WO2023039960A1 - 带冷却的泵浦源系统 - Google Patents

带冷却的泵浦源系统 Download PDF

Info

Publication number
WO2023039960A1
WO2023039960A1 PCT/CN2021/122666 CN2021122666W WO2023039960A1 WO 2023039960 A1 WO2023039960 A1 WO 2023039960A1 CN 2021122666 W CN2021122666 W CN 2021122666W WO 2023039960 A1 WO2023039960 A1 WO 2023039960A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
cooling
source system
optical path
fiber
Prior art date
Application number
PCT/CN2021/122666
Other languages
English (en)
French (fr)
Inventor
邹家春
韩靖
丁明星
姚荣康
Original Assignee
杭州沪宁亮源激光器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州沪宁亮源激光器件有限公司 filed Critical 杭州沪宁亮源激光器件有限公司
Publication of WO2023039960A1 publication Critical patent/WO2023039960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping

Definitions

  • the invention belongs to the field of laser technology, and in particular relates to a cooling pump source system.
  • the bottleneck that limits the production capacity to the greatest extent lies in the debugging of FAC.
  • the debugging time of many different equipment in the industry is also 2.5min-5min each, and all adopt the way of UV glue curing.
  • the whole production The beat speed is not ideal, and the deformation of the glue curing is difficult to control perfectly, and the investment in equipment is huge.
  • the heat sinks have high requirements on surface accuracy, complex structures, and poor thermal conductivity, which also brings a certain degree of cost pressure.
  • a Chinese patent document with application number CN201910316322.X describes a turntable solid-state laser and its water-cooling method, including a pump source, a coupling system, and a gain medium that are sequentially connected in an optical path, and the pump light of the pump source Injecting into the gain area at the edge of the gain medium, and the gain medium rotates around the center of the gain area while keeping the direction of the gain medium unchanged; a water cooling mechanism, the side of the gain medium is sealed in the water cooling mechanism, and It is in direct contact with the cooling liquid in the water-cooling mechanism to take away the heat in the gain medium.
  • the present invention aims to overcome the problems of complex structure, poor heat conduction effect and high cost pressure in the existing pumping source system that adopts water-through heat sink for heat conduction, and provides a cost-saving, good cooling and heat conduction effect. , a cooling pump source system that can improve the stability of optical power and extend the life of the laser.
  • a pump source system with cooling including a base, a PBS assembly on the base, a fiber-in coupling assembly, a stray light absorption block, and several sets of optical path module assemblies; the area where the PBS assembly and each set of optical path module assemblies is installed on the base Holes are provided at the bottom for direct contact between the PBS component and each group of optical path module components and the cooling medium.
  • the optical path module assembly includes a module seat, COS elements and FAC lenses respectively arranged on both ends of the module seat; the FAC lens is located in the light emitting direction of the COS element; a SAC is fixedly installed in the middle of the module seat Mirrors and reflectors; COS elements located at both ends of the module base are misaligned with each other.
  • the base includes a bottom plate and a fixing seat fixed on the middle of the bottom plate; the PBS component, the fiber-in coupling component and the stray light absorption block are all fixed on the fixing seat; the PBS component is close to the stray light absorption block; The fiber-in coupling component is located in the light-emitting direction of the PBS component; each group of optical path module components is fixedly installed on both sides of the fixing seat.
  • the fiber-in coupling assembly includes a lens base and a focusing lens arranged on the lens base.
  • a beam expander is provided in the incident light direction of the fiber-in coupling component.
  • it also includes an optical fiber and an electrode; the end face of the optical fiber is arranged at the focal point of the light emitting direction of the focusing lens; the electrode is fixed on the base; the optical fiber and the electrode are respectively located at corresponding positions on the base.
  • a reflector array is further provided on the fixing base, and the reflector array includes at least one reflector.
  • it also includes a shell; the shell is located above the base and fixedly connected with the base.
  • the openings provided under each group of optical path module assemblies correspond to the positions of the two ends of each group of optical path module assemblies.
  • each group of optical path module components and PBS components are sealed with the base.
  • the present invention has the beneficial effects as follows: (1) The present invention separates the two chips of the same layer in the traditional pump source as a single module, and adds a cylindrical mirror auxiliary installation structure, improves the adjustment accuracy, and greatly improves the process operation Efficiency and cost saving; (2) The present invention is aimed at pumping source products of different powers, and only needs to switch some parts, which is convenient for product serialization; (3) The present invention provides direct contact with the cooling medium to reduce the temperature of the chip heat source , can greatly improve the stability of optical power and prolong the life of the laser; (4) The componentization of the present invention is more suitable for the manufacturing process to realize batch production, and provides favorable conditions for intelligent production lines; (5) The present invention uses a single set of optical paths The method of debugging and reassembling the module components solves the bottleneck problems of long FAC adjustment time, low precision, and high optical loss, improves the debugging accuracy and greatly improves the production efficiency, and can also be combined according to different power requirements, and then through integrated cooling System boost performance and lifetime reliability
  • Fig. 1 is a kind of structural representation of the pump source system with cooling of the present invention
  • Fig. 2 is a kind of structural representation of base in the present invention.
  • Fig. 3 is a kind of structural representation of optical path module assembly in the present invention.
  • Fig. 4 is a front view of the fiber-in coupling assembly in the present invention.
  • Fig. 5 is a side view of the fiber-in coupling assembly in the present invention
  • Fig. 6 is a rear view of the cooling pump source system of the present invention.
  • base 1 PBS component 2, fiber coupling component 3, stray light absorption block 4, optical path module component 5, opening 6, bottom plate 7, mirror array 8, module seat 9, COS element 10, FAC lens 11 , SAC lens 12, mirror 13, lens base 14, focusing lens 15, optical fiber 16, electrode 17.
  • the cooling pump source system shown in Figure 1 and Figure 6 includes a base 1, a PBS assembly 2 located on the base, a fiber-in coupling assembly 3, a stray light absorption block 4 and several groups of optical path module assemblies 5; Openings 6 are provided below the area where the PBS components and each group of optical path module components are installed on the base, for making the PBS component and each group of optical path module components directly contact with the cooling water.
  • the heating of the pump source directly affects the power stability of the entire output light and the life of chip components.
  • the structure of the present invention is to make the circulating cooling medium into the pump source, and directly cool the light source and the place where the heat gathers, so that the light source is always kept at the optimal temperature, so as to ensure the stability of the light output from the pump source and chip components. lifespan.
  • the base includes a bottom plate 7 and a fixing seat fixed on the middle of the bottom plate; the PBS component, the fiber-in coupling component and the stray light absorption block are all fixed on the fixing seat; the PBS component close to the stray light absorbing block; the fiber-in coupling component is located in the light output direction of the PBS component; each group of optical path module components is fixedly installed on both sides of the fixing seat.
  • the base is made of materials with good corrosion resistance and good thermal conductivity, which meet the strength requirements.
  • Each component and the positioning surface of the lens are precision-machined; the base can be installed and fixed in the water storage tank to form two independent closed areas, one for circulating medium The other is the optical path area after the installation of each group of optical path module components; holes are made under the fixed single set of optical path module components and PBS components, so that the heating element components are in direct contact with the circulating medium, and part of the heat is taken away by the circulating medium. So as to achieve rapid and effective cooling.
  • each group of optical path module components and PBS components are sealed with the base. Use a special process to seal each group of optical path module components, PBS components and bases to prevent circulating media from entering the optical path area.
  • the optical path module assembly includes a module seat 9, a COS element 10 and a FAC lens 11 respectively arranged on both ends of the module seat; the FAC lens is located in the light emitting direction of the COS element; the A SAC lens 12 and a reflector 13 are fixedly installed in the middle of the module seat; the COS elements located at both ends of the module seat are misaligned with each other.
  • the position of the FAC lens relative to the COS element is the most important. Usually, it needs to be adjusted in the 6-axis direction in the spatial area. The whole process is the most important. Difficult and time-consuming; in order to solve this problem, the present invention adopts the optical path module assembly, so that the structure of the module seat can be designed, and the processing accuracy can be used to ensure that some directions do not need to be adjusted.
  • the fiber-in coupling assembly includes a lens base 14 and a focusing lens 15 disposed on the lens base.
  • a beam expander is provided in the incident light direction of the fiber-in coupling component.
  • the front beam expander expands the beam in the direction of the slow axis to achieve a reasonable beam size before entering the fiber and the focal spot size of the fiber entering.
  • the rear focusing lens directly affects the final fiber entry efficiency, which is also very important.
  • the fiber entry coupling component adjusts the 4-axis direction of the lens Utilizing the processing accuracy guarantee of the lens base, only need to adjust the 1-axis direction to achieve the best fiber insertion effect, making the dimming process more concise and faster.
  • the invention is not limited to the use of such fiber-in coupling components.
  • the pump source system with cooling also includes an optical fiber 16 and an electrode 17; the end face of the optical fiber is arranged on the focal point of the light-emitting direction of the focusing lens; the electrode is fixed on the base; the optical fiber and the electrode are respectively located at the corresponding position on the base.
  • the fixed seat is further provided with a reflector array 8, and the reflector array includes at least one reflector.
  • the reflecting mirror is correspondingly arranged in the light emitting direction of the SAC mirror (slow axis collimating lens).
  • each group of optical path module assemblies correspond to the positions of the two ends of each group of optical path module assemblies. Both ends of the optical path module assembly are provided with a light source, so that the bottom of the light source is directly in contact with the cooling water, which can better play a cooling role.
  • the pump source system with cooling also includes a casing; the casing is located above the base and is fixedly connected to the base.
  • the interior of the shell is black as a whole, and after absorbing heat, the heat is exported through water to ensure a temperature stability in the shell.
  • the invention separates the two chips of the same layer in the traditional pump source as a single module, and adds a cylindrical mirror auxiliary installation structure to improve the adjustment accuracy, greatly improve the working efficiency of the process, and save costs; the invention aims at different power pump source products, It is only necessary to switch some parts, which is convenient for product serialization; the invention provides direct contact with cooling water to reduce the temperature of the chip heat source, which can greatly improve the stability of optical power and prolong the life of the laser; the componentization of the invention is more suitable for The manufacturing process realizes mass production, which provides favorable conditions for intelligent production lines.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明属于激光技术领域,具体涉及带冷却的泵浦源系统。带冷却的泵浦源系统包括底座、设于底座上的PBS组件、入纤耦合组件、杂光吸收块和若干组光路模块组件;所述底座上安装PBS组件和各组光路模块组件的区域下方均设有开孔,用于使PBS组件和各组光路模块组件与冷却介质直接接触。本发明具有节约成本,冷却导热效果好,有效提高光功率的稳定性且延长激光器寿命的特点。

Description

带冷却的泵浦源系统 技术领域
本发明属于激光技术领域,具体涉及带冷却的泵浦源系统。
背景技术
随着单管芯片的发展,单管芯片的功率越来越高,对于COS的冷却要求也日益增加,目前市场上单个芯片的功率已经达到25-30瓦,日后将会达到更高,而温度对于芯片的寿命和性能密切相关。所以我们迫切的需要一种方法来更好的对COS进行散热,也为未来超大功率COS的散热打下基础。另外随着模块总功率的增加,壳体内的杂光加热壳体对于整个系统的稳定性也带来了挑战,所以市场上都在寻求一种手段将多余热量迅速导出机壳,以此保证整个泵浦源处于一个较低的安全工作温度。
对于整个泵浦源行业的产品生产,最大程度限制产能的瓶颈在于FAC的调试,行业内多款不同设备的调试时间也均在2.5min-5min一个,且均采用UV胶水固化的方式,整个生产节拍速度很不理想,胶水固化的变形也难以完美的控制,设备投入巨大。
目前行业内大多数的光纤激光器厂家均需要自制通水热沉,热沉对表面精度有很高的要求,且结构复杂,导热效果不佳,也带来了一定程度的成本压力。
因此,设计一种节约成本,冷却导热效果好,能够提高光功率的稳定性且延长激光器寿命的带冷却的泵浦源系统,就显得十分必要。
例如,申请号为CN201910316322.X的中国专利文献描述的一种转盘式固体激光器及其水冷方法,包括依次成光路连接的泵浦源、耦合系统和增益介质,所述泵浦源的泵浦光射入该增益介质边缘的增益区域内,且所述增益介质绕该增益区域的中心旋转,同时保持增益介质的方向不变;水冷机构,所述增益介 质的侧面密封于该水冷机构中,并与水冷机构中的冷却液体直接接触,以带走增益介质中的热量。虽然固体激光器,水冷圆盘取代一般端面泵浦激光器的固定增益介质,大大提高注入泵浦功率,同时避免固体激光器的热效应瓶颈,大大提高激光器输出功率以及激光放大器的放大倍率,但是其缺点在于,由于上述方法采用增益介质与水冷机构中的冷却液体直接接触,以带走增益介质中的热量,而实际激光器位于泵浦源内,因此总体冷却效果欠佳,无法提高光功率稳定性以及延长激光器寿命,同时增加了成本。
发明内容
本发明是为了克服现有技术中,现有对泵浦源系统采用通水热沉导热,存在结构复杂,导热效果不佳,成本压力大的问题,提供了一种节约成本,冷却导热效果好,能够提高光功率的稳定性且延长激光器寿命的带冷却的泵浦源系统。
为了达到上述发明目的,本发明采用以下技术方案:
带冷却的泵浦源系统,包括底座、设于底座上的PBS组件、入纤耦合组件、杂光吸收块和若干组光路模块组件;所述底座上安装PBS组件和各组光路模块组件的区域下方均设有开孔,用于使PBS组件和各组光路模块组件与冷却介质直接接触。
作为优选,所述光路模块组件包括模块座、均分别设于模块座两端上的COS元件和FAC镜片;所述FAC镜片位于COS元件的出光方向上;所述模块座的中部固定安装有SAC镜片和反射镜;分别位于模块座两端上的COS元件相互错位。
作为优选,所述底座包括底板和固定于底板中部上的固定座;所述PBS组件、入纤耦合组件和杂光吸收块均固定于固定座上;所述PBS组件紧靠杂光吸收块;所述入纤耦合组件位于PBS组件的出光方向上;各组光路模块组件固定安装于固定座的两侧。
作为优选,所述入纤耦合组件包括透镜底座和设于透镜底座上的聚焦透镜。
