WO2023040264A1 - 一种基于量子技术的超低频电压交直流转换验证系统及方法 - Google Patents

一种基于量子技术的超低频电压交直流转换验证系统及方法 Download PDF

Info

Publication number
WO2023040264A1
WO2023040264A1 PCT/CN2022/088663 CN2022088663W WO2023040264A1 WO 2023040264 A1 WO2023040264 A1 WO 2023040264A1 CN 2022088663 W CN2022088663 W CN 2022088663W WO 2023040264 A1 WO2023040264 A1 WO 2023040264A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
low
quantum
voltage
ultra
Prior art date
Application number
PCT/CN2022/088663
Other languages
English (en)
French (fr)
Inventor
徐晴
石照民
潘仙林
宋�莹
周天地
段梅梅
田正其
赵双双
Original Assignee
国网江苏省电力有限公司营销服务中心
中国计量科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江苏省电力有限公司营销服务中心, 中国计量科学研究院 filed Critical 国网江苏省电力有限公司营销服务中心
Priority to US17/788,291 priority Critical patent/US20240168066A1/en
Publication of WO2023040264A1 publication Critical patent/WO2023040264A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/22Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of ac into dc
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/22Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of ac into dc
    • G01R19/225Arrangements for measuring currents or voltages or for indicating presence or sign thereof using conversion of ac into dc by means of thermocouples or other heat sensitive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing

Definitions

  • the invention belongs to the field of AC voltage measurement, in particular to a verification system and method for ultra-low frequency voltage AC-DC conversion based on quantum technology
  • Ultra-low frequency voltage signal precision measurement is widely used in vibration signal measurement, new energy vehicle power battery measurement research and high voltage test and other fields.
  • the frequency upper limit of the vibration signal generally does not exceed 10Hz, and some are even in the order of mHz.
  • the measurement of low-frequency vibration signals is often realized by converting vibration sensors into electrical signal measurements; Zhongzheng has received more and more attention.
  • the research difficulty is that the accuracy of its ultra-low frequency is difficult to be guaranteed, and it is necessary to establish an ultra-low frequency voltage standard; in addition, the ultra-low frequency voltage technology also has broad application prospects in high-voltage tests.
  • the ultra-low frequency voltage replaces the 50Hz power frequency voltage and is applied in the high voltage test, which has obvious advantages and practical value. Establishing a national benchmark for ultra-low frequency voltage and realizing the traceability of ultra-low frequency voltage is of great significance to promote the development of industries such as precision measurement of low-frequency vibration signals, lithium-ion power battery test and measurement, and high-voltage testing.
  • the traceability of the ultra-low frequency voltage value is based on the dual heating wire thermoelectric converter as a reference standard, and is realized through AC-DC conversion, and the ultra-low frequency voltage is traced to the DC voltage reference.
  • there is a lack of a method for verifying the accuracy of AC-DC conversion of ultra-low-frequency voltage which makes it impossible to verify the rationality of the evaluation results of the uncertainty of AC-DC conversion of ultra-low-frequency voltage with dual heating wire thermoelectric converters.
  • the synthetic AC quantum voltage has been realized, and the Programmable Josephson AC quantum voltage (Programmable Josephson Voltage Standard, PJVS) can be successfully synthesized, and its amplitude accuracy is high.
  • the invention combines quantum voltage technology to propose a verification system and method for ultra-low frequency voltage AC-DC conversion.
  • the purpose of the present invention is to solve the problems existing in the above-mentioned prior art, to provide a verification system and method for ultra-low frequency voltage AC-DC conversion based on quantum technology, and to realize the accuracy and accuracy of ultra-low frequency voltage AC-DC conversion for dual heating wire thermoelectric converters.
  • the rationality of the uncertainty evaluation results is verified to ensure the reliability of ultra-low frequency voltage AC-DC conversion.
  • An ultra-low-frequency voltage AC-DC conversion verification system based on quantum technology including a quantum voltage generation system, a low-frequency signal source, a follower, a first switch, a second switch, a third switch, a double heating wire thermoelectric converter, and a nanovoltmeter , clock source, high-precision digital sampling system, host computer.
  • the quantum voltage generation system is respectively connected to the first switch, the second switch and the B channel of the high-precision digital sampling system through the follower, the low-frequency signal source is connected to the first switch, the second switch and the third switch, and the third switch is connected to the high-precision Channel A of the digital sampling system, the first switch and the second switch are connected to the double heating wire thermoelectric transducer, the double heating wire thermoelectric transducer is connected to the nanovolt meter, the clock source is connected to the quantum voltage generation system, the low frequency signal source and the high precision digital The sampling system is connected, and the upper computer is connected with the quantum voltage generation system, low-frequency signal source, first switch, second switch, third switch, nanovoltmeter and high-precision digital sampling system through the IEEE-488 bus to realize automatic control of the system.
  • the quantum voltage generating system provides AC quantum voltage U S and DC quantum voltage U D ;
  • the low-frequency signal source provides two low-frequency voltage signals U A1 and U A2 with equal amplitude and orthogonality;
  • the follower is used to improve the carrying capacity of the quantum voltage system
  • the first switch and the second switch are used to control the switching between the low-frequency voltage signal and the DC quantum voltage at the input end of the double heating wire thermoelectric converter;
  • the third switch is used to control the switching connection between the two low-frequency voltage signals U A1 and U A2 and the channel A of the high-precision digital sampling system;
  • the dual heating wire thermoelectric converter is used to realize the equivalent conversion between the low-frequency voltage signals U A1 and U A2 and the DC quantum voltage;
  • the nanovoltmeter is used to read the thermoelectric potential output by the dual heating wire thermoelectric transducer in the AC and DC states;
  • the clock source provides a synchronous clock signal to realize the synchronous output of the quantum voltage generation system and the low-frequency signal source, and the synchronous measurement of the high-precision digital sampling system;
  • the high-precision digital sampling system is used to realize the precise measurement of the difference between the AC quantum voltage and the low-frequency voltage signal
  • the upper computer is used to control the whole system to realize automatic measurement.
  • a verification method for ultra-low frequency voltage AC-DC conversion based on quantum technology including the following steps:
  • the upper computer controls the switching of the third switch to connect the U A1 branch to the channel A of the high-precision digital sampling system
  • the host computer controls the quantum voltage generation system to output the AC quantum voltage signal U S , which is input to the channel B of the high-precision digital sampling system through the follower 3, and simultaneously controls the low-frequency signal source to output two low-frequency voltage signals with equal amplitude and orthogonal U A1 and U A2 , the nominal values of U A1 , U A2 and U S are all equal;
  • the upper computer controls the switching of the first switch and the second switch, so that the low-frequency voltage signals U A1 and U A2 are input to the double heating wire thermoelectric converter;
  • thermoelectric potential of the dual heating wire thermoelectric transducer at this time through a nanovoltmeter to be E A1 ;
  • the host computer controls the quantum voltage generation system to output a positive DC quantum voltage signal U D+ , and U D+ is equal to the nominal value of the AC quantum voltage signal U S ;
  • the upper computer controls the switching between the first switch and the second switch, so that the positive DC quantum voltage signal U D+ is input to the double heating wire thermoelectric converter;
  • thermoelectric potential of the dual heating wire thermoelectric transducer at this time by a nanovolt meter as E D+ ;
  • the host computer controls the quantum voltage generation system to output a negative DC quantum voltage signal UD- , and the amplitude of UD- and UD+ are equal;
  • thermoelectric potential of the dual heating wire thermoelectric transducer at this time by nanovolt meter as E D- ;
  • the host computer controls the quantum voltage generation system to output the AC quantum voltage signal U S again, which is input to the channel B of the high-precision digital sampling system through the follower, controls the switching of the first switch and the second switch, and makes the low-frequency voltage signal U A1 and U again A2 is input to the dual heating wire thermoelectric converter;
  • the effective value U 1 of the ultra-low frequency voltage signal obtained through AC-DC conversion can be expressed as
  • One of the low-frequency signals U A1 output by the low-frequency signal source can be expressed as
  • the upper computer 11 controls the switching of the third switch to connect the U A2 branch to the channel A of the high-precision digital sampling system, repeat the process B to M, and obtain the effective value U2 of the ultra-low frequency voltage signal through AC-DC conversion, which can be expressed as
  • Another low-frequency signal U A2 output by the low-frequency signal source can be expressed as
  • the present invention proposes a verification system and method for ultra-low frequency voltage AC-DC conversion based on quantum technology, which realizes the mutual verification of AC quantum voltage and ultra-low frequency voltage AC-DC conversion, and combines DC quantum voltage technology,
  • the ultra-low frequency voltage is traced to the DC quantum voltage through AC-DC conversion, and the conversion result is compared with the AC quantum voltage, and the accuracy and uncertainty evaluation results of the ultra-low frequency voltage AC-DC conversion are verified to ensure the ultra-low frequency
  • the reliability of voltage AC-DC conversion solves the problem that the results of ultra-low frequency voltage AC-DC conversion cannot be verified.
  • Figure 1 is a block diagram of the ultra-low frequency voltage AC-DC conversion and quantum voltage comparison verification system.
  • quantum voltage generation system 1 low-frequency signal source 2, follower 3, switch 4, switch 5, switch 6, double heating wire thermoelectric converter 7, nanovolt meter 8, clock source 9, high-precision digital sampling system 10, upper computer 11.
  • the ultra-low frequency voltage AC-DC conversion verification system based on quantum technology consists of quantum voltage generation system 1, low frequency signal source 2, follower 3, switch 4, switch 5, switch 6, double heating wire thermoelectric converter 7, nanovolt meter 8, A clock source 9, a high-precision digital sampling system 10, and a host computer 11 are composed.
  • the switch 4 corresponds to the first switch
  • the switch 5 corresponds to the second switch
  • the switch 6 corresponds to the third switch.
  • Quantum voltage generation system 1 is connected to switch 4, switch 5, and channel B of high-precision digital sampling system 10 through follower 3
  • low-frequency signal source 2 is connected to switch 4, switch 5, and switch 6, and switch 6 is connected to high-precision digital sampling system 10.
  • the channel A of the system 10, the switch 4 and the switch 5 are connected to the double heating wire thermoelectric transducer 7, the double heating wire thermoelectric transducer 7 is connected to the nanovoltmeter 8, the clock source 9 is connected to the quantum voltage generation system 1, the low frequency signal source 2 and the The high-precision digital sampling system 10 is connected, and the upper computer 11 is connected with the quantum voltage generation system 1, the low-frequency signal source 2, the switch 4, the switch 5, the switch 6, the nanovolt meter 8 and the high-precision digital sampling system 10, so as to realize the automatic control of the system.
  • Quantum voltage generation system 1 provides AC quantum voltage U S and DC quantum voltage U D ;
  • the low-frequency signal source provides two low-frequency voltage signals U A1 and U A2 with equal amplitude and orthogonality;
  • the follower 3 is used to improve the carrying capacity of the quantum voltage system
  • Switch 4 and switch 5 are used to control the switching between the low-frequency voltage signal and the DC quantum voltage at the input end of the double heating wire thermoelectric converter 7;
  • the switch 6 is used to control the switching connection between the two low-frequency voltage signals U A1 and U A2 and the channel A of the high-precision digital sampling system 10;
  • the double heating wire thermoelectric converter 7 is used to realize the equivalent conversion between the low-frequency voltage signals U A1 and U A2 and the DC quantum voltage;
  • the nanovolt meter 8 is used to read the thermoelectric potential output by the dual heating wire thermoelectric transducer 7 under AC and DC states;
  • the clock source 9 provides a synchronous clock signal to realize the synchronous output of the quantum voltage generation system 1 and the low-frequency signal source 2, and the synchronous measurement of the high-precision digital sampling system 10;
  • the high-precision digital sampling system 10 is used to realize the precise measurement of the difference between the AC quantum voltage and the low-frequency voltage signal
  • the upper computer 11 is used to control the whole system to realize automatic measurement.
  • the upper computer 11 controls the switch 6 to switch so that the U A1 branch is connected to the channel A of the high-precision digital sampling system 10;
  • the quantum voltage generation system 1 is controlled by the host computer 11 to output an AC quantum voltage signal U S with an amplitude of 1V and a frequency of 0.1 Hz, which is input to the channel B of the high-precision digital sampling system 10 through the follower 3, and simultaneously controls the low-frequency signal source 2 Output two low-frequency orthogonal voltage signals U A1 and U A2 with an amplitude of 1V and a frequency of 0.1 Hz;
  • the upper computer 11 controls the switching of the switch 4 and the switch 5, so that the low-frequency voltage signals U A1 and U A2 are input to the double heating wire thermoelectric converter 7;
  • thermoelectric potential E A1 of the dual heating wire thermoelectric transducer output at this time by nanovolt meter 8;
  • the host computer 11 controls the output amplitude of the quantum voltage generation system 1 to be 1V, and the positive DC quantum voltage signal U D+ ;
  • the upper computer 11 controls the switching between the switch 4 and the switch 5, so that the positive DC quantum voltage signal U D+ is input to the double heating wire thermoelectric converter 7;
  • thermoelectric potential of double heating wire thermoelectric transducer is E D+ ;
  • the upper computer 11 controls the output amplitude of the quantum voltage generation system 1 to be 1V, and the negative DC quantum voltage signal U D- ;
  • thermoelectric potential of double heating wire thermoelectric transducer is E D- ;
  • the host computer 11 controls the quantum voltage generation system 1 to output the AC quantum voltage signal U S with an amplitude of 1V and a frequency of 0.1Hz again, and inputs it to the channel B of the high-precision digital sampling system 10 through the follower 3 to control the switch 4 and the switch 5 switch, and again make the low-frequency voltage signals U A1 and U A2 input to the double heating wire thermoelectric converter 7;
  • thermoelectric potential of double heating wire thermoelectric transducer is E A2 ;
  • the effective value U 1 of the ultra-low frequency voltage signal obtained through AC-DC conversion can be expressed as
  • One of the low-frequency signals U A1 output by the low-frequency signal source 2 can be expressed as
  • the upper computer 11 controls the switching of the switch 6, so that the U A2 branch is connected to the channel A of the high-precision digital sampling system 10, repeats the process B to M, and obtains the effective value U2 of the ultra-low frequency voltage signal through AC-DC conversion, which can be expressed as
  • Another low-frequency signal U A2 output by the low-frequency signal source 2 can be expressed as

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一种超低频电压交直流转换验证系统及方法,包括量子电压生成系统(1),低频信号源(2),跟随器(3),三个开关(4,5,6),双加热丝热电变换器(7),纳伏表(8),时钟源(9),高精度数字采样系统(10)以及上位机(11)。基于直流和交流量子电压技术,结合双加热丝热电变换器,将超低频电压通过交直流转换溯源至直流量子电压,并将转换结果与交流量子电压进行对比验证,对超低频电压交直流转换的精度及不确定度评估结果的合理性进行了验证,保证超低频电压交直流转换的可靠性,解决了超低频电压交直流转换结果无法验证的难题。

Description

一种基于量子技术的超低频电压交直流转换验证系统及方法 技术领域
本发明属于交流电压计量领域,具体涉及一种基于量子技术的超低频电压交直流转换验证系统及方法
背景技术
超低频电压信号精密测量在振动信号测量、新能源汽车动力电池计量研究以及高电压试验等领域均有广泛应用。振动信号的频率上限一般不超过10Hz,有些甚至在mHz量级,低频振动信号的测量往往是通过振动传感器转换为电信号测量实现;交流阻抗谱测试方法在新能源汽车锂离子动力电池的计量研究中正受到越来越多的关注,研究难点在于其超低频的准确性难以得到保证,需要建立超低频电压标准;此外,超低频电压技术在高电压试验中也具有广泛的应用前景,以0.1Hz的超低频电压取代50Hz工频电压在高电压试验中进行应用,具有明显的优越性和实用价值。建立超低频电压国家基准,实现超低频电压的量值溯源对促进低频振动信号精密测量、锂离子动力电池测试计量以及高电压试验等行业的发展具有重要意义。
超低频电压量值溯源是以双加热丝热电变换器作为参考标准,通过交直流转换实现的,将超低频电压溯源至直流电压基准。目前缺少一种验证超低频电压交直流转换精度的方法,造成无法对双加热丝热电变换器实现超低频电压交直流转换不确定度评估结果的合理性进行验证。随着超导量子技术的不断发展,合成交流量子电压已经实现,能成功合成可编程约瑟夫森交流量子电压(Programmable Josephson Voltage Standard,PJVS),其幅值准确度较高。本发明结合量子电压技术,提出一种超低频电压交直流转换验证系统及方法。
发明内容
本发明的目的在于解决上述现有技术中存在的难题,提供一种基于量子技术的超低频电压交直流转换验证系统及方法,对双加热丝热电变换器实现超低频电压交直流转换的精度以及不确定度评估结果的合理性进行验证,保证超低频电压交直流转换的可靠性。
本发明是通过以下技术方案实现的:
一种基于量子技术的超低频电压交直流转换验证系统,包括量子电压生成系统,低频信号源,跟随器,第一开关,第二开关,第三开关,双加热丝热电变换器,纳伏表,时钟源,高精度数字采样系统,上位机。量子电压生成系统通过跟随器分别与第一开关、第二开关以及高精度数字采样系统的B通道连接,低频信号源连接至第一开关、第二开关和第三开关,第三开关连接至高精度数字采样系统的通道A,第一开关和第二开关与双加热丝热电变换器连接,双加热丝热电变换器连接至纳伏表,时钟源与量子电压生成系统、低频信号源和高精度数字采样系统连接,上位机通过IEEE-488总线与量子电压生成系统、低频信号源、第一开关、第二开关、第三开关、纳伏表和高精度数字采样系统连接,实现系统自动化控制。
量子电压生成系统提供交流量子电压U S和直流量子电压U D
低频信号源提供两路幅值相等且正交的低频电压信号U A1和U A2
跟随器用于提高量子电压系统的带载能力;
第一开关和第二开关用于控制双加热丝热电变换器输入端低频电压信号与直流量子电压的切换;
第三开关用于控制两路低频电压信号U A1和U A2与高精度数字采样系统的通道A之间切换连接;
双加热丝热电变换器用于实现低频电压信号U A1和U A2与直流量子电压之间的 等效转换;
纳伏表用于读取双加热丝热电变换器在交流和直流状态下输出的热电势;
时钟源提供同步时钟信号,实现量子电压生成系统与低频信号源的同步输出,以及高精度数字采样系统的同步测量;
高精度数字采样系统用于实现交流量子电压与低频电压信号之间差值的精密测量;
上位机用于控制整个系统实现自动化测量。
基于量子技术的超低频电压交直流转换验证方法,包括以下步骤:
A.上位机控制第三开关切换使U A1支路与高精度数字采样系统的通道A连接;
B.由上位机控制量子电压生成系统输出交流量子电压信号U S,通过跟随器3输入至高精度数字采样系统的通道B,同时控制低频信号源输出两路幅值相等且正交的低频电压信号U A1和U A2,U A1、U A2、U S标称值均相等;
C.上位机控制第一开关和第二开关切换,使低频电压信号U A1和U A2输入至双加热丝热电变换器;
D.通过纳伏表读取此时双加热丝热电变换器输出热电势为E A1
E.通过高精度数字采样系统测量低频电压信号U A1与交流量子电压信号U S之间的相对误差Δ 1
F.上位机控制量子电压生成系统输出正的直流量子电压信号U D+,U D+与交流量子电压信号U S标称值相等;
G.上位机控制第一开关和第二开关切换,使正的直流量子电压信号U D+输入至双加热丝热电变换器;
H.通过纳伏表读取此时双加热丝热电变换器输出热电势为E D+
I.上位机控制量子电压生成系统输出负的直流量子电压信号U D-,U D-与U D+幅值相等;
J.通过纳伏表读取此时双加热丝热电变换器输出热电势为E D-
K.上位机控制量子电压生成系统再次输出交流量子电压信号U S,通过跟随器输入至高精度数字采样系统的通道B,控制第一开关和第二开关切换,再次使低频电压信号U A1和U A2输入至双加热丝热电变换器;
L.通过纳伏表读取此时双加热丝热电变换器输出热电势为E A2
M.通过高精度数字采样系统再次测量低频电压信号U A1与交流量子电压信号U S之间的相对误差Δ 2
N.通过交直流转换得到超低频电压信号有效值U 1可表示为
Figure PCTCN2022088663-appb-000001
低频信号源输出的其中一路低频信号U A1可表示为
Figure PCTCN2022088663-appb-000002
O.上位机11控制第三开关切换使U A2支路与高精度数字采样系统的通道A连接,重复过程B~M,通过交直流转换得到超低频电压信号有效值U 2可表示为
Figure PCTCN2022088663-appb-000003
低频信号源输出的另一路低频信号U A2可表示为
Figure PCTCN2022088663-appb-000004
P.定义
Figure PCTCN2022088663-appb-000005
则超低频电压交直流转换结果与交流量子电压之间的相对误差可表示为
Figure PCTCN2022088663-appb-000006
通过上述方法即可实现超低频电压交直流转换与交流量子电压之间的相互验证。
与现有技术相比,本发明提出了一种基于量子技术的超低频电压交直流转换验证系统及方法,实现了交流量子电压与超低频电压交直流转换的相互验证,结合直流量子电压技术,将超低频电压通过交直流转换溯源至直流量子电压,并将转换结果与交流量子电压进行比较,对超低频电压交直流转换的精度及不确定度评估结果的合理性进行了验证,保证超低频电压交直流转换的可靠性,解决了超低频电压交直流转换结果无法验证的难题。
附图说明:
图1为超低频电压交直流转换与量子电压对比验证系统框图。
附图标记:量子电压生成系统1,低频信号源2,跟随器3,开关4,开关5,开关6,双加热丝热电变换器7,纳伏表8,时钟源9,高精度数字采样系统10,上位机11。
具体实施方式:
下面结合附图和实施例对发明做进一步的详细说明:
基于量子技术的超低频电压交直流转换验证系统由量子电压生成系统1,低频信号源2,跟随器3,开关4,开关5,开关6,双加热丝热电变换器7,纳伏表8,时钟源9,高精度数字采样系统10,上位机11组成。其中,开关4对应为第一开关,开关5对应为第二开关,开关6对应为第三开关。量子电压生成系统1通过跟随器3分别与开关4、开关5以及高精度数字采样系统10的通道B连接,低频信号源2连接至开关4、开关5和开关6,开关6连接至高精度数字采样系统10的通道A,开关4和开关5与双加热丝热电变换器7连接,双加热丝热电变换器7连接至纳伏表8,时钟源9与量子电压生成系统1、低频信号 源2和高精度数字采样系统10连接,上位机11与量子电压生成系统1、低频信号源2、开关4、开关5、开关6、纳伏表8和高精度数字采样系统10连接,实现系统自动化控制。
量子电压生成系统1提供交流量子电压U S和直流量子电压U D
低频信号源提供两路幅值相等且正交的低频电压信号U A1和U A2
跟随器3用于提高量子电压系统的带载能力;
开关4和开关5用于控制双加热丝热电变换器7输入端低频电压信号与直流量子电压的切换;
开关6用于控制两路低频电压信号U A1和U A2与高精度数字采样系统10的通道A之间切换连接;
双加热丝热电变换器7用于实现低频电压信号U A1和U A2与直流量子电压之间的等效转换;
纳伏表8用于读取双加热丝热电变换器7在交流和直流状态下输出的热电势;
时钟源9提供同步时钟信号,实现量子电压生成系统1与低频信号源2的同步输出,以及高精度数字采样系统10的同步测量;
高精度数字采样系统10用于实现交流量子电压与低频电压信号之间差值的精密测量;
上位机11用于控制整个系统实现自动化测量。
下面以幅值为1V、频率为0.1Hz的超低频电压为例,阐述基于量子技术的超低频电压交直流转换验证方法。
A.上位机11控制开关6切换使U A1支路与高精度数字采样系统10的通道A连接;
B.由上位机11控制量子电压生成系统1输出幅值为1V,频率为0.1Hz的交流量子电压信号U S,通过跟随器3输入至高精度数字采样系统10的通道B,同时控制低频信号源2输出两路幅值为1V,频率为0.1Hz的低频正交电压信号U A1和U A2
C.上位机11控制开关4和开关5切换,使低频电压信号U A1和U A2输入至双加热丝热电变换器7;
D.通过纳伏表8读取此时双加热丝热电变换器输出的热电势E A1
E.通过高精度数字采样系统10测量低频电压信号U A1与交流量子电压信号U S之间的相对误差Δ 1
F.上位机11控制量子电压生成系统1输出幅值为1V,正的直流量子电压信号U D+
G.上位机11控制开关4和开关5切换,使正的直流量子电压信号U D+输入至双加热丝热电变换器7;
H.通过纳伏表8读取此时双加热丝热电变换器输出热电势为E D+
I.上位机11控制量子电压生成系统1输出幅值为1V,负的直流量子电压信号U D-
J.通过纳伏表8读取此时双加热丝热电变换器输出热电势为E D-
K.上位机11控制量子电压生成系统1再次输出幅值为1V、频率为0.1Hz的交流量子电压信号U S,通过跟随器3输入至高精度数字采样系统10的通道B,控制开关4和开关5切换,再次使低频电压信号U A1和U A2输入至双加热丝热电变换器7;
L.通过纳伏表8读取此时双加热丝热电变换器输出热电势为E A2
M.通过高精度数字采样系统10再次测量低频电压信号U A1与交流量子电压 信号U S之间的相对误差Δ 2
N.通过交直流转换得到超低频电压信号有效值U 1可表示为
Figure PCTCN2022088663-appb-000007
低频信号源2输出的其中一路低频信号U A1可表示为
Figure PCTCN2022088663-appb-000008
O.上位机11控制开关6切换,使U A2支路与高精度数字采样系统10的通道A连接,重复过程B~M,通过交直流转换得到超低频电压信号有效值U 2可表示为
Figure PCTCN2022088663-appb-000009
低频信号源2输出的另一路低频信号U A2可表示为
Figure PCTCN2022088663-appb-000010
P.定义
Figure PCTCN2022088663-appb-000011
则超低频电压交直流转换结果与交流量子电压之间的相对误差可表示为
Figure PCTCN2022088663-appb-000012
通过上述过程即可实现幅值为1V、频率为0.1Hz的超低频电压交直流转换与交流量子电压之间的相互验证。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种基于量子技术的超低频电压交直流转换验证系统,其特征在于:所述系统包括量子电压生成系统(1),低频信号源(2),跟随器(3),第一开关(4),第二开关(5),第三开关(6),双加热丝热电变换器(7),纳伏表(8),时钟源(9),高精度数字采样系统(10),上位机(11),其中量子电压生成系统(1)通过跟随器(3)分别与第一开关(4)、第二开关(5)以及高精度数字采样系统(10)的通道B连接,低频信号源(2)连接至第一开关(4)、第二开关(5)和第三开关(6),第三开关(6)连接至高精度数字采样系统(10)的通道A,第一开关(4)和第二开关(5)与双加热丝热电变换器(7)连接,双加热丝热电变换器(7)连接至纳伏表(8),时钟源(9)与量子电压生成系统(1)、低频信号源(2)和高精度数字采样系统(10)连接,上位机(11)与量子电压生成系统(1)、低频信号源(2)、第一开关(4)、第二开关(5)、第三开关(6)、纳伏表(8)和高精度数字采样系统(10)连接,其中,量子电压生成系统(1)提供交流量子电压U S和直流量子电压U D;低频信号源(2)提供两路幅值相等且正交的低频电压信号U A1和U A2;跟随器(3)用于提高量子电压系统的带载能力;第一开关(4)和第二开关(5)用于控制双加热丝热电变换器(7)输入端低频电压信号与直流量子电压的切换;第三开关(6)用于控制两路低频电压信号U A1和U A2与高精度数字采样系统(10)的通道A之间切换连接;双加热丝热电变换器(7)用于实现低频电压信号U A1和U A2与直流量子电压之间的等效转换;纳伏表(8)用于读取双加热丝热电变换器(7)在交流和直流状态下输出的热电势;时钟源(9)提供同步时钟信号,实现量子电压生成系统(1)与低频信号源(2)的同步输出,以及高精度数字采样系统(10)的同步测量;高精度数字采样系统(10)用于实现交流量 子电压与低频电压信号之间差值的精密测量;上位机(11)用于控制整个系统实现自动化测量。
  2. 根据权利要求1所述的一种基于量子技术的超低频电压交直流转换验证系统,其特征在于:上位机(11)通过IEEE-488总线与量子电压生成系统(1)、低频信号源(2)、第一开关(4)、第二开关(5)、第三开关(6)、纳伏表(8)和高精度数字采样系统(10)连接。
  3. 一种基于权利要求1或2所述的基于量子技术的超低频电压交直流转换验证系统的超低频电压交直流转换验证方法,其特征在于,所述验证方法包括以下步骤:
    A.上位机(11)控制第三开关(6)切换使U A1支路与高精度数字采样系统(10)的通道A连接;
    B.由上位机(11)控制量子电压生成系统(1)输出交流量子电压信号U S,通过跟随器(3)输入至高精度数字采样系统(10)的通道B,同时控制低频信号源(2)输出两路幅值相等且正交的低频电压信号U A1和U A2,U A1、U A2、U S标称值均相等;
    C.上位机(11)控制第一开关(4)和第二开关(5)切换,使低频电压信号U A1和U A2输入至双加热丝热电变换器(7);
    D.通过纳伏表(8)读取此时双加热丝热电变换器输出热电势为E A1
    E.通过高精度数字采样系统(10)测量低频电压信号U A1与交流量子电压信号U S之间的相对误差Δ 1
    F.上位机(11)控制量子电压生成系统(1)输出正的直流量子电压信号U D+,U D+与交流量子电压信号U S标称值相等;
    G.上位机(11)控制第一开关(4)和第二开关(5)切换,使正的直 流量子电压信号U D+输入至双加热丝热电变换器(7);
    H.通过纳伏表(8)读取此时双加热丝热电变换器输出热电势为E D+
    I.上位机(11)控制量子电压生成系统(1)输出负的直流量子电压信号U D-,U D-与U D+幅值相等;
    J.通过纳伏表(8)读取此时双加热丝热电变换器输出热电势为E D-
    K.上位机(11)控制量子电压生成系统(1)再次输出交流量子电压信号U S,通过跟随器(3)输入至高精度数字采样系统(10)的通道B,控制第一开关(4)和第二开关(5)切换,再次使低频电压信号U A1和U A2输入至双加热丝热电变换器(7);
    L.通过纳伏表(8)读取此时双加热丝热电变换器输出热电势为E A2
    M.通过高精度数字采样系统(10)再次测量低频电压信号U A1与交流量子电压信号U S之间的相对误差Δ 2
    N.通过交直流转换得到超低频电压信号有效值U 1
    O.上位机(11)控制第三开关(6)切换使U A2支路与高精度数字采样系统(10)的通道A连接,重复过程B~M,通过交直流转换得到超低频电压信号有效值U 2
    P.计算超低频电压交直流转换结果与交流量子电压之间的相对误差。
  4. 一种基于权利要求3所述的基于量子技术的超低频电压交直流转换验证系统的超低频电压交直流转换验证方法,其特征在于,
    步骤N中,通过交直流转换得到的超低频电压信号有效值U 1可表示为
    Figure PCTCN2022088663-appb-100001
    低频信号源(2)输出的其中一路低频信号U A1可表示为
    Figure PCTCN2022088663-appb-100002
    步骤O中,通过交直流转换得到的超低频电压信号有效值U 2可表示为
    Figure PCTCN2022088663-appb-100003
    低频信号源(2)输出的另一路低频信号U A2可表示为
    Figure PCTCN2022088663-appb-100004
  5. 一种基于权利要求4所述的基于量子技术的超低频电压交直流转换验证系统的超低频电压交直流转换验证方法,其特征在于,
    步骤P中,定义
    Figure PCTCN2022088663-appb-100005
    则超低频电压交直流转换结果与交流量子电压之间的相对误差可表示为
    Figure PCTCN2022088663-appb-100006
PCT/CN2022/088663 2021-09-14 2022-04-24 一种基于量子技术的超低频电压交直流转换验证系统及方法 WO2023040264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/788,291 US20240168066A1 (en) 2021-09-14 2022-04-24 System and method for verifying alternating current (ac)/direct current (dc) conversion of ultralow-frequency voltage based on quantum technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111073057.0A CN113687135B (zh) 2021-09-14 2021-09-14 一种基于量子技术的超低频电压交直流转换验证系统及方法
CN202111073057.0 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023040264A1 true WO2023040264A1 (zh) 2023-03-23

Family

ID=78586364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088663 WO2023040264A1 (zh) 2021-09-14 2022-04-24 一种基于量子技术的超低频电压交直流转换验证系统及方法

Country Status (3)

Country Link
US (1) US20240168066A1 (zh)
CN (1) CN113687135B (zh)
WO (1) WO2023040264A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687135B (zh) * 2021-09-14 2023-03-07 中国计量科学研究院 一种基于量子技术的超低频电压交直流转换验证系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520237A (zh) * 2011-12-19 2012-06-27 北京东方计量测试研究所 一种数字式交直流电流转换测量装置和方法
JP2014109525A (ja) * 2012-12-03 2014-06-12 National Institute Of Advanced Industrial & Technology 熱雑音温度計及びそれに用いる基準雑音電圧発生器
CN105628992A (zh) * 2015-12-25 2016-06-01 北京无线电计量测试研究所 一种量子超低频电压源
CN106771556A (zh) * 2016-12-23 2017-05-31 中国计量科学研究院 一种基于量子技术的交流功率差分测量系统及方法
CN109239643A (zh) * 2018-11-05 2019-01-18 国网江苏省电力有限公司电力科学研究院 基于量子电压的数字化电能计量仪器检测方法及系统
CN111537932A (zh) * 2019-09-23 2020-08-14 中国计量科学研究院 一种建立超低频电压标准及实现量值传递的系统及方法
US20200373475A1 (en) * 2019-05-21 2020-11-26 Government Of The United States Of America, As Represented By The Secretary Of Commerce Josephson voltage standard
CN112162231A (zh) * 2020-09-30 2021-01-01 中国电力科学研究院有限公司 一种用于电子式互感器校验仪的校准系统及方法
CN113687135A (zh) * 2021-09-14 2021-11-23 中国计量科学研究院 一种基于量子技术的超低频电压交直流转换验证系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520237A (zh) * 2011-12-19 2012-06-27 北京东方计量测试研究所 一种数字式交直流电流转换测量装置和方法
JP2014109525A (ja) * 2012-12-03 2014-06-12 National Institute Of Advanced Industrial & Technology 熱雑音温度計及びそれに用いる基準雑音電圧発生器
CN105628992A (zh) * 2015-12-25 2016-06-01 北京无线电计量测试研究所 一种量子超低频电压源
CN106771556A (zh) * 2016-12-23 2017-05-31 中国计量科学研究院 一种基于量子技术的交流功率差分测量系统及方法
CN109239643A (zh) * 2018-11-05 2019-01-18 国网江苏省电力有限公司电力科学研究院 基于量子电压的数字化电能计量仪器检测方法及系统
US20200373475A1 (en) * 2019-05-21 2020-11-26 Government Of The United States Of America, As Represented By The Secretary Of Commerce Josephson voltage standard
CN111537932A (zh) * 2019-09-23 2020-08-14 中国计量科学研究院 一种建立超低频电压标准及实现量值传递的系统及方法
CN112162231A (zh) * 2020-09-30 2021-01-01 中国电力科学研究院有限公司 一种用于电子式互感器校验仪的校准系统及方法
CN113687135A (zh) * 2021-09-14 2021-11-23 中国计量科学研究院 一种基于量子技术的超低频电压交直流转换验证系统及方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIA ZHENGSEN, WANG LEI; ZHANG JIANGTAO; PAN XIANLIN; SHI ZHAOMIN; HE QING: "Application of AC Josephson Quantum Voltage in Electromagnetic Measurement", MEASUREMENT TECHNIQUE, no. 8, 31 August 2020 (2020-08-31), XP093047890, ISSN: 1000-0771, DOI: 10.3969/j.issn.1000-0771.2020.08.09 *
SHI ZHAOMIN |, JIANGTAO ZHANG, XIANLIN PAN, YING SONG: "Analysis on the key parameters of ac-dc transfer system for ultra-low frequency voltage", CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT, vol. 41, no. 11, 30 November 2020 (2020-11-30), pages 82 - 89, XP093047894, DOI: 10.19650/j.cnki.cjsi.J2006609 *
SHI ZHAOMIN, ZHANG JIANGTAO; PAN XIANLIN; SONG YING: "Research on Key Technologies of Ultra-Low Frequency Voltage Traceability", METROLOGY SCIENCE AND TECHNOLOGY, vol. 65, no. 5, 31 May 2021 (2021-05-31), pages 30 - 35, XP093047896, ISSN: 2096-9015, DOI: 10.12338/j.issn.2096-9015.2020.9011 *
SHI ZHAOMIN; ZHANG JIANGTAO; PAN XIANLIN; JIA ZHENGSEN; SONG YING; MA XUEFENG; HE QING: "AC-DC Transfer System for Ultra-low Frequency Voltage", 2020 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM), IEEE, 24 August 2020 (2020-08-24), pages 1 - 2, XP033823733, DOI: 10.1109/CPEM49742.2020.9191901 *

Also Published As

Publication number Publication date
CN113687135A (zh) 2021-11-23
CN113687135B (zh) 2023-03-07
US20240168066A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
Filipski A new approach to reactive current and reactive power measurement in nonsinusoidal systems
CN102928810A (zh) 一种数字电能表准确度评估系统及其方法
CN105203983A (zh) 基于混合采样的柔性交直流电子式互感器校验装置
CN102981049B (zh) 一种用于微电网系统的频率检测方法
CN205067713U (zh) 基于混合采样的柔性交直流电子式互感器校验装置
WO2023040264A1 (zh) 一种基于量子技术的超低频电压交直流转换验证系统及方法
CN203069774U (zh) 一种数字电能表准确度评估系统
CN102062849A (zh) 一种直流电能表检定装置及方法
CN106646334B (zh) 一种用于对电能表计量误差进行计算的方法及系统
CN103543323A (zh) 大直流充放电设施电流检测装置
CN102998502B (zh) 高隔离耐压型双向信号传感器
CN104237837A (zh) 电流互感器比差角差检测系统及检测方法
CN110554328B (zh) 一种基于hht的蓄电池内阻测量方法和系统
CN103901389A (zh) 模拟电工/电子信号及数字信号电能表校验装置及方法
CN202939299U (zh) 一种基于同步脉冲输出电源的电子式互感器校验装置
CN112924883A (zh) 一种基于dc/ac的电池阻抗谱在线检测系统及检测方法
CN202886585U (zh) 一种电压或电流互感器在线测试装置
CN104345218B (zh) 三相电抗器电抗值测量系统及方法
CN111537932B (zh) 一种建立超低频电压标准及实现量值传递的系统及方法
CN204065387U (zh) 一种同步调解器以及包含此同步解调器的功率标准源
CN207937587U (zh) 一种电子互感器的检测装置及检测系统
Spasojevic The time domain method for power line reactive energy measurement
CN202333839U (zh) 分布式电源抗谐波同步控制系统
CN103713185B (zh) 交流变频电机的机端电压测量装置
CN106771578A (zh) 电能表的电能信号的非整周期采样方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17788291

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE