WO2023038856A1 - Non-polar thermoplastic composite having a dye sublimation printed image and method to form them - Google Patents

Non-polar thermoplastic composite having a dye sublimation printed image and method to form them Download PDF

Info

Publication number
WO2023038856A1
WO2023038856A1 PCT/US2022/042449 US2022042449W WO2023038856A1 WO 2023038856 A1 WO2023038856 A1 WO 2023038856A1 US 2022042449 W US2022042449 W US 2022042449W WO 2023038856 A1 WO2023038856 A1 WO 2023038856A1
Authority
WO
WIPO (PCT)
Prior art keywords
article
composite
comprised
layer
filler
Prior art date
Application number
PCT/US2022/042449
Other languages
French (fr)
Inventor
Paul Palmer
Anastasia FREITAS
Stephan LERMAN
Original Assignee
Greentech Composites Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Greentech Composites Llc filed Critical Greentech Composites Llc
Publication of WO2023038856A1 publication Critical patent/WO2023038856A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/025Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet
    • B41M5/035Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet by sublimation or volatilisation of pre-printed design, e.g. sublistatic
    • B41M5/0355Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet by sublimation or volatilisation of pre-printed design, e.g. sublistatic characterised by the macromolecular coating or impregnation used to obtain dye receptive properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/02Polyureas

Definitions

  • the invention relates to forming a composite comprised of a non-polar thermoplastic (e.g., polyolefin, polyvinyl chloride or polyvinylidene dichloride and filler having a dye sublimation printed image thereon.
  • a non-polar thermoplastic e.g., polyolefin, polyvinyl chloride or polyvinylidene dichloride
  • the invention relates to articles comprising a composite comprised of the non-polar thermoplastic and cellulosic filler having a dye sublimation image thereon.
  • DSP dye sublimation printed
  • Non-polar thermoplastic polymer means a polymer that has no bonds having a Pauling electronegativity difference greater than 0.65 within the polymer.
  • non-polar thermoplastic composites and in particular those formed from polyolefins (e.g., polyethylene, polypropylene and combinations thereof) and polyvinyl chloride or polyvinylidene dichloride (poly(l,l-dichloroethene) may be formed with a dye sublimated printed (DSP) image printed directly thereon or onto one or more layers formed on the composite to form a thermoplastic composite having thereon or attached thereto a DSP image.
  • DSP dye sublimated printed
  • the DSP image because it penetrates and diffuses into the composite or layer attached or adhered to the composite allows for the creation of a long-lasting wear surface that enables it to be aesthetically appealing even after long exposure to the environment and use.
  • the method may be performed at temperatures that may deform or distort the composite.
  • a first aspect of the invention is an article comprised of a composite substrate comprising a non-polar thermoplastic polymer and a filler having polar groups and having a dye sublimation image in a layer attached or integral to a surface of the composite. It has been surprisingly discovered that a thermoplastic polymer not capable of taking a sharp DSP image may be dye sublimation printed even at temperatures that normally would typically deform or distort the non-polar thermoplastic polymer when there is a sufficient amount of filler having polar groups enabling the adherence or integration of an image accepting layer directly onto the composite.
  • a second aspect of the invention is a method of forming an article having a dye sublimation image thereon comprising,
  • the melt temperature (T m ) is the peak temperature of the melt peak in a differential scanning calorimetry scan at 20 °C/min as per ASTM D3418.
  • Polar groups herein means any compound that displays difference in electronegativity above 0.65 to 2 between 2 atoms within the compound. Examples of non-polar groups or bonds include C-H, C-CI and C-C bonding within the non-polar thermoplastic polymer. Examples of polar groups include carboxylic acid, hydroxyl, ester, and ether groups.
  • Figure 1 is an is cross-sectional illustration of an article of this invention.
  • One or more as used herein means that at least one, or more than one, of the recited components may be used as disclosed. It is understood that the functionality of any ingredient or component may be an average functionality due to imperfections in raw materials, incomplete conversion of the reactants and formation of by-products.
  • the article is comprised of a composite comprised of a non-polar thermoplastic polymer and a filler therein having polar groups, the composite having a dye sublimation image an accepting layer attached or integral to a surface of the composite.
  • the non-polar thermoplastic polymer may be any wherein the largest difference in Pauling electronegativity between two atoms in the polymer is at most about 0.65.
  • the non-polar thermoplastic polymer generally displays at least about 3% crystallinity to essentially fully crystalline when heating and cooled at rates commonly experienced when forming or compounding such polymers (e.g., heating and cooling rates from ambient temperature ⁇ 25 °C to the melting temperature). That is, the polymer displays crystallinity without forced crystallization methods such as those known in the art (e.g., solvent induced crystallization and the like). Generally, the amount of crystallinity is at least about 5%, 10%, 15% or 20% to about 95%, 75%, 50% or 30%. The crystallinity may be determined by any suitable methods such as those known in the art.
  • the percent crystallinity may be determined by x-ray diffraction including, for example, wide angle x-ray diffraction (WAXD, or by differential scanning calorimetry (DSC), such as by using a commercially available differential scanning calorimeter per standard ASTM D3418 - 15.
  • the non-polar thermoplastic polymer may be amorphous displaying a T g (onset of deviation from linear during heating) as determined by DSC.
  • the non-polar thermoplastic may be a polyolefin.
  • the polyolefin may be any suitable polyolefin such as those known in the art.
  • the polyolefin may be comprised of one or more olefin monomers have 2 to 12, 8, 6 or 4 carbon atoms.
  • the polyolefin is comprised of one or more of polyethylene, polypropylene, or copolymer of ethylene and propylene.
  • the polyolefin is comprised of post-use polyolefins (e.g., shopping bags, milk bottles and the like) that have been recycled, heated and mixed with the filler to form the composite.
  • suitable polyolefins include polyethylene, polypropylene or combinations thereof available from The Dow Chemical Company, Exxon, Total and the like.
  • the non-polar thermoplastic may be a polymer comprised of C, H, and Cl such as known chlorine containing polymers such as polyvinyl chloride (PVC) and polyvinylidene dichloride (PVDC) that are commercially available.
  • the chlorine containing polymers may be post use polymers such as recycled piping and the like. Examples of commercially available chlorine containing polymers include but are not limited to PVC available from Shin-Etsu Co., Ltd., Japan, with the rigid grades being preferable and PVDC under the SARAN trademark from the Asahi Kasei, Japan.
  • the non-polar thermoplastic polymer may be any useful molecular weight for making the composite.
  • the weight average molecular weight (M w ) of the nonpolar thermoplastic polymer is from about 20,000; 50,000 or 75,000 to 1,000,000; 500,000 or 250,000 g/mole.
  • the thermoplastic may also be comprised of a further thermoplastic polymer such as those known in the art.
  • exemplary further thermoplastic polymers may include condensation polymers, addition polymers or grafted polyolefins having polar groups. Examples include polymers such as polyester, thermoplastic polyurethane, polyketone, polyethers, copolymers or grafted polymers of polyethylene or polypropylene grafted or copolymerized with addition polymerizable monomer having polar groups such as acrylics, acrylates or anhydrides.
  • the composite is present without such further thermoplastic polymers, but when present the amount of such further thermoplastic polymers is typically less than about 50%, 30%, 20% to about 1% by weight of the total amount of thermoplastic polymers in the composite (i.e., balance is the non-polar thermoplastic polymer).
  • the composite is comprised of a filler to realize the desired mechanical properties and adhesion of the accepting layer 40 or abutment layer 30.
  • the filler may also facilitate the composite's ability to withstand the conditions necessary to form the dye sublimation image.
  • the filler may be any suitable for enhancing or realizing a desired properties such as stiffness, thermal conductivity, strength, heat resistance or the like.
  • the filler may be any such as those known to be useful in organic polymers.
  • the filler may be a metal, ceramic or other organic polymer (e.g., polymeric fiber such as an engineering plastic fiber having polar group).
  • the filler may be an inorganic compound having polar groups (e.g., metal oxide particulates having polar surface groups).
  • the filler may be particles, fibers, sheets or combination thereof.
  • the sheets may be woven or unwoven fibrous fabrics or sheets. Desirably the filler is a chopped fiber, particle or combination thereof.
  • the fiber may be any useful fiber such as an inorganic glass fiber, engineering plastic fiber (e.g., polyamide, polyimide, polycarbonate, polypropylene or the like), carbon fiber, metal fiber or wire or combination thereof including for example organic polymer coated metal, carbon or inorganic glass fibers.
  • the fibers may be long or chopped fibers. Long fibers generally meaning the fibers transverse a substantial distance of one or more dimensions of the composite or article (generally a long fiber is at least about 5 or 10 mm and chopped fibers are less than this length).
  • the fiber or wire may have any useful cross-sectional shape such as square, rectangular, ovoid, spherical or other polygon shapes (e.g., hexagon, parallelogram, triangle and the like).
  • the average diameter of the fiber is between 1 micrometer, 5 micrometers, 10 micrometers or 20 micrometers to about 2 mm, 1 mm, 0.5 mm, 250 micrometers, or 100 micrometers.
  • the fiber desirably is an inorganic fiber such as those known in the art.
  • the inorganic fiber may be any E, A, C, ECR, R, S, D or NE glass fibers such as those available from Owen-Corning.
  • the particulate may be any suitable particle such as those known in the art.
  • the particulate may be a ceramic (crystalline or amorphous), metal or carbon particulate (e.g., carbon black, carbon nanotubes, graphite). It is understood that carbon means any carbon that has surface polar groups that may arise from exposure to the environment or impurities.
  • particulates examples include inorganic particulates such as clay, talc, wollastonite, mica, coal ash, calcium carbonate, mono metal oxides (e.g., silica, calcium oxide, titania, alumina, zirconia, or magnesia) or mixed metal oxides (e.g., alumino silicates), nitrides (silicon nitride, aluminum nitride), carbides (e.g. silicon carbide or boron carbide) or any combination ( e.g., oxy-carbide or oxy-nitride) or mixture thereof.
  • the filler desirably is an organic filler that is comprised of cellulose derived from plant matter.
  • the filler may be wood flour from sawmill waste, recycled cellulosic fibers from paper products such as magazine, books, newspapers, corrugated boxes and the like.
  • the filler may be a glass filler such as those available from Strategic Materials, Houston, TX 77094
  • the filler may be present in any useful amount to realize the desired properties, facilitate the ability to withstand the dye sublimation image formation conditions, or enable the adherence of the abutment layer 30 or image accepting layer 40.
  • the amount of reinforcement component or filler may be from about 10%, 20%, 30%, 40%, 50% to about 80%, 70%, or 60% by weight of the composite.
  • the filler may be uniformly distributed throughout the composite or vary within or on the composite.
  • the reinforcement component may be distributed on the surface such as fibrous fabric sheets and the like. Examples of such filler or reinforcement are further described in US Pat. Nos.
  • the composite 20, abutment layer 30, or accepting layer 40 may be comprised of a pultruded article having essentially long parallel fibers reinforcing the aforementioned such as described by US Pat. Nos. 2,979,431; 4,549,920; 4,828,897; and 9,981,415.
  • the composite may be dense or a foam.
  • a foam as commonly understood in the art, means a body that is cellular.
  • Cellular (foam) herein means the polymer body has a substantially lowered apparent density compared to the density of the polymer without any pores and the body is comprised of cells that are closed or open. Closed cell means that the gas within that cell is isolated from another cell by the polymer walls forming the cell. Open cell means that the gas in that cell is not so restricted and is able to flow to another cell without passing through any polymer cell walls to the atmosphere.
  • the composite may entirely be a foam, but may be in many instances, a laminate structure (e.g., porous or foam core and dense skin or shell).
  • the foam portion may be uniform or have one or more gradients of porosity.
  • the skin may be any useful thickness. Generally, the skin or shell thickness or accepting layer 40 may be from about 10 micrometers, 100 micrometers or 500 micrometers to about 5 mm, 2 or 1 mm.
  • the skin or shell may encapsulate any portion of the composite core that is a foam including encapsulating the entire composite foam core. Typically, the skin, when present covers at least 50%, 75% 90%, or essentially the entire surface of the foam core.
  • the composite is essentially dense (e.g., at most about 10%, 5% or 1% porosity by volume).
  • the composite may be made by any suitable method of mixing and blending a thermoplastic polymer with a filler such as those known in the art such as casting, extrusion, injection molding and the like such as described by U.S. Pat. Nos. 3,888,810; 4,013,616; 5,851,469; 5,746,958; 6,117,924 7,041,716; 7,781,500; 8,709,586 , US Pat. Appl. Nos. 2003/0021915; 2006/0068215; 2010/0021753; 2011/0071252; 2020/0199330 and Int. Pub. WO 2007/071732.
  • Figure 1 is an illustration of one embodiment of the invention where the article 10 is comprised of a composite 20, abutment layer 30, image accepting layer 40 sandwiched between the abutment layer 30 and cap layer 50.
  • the image accepting layer having therein the dye sublimation image in at least a portion of the thickness of said layer, which is further described below.
  • the composite has at least one layer adhered or integrally fused to a portion or all of the composite's surface, for example, to facilitate the formation of the dye sublimation image (e.g., image accepting layer 40), provide a base color coat, or provide some other property (e.g., smooth the surface of open cells on the surface of a foam composite surface).
  • the image accepting layer 40 may be any layer that adheres or integrally fuses with the composite and may be a thermoplastic or thermoset polymer.
  • the image accepting layer 40 or abutment layer 30 adheres to the filler material having polar groups at the surface of the composite allowing for sufficient ionic attraction to bond such layers sufficiently to prevent spalling or removal when subjected to environmental and wear conditions in use (e.g., decking planks).
  • the image accepting layer or abutment layer may be fused with the thermoplastic of the composite (e.g., a maleic anhydride grafted polyethylene layer fused with the composite's polyethylene, polypropylene or copolymer thereof).
  • the accepting layer may include any films, coating or layers suitable for accepting and forming dye sublimation images such as those known in the art. Any suitable method of applying the accepting layer may be used such as those known in the art and may include, for example, thermoforming, coextrusion, brushing, doctor blading, spraying, laminating, or plating. Generally, such coatings or layers may include a thermoset or thermoplastic polymer having one or more polar groups such as a condensation polymer.
  • Exemplary coatings or layers include polyurethane (e.g., oil or water dispersed dispersions of polyurethane, polyurea or polyisocyanurate particulates that coalesce upon removal of the liquid dispersion medium forming a somewhat uniform pore free coating), epoxies, acrylics/acrylates, alkyds, phenolics, polyamine, polyamide, fluoropolymers, polyvinylfluoride, polybutylene terephthalate, polyesters, polycarbonates, polystyrene and polystyrene copolymers (ABS, "acrylonitrile butadiene styrene" and the like) mixtures or combinations thereof.
  • the image accepting layer may be smooth or have intentional embossing or waviness imparted thereto for aesthetics or to improve traction such as on a deck surface.
  • Examples of polymers useful for the image accepting layer 40 may also include a two-part acrylic-aliphatic urethane coatings available under the trade name PITTHANE, HPC High Gloss Epoxy, PPG flooring concrete epoxy primer, each from PPG Industries.
  • PITTHANE acrylic-aliphatic urethane coatings available under the trade name PITTHANE, HPC High Gloss Epoxy, PPG flooring concrete epoxy primer, each from PPG Industries.
  • thermoplastic polymer examples include an acrylic- polyvinylchloride copolymer available underthe tradename KYDEX, available from SEKISU KYDEX, Holland Ml, a polycarbonate under the trade name LEXAN and a polyetherimide under the trade name ULTEM from Sabie, Pittsfield, MA and polyamide available under the tradename NYLENE from Nylene Polymer Solutions, RILSAN from Arkema, and various grades from UBE America Inc., Livonia, Ml.
  • KYDEX acrylic- polyvinylchloride copolymer available underthe tradename KYDEX, available from SEKISU KYDEX, Holland Ml
  • LEXAN trade name
  • polyetherimide under the trade name ULTEM from Sabie, Pittsfield, MA
  • polyamide available under the tradename NYLENE from Nylene Polymer Solutions
  • RILSAN from Arkema
  • various grades from UBE America Inc. Livonia, Ml.
  • the composite 20 may have an undercoat layer (abutment or abutting layer 30) that is sandwiched between the composite and image accepting layer that provides one or more desired properties such as thermal resistance to facilitate the formation of the dye sublimated image attached or integral to the composite (i.e., may act as a gradient layer that has gradient that facilitates the bonding to the composite and to the accepting layer).
  • the abutment layer may be any useful coating that is resistant to heat or that absorbs heat that may assist the formation of the dye sublimation image without distorting or degrading the properties of the composite.
  • the high temperature resistant coating may be any suitable high temperature coating such as those known in the art and typically have a higher use temperature (e.g., melt or degrade at a temperature above that of the thermoplastic of the composite). Commonly these coatings have a high concentration of metal or inorganic particulates that provide for thermal resistance, heat insulation or heat absorption or may be a high temperature foam (e.g., inorganic siliceous foam). Examples of heat resistance coating that may be useful include those available from PPG under the tradenames PPG HI-TEMP, AMERCOAT, AMERLOCK, DIMETCOTE, PSX, and SIGMATHERM. These coatings, in some instances, may also be used as the layer that accepts the dye sublimation image as described above. The undercoat or abutment layer may be any useful thickness such as those thicknesses described for the image accepting layer 40.
  • the article 10 may have a cap layer 50 that is on top of the image accepting layer 40, which may be clear coat or have a matte finish.
  • the clear or opaque coating may be smooth, textured or embossed.
  • the texturing or embossing may be any desired such as wood grain, stone, tile, brick or other masonry motif and may be applied by any suitable method such as those known in the art and, for example, as described in U.S. Pat. Appl. No. 2006/0099394.
  • the cap layer 50 may be any useful thickness such as described for the image accepting layer. Exemplary polymers that may be useful for such cap layers include those described above for the image accepting layer.
  • the composite 30 may be a foam.
  • Said foam may have any amount of open or closed cells. Even so, the cells may be advantageously closed, for example, to provide for improved insulation such as for siding or rigidity.
  • the amount of closed cells may vary from essentially zero to essentially all closed cells. Generally, the amount of closed cells is less than 95%, 90% 75%, to 5%, 10% or 25%.
  • the amount of closed or cell size may be determined by ASTM D 2856.
  • the cell size may be any useful size to make the article 10 and may depend on the particular article and its use.
  • the foam may be microcellular to a cell size on the order of millimeters or even larger.
  • the average cell size is at from about 1 micrometer, 10, micrometers, 100 micrometers, 250 micrometers, 500 micrometers to about 10 mm, 5 mm or 2 mm.
  • the porosity may be any shape or morphology, such as elliptical or spherical.
  • the shape desired may be induced by mechanical agitation such as shear to elongate the cells to realize anisotropic properties if desired.
  • the average cell size may be determined as described in US Pat. No. 5,912,729 and known image analysis techniques of micrographs of cross-sections of the foam, which may also be used to determine gradient structures.
  • the composite may be rigid or flexible, but generally it is desirable for the composite to be rigid under compression or flexure (e.g., some bending deflection of a 10 ft plank is acceptable, without essentially any compressive deformation when walking on the plank).
  • Sufficiently rigid generally means that under the typical compressive pressures used to form a dye sublimation image the composite does not distort in the absence of heating.
  • the composite has an elastic modulus (i.e., modulus of elasticity) of at least about 5,000 psi, 10,000 psi, 50,000 psi, 100,000 psi, 200,000 psi to about 1,000,000 psi or 500,000 psi.
  • the particulate reinforcement component may be isotropic and/or anisotropic.
  • the particulate reinforcement component may spherical or angular (such as that formed when comminuting a ceramic).
  • the particulate reinforcement component may have an acicular morphology wherein the aspect ratio is at least 2 to 50, wherein the acicularity means herein that the morphology may be needlelike or platy. Needlelike meaning that there are two smaller equivalent dimensions (typically referred to as height and width) and one larger dimensions (typically the length or width). Platy meaning that there are two larger somewhat equivalent dimensions (typically width and length) and one smaller dimension (typically height). More preferably the aspect ratio is at least 3, 4 or 5 to 25, 20 or 15.
  • the average aspect ratio is determined by micrographic techniques measuring the longest and shortest dimension of a random representative sample of the particles (e.g., 100 to 200 particles).
  • the filler when it is a particulate should be a useful size that is not too large (e.g., spans the smallest dimension of a desired article) and not too small that the desired effects on properties is not realized.
  • the particle size and size distribution is given by the median size (D50), D10, D90 and a maximum size limitation.
  • the size is the equivalent spherical diameter by volume as measured by a laser light scattering method (Rayleigh or Mie with Mie scattering being preferred) using dispersions of the solids in liquids at low solids loading.
  • D10 is the size where 10% of the particles have a smaller size
  • D50 (median) is the size where 50%of the particles have a smaller size
  • D90 is the size where 90% of the particles have a smaller size by volume.
  • the size of the particulates within the composite may also be determined by known micrographic techniques.
  • the filler has an equivalent spherical diameter median (D50) particle size of 0.1 micrometer to 25 micrometers, D10 of 0.05 to 5 micrometers, D90 of 20 to 40 micrometers and essentially no particles greater than about 70 micrometers or even 50 micrometers and no particles smaller than about 0.01 micrometers.
  • the median is 5 to 10 micrometers
  • the D10 is 0.5 to 2 micrometers
  • the D90 is 20 to 30 micrometers.
  • the reinforcement particulates desirably have a specific surface area from 0.1 m 2 /g to 20 m 2 /g and preferably from 2 m 2 /g to 10 m 2 /g, which may be determined by known standard methods such as nitrogen absorption typically referred to as BET nitrogen absorption.
  • the dye sublimation image may penetrate through the entire thickness of the image accepting layer or some portion (e.g., at least about 1%, 10%, 50% or 90% to essentially the thickness of the image accepting layer 40).
  • the dye sublimation image may be formed by any suitable dye sublimation method such as those known in the art. In many instances, it has been discovered to realize desirable clarity of the image and avoid distortion the exposure time is such that the temperature of the image accepting layer is raised to a sufficient temperature, but the bulk temperature of the composite is not raised to a temperature where undesired distortion or degradation of the composite takes place.
  • the exposure time to the elevated exposing temperature may be any suitable for the particular composite. Generally, the time may be, for example, from 10 seconds, 30 seconds, or 1 minute to about 10 or 5 minutes.
  • the atmosphere may be any useful atmosphere such as air, inert atmosphere at any useful pressure including atmospheric pressure or vacuum.
  • the abutment layer 30 and image accepting layer 40 may be formed by laminating a film thereto, coated by brushing, spraying, doctor blading, silk screening and as described hereinabove, or the like.
  • the layer may be formed by coating the composite with an emulsion, liquid polymer, or dispersion in one part or two parts (reactive coating) and cured on the composite. The curing may be effectuated by allowing the film to coalesce and form a contiguous film or allow a two- part system to react and cure into a layer on the composite.
  • the composite may then be exposed to the sublimating temperature and the dye sublimation image imprinted by pressing a dye sublimation film or sheet (transfer sheet) onto a surface of the image accepting layer to imprint the dye sublimation image.
  • the layer may be comprised of a filler as described above.
  • the composite may be an unfilled thermoplastic that has an integral layer comprised of filler (e.g., fiberglass sheet) that imparts the desired rigidity and ability to accept the dye sublimatable image.
  • the dye sublimation image may be formed by any suitable method or apparatus such as those known in the art. Examples include methods and apparatus described in Inti. Pat. Appl. No. W02020210700, US Pat. Nos. 4,059,471; 4,664,672; 5,580,410; 6,335,749; 6,814,831; 7,033,973; 8,182,903; 8,283,290; 8,308,891; 8,561,534; 8,562,777; 9,956,814; and 10,583,686, US Pat. Appl. Nos. 2002/148054; 2003/019213; and 2020/0346483, and Canadian Pat. No. 2,670,225, each incorporated herein by reference.
  • the method may employ any suitable dye sublimation ink such as those known in the art.
  • suitable dye sublimation inks include those described in U.S. Pat. Nos. 3,508,492; 3,632,291; 3,703,143; 3,829,286; 3,877,964; 3,961,965; 4,121,897; 4,354,851; 4,587,155, EP Pat. No. 0098506, and Inti. Pat. Appl. WO2018208521 each incorporated herein by reference.
  • the transfer sheet may be any suitable transfer sheet such as those known in the art and as described in the references cited in this paragraph.
  • paper transfer sheets as commonly used and may be employed.
  • the dye sublimating generally is performed at a dye sublimating temperature of about 100 °C, 120 °C, 150 °C or 170 °C to about 200 °C, 225 °C or 250 °C for a dye sublimating time sufficient to migrate and be incorporated in the imaging accepting layer to the desired depth and may vary depending on the application (e.g., desired depth to realize a desired wear life).
  • the dye sublimating time is from 30 seconds, 1 minute, 2 minutes or 5 minutes to about 10 minutes.
  • the pressure may be any useful pressure to effectively transfer the image in the time and detail desired without distorting and compacting the composite.
  • the pressure may be as minimal as possible and as uniformly applied to realize a uniform and consistent dye sublimated image in the layer attached or integral to the composite.
  • the pressure may be applied uniaxia I ly or isometrically.
  • the temperature may be applied by a hot press such as heated a roll press or heated uniaxial die press.
  • the pressure may be applied by use of a vacuum press, which may be augmented by applying external gas pressure above atmospheric pressure.
  • the pressure may be, for example, from about 1, 2, 5 psi to about 300, 150, 100, 50, 20, or 15 psi.
  • the image accepting layer e.g., sheet
  • the dye sublimation methods described herein it may be desirable to separately form the dye sublimated image in the image accepting layer (e.g., sheet) by the dye sublimation methods described herein and then subsequently adhere this sheet to the composite substrate comprising a non-polar thermoplastic polymer and a filler having polar groups.
  • the bonding may be by any suitable method of adhering two materials such as described herein including heating and pressing as described to form the DSP image described herein.
  • the method surprisingly may use a composite that are comprised of polyolefins or a chlorine containing polymer that melt well below (e.g., 5, 10 or 20 °C or more below) the temperature where the dye sublimating is performed. That is, T m is below the dye sublimating temperature.
  • the non-polar thermoplastic may be amorphous displaying a T g that is below the dye sublimating temperature by the same degree T m is below the dye sublimating temperature.
  • the article of this invention may be used in any application wherein an aesthetically appealing article is desired that is exposed to weathering whether by abrasive wear, rain (e.g., acid rain) or exposure to electromagnetic radiation such as from the sun.
  • Applications where the article of this invention is particularly useful include those traditionally employing natural wood.
  • the article may be a board, siding shingle, door, decking, roofing shingle, fence post, railing, balustrade, paneling, furniture, fascia board, handle or frame.
  • a one-inch-thick composite substrate (available from Envision Outdoor Living Products, Lamar, MO) comprised of about 50% wood flour and about 50% polyethylene by volume is sanded with 80 grit sandpaper.
  • the surface of the sanded composite is brush coated with a two part polyurea coating available from ASTC Global, Santa Ana, CA, under the tradename ASTC Polymers. The coating is cured at room temperature for at least about 24 hours.
  • a dye sublimated image is imparted to the polyurea layer by placing the composite in a hot press and dye sublimating using a paper transfer image printed using commercially available dye sublimating inks (Sawgrass, Washington, SC). The composite is pressed at temperature of 200 °C (platen temperature) at a pressure of about 5 psi for about 1 minute. The image transfers with detail without smearing and the polyurea layer was well adhered to the composite.
  • a one-inch-thick substrate comprised of PVC (Versatex, Aliquippa, PA) without filler is coated and dye sublimated in the same fashion as Example 1.
  • the polyurea coating fails to adhere well to the substrate and the substrate distorts during dye sublimating. The transferred image is indiscernible.

Abstract

An article is comprised of a composite substrate comprising a non-polar thermoplastic polymer such as a polyolefin or polyvinyl chloride and a filler having polar groups, the composite having a dye sublimation image in a layer adhered or integral to a surface of the composite. The article may be made by exposing the aforementioned composite substrate to a temperature above 100 °C, which is typically above the melt temperature of the non-polar thermoplastic polymer, to about 250 °C and pressing a dye sublimation film onto the composite substrate for a time to imprint the dye sublimation image into the accepting layer forming the article. The article may be used for applications having aesthetic or structural requirements in the construction arts such as railing, decking or fencing.

Description

NON-POLAR THERMOPLASTIC COMPOSITE HAVING A DYE SUBLIMATION PRINTED IMAGE AND METHOD TO FORM THEM
FIELD
[0001] The invention relates to forming a composite comprised of a non-polar thermoplastic (e.g., polyolefin, polyvinyl chloride or polyvinylidene dichloride and filler having a dye sublimation printed image thereon. In particular, the invention relates to articles comprising a composite comprised of the non-polar thermoplastic and cellulosic filler having a dye sublimation image thereon.
BACKGROUND
[0002] Over many years in the building construction industry there has been a continuing shift from the use of natural materials (e.g., wood) to metal and engineered wood products for structural applications. Likewise, there has been a similar trend to replace wood for use in functional and aesthetic applications such as siding, fences, deck planking, railing and balustrades exposed to the environment. For example, PVC (polyvinyl chloride) and fiber cement siding have become common. Likewise, decking and railing have become available such as those available under the tradename TREX, which are composite plastic materials coextruded with an embossed plastic cap layer. Even though the cap layer may be embossed and use variegated color, they tend to lack the realism desired.
[0003] More recently in the commercial building industry, coated metal panels having dye sublimation printed (DSP) images thereon have been used to form large panels for use in doors, windows and cladding such as described in US Pat. Nos. 6,136,126 and 6,335,749. The DSP process, typically, requires elevated temperatures of ~ 170 to 200 °C and significant compressive forces, which have essentially precluded plastic substrates having DSP images thereon use in forming construction materials. Because of the expense of the process and material constraints, metal substrates having DSP images thereon have tended to be limited to commercial buildings with their longer life requirements.
[0004] It would be desirable to provide a cost effective, aesthetically appealing synthetic construction material that has improved properties, weathering, weight and comfort and method to produce such construction material.
SUMMARY
[0005] Applicants have discovered that non-polar thermoplastic composites useful for decking may be rendered more aesthetically pleasing reflecting more natural wood construction materials. Non-polar thermoplastic polymer means a polymer that has no bonds having a Pauling electronegativity difference greater than 0.65 within the polymer. For example, polyvinyl chloride is comprised of C-C, C-H and C-CI, bonds with the C-CI bond having a difference in electronegativity of 0.61 (C = 2.55 and Cl = 3.16). In particular, it has been discovered that non-polar thermoplastic composites and in particular those formed from polyolefins (e.g., polyethylene, polypropylene and combinations thereof) and polyvinyl chloride or polyvinylidene dichloride (poly(l,l-dichloroethene) may be formed with a dye sublimated printed (DSP) image printed directly thereon or onto one or more layers formed on the composite to form a thermoplastic composite having thereon or attached thereto a DSP image. The DSP image, because it penetrates and diffuses into the composite or layer attached or adhered to the composite allows for the creation of a long-lasting wear surface that enables it to be aesthetically appealing even after long exposure to the environment and use. Surprisingly, the method may be performed at temperatures that may deform or distort the composite.
[0006] A first aspect of the invention is an article comprised of a composite substrate comprising a non-polar thermoplastic polymer and a filler having polar groups and having a dye sublimation image in a layer attached or integral to a surface of the composite. It has been surprisingly discovered that a thermoplastic polymer not capable of taking a sharp DSP image may be dye sublimation printed even at temperatures that normally would typically deform or distort the non-polar thermoplastic polymer when there is a sufficient amount of filler having polar groups enabling the adherence or integration of an image accepting layer directly onto the composite.
A second aspect of the invention is a method of forming an article having a dye sublimation image thereon comprising,
(i) exposing a composite substrate comprising a non-polar thermoplastic polymer, a filler having polar groups, and a dye sublimation accepting layer thereon to a temperature above 100 °C to about 250 °C and,
(ii) pressing a dye sublimation film onto the composite substrate for a time to imprint the dye sublimation image into the accepting layer forming the article. The melt temperature (Tm) is the peak temperature of the melt peak in a differential scanning calorimetry scan at 20 °C/min as per ASTM D3418. Polar groups herein means any compound that displays difference in electronegativity above 0.65 to 2 between 2 atoms within the compound. Examples of non-polar groups or bonds include C-H, C-CI and C-C bonding within the non-polar thermoplastic polymer. Examples of polar groups include carboxylic acid, hydroxyl, ester, and ether groups.
DESCRIPTION OF THE DRAWING
[0007] Figure 1 is an is cross-sectional illustration of an article of this invention.
DETAILED DESCRIPTION
[0008] The explanations and illustrations presented herein are intended to acquaint others skilled in the art with the invention, its principles, and its practical application. The specific embodiments of the present disclosure as set forth are not intended to be exhaustive or limit the scope of the disclosure.
[0009] One or more as used herein means that at least one, or more than one, of the recited components may be used as disclosed. It is understood that the functionality of any ingredient or component may be an average functionality due to imperfections in raw materials, incomplete conversion of the reactants and formation of by-products.
[0010] The article is comprised of a composite comprised of a non-polar thermoplastic polymer and a filler therein having polar groups, the composite having a dye sublimation image an accepting layer attached or integral to a surface of the composite. The non-polar thermoplastic polymer may be any wherein the largest difference in Pauling electronegativity between two atoms in the polymer is at most about 0.65.
[0011] The non-polar thermoplastic polymer generally displays at least about 3% crystallinity to essentially fully crystalline when heating and cooled at rates commonly experienced when forming or compounding such polymers (e.g., heating and cooling rates from ambient temperature ~25 °C to the melting temperature). That is, the polymer displays crystallinity without forced crystallization methods such as those known in the art (e.g., solvent induced crystallization and the like). Generally, the amount of crystallinity is at least about 5%, 10%, 15% or 20% to about 95%, 75%, 50% or 30%. The crystallinity may be determined by any suitable methods such as those known in the art. Illustratively, the percent crystallinity may be determined by x-ray diffraction including, for example, wide angle x-ray diffraction (WAXD, or by differential scanning calorimetry (DSC), such as by using a commercially available differential scanning calorimeter per standard ASTM D3418 - 15. The non-polar thermoplastic polymer may be amorphous displaying a Tg (onset of deviation from linear during heating) as determined by DSC.
[0012] The non-polar thermoplastic may be a polyolefin. The polyolefin may be any suitable polyolefin such as those known in the art. Illustratively, the polyolefin may be comprised of one or more olefin monomers have 2 to 12, 8, 6 or 4 carbon atoms. Desirably, the polyolefin is comprised of one or more of polyethylene, polypropylene, or copolymer of ethylene and propylene. Desirably, the polyolefin is comprised of post-use polyolefins (e.g., shopping bags, milk bottles and the like) that have been recycled, heated and mixed with the filler to form the composite. Examples of suitable polyolefins include polyethylene, polypropylene or combinations thereof available from The Dow Chemical Company, Exxon, Total and the like.
[0013] The non-polar thermoplastic may be a polymer comprised of C, H, and Cl such as known chlorine containing polymers such as polyvinyl chloride (PVC) and polyvinylidene dichloride (PVDC) that are commercially available. The chlorine containing polymers may be post use polymers such as recycled piping and the like. Examples of commercially available chlorine containing polymers include but are not limited to PVC available from Shin-Etsu Co., Ltd., Japan, with the rigid grades being preferable and PVDC under the SARAN trademark from the Asahi Kasei, Japan.
[0014] The non-polar thermoplastic polymer may be any useful molecular weight for making the composite. Typically, the weight average molecular weight (Mw) of the nonpolar thermoplastic polymer is from about 20,000; 50,000 or 75,000 to 1,000,000; 500,000 or 250,000 g/mole.
[0015] The thermoplastic may also be comprised of a further thermoplastic polymer such as those known in the art. Exemplary further thermoplastic polymers may include condensation polymers, addition polymers or grafted polyolefins having polar groups. Examples include polymers such as polyester, thermoplastic polyurethane, polyketone, polyethers, copolymers or grafted polymers of polyethylene or polypropylene grafted or copolymerized with addition polymerizable monomer having polar groups such as acrylics, acrylates or anhydrides. Generally, the composite is present without such further thermoplastic polymers, but when present the amount of such further thermoplastic polymers is typically less than about 50%, 30%, 20% to about 1% by weight of the total amount of thermoplastic polymers in the composite (i.e., balance is the non-polar thermoplastic polymer).
[0016] The composite is comprised of a filler to realize the desired mechanical properties and adhesion of the accepting layer 40 or abutment layer 30. The filler may also facilitate the composite's ability to withstand the conditions necessary to form the dye sublimation image. The filler may be any suitable for enhancing or realizing a desired properties such as stiffness, thermal conductivity, strength, heat resistance or the like. The filler may be any such as those known to be useful in organic polymers. Illustratively, the filler may be a metal, ceramic or other organic polymer (e.g., polymeric fiber such as an engineering plastic fiber having polar group). The filler may be an inorganic compound having polar groups (e.g., metal oxide particulates having polar surface groups). The filler may be particles, fibers, sheets or combination thereof. The sheets may be woven or unwoven fibrous fabrics or sheets. Desirably the filler is a chopped fiber, particle or combination thereof.
[0017] The fiber may be any useful fiber such as an inorganic glass fiber, engineering plastic fiber (e.g., polyamide, polyimide, polycarbonate, polypropylene or the like), carbon fiber, metal fiber or wire or combination thereof including for example organic polymer coated metal, carbon or inorganic glass fibers. The fibers may be long or chopped fibers. Long fibers generally meaning the fibers transverse a substantial distance of one or more dimensions of the composite or article (generally a long fiber is at least about 5 or 10 mm and chopped fibers are less than this length). Typically, the fiber or wire may have any useful cross-sectional shape such as square, rectangular, ovoid, spherical or other polygon shapes (e.g., hexagon, parallelogram, triangle and the like). Typically, the average diameter of the fiber is between 1 micrometer, 5 micrometers, 10 micrometers or 20 micrometers to about 2 mm, 1 mm, 0.5 mm, 250 micrometers, or 100 micrometers. The fiber desirably is an inorganic fiber such as those known in the art. Illustratively, the inorganic fiber may be any E, A, C, ECR, R, S, D or NE glass fibers such as those available from Owen-Corning.
[0018] When the reinforcement component is a particulate, the particulate may be any suitable particle such as those known in the art. Illustratively, the particulate may be a ceramic (crystalline or amorphous), metal or carbon particulate (e.g., carbon black, carbon nanotubes, graphite). It is understood that carbon means any carbon that has surface polar groups that may arise from exposure to the environment or impurities. Examples of particulates that may be suitable include inorganic particulates such as clay, talc, wollastonite, mica, coal ash, calcium carbonate, mono metal oxides (e.g., silica, calcium oxide, titania, alumina, zirconia, or magnesia) or mixed metal oxides (e.g., alumino silicates), nitrides (silicon nitride, aluminum nitride), carbides (e.g. silicon carbide or boron carbide) or any combination ( e.g., oxy-carbide or oxy-nitride) or mixture thereof. The filler desirably is an organic filler that is comprised of cellulose derived from plant matter. For example, the filler may be wood flour from sawmill waste, recycled cellulosic fibers from paper products such as magazine, books, newspapers, corrugated boxes and the like. Illustratively, the filler may be a glass filler such as those available from Strategic Materials, Houston, TX 77094
[0019] The filler may be present in any useful amount to realize the desired properties, facilitate the ability to withstand the dye sublimation image formation conditions, or enable the adherence of the abutment layer 30 or image accepting layer 40. The amount of reinforcement component or filler may be from about 10%, 20%, 30%, 40%, 50% to about 80%, 70%, or 60% by weight of the composite. The filler may be uniformly distributed throughout the composite or vary within or on the composite. For example, the reinforcement component may be distributed on the surface such as fibrous fabric sheets and the like. Examples of such filler or reinforcement are further described in US Pat. Nos. 3,230,995; 3,544,417; 5,462,623; 5,589,243; 5,798,160; 6,740,381; and 9,091,067 each incorporated herein by reference. If uniformly present, it is desirable for there to be a sufficient amount so that there is exposed filler surface at the surface of the composite to realize good adherence of the image accepting layer 40 or abutment or abutting layer 30 to the composite. Illustratively, the composite 20, abutment layer 30, or accepting layer 40 may be comprised of a pultruded article having essentially long parallel fibers reinforcing the aforementioned such as described by US Pat. Nos. 2,979,431; 4,549,920; 4,828,897; and 9,981,415.
[0020] The composite may be dense or a foam. A foam, as commonly understood in the art, means a body that is cellular. Cellular (foam) herein means the polymer body has a substantially lowered apparent density compared to the density of the polymer without any pores and the body is comprised of cells that are closed or open. Closed cell means that the gas within that cell is isolated from another cell by the polymer walls forming the cell. Open cell means that the gas in that cell is not so restricted and is able to flow to another cell without passing through any polymer cell walls to the atmosphere. The composite may entirely be a foam, but may be in many instances, a laminate structure (e.g., porous or foam core and dense skin or shell). The foam portion may be uniform or have one or more gradients of porosity. The skin may be any useful thickness. Generally, the skin or shell thickness or accepting layer 40 may be from about 10 micrometers, 100 micrometers or 500 micrometers to about 5 mm, 2 or 1 mm. The skin or shell may encapsulate any portion of the composite core that is a foam including encapsulating the entire composite foam core. Typically, the skin, when present covers at least 50%, 75% 90%, or essentially the entire surface of the foam core.
[0021] Desirably, the composite is essentially dense (e.g., at most about 10%, 5% or 1% porosity by volume).
[0022] The composite may be made by any suitable method of mixing and blending a thermoplastic polymer with a filler such as those known in the art such as casting, extrusion, injection molding and the like such as described by U.S. Pat. Nos. 3,888,810; 4,013,616; 5,851,469; 5,746,958; 6,117,924 7,041,716; 7,781,500; 8,709,586 , US Pat. Appl. Nos. 2003/0021915; 2006/0068215; 2010/0021753; 2011/0071252; 2020/0199330 and Int. Pub. WO 2007/071732.
[0023] Figure 1 is an illustration of one embodiment of the invention where the article 10 is comprised of a composite 20, abutment layer 30, image accepting layer 40 sandwiched between the abutment layer 30 and cap layer 50. The image accepting layer having therein the dye sublimation image in at least a portion of the thickness of said layer, which is further described below.
[0024] The composite has at least one layer adhered or integrally fused to a portion or all of the composite's surface, for example, to facilitate the formation of the dye sublimation image (e.g., image accepting layer 40), provide a base color coat, or provide some other property (e.g., smooth the surface of open cells on the surface of a foam composite surface). The image accepting layer 40 may be any layer that adheres or integrally fuses with the composite and may be a thermoplastic or thermoset polymer. In an example, the image accepting layer 40 or abutment layer 30 adheres to the filler material having polar groups at the surface of the composite allowing for sufficient ionic attraction to bond such layers sufficiently to prevent spalling or removal when subjected to environmental and wear conditions in use (e.g., decking planks). In another example, the image accepting layer or abutment layer may be fused with the thermoplastic of the composite (e.g., a maleic anhydride grafted polyethylene layer fused with the composite's polyethylene, polypropylene or copolymer thereof).
[0025] The accepting layer may include any films, coating or layers suitable for accepting and forming dye sublimation images such as those known in the art. Any suitable method of applying the accepting layer may be used such as those known in the art and may include, for example, thermoforming, coextrusion, brushing, doctor blading, spraying, laminating, or plating. Generally, such coatings or layers may include a thermoset or thermoplastic polymer having one or more polar groups such as a condensation polymer. Exemplary coatings or layers include polyurethane (e.g., oil or water dispersed dispersions of polyurethane, polyurea or polyisocyanurate particulates that coalesce upon removal of the liquid dispersion medium forming a somewhat uniform pore free coating), epoxies, acrylics/acrylates, alkyds, phenolics, polyamine, polyamide, fluoropolymers, polyvinylfluoride, polybutylene terephthalate, polyesters, polycarbonates, polystyrene and polystyrene copolymers (ABS, "acrylonitrile butadiene styrene" and the like) mixtures or combinations thereof. The image accepting layer may be smooth or have intentional embossing or waviness imparted thereto for aesthetics or to improve traction such as on a deck surface.
[0026] Examples of polymers useful for the image accepting layer 40 may also include a two-part acrylic-aliphatic urethane coatings available under the trade name PITTHANE, HPC High Gloss Epoxy, PPG flooring concrete epoxy primer, each from PPG Industries. An example of a thermoplastic polymer that may be useful include an acrylic- polyvinylchloride copolymer available underthe tradename KYDEX, available from SEKISU KYDEX, Holland Ml, a polycarbonate under the trade name LEXAN and a polyetherimide under the trade name ULTEM from Sabie, Pittsfield, MA and polyamide available under the tradename NYLENE from Nylene Polymer Solutions, RILSAN from Arkema, and various grades from UBE America Inc., Livonia, Ml. Other thermoplastic polymers that may be useful for the image accepting layer include, for example, polyamide, polyimide, polyamideimide, polyester, polyetherester, thermoplastic polyurethane, polyacrylate (e.g., polymethyl methacrylate), polyacrylic acid, functionalized polyolefin (e.g., maleic anhydride grafted polyethylene) or mixture or combination of any of the aforementioned. [0027] The composite 20 may have an undercoat layer (abutment or abutting layer 30) that is sandwiched between the composite and image accepting layer that provides one or more desired properties such as thermal resistance to facilitate the formation of the dye sublimated image attached or integral to the composite (i.e., may act as a gradient layer that has gradient that facilitates the bonding to the composite and to the accepting layer). For example, the abutment layer may be any useful coating that is resistant to heat or that absorbs heat that may assist the formation of the dye sublimation image without distorting or degrading the properties of the composite. The high temperature resistant coating may be any suitable high temperature coating such as those known in the art and typically have a higher use temperature (e.g., melt or degrade at a temperature above that of the thermoplastic of the composite). Commonly these coatings have a high concentration of metal or inorganic particulates that provide for thermal resistance, heat insulation or heat absorption or may be a high temperature foam (e.g., inorganic siliceous foam). Examples of heat resistance coating that may be useful include those available from PPG under the tradenames PPG HI-TEMP, AMERCOAT, AMERLOCK, DIMETCOTE, PSX, and SIGMATHERM. These coatings, in some instances, may also be used as the layer that accepts the dye sublimation image as described above. The undercoat or abutment layer may be any useful thickness such as those thicknesses described for the image accepting layer 40.
[0028] The article 10 may have a cap layer 50 that is on top of the image accepting layer 40, which may be clear coat or have a matte finish. The clear or opaque coating may be smooth, textured or embossed. The texturing or embossing may be any desired such as wood grain, stone, tile, brick or other masonry motif and may be applied by any suitable method such as those known in the art and, for example, as described in U.S. Pat. Appl. No. 2006/0099394. The cap layer 50 may be any useful thickness such as described for the image accepting layer. Exemplary polymers that may be useful for such cap layers include those described above for the image accepting layer.
[0029] The composite 30 may be a foam. Said foam may have any amount of open or closed cells. Even so, the cells may be advantageously closed, for example, to provide for improved insulation such as for siding or rigidity. The amount of closed cells may vary from essentially zero to essentially all closed cells. Generally, the amount of closed cells is less than 95%, 90% 75%, to 5%, 10% or 25%. The amount of closed or cell size may be determined by ASTM D 2856.
[0030] The cell size may be any useful size to make the article 10 and may depend on the particular article and its use. Illustratively, the foam may be microcellular to a cell size on the order of millimeters or even larger. Desirably, the average cell size is at from about 1 micrometer, 10, micrometers, 100 micrometers, 250 micrometers, 500 micrometers to about 10 mm, 5 mm or 2 mm. The porosity may be any shape or morphology, such as elliptical or spherical. The shape desired may be induced by mechanical agitation such as shear to elongate the cells to realize anisotropic properties if desired. The average cell size may be determined as described in US Pat. No. 5,912,729 and known image analysis techniques of micrographs of cross-sections of the foam, which may also be used to determine gradient structures.
[0031] The composite may be rigid or flexible, but generally it is desirable for the composite to be rigid under compression or flexure (e.g., some bending deflection of a 10 ft plank is acceptable, without essentially any compressive deformation when walking on the plank). Sufficiently rigid generally means that under the typical compressive pressures used to form a dye sublimation image the composite does not distort in the absence of heating. Desirably, the composite has an elastic modulus (i.e., modulus of elasticity) of at least about 5,000 psi, 10,000 psi, 50,000 psi, 100,000 psi, 200,000 psi to about 1,000,000 psi or 500,000 psi.
[0032] The particulate reinforcement component may be isotropic and/or anisotropic. The particulate reinforcement component may spherical or angular (such as that formed when comminuting a ceramic). The particulate reinforcement component may have an acicular morphology wherein the aspect ratio is at least 2 to 50, wherein the acicularity means herein that the morphology may be needlelike or platy. Needlelike meaning that there are two smaller equivalent dimensions (typically referred to as height and width) and one larger dimensions (typically the length or width). Platy meaning that there are two larger somewhat equivalent dimensions (typically width and length) and one smaller dimension (typically height). More preferably the aspect ratio is at least 3, 4 or 5 to 25, 20 or 15. The average aspect ratio is determined by micrographic techniques measuring the longest and shortest dimension of a random representative sample of the particles (e.g., 100 to 200 particles).
[0033] The filler when it is a particulate should be a useful size that is not too large (e.g., spans the smallest dimension of a desired article) and not too small that the desired effects on properties is not realized. In defining a useful size, the particle size and size distribution is given by the median size (D50), D10, D90 and a maximum size limitation. The size is the equivalent spherical diameter by volume as measured by a laser light scattering method (Rayleigh or Mie with Mie scattering being preferred) using dispersions of the solids in liquids at low solids loading. D10 is the size where 10% of the particles have a smaller size, D50 (median) is the size where 50%of the particles have a smaller size and D90 is the size where 90% of the particles have a smaller size by volume. The size of the particulates within the composite may also be determined by known micrographic techniques. Generally, The filler has an equivalent spherical diameter median (D50) particle size of 0.1 micrometer to 25 micrometers, D10 of 0.05 to 5 micrometers, D90 of 20 to 40 micrometers and essentially no particles greater than about 70 micrometers or even 50 micrometers and no particles smaller than about 0.01 micrometers. Desirably, the median is 5 to 10 micrometers, the D10 is 0.5 to 2 micrometers and the D90 is 20 to 30 micrometers. Likewise, the reinforcement particulates desirably have a specific surface area from 0.1 m2/g to 20 m2/g and preferably from 2 m2/g to 10 m2/g, which may be determined by known standard methods such as nitrogen absorption typically referred to as BET nitrogen absorption.
[0034] The dye sublimation image may penetrate through the entire thickness of the image accepting layer or some portion (e.g., at least about 1%, 10%, 50% or 90% to essentially the thickness of the image accepting layer 40). [0035] Illustratively, the dye sublimation image may be formed by any suitable dye sublimation method such as those known in the art. In many instances, it has been discovered to realize desirable clarity of the image and avoid distortion the exposure time is such that the temperature of the image accepting layer is raised to a sufficient temperature, but the bulk temperature of the composite is not raised to a temperature where undesired distortion or degradation of the composite takes place.
[0036] The exposure time to the elevated exposing temperature may be any suitable for the particular composite. Generally, the time may be, for example, from 10 seconds, 30 seconds, or 1 minute to about 10 or 5 minutes. The atmosphere may be any useful atmosphere such as air, inert atmosphere at any useful pressure including atmospheric pressure or vacuum.
[0037] If separate layers are desired to be adhered or attached to the composite when forming the article, such layers may be attached or adhered to the composite by any suitable method. For example, the abutment layer 30 and image accepting layer 40 may be formed by laminating a film thereto, coated by brushing, spraying, doctor blading, silk screening and as described hereinabove, or the like. Illustratively, the layer may be formed by coating the composite with an emulsion, liquid polymer, or dispersion in one part or two parts (reactive coating) and cured on the composite. The curing may be effectuated by allowing the film to coalesce and form a contiguous film or allow a two- part system to react and cure into a layer on the composite. Once the layer has cured or liquid medium evaporated or removed, the composite may then be exposed to the sublimating temperature and the dye sublimation image imprinted by pressing a dye sublimation film or sheet (transfer sheet) onto a surface of the image accepting layer to imprint the dye sublimation image. The layer may be comprised of a filler as described above. In a particular embodiment, the composite may be an unfilled thermoplastic that has an integral layer comprised of filler (e.g., fiberglass sheet) that imparts the desired rigidity and ability to accept the dye sublimatable image.
[0038] The dye sublimation image may be formed by any suitable method or apparatus such as those known in the art. Examples include methods and apparatus described in Inti. Pat. Appl. No. W02020210700, US Pat. Nos. 4,059,471; 4,664,672; 5,580,410; 6,335,749; 6,814,831; 7,033,973; 8,182,903; 8,283,290; 8,308,891; 8,561,534; 8,562,777; 9,956,814; and 10,583,686, US Pat. Appl. Nos. 2002/148054; 2003/019213; and 2020/0346483, and Canadian Pat. No. 2,670,225, each incorporated herein by reference. The method may employ any suitable dye sublimation ink such as those known in the art. Examples of dye sublimation inks include those described in U.S. Pat. Nos. 3,508,492; 3,632,291; 3,703,143; 3,829,286; 3,877,964; 3,961,965; 4,121,897; 4,354,851; 4,587,155, EP Pat. No. 0098506, and Inti. Pat. Appl. WO2018208521 each incorporated herein by reference. Likewise, the transfer sheet may be any suitable transfer sheet such as those known in the art and as described in the references cited in this paragraph. Generally, paper transfer sheets as commonly used and may be employed.
[0039] The dye sublimating generally is performed at a dye sublimating temperature of about 100 °C, 120 °C, 150 °C or 170 °C to about 200 °C, 225 °C or 250 °C for a dye sublimating time sufficient to migrate and be incorporated in the imaging accepting layer to the desired depth and may vary depending on the application (e.g., desired depth to realize a desired wear life). Typically, the dye sublimating time is from 30 seconds, 1 minute, 2 minutes or 5 minutes to about 10 minutes. The pressure may be any useful pressure to effectively transfer the image in the time and detail desired without distorting and compacting the composite. Generally, it is desirable for the pressure to be as minimal as possible and as uniformly applied to realize a uniform and consistent dye sublimated image in the layer attached or integral to the composite. The pressure may be applied uniaxia I ly or isometrically. In an example the temperature may be applied by a hot press such as heated a roll press or heated uniaxial die press. The pressure may be applied by use of a vacuum press, which may be augmented by applying external gas pressure above atmospheric pressure. The pressure may be, for example, from about 1, 2, 5 psi to about 300, 150, 100, 50, 20, or 15 psi.
[0040] When making particular shapes such as large sheets such as mimicking 4' x 8' plywood boards, it may be desirable to separately form the dye sublimated image in the image accepting layer (e.g., sheet) by the dye sublimation methods described herein and then subsequently adhere this sheet to the composite substrate comprising a non-polar thermoplastic polymer and a filler having polar groups. The bonding may be by any suitable method of adhering two materials such as described herein including heating and pressing as described to form the DSP image described herein.
[0041] The method surprisingly may use a composite that are comprised of polyolefins or a chlorine containing polymer that melt well below (e.g., 5, 10 or 20 °C or more below) the temperature where the dye sublimating is performed. That is, Tm is below the dye sublimating temperature. Likewise, the non-polar thermoplastic may be amorphous displaying a Tg that is below the dye sublimating temperature by the same degree Tm is below the dye sublimating temperature.
[0042] The article of this invention may be used in any application wherein an aesthetically appealing article is desired that is exposed to weathering whether by abrasive wear, rain (e.g., acid rain) or exposure to electromagnetic radiation such as from the sun. Applications where the article of this invention is particularly useful include those traditionally employing natural wood. For example, the article may be a board, siding shingle, door, decking, roofing shingle, fence post, railing, balustrade, paneling, furniture, fascia board, handle or frame.
ILLUSTRATIVE EMBODIMENTS
[0043] The following examples are provided to illustrate the articles and methods to form them but are not intended to limit the scope thereof. All parts and percentages are by weight unless otherwise noted. Table 1 shows the ingredients used in the examples and comparative examples.
Example 1
[0044] A one-inch-thick composite substrate (available from Envision Outdoor Living Products, Lamar, MO) comprised of about 50% wood flour and about 50% polyethylene by volume is sanded with 80 grit sandpaper. The surface of the sanded composite is brush coated with a two part polyurea coating available from ASTC Global, Santa Ana, CA, under the tradename ASTC Polymers. The coating is cured at room temperature for at least about 24 hours. A dye sublimated image is imparted to the polyurea layer by placing the composite in a hot press and dye sublimating using a paper transfer image printed using commercially available dye sublimating inks (Sawgrass, Charleston, SC). The composite is pressed at temperature of 200 °C (platen temperature) at a pressure of about 5 psi for about 1 minute. The image transfers with detail without smearing and the polyurea layer was well adhered to the composite.
Comparative Example 1
[0045] A one-inch-thick substrate comprised of PVC (Versatex, Aliquippa, PA) without filler is coated and dye sublimated in the same fashion as Example 1. The polyurea coating fails to adhere well to the substrate and the substrate distorts during dye sublimating. The transferred image is indiscernible.

Claims

CLAIMS What is claimed is:
Claim 1. An article comprised of a composite substrate comprising a non-polar thermoplastic polymer and a filler having polar groups, the composite having a dye sublimation image in a layer adhered or integral to a surface of the composite.
Claim 2. The article of claim 1, wherein the non-polar composite is comprised of one of more of polyethylene, polypropylene, copolymer of ethylene and propylene, a copolymer of ethylene, propylene or combination thereof with an acid or anhydride containing monomer, polyvinyl chloride, or polyvinylidene
Claim 3. The article of either claim 1 or 2, wherein the acid or anhydride monomer is methacrylic acid or maleic anhydride.
Claim 4. The article of any one of claims 1 to 3, wherein the filler is comprised of natural occurring material or derived from a natural occurring material.
Claim 5. The article of claim 4, wherein the filler is a cellulosic material.
Claim 6. The article of any one of claims 4 to 5, wherein the filler is comprised of one or more of particles or fiber.
Claim 7. The article of any one of claims 1 to 6, wherein the filler is comprised of wood fibers or flour.
Claim 8. The article of any one of claims 3 to 7, wherein the filler is comprised of a fiber.
Claim 9. The article of claim 1, wherein the filler is an organic, ceramic, metal or carbon fiber or particle.
Claim 10. The article of claim 9, wherein the filler is an inorganic glass.
Claim 11. The article of claim 10, wherein the fiber is an inorganic glass fiber.
Claim 12. The article of any one of claims 1 to 11, wherein the composite has an integral skin on at least a portion of the composite.
Claim 13. The article 18, wherein the integral skin encapsulates the entire composite.
Claim 14. The article of either claim 12 or 13, wherein the layer having the dye sublimation image is the integral skin.
Claim 15. The article of any one of the preceding claims, wherein the layer having the dye sublimation image is at least in part integral to the composite.
Claim 16. The article of any one of the previous claims, wherein the composite has a layer adhered to the composite and said adhered layers is comprised of a different material than the composite.
Claim 17. The article of claim 16, wherein the different material is a ceramic, organic polymer, metal, or mixture or composite thereof.
Claim 18. The article of claim 17, wherein the adhered layer is comprised of a plurality of layers of differing materials.
Claim 19. The article of claim 18, wherein the plurality of layers is comprised of a layer abutting the composite and an image accepting layer disposed upon said abutting layer.
Claim 20. The article of claim 19, wherein the abutting layer is comprised of a ceramic, metal, organic polymer, mixture or composite thereof that is different than the non-polar thermoplastic polymer of the composite and said abutting layer has a higher melt or degradation temperature than the non-polar thermoplastic polymer of the composite.
Claim 21. The article of claim 20, wherein the abutting layer is porous or solid.
Claim 22. The article of claim 20, wherein the abutting layer is porous.
Claim 23. The article of any one of claims 19 to 22, wherein the image accepting layer is the layer that has the dye sublimation image therein.
Claim 24. The article of claim 23, wherein the image accepting layer has the dye sublimation layer therein and said layer has no further layer thereon.
Claim 25. The article of claim 23, wherein an outer layer encapsulates at least a portion of the image accepting layer.
Claim 26. The article of claim 25, wherein the outer layer is comprised of a thermoplastic organic polymer or thermoset organic polymer.
Claim 27. The article of claim 26, wherein the outer layer is thermoplastic organic polymer and said layer is textured.
19
Claim 28. The article of any one of claims 19 to 27, wherein the accepting layer or outer layer has texturing that is in the form of wood grain, stone, brick or tile.
Claim 29. The article of any one of claims 26 to 28, wherein the thermoplastic polymer is a polymer comprised of one or more polar groups.
Claim 30. The article of any one of claims 26 to 29, wherein the thermoplastic polymer is further comprised of one or more of a polyamide, polyimide, polyamideimide, polyester, polyetherester, thermoplastic polyurethane, polyacrylate, polyacrylic acid, grafted polyolefin or mixture thereof.
Claim 31. The article of any one of claims 16 to 30, wherein the different material is comprised of film or coating arising from the coalescing or curing of organic polymers particles or dispersed in a liquid medium deposited on the composite.
Claim 32. The article of claim 31, wherein the particulates comprise at least 5% to 90% by volume of the composite.
Claim 33. The article of either claims 31 or 32, wherein the particles are comprised of an organic polymer having polar groups.
Claim 34. The article of claim 33, wherein the organic polymer is a condensation polymer.
Claim 35. The article of claim 34, wherein the organic polymer is a polyamide, polyimide, polyamideimide, polyester, polyetherester, thermoplastic polyurethane,
Claim 36. The article of claim 35, wherein the image depth is about 10 micrometers to about 5 mm.
20
Claim 37. The article of any one of the preceding claims wherein the article has a bending strength of about 250 psi to 20,000 psi according to ASTM D143.
Claim 38. The article of claim 37, wherein the bending strength is 500 psi to 10,000 psi.
Claim 39. The article of any one of claims 1 to 38 wherein the article is a board, decking, siding shingle, door, roofing shingle, fence post, railing, balustrade, paneling, furniture, fascia board, handle or frame.
Claim 40. The article of any one of the previous claims having a clear cap layer that is abutted on top of the layer having the dye sublimated image therein.
Claim 41. A method of forming an article having a dye sublimation image thereon comprising,
(i) exposing a composite substrate comprising a non-polar thermoplastic polymer, a filler having polar groups, and a dye sublimation accepting layer thereon to a temperature above 100 °C to about 250 °C and,
(ii) pressing a dye sublimation film onto the composite substrate for a time to imprint the dye sublimation image into the accepting layer forming the article.
Claim 42. The method of claim 41, wherein the dye accepting layer is comprised of one or more of the following polymers: polyester, polyurethane, polyisocyanurate, polyurea, polyurea/polyurethane, phenol-formaldehyde, urea-formaldehyde, melamine, diallyl-phthalate, epoxy, epoxy-novolac, benzoxazine, polyimide, bismaleimide, cyanate ester, furan resin, silicone or mixture thereof.
21
Claim 43. The method of either claim 41 or 42, wherein the dye sublimating is performed under a pressure of at least about 1 psi.
Claim 44. The method of claim 43, wherein the pressure is applied uniaxia I ly or isometrically applied.
Claim 45. The method of any one of claims 41 to 44, wherein the dye sublimating is performed at a dye sublimating temperature above the melt temperature or glass transition temperature of the non-polar thermoplastic polymer to about 250 °C.
Claim 46. The method of claim 45, wherein the dye sublimating is performed using a uniaxial hot press.
Claim 47. The method of claim 41, wherein the dye sublimating is performed using a heated roll press.
Claim 48. The method of any one of claims 41 to 47, wherein the dye sublimating is performed in a vacuum press.
Claim 49. The method of any one of claim 41 to 48, wherein the filler is present in an amount sufficient to maintain the structural integrity of the composite substrate during the method.
Claim 50. The method of claim 49, wherein the filler is present in an amount of about 5% to 90% by volume of the composite substrate.
Claim 51. The method of any one of claims 41 to 50, wherein the polar groups of the filler are comprised of one of more of hydroxyl, carboxylic acid, ester, or ether groups.
22
Claim 52. The method of any one of claims 41 to 51, wherein the dye sublimation layer is comprised of an organic polymer capable of accepting a dye sublimation image.
Claim 53. The method of claim 52, wherein the dye sublimation accepting layer is comprised of one or more of a thermoplastic polymer or thermoset polymer.
Claim 54. The method of claim 53, wherein the thermoplastic polymer is comprised of one or more of a polyamide, polyimide, polyamideimide, polyester, polyetherester, thermoplastic polyurethane, polyacrylate, polyacrylic acid, polyamine, polyamide, fluoropolymers, polyvinylfluoride, polybutylene terephthalate, polyesters, polycarbonates, polystyrene and polystyrene copolymers acrylonitrile butadiene styrene or functionalized polyolefin.
Claim 55. The method of any one of claims 53, wherein the thermoset polymer is one or more of polyurethane, polyurea, polyisocyanurate, epoxies, or acrylics/acrylates, alkyds, phenolics.
Claim 56. The method of any one of claims 41 to 55, wherein the filler is comprised of naturally occurring matter.
Claim 57. The method of any one of claims 41 to 56, wherein the filler is comprised of cellulosic plant matter.
Claim 58. The method of claim 57, wherein the cellulosic plant matter is one or more of wood flour or paper pulp.
23
Claim 59. The method of any one of claims 41 to 58, wherein the filler is comprised of an inorganic glass fiber or organic polymer fiber.
Claim 60. The method of claim 59, wherein the fiber is an inorganic glass fiber.
Claim 61. The method of any one of claim 41 to 60, wherein the non-polar thermoplastic polymer comprises a polyolefin comprising one or more of polyethylene, polypropylene, or copolymer of ethylene and propylene.
Claim 62. The method of any one of claims 41 to 61, wherein the composite is further comprised of a thermoplastic condensation polymer.
Claim 63. The method of any one of claims 41 to 62, wherein the filler is comprised of a cellulosic containing filler or inorganic filler.
Claim 64. The method of claim 63, wherein the cellulosic containing filler is comprised of recycled cellulosic material.
Claim 65. The method of any one of claims 41 to 64, wherein the filler is comprised of wood flour.
Claim 66. The method of any one of claims 41 to 65, wherein the exposing temperature is from about 180 °C to about 210 °C.
Claim 67. The method of any one of claims 41 to 66, wherein the exposing to a temperature is for an exposure time sufficient to form the dye sublimation image in the dye sublimation accepting layer without distorting the composite.
24
Claim 68. The method of claim 67, wherein the exposure time is 5 seconds to about 30 minutes.
Claim 69. The method of claim 68, wherein the exposure time is at most about 5 minutes.
Claim 70. The method of any one of claims 41 to 69, wherein the non-polar thermoplastic polymer is comprised of a polyvinyl chloride or polyvinylidene dichloride.
Claim 71. The method of any one of claims 41 to 70, wherein the non-polar thermoplastic polymer has a crystallinity from 5% to 60%.
Claim 72. A method of forming an article having a dye sublimation image thereon comprising,
(i) forming a sheet having a dye sublimation image therein and,
(ii) pressing the sheet having the dye sublimation image therein onto a composite substrate comprised of a non-polar thermal plastic polymer and polar filler for a time to adhere the sheet having the dye sublimation image thereon to form the article having a dye sublimation image thereon.
25
PCT/US2022/042449 2021-09-08 2022-09-02 Non-polar thermoplastic composite having a dye sublimation printed image and method to form them WO2023038856A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163241621P 2021-09-08 2021-09-08
US63/241,621 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023038856A1 true WO2023038856A1 (en) 2023-03-16

Family

ID=84044635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/042449 WO2023038856A1 (en) 2021-09-08 2022-09-02 Non-polar thermoplastic composite having a dye sublimation printed image and method to form them

Country Status (1)

Country Link
WO (1) WO2023038856A1 (en)

Citations (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979431A (en) 1956-03-14 1961-04-11 Ralph T Hays Method and apparatus of producing re-enforced thermoplastic bodies
US3230995A (en) 1960-12-29 1966-01-25 Owens Corning Fiberglass Corp Structural panel and method for producing same
US3508492A (en) 1966-04-09 1970-04-28 Agfa Gevaert Ag Dye foil for the production of prints by means of heat
US3544417A (en) 1969-04-28 1970-12-01 Unicor Inc Cellular foam core assembly
US3632291A (en) 1968-02-26 1972-01-04 Ciba Ltd Transfer printing
US3703143A (en) 1970-02-16 1972-11-21 Bell & Howell Co Thermal transfer sheet and method of thermally transferring images
US3829286A (en) 1972-02-23 1974-08-13 Toppan Printing Co Ltd Sublimation transfer dyeing with 4,8-di-hydroxy-1-arylamino-anthraquinones
US3877964A (en) 1972-11-16 1975-04-15 Ici Ltd Transfer printing process and products thereof
US3888810A (en) 1972-07-11 1975-06-10 Nippon Oil Co Ltd Thermoplastic resin composition including wood and fibrous materials
US3961965A (en) 1967-07-24 1976-06-08 Sublistatic Holding Sa Dyestuff preparations and printing inks
US4013616A (en) 1971-11-22 1977-03-22 Wallace Richard A Mixed polymeric structural material and method
US4059471A (en) 1972-09-25 1977-11-22 Haigh John M Transfer dyeing of plastic surfaces which may be combined with lamination or molding procedures
US4121897A (en) 1977-11-03 1978-10-24 Koppers Company, Inc. Process for printing on solid molded articles made from urea formaldehyde resin or melamine formaldehyde resin
US4354851A (en) 1977-02-17 1982-10-19 United States Gypsum Company Method for making a decorated, water-resistant, rigid panel and the product made thereby: transfer dye process onto rigid panel
EP0098506A2 (en) 1982-07-02 1984-01-18 Markem Corporation Process and apparatus for forming permanent images using carrier supported inks containing sublimable dyes
US4549920A (en) 1981-07-28 1985-10-29 Imperial Chemical Industries, Plc Method for impregnating filaments with thermoplastic
US4587155A (en) 1982-05-12 1986-05-06 Raymond Iannetta Method of applying a dye image to a plastic member and the image bearing member thereby formed
US4664672A (en) 1982-12-01 1987-05-12 Rohm Gmbh Chemische Fabrik Transfer printing process for solid objects employing high-pressure gas
US4828897A (en) 1988-04-08 1989-05-09 Centrite Corporation Reinforced polymeric composites
US5462623A (en) 1992-05-04 1995-10-31 Webcore Technologies, Inc. Method of production of reinforced foam cores
US5580410A (en) 1994-12-14 1996-12-03 Delta Technology, Inc. Pre-conditioning a substrate for accelerated dispersed dye sublimation printing
US5589243A (en) 1992-05-04 1996-12-31 Webcore Technologies, Inc. Reinforced foam cores and method and apparatus of production
US5746958A (en) 1995-03-30 1998-05-05 Trex Company, L.L.C. Method of producing a wood-thermoplastic composite material
US5798160A (en) 1995-03-18 1998-08-25 Baltek Corporation Foam-plastic core for structural laminate
US5851469A (en) 1995-12-27 1998-12-22 Trex Company, L.L.C. Process for making a wood-thermoplastic composite
US5912729A (en) 1996-06-17 1999-06-15 Basf Corporation Measurement of plastic foam cell size using a visualization technique
US6117924A (en) 1996-10-22 2000-09-12 Crane Plastics Company Limited Partnership Extrusion of synthetic wood material
US6136126A (en) 1995-03-22 2000-10-24 Verniciatura Industriale Veneta S.P.A. Process for making decorated, extruded, profiled elements
US6335749B1 (en) 1997-07-04 2002-01-01 V.I.V. International S.P.A. Process and apparatus for printing and decorating by means of sublimable inks
US20020148054A1 (en) 2001-03-29 2002-10-17 Drake Jonathan C. Method and apparatus for continuously forming dye sublimation images in solid substrates
US20030019213A1 (en) 2001-07-24 2003-01-30 Mitsubishi Heavy Industries, Ltd. Pilot nozzle of gas turbine combustor
US20030021915A1 (en) 2001-06-15 2003-01-30 Vivek Rohatgi Cellulose - polymer composites and related manufacturing methods
US6740381B2 (en) 1999-12-28 2004-05-25 Webcore Technologies, Inc. Fiber reinforced composite cores and panels
US20060068215A2 (en) 2004-06-08 2006-03-30 Trex Company, Inc. Improved variegated composites and related methods of manufacture
US7033973B2 (en) 2001-04-27 2006-04-25 V.I.V. International S.P.A. Support means for sublimation decorations and relative method
US7041716B2 (en) 2003-07-11 2006-05-09 National Research Council Of Canada Cellulose filled thermoplastic composites
US20060099394A1 (en) 2004-06-01 2006-05-11 Trex Company, Inc. Imprinted wood-plastic composite, apparatus for manufacturing same, and related method of manufacture
WO2007071732A1 (en) 2005-12-20 2007-06-28 Crownstone Limited A process for preparing a wood-polyolefin composite
CA2670225A1 (en) 2006-11-22 2008-05-29 V.I.V. International S.P.A. Apparatuses and method for decorating objects
US20100021753A1 (en) 2008-07-25 2010-01-28 E. I. Du Pont De Nemours And Company Multizone wood polymer composite article
US7781500B2 (en) 2003-04-14 2010-08-24 Crompton Corporation Coupling agents for natural fiber-filled polyolefins
US20110071252A1 (en) 2009-09-23 2011-03-24 Revolutionary Plastics, Llc System and method for forming a composition with an optimized filler
WO2012009528A1 (en) * 2010-07-14 2012-01-19 Biovation, Llc Biolaminate composite assembly and related methods
US8182903B2 (en) 2007-05-08 2012-05-22 3Form, Inc. Multivariate color system with texture application
US8283290B2 (en) 2007-07-10 2012-10-09 3Form, Inc. Forming resin substrates using dye sublimation and substrates formed using the same
US8308891B2 (en) 2001-03-29 2012-11-13 Fresco Technologies, Inc. Method for forming dye sublimation images in solid substrates
US20130228270A1 (en) * 2007-03-21 2013-09-05 Giovanni Holdings, Llc Processes for providing images on resin structures
US8562777B2 (en) 2001-03-29 2013-10-22 Fresco Plastics Llc Method and apparatus for continuously forming dye sublimation images in solid substrates
US8561534B2 (en) 2005-06-29 2013-10-22 Decoral System Usa Corp. Decorating an elongated element
US8709586B2 (en) 2004-10-22 2014-04-29 Prime Polymer Co., Ltd. Modified polyolefin resin for glass fiber treatment, surface-treated glass fiber, and fiber-reinforced polyolefin resin
US9091067B2 (en) 2009-05-13 2015-07-28 3Form, Llc Structured-core laminate panels and methods of forming the same
US9956814B2 (en) 2013-05-23 2018-05-01 Unilin Bvba Method of decorating a substrate
US9981415B2 (en) 2007-09-10 2018-05-29 Ehc Canada, Inc. Method and apparatus for extrusion of thermoplastic handrail
WO2018208521A1 (en) 2017-05-09 2018-11-15 Eastman Kodak Company Foamed, opacifying elements with thermally transferred images
US10583686B1 (en) 2018-10-18 2020-03-10 Fresco Infusion Llc Method for forming dye sublimation images in and texturing of solid substrates
US20200199330A1 (en) 2016-03-31 2020-06-25 West Fraser Mills Ltd. Cellulosic Composites Comprising Cellulose Filaments
WO2020210700A1 (en) 2019-04-12 2020-10-15 Decoral System Usa Corporation Mechanical embossing on pigmented organic sublimatable coating for both flat panels and extrusions
US20200346483A1 (en) 2018-10-18 2020-11-05 Fresco Infusion Llc Method for forming dye sublimation images in and texturing of solid substrates

Patent Citations (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979431A (en) 1956-03-14 1961-04-11 Ralph T Hays Method and apparatus of producing re-enforced thermoplastic bodies
US3230995A (en) 1960-12-29 1966-01-25 Owens Corning Fiberglass Corp Structural panel and method for producing same
US3508492A (en) 1966-04-09 1970-04-28 Agfa Gevaert Ag Dye foil for the production of prints by means of heat
US3961965A (en) 1967-07-24 1976-06-08 Sublistatic Holding Sa Dyestuff preparations and printing inks
US3632291A (en) 1968-02-26 1972-01-04 Ciba Ltd Transfer printing
US3544417A (en) 1969-04-28 1970-12-01 Unicor Inc Cellular foam core assembly
US3703143A (en) 1970-02-16 1972-11-21 Bell & Howell Co Thermal transfer sheet and method of thermally transferring images
US4013616A (en) 1971-11-22 1977-03-22 Wallace Richard A Mixed polymeric structural material and method
US3829286A (en) 1972-02-23 1974-08-13 Toppan Printing Co Ltd Sublimation transfer dyeing with 4,8-di-hydroxy-1-arylamino-anthraquinones
US3888810A (en) 1972-07-11 1975-06-10 Nippon Oil Co Ltd Thermoplastic resin composition including wood and fibrous materials
US4059471A (en) 1972-09-25 1977-11-22 Haigh John M Transfer dyeing of plastic surfaces which may be combined with lamination or molding procedures
US3877964A (en) 1972-11-16 1975-04-15 Ici Ltd Transfer printing process and products thereof
US4354851A (en) 1977-02-17 1982-10-19 United States Gypsum Company Method for making a decorated, water-resistant, rigid panel and the product made thereby: transfer dye process onto rigid panel
US4121897A (en) 1977-11-03 1978-10-24 Koppers Company, Inc. Process for printing on solid molded articles made from urea formaldehyde resin or melamine formaldehyde resin
US4549920A (en) 1981-07-28 1985-10-29 Imperial Chemical Industries, Plc Method for impregnating filaments with thermoplastic
US4587155A (en) 1982-05-12 1986-05-06 Raymond Iannetta Method of applying a dye image to a plastic member and the image bearing member thereby formed
EP0098506A2 (en) 1982-07-02 1984-01-18 Markem Corporation Process and apparatus for forming permanent images using carrier supported inks containing sublimable dyes
US4664672A (en) 1982-12-01 1987-05-12 Rohm Gmbh Chemische Fabrik Transfer printing process for solid objects employing high-pressure gas
US4828897A (en) 1988-04-08 1989-05-09 Centrite Corporation Reinforced polymeric composites
US5462623A (en) 1992-05-04 1995-10-31 Webcore Technologies, Inc. Method of production of reinforced foam cores
US5589243A (en) 1992-05-04 1996-12-31 Webcore Technologies, Inc. Reinforced foam cores and method and apparatus of production
US5580410A (en) 1994-12-14 1996-12-03 Delta Technology, Inc. Pre-conditioning a substrate for accelerated dispersed dye sublimation printing
US5798160A (en) 1995-03-18 1998-08-25 Baltek Corporation Foam-plastic core for structural laminate
US6136126A (en) 1995-03-22 2000-10-24 Verniciatura Industriale Veneta S.P.A. Process for making decorated, extruded, profiled elements
US5746958A (en) 1995-03-30 1998-05-05 Trex Company, L.L.C. Method of producing a wood-thermoplastic composite material
US5851469A (en) 1995-12-27 1998-12-22 Trex Company, L.L.C. Process for making a wood-thermoplastic composite
US5912729A (en) 1996-06-17 1999-06-15 Basf Corporation Measurement of plastic foam cell size using a visualization technique
US6117924A (en) 1996-10-22 2000-09-12 Crane Plastics Company Limited Partnership Extrusion of synthetic wood material
US6335749B1 (en) 1997-07-04 2002-01-01 V.I.V. International S.P.A. Process and apparatus for printing and decorating by means of sublimable inks
US6740381B2 (en) 1999-12-28 2004-05-25 Webcore Technologies, Inc. Fiber reinforced composite cores and panels
US6814831B2 (en) 2001-03-29 2004-11-09 Fresco Plastics Llc Method and apparatus for continuously forming dye sublimation images in solid substrates
US20020148054A1 (en) 2001-03-29 2002-10-17 Drake Jonathan C. Method and apparatus for continuously forming dye sublimation images in solid substrates
US8562777B2 (en) 2001-03-29 2013-10-22 Fresco Plastics Llc Method and apparatus for continuously forming dye sublimation images in solid substrates
US8308891B2 (en) 2001-03-29 2012-11-13 Fresco Technologies, Inc. Method for forming dye sublimation images in solid substrates
US7033973B2 (en) 2001-04-27 2006-04-25 V.I.V. International S.P.A. Support means for sublimation decorations and relative method
US20030021915A1 (en) 2001-06-15 2003-01-30 Vivek Rohatgi Cellulose - polymer composites and related manufacturing methods
US20030019213A1 (en) 2001-07-24 2003-01-30 Mitsubishi Heavy Industries, Ltd. Pilot nozzle of gas turbine combustor
US7781500B2 (en) 2003-04-14 2010-08-24 Crompton Corporation Coupling agents for natural fiber-filled polyolefins
US7041716B2 (en) 2003-07-11 2006-05-09 National Research Council Of Canada Cellulose filled thermoplastic composites
US20060099394A1 (en) 2004-06-01 2006-05-11 Trex Company, Inc. Imprinted wood-plastic composite, apparatus for manufacturing same, and related method of manufacture
US20060068215A2 (en) 2004-06-08 2006-03-30 Trex Company, Inc. Improved variegated composites and related methods of manufacture
US8709586B2 (en) 2004-10-22 2014-04-29 Prime Polymer Co., Ltd. Modified polyolefin resin for glass fiber treatment, surface-treated glass fiber, and fiber-reinforced polyolefin resin
US8561534B2 (en) 2005-06-29 2013-10-22 Decoral System Usa Corp. Decorating an elongated element
WO2007071732A1 (en) 2005-12-20 2007-06-28 Crownstone Limited A process for preparing a wood-polyolefin composite
CA2670225A1 (en) 2006-11-22 2008-05-29 V.I.V. International S.P.A. Apparatuses and method for decorating objects
US20130228270A1 (en) * 2007-03-21 2013-09-05 Giovanni Holdings, Llc Processes for providing images on resin structures
US8182903B2 (en) 2007-05-08 2012-05-22 3Form, Inc. Multivariate color system with texture application
US8283290B2 (en) 2007-07-10 2012-10-09 3Form, Inc. Forming resin substrates using dye sublimation and substrates formed using the same
US9981415B2 (en) 2007-09-10 2018-05-29 Ehc Canada, Inc. Method and apparatus for extrusion of thermoplastic handrail
US20100021753A1 (en) 2008-07-25 2010-01-28 E. I. Du Pont De Nemours And Company Multizone wood polymer composite article
US9091067B2 (en) 2009-05-13 2015-07-28 3Form, Llc Structured-core laminate panels and methods of forming the same
US20110071252A1 (en) 2009-09-23 2011-03-24 Revolutionary Plastics, Llc System and method for forming a composition with an optimized filler
WO2012009528A1 (en) * 2010-07-14 2012-01-19 Biovation, Llc Biolaminate composite assembly and related methods
US9956814B2 (en) 2013-05-23 2018-05-01 Unilin Bvba Method of decorating a substrate
US20200199330A1 (en) 2016-03-31 2020-06-25 West Fraser Mills Ltd. Cellulosic Composites Comprising Cellulose Filaments
WO2018208521A1 (en) 2017-05-09 2018-11-15 Eastman Kodak Company Foamed, opacifying elements with thermally transferred images
US10583686B1 (en) 2018-10-18 2020-03-10 Fresco Infusion Llc Method for forming dye sublimation images in and texturing of solid substrates
US20200346483A1 (en) 2018-10-18 2020-11-05 Fresco Infusion Llc Method for forming dye sublimation images in and texturing of solid substrates
WO2020210700A1 (en) 2019-04-12 2020-10-15 Decoral System Usa Corporation Mechanical embossing on pigmented organic sublimatable coating for both flat panels and extrusions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NISKA KRISTIINA OKSMAN: "Wood-polymer composites", 1 January 2008 (2008-01-01), pages 1 - 353, XP055848846, Retrieved from the Internet <URL:https://www.sciencedirect.com/book/9781845692728/wood-polymer-composites> [retrieved on 20211007] *

Similar Documents

Publication Publication Date Title
US11725397B2 (en) Resilient flooring product and methods of making same
EP3126145B1 (en) Composite boards and panels
CN115339186A (en) Resilient flooring product and method of making same
US10259204B2 (en) Resilient flooring product and methods of making same
CN106660300B (en) Embossed and hot melt laminated multilayer composite film
RU2766677C2 (en) Plate made of a wood-based material, containing a wood-plastic composite, and method for manufacture thereof
CN1243894C (en) Decoration surface of board for building
US20230103484A1 (en) Decorative panel having a multi-laminate plastic carrier plate and method for the production thereof
JP2023513930A (en) Highly weather-resistant acrylic multilayer foil with improved mechanical properties
KR100726369B1 (en) Melt-processable thermoplastic compositions
WO2023038856A1 (en) Non-polar thermoplastic composite having a dye sublimation printed image and method to form them
CN117917978A (en) Non-polar thermoplastic composite material with dye sublimation printed image and method of forming the same
EP4341097A1 (en) Polymeric articles having dye sublimation printed images and method to form them
JP2023513839A (en) Highly weather-resistant acrylic multilayer foil with improved mechanical properties
US5510198A (en) Re-usable cement forms
US11959279B2 (en) Roof tile and a roof covering
US20230067437A1 (en) Roof tile and a roof covering
CA3194110A1 (en) Uv protection film for outdoor use
CA1076316B (en) Coated panel
GB2029726A (en) Floor and wall coverings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22797917

Country of ref document: EP

Kind code of ref document: A1