作为优选,所述入纤耦合组件的入射光方向上设有扩束器。
作为优选,还包括光纤和电极;所述光纤的端面设置在所述聚焦透镜的出光方向的焦点上;所述电极固定于底座上;所述光纤和电极分别位于底座相对应的位置。
作为优选,所述固定座上还设有反射镜阵列,所述反射镜阵列包括至少一个反射镜。
作为优选,还包括外壳;所述外壳位于底座上方且与底座固定连接。
作为优选,各组光路模块组件下方设有的开孔,均与各组光路模块组件的两端所处的位置对应。
作为优选,各组光路模块组件和PBS组件均与底座密封。
本发明与现有技术相比,有益效果是:(1)本发明将传统泵浦源内同层二芯片作为单一模块分离出来,并增加柱面镜辅助安装结构,提高调整精度,大大提高工序作业效率,节约成本;(2)本发明针对不同功率的泵浦源产品,只需切换部分零件即可,方便产品系列化;(3)本发明提供直接与冷却介质接触,来降低芯片发热源温度,能够大幅度提高光功率的稳定性且延长激光器寿命;(4)本发明组件化更宜于制造过程实现批量化生产,为智能化产线提供有利条件;(5)本发明采用单组光路模块组件调试再装配的方式,解决了FAC调整时间长、精度低、光损失多的瓶颈问题,提高了调试精度和极大提高了生产效率,也可以根据不同功率需要进行组合,再通过集成冷却系统提升性能和寿命可靠性。
附图说明
图1为本发明带冷却的泵浦源系统的一种结构示意图;
图2为本发明中底座的一种结构示意图;
图3为本发明中光路模块组件的一种结构示意图;
图4为本发明中入纤耦合组件的一种正视图;
图5为本发明中入纤耦合组件的一种侧视图
图6为本发明带冷却的泵浦源系统的一种背视图。
图中:底座1、PBS组件2、入纤耦合组件3、杂光吸收块4、光路模块组件5、开孔6、底板7、反射镜阵列8、模块座9、COS元件10、FAC镜片11、SAC镜片12、反射镜13、透镜底座14、聚焦透镜15、光纤16、电极17。
具体实施方式
为了更清楚地说明本发明实施例,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
实施例1:
如图1和图6所示的带冷却的泵浦源系统,包括底座1、设于底座上的PBS组件2、入纤耦合组件3、杂光吸收块4和若干组光路模块组件5;所述底座上安装PBS组件和各组光路模块组件的区域下方均设有开孔6,用于使PBS组件和各组光路模块组件与冷却水直接接触。
泵浦源的发热直接影响到整个出光的功率稳定性和芯片元器件的寿命。本发明结构是将循环的冷却的介质做到泵浦源内,直接给发光源和热量聚集处冷却,使发光源一直保持在最佳的温度,才能保证泵浦源出光的稳定性和芯片元器件的寿命。
进一步的,如图2所示,所述底座包括底板7和固定于底板中部上的固定座;所述PBS组件、入纤耦合组件和杂光吸收块均固定于固定座上;所述PBS组件紧靠杂光吸收块;所述入纤耦合组件位于PBS组件的出光方向上;各组光路模块组件固定安装于固定座的两侧。
底座由耐腐蚀性能且导热性能好,满足强度要求的材料制成,每个组件和镜片定位面经精密加工;底座可安装固定在储水箱里,可形成两个独立封闭区域,一个是循环介质区域,另一个是各组光路模块组件安装后的光路区域;在固定单组光路模块组件和PBS组件的下方开孔,使发热体组件与循环介质直接接触,利用循环介质将部分热量带走,从而达到快速有效的降温。
进一步的,各组光路模块组件和PBS组件均与底座密封。利用特殊工艺方法将各组光路模块组件,PBS组件与底座密封,阻止循环介质进入光路区域。
进一步的,如图3所示,所述光路模块组件包括模块座9、均分别设于模块座两端上的COS元件10和FAC镜片11;所述FAC镜片位于COS元件的出光方向上;所述模块座的中部固定安装有SAC镜片12和反射镜13;分别位于模块座两端上的COS元件相互错位。其中,SAC镜片和反射镜各有两个。
光路模块组件在传统泵浦源的生产过程中,为保证出光效果最好,FAC镜片相对COS元件的位置是最重要的,通常需要在空间区域通过6轴方向的调整来完成,整个过程是最难的,也是耗时最长的;为了解决这一问题,本发明采用了光路模块组件的方式,这样就可以设计模块座的结构,利用加工精度保证部分方向不需要调整,在调光过程中,只需极少方向的调整即可,大大缩短了调光时间和生产的容易性;并且光路模块组件的通用性,可大批量生产,泵浦源功率只需改变光路模块组件组合数量即可满足;通过FAC的调整将芯片的快轴方向光束进行准直,再通过SAC镜片调整,将芯片的慢轴方向光束进行准直,形成两束相对等高平行的扁平准直光束,为后续的调整提供可靠光源。
进一步的,如图4和图5所示,所述入纤耦合组件包括透镜底座14和设于透镜底座上的聚焦透镜15。
进一步的,所述入纤耦合组件的入射光方向上设有扩束器。
前置扩束器,将慢轴方向进行扩束,以达到一个合理的入纤前光束尺寸和入纤聚焦光斑尺寸。
后置的聚焦透镜是直接影响到最终入纤效率,同样非常重要,传统中也是 通过聚焦透镜空间5轴方向的调节,直到最佳的出光效果,入纤耦合组件则是将透镜的4轴方向利用透镜底座的加工精度保证,只需调整1轴方向来达到最佳的入纤效果,使调光过程中更加简洁和快速。
此发明中不局限于使用此类入纤耦合组件。
进一步的,带冷却的泵浦源系统还包括光纤16和电极17;所述光纤的端面设置在所述聚焦透镜的出光方向的焦点上;所述电极固定于底座上;所述光纤和电极分别位于底座相对应的位置。
进一步的,所述固定座上还设有反射镜阵列8,所述反射镜阵列包括至少一个反射镜。反射镜相应设置在SAC镜片(慢轴准直透镜)的出光方向上。
进一步的,各组光路模块组件下方设有的开孔,均与各组光路模块组件的两端所处的位置对应。光路模块组件的两端设有发光源,让发光源底部直接与冷却水接触,能够更好地起到冷却作用。
进一步的,带冷却的泵浦源系统还包括外壳;所述外壳位于底座上方且与底座固定连接。外壳内部整体发黑,吸热后,通过水将热量导出,保证壳体内的一个温度稳定性。
本发明将传统泵浦源内同层二芯片作为单一模块分离出来,并增加柱面镜辅助安装结构,提高调整精度,大大提高工序作业效率,节约成本;本发明针对不同功率的泵浦源产品,只需切换部分零件即可,方便产品系列化;本发明提供直接与冷却水接触,来降低芯片发热源温度,能够大幅度提高光功率的稳定性且延长激光器寿命;本发明组件化更宜于制造过程实现批量化生产,为智能化产线提供有利条件。
以上所述仅是对本发明的优选实施例及原理进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。

Claims (10)

  1. 带冷却的泵浦源系统,其特征在于,包括底座、设于底座上的PBS组件、入纤耦合组件、杂光吸收块和若干组光路模块组件;所述底座上安装PBS组件和各组光路模块组件的区域下方均设有开孔,用于使PBS组件和各组光路模块组件与冷却介质直接接触。
  2. 根据权利要求1所述的带冷却的泵浦源系统,其特征在于,所述光路模块组件包括模块座、均分别设于模块座两端上的COS元件和FAC镜片;所述FAC镜片位于COS元件的出光方向上;所述模块座的中部固定安装有SAC镜片和反射镜;分别位于模块座两端上的COS元件相互错位。
  3. 根据权利要求1所述的带冷却的泵浦源系统,其特征在于,所述底座包括底板和固定于底板中部上的固定座;所述PBS组件、入纤耦合组件和杂光吸收块均固定于固定座上;所述PBS组件紧靠杂光吸收块;所述入纤耦合组件位于PBS组件的出光方向上;各组光路模块组件固定安装于固定座的两侧。
  4. 根据权利要求1所述的带冷却的泵浦源系统,其特征在于,所述入纤耦合组件包括透镜底座和设于透镜底座上的聚焦透镜。
  5. 根据权利要求1所述的带冷却的泵浦源系统,其特征在于,所述入纤耦合组件的入射光方向上设有扩束器。
  6. 根据权利要求4所述的带冷却的泵浦源系统,其特征在于,还包括光纤和电极;所述光纤的端面设置在所述聚焦透镜的出光方向的焦点上;所述电极固定于底座上;所述光纤和电极分别位于底座相对应的位置。
  7. 根据权利要求3所述的带冷却的泵浦源系统,其特征在于,所述固定座上还设有反射镜阵列,所述反射镜阵列包括至少一个反射镜。
  8. 根据权利要求1所述的带冷却的泵浦源系统,其特征在于,还包括外壳;所述外壳位于底座上方且与底座固定连接。
  9. 根据权利要求1所述的带冷却的泵浦源系统,其特征在于,各组光路模块组件下方设有的开孔,均与各组光路模块组件的两端所处的位置对应。
  10. 根据权利要求1所述的带冷却的泵浦源系统,其特征在于,各组光路模块组件和PBS组件均与底座密封。
PCT/CN2021/122666 2021-09-14 2021-10-08 带冷却的泵浦源系统 WO2023039960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111072836.9A CN115810970A (zh) 2021-09-14 2021-09-14 带冷却的泵浦源系统
CN202111072836.9 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023039960A1 true WO2023039960A1 (zh) 2023-03-23

Family

ID=85481667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122666 WO2023039960A1 (zh) 2021-09-14 2021-10-08 带冷却的泵浦源系统

Country Status (2)

Country Link
CN (1) CN115810970A (zh)
WO (1) WO2023039960A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116742456A (zh) * 2023-08-16 2023-09-12 北京凯普林光电科技股份有限公司 一种光纤激光器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111850A1 (en) * 2014-10-17 2016-04-21 Lumentum Operations Llc Wavelength combined laser system
CN206727418U (zh) * 2017-04-28 2017-12-08 深圳联品激光技术有限公司 多单管光纤耦合激光器
CN107851963A (zh) * 2015-07-08 2018-03-27 通快光子学公司 具有冷却结构的阶梯式二极管激光模块
US20180191135A1 (en) * 2015-06-19 2018-07-05 Amada Miyachi Co., Ltd. Laser unit and laser device
CN207896411U (zh) * 2017-12-26 2018-09-21 长春新产业光电技术有限公司 一种高重复频率脉冲泵浦电光调q激光器
CN208352701U (zh) * 2018-06-29 2019-01-08 四川思创优光科技有限公司 一种激光器冷却装置
CN109314363A (zh) * 2016-04-26 2019-02-05 恩耐公司 低尺寸和重量、高功率光纤激光泵
CN111512507A (zh) * 2017-11-01 2020-08-07 努布鲁有限公司 多千瓦级的蓝色激光系统
CN112490827A (zh) * 2020-12-15 2021-03-12 浙江热刺激光技术有限公司 光纤激光器
CN113243066A (zh) * 2018-11-15 2021-08-10 恩耐公司 高功率激光二极管封装

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111850A1 (en) * 2014-10-17 2016-04-21 Lumentum Operations Llc Wavelength combined laser system
US20180191135A1 (en) * 2015-06-19 2018-07-05 Amada Miyachi Co., Ltd. Laser unit and laser device
CN107851963A (zh) * 2015-07-08 2018-03-27 通快光子学公司 具有冷却结构的阶梯式二极管激光模块
CN109314363A (zh) * 2016-04-26 2019-02-05 恩耐公司 低尺寸和重量、高功率光纤激光泵
CN206727418U (zh) * 2017-04-28 2017-12-08 深圳联品激光技术有限公司 多单管光纤耦合激光器
CN111512507A (zh) * 2017-11-01 2020-08-07 努布鲁有限公司 多千瓦级的蓝色激光系统
CN207896411U (zh) * 2017-12-26 2018-09-21 长春新产业光电技术有限公司 一种高重复频率脉冲泵浦电光调q激光器
CN208352701U (zh) * 2018-06-29 2019-01-08 四川思创优光科技有限公司 一种激光器冷却装置
CN113243066A (zh) * 2018-11-15 2021-08-10 恩耐公司 高功率激光二极管封装
CN112490827A (zh) * 2020-12-15 2021-03-12 浙江热刺激光技术有限公司 光纤激光器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116742456A (zh) * 2023-08-16 2023-09-12 北京凯普林光电科技股份有限公司 一种光纤激光器
CN116742456B (zh) * 2023-08-16 2023-11-14 北京凯普林光电科技股份有限公司 一种光纤激光器

Also Published As

Publication number Publication date
CN115810970A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2023039960A1 (zh) 带冷却的泵浦源系统
CN216699063U (zh) 带冷却的泵浦源系统
CN102244349A (zh) 一种双波长端面泵浦的掺钕的钒酸钇晶体全固态激光器
CN111853731A (zh) 一种散热结构的散热方法
CN113346342A (zh) 一种半导体光纤耦合激光器及光纤激光器
JP2001244526A (ja) 半導体レーザ励起固体レーザ装置
CN112886390A (zh) 一种多组对称阵列的大功率光纤耦合半导体激光器封装结构与方法
CN210806309U (zh) 一种高散热性能的半导体激光器宏通道水冷散热器
CN117080858A (zh) 一种圆周阵列集成半导体激光器
CN213876117U (zh) 光纤耦合模块和半导体器件
CN114243451B (zh) 半导体泵浦源及光纤激光器
US6850549B2 (en) Light source device for pumping solid-state laser medium
CN114976876A (zh) 一种多芯片封装的半导体激光器
US20210223507A1 (en) Light emission apparatus for exposure machine and exposure equipment including same
CN209881086U (zh) 一种散热性能好的半导体激光泵浦微片激光器
CN111916991A (zh) 偏振式大功率激光器
CN113783085A (zh) 用于一体机风冷小功率固体激光器的内置循环被动冷却模组及方法
CN213184966U (zh) 一种高功率的激光照明设备
CN216624857U (zh) 带冷却结构的激光泵源模块及激光器
CN100435434C (zh) 盘片激光器
CN115371958B (zh) 光学元件液冷散热与杂散光处理一体化装置及其使用方法
CN216794223U (zh) 光纤耦合模块及激光器
CN221231784U (zh) 高功率焊接光斑的形成机构
CN219980049U (zh) 一种快轴准直mcc垂直叠阵封装的高功率激光器
CN218896929U (zh) 一种kw级长条激光加热光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE