构示意图;
附图1标记列示如下:1-检测光激光器,2-激光扩束器,3-起偏器,4-光阑,5-分光棱镜,6-第二光束轮廓相机,7-磁屏蔽系统,8-磁补偿线圈,9-真空腔,10-第一光束轮廓相机,11-碱金属原子气室,12-烤箱。
具体实施方式
下面通过附图以及具体实施方式进一步说明本发明。
如图1所示,本发明提出一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统,包括按检测光前进方向依次设置的检测光激光器1、激光扩束器2、起偏器3、光阑4、分光棱镜5、碱金属原子气室11、第一光束轮廓相机10,所述碱金属原子气室11外部从内到外依次包覆有烤箱12、真空腔9、磁补偿线圈8、磁屏蔽系统7;所述的检测光激光器1产生的激光波长为所用碱金属原子的D1/D2线,满足光学吸收原理的频率要求;碱金属原子气室11放置在烤箱12内部,通过控制烤箱12温度来改变碱金属原子气室11内部,烤箱12放 置在真空腔9内部,磁屏蔽系统7保证碱金属原子气室11处在无磁环境下。
所述的检测光激光器1发出的检测光经过激光扩束器2、起偏器3、光阑4,起偏器3的作用是保证激光为线偏振光,光阑4使检测光形成适合于碱金属原子气室11大小的圆形光斑,之后经过分光棱镜5,分成相同功率和形状的两束光,一束光进入光束轮廓相机6,测量入射光的光强在2048*2048个单元上的光强分布矩阵I(0),另一束光通过带烤箱的气室后,被光束轮廓相机10接收,测量出射光的光强矩阵I(l)。用如下公式计算出原子数密度n在像素点阵上的矩阵,即原子数密度在空间上的二维分布,其中r e是经典原子半径,c是光速,f是谐振强度,Γ L是压力展宽,l是光在气室内的行程,也就是气室的直径;
Figure PCTCN2022101105-appb-000007
上述公式中:r e是经典原子半径,c是光速,f是谐振强度,Γ L是压力展宽,l是光在气室内的行程;
将n写成矩阵形式
Figure PCTCN2022101105-appb-000008
用离散系数法分析n分布的均匀性,计算公式如下:
Figure PCTCN2022101105-appb-000009
σ是矩阵n的方差,X是矩阵n所有元素的平均值。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列,本发明说明书中未作详细描述的内容属于本领域技术人员的公知技术。

Claims (6)

  1. 一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统,其特征在于:包括按检测光前进方向依次设置的检测光激光器、激光扩束器、起偏器、光阑、分光棱镜、碱金属原子气室、第一光束轮廓相机,所述碱金属原子气室外部从内到外依次包覆有烤箱、真空腔、磁补偿线圈、磁屏蔽系统;所述的检测光激光器产生的激光波长为所用碱金属原子的D1/D2线;
    所述的检测光激光器输出的激光经过激光扩束器、起偏器、光阑和分光棱镜后,被分光棱镜分成相同功率和形状的两束折射光,一束折射光进入第二光束轮廓相机,测量入射光的光强分布矩阵I(0),另一束折射光穿过碱金属原子气室以及其外部的烤箱、真空腔、磁补偿线圈、磁屏蔽系统后,被第一光束轮廓相机接收,测量出射光的光强矩阵I(l),用如下公式计算出原子数密度n在像素点阵上的矩阵:
    Figure PCTCN2022101105-appb-100001
    上述公式中:r e是经典原子半径,c是光速,f是谐振强度,Γ L是压力展宽,l是光在气室内的行程;
    将n写成矩阵形式
    Figure PCTCN2022101105-appb-100002
    用离散系数法分析n分布的均匀性,计算公式如下:
    Figure PCTCN2022101105-appb-100003
    σ是矩阵n的方差,X是矩阵n所有元素的平均值。
  2. 根据权利要求1所述的一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统,其特征在于:所述的第一光束轮廓相机的测试有效面积为11.3mm*11.3mm,共2048×2048个单元,每个单元的大小为5.5um。
  3. 根据权利要求1所述的一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统,其特征在于:所述的第二光束轮廓相机的测试有效面积为11.3mm*11.3mm,共2048×2048个单元,每个单元的大小为5.5um。
  4. 根据权利要求1所述的一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统, 其特征在于:所述的碱金属原子气室为正立方体玻璃泡,保证在每个像素点上的光程一致,气室内滴入碱金属液体、并充有缓冲气体和淬灭气体。
  5. 根据权利要求1所述的一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统,其特征在于:所述的磁屏蔽系统包括五层坡莫合金磁屏蔽桶和三轴亥姆霍兹线圈。
  6. 一种原子磁强计的碱金属原子数密度空间分布均匀性的测试方法,其特征在于:所述的检测光激光器输出的激光经过激光扩束器、起偏器、光阑和分光棱镜后,分成相同功率和形状的两束光,一束光进入第二光束轮廓相机,测量入射光的光强分布矩阵I(0),另一束光穿过碱金属原子气室以及其外部的烤箱、真空腔、磁补偿线圈、磁屏蔽系统后,被第一光束轮廓相机接收,测量出射光的光强矩阵I(l),用如下公式计算出原子数密度n在像素点阵上的矩阵:
    Figure PCTCN2022101105-appb-100004
    上述公式中:r e是经典原子半径,c是光速,f是谐振强度,Γ L是压力展宽,l是光在气室内的行程;
    将n写成矩阵形式
    Figure PCTCN2022101105-appb-100005
    用离散系数法分析n分布的均匀性,计算公式如下:
    Figure PCTCN2022101105-appb-100006
    σ是矩阵n的方差,X是矩阵n所有元素的平均值。
PCT/CN2022/101105 2021-09-14 2022-06-24 一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法 WO2023040403A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/889,802 US11867778B2 (en) 2021-09-14 2022-08-17 System and method for testing spatial distribution uniformity of alkali metal atom number density of atom magnetometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111071312.8A CN113777106B (zh) 2021-09-14 2021-09-14 一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法
CN202111071312.8 2021-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/889,802 Continuation US11867778B2 (en) 2021-09-14 2022-08-17 System and method for testing spatial distribution uniformity of alkali metal atom number density of atom magnetometer

Publications (1)

Publication Number Publication Date
WO2023040403A1 true WO2023040403A1 (zh) 2023-03-23

Family

ID=78843317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101105 WO2023040403A1 (zh) 2021-09-14 2022-06-24 一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法

Country Status (2)

Country Link
CN (1) CN113777106B (zh)
WO (1) WO2023040403A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117269625A (zh) * 2023-11-23 2023-12-22 中北大学 一种结合原子气室的局域电磁波增强检测的结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777106B (zh) * 2021-09-14 2022-05-27 之江实验室 一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法
US11867778B2 (en) 2021-09-14 2024-01-09 Zhejiang Lab System and method for testing spatial distribution uniformity of alkali metal atom number density of atom magnetometer
CN115727936A (zh) * 2022-11-07 2023-03-03 北京自动化控制设备研究所 基于原子传感的磁约翰逊噪声测试装置
CN115754845B (zh) * 2022-12-07 2023-09-01 之江实验室 基于矢量光调制的原子磁强计空间磁场成像装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130278253A1 (en) * 2012-04-18 2013-10-24 Canon Kabushiki Kaisha Optically pumped magnetometer
CN105651649A (zh) * 2016-01-27 2016-06-08 东南大学 一种适用于原子磁强计的原子密度实时在线测量方法
CN107192633A (zh) * 2017-07-10 2017-09-22 北京航空航天大学 一种serf态下在线测量原子磁强计气室内碱金属密度的方法
CN112269155A (zh) * 2020-10-20 2021-01-26 上海理工大学 一种全光纤磁强计装置
CN113075594A (zh) * 2021-03-24 2021-07-06 北京航空航天大学 一种serf原子磁强计的电子极化率双轴原位测量系统及方法
CN113777106A (zh) * 2021-09-14 2021-12-10 之江实验室 一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693488B (zh) * 2018-04-09 2020-07-10 北京航空航天大学 一种基于双抽运光束的无自旋交换弛豫原子自旋磁场测量装置
CN110146410B (zh) * 2019-05-09 2020-06-12 上海交通大学 基于差分吸收法的原子密度及布居数的测量装置及方法
CN112731226B (zh) * 2020-12-28 2022-10-28 之江实验室 基于光强差分的单光束原子磁强计偏置及噪声抑制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130278253A1 (en) * 2012-04-18 2013-10-24 Canon Kabushiki Kaisha Optically pumped magnetometer
CN105651649A (zh) * 2016-01-27 2016-06-08 东南大学 一种适用于原子磁强计的原子密度实时在线测量方法
CN107192633A (zh) * 2017-07-10 2017-09-22 北京航空航天大学 一种serf态下在线测量原子磁强计气室内碱金属密度的方法
CN112269155A (zh) * 2020-10-20 2021-01-26 上海理工大学 一种全光纤磁强计装置
CN113075594A (zh) * 2021-03-24 2021-07-06 北京航空航天大学 一种serf原子磁强计的电子极化率双轴原位测量系统及方法
CN113777106A (zh) * 2021-09-14 2021-12-10 之江实验室 一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FU JIQING, ZHANG WEI: "Research on the number density ratio of Cs/~4He in the Cs-He optical magnetometer", CHINA MEASUREMENT & TESTING TECHNOLOGY, ZHONGGUO CESHI JISHU YANJIUYUAN, CN, vol. 44, no. 2, 1 February 2018 (2018-02-01), CN , pages 1 - 5, XP093050604, ISSN: 1674-5124, DOI: 10.11857/j.issn.1674-5124.2018.02.001 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117269625A (zh) * 2023-11-23 2023-12-22 中北大学 一种结合原子气室的局域电磁波增强检测的结构
CN117269625B (zh) * 2023-11-23 2024-02-20 中北大学 一种结合原子气室的局域电磁波增强检测的结构

Also Published As

Publication number Publication date
CN113777106A (zh) 2021-12-10
CN113777106B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023040403A1 (zh) 一种原子磁强计的碱金属原子数密度空间分布均匀性的测试系统及方法
US7915577B2 (en) Single-shot spatially-resolved imaging magnetometry using ultracold atoms
CN108693488B (zh) 一种基于双抽运光束的无自旋交换弛豫原子自旋磁场测量装置
JP5264242B2 (ja) 原子磁力計及び磁力計測方法
JP2018004462A (ja) 磁場計測装置、磁場計測装置の調整方法、および磁場計測装置の製造方法
CN105301541A (zh) 原子磁强计的磁线圈x、y轴非正交角的测量装置与方法
US20100327869A1 (en) Ultra-sensitive susceptibility detection apparatus of anharmonic resonance measurement type using atomic magnetometer, and method of using same
CN110879374A (zh) 一种单光束自旋极化和检测方法
CN105301526A (zh) 一种磁显微成像方法及装置
CN112946539B (zh) 一种基于serf的单光束反射式三轴磁场测量装置
Gentile et al. Polarized 3He spin filters in neutron scattering
CN107656219A (zh) 一种铷原子磁力仪
Balascuta et al. The implementation of a super mirror polarizer at the SNS fundamental neutron physics beamline
Pei et al. Markov noise in atomic spin gyroscopes: Analysis and suppression based on allan deviation
Pei et al. Pulsed optical pumping in electron spin vapor
CN111337868B (zh) 一种核自旋纵弛豫时间测量方法
Shi et al. Analysis of influence of RF power and buffer gas pressure on sensitivity of optically pumped cesium magnetometer
Takahashi et al. Multichannel optical diagnostic system for field-reversed configuration plasmas
UA126661C2 (uk) Незбурювальні вимірювання слабкого магнітного поля і магнітного поля у високотемпературних плазмах
US11867778B2 (en) System and method for testing spatial distribution uniformity of alkali metal atom number density of atom magnetometer
US10613163B1 (en) Micro-imaging with an atomic magnetometer and flux guide
Vlasov et al. Measurement of nonlinear polarizability of air
Wu et al. Cylindrical vector beam for vector magnetic field sensing based on magnetic fluid
Rouzée et al. Laser spatial profile effects in measurements of impulsive molecular alignment
Richter et al. Estimation of a surface magnetization direction of thin cylinders by magnetooptical Kerr effect

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE