WO2023039726A1 - 一种用于车辆的驱动轮以及车辆 - Google Patents
一种用于车辆的驱动轮以及车辆 Download PDFInfo
- Publication number
- WO2023039726A1 WO2023039726A1 PCT/CN2021/118327 CN2021118327W WO2023039726A1 WO 2023039726 A1 WO2023039726 A1 WO 2023039726A1 CN 2021118327 W CN2021118327 W CN 2021118327W WO 2023039726 A1 WO2023039726 A1 WO 2023039726A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- driving wheel
- unit
- vehicle
- shaft
- connecting rod
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 230000005540 biological transmission Effects 0.000 claims description 14
- 230000003068 static effect Effects 0.000 claims description 10
- 230000035939 shock Effects 0.000 claims description 6
- 239000006096 absorbing agent Substances 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 6
- 230000007246 mechanism Effects 0.000 description 12
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60B—VEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
- B60B19/00—Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group
- B60B19/02—Wheels not otherwise provided for or having characteristics specified in one of the subgroups of this group convertible, e.g. from road wheel to rail wheel; Wheels specially designed for alternative use on road and rail
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60F—VEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
- B60F3/00—Amphibious vehicles, i.e. vehicles capable of travelling both on land and on water; Land vehicles capable of travelling under water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60F—VEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
- B60F5/00—Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
- B60F5/02—Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H1/00—Propulsive elements directly acting on water
- B63H1/02—Propulsive elements directly acting on water of rotary type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
Definitions
- the present disclosure relates to the field of wheel devices for vehicles, in particular to a driving wheel for a vehicle and the vehicle.
- cross-media unmanned aerial vehicle was proposed in the early 20th century. This kind of cross-media unmanned aerial vehicle was initially used in the military to use a wider operating environment to achieve emergency penetration, and then it gradually became popular in the civilian field. developed. However, due to the significant difference in resistance and fluid characteristic specific gravity between the water environment and the air environment, the density of seawater is 833 times that of air, and its dynamic viscosity coefficient is 60 times that of air, which brings great challenges to the design of drones. Great difficulty.
- the traditional driving wheel can only enable the vehicle to move on land, thus greatly limiting the scope of application of the vehicle and bringing a lot of inconvenience to the user of the vehicle. Therefore, how to make the vehicle realize diversified functions through reasonable design of the drive wheel structure becomes the key.
- the purpose of the embodiments of the present disclosure is to provide a driving wheel for a vehicle and a vehicle, so as to solve the problem in the prior art of how to improve the structure of the driving wheel so that the vehicle can be used in various scenarios such as land, water, and air.
- the problem is to provide a driving wheel for a vehicle and a vehicle, so as to solve the problem in the prior art of how to improve the structure of the driving wheel so that the vehicle can be used in various scenarios such as land, water, and air.
- a driving wheel for a vehicle which includes a support unit, a deformation unit and a wheel surface unit, the support unit is connected to the wheel surface unit through the deformation unit, and the deformation unit and the wheel surface unit A blade unit is arranged between them, and the deformation unit enables the vehicle to run at least in scenarios of land, water and air.
- the support unit includes a regular triangular body piece, a cutout is provided at each corner of the body piece, a first threaded shaft is arranged on the side of the cutout, and a first threaded shaft is arranged on the side of the body piece.
- a shaft sleeve opening is set at the center of the shaft.
- the tread unit includes three identical tread subunits capable of forming a complete circular tread, each of the tread subunits includes an arc-shaped hub frame, and on the outer side of the hub frame A wheel portion is provided, and the wheel portion and the hub frame are connected to each other through a first connecting piece.
- the hub frame includes an upper frame and a lower frame arranged in parallel up and down, a three-dimensional spherical joint is provided in the middle of the upper frame; a two-dimensional spherical joint is provided in the middle of the lower frame.
- three second connectors are provided at intervals on the upper frame and the lower frame, wherein cross screws are used at positions close to the first ends on the upper frame and the lower frame Fix the upper frame and the lower frame to each other, and connect the upper frame with two hexagon head screws and matching hexagon nuts at the middle position and the position near the second end of the upper frame and the lower frame.
- the frame and the lower frame are fixed to each other, and a wheel sleeve is sheathed in the middle of the hexagon head screw.
- the deformation unit includes a driving wheel shaft and 3 transmission groups, each of which includes a strut, a connecting rod, and a bearing connecting rod, and the driving wheel shaft passes through the shaft socket and is connected to the The above-mentioned shaft socket is flexibly connected.
- a bearing part is provided at the mouth of the shaft sleeve, and the bearing part includes a moving ring and a stationary ring arranged up and down, a boss is provided on the outer surface of the moving ring, and a boss is provided on the stationary ring.
- a connection hole is provided on the outer surface, the outer side of the moving ring is connected with the groove on the shaft sleeve through the boss, and the inner side is connected with the driving wheel shaft through an interference connection; the static ring
- the outer side of the shaft is connected to the shock absorber through the connecting hole, and the inner side thereof forms a clearance fit with the driving wheel shaft to form a rotating pair, and is fixedly connected to the transmission group through the corresponding hole.
- each of the transmission groups corresponds to the three corners of the body piece
- the upper end of each of the struts is provided with a strut connecting port
- the strut connecting port is connected to the first screw thread
- the shafts are rotated and matched, and the lower end of each of the struts is provided with a three-dimensional spherical joint, and the three-dimensional spherical joint is matched with the interface of the three-dimensional spherical joint on the upper frame;
- the middle part of the strut is provided with a second thread shaft, the second threaded shaft matches the threaded hole at one end of the connecting rod, the other end of the connecting rod is hinged to one end of the bearing connecting rod, the other end of the bearing connecting rod is connected to the stationary ring
- the holes are fixedly connected.
- the blade unit includes a blade body, a blade interface column is provided at the first end of the blade body, and the blade interface column is used to connect with the driving wheel shaft, and a blade interface column is provided at the first end of the blade body.
- the two ends are provided with ball joint connecting rods, and the ends of the ball joint connecting rods are provided with two-dimensional spherical joints, and the two-dimensional spherical joints are connected with the two-dimensional spherical joints on the lower frame.
- An embodiment of the present disclosure also provides a vehicle, which includes the drive wheel described in any one of the above technical solutions.
- the driving wheel in the embodiment of the present disclosure adopts a modular design, and has a deformation structure inside. Through a series of deformations of the mechanical structure, the driving wheel is adapted to be used on land, in water and in the air Scenarios to realize the design of functions in the corresponding environment.
- the driving wheel in the embodiment of the present disclosure is mainly used in vehicles such as amphibious vehicles, not only has the advantages of simple structure, reasonable structure, convenient use, energy saving and environmental protection, but also overcomes the limitation of the operating range of traditional vehicles. Shortcomings, and can be automatically deformed, through the cooperation with the car body structure of the vehicle, the change of three forms can be realized, which is widely applicable to various situations.
- FIG. 1 is a schematic structural view of a driving wheel according to an embodiment of the present disclosure
- FIG. 2 is a schematic structural diagram of a driving wheel according to an embodiment of the present disclosure
- FIG. 3 is a schematic structural view of a supporting unit in a driving wheel according to an embodiment of the present disclosure
- FIG. 4 is a schematic structural diagram of a wheel surface unit in a driving wheel according to an embodiment of the present disclosure
- FIG. 5 is a schematic structural diagram of a deformation unit in a driving wheel according to an embodiment of the present disclosure
- FIG. 6 is a structural schematic diagram of a bearing portion in a driving wheel according to an embodiment of the present disclosure
- FIG. 7 is a schematic structural diagram of a blade unit in a drive wheel according to an embodiment of the present disclosure.
- FIG. 8 is a schematic structural view of the drive wheel on land according to an embodiment of the present disclosure.
- FIG. 9 is a schematic structural view of a driving wheel in water according to an embodiment of the present disclosure.
- Fig. 10 is a structural schematic diagram of the driving wheel in the air according to the embodiment of the present disclosure.
- the first embodiment of the present disclosure relates to a driving wheel for a vehicle, where the driving wheel is installed on the vehicle, and the vehicle can run in various use scenarios based on the driving wheel, for example, it can be used in On land, in water or in the air, specifically, the structure of the driving wheel can be adjusted to adapt to driving the vehicle in different usage scenarios.
- the driving wheel in the embodiment of the present disclosure includes a support unit 1, a deformation unit 2 and a wheel surface unit 3, wherein the support unit 1 is connected to the wheel surface unit 3 through the deformation unit 2. connection, a blade unit 4 is set between the deformation unit 2 and the wheel surface unit 3, as shown in FIG. scenes to be used.
- Fig. 3 shows the structure of the support unit 1, the support unit 1 is used to support the overall structure of the drive wheel, which includes a body piece 11, the body piece 11 is in the shape of an equilateral triangle, in Each corner of the body sheet 11 is provided with a notch 13, and a first threaded shaft 12 is arranged on the side of the notch 13, and welding can be used between the notch 13 and the first threaded shaft 12, for example.
- a shaft sleeve opening 14 is provided at the center of the body piece 11 .
- each of the wheel surface subunits 30 includes an arc-shaped hub frame 32, where the arc can be in the shape of a third of a circle, and a wheel surface 31 is arranged outside the hub frame 32, and the wheel surface 31, for example, can be made of rubber, and the length of each of the wheel parts 31 is equivalent to one-third of the circumference of the driving wheel.
- the outer surface; the wheel surface 31 and the hub frame 32 are connected to each other through a first connecting piece 33, so that the wheel surface 31 can be fixed on the hub frame 32 through the first connecting piece 33 superior.
- the hub frame 32 here includes an upper frame 321 and a lower frame 322 arranged in parallel up and down, and the upper frame 321 and the lower frame 322 adopt the same arc-shaped tubular member, so that the 31 is provided with a clamping part used as the first connecting part 33, and the upper frame 321 and the lower frame 322 respectively form a detachable connection between the clamping part and the wheel surface 31, For easy maintenance and parts replacement.
- the upper frame 321 and the lower frame 322 are arranged up and down and fixedly connected to each other through a second connecting piece.
- the upper frame can be 321 and the lower frame 322 are provided with three second connectors at intervals, and the second connectors here can take various forms, for example, on the upper frame 321 and the lower frame 322 near the first Through holes are respectively provided at one end, so that the upper frame 321 and the lower frame 322 can be fixed to each other through cross screws 39 with good versatility cooperating with the through holes. This fixing may not be possible.
- This fixing can be an adjustable fixing method, so that all The mutual position adjustment between the upper frame 321 and the lower frame 322 is carried out, wherein, in order to facilitate fixing the distance between the upper frame 321 and the lower frame 322, a hex head screw 37 is sheathed in the middle There is an axle sleeve 36 and is locked by the hex nut 35, and the axle sleeve 36 can set the upper frame 321 and the lower frame 322 at a fixed distance apart.
- a first hinge mechanism is provided in the middle of the upper frame 321, and the first hinge mechanism may be fixed on the upper frame 321 by the hex head screw 37, or fixed on the upper frame 321 by other means.
- the first hinge mechanism here can be, for example, a three-dimensional ball joint 38;
- a second hinge mechanism is set in the middle of the lower frame 322, and the second hinge mechanism can be connected through the hexagon head screw 37, for example.
- the second hinge mechanism here can be, for example, a two-dimensional spherical joint 34; between the first hinge mechanism and the
- the hexagon head screw 37 it can also be locked by the hexagon nut 35, which is convenient for disassembly and adjustment, so as to facilitate the maintenance and replacement of the hinge mechanism.
- the deformation unit 2 is used to adjust the overall structure of the driving wheel in different usage scenarios, as shown in Figure 5, it includes a driving wheel shaft 29 and 3 transmission groups, each of which is Corresponding to one of the wheel surface subunits 30, the transmission group includes a strut 23, a connecting rod 25 and a bearing connecting rod 28, and the driving wheel shaft 29 passes through the sleeve opening 14 and moves with the sleeve opening 14 connect.
- a bearing part 5 is provided at the sleeve opening 14. As shown in FIG. 6, the bearing part 5 includes vertically arranged The moving ring 52 and the static ring 53 are connected to each other between the moving ring 52 and the driving wheel shaft 29.
- Three bosses 51 are arranged on the outer surface of the moving ring 52, and the three bosses 51 correspond to three In the transmission group, three sets of connection holes 54 are arranged on the outer surface of the static ring 53, and the three groups of connection holes 54 also correspond to the three transmission groups;
- the outer surface of the ring 52 and the connecting holes 54 are evenly distributed on the circumference of the outer surface of the stationary ring 53, wherein the outer side of the moving ring 52 passes through the boss 51 provided on the outer surface thereof It is connected with the groove on the sleeve mouth 14, and its inner side is connected with the driving wheel shaft 29 through an interference connection; as shown in Figure 1, the outer side of the static ring 53 is set on its outer surface
- the connecting hole 54 is connected with three shock absorbing devices 6 arranged transversely.
- the shock absorbing devices 6 here can be springs, torsion springs, etc., and a gap is formed between the inner side of the static ring 53 and the driving wheel shaft 29 Cooperate to form a revolving pair
- each of the transmission groups is used to form a transmission between the support unit 1 and the wheel surface unit 3, so that the support rod 23, the connecting rod 25 and the bearing connecting rod 28
- the number is 3, which respectively correspond to the three corners of the body sheet 11 of the support unit 1, wherein, the upper end of each of the struts 23 is provided with a strut connecting port 22, and the struts are connected
- the mouth 22 passes through the first threaded shaft 12 located at the corner of the body piece 11 and rotates with the first threaded shaft 12, and can be tightened by a nut 21.
- each strut 23 A three-dimensional ball joint 26 is set, and the three-dimensional ball joint 26 is matched with the first hinge mechanism on the upper frame 321 of the hub frame 32, that is, the three-dimensional ball joint interface 38; the middle part of the strut 23
- the second threaded shaft 24 is set, and the second threaded shaft 24 is connected with the threaded hole at one end of the connecting rod 25 and tightened by, for example, a nut.
- the rivets 27 are hinged together, and the other end of the bearing connecting rod 28 is fixedly connected with the through hole on the stationary ring 53 , so that the position of the bearing connecting rod 28 is relatively fixed.
- the strut connecting port 22, the rivet 27 and the three-dimensional spherical hinge 26 here form a right triangle, wherein, between the strut connecting port 22 and the rivet 27 and the The rivets 27 and the three-dimensional spherical hinge 26 respectively form right-angled sides, and the second threaded shaft 24 is located at the midpoint of the strut 23. It can be seen from geometric axioms that the three-dimensional spherical hinge 26 is located at the deformation unit 2 is always on the horizontal straight line connecting with the rivet 27, so that the vertical movement can be converted into the horizontal movement of the three-dimensional spherical joint 26 when the strut connecting port 22 moves up and down.
- the blade unit 4 is arranged between the deformation unit 2 and the wheel surface unit 3, as shown in FIG.
- the drive wheel shaft 29 of 2 is fixedly connected, specifically, a blade interface column 41 is provided at the first end of the blade body 42, and the blade interface column 41 is used to connect with the drive wheel shaft 29.
- the second end of 42 is provided with a ball joint connecting rod 43, and the end of the ball joint connecting rod 43 is provided with a two-dimensional ball joint 44, and the two-dimensional ball joint 44 is connected with all the parts on the lower frame of the hub frame 32.
- the second hinge mechanism that is, the two-dimensional ball hinge interface 34 is connected.
- the blade unit 4 exhibits different connection modes.
- the blade unit 4 When the vehicle is used on land and in water, the blade unit 4 is connected to the hub frame 32 of the wheel surface unit 3 through the two-dimensional spherical joint 44 to form a spoke mechanism.
- the two-dimensional spherical joint 44 is separated from the hub frame 32 of the wheel surface unit 3 to form a rotor, and the blade interface post 41 is connected to the driving device in the vehicle, such as a motor, through The drive axle 29 transmits torque.
- the second embodiment of the present disclosure relates to a vehicle, which has the driving wheel described in any one of the above.
- the vehicle here can adopt various driving methods such as electric drive and oil drive.
- the vehicle here can have at least two For example, there may be two driving wheels, one on each side of the vehicle, or four, which are not limited here.
- the driving wheels of the embodiments of the present disclosure can be applied to vehicles to drive in different usage scenarios, such as on land, water and in the air, and the driving wheels of the embodiments of the disclosure are structured in different usage scenarios Adjustment to form three different structures, each of which has a corresponding mechanical structure and mechanical function.
- the vehicle when the vehicle is on land, the vehicle can be driven by electric drive or oil drive, for example, electric drive by motor can be used in one embodiment
- a motor and an electromagnetic coupling are set in the vehicle, and the electromagnetic coupling is used to transmit the power output by the motor, wherein the inner magnet of the electromagnetic coupling is arranged at the end of the output shaft of the motor , the outer magnet of the electromagnetic coupling is arranged on the end of the driving wheel shaft 29 in the driving wheel; during driving, based on the rotation of the motor, the inner magnet of the electromagnetic coupling drives the The outer magnet of the electromagnetic coupling at the end of the drive shaft 29 in the drive shaft rotates, thereby driving the drive shaft 29 to rotate.
- the two-dimensional spherical hinge 44 at the end of the blade body 42 is connected to the The two-dimensional spherical joint 34 on the lower frame 322 of the hub frame 32 is connected.
- the power output by the motor will be transmitted to the wheel surface 31 of the wheel surface unit 3, thereby driving the rotation of the drive wheel.
- the different wheel surface subunits 30 are closely engaged , so that the demand for running on general land can be realized;
- the shock absorbing device 6 connected to the stationary ring 53 of the bearing part 5 can also connect the vehicle body of the vehicle with the driving wheel (For example, one end is connected to the vehicle body, and the other end is connected to the stationary ring 53), so as to realize the dual functions of fixed connection and shock absorption.
- the support unit 1 remains fixed, and the three wheels in the wheel surface unit 3 There is no longer any need for tight engagement between the two wheel surface subunits 30, and the three drive wheel surface subunits 30 each use the three-dimensional spherical joint 38 as a fulcrum to rotate at an equal angle around the direction of the drive wheel axis; at the same time, based on the motor Rotate, the inner magnet of the electromagnetic coupling at the end of the output shaft of the motor drives the outer magnet of the electromagnetic coupling at the end of the driving wheel shaft 29 to rotate, thereby driving the driving wheel shaft 29 to rotate.
- the two-dimensional spherical joint 44 at the end of the blade body 42 is kept connected to the two-dimensional spherical joint interface 34 on the lower frame 322 of the hub frame 32, so that the power output by the motor will be
- the transmission is transmitted to the wheel surface 31 of the wheel surface unit 3, so as to drive the rotation of the driving wheel.
- the driving wheel will act as an impeller in the water surface, and drive the vehicle to move forward through drainage.
- the driving wheel adopts the same structure as that in the air, and the transmission ratio of the driving wheel shaft 29 is changed by adjusting to reduce the rotational speed and increase the torque to prevent the propeller from cavitating.
- the corners of the body sheet 11 located in the support unit 1 The three threaded shafts 12 move downward in translation, and the three driving wheel surface subunits 30 move to the outside while using the three-dimensional spherical joint 38 as a fulcrum to rotate at an equal angle around the axis of the driving wheel shaft 29; at the same time, based on the motor Rotate, the inner magnet of the electromagnetic coupling at the end of the output shaft of the motor drives the outer magnet of the electromagnetic coupling at the end of the tire shaft 29 to rotate, thereby driving the drive wheel shaft 29 to rotate;
- the two-dimensional spherical joint 44 is separated from the two-dimensional spherical joint interface 34 of the lower frame 322 of the hub frame 32, and the wheel surface unit 3 and the body of the vehicle remain relatively stationary and function in the form of a duct , the blade unit 4 rotates to generate lift, driving the vehicle
- the shaft socket 14 is slidably connected to the bearing connecting rod 28. Since the blade body 42 is separated from the two-dimensional spherical joint 34, the driving wheel shaft 29 drives the blade unit 4 to rotate. It will not drive the bearing connecting rod 28 and the wheel surface unit 3 to rotate. At this time, the wheel surface unit 3 as a duct of the rotor has higher aerodynamic efficiency than an isolated propeller.
- the change of the structure and shape of the driving wheel is realized through the cooperation of the four parts of the support unit 1, the deformation unit 2, the wheel surface unit 3 and the blade unit 4, thereby
- the vehicle with the driving wheels can be applied to various use scenarios such as land, water, and air.
- the wheel surface unit 3 constitutes a driving wheel
- the wheel surface unit 3 constitutes a propeller
- the wheel surface unit 3 forms a duct
- the deformation unit 2 can realize the transformation of the tread unit 3 among the three structures by cooperating with the support unit 1 and the tread unit 3 .
- the driving wheel in the embodiment of the present disclosure adopts a modular design, and has a deformation structure inside. Through a series of deformations of the mechanical structure, the driving wheel can adapt to the use scene on land, water and air, and realize the functions in the corresponding environment. design.
- the driving wheel in the embodiment of the present disclosure is mainly used in vehicles such as amphibious vehicles, not only has the advantages of simple structure, reasonable structure, convenient use, energy saving and environmental protection, but also overcomes the limitation of the operating range of traditional vehicles. Shortcomings, and can be automatically deformed, through the cooperation with the car body structure of the vehicle, the change of three forms can be realized, which is widely applicable to various situations.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Ocean & Marine Engineering (AREA)
- Motorcycle And Bicycle Frame (AREA)
Abstract
一种用于车辆的驱动轮以及车辆,驱动轮包括支撑单元(1)、变形单元(2)以及轮面单元(3),支撑单元(1)通过变形单元(2)与轮面单元(3)相连接,在变形单元(2)和轮面单元(3)之间设置叶片单元(4),通过变形单元(2)以使得车辆能够至少在陆地、水中和空中的使用场景下行驶。通过与车辆的车体结构的配合,实现三种形态的改变,广泛适用于各种情况。
Description
本公开涉及车辆的车轮装置领域,特别涉及一种用于车辆的驱动轮以及车辆。
随着航空技术、车辆工程和船舶工程的不断发展,军事上和民用上对交通工具有了越来越多样化的需求。其中,飞行器的机动性好并且速度快,但是在传统能源的驱动下显得续航能力不足;潜水器的隐蔽性好并且续航能力强,但机动性不足;汽车有一定的机动性和续航性,但是只能在陆地上行驶。
世界各国的研究人员致力于研发具有能够借助上述三种装备的独特优势的特种交通工具。在这样的背景下,在20世纪初提出跨介质无人机的概念,这种跨介质无人机最初是在军事上利用更广的作业环境来实现紧急突防,之后在民用领域也逐渐的发展起来。但是由于水环境和空气环境在阻力和流体特性比重上的显著不同,海水的密度是空气密度的833倍,其动力粘性系数是空气的60倍,这给无人机的设计上带来了很大的难度。
考虑到驱动轮是现代车辆的必不可少的部件,传统的驱动轮只能实现让车辆在陆地上运动,因此大大限制了车辆的适用范围,给车辆的使用者带来诸多不便。因此,如何通过合理设计驱动轮结构使得车辆能够实现多样化功能便成为关键。
发明内容
本公开实施例的目的在于提供一种用于车辆的驱动轮以及车辆,以解决现有技术中存在的如何针对驱动轮进行结构改进以使得车辆能够适用于陆地、水面、空中等多种使用场景的问题。
为了解决上述技术问题,本公开的实施例采用了如下技术方案:
一种用于车辆的驱动轮,其包括支撑单元、变形单元以及轮面单元, 所述支撑单元通过所述变形单元与所述轮面单元相连接,在所述变形单元和所述轮面单元之间设置叶片单元,通过所述变形单元以使得所述车辆能够至少在陆地、水面和空中的使用场景下行驶。
在一些实施例中,所述支撑单元包括正三角形的本体片,在所述本体片的每个角部设置切口部,在所述切口部的侧面上设置第一螺纹轴,在所述本体片的中心处设置轴套口。
在一些实施例中,所述轮面单元包括能够组成完整的圆形轮面的三个相同的轮面子单元,每个所述轮面子单元包括弧形的轮毂骨架,在所述轮毂骨架的外侧设置轮面部,所述轮面部和所述轮毂骨架之间通过第一连接件相互连接。
在一些实施例中,所述轮毂骨架包括上下平行布置的上骨架和下骨架,在所述上骨架的中部设置三维球铰接口;在所述下骨架的中部设置二维球铰接口。
在一些实施例中,在所述上骨架和所述下骨架上相隔设置三个第二连接件,其中,在所述上骨架和所述下骨架上的靠近第一端的位置处通过十字螺钉将所述上骨架和所述下骨架之间相互固定,在所述上骨架和所述下骨架的中部位置以及靠近第二端的位置处通过两个六角头螺钉和匹配的六角螺母将所述上骨架和所述下骨架之间相互固定,在所述六角头螺钉的中部套设有轮轴套。
在一些实施例中,所述变形单元包括驱动轮轴和3个传动组,每个所述传动组包括撑杆、连杆以及轴承连杆,所述驱动轮轴穿过所述轴套口并与所述轴套口活动连接。
在一些实施例中,在所述轴套口处设置轴承部,所述轴承部包括上下设置的动环和静环,在所述动环的外表面上设置凸台,在所述静环的外表面上设置连接孔,所述动环的外侧通过所述凸台与所述轴套口上的槽配合连接,其内侧与所述驱动轮轴之间通过过盈连接方式配合连接;所述静环的外侧通过所述连接孔与减震装置连接,其内侧与所述驱动轮轴之间形成间隙配合,从而构成转动副,并通过对应的孔与所述传动组固定连接。
在一些实施例中,每个所述传动组对应于所述本体片的三个角部,每个所述撑杆的上端设置撑杆连接口,所述撑杆连接口与所述第一螺纹轴之间转动配合,每个所述撑杆的下端设置三维球铰,所述三维球铰与所述上 骨架上的所述三维球铰接口相配合连接;所述撑杆中部设置第二螺纹轴,所述第二螺纹轴与所述连杆一端的螺纹孔配合,所述连杆的另一端与所述轴承连杆的一端铰接,所述轴承连杆的另一端与所述静环上的孔固定连接。
在一些实施例中,,所述叶片单元包括叶片本体,在所述叶片本体的第一端设置叶片接口柱,所述叶片接口柱用于与所述驱动轮轴连接,在所述叶片本体的第二端设置球铰连接杆,所述球铰连接杆的端部设置二维球铰,所述二维球铰与所述下骨架上的所述二维球铰接口连接。
本公开实施例还提供一种车辆,其包括上述任一项技术方案中所述的驱动轮。
与现有传统驱动轮相比,本公开实施例的所述驱动轮采用模块化的设计,其内部具有变形结构,通过一系列机械结构的变形,实现了驱动轮在陆地、水中以及空中适应使用场景,实现对应环境下的功能的设计。本公开实施例的所述驱动轮主要用于水陆空三栖的车辆等交通工具上,不但具有结构简单、构造合理、使用方便、节能环保的优点,还能克服了传统交通工具作业范围受限的缺点,而且能自动变形,通过与车辆的车体结构的配合,实现三种形态的改变,广泛适用于各种情况。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的驱动轮的结构示意图;
图2为本公开实施例的驱动轮的结构示意图;
图3为本公开实施例的驱动轮中支撑单元的结构示意图;
图4为本公开实施例的驱动轮中的轮面单元的结构示意图;
图5为本公开实施例的驱动轮中的变形单元的结构示意图;
图6为本公开实施例的驱动轮中轴承部的结构示意图;
图7为本公开实施例的驱动轮中的叶片单元的结构示意图;
图8为本公开实施例的驱动轮在陆地上的结构示意图;
图9为本公开实施例的驱动轮在水中的结构示意图;
图10为本公开实施例的驱动轮在空中的结构示意图。
附图标记:
1-支撑单元;2-变形单元;3-轮面单元;4-叶片单元;5-轴承部;6-减震装置;11-本体片;12-第一螺纹轴;13-切口部;14-轴套口;21-螺母;22-撑杆连接口;23-撑杆;24-第二螺纹轴;25-连杆;26-三维球铰,27-铆钉;28-轴承连杆;29-驱动轮轴;30-轮面子单元;31-轮面部;32-轮毂骨架;321-上骨架;322-下骨架;33-第一连接件;34-二维球铰接口;35-六角螺母;36-轮轴套;37-六角头螺钉;38-三维球铰接口;39-十字螺钉;41-叶片接口柱;42-叶片本体;43-球铰连杆;44-二维球铰;51-凸台;52-动环;53-静环;54-连接孔。
此处参考附图描述本公开的各种方案以及特征。
应理解的是,可以对此处申请的实施例做出各种修改。因此,上述说明书不应该视为限制,而仅是作为实施例的范例。本领域的技术人员将想到在本公开的范围和精神内的其他修改。
包含在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且与上面给出的对本公开的大致描述以及下面给出的对实施例的详细描述一起用于解释本公开的原理。
通过下面参照附图对给定为非限制性实例的实施例的优选形式的描述,本公开的这些和其它特性将会变得显而易见。
还应当理解,尽管已经参照一些具体实例对本公开进行了描述,但本领域技术人员能够确定地实现本公开的很多其它等效形式,它们具有如权利要求所述的特征并因此都位于借此所限定的保护范围内。
当结合附图时,鉴于以下详细说明,本公开的上述和其他方面、特征和优势将变得更为显而易见。
此后参照附图描述本公开的具体实施例;然而,应当理解,所申请的实施例仅仅是本公开的实例,其可采用多种方式实施。熟知和/或重复的功能和结构并未详细描述以避免不必要或多余的细节使得本公开模糊不 清。因此,本文所申请的具体的结构性和功能性细节并非意在限定,而是仅仅作为权利要求的基础和代表性基础用于教导本领域技术人员以实质上任意合适的详细结构多样地使用本公开。
本说明书可使用词组“在一种实施例中”、“在另一个实施例中”、“在又一实施例中”或“在其他实施例中”,其均可指代根据本公开的相同或不同实施例中的一个或多个。
本公开的第一实施例涉及一种用于车辆的驱动轮,这里的所述驱动轮安装在所述车辆上,所述车辆能够基于所述驱动轮在多种使用场景下行驶,例如可以在陆地上、在水中或者在空中,具体地,可以通过所述驱动轮的结构调整以适应于在不同的使用场景下带动车辆行驶。
如图1所示,本公开实施例的所述驱动轮包括支撑单元1、变形单元2以及轮面单元3,其中,所述支撑单元1通过所述变形单元2与所述轮面单元3相连接,在所述变形单元2和所述轮面单元3之间设置叶片单元4,如图2所示,通过所述变形单元2使得所述驱动轮调整为不同的结构,以适应于不同的使用场景。
具体地,图3示出了所述支撑单元1的结构,所述支撑单元1用于支撑所述驱动轮的整体结构,其包括本体片11,所述本体片11为正三角形的形状,在所述本体片11的每个角部设置切口部13,在所述切口部13的侧面上设置第一螺纹轴12,所述切口部13与所述第一螺纹轴12之间例如可以采用焊接方式连接;在所述本体片11的中心处设置轴套口14。
继续如图2所示,所述轮面单元3包括三个相同的轮面子单元30,三个所述轮面子单元30组成完整的圆形轮面,以便于所述轮面单元3的滚动,每个所述轮面子单元30的结构如图4所示。具体地,每个所述轮面子单元30包括弧形的轮毂骨架32,这里的弧形可以是三分之一圆的形状,在所述轮毂骨架32的外侧设置轮面部31,所述轮面部31例如可以由橡胶制成,每个所述轮面部31的长度相当于三分之一所述驱动轮的周长,这样,三个所述轮面部31相互连接形成整体的所述驱动轮的外表面;所述轮面部31和所述轮毂骨架32之间通过第一连接件33相互连接,这样,通过所述第一连接件33可以使得所述轮面部31能够固定在所述轮毂骨架32上。
进一步地,这里的所述轮毂骨架32包括上下平行布置的上骨架321 和下骨架322,所述上骨架321和所述下骨架322采用相同的弧形管状件,这样,可以在所述轮面部31的内侧设置用作所述第一连接件33的卡接部,所述上骨架321和所述下骨架322分别通过所述卡接部与所述轮面部31之间形成可拆卸的连接,以便于维修和部件更换。
进一步地,为了保证所述轮面子单元30的结构稳定,所述上骨架321和所述下骨架322上下布置并通过第二连接件相互固定连接,在一个实施方式中,可以在所述上骨架321和所述下骨架322上相隔设置三个所述第二连接件,这里的所述第二连接件可以采用多种形式,例如在所述上骨架321和所述下骨架322上的靠近第一端的位置处分别设置通孔,以通过通用性较好的十字螺钉39与所述通孔配合而将所述上骨架321和所述下骨架322之间相互固定,这种固定可以是不可调节的固定方式,以便于所述上骨架321和所述下骨架322之间不会发生脱落;另外,在所述上骨架321和所述下骨架322的中部位置以及靠近第二端的位置处分别设置通孔,以分别通过两个六角头螺钉37和匹配的六角螺母35将所述上骨架321和所述下骨架322之间相互固定,这种固定可以是可调节的固定方式,以便于所述上骨架321和所述下骨架322之间进行相互位置的调整,其中,为了便于固定所述上骨架321和所述下骨架322之间的距离,在所述六角头螺钉37的中部套设有轮轴套36并通过所述六角螺母35锁紧,所述轮轴套36可以将所述上骨架321和所述下骨架322设置为相隔固定的距离。
此外,在所述上骨架321的中部设置第一铰接机构,所述第一铰接机构例如可以通过所述六角头螺钉37固定在所述上骨架321上,也可以通过其他方式固定在所述上骨架321上,这里的所述第一铰接机构例如可以是三维球铰接口38;在所述下骨架322的中部设置第二铰接机构,所述第二铰接机构例如可以通过所述六角头螺钉37固定在所述下骨架322上,也可以通过其他方式固定在所述下骨架322上,这里的所述第二铰接机构例如可以是二维球铰接口34;在所述第一铰接机构和所述第二铰接机构都通过所述六角头螺钉37固定的情况下,还可以通过所述六角螺母35锁紧,这样方便拆卸和调整,以便于铰接机构的维修和更换。
进一步地,所述变形单元2用于在不同的使用场景下实现所述驱动轮的整体结构的调整,如图5所示,其包括驱动轮轴29和3个传动组,每个所述传动组对应于一个所述轮面子单元30,所述传动组包括撑杆23、 连杆25以及轴承连杆28,所述驱动轮轴29穿过所述轴套口14并与所述轴套口14活动连接。
进一步地,为了便于所述驱动轮轴29与所述支撑单元1之间的活动连接,在所述轴套口14处设置轴承部5,如图6所示,所述轴承部5包括上下设置的动环52和静环53,所述动环52和驱动轮轴29之间相互连接,在所述动环52的外表面上设置3个凸台51,3个所述凸台51对应于3个所述传动组,在所述静环53的外表面上设置3组连接孔54,3组所述连接孔54同样对应于3个所述传动组;所述凸台51在所述动环52的外表面上以及所述连接孔54在所述静环53的的外表面上都是在圆周上均匀分布,其中,所述动环52的外侧通过其外表面上设置的所述凸台51与所述轴套口14上的槽配合连接,其内侧与所述驱动轮轴29之间通过过盈连接方式配合连接;如图1所示,所述静环53的外侧通过其外表面上设置所述连接孔54与三个横向布置的减震装置6连接,这里的所述减震装置6可以是弹簧、扭簧等,所述静环53的内侧与所述驱动轮轴29之间形成间隙配合,从而构成转动副。
具体地,每个所述传动组用于在所述支撑单元1以及所述轮面单元3之间形成传动,这样,所述撑杆23、所述连杆25以及所述轴承连杆28的数量均为3个,其分别对应于所述支撑单元1的所述本体片11的三个角部,其中,每个所述撑杆23的上端设置撑杆连接口22,所述撑杆连接口22穿过位于所述本体片11角部的所述第一螺纹轴12并与所述第一螺纹轴12之间转动配合,并可以通过螺母21拧紧,每个所述撑杆23的下端设置三维球铰26,所述三维球铰26与所述轮毂骨架32的所述上骨架321上的所述第一铰接机构即所述三维球铰接口38相配合连接;所述撑杆23中部设置第二螺纹轴24,所述第二螺纹轴24与所述连杆25一端的螺纹孔配合连接并通过例如螺母拧紧,所述连杆25的另一端与所述轴承连杆28的一端通过铆钉27铰接在一起,所述轴承连杆28的另一端与所述静环53上的通孔固定连接,这样,所述轴承连杆28的位置相对固定。
需要说明的是,这里的所述撑杆连接口22、所述铆钉27以及所述三维球铰26构成了直角三角形,其中,所述撑杆连接口22与所述铆钉27之间以及所述铆钉27与所述三维球铰26之间分别构成直角边,所述第二螺纹轴24位于所述撑杆23的中点位置,由几何公理可知,所述三维球铰 26在所述变形单元2的运动时始终处于位于与所述铆钉27连线的水平直线上,从而可以在所述撑杆连接口22上下运动时可以将垂直运动转化为所述三维球铰26的水平运动。
如上所述,所述叶片单元4设置在所述变形单元2和所述轮面单元3之间,如图7所示,其包括叶片本体42,所述叶片本体42的一端与所述变形单元2的所述驱动轮轴29固定连接,具体地,在所述叶片本体42的第一端设置叶片接口柱41,所述叶片接口柱41用于与所述驱动轮轴29连接,在所述叶片本体42的第二端设置球铰连接杆43,所述球铰连接杆43的端部设置二维球铰44,所述二维球铰44与所述轮毂骨架32的所述下骨架上的所述第二铰接机构即所述二维球铰接口34连接。
其中,根据具有本公开实施例的所述驱动轮的车辆处于不同的使用场景,所述叶片单元4呈现不同的连接方式。在所述车辆处于陆地和水中的使用场景下,所述叶片单元4通过所述二维球铰44与所述轮面单元3的所述轮毂骨架32相连接以构成轮辐机构,在所述车辆处于空中的使用场景下,所述二维球铰44与所述轮面单元3的所述轮毂骨架32脱离以构成旋翼,所述叶片接口柱41与车辆中的驱动装置,例如电机之间通过所述驱动轮轴29传递扭矩。
本公开的第二实施例涉及一种车辆,其具有上述任一项所述的驱动轮,这里的车辆可以采用电驱动、油驱动等多种驱动方式,这里的所述车辆可以具有至少2个所述驱动轮,例如可以两个,在所述车辆的两侧各设置一个,也可以四个,在此不做限定。
具体地,本公开实施例的所述驱动轮可适用于车辆以在不同的使用场景下行驶,例如在陆地、水面以及空中,本公开实施例的所述驱动轮在不同的使用场景下进行结构的调整以形成三种不同的结构,三种不同的结构各自具有对应的机械结构和机械功能。
如图8并结合图1和图4所示,在所述车辆处于陆地的使用场景下时,可以采用电驱动或油驱动的方式驱动车辆行驶,例如在一个实施方案中可以采用电机的电驱动方式,在所述车辆中设置电机以及电磁联轴器,所述电磁联轴器用于传递所述电机输出的动力,其中,所述电磁联轴器的内磁体设置在所述电机输出轴的末端,所述电磁联轴器的外磁体设置在所述驱动轮中的所述驱动轮轴29的末端;在行驶过程中,基于电机转动,所述 电磁联轴器的内磁体带动位于所述驱动轮中的所述驱动轮轴29末端的所述电磁联轴器的外磁体转动,从而带动所述驱动轮轴29转动,此时,位于所述叶片本体42末端的所述二维球铰44与所述轮毂骨架32的所述下骨架322上的所述二维球铰接口34连接。
这样,基于所述电机输出的动力将传递到所述轮面单元3的所述轮面部31上,从而带动所述驱动轮的转动,此时,不同的所述轮面子单元30之间紧密接合,这样可以实现在一般陆地上行驶的需求;同时,与所述轴承部5的所述静环53连接的所述减震装置6还可以将所述车辆的车体与所述驱动轮相连接(例如一端连接车体,一端连接所述静环53),从而实现固定连接与减震的双重作用。
如图9所示,在车辆处于水中的使用场景下时,例如从陆地的使用场景向水中的使用场景的变化过程中,所述支撑单元1保持固定不变,所述轮面单元3中三个所述轮面子单元30之间不再需要紧密接合,三个所述驱动轮面子单元30各自以所述三维球铰接口38为支点围绕驱动轮轴线方向等角度转动;同时,基于所述电机转动,位于电机输出轴末端的电磁联轴器的内磁体带动位于所述驱动轮轴29末端的电磁联轴器的外磁体转动,从而带动所述驱动轮轴29转动。此时,位于所述叶片本体42末端的所述二维球铰44与所述轮毂骨架32的所述下骨架322上的所述二维球铰接口34保持连接,这样,电机输出的动力将传递到所述轮面单元3的所述轮面部31上,从而带动所述驱动轮的转动。此时,所述驱动轮在水面中将会起到叶轮的作用,通过排水带动所述车辆向前运动。其中,在水中的使用场景时,所述驱动轮采用与空中基本相同的结构,通过调节改变所述驱动轮轴29的传动比,减小转速,增加扭矩,防止螺旋桨空化。
如图10所示,在车辆处于空中的使用场景下时,例如从陆地的使用场景向空中的使用场景的变化过程中,位于所述支撑单元1中所述本体片11的角部的所述三个螺纹轴12向下平动,三个所述驱动轮面子单元30向外侧移动的同时以所述三维球铰接口38为支点围绕所述驱动轮轴29的轴线方向等角度转动;同时,基于电机转动,位于电机输出轴末端的电磁联轴器的内磁体带动位于所述车胎轴29末端的电磁联轴器的外磁体转动,从而带动所述驱动轮轴29转动;位于所述叶片本体42末端的所述二维球铰44与所述轮毂骨架32的所述下骨架322的所述二维球铰接口34 脱离,所述轮面单元3与所述车辆的车身保持相对静止以涵道形式作用,通过所述叶片单元4转动产生升力,带动车辆运动。具体地,所述轴套口14滑接在所述轴承连杆28上,由于所述叶片本体42与所述二维球铰接口34脱离,所述驱动轮轴29带动所述叶片单元4转动时不会带动所述轴承连杆28及所述轮面单元3转动,此时,所述轮面单元3作为旋翼的涵道相比于孤立的螺旋桨形式,具有更高的气动效率。
这样,在本公开实施例的所述驱动轮中,通过支撑单元1、变形单元2、轮面单元3以及叶片单元4的四个部分的配合实现所述驱动轮的结构和形态的改变,从而实现具有所述驱动轮的车辆能够适用于陆地、水面、空中等多种使用场景。例如在陆地的使用场景下,所述轮面单元3构成驱动轮,在水中的使用场景下,所述轮面单元3构成螺旋桨,在空中的使用场景下,所述轮面单元3形成涵道,变形单元2通过与所述支撑单元1和所述轮面单元3的配合,可以实现所述轮面单元3在三种结构之间的转换。
本公开实施例的所述驱动轮采用模块化的设计,其内部具有变形结构,通过一系列机械结构的变形,实现了驱动轮在陆地、水面以及空中适应使用场景,实现对应环境下的功能的设计。本公开实施例的所述驱动轮主要用于水陆空三栖的车辆等交通工具上,不但具有结构简单、构造合理、使用方便、节能环保的优点,还能克服了传统交通工具作业范围受限的缺点,而且能自动变形,通过与车辆的车体结构的配合,实现三种形态的改变,广泛适用于各种情况。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
以上对本公开多个实施例进行了详细说明,但本公开不限于这些具体的实施例,本领域技术人员在本公开构思的基础上,能够做出多种变型和修改实施例,这些变型和修改都应落入本公开所要求保护的范围。
Claims (10)
- 一种用于车辆的驱动轮,其特征在于,包括支撑单元、变形单元以及轮面单元,所述支撑单元通过所述变形单元与所述轮面单元相连接,在所述变形单元和所述轮面单元之间设置叶片单元,通过所述变形单元以使得所述车辆能够至少在陆地、水面和空中的使用场景下行驶。
- 根据权利要求1所述的驱动轮,其特征在于,所述支撑单元包括正三角形的本体片,在所述本体片的每个角部设置切口部,在所述切口部的侧面上设置第一螺纹轴,在所述本体片的中心处设置轴套口。
- 根据权利要求2所述的驱动轮,其特征在于,所述轮面单元包括能够组成完整的圆形轮面的三个相同的轮面子单元,每个所述轮面子单元包括弧形的轮毂骨架,在所述轮毂骨架的外侧设置轮面部,所述轮面部和所述轮毂骨架之间通过第一连接件相互连接。
- 根据权利要求3所述的驱动轮,其特征在于,所述轮毂骨架包括上下平行布置的上骨架和下骨架,在所述上骨架的中部设置三维球铰接口;在所述下骨架的中部设置二维球铰接口。
- 根据权利要求4所述的驱动轮,其特征在于,在所述上骨架和所述下骨架上相隔设置三个第二连接件,其中,在所述上骨架和所述下骨架上的靠近第一端的位置处通过十字螺钉将所述上骨架和所述下骨架之间相互固定,在所述上骨架和所述下骨架的中部位置以及靠近第二端的位置处通过两个六角头螺钉和匹配的六角螺母将所述上骨架和所述下骨架之间相互固定,在所述六角头螺钉的中部套设有轮轴套。
- 根据权利要求4所述的驱动轮,其特征在于,所述变形单元包括驱动轮轴和3个传动组,每个所述传动组包括撑杆、连杆以及轴承连杆,所述驱动轮轴穿过所述轴套口并与所述轴套口活动连接。
- 根据权利要求6所述的驱动轮,其特征在于,在所述轴套口处设置轴承部,所述轴承部包括上下设置的动环和静环,在所述动环的外表面上设置凸台,在所述静环的外表面上设置连接孔,所述动环的外侧通过所述凸台与所述轴套口上的槽配合连接,其内侧与所述驱动轮轴之间通过过盈连接方式配合连接;所述静环的外侧通过所述连接孔与减震装置连接,其内侧与所述驱动轮轴之间形成间隙配合,从而构成转动副,并通过对应的孔与所述传动组固定连接。
- 根据权利要求7所述的驱动轮,其特征在于,每个所述传动组对应于 所述本体片的三个角部,每个所述撑杆的上端设置撑杆连接口,所述撑杆连接口与所述第一螺纹轴之间转动配合,每个所述撑杆的下端设置三维球铰,所述三维球铰与所述上骨架上的所述三维球铰接口相配合连接;所述撑杆中部设置第二螺纹轴,所述第二螺纹轴与所述连杆一端的螺纹孔配合,所述连杆的另一端与所述轴承连杆的一端铰接,所述轴承连杆的另一端与所述静环上的孔固定连接。
- 根据权利要求8所述的驱动轮,其特征在于,所述叶片单元包括叶片本体,在所述叶片本体的第一端设置叶片接口柱,所述叶片接口柱用于与所述驱动轮轴连接,在所述叶片本体的第二端设置球铰连接杆,所述球铰连接杆的端部设置二维球铰,所述二维球铰与所述下骨架上的所述二维球铰接口连接。
- 一种车辆,其特征在于,包括上述权利要求1-9中任一项所述的驱动轮。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/118327 WO2023039726A1 (zh) | 2021-09-14 | 2021-09-14 | 一种用于车辆的驱动轮以及车辆 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/118327 WO2023039726A1 (zh) | 2021-09-14 | 2021-09-14 | 一种用于车辆的驱动轮以及车辆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023039726A1 true WO2023039726A1 (zh) | 2023-03-23 |
Family
ID=85602236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/118327 WO2023039726A1 (zh) | 2021-09-14 | 2021-09-14 | 一种用于车辆的驱动轮以及车辆 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023039726A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103121375A (zh) * | 2013-03-06 | 2013-05-29 | 浙江理工大学 | 电磁离合式重复折展锁解车轮机构 |
KR20170088480A (ko) * | 2016-01-22 | 2017-08-02 | 한국기술교육대학교 산학협력단 | 에어리스 타이어 적용 가변형 바퀴 |
CN110395070A (zh) * | 2019-07-22 | 2019-11-01 | 中北大学 | 一种应用于水陆空三栖原理战车的多功能车轮及轮轴系统 |
CN111319408A (zh) * | 2020-03-16 | 2020-06-23 | 冯毅 | 一种水陆空三栖汽车 |
CN212400777U (zh) * | 2020-02-29 | 2021-01-26 | 浙江理工大学 | 一种高跷式变形轮 |
-
2021
- 2021-09-14 WO PCT/CN2021/118327 patent/WO2023039726A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103121375A (zh) * | 2013-03-06 | 2013-05-29 | 浙江理工大学 | 电磁离合式重复折展锁解车轮机构 |
KR20170088480A (ko) * | 2016-01-22 | 2017-08-02 | 한국기술교육대학교 산학협력단 | 에어리스 타이어 적용 가변형 바퀴 |
CN110395070A (zh) * | 2019-07-22 | 2019-11-01 | 中北大学 | 一种应用于水陆空三栖原理战车的多功能车轮及轮轴系统 |
CN212400777U (zh) * | 2020-02-29 | 2021-01-26 | 浙江理工大学 | 一种高跷式变形轮 |
CN111319408A (zh) * | 2020-03-16 | 2020-06-23 | 冯毅 | 一种水陆空三栖汽车 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112124583B (zh) | 一种带马格努斯减摇装置的h字型四旋翼两栖无人机 | |
CN107985580B (zh) | 一种多模态可变形旋翼机器人 | |
CN205034336U (zh) | 复合飞行器 | |
CN107150775B (zh) | 一种混合驱动水下机器人用可折叠螺旋桨装置 | |
CN108622190A (zh) | 一种安防机器人前轮转向底盘 | |
CN110329023B (zh) | 一种轮毂电机用双横臂独立悬架 | |
CN106827988A (zh) | 一种新型高效两栖航行器 | |
CN110641696A (zh) | 基于翅翼变形的仿蜂鸟扑翼无人飞行器的控制机构 | |
US20170001720A1 (en) | Wheel and gear assembly | |
CN111232206A (zh) | 一种定桨距变转速双旋翼纵列式无人直升机 | |
CN105314108A (zh) | 航空器 | |
CN113071576A (zh) | 反推力吸附的高速移动机器人 | |
CN103921616A (zh) | 一种车轮及水路两栖车 | |
WO2023039726A1 (zh) | 一种用于车辆的驱动轮以及车辆 | |
CN106926653A (zh) | 基于棘轮结构的水陆两栖机器人一体化轮浆机构 | |
CN113635706B (zh) | 一种用于车辆的驱动轮以及车辆 | |
CN110861453A (zh) | 可变输出转矩和螺距的跨介质水空两用推进装置 | |
CN206733983U (zh) | 基于棘轮结构的水陆两栖机器人一体化轮浆机构 | |
CN207943087U (zh) | 一种安防机器人前轮转向底盘 | |
CN210942237U (zh) | 球笼万向节构成的操纵系统及油动三旋翼无人机 | |
CN210942215U (zh) | 民用轻便型飞行器 | |
CN102826220A (zh) | 一种能够平衡反扭矩的推力装置 | |
CN116374233A (zh) | 一种独轮四旋翼式地空两用机器人 | |
CN218428377U (zh) | 一种基于麦克纳姆轮的仿生蛇形机器人 | |
CN104773043A (zh) | 一种矢量喷水推进式水陆两用装置及其工作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21957017 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21957017 Country of ref document: EP Kind code of ref document: A1 |