WO2023038424A1 - 신장 수술 훈련 시스템 - Google Patents

신장 수술 훈련 시스템 Download PDF

Info

Publication number
WO2023038424A1
WO2023038424A1 PCT/KR2022/013434 KR2022013434W WO2023038424A1 WO 2023038424 A1 WO2023038424 A1 WO 2023038424A1 KR 2022013434 W KR2022013434 W KR 2022013434W WO 2023038424 A1 WO2023038424 A1 WO 2023038424A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
calix
kidney
training system
renal
Prior art date
Application number
PCT/KR2022/013434
Other languages
English (en)
French (fr)
Inventor
천병식
김창균
권동수
Original Assignee
주식회사 로엔서지컬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210118910A external-priority patent/KR20230036263A/ko
Priority claimed from KR1020210118902A external-priority patent/KR20230036260A/ko
Application filed by 주식회사 로엔서지컬 filed Critical 주식회사 로엔서지컬
Priority to CN202280004445.XA priority Critical patent/CN116097330A/zh
Priority to US17/925,833 priority patent/US20240161654A1/en
Priority to EP22800564.1A priority patent/EP4170632A1/en
Publication of WO2023038424A1 publication Critical patent/WO2023038424A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/303Anatomical models specially adapted to simulate circulation of bodily fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/34Anatomical models with removable parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00707Dummies, phantoms; Devices simulating patient or parts of patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00707Dummies, phantoms; Devices simulating patient or parts of patient
    • A61B2017/00716Dummies, phantoms; Devices simulating patient or parts of patient simulating physical properties
    • A61B2017/00721Dummies, phantoms; Devices simulating patient or parts of patient simulating physical properties using artificial kidney stones for testing purposes

Definitions

  • the present invention relates to a renal surgical training system.
  • the flexible endoscope is designed so that its distal end is bent, and as shown in FIG. 1 , it can move along the ureter 23 and pass through the major calix 22 to the target minor calix 21 .
  • a high level of skill is required by the surgeon through separate training.
  • a training system considering such conditions is required.
  • stones continuously and irregularly swim by the flow of fluid formed in the minor calyx 21 inside the kidney a training system is required to quickly remove stones inside the kidney in such an environment.
  • An object of one embodiment is to provide a renal surgery training system capable of providing conditions for moving by respiration and simulating the internal structure of the kidney by having a plurality of routes.
  • An object of one embodiment is to provide a renal surgery training system capable of simulating the flow of fluid inside the kidney and providing conditions for movement by respiration.
  • Renal surgery training system a supply hose for supplying fluid, a simulation unit connected to the supply hose and through which the fluid supplied from the supply hose flows, and a fluid flowable connection to the simulation unit,
  • a calix internal fluid simulating device including a fluid accommodating part accommodating the fluid moved from the simulating part and a discharge hose discharging the fluid stored in the fluid accommodating part, and simulating the flow of the internal fluid of the kidney, and the calix It is a training device that is disposed below the internal fluid simulating device and includes a translation device capable of translating the calix internal fluid simulating device by performing a translational motion, and an object swimming inside the kidney by the flow of fluid inside the kidney. You can train to remove it using .
  • the copying part a first frame member forming the outermost shape of the copying part
  • An inlet channel formed through the first frame member and communicating with the supply hose, a plurality of inlet holes communicating with an end of the inlet channel and dispersing fluid moving from the inlet channel, and communicating with the inlet hole; , It may include a flow path that rises as it approaches the fluid receiving portion and a cap covering an upper portion of the flow path.
  • the flow path is formed of a first flow path, a second flow path, and a third flow path respectively connected to a plurality of the supply hoses, and one end of the first flow path, one end of the second flow path, and one end of the third flow path are mutually connected. can be connected
  • the inflow hole may be disposed in plurality on three curved side surfaces based on the inflow channel.
  • the object to be trained is disposed at the lower end of the passage, and the object may swim according to the flow of the fluid from the inflow channel to the passage through the inflow hole.
  • the object may be put into or taken out of the passage in a state in which the upper portion of the passage is opened by opening the cap.
  • the fluid accommodating part comprises a second frame member connected to allow the fluid to flow in from the copying part, an equipment insertion hole formed on one side of the second frame member and through which the training equipment passes, and a fluid storage space in which the fluid is stored.
  • the translation device may include a base, a bridge disposed on an upper end of the base, a cradle disposed on an upper end of the bridge and movable in both directions along one axis with respect to the bridge, and an actuator for driving the cradle.
  • the bridges are provided in pairs on both sides of the base, sliding grooves are formed at the upper ends in the longitudinal direction of the bridges, and the cradle is disposed on a slider movably inserted into the sliding grooves and on top of the sliders. and a plate moving together with the slider.
  • the driver includes a main body providing rotational power, a wheel disposed on a side surface of the main body and driving rotation, a support having one side rotatably connected to the wheel and extending to the other side, and the support rotatably connected, It may include a connection end connected to the cradle.
  • the Calix internal fluid simulating device may further include a control valve disposed in the supply hose to control the supply flow rate of the fluid.
  • the kidney surgery training system includes a frame into which training equipment is inserted, a first route connected from one side of the frame to the center of the frame and simulating the ureter, and connected to the first route to move away from the first route. a second route including a portion where the cross-sectional area increases and simulating a major calix of a kidney, and a third route formed to branch into a plurality of branches from the second root and simulating a minor calix of a kidney; It further includes a calix structure simulating device disposed on the upper side, and under the condition that the kidney moves by respiration, it is possible to perform training by inserting training equipment along a route simulating the internal structure of the actual kidney.
  • the calix structure simulating device may further include a sensor disposed on one side of the third route and detecting whether or not the training equipment has arrived.
  • the third roots are formed in plural at the top and bottom of the frame and alternately arranged at the top and bottom along the lateral direction, so that when the calix structure simulation device is viewed from above, the plurality of the third roots are completely may not overlap.
  • a control device for setting a route to be inserted from among a plurality of routes formed inside the calix structure simulation device, a determination device for determining whether the training equipment is inserted into the set route, and the route where the training equipment is set It may further include an output device that displays whether or not it has been inserted into the inside.
  • the renal surgery training system may simulate the internal structure of the kidney and provide breathing conditions so as to perform training for inserting training equipment into the kidney.
  • the renal surgery training system emulates the flow of fluid inside the kidney, implements an object that swims by the fluid, and provides a breathing condition by inserting training equipment into the kidney to grasp stones or laser You can perform training aimed at.
  • 1 is a cross-section of a kidney and an enlarged view of the minor calix.
  • FIG. 2 is a side view of a translation device and a calix structure simulating device according to an embodiment.
  • FIG. 3 is a block diagram of a renal surgery training system according to one embodiment.
  • FIG. 4 is a cross-sectional view taken along line A-A of FIG. 2 .
  • FIG. 5 is a cross-sectional view taken along line BB of FIG. 4 .
  • FIG. 6 is a perspective view of a translation device according to one embodiment.
  • FIG. 7 is a cross-sectional view taken along line C-C of FIG. 6;
  • FIG. 8 is a photograph showing an apparatus for simulating a calix structure according to an embodiment.
  • FIG. 9 is a side view of a translational device and a calix internal fluid simulating device according to an embodiment.
  • FIG. 10 is a cut-away cross-sectional view of a translation device and an internal calix fluid simulating device according to an embodiment.
  • FIG. 11 is a cross-sectional view taken along line D-D of FIG. 9 .
  • FIG. 12 is a view showing an inlet channel and an inlet hole according to an embodiment.
  • FIG. 13 is a photograph showing an apparatus for simulating calix internal fluid according to an embodiment.
  • FIG. 14 is a diagram showing the configuration of a renal endoscopy simulator system according to an embodiment.
  • 15 is a perspective view of an artificial stretch module according to an embodiment.
  • 16 is a cross-sectional view taken along line E-E of FIG. 15;
  • FIG 17 is an exploded perspective view of an artificial stretch module according to an embodiment.
  • FIG. 18 is a diagram showing the configuration of a renal endoscopy simulator system according to an embodiment.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the corresponding component is not limited by the term.
  • FIG. 2 is a side view of a translation device and a calix structure simulating device according to an embodiment
  • FIG. 3 is a block diagram of a renal surgery training system according to an embodiment.
  • the renal surgery training system 1 may include a translation device 11, a calix structure simulation device 12, a control device 13, a judgment device 14 and an output device 15. .
  • the translation device 11 is disposed below the calix structure simulating device 12 and can translate the calix structure simulating device 12 by performing translational motion.
  • the translation device 11 can create an environment in which the kidney 2 moves by respiration in an actual body.
  • a structure for translational motion in one direction is shown in the drawings, it is not limited thereto, and a conventional structure for enabling translational motion or circular motion with respect to a plurality of axes may be applied.
  • the calix structure simulating device 12 may simulate the internal structure of the kidney 2 in order to perform training to access the inside of the kidney 2 using the training equipment 3 .
  • a plurality of branched roots are formed inside the calix structure simulating device 12 to simulate the structure of the minor calix 21 of the kidney 2 .
  • the control device 13 may set a route to be inserted from among a plurality of routes formed inside the calix structure simulating device 12 .
  • the determination device 14 may determine whether training equipment is inserted into the set route. For example, the determination device 14 may determine whether the training equipment 3 is sensed by the sensor 125 (see FIG. 4).
  • the output device 15 may indicate whether or not the training equipment 3 has been inserted into the set route.
  • the output device 15 may be a means that can be checked with the naked eye, such as a display, and when the route into which the training equipment 3 is inserted is a set route, it outputs a character string such as 'reach' to the target route. It can guide you in real time whether you have reached it.
  • FIG. 4 is a cross-sectional view taken along A-A in FIG. 2
  • FIG. 5 is a cross-sectional view taken along B-B in FIG.
  • the calix structure simulation device 12 includes a frame 121, a first root 122, a second root 123, a third root 124, and a fourth root 126. ) and a sensor 125.
  • the frame 121 may be entered into the inside of the training equipment 3 is inserted.
  • the frame 121 is made of a transparent or translucent material so that it is possible to visually check which route the training equipment 3 enters from the outside.
  • the first root 122 is connected from one side of the frame 121 to the center of the frame 121, and may simulate the ureter 23.
  • the second root 123 is connected to the first root 122 and includes a portion whose cross-sectional area increases as it moves away from the first root 122, and can simulate the major calix 22 of the kidney 2. .
  • the third root 124 is formed to be branched into a plurality of branches from the second root 123, and may mimic the minor calix 21 of the kidney.
  • a plurality of third roots 124 may be formed at the top and bottom of the frame 121 and alternately arranged at the top and bottom along the lateral direction. According to this structure, since the plurality of third roots 124 do not completely overlap when the calix structure simulating device 12 is viewed from above, a structure similar to the actual kidney 2 can be simulated.
  • the operation of inserting the training equipment 3 from the third route 124a disposed at the top to the third route 124b disposed at the bottom becomes complicated, it is possible to train with a difficulty similar to the actual procedure through a non-monotonous pattern. can
  • the fourth root 126 is branched from the first root 122 or the second root 123 and may be curved to have a smaller radius of curvature than the third root 124 . If the fourth route 126 is set as the target route, it is possible to perform training in which the training equipment 3 is inserted into the minor calix 21, which has a small curvature radius and is difficult to enter.
  • the sensor 125 is disposed on one side of the third route 124 and can detect whether or not the training equipment 3 has arrived.
  • a plurality of sensors 125 may be formed, and each may emit light of a different color according to a position where the sensor 125 is disposed. According to this feature, when the training equipment 3 is inserted into a route other than the route set as the target, it is possible to specify which route the training equipment 3 is inserted into, so that manipulation can be corrected in the training process. there is.
  • FIG. 6 is a perspective view of a translation device according to an exemplary embodiment
  • FIG. 7 is a cross-sectional view taken along line C-C of FIG. 6 .
  • the translation device 11 may include a base 111 , a bridge 112 , a holder 113 and an actuator 114 .
  • the bridge 112 may be disposed on top of the base 111 .
  • the bridge 112 may be provided as a pair on both sides of the base 111, and sliding grooves may be formed at the top in the longitudinal direction of the bridge 112.
  • the cradle 113 is disposed on top of the bridge 112 and can move in both directions along one axis with respect to the bridge 112 .
  • the cradle 113 may include a slider 1132 and a plate 1131 .
  • the slider 1132 may be movably inserted into the sliding groove.
  • the plate 1131 is disposed on top of the slider 1132 and can move together with the slider.
  • the driver 114 may drive the cradle 113 .
  • the driver 114 may adjust the movement range and translation period of the cradle 113 .
  • the actuator 114 may include a body 1141, a wheel 1142, a support 1143, and a connection end 1144.
  • the body 1141 may provide rotational power.
  • the wheel 1142 may be disposed on the side of the body 1141 and rotated.
  • One side of the support 1143 is rotatably connected to the wheel 1142 and may be extended to the other side.
  • connection end 1144 may be rotatably connected to the support 1143 and connected to the cradle 113 .
  • FIG. 8 is a photograph showing an apparatus for simulating a calix structure according to an embodiment.
  • a plurality of routes are shown through a translucent frame, and sensors disposed in each route and a substrate connected to the sensors to emit light are shown. It is also possible to train while directly watching the route through the translucent frame, or to learn the feeling of operation of the training equipment 3 by covering the top of the frame with an opaque material and checking whether the sensor emits light.
  • FIG. 9 is a side view of a translational device and a calix internal fluid simulating device according to an embodiment.
  • the renal surgery training system 1 when the renal surgery training system 1 is used, in an environment in which the flow of fluid flowing inside the actual kidney 2 is simulated under the condition that the kidney 2 moves by respiration, the surgical target is It is possible to swim an object such as a stone that becomes a stone, grasp the object with training equipment, or train to irradiate by aiming a laser.
  • the renal surgery training system 1 may include a translation device 11 and an intracalix fluid simulation device 19 .
  • the translation device 11 is disposed below the calix internal fluid simulating device 19 and can translate the calix internal fluid simulating device 19 by performing translational motion.
  • the translation device 11 can create an environment in which the kidney 2 moves by respiration in an actual body.
  • a structure for translational motion in one direction is shown in the drawings, it is not limited thereto, and a conventional structure for enabling translational motion or circular motion with respect to a plurality of axes may be applied.
  • the calix internal fluid simulating device 19 can simulate the flow of the internal fluid of the kidney 2 .
  • fluid is supplied from the outside through the supply hose 194 to form a flow for swimming the object, and the fluid can be discharged through the discharge hose 193 .
  • the calix internal fluid simulating device 19 is placed side by side with the calix structure simulating device on the upper side of the translation device 11, or after separating the calix structure simulating device from the translation device 11, the translation device 11 can be combined
  • FIG. 10 is a cutaway cross-sectional view of a translational device and an internal calix fluid simulation device according to an embodiment
  • FIG. 11 is a cross-sectional view taken along line D-D of FIG. 9, and
  • FIG. 12 shows an inlet channel and an inlet hole according to an embodiment.
  • 13 is a photograph showing an apparatus for simulating calix internal fluid according to an embodiment.
  • the Calix internal fluid simulation device 19 includes a fluid receiving unit 191, a simulation unit 192, a discharge hose 193, a supply hose 194, and a control valve (not shown). ) may be included.
  • the fluid accommodating part 191 is connected to the copying part 192 so that the fluid can flow, and the fluid moved from the copying part 192 can be accommodated.
  • the fluid accommodating part 191 may include a second frame member 1911 , an equipment insertion port 1913 , and a fluid storage space 1912 .
  • the second frame member 1911 may be connected so that fluid flows in from the copying unit 192 .
  • the equipment insertion hole 1913 is formed on one side of the second frame member 1911, and training equipment may pass therethrough.
  • a fluid may be stored in the fluid storage space 1912 .
  • the copy unit 192 is connected to the supply hose 194, and the fluid supplied from the supply hose 194 may flow through.
  • the copying part 192 may include a first frame member 1921 , a flow path 1922 , an inlet channel 1923 , an inlet hole 1924 , and a cap 1925 .
  • the first frame member 1921 may form the outermost shape of the copying portion 192 .
  • the flow passage 1922 communicates with the inflow hole 1924 and may move upward as it approaches the fluid accommodating part 191 .
  • the flow path 1922 rises as it approaches the fluid accommodating part 191, so that the fluid introduced from the inlet hole 1924 flows diagonally upward to the top of the copying part 192 along the flow path 1922, and then the fluid It may flow into the accommodating part 191.
  • the flow path 1922 is formed of a first flow path 1922a, a second flow path 1922b, and a third flow path 1922c connected to the plurality of supply hoses 194, respectively, and the first flow path 1922a. ), one end of the second flow path 1922b and one end of the third flow path 1922c may be connected to each other.
  • An object to be trained is disposed at the lower end of the passage 1922, and the object may swim according to the flow of fluid flowing from the inflow channel 1923 to the passage 1922 through the inflow hole 1924.
  • the inlet channel 1923 may be formed through the first frame member 1921 and communicate with the supply hose 194 .
  • the inlet hole 1924 communicates with the end of the inlet channel 1923 and can disperse the fluid moving from the inlet channel 1923 .
  • a plurality of inlet holes 1924 are formed so that the total cross-sectional area of the plurality of inlet holes 1924 is large enough to form a flow rate sufficient to swim the object.
  • the inflow hole 1924 may be disposed in plurality on three curved side surfaces based on the inflow channel 1923 . According to this structure, the fluid flowing out of the inlet channel 1923 is uniformly sprayed through the inlet hole 1924 to prevent the object from moving only to one side, so that surgical training can be performed under various conditions.
  • a cap 1925 may cover the top of the flow path 1922 . By opening the cap 1925, an object may be put into or taken out of the flow path 1922 while the upper portion of the flow path is open.
  • the discharge hose 193 may discharge the fluid stored in the fluid accommodating part 191 .
  • the supply hose 194 may supply fluid from the outside and may be connected to the copy unit 192 .
  • the supply hose 194 may be formed as many as the number of branched passages.
  • a control valve may be disposed in the supply hose to control the supply flow rate of the fluid.
  • the strength of the turbulence can be varied, and the swimming range and speed of the object can be changed according to the strength of the turbulence.
  • the degree of difficulty of training can be adjusted by adjusting the extent to which the object swims.
  • FIG. 14 is a diagram showing the configuration of a renal endoscopy simulator system according to an embodiment
  • FIG. 15 is a perspective view of an artificial kidney module according to an embodiment
  • FIG. 16 is a cross-sectional view taken along line E-E of FIG. 15,
  • FIG. 17 is an exploded perspective view of an artificial kidney module according to an embodiment.
  • a renal surgery training system may include a renal endoscopy simulator system capable of practicing renal stone removal surgery through a ureteroscope.
  • the renal endoscopy simulator system 18 includes a base 181, an artificial bladder 182, an artificial ureter 183, a kidney model 184, a water supply unit 185, a control unit 186, and an artificial kidney module. (17) may be included.
  • the base 181 may support an artificial bladder 182, an artificial ureter 183, a kidney model 184, and an artificial kidney module 17 to perform exercises through ureteroscopy.
  • the base 181 drains water to the lower side of the artificial bladder 182 so that water supplied from the artificial kidney module 17 and flowing into the artificial bladder 182 can be circulated to the water supply unit 185.
  • It may include a drainage part 1811 that may be.
  • the drainage unit 1811 may be a hole formed in the base 181 and communicating with the water supply unit 185, or a housing that temporarily accommodates water such as a water tank and communicates with the water supply unit 185. .
  • the artificial bladder 182 may be a member in the form of a bladder having an internal space that simulates the shape of a human bladder.
  • the artificial bladder 182 may be connected to the artificial ureter 183 on one side, and an opening 1821 may be formed on the other side in the opposite direction, exposed to the outside and through which a ureteroscope may be introduced into the inside.
  • the water supplied through the artificial kidney module 17 may be connected to the artificial ureter 183 and delivered to the artificial bladder 182, and the water discharged through the opening 1821 of the artificial bladder 182 depends on gravity. It may be discharged to the drain 1811 located on the lower side.
  • a long tube-shaped member that simulates the human urethra may be additionally installed in the opening 1821 of the artificial bladder 182 .
  • the artificial bladder 182 may be formed of a polymer material having transparency so that the movement of the insertion tube of the ureteroscope passing through the inside can be observed from the outside.
  • the artificial bladder 182 is not necessarily provided, and in this case, the ureteroscope can be directly inserted through the discharge side of the artificial ureter 183.
  • the artificial ureter 183 may be a tube-shaped member that simulates a human ureter.
  • the artificial ureter 183 may have a pair of components connected from the artificial bladder 182 .
  • one ureter 183 may be referred to as a first ureter 183a, and the other ureter 183 may be referred to as a second ureter 183b.
  • first ureter 183a and the second ureter 183b is only for the purpose of distinguishing each other according to the structure of the pair of ureters connected to each pair of kidneys, which implies a specific directionality. make it clear that it is not
  • the first ureter 183a is shown connected to the kidney model 184 and the second ureter 183b is connected to the artificial kidney module 17, but this is only one example. However, it should be noted that each of the artificial ureters 183a and 183b may be connected to any configuration.
  • the kidney model 184 is a member simulating a human kidney, and may include an internal channel 1841 communicating with the artificial ureter 183 therein.
  • the internal channel 1841 may be formed as a passage branching from the artificial ureter 183 in a plurality of ways so that an endoscope inserted through the artificial ureter 183 can be accessed.
  • the internal channel 1841 may have a shape that mimics the structure of the renal pelvis inside the actual kidney and the renal calyces connected therefrom.
  • the artificial bladder 182, the kidney model 184, and the artificial ureter 183 may be formed of a permeable polymer material so that the movement of the insertion tube of the ureteral endoscope can be observed from the outside.
  • the kidney model 184 is made of a transparent or translucent material, so that the point where the endoscope is inserted can be visually confirmed even from the outside. Therefore, in the case of an inexperienced person who is not accustomed to endoscopic operation, first, by training to insert the endoscope through the first ureter (183a), it can be more easily accustomed to endoscopic surgery.
  • the artificial bladder 182, the kidney model 184, and the artificial ureter 183 may each have the same color as the actual human bladder, kidney, and ureter.
  • the water supply unit 185 may supply water to the artificial kidney module 17 to simulate the movement of stones flowing in the actual kidney.
  • the artificial kidney module 17 can be cooled using water supplied from the water supply unit 185 without an additional cooling means, it is possible to create a laser use environment that can be used for stone crushing simulation.
  • the water supply unit 185 may supply water to the artificial kidney module 17 through a supply pump or the like, thereby realizing the movement of the stone S accommodated in the artificial kidney module 17 .
  • the water used to move the stones (S) can be discharged through the artificial ureter 183 into which the endoscope is inserted without a separate discharge means.
  • water discharged through the drainage unit 1811 may be supplied to the water supply unit 185 again.
  • the movement of the stone S can be realized through a circulation process by returning the water discharged from the artificial bladder 182 to the water supply unit 185 without additional supply of water.
  • the water supply unit 185 may include a pump structure capable of receiving and supplying water to the outside.
  • the water supply unit 185 includes a plurality of supply lines 1851 connected to the plurality of calix channels 1734 of the multi-channel unit 173 and supplying water to each calix channel 1734. can do.
  • a valve capable of opening and closing the corresponding supply line 1851 may be provided in each of the plurality of supply lines 1851 .
  • water can be supplied only to a part of the calix channels 1734 where the stone S is located among the plurality of calix channels 1734.
  • the valve described above may be, for example, a valve capable of adjusting an opening amount. According to such a valve, it is possible to individually control the degree of movement of the calculus S for each of the plurality of calix channels 1734.
  • the supply line 1851 may be connected to the inner channel 1841 of the kidney model 184 to supply water to the inner channel 1841.
  • the controller 186 may control the water supply unit 185 to adjust the flow rate and flow rate of water supplied to the artificial kidney module 17 .
  • control unit 186 may individually control the flow of water flowing in each of the plurality of supply lines 1851, and as a result, may individually control the flow of water flowing into the plurality of calix channels 1734. there is.
  • the controller 186 can control the opening amount of each valve described above.
  • the artificial kidney module 17 creates an environment in which stones are formed in the internal structure of an actual kidney, so that stone removal surgery through actual endoscopic surgery can be practiced.
  • the artificial kidney module 17 may communicate with the artificial ureter 183 connected from the artificial bladder 182 .
  • the artificial kidney module 17 is illustrated as having a structure and direction corresponding to the left kidney of a pair of kidneys in the human body, but this is only one example, and vice versa. It should be noted that a configuration having a structure and direction corresponding to the symmetrical extension of the direction is also possible.
  • the artificial kidney module 17 may include a case 171, a branching part 172, a multi-channel part 173, and a stone S.
  • the case 171 may be a housing-type member accommodating the branching part 172 and the multi-channel part 173 therein.
  • the case 171 includes an inner space 1711, a connection part 1713 into which the artificial ureter 183 is introduced into the inner space 1711, and a cover part 1714 capable of shielding the inner space 1711 from the outside. ), and a plurality of supply ports 1715 through which a plurality of supply lines 1851 are introduced into the inner space 1711.
  • the branching part 172 and the multi-channel part 173 may be accommodated in the internal space 1711 .
  • the inner space 1711 may support the branching part 172 and the multi-channel part 173 in a mutually aligned state.
  • the inner space 1711 may have a semicircular pillar shape corresponding to a shape in which the branching portion 172 and the multi-channel portion 173 are combined.
  • the branching portion 172 and the multi-channel portion 173 have a structure that matches the shape of the outer surface formed by the branching portion 172 and the multi-channel portion 173, the branching portion 172 and the multi-channel portion 173
  • the channel part 173 is molded to the inner wall of the inner space 1711 and is fixedly supported, and at the same time, the branch part 172 and the multi-channel part 173 may be closely connected to each other.
  • the cross section of the inner space 1711 may include a circular shape including an arc.
  • connection part 1713 is a port that passes through the inner wall of the case 171 from the outside and communicates with the internal space 1711, and the end of the artificial ureter 183 may be connected.
  • connection part 1713 may be connected to the inlet pipe 1721 of the branch part 172 installed in the inner space 1711 .
  • the cover part 1714 may be detachably separated to shield the inner space 1711 from the outside.
  • the cover part 1714 may prevent water supplied to the inner space 1711 from leaking out of the case 171 . Since a sealing member is provided between the cover part 1714 and the inner space 1711 , water supplied to the inner space 1711 does not leak to the outside and can be discharged through the artificial ureter 183 .
  • the cover part 1714 may serve to firmly fix the multi-channel part 173 accommodated in the inner space 1711 by pressing it while shielding the inner space 1711 .
  • the cover part 1714 may be partially formed of a transparent member so that the inner space 1711 shielded by the cover part 1714 can be observed from the outside.
  • the multi-channel unit 173 is inserted into the multi-channel unit 173. It can be taken out of space 1711.
  • a plurality of supply ports 1715 may be installed in a portion of the inner space 1711 where the multi-channel unit 173 is installed. Each of the plurality of supply ports 1715 may be connected to one side of a plurality of calix channels 1734 formed inside the multi-channel unit 173 .
  • the multi-channel unit 173 may have a columnar shape having an arc-shaped cross section, and thus, a plurality of supply ports 1715 may also be formed in an arc-shaped area.
  • the plurality of supply ports 1715 may be radially arranged around the branching portion 172 .
  • a plurality of supply ports 1715 may be connected from the lower side of the inner space 1711 along the direction of gravity.
  • the plurality of supply ports 1715 are each of the plurality of calix channels 1734. It may be connected to be precisely engaged on one side.
  • the multi-channel unit 173 includes a passage through which the calix channel 1734 and the supply port 1715 communicate with each other, and the water supplied to the supply port 1715 passes through the calix channel. (1734).
  • the water supplied from the water supply unit 185 to the artificial kidney module 17 is individually supplied to each of the plurality of calyx channels 1734 so that stones flow in the renal calyces of the actual kidney. movement can be imitated.
  • the branching portion 172 is installed in a portion of the internal space 1711 connected to the connection portion 1713 and may form an internal path communicating from the artificial ureter 183 to the multi-channel portion 173.
  • the introduction tube 1721 of the branching part 172 may communicate with the artificial ureter 183 .
  • the branching portion 172 may have a columnar shape having a semicircular or sectoral cross section.
  • the branching portion 172 includes an inlet pipe 1721 communicating with the artificial ureter 183 through the connection portion 1713 and a branch pipe branching from the inlet pipe 1721 and communicating with the internal space 1711 ( 1722) and a coupling end 1723 connected to the multi-channel unit 173 and exposing the branch pipe 1722.
  • the inlet tube 1721 communicates with the artificial ureter 183 and may have a shape of a tube simulating a renal pelvis portion of a kidney connected to the actual ureter.
  • the branch pipe 1722 may have a shape of a pipe connected from the inlet pipe 1721 and branched into a plurality of branches toward the coupling end 1723 to be opened.
  • the branch canal may have a tubular shape that mimics a portion branching into 2 to 3 major calyxes in the renal pelvis of an actual kidney.
  • the coupling end 1723 is a portion where an opening through which the branch pipe 1722 is exposed is formed, and may be coupled to the separation end 1731 of the multi-channel unit 173.
  • the coupling end 1723 and the separating end 1731 may have a structure in which contact surfaces conform to each other so that they can be closely adhered to each other at the correct coupling position.
  • the coupling end 1723 may have a shape protruding along an arc shape, and thus the separation end 1731 may inwardly follow the same arc shape. It may have a concave shape.
  • the multi-channel unit 173 is installed in a portion of the internal space 1711 connected to the branching unit 172 .
  • the multi-channel unit 173 forms an internal path that communicates with the internal passage of the branch unit 172, and may be connected to the branch pipe 1722 on one side and to the plurality of supply ports 1715 on the other side.
  • the multi-channel unit 173 may be detachably installed in the inner space 1711 .
  • the multi-channel unit 173 includes a separation end 1731 coupled to the coupling end 1723 of the branch unit 172, a separation outer surface 1732 in close contact with the inner wall of the internal space 1711, It may include a calix inlet 1733 recessed inward from the separation end 1731 and a plurality of calix channels 1734 connected from the calix inlet 1733 and branched into a plurality of paths.
  • the separation end 1731 is a portion through which the calix inlet 1733 is exposed to the outside, and may be coupled to the coupling end 1723 of the branching portion 172 .
  • the separation end 1731 may have a recessed shape corresponding to the protruding shape of the coupling end 1723.
  • the separation end 1731 may form an arc-shaped contact surface that is recessed inwardly.
  • the coupling end 1723 and the separation end 1731 having shapes corresponding to each other, when the multi-channel portion 173 is coupled to the branch portion 172, it can be guided to have an accurate coupling position with each other, and Each of the branch pipes 1722 and the calix inlet 1733 may be aligned so as to be precisely engaged.
  • the coupling end 1723 and the separation end 1731 come into surface contact with each other in a state of close contact except for the branch pipe 1722 and the calix inlet 1733 to prevent water flowing inside from leaking out. It can be prevented.
  • each of the coupling end 1723 and the separation end 1731 may include any other shape having a structure capable of being molded and closely attached to each other.
  • the separation outer surface 1732 may be an outer portion that adheres along the inner wall of the inner space 1711 .
  • the separation outer surface 1732 may have an outer cross-sectional shape matching the cross-sectional shape of the inner wall of the inner space 1711 so as to be closely adhered to along the inner wall of the inner space 1711 .
  • the separation outer surface 1732 when a part of the inner wall of the inner space 1711 has a cylindrical shape, the separation outer surface 1732 also has a cylindrical outer structure, so that the separation outer surface 1732 is formed in the inner space (1711) may be arranged so as to be in close contact with the inner wall.
  • the multi-channel unit 173 can be arranged to have an accurate coupling position within the inner space 1711, and through this, the calix inlet 1733 of the multi-channel unit 173 is connected to the branching unit 172.
  • the ends of the plurality of calix channels 1734 are also accurately engaged with the plurality of supply ports 1715 and can be aligned so that they can communicate with each other. .
  • the multi-channel part 173 when the multi-channel part 173 is installed in the inner space 1711, it is stably and fixedly supported from both sides of the separating end 1731 and the separating outer surface 1732, so that the multi-channel part 173 is in the inner space. It can be prevented from being separated from the correct coupling position in (1711).
  • a structure in which a calix inlet 1733 connected to the branch pipe 1722 on one side and to at least one calix channel 1734 on the other side is exposed to the outside can be formed.
  • the calix inlet 1733 may include an opening portion exposed to the split end 1731 .
  • the calix inlet 1733 may have a pipe shape simulating a part where a major calix of an actual kidney is branched and connected to a plurality of minor calyxes.
  • the same number of calix inlets 1733 as the number of branch pipes 1722 may be formed at spaced apart points along the separate ends 1731 .
  • the plurality of calix channels 1734 may be passages that are branched and connected to have at least one path from the calix inlet 1733, and are connected to each of the plurality of supply ports 1715 at the end of each passage to supply water. can be supplied.
  • the plurality of calix channels 1734 may have a tubular shape simulating the structure of a minor calix that is branched and connected to a plurality of major calyxes of an actual kidney.
  • the shape of the passage branching and communicating from the inlet tube 1721 through the branch tube 1722 and the calix inlet 1733 to the plurality of calix channels 1734 is It can have a three-dimensional passage shape that branches and communicates with the minor calix via the major calix.
  • the artificial extension module 17 has a three-dimensional structure in which the heights of the plurality of calix channels 1734 are different from each other, in a state where the multi-channel unit 173 is separated, the calix inlet exposed to the outside ( 1733, it is possible to insert stones (S) into the plurality of calix channels 1734, respectively. Therefore, compared to a general artificial kidney module that places the stone S on the same two-dimensional plane, it has the advantage of being able to perform much more realistic training.
  • each calix channel 1734 is engaged with each of the plurality of supply ports 1715. Combined, water can be supplied to each of the plurality of calix channels 1734 individually.
  • the calix channel 1734 may include a structure inclined downward along the direction of gravity from the calix inlet 1733 toward the supply port 1715 .
  • the stone S when the stone S is placed in the calix channel 1734 or the calix inlet 1733, the stone S tends to move toward the end of the calix channel 1734 by gravity. At the same time, the force in the direction away from the end of the calix channel 1734 is also received by the countercurrent water supplied through each supply port 1715, and as a result, the stone S is the calix inlet ( 1733) or the calix channel 1734, it can be made to have an irregularly fluctuating movement so as to have the movement of a calculus in the actual kidney.
  • the portion where the plurality of supply ports 1715 are installed in the inner space 1711 may be installed at points radially spaced apart from each other based on the arc shape of the separation end 1731 .
  • the plurality of supply ports 1715 may have different radial angles based on the arc shape.
  • the plurality of calix channels 1734 of the multi-channel unit 173 may also have a shape that is radially distributed based on the corresponding arc shape within a structurally possible orientation range.
  • the plurality of supply ports 1715 may protrude in a direction perpendicular to a radial plane based on the arc shape of the separation end 1731 and be connected to each of the plurality of calix channels 1734 .
  • the vertical direction may be the opposite direction to the direction of gravity, and through this, the flow of water supplied to the calix channel 1734 and flowing backward upwards forms a turbulence for effectively mooring the stones (S).
  • the vertical direction may be the opposite direction to the direction of gravity, and through this, the flow of water supplied to the calix channel 1734 and flowing backward upwards forms a turbulence for effectively mooring the stones (S).
  • the channel structure may form a three-dimensional passage structure that bends and branches along a three-dimensional direction, similar to the internal structure of an actual elongation.
  • the branching portion 172 and the multi-channel portion 173 may have the same color as the actual kidney.
  • the branching part 172 and the multi-channel part 173 may be formed of a polymer material having transparency so that the movement of the insertion tube of the ureteral endoscope passing through the inside can be observed from the outside. Meanwhile, in order to provide an environment similar to an actual endoscope insertion environment, it may be formed of an opaque or translucent red material.
  • the stone S is a member corresponding to a stone formed inside the actual kidney, and can be inserted into the calix inlet 1733 of the multi-channel unit 173 or into the plurality of calix channels 1734.
  • the stone S may have a similar shape and size to a real kidney stone, and may have a similar mass and stiffness.
  • stones (S) may be kidney stones that have been removed from the actual kidney.
  • the multi-channel unit 173 is separated by separating the multi-channel unit 173 from the interior space 1711 in a state where the cover unit 1714 shielding the interior space 1711 is separated.
  • the stone S With the calix inlet 1733 formed at the end 1731 exposed to the outside, the stone S can be easily inserted.
  • FIG. 18 is a diagram showing the configuration of a renal endoscopy simulator system according to an embodiment.
  • the renal endoscopy simulator system 16 includes an artificial bladder 182, an artificial ureter 183, a kidney model 184, a water supply unit 185, an artificial kidney module 17, It may include a control unit 186, a ureteral endoscope 161, a display unit 162 and a control unit 163.
  • the ureteral endoscope 161 may enter the artificial kidney module 17 through the artificial ureter 183 by entering the opening of the artificial bladder 182 .
  • the display unit 162 may display an image captured by a camera installed at an end of the ureteral endoscope 161 in real time.
  • the manipulation unit 163 may control driving of the ureteral endoscope 161 inserted into the artificial kidney module 17 through the artificial ureter 183 .
  • the user manipulates the ureteral endoscope 161 through the manipulation unit 163 to enter the artificial kidney module 17 through the artificial ureter 183. ) can be introduced, and then, an operation to remove stones (S) disposed inside the artificial kidney module 17 can be practiced, and at the same time, the corresponding process can be observed through the display unit 162.
  • the stone S installed inside the multi-channel unit 173 is detected through the image taken from the camera of the ureteral endoscope 161 at the calix inlet 1733 or
  • the driving of the water supply unit 185 may be controlled through the control unit 186 so as to have an oscillating motion within the calix channel 1734, thus simulating the motion of stones formed inside the actual kidney.
  • control unit 186 can adjust the flow rate and flow rate of water supplied through the supply line 1851 connected to the calix channel 1734 where the stones (S) are placed through the water supply unit 185, the user can It may be possible to adjust the appropriate flow rate and flow rate of water in real time while checking the image of stones (S) photographed by the ureteral endoscope 161 through the display unit 162 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Algebra (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instructional Devices (AREA)

Abstract

일 실시예에 따른 신장 수술 훈련 시스템은, 유체를 공급하는 공급 호스와, 상기 공급 호스에 연결되고 상기 공급 호스로부터 공급되는 유체가 관류하는 모사부와, 상기 모사부에 유체가 유동 가능하도록 연결되고 상기 모사부로부터 이동한 유체가 수용되는 유체 수용부와, 상기 유체 수용부에 저장된 유체를 배출하는 배출 호스를 포함하고, 신장의 내부 유체의 흐름을 모사한 칼릭스 내부 유체 모사 장치 및 상기 칼릭스 내부 유체 모사 장치의 하측에 배치되고, 병진 운동함으로써 상기 칼릭스 내부 유체 모사 장치를 병진 운동시킬 수 있는 병진 장치를 포함하고, 신장 내부의 유체의 흐름에 의하여 신장의 내부에서 유영하는 대상물을 훈련 장비를 이용하여 제거하는 훈련을 할 수 있다.

Description

신장 수술 훈련 시스템
본 발명은 신장 수술 훈련 시스템에 관한 것이다.
최근 들어 연성 내시경 기구가 발달함에 따라, 신장 및 상부 요관에서의 결석이나 종양을 치료하는 용도로 널리 활용되고 있다. 연성 내시경은 선단부가 굴절되도록 설계되어 있어, 도 1에 나타낸 바와 같이, 요관(23)을 따라 이동하다가 메이저 칼릭스(22)를 거쳐서 타겟 마이너 칼릭스(21)까지 이동할 수 있다. 수술 대상 부위까지 내시경을 적절하게 삽입시키기 위해서는 의사가 별도의 트레이닝을 통하여 연마된 높은 숙련도가 요구된다. 한편, 실제 내시경을 삽입하는 과정에서는, 환자의 호흡에 의하여 신장이 지속적으로 불규칙하게 움직이므로 이와 같은 조건까지 고려한 트레이닝 시스템이 요구된다. 또한, 신장 내부의 마이너 칼릭스(21)에서 형성되는 유체의 흐름에 의하여 결석이 계속적으로 불규칙하게 유영하므로 이와 같은 환경에서 신장 내부의 결석을 신속하게 제거할 수 있도록 훈련 시스템이 요구된다.
국제공개특허 WO 2015/095715호(공개일 2015년06월25일)에는 의료 훈련을 위한 시뮬레이터 시스템에 관하여 개시되어 있다.
전술한 배경기술은 발명자가 본 발명의 도출과정에서 보유하거나 습득한 것으로서, 반드시 본 발명의 출원 전에 일반 공중에 공개된 공지기술이라고 할 수는 없다.
일 실시예의 목적은 복수 개의 루트를 구비함으로써 신장의 내부 구조를 모사하고, 호흡에 의하여 움직이는 조건을 제공할 수 있는 신장 수술 훈련 시스템을 제공하는 것이다.
일 실시예의 목적은 신장 내부의 유체의 흐름을 모사하고, 호흡에 의하여 움직이는 조건을 제공할 수 있는 신장 수술 훈련 시스템을 제공하는 것이다.
일 실시예에 따른 신장 수술 훈련 시스템은, 유체를 공급하는 공급 호스와, 상기 공급 호스에 연결되고 상기 공급 호스로부터 공급되는 유체가 관류하는 모사부와, 상기 모사부에 유체가 유동 가능하도록 연결되고 상기 모사부로부터 이동한 유체가 수용되는 유체 수용부와, 상기 유체 수용부에 저장된 유체를 배출하는 배출 호스를 포함하고, 신장의 내부 유체의 흐름을 모사한 칼릭스 내부 유체 모사 장치 및 상기 칼릭스 내부 유체 모사 장치의 하측에 배치되고, 병진 운동함으로써 상기 칼릭스 내부 유체 모사 장치를 병진 운동시킬 수 있는 병진 장치를 포함하고, 신장 내부의 유체의 흐름에 의하여 신장의 내부에서 유영하는 대상물을 훈련 장비를 이용하여 제거하는 훈련을 할 수 있다.
상기 모사부는, 상기 모사부의 최외측 형상을 형성하는 제 1 프레임 부재,
상기 제 1 프레임 부재를 관통하여 형성되고, 상기 공급 호스와 연통되는 유입 채널, 상기 유입 채널의 단부에 연통하고, 상기 유입 채널로부터 이동한 유체를 분산시키는 복수 개의 유입홀, 상기 유입홀과 연통하고, 상기 유체 수용부에 가까워질수록 상향하는 유로 및 상기 유로의 상부를 커버하는 캡을 포함할 수 있다.
상기 유로는, 복수 개의 상기 공급 호스와 각각 연결되는 제 1 유로, 제 2 유로 및 제 3 유로로 형성되고, 상기 제 1 유로의 일단, 상기 제 2 유로의 일단 및 상기 제 3 유로의 일단은 서로 연결될 수 있다.
상기 유입홀은, 상기 유입 채널을 기준으로 세 개의 만곡된 측면상에 복수 개로 배치될 수 있다.
상기 유로의 하단에 훈련 대상이 되는 상기 대상물이 배치되고, 상기 대상물은 상기 유체가 상기 유입홀을 통하여 상기 유입 채널로부터 상기 유로로 흐르는 흐름에 따라서 유영할 수 있다.
상기 캡을 열어서 상기 유로의 상부를 개방한 상태에서 상기 대상물을 상기 유로에 넣거나 꺼낼 수 있다.
상기 유체 수용부는, 상기 모사부로부터 유체가 유입되도록 연결되는 제 2 프레임 부재, 상기 제 2 프레임 부재의 일측에 형성되고, 상기 훈련 장비가 관통하는 장비 삽입구 및 내부에 유체가 저장되는 유체 저장 공간을 포함할 수 있다.
상기 병진 장치는, 베이스, 상기 베이스의 상단에 배치되는 브릿지, 상기 브릿지의 상단에 배치되고, 상기 브릿지에 대하여 일 축을 따라 양 방향으로 이동 가능한 거치대 및 상기 거치대를 구동시키는 구동기를 포함할 수 있다.
상기 브릿지는, 상기 베이스의 양측에 한 쌍으로 구비되고, 상단에 상기 브릿지의 길이 방향으로 슬라이딩 홈이 형성되고, 상기 거치대는, 상기 슬라이딩 홈에 이동 가능하게 삽입된 슬라이더 및 상기 슬라이더의 상단에 배치되고, 상기 슬라이더와 함께 이동하는 플레이트를 포함할 수 있다.
상기 구동기는, 회전 동력을 제공하는 본체, 상기 본체의 측면에 배치되고 회전 구동하는 휠, 상기 휠에 대하여 일측이 회전 가능하게 연결되고 타측으로 길게 연장되는 서포트 및 상기 서포트가 회전 가능하게 연결되고, 상기 거치대에 연결되는 연결단을 포함할 수 있다.
상기 칼릭스 내부 유체 모사 장치는, 상기 공급 호스에 배치되어, 상기 유체의 공급 유량을 제어할 수 있는 제어 밸브를 더 포함할 수 있다.
상기 신장 수술 훈련 시스템은, 훈련 장비가 삽입되는 프레임과, 상기 프레임의 일측으로부터 상기 프레임의 중심부까지 연결되고 요관을 모사한 제 1 루트와, 상기 제 1 루트에 연결되어 상기 제 1 루트로부터 멀어질수록 단면적이 커지는 부분을 포함하고 신장의 메이저 칼릭스를 모사한 제 2 루트와, 상기 제 2 루트로부터 복수 개로 분지되도록 형성되고 신장의 마이너 칼릭스를 모사한 제 3 루트를 포함하고, 상기 병진 장치의 상측에 배치되는 칼릭스 구조 모사 장치를 더 포함하고, 호흡에 의하여 신장이 움직이는 조건에서, 실제 신장의 내부 구조를 모사한 루트를 따라서 훈련 장비를 삽입하는 훈련을 할 수 있다.
상기 칼릭스 구조 모사 장치는, 상기 제 3 루트의 일측에 배치되고, 상기 훈련 장비가 도달했는지 여부를 감지하는 센서를 더 포함할 수 있다.
상기 제 3 루트는, 상기 프레임의 상단 및 하단에 각각 복수 개로 형성되고 측방향을 따라서 상단 및 하단에 교번하여 배치되어, 상기 칼릭스 구조 모사 장치를 위에서 바라볼 때 복수 개의 상기 제 3 루트가 완전히 겹쳐지지 않을 수 있다.
상기 칼릭스 구조 모사 장치의 내부에 형성된 복수 개의 루트 중에서 삽입 대상이 되는 루트를 설정하는 제어 장치, 설정된 상기 루트의 내부로 상기 훈련 장비가 삽입되었는지를 판단하는 판단 장치 및 상기 훈련 장비가 설정된 상기 루트의 내부로 삽입되었는지 여부를 표시하는 출력 장치를 더 포함할 수 있다.
일 실시예에 따른 신장 수술 훈련 시스템은, 신장의 내부 구조를 모사하고 호흡 조건을 제공함으로써 훈련 장비를 신장의 내부로 삽입하는 훈련을 수행하도록 할 수 있다.
일 실시예에 따른 신장 수술 훈련 시스템은, 신장의 내부에 유체의 흐름을 모사하고, 유체에 의하여 유영하는 대상물을 구현하고 호흡 조건을 제공함으로써 훈련 장비를 신장의 내부로 삽입하여 결석을 파지하거나 레이저를 조준하는 훈련을 수행하도록 할 수 있다.
도 1은 신장의 단면 및 마이너 칼릭스를 확대한 도면이다.
도 2는 일 실시예에 따른 병진 장치 및 칼릭스 구조 모사 장치의 측면도이다.
도 3은 일 실시예에 따른 신장 수술 훈련 시스템의 블록도이다.
도 4는 도 2의 A-A를 따라서 절개한 단면도이다.
도 5는 도 4의 B-B를 따라서 절개한 단면도이다.
도 6은 일 실시예에 따른 병진 장치의 사시도이다.
도 7은 도 6의 C-C를 따라서 절개한 단면도이다.
도 8은 일 실시예에 따른 칼릭스 구조 모사 장치를 나타낸 사진이다.
도 9는 일 실시예에 따른 병진 장치 및 칼릭스 내부 유체 모사 장치의 측면도이다.
도 10은 일 실시예에 따른 병진 장치 및 칼릭스 내부 유체 모사 장치의 절개 단면도이다.
도 11은 도 9의 D-D를 따라서 절개한 단면도이다.
도 12는 일 실시예에 따른 유입 채널 및 유입홀을 나타낸 도면이다.
도 13은 일 실시예에 따른 칼릭스 내부 유체 모사 장치를 나타낸 사진이다.
도 14는 일 실시예에 따른 신장 내시경 시뮬레이터 시스템의 구성을 나타내는 도면이다.
도 15는 일 실시예에 따른 인공 신장 모듈의 사시도이다.
도 16은 도 15의 E-E를 따라서 절개한 단면도이다.
도 17은 일 실시예에 따른 인공 신장 모듈의 분해 사시도이다.
도 18은 일 실시예에 따른 신장 내시경 시뮬레이터 시스템의 구성을 나타내는 도면이다.
이하, 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
어느 하나의 실시예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시예에 기재한 설명은 다른 실시예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.
도 2는 일 실시예에 따른 병진 장치 및 칼릭스 구조 모사 장치의 측면도이고, 도 3은 일 실시예에 따른 신장 수술 훈련 시스템의 블록도이다.
도 2 및 도 3을 참조하면, 신장 수술 훈련 시스템(1)을 이용하면, 호흡에 의하여 신장(2)이 움직이는 조건에서, 실제 신장(2)의 내부 구조를 모사한 루트를 따라서 훈련 장비(3, 도 4 참조)를 삽입하는 훈련을 할 수 있다. 예를 들어, 신장 수술 훈련 시스템(1)은, 병진 장치(11), 칼릭스 구조 모사 장치(12), 제어 장치(13), 판단 장치(14) 및 출력 장치(15)를 포함할 수 있다.
병진 장치(11)는 칼릭스 구조 모사 장치(12)의 하측에 배치되고, 병진 운동함으로써 칼릭스 구조 모사 장치(12)를 병진 운동 시킬 수 있다. 병진 장치(11)는 실제 체내에서 호흡에 의하여 신장(2)이 움직이는 환경을 조성할 수 있다. 도면에는 일 방향으로 병진 운동하는 구조가 도시되었으나 이에 한정되지 않고, 복수 개의 축에 대하여 병진 운동하거나 원운동을 가능하게 하는 통상의 구조가 적용될 수도 있다.
칼릭스 구조 모사 장치(12)는 훈련 장비(3)를 이용하여 신장(2)의 내부에 접근하는 훈련을 수행하기 위하여 신장(2)의 내부 구조를 모사할 수 있다. 칼릭스 구조 모사 장치(12)의 내부에는 복수 개로 갈래진 루트가 형성되어 신장(2)의 마이너 칼릭스(21) 구조를 모사할 수 있다.
제어 장치(13)는 칼릭스 구조 모사 장치(12)의 내부에 형성된 복수 개의 루트 중에서 삽입 대상이 되는 루트를 설정할 수 있다.
판단 장치(14)는 설정된 루트의 내부로 훈련 장비가 삽입되었는지를 판단할 수 있다. 예를 들어 판단 장치(14)는 센서(125, 도 4 참조)에 의하여 훈련 장비(3)가 감지되었는지 여부를 판단할 수 있다.
출력 장치(15)는 훈련 장비(3)가 설정된 루트의 내부로 삽입되었는지 여부를 표시할 수 있다. 예를 들어, 출력 장치(15)는 디스플레이와 같이 육안으로 확인할 수 있는 수단일 수 있으며, 훈련 장비(3)가 삽입된 루트가 설정된 루트일 때, 'reach'와 같은 문자열을 출력하여 목표한 루트에 도달하였는지 실시간으로 안내할 수 있다.
도 4는 도 2의 A-A를 따라서 절개한 단면도이고, 도 5는 도 4의 B-B를 따라서 절개한 단면도이다.
도 4 및 도 5를 참조하면, 칼릭스 구조 모사 장치(12)는, 프레임(121), 제 1 루트(122), 제 2 루트(123), 제 3 루트(124), 제 4 루트(126) 및 센서(125)를 포함할 수 있다.
프레임(121)은 훈련 장비(3)가 삽입되어 내부로 진입할 수 있다. 예를 들어, 프레임(121)은 투명하거나, 반투명한 소재로 제조되어 외부에서 어느 루트로 훈련 장비(3)가 진입하는지 육안으로 확인할 수 있다.
제 1 루트(122)는 프레임(121)의 일측으로부터 프레임(121)의 중심부까지 연결되고, 요관(23)을 모사할 수 있다.
제 2 루트(123)는 제 1 루트(122)에 연결되어 제 1 루트(122)로부터 멀어질수록 단면적이 커지는 부분을 포함하고, 신장(2)의 메이저 칼릭스(22)를 모사할 수 있다.
제 3 루트(124)는 제 2 루트(123)로부터 복수 개로 분지되도록 형성되고, 신장의 마이너 칼릭스(21)를 모사할 수 있다. 예를 들어, 제 3 루트(124)는 프레임(121)의 상단 및 하단에 각각 복수 개로 형성되고 측방향을 따라서 상단 및 하단에 교번하여 배치될 수 있다. 이와 같은 구조에 따르면, 칼릭스 구조 모사 장치(12)를 위에서 바라볼 때, 복수 개의 제 3 루트(124)가 완전히 겹쳐지지 않으므로, 실제 신장(2)과 유사한 구조를 모사할 수 있다. 또한, 상단에 배치된 제 3 루트(124a)에서 하단에 배치된 제 3 루트(124b)로 훈련 장비(3)를 삽입하는 조작이 복잡해지므로, 단조롭지 않은 패턴을 통하여 실제 시술과 유사한 난이도로 훈련할 수 있다.
제 4 루트(126)는 제 1 루트(122) 또는 제 2 루트(123)로부터 분지되어 제 3 루트(124)보다 더 작은 곡률 반경을 갖도록 만곡될 수 있다. 제 4 루트(126)를 타겟 루트로 설정하면, 곡률 반경이 작아서 진입이 어려운 마이너 칼릭스(21)의 내부로 훈련 장비(3)를 삽입하는 훈련을 수행할 수 있다.
센서(125)는 제 3 루트(124)의 일측에 배치되고, 훈련 장비(3)가 도달했는지 여부를 감지할 수 있다. 예를 들어, 센서(125)는 복수 개로 형성되고, 센서(125)가 배치된 위치에 따라서 각각 다른 색상으로 발광할 수 있다. 이와 같은 특징에 따르면, 대상으로 설정된 루트가 아닌 루트에 훈련 장비(3)가 삽입되었을 때, 어느 루트에 훈련 장비(3)가 삽입되었는지를 특정할 수 있게 되므로 훈련 과정에서 조작을 교정해나갈 수 있다.
도 6은 일 실시예에 따른 병진 장치의 사시도이고, 도 7은 도 6의 C-C를 따라서 절개한 단면도이다.
도 6 및 도 7을 참조하면, 병진 장치(11)는, 베이스(111), 브릿지(112), 거치대(113) 및 구동기(114)를 포함할 수 있다.
브릿지(112)는 베이스(111)의 상단에 배치될 수 있다. 예를 들어, 브릿지(112)는 베이스(111)의 양측에 한 쌍으로 구비되고, 상단에 브릿지(112)의 길이 방향으로 슬라이딩 홈이 형성될 수 있다.
거치대(113)는 브릿지(112)의 상단에 배치되고, 브릿지(112)에 대하여 일 축을 따라 양 방향으로 이동할 수 있다. 예를 들어, 거치대(113)는, 슬라이더(1132) 및 플레이트(1131)를 포함할 수 있다.
슬라이더(1132)는 슬라이딩 홈에 이동 가능하게 삽입될 수 있다.
플레이트(1131)는 슬라이더(1132)의 상단에 배치되고, 슬라이더와 함께 이동할 수 있다.
구동기(114)는 거치대(113)를 구동시킬 수 있다. 구동기(114)는 거치대(113)의 이동 범위 및 병진 주기를 조절할 수 있다. 구동기(114)의 제어 기능에 따르면, 호흡 강도 및 주기가 다른 수술 상황을 모사할 수 있으며, 신장이 움직이는 정도를 변화시킴으로써, 훈련의 난이도를 조절할 수 있다. 예를 들어, 구동기(114)는 본체(1141), 휠(1142), 서포트(1143) 및 연결단(1144)을 포함할 수 있다.
본체(1141)는 회전 동력을 제공할 수 있다.
휠(1142)은 본체(1141)의 측면에 배치되고 회전 구동할 수 있다.
서포트(1143)는 휠(1142)에 대하여 일측이 회전 가능하게 연결되고 타측으로 길게 연장될 수 있다.
연결단(1144)은 서포트(1143)가 회전 가능하게 연결되고, 거치대(113)에 연결될 수 있다.
도 8은 일 실시예에 따른 칼릭스 구조 모사 장치를 나타낸 사진이다.
도 8을 참조하면, 반투명한 프레임을 통하여 복수 개로 형성된 루트가 나타나며, 각 루트에 배치된 센서 및 센서와 연결되어 발광하는 기판이 나타나있다. 반투명한 프레임을 통하여 루트를 직접 보면서 훈련하거나, 프레임의 상단에 불투명한 소재의 커버를 씌워서, 센서의 발광 여부를 통해 훈련 장비(3)의 조작감을 익힐 수도 있다.
도 9는 일 실시예에 따른 병진 장치 및 칼릭스 내부 유체 모사 장치의 측면도이다.
도 9를 참조하면, 신장 수술 훈련 시스템(1)을 이용하면, 호흡에 의하여 신장(2)이 움직이는 조건에서, 실제 신장(2)의 내부에서 흐르는 유체의 흐름을 모사한 환경에서, 수술 대상이 되는 결석과 같은 대상물을 유영시킬 수 있고, 대상물을 훈련 장비로 파지하거나, 레이저를 조준하여 조사하는 훈련을 할 수 있다. 예를 들어, 신장 수술 훈련 시스템(1)은, 병진 장치(11) 및 칼릭스 내부 유체 모사 장치(19)를 포함할 수 있다.
병진 장치(11)는 칼릭스 내부 유체 모사 장치(19)의 하측에 배치되고, 병진 운동함으로써 칼릭스 내부 유체 모사 장치(19)를 병진 운동 시킬 수 있다. 병진 장치(11)는 실제 체내에서 호흡에 의하여 신장(2)이 움직이는 환경을 조성할 수 있다. 도면에는 일 방향으로 병진 운동하는 구조가 도시되었으나 이에 한정되지 않고, 복수 개의 축에 대하여 병진 운동하거나 원운동을 가능하게 하는 통상의 구조가 적용될 수도 있다.
칼릭스 내부 유체 모사 장치(19)는, 신장(2)의 내부 유체의 흐름을 모사할 수 있다. 예를 들어 칼릭스 내부 유체 모사 장치(19)는, 공급 호스(194)를 통해 외부로부터 유체가 공급되어, 대상물을 유영시키는 흐름을 형성하고, 배출 호스(193)를 통해 유체를 배출시킬 수 있다.
칼릭스 내부 유체 모사 장치(19)는 병진 장치(11)의 상측에 칼릭스 구조 모사 장치와 나란히 배치되거나, 병진 장치(11)로부터 칼릭스 구조 모사 장치를 분리한 뒤, 병진 장치(11)에 결합될 수 있다.
도 10은 일 실시예에 따른 병진 장치 및 칼릭스 내부 유체 모사 장치의 절개 단면도이고, 도 11은 도 9의 D-D를 따라서 절개한 단면도이고, 도 12는 일 실시예에 따른 유입 채널 및 유입홀을 나타낸 도면이고, 도 13은 일 실시예에 따른 칼릭스 내부 유체 모사 장치를 나타낸 사진이다.
도 10 내지 도 13을 참조하면, 칼릭스 내부 유체 모사 장치(19)는, 유체 수용부(191), 모사부(192), 배출 호스(193), 공급 호스(194) 및 제어 밸브(미도시)를 포함할 수 있다.
유체 수용부(191)는 모사부(192)에 유체가 유동 가능하도록 연결되고, 모사부(192)로부터 이동한 유체가 수용될 수 있다. 예를 들어, 유체 수용부(191)는, 제 2 프레임 부재(1911), 장비 삽입구(1913) 및 유체 저장 공간(1912)을 포함할 수 있다.
제 2 프레임 부재(1911)는 모사부(192)로부터 유체가 유입되도록 연결될 수 있다.
장비 삽입구(1913)는 제 2 프레임 부재(1911)의 일측에 형성되고, 훈련 장비가 관통할 수 있다.
유체 저장 공간(1912)은 내부에 유체가 저장될 수 있다.
모사부(192)는 공급 호스(194)에 연결되고, 공급 호스(194)로부터 공급되는 유체가 관류할 수 있다. 예를 들어, 모사부(192)는 제 1 프레임 부재(1921), 유로(1922), 유입 채널(1923), 유입홀(1924) 및 캡(1925)을 포함할 수 있다.
제 1 프레임 부재(1921)는 모사부(192)의 최외측 형상을 형성할 수 있다.
유로(1922)는 유입홀(1924)과 연통하고, 유체 수용부(191)에 가까워질수록 상향할 수 있다. 유로(1922)는, 유체 수용부(191)에 가까워질수록 상향되어, 유입홀(1924)로부터 유입되는 유체가 유로(1922)를 따라 모사부(192)의 상부로 대각선 상측으로 흐르다가 상기 유체 수용부(191)로 유입될 수 있다. 예를 들어, 유로(1922)는, 복수 개의 공급 호스(194)와 각각 연결되는 제 1 유로(1922a), 제 2 유로(1922b) 및 제 3 유로(1922c)로 형성되고, 제 1 유로(1922a)의 일단, 제 2 유로(1922b)의 일단 및 제 3 유로(1922c)의 일단은 서로 연결될 수 있다. 유로(1922)의 하단에는 훈련 대상이 되는 대상물이 배치되고, 대상물은 유체가 유입홀(1924)을 통하여 유입 채널(1923)로부터 유로(1922)로 흐르는 흐름에 따라서 유영할 수 있다.
유입 채널(1923)은 제 1 프레임 부재(1921)를 관통하여 형성되고, 공급 호스(194)와 연통될 수 있다.
유입홀(1924)은 유입 채널(1923)의 단부에 연통하고, 유입 채널(1923)로부터 이동한 유체를 분산시킬 수 있다. 예를 들어 유입홀(1924)은 복수 개로 형성되어 복수 개의 유입홀(1924)의 총 단면적이 충분히 커서 대상물을 유영시킬 만큼의 유속을 형성할 수 있다. 유입홀(1924)은, 유입 채널(1923)을 기준으로 세 개의 만곡된 측면상에 복수 개로 배치될 수 있다. 이와 같은 구조에 따르면, 유입 채널(1923)을 흘러나온 유체가 유입홀(1924)을 통해 균일하게 분사되어 대상물이 한쪽으로만 이동하는 현상을 방지하여 다양한 조건에서의 수술 훈련을 수행할 수 있다.
캡(1925)은 유로(1922)의 상부를 커버할 수 있다. 캡(1925)을 열어서 유로의 상부를 개방한 상태에서 대상물을 유로(1922)에 넣거나 꺼낼 수 있다.
배출 호스(193)는 유체 수용부(191)에 저장된 유체를 배출할 수 있다.
공급 호스(194)는 외부로부터 유체를 공급할 수 있고, 모사부(192)에 연결될 수 있다. 예를 들어, 공급 호스(194)는 분지된 유로의 개수만큼 형성될 수 있다.
제어 밸브는 공급 호스에 배치되어, 유체의 공급 유량을 제어할 수 있다. 제어 밸브가 유량을 제어함으로써, 터뷸런스의 강도를 다르게 할 수 있으며, 터뷸런스 강도에 따라서 대상물이 유영하는 범위와 속력를 변화시킬 수 있다. 대상물이 유영하는 정도를 조절함으로써, 훈련의 난이도를 조절할 수 있다.
도 14는 일 실시예에 따른 신장 내시경 시뮬레이터 시스템의 구성을 나타내는 도면이고, 도 15는 일 실시예에 따른 인공 신장 모듈의 사시도이고, 도 16은 도 15의 E-E를 따라서 절개한 단면도이고, 도 17은 일 실시예에 따른 인공 신장 모듈의 분해 사시도이다.
도 14 내지 도 17을 참조하면, 일 실시예에 따른 신장 수술 훈련 시스템은, 요관 내시경을 통한 신장 결석 제거 수술을 실습할 수 있는 신장 내시경 시뮬레이터 시스템을 포함할 수 있다.
일 실시예에 따른 신장 내시경 시뮬레이터 시스템(18)은 베이스(181), 인공 방광(182), 인공 요관(183), 신장 모형(184), 물 공급부(185), 제어부(186) 및 인공 신장 모듈(17)을 포함할 수 있다.
베이스(181)는 요관 내시경을 통해 실습을 수행할 인공 방광(182), 인공 요관(183), 신장 모형(184) 및 인공 신장 모듈(17)을 지지할 수 있다.
예를 들어, 베이스(181)는 인공 신장 모듈(17)로부터 공급되어 인공 방광(182)으로 유동된 물이 물 공급부(185)로 순환될 수 있도록, 인공 방광(182)의 하측으로 물이 배수될 수 있는 배수부(1811)를 포함할 수 있다. 예를 들어, 배수부(1811)는, 베이스(181)에 형성되어 물 공급부(185)에 연통되는 구멍이거나, 수조와 같이 물을 임시적으로 수용하며 물 공급부(185)에 연통되는 하우징일 수 있다.
인공 방광(182)은, 인체의 방광의 형태를 모사한 내부 공간을 갖는 주머니(bladder) 형태의 부재일 수 있다. 인공 방광(182)은 일측으로 인공 요관(183)으로 연결될 수 있고, 반대 방향의 타측으로는 외부로 노출되고 요관 내시경이 내부로 도입될 수 있는 개구(1821)가 형성될 수 있다.
인공 신장 모듈(17)을 통해 공급된 물은 인공 요관(183)에 연결되어 인공 방광(182)으로 전달될 수 있고, 인공 방광(182)의 개구(1821)를 통해 배출되는 물은 중력에 따라 하측에 위치한 배수부(1811)로 배출될 수 있다.
다른 예로, 인공 방광(182)의 개구(1821)에 추가적으로 인체의 요도(urethra)를 모사하는 긴 튜브 형상의 부재가 추가적으로 설치될 수 있다는 점을 밝혀둔다.
예를 들어, 인공 방광(182)은 내부를 통과하는 요관 내시경의 삽입 튜브가 이동하는 모습을 외부에서 관찰 가능하도록 투과성을 갖는 폴리머 재료로 형성될 수 있다.
한편, 인공 방광(182)이 반드시 구비되어야 하는 것은 아니며, 이 경우, 요관 내시경이 인공 요관(183)의 토출측을 통하여 직접적으로 삽입될 수 있음을 밝혀 둔다.
인공 요관(183)은, 인체의 요관을 모사한 튜브 형태의 부재일 수 있다. 인공 요관(183)은 인공 방광(182)으로부터 연결되는 한 쌍의 구성을 가질 수 있다.
예를 들어, 한 쌍의 인공 요관(183) 중, 어느 하나의 요관(183)을 제 1 요관(183a)이라 할 수 있고, 나머지 하나의 요관(183)을 제 2 요관(183b)이라 할 수 있다. 여기서, 제 1 요관(183a)과 제 2 요관(183b)의 구분은, 실제 한 쌍의 신장 각각으로 연결되는 한 쌍의 요관의 구조에 따라 상호간의 구분을 위한 것에 불과한 것으로서, 특정한 방향성을 내포하는 것이 아님을 밝혀둔다.
또한, 도 14에 도시된 바와 같이, 제 1 요관(183a)은 신장 모형(184)에 연결되고 제 2 요관(183b)은 인공 신장 모듈(17)에 연결되는 것으로 도시되었지만, 이는 하나의 예시에 불과하며 각각의 인공 요관(183a, 183b)이 어떠한 구성에 연결되어도 무방하다는 점을 밝혀둔다.
신장 모형(184)은, 인체의 신장을 모사한 부재로서, 내부에는 인공 요관(183)에 연통되는 내부 채널(1841)을 포함할 수 있다. 내부 채널(1841)은, 인공 요관(183)을 통하여 삽입된 내시경이 접근 가능하도록, 인공 요관(183)으로부터 복수개로 분지되는 통로로 형성될 수 있다. 내부 채널(1841)은 실제 신장 내부의 신우(renal pelvis)와 그로부터 연결되는 신배(renal calyces)의 구조를 모사한 형태를 가질 수 있다.
예를 들어, 인공 방광(182), 신장 모형(184) 및 인공 요관(183)은 요관 내시경의 삽입 튜브가 이동하는 모습을 외부에서 관찰 가능하도록 투과성을 갖는 폴리머 재료로 형성될 수 있다. 예를 들어, 신장 모형(184)은, 투명 또는 반투명한 재질로 형성됨으로써, 외부에서도 내시경이 삽입된 지점을 육안으로 확인하도록 할 수 있다. 따라서, 내시경 조작에 익숙하지 않은 비숙련자의 경우, 먼저 제 1 요관(183a)을 통하여 내시경을 삽입하는 훈련을 함으로써, 내시경 수술에 보다 쉽게 익숙해질 수 있다. 한편, 인공 방광(182), 신장 모형(184) 및 인공 요관(183)은 각각 실제 인체의 방광, 신장 및 요관 색상과 동일한 색상을 가질 수도 있다.
물 공급부(185)는, 인공 신장 모듈(17)에 물을 공급하여 실제 신장 내에서 유동하는 결석의 움직임을 모사할 수 있다. 또한, 추가적인 냉각 수단 없이도, 물 공급부(185)에서 공급되는 물을 이용하여 인공 신장 모듈(17)을 냉각시킬 수 있으므로, 결석의 파쇄 시뮬레이션 등에 활용할 수 있는 레이저 사용 환경을 조성하는 것이 가능하다.
예를 들어, 물 공급부(185)는 공급 펌프 등을 통해 인공 신장 모듈(17)에 물을 공급함으로써, 인공 신장 모듈(17)에 수용된 결석(S)의 움직임을 구현할 수 있다. 결석(S)을 움직이는 데에 활용된 물은 별도의 배출 수단 없이, 내시경이 삽입되는 인공 요관(183)을 통하여 배출될 수 있다. 이와 같은 구조를 통하여, 물 공급부(185)로부터 인공 신장 모듈(17)에 지속적으로 물을 공급하면서, 결석(S)의 움직임을 구현할수 있다. 예를 들어, 배수부(1811)를 통해 배출되는 물은, 물 공급부(185)로 다시 공급될 수 있다. 이와 같은 구조에 의하면, 물을 추가로 공급할 필요없이, 인공 방광(182)에서 배출되는 물을 다시 물 공급부(185)로 회수시킴으로써, 순환 과정을 통해, 결석(S)의 움직임을 구현할 수 있다. 예를 들어, 물 공급부(185)는 물을 수용하는 동시에 외부로 공급할 수 있는 펌프 구조를 포함할 수 있다.
예를 들어, 물 공급부(185)는 다중 채널부(173)의 복수개의 칼릭스 채널(1734)에 연결되어 각각의 칼릭스 채널(1734)에 물을 공급하는 복수개의 공급 라인(1851)을 포함할 수 있다. 예를 들어, 복수개의 공급 라인(1851)에는 각각 해당 공급 라인(1851)을 개폐할 수 있는 밸브가 구비될 수 있다. 이와 같은 구성에 의하면, 복수개의 칼릭스 채널(1734) 중 결석(S)이 위치한 일부의 칼릭스 채널(1734)로만 물을 공급할 수 있다. 상술한 밸브는 예를 들어, 개도량의 조절이 가능한 밸브일 수 있다. 이와 같은 밸브에 의하면, 복수개의 칼릭스 채널(1734) 각각 마다, 결석(S)의 움직임의 정도를 개별적을 조절할 수 있다.
한편, 도시한 바와 달리, 공급 라인(1851)은 신장 모형(184)의 내부 채널(1841)에 연결되어 내부 채널(1841)로 물을 공급할 수도 있음을 밝혀 둔다.
제어부(186)는, 물 공급부(185)를 제어하여 인공 신장 모듈(17)에 공급되는 물의 유량 및 유속을 조절할 수 있다.
예를 들어, 제어부(186)는 복수개의 공급 라인(1851) 각각에서 유동하는 물의 유동을 개별적으로 조절할 수 있고, 결과적으로 복수개의 칼릭스 채널(1734)에 유입되는 물의 유동을 개별적으로 제어할 수 있다. 예를 들면, 제어부(186)는, 상술한 각각의 밸브의 개도량을 제어할 수 있다.
인공 신장 모듈(17)은, 실제 신장 내부의 구조내에 결석이 형성된 환경을 조성하여 실제 내시경 수술을 통한 결석 제거 수술을 실습할 수 있다. 인공 신장 모듈(17)은 인공 방광(182)으로부터 연결되는 인공 요관(183)에 연통될 수 있다.
한편, 도 14 내지 도 17을 참조하면, 인공 신장 모듈(17)은 인체 내의 한 쌍의 신장 중 좌측 신장에 대응하는 구조와 방향을 갖는 것으로 도시되었지만, 이는 하나의 예시에 불과하며, 그와 반대 방향의 대칭되는 신장에 대응하는 구조와 방향을 갖는 구성 역시 가능하다는 점을 밝혀둔다.
인공 신장 모듈(17)은, 케이스(171), 분기부(172), 다중 채널부(173) 및 결석(S)을 포함할 수 있다.
케이스(171)는, 내부에 분기부(172) 및 다중 채널부(173)를 수용하는 하우징형 부재일 수 있다. 예를 들어, 케이스(171)는 내부 공간(1711)과, 내부 공간(1711)으로 인공 요관(183)이 도입되는 연결부(1713)와, 내부 공간(1711)을 외부로부터 차폐 가능한 커버부(1714)와, 내부 공간(1711)으로 복수개의 공급 라인(1851)이 도입되는 복수개의 공급 포트(1715)를 포함할 수 있다.
내부 공간(1711)에는 분기부(172) 및 다중 채널부(173)가 수용될 수 있다. 내부 공간(1711)은 분기부(172) 및 다중 채널부(173)가 상호 정렬된 상태로 지지할 수 있다. 예를 들어, 내부 공간(1711)은, 분기부(172) 및 다중 채널부(173)가 결합된 형상에 대응하는 반원 기둥 형상을 가질 수 있다.
예를 들어, 내부 공간(1711)의 내벽의 형상은 분기부(172) 및 다중 채널부(173)가 형성하는 외면이 형성하는 형상과 형합하는 구조를 가지게 됨에 따라서, 분기부(172) 및 다중 채널부(173)는 내부 공간(1711)의 내벽에 형합되어 고정적으로 지지되는 동시에 분기부(172) 및 다중 채널부(173)는 서로 밀착되도록 연결될 수 있다.
도 16 및 도 17에 도시된 바와 같이 내부 공간(1711)의 단면은 호(arc)를 포함하는 원형의 형상을 포함할 수 있다. 하지만, 이는 예시에 불과하며 내부 공간(1711)을 비롯한 분기부(172)와 다중 채널부(173)의 형상이 이에 제한되지 않고, 다양한 형상을 가지며 구현될 수 있다는 점이 통상의 기술자들로부터 쉽게 이해될 수 있을 것이다.
연결부(1713)는, 외부로부터 케이스(171)의 내벽을 관통하여 내부 공간(1711)으로 연통하는 포트로서 인공 요관(183)의 단부가 연결될 수 있다. 예를 들어, 연결부(1713)는 내부 공간(1711)에 설치된 분기부(172)의 도입관(1721)에 연결될 수 있다.
커버부(1714)는, 외부로부터 내부 공간(1711)을 차폐하기 위해 탈착 가능하게 분리될 수 있다. 커버부(1714)는 내부 공간(1711)에 공급되는 물이 케이스(171) 외부로 유출되는 것을 방지할 수 있다. 커버부(1714) 및 내부 공간(1711) 사이에는 실링 부재가 구비됨으로써, 내부 공간(1711)으로 공급된 물이 외부로 누출되지 않고, 인공 요관(183)을 통해 토출될 수 있다.
예를 들어, 커버부(1714)는 내부 공간(1711)을 차폐하는 동시에 내부 공간(1711)에 수용된 다중 채널부(173)를 가압하여 단단히 고정시키는 역할을 수행할 수 있다.
예를 들어, 커버부(1714)는, 예를 들어, 커버부(1714)는 차폐한 내부 공간(1711)을 외부에서 관찰할 수 있도록, 일부가 투과성이 있는 부재로 형성될 수 있다.
도 17에 도시된 바와 같이, 결석(S)을 다중 채널부(173)에 삽입 또는 제거하기 위해, 커버부(1714)를 내부 공간(1711)으로부터 분리한 이후, 다중 채널부(173)를 내부 공간(1711)으로부터 꺼낼 수 있다.
복수개의 공급 포트(1715)는, 내부 공간(1711) 중 다중 채널부(173)가 설치되는 부분에 설치될 수 있다. 복수개의 공급 포트(1715) 각각은, 다중 채널부(173) 내부에 형성된 복수개의 칼릭스 채널(1734)의 일측에 각각에 연결될 수 있다. 다중 채널부(173)는, 호(arc) 형상의 단면을 갖는 기둥 형상을 가질 수 있으며, 이에 따라, 복수개의 공급 포트(1715) 역시, 호(arc) 형상의 영역 내에 형성될 수 있다. 다시 말하면, 복수개의 공급 포트(1715)는, 분기부(172)를 중심으로 방사상으로 배열될 수 있다. 예를 들어, 복수개의 공급 포트(1715)는 중력 방향을 따라 내부 공간(1711)의 하측으로부터 연결될 수 있다.
예를 들어, 다중 채널부(173)가 내부 공간(1711)에서 분기부(172)에 정확하게 결합되는 위치로 결합될 경우, 복수개의 공급 포트(1715)는 복수개의 칼릭스 채널(1734) 각각의 일측에 정확하게 맞물리도록 연결될 수 있다.
다시 말하면, 다중 채널부(173)는, 칼릭스 채널(1734) 및 공급 포트(1715)를 상호 연통시키는 통로를 포함하고, 공급 포트(1715)로 공급된 물은 상술한 통로를 통하여 칼릭스 채널(1734)까지 유입될 수 있다.
이상의 구조에 의하면, 물 공급부(185)로부터 인공 신장 모듈(17)로 공급되는 물이 복수개의 칼릭스 채널(1734) 각각에 개별적으로 공급되어 실제 신장의 신배(renal calyces) 내에서 결석이 유동하는 움직임을 모사할 수 있다.
분기부(172)는, 내부 공간(1711) 중 연결부(1713)에 연결되는 부분에 설치되고, 인공 요관(183)으로부터 다중 채널부(173)로 연통하는 내부 경로를 형성할 수 있다. 예를 들어, 분기부(172)의 도입관(1721)은, 인공 요관(183)에 연통될 수 있다. 분기부(172)는, 반원 또는 부채꼴 형상의 단면을 가지는 기둥 형상일 수 있다.
예를 들어, 분기부(172)는 연결부(1713)를 통해 인공 요관(183)으로 연통하는 도입관(1721)과, 도입관(1721)으로부터 분기되어 내부 공간(1711)로 연통하는 분기관(1722)과, 다중 채널부(173)에 연결되고 분기관(1722)이 노출되는 결합 단부(1723)를 포함할 수 있다.
도입관(1721)은 인공 요관(183)으로 연통하는 부분으로서, 실제 요관에 연결되는 신장의 신우(renal pelvis) 부분을 모사한 관의 형상을 가질 수 있다.
분기관(1722)은 도입관(1721)으로부터 연결되고 결합 단부(1723)를 향해 복수개로 분지되어 개방되는 관의 형상을 가질 수 있다. 예를 들어, 분기관은 실제 신장의 신우에서 2~3개의 메이저 칼릭스로 분지되는 부분을 모사한 관 형상을 가질 수 있다.
결합 단부(1723)는 분기관(1722)이 노출되는 개구가 형성되는 부분으로서, 다중 채널부(173)의 분리 단부(1731)에 결합할 수 있다.
결합 단부(1723)와 분리 단부(1731)가 서로 결합될 경우, 결합 단부(1723)에서 노출되는 분기관(1722)의 개구는 분리 단부(1731)에서 노출되는 칼릭스 입구(1733)에 연통될 수 있다.
분기부(172)와 다중 채널부(173)가 결합되는 경우, 결합 단부(1723)와 분리 단부(1731)는 서로 정확한 결합 위치에서 밀착될 수 있도록, 각각의 접촉면이 서로 형합하는 구조를 가질 수 있다. 예를 들어, 도 16 및 도 17에 도시된 바와 같이 결합 단부(1723)는 호(arc) 형상을 따라서 돌출된 형상을 가질 수 있고, 그에 따라 분리 단부(1731)는 같은 호의 형상을 따라서 내측으로 함몰된 형상을 가질 수 있다.
다중 채널부(173)는, 내부 공간(1711) 중 분기부(172)에 연결되는 부분에 설치된다. 다중 채널부(173)는 분기부(172)의 내부 통로로부터 연통되는 내부 경로를 형성하여, 일측으로는 분기관(1722)에 연결되고 타측으로 복수개의 공급 포트(1715)에 연결될 수 있다. 다중 채널부(173)는 내부 공간(1711)에 탈착 가능하게 설치될 수 있다.
예를 들어, 다중 채널부(173)는, 분기부(172)의 결합 단부(1723)에 결합되는 분리 단부(1731)와, 내부 공간(1711)의 내벽에 밀착되는 분리 외면(1732)과, 분리 단부(1731)로부터 내측으로 함몰 형성되는 칼릭스 입구(1733)와, 칼릭스 입구(1733)로부터 연결되어 복수개의 경로로 분지되어 형성되는 복수개의 칼릭스 채널(1734)을 포함할 수 있다.
분리 단부(1731)는, 칼릭스 입구(1733)가 외부로 노출되는 부분으로서, 분기부(172)의 결합 단부(1723)에 결합할 수 있다.
전술한 바와 같이, 분리 단부(1731)는 결합 단부(1723)의 돌출된 형상에 상응하는 함몰된 형상을 가질 수 있다. 예를 들어, 분리 단부(1731)는 내측으로 함몰된 호 형상의 접촉면을 형성할 수 있다.
서로 상응하는 형상을 갖는 결합 단부(1723)와 분리 단부(1731)의 구조에 따라서, 다중 채널부(173)가 분기부(172)에 결합될 경우 서로 정확한 결합 위치를 갖도록 가이드될 수 있고, 또한 각각의 분기관(1722)과 칼릭스 입구(1733)가 정확하게 맞물리도록 정렬시킬 수 있다. 더불어, 결합 단부(1723)와 분리 단부(1731)는 각각의 분기관(1722)과 칼릭스 입구(1733)를 제외한 부분에서 서로 밀착된 상태로 면접촉하게 되어 내부에서 흐르는 물이 밖으로 누출되는 것을 방지할 수 있다.
한편, 결합 단부(1723)와 분리 단부(1731) 각각의 접촉면의 형상은 서로 형합되어 밀착될 수 있는 구조를 갖는 임의의 다른 형상을 포함할 수 있다는 점을 밝혀둔다.
분리 외면(1732)은, 내부 공간(1711)의 내벽을 따라 밀착되는 외곽 부분일 수 있다. 분리 외면(1732)은 내부 공간(1711)의 내벽을 따라 밀착될 수 있도록 내부 공간(1711)의 내벽의 단면 형상과 형합하는 외곽 단면 형상을 가질 수 있다.
도 16 및 도 17에 도시된 바와 같이, 내부 공간(1711)의 내벽의 일부가 원주 형상을 가질 경우, 분리 외면(1732) 역시 원주 형상의 외곽 구조를 가짐으로써, 분리 외면(1732)은 내부 공간(1711)의 내벽을 따라 밀착되도록 배치될 수 있다.
이상의 구조에 의하면, 다중 채널부(173)가 내부 공간(1711) 내에서 정확한 결합 위치를 갖도록 배치할 수 있고, 이를 통해 다중 채널부(173)의 칼릭스 입구(1733)는 분기부(172)의 분기관(1722)과 정확하게 맞물리면서 연통되는 동시에, 다중 채널부(173)의 복수개의 칼릭스 채널(1734)의 단부 역시 복수개의 공급 포트(1715) 각각에 정확하게 맞물리면서 연통될 수 있도록 정렬될 수 있다.
결과적으로, 다중 채널부(173)가 내부 공간(1711)에 설치될 경우, 분리 단부(1731) 및 분리 외면(1732) 양측으로부터 안정적으로 그리고 고정적으로 지지되어, 다중 채널부(173)가 내부 공간(1711) 내의 정확한 결합 위치에서 이탈되지 않도록 방지할 수 있다.
또한, 원주 형상의 외곽 구조에 의하면, 일측으로 분기관(1722)에 연결되고 타측으로 적어도 하나 이상의 칼릭스 채널(1734)에 연결되는 칼릭스 입구(1733)가 외부로 노출되는 구조를 형성할 수 있다. 칼릭스 입구(1733)는 분리 단부(1731)로 노출되는 개구 부분을 포함할 수 있다. 칼릭스 입구(1733)는 실제 신장의 메이저 칼릭스에서 복수개의 마이너 칼릭스로 분지되어 연결되는 부분을 모사한 관의 형상을 가질 수 있다.
예를 들어, 분기관(1722)의 개수와 동일한 개수의 칼릭스 입구(1733)가, 분리 단부(1731)를 따라서 서로 이격된 지점에 형성될 수 있다.
복수개의 칼릭스 채널(1734)은, 칼릭스 입구(1733)로부터 적어도 하나 이상의 경로를 갖도록 분지되어 연결되는 통로일 수 있고, 각각의 통로의 말단에서 복수개의 공급 포트(1715) 각각으로 연결되어 물을 공급받을 수 있다.
복수개의 칼릭스 채널(1734)은 실제 신장의 메이저 칼릭스로부터 복수개로 분지되어 연결되는 마이너 칼릭스의 구조를 모사하는 관의 형상을 가질 수 있다.
결과적으로, 도입관(1721)으로부터 분기관(1722) 및 칼릭스 입구(1733)를 거쳐서 복수개의 칼릭스 채널(1734)까지 분지되어 연통하는 통로의 형상은, 실제 신장의 신우(renal pelvis)로부터 메이저 칼릭스를 거쳐서 마이너 칼릭스까지 분지되어 연통하는 3차원의 통로 형상을 가질 수 있다.
또한, 인공 신장 모듈(17)이, 복수개의 칼릭스 채널(1734)의 높이들이 서로 다른 3차원 구조를 갖더라도, 다중 채널부(173)를 분리한 상태에서, 외부로 노출된 칼릭스 입구(1733)를 통해 복수개의 칼릭스 채널(1734)로 각각 결석(S)을 삽입시키는 것이 가능하다. 따라서, 2차원상 동일한 평면상에 결석(S)을 위치시키는 일반적인 인공 신장 모듈과 비교할 때, 훨씬 더욱 실제에 가까운 훈련을 수행할 수 있다는 장점을 갖게 된다.
도 16과 같이 내부 공간(1711)에서 다중 채널부(173)가 분기부(172)와 정확한 결합 위치에서 결합될 경우, 각각의 칼릭스 채널(1734)은 복수개의 공급 포트(1715) 각각에 맞물리면서 결합되어, 복수개의 칼릭스 채널(1734)마다 개별적으로 물을 공급할 수 있다.
예를 들어, 칼릭스 채널(1734)은, 칼릭스 입구(1733)로부터 공급 포트(1715)로 갈수록, 중력 방향을 따라서 하측으로 경사지는 구조를 포함할 수 있다.
이상의 구조에 의하면, 결석(S)을 칼릭스 채널(1734) 또는 칼릭스 입구(1733) 부분에 배치할 경우, 결석(S)은 중력에 의해 칼릭스 채널(1734)의 단부를 향해 이동하려는 힘을 받는 동시에, 각각의 공급 포트(1715)를 통해 공급되어 역류하는 물에 의해 칼릭스 채널(1734)의 단부로부터 멀어지는 방향으로의 힘을 함께 받게되어, 결과적으로 결석(S)이 칼릭스 입구(1733) 또는 칼릭스 채널(1734)에 계류된 상태로 불규칙하게 요동하는 움직임을 갖도록 하여 실제 신장내의 결석의 움직임을 갖도록 조성할 수 있다.
예를 들어, 내부 공간(1711)에서 복수개의 공급 포트(1715)가 설치되는 부분은, 분리 단부(1731)의 호 형상을 기준으로, 서로 방사상으로 이격된 지점에 설치될 수 있다.
다시 말하면, 복수개의 공급 포트(1715)는 상기 호 형상을 기준으로 각각이 형성하는 방사상의 각도가 서로 상이할 수 있다.
이에 따라, 다중 채널부(173)의 복수개의 칼릭스 채널(1734) 역시, 구조적으로 가능한 배향 범위 내에서, 해당 호 형상을 기준으로 방사상으로 분산되는 형태를 가질 수 있다.
예를 들어, 복수개의 공급 포트(1715)는 분리 단부(1731)의 호 형상을 기준으로, 방사상의 평면에 수직한 방향으로 돌출되어 복수개의 칼릭스 채널(1734) 각각에 연결될 수 있다.
이 경우, 상기 수직한 방향은 중력 방향의 반대 방향일 수 있고, 이를 통해 칼릭스 채널(1734)에 공급되어 상측으로 역류하는 물의 흐름이 결석(S)을 효과적으로 계류시키는 터뷸런스(turbulence)를 형성하는데 유리할 수 있다.
예를 들어, 분기부(172)의 도입관(1721) 및 분기관(1722)을 거쳐서 다중 채널부(173)의 칼릭스 입구(1733) 및 복수개의 칼릭스 채널(1734)로 분지되어 연장되는 채널의 구조는 실제 신장의 내부 구조와 마찬가지로 3차원의 방향을 따라서 굴곡 및 분지되는 입체적인 통로 구조를 형성할 수 있다.
예를 들어, 분기부(172) 및 다중 채널부(173)는 실제 신장과 동일한 색상을 가질 수 있다. 예를 들어, 분기부(172) 및 다중 채널부(173)는 내부를 통과하는 요관 내시경의 삽입 튜브가 이동하는 모습을 외부에서 관찰 가능하도록 투과성을 갖는 폴리머 재료로 형성될 수 있다. 한편, 이와 달리, 실제 내시경 삽입 환경과 유사한 환경을 제공하기 위하여, 불투명 또는 반투명한 붉은색상의 재료로 형성될 수도 있음을 밝혀 둔다.
결석(S)은 실제 신장 내부에 형성되는 결석에 대응하는 부재로서, 다중 채널부(173)의 칼릭스 입구(1733) 또는 복수개의 칼릭스 채널(1734)에 삽입될 수 있다.
예를 들어, 결석(S)은 실제 신장 결석(kidney stone)과 유사한 형상 및 크기를 가질 수 있고, 유사한 질량 및 강성을 가질 수 있다. 예를 들어, 결석(S)은 실제의 신장에 제거된 신장 결석(kidney stone)일 수 있다.
도 17에 도시된 바와 같이, 내부 공간(1711)을 차폐하는 커버부(1714)가 분리된 상태에서 다중 채널부(173)를 내부 공간(1711)으로부터 분리시킴으로써, 다중 채널부(173)의 분리 단부(1731)에 형성된 칼릭스 입구(1733)가 외부로 노출되는 상태에서 결석(S)을 쉽게 삽입할 수 있다.
도 18은 일 실시예에 따른 신장 내시경 시뮬레이터 시스템의 구성을 나타내는 도면이다.
도 18을 참조하면, 일 실시예에 따른 신장 내시경 시뮬레이터 시스템(16)은 인공 방광(182), 인공 요관(183), 신장 모형(184), 물 공급부(185), 인공 신장 모듈(17), 제어부(186), 요관 내시경(161), 디스플레이부(162) 및 조작부(163)를 포함할 수 있다.
요관 내시경(161)은 인공 방광(182)의 개구에 진입하여 인공 요관(183)을 거쳐 인공 신장 모듈(17)의 내부로 진입할 수 있다.
디스플레이부(162)는 요관 내시경(161)의 말단에 설치된 카메라로부터 촬영되는 영상을 실시간으로 표시할 수 있다.
조작부(163)는 인공 요관(183)을 통해 인공 신장 모듈(17)로 삽입되는 요관 내시경(161)의 구동을 제어할 수 있다.
일 실시예에 따른 신장 내시경 시뮬레이터 시스템(16)에 의하면, 사용자는 조작부(163)를 통해 요관 내시경(161)을 조작하여 인공 요관(183)을 통해 인공 신장 모듈(17) 내부로 요관 내시경(161)을 도입할 수 있고, 이후 인공 신장 모듈(17) 내부에 배치된 결석(S)을 제거하는 수술을 실습할 수 있으며, 동시에 해당 과정을 디스플레이부(162)를 통해 관찰할 수 있다.
일 실시예에 따른 신장 내시경 시뮬레이터 시스템(16)에 의하면, 요관 내시경(161)의 카메라로 부터 촬영되는 영상을 통해 다중 채널부(173) 내부에 설치된 결석(S)이 칼릭스 입구(1733) 또는 칼릭스 채널(1734) 내에서 요동하는 움직임을 갖도록 하여, 실제 신장 내부에서 결석이 형성하는 움직임을 모사할 수 있도록, 제어부(186)를 통해 물 공급부(185)의 구동을 제어할 수 있다.
또한, 제어부(186)는 물 공급부(185)를 통해 결석(S)이 배치되는 칼릭스 채널(1734)로 연결되는 공급 라인(1851)을 통해 공급되는 물의 유량 및 유속을 조절할 수 있으므로, 사용자는 디스플레이부(162)를 통해 요관 내시경(161)에서 촬영되는 결석(S)의 영상을 확인하면서 적절한 물의 공급 유량 및 유속을 실시간으로 조정하는 것이 가능할 수 있다.
이상과 같이 비록 한정된 도면에 의해 실시예들이 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 구조, 장치 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.

Claims (15)

  1. 유체를 공급하는 공급 호스와, 상기 공급 호스에 연결되고 상기 공급 호스로부터 공급되는 유체가 관류하는 모사부와, 상기 모사부에 유체가 유동 가능하도록 연결되고 상기 모사부로부터 이동한 유체가 수용되는 유체 수용부와, 상기 유체 수용부에 저장된 유체를 배출하는 배출 호스를 포함하고, 신장의 내부 유체의 흐름을 모사한 칼릭스 내부 유체 모사 장치; 및
    상기 칼릭스 내부 유체 모사 장치의 하측에 배치되고, 병진 운동함으로써 상기 칼릭스 내부 유체 모사 장치를 병진 운동시킬 수 있는 병진 장치를 포함하고,
    신장 내부의 유체의 흐름에 의하여 신장의 내부에서 유영하는 대상물을 훈련 장비를 이용하여 제거하는 훈련을 할 수 있는 것을 특징으로 하는 신장 수술 훈련 시스템.
  2. 제 1 항에 있어서,
    상기 모사부는,
    상기 모사부의 최외측 형상을 형성하는 제 1 프레임 부재;
    상기 제 1 프레임 부재를 관통하여 형성되고, 상기 공급 호스와 연통되는 유입 채널;
    상기 유입 채널의 단부에 연통하고, 상기 유입 채널로부터 이동한 유체를 분산시키는 복수 개의 유입홀;
    상기 유입홀과 연통하고, 상기 유체 수용부에 가까워질수록 상향하는 유로; 및
    상기 유로의 상부를 커버하는 캡을 포함하는 신장 수술 훈련 시스템.
  3. 제 2 항에 있어서,
    상기 유로는,
    복수 개의 상기 공급 호스와 각각 연결되는 제 1 유로, 제 2 유로 및 제 3 유로로 형성되고, 상기 제 1 유로의 일단, 상기 제 2 유로의 일단 및 상기 제 3 유로의 일단은 서로 연결되는 것을 특징으로 하는 신장 수술 훈련 시스템.
  4. 제 2 항에 있어서,
    상기 유입홀은,
    상기 유입 채널을 기준으로 세 개의 만곡된 측면상에 복수 개로 배치되는 것을 특징으로 하는 신장 수술 훈련 시스템.
  5. 제 2 항에 있어서,
    상기 유로의 하단에 훈련 대상이 되는 상기 대상물이 배치되고, 상기 대상물은 상기 유체가 상기 유입홀을 통하여 상기 유입 채널로부터 상기 유로로 흐르는 흐름에 따라서 유영하는 것을 특징으로 하는 신장 수술 훈련 시스템.
  6. 제 2 항에 있어서,
    상기 캡을 열어서 상기 유로의 상부를 개방한 상태에서 상기 대상물을 상기 유로에 넣거나 꺼낼 수 있는 것을 특징으로 하는 신장 수술 훈련 시스템.
  7. 제 1 항에 있어서,
    상기 유체 수용부는,
    상기 모사부로부터 유체가 유입되도록 연결되는 제 2 프레임 부재;
    상기 제 2 프레임 부재의 일측에 형성되고, 상기 훈련 장비가 관통하는 장비 삽입구; 및
    내부에 유체가 저장되는 유체 저장 공간을 포함하는 신장 수술 훈련 시스템.
  8. 제 1 항에 있어서,
    상기 병진 장치는,
    베이스;
    상기 베이스의 상단에 배치되는 브릿지;
    상기 브릿지의 상단에 배치되고, 상기 브릿지에 대하여 일 축을 따라 양 방향으로 이동 가능한 거치대; 및
    상기 거치대를 구동시키는 구동기를 포함하는 신장 수술 훈련 시스템.
  9. 제 8 항에 있어서,
    상기 브릿지는,
    상기 베이스의 양측에 한 쌍으로 구비되고, 상단에 상기 브릿지의 길이 방향으로 슬라이딩 홈이 형성되고,
    상기 거치대는,
    상기 슬라이딩 홈에 이동 가능하게 삽입된 슬라이더; 및
    상기 슬라이더의 상단에 배치되고, 상기 슬라이더와 함께 이동하는 플레이트를 포함하는 신장 수술 훈련 시스템.
  10. 제 8 항에 있어서,
    상기 구동기는,
    회전 동력을 제공하는 본체;
    상기 본체의 측면에 배치되고 회전 구동하는 휠;
    상기 휠에 대하여 일측이 회전 가능하게 연결되고 타측으로 길게 연장되는 서포트; 및
    상기 서포트가 회전 가능하게 연결되고, 상기 거치대에 연결되는 연결단을 포함하는 신장 수술 훈련 시스템.
  11. 제 1 항에 있어서,
    상기 칼릭스 내부 유체 모사 장치는,
    상기 공급 호스에 배치되어, 상기 유체의 공급 유량을 제어할 수 있는 제어 밸브를 더 포함하는 신장 수술 훈련 시스템.
  12. 제 1 항에 있어서,
    훈련 장비가 삽입되는 프레임과, 상기 프레임의 일측으로부터 상기 프레임의 중심부까지 연결되고 요관을 모사한 제 1 루트와, 상기 제 1 루트에 연결되어 상기 제 1 루트로부터 멀어질수록 단면적이 커지는 부분을 포함하고 신장의 메이저 칼릭스를 모사한 제 2 루트와, 상기 제 2 루트로부터 복수 개로 분지되도록 형성되고 신장의 마이너 칼릭스를 모사한 제 3 루트를 포함하고, 상기 병진 장치의 상측에 배치되는 칼릭스 구조 모사 장치
    를 더 포함하고, 호흡에 의하여 신장이 움직이는 조건에서, 실제 신장의 내부 구조를 모사한 루트를 따라서 훈련 장비를 삽입하는 훈련을 할 수 있는 것을 특징으로 하는 신장 수술 훈련 시스템.
  13. 제 12 항에 있어서,
    상기 칼릭스 구조 모사 장치는,
    상기 제 3 루트의 일측에 배치되고, 상기 훈련 장비가 도달했는지 여부를 감지하는 센서를 더 포함하는 신장 수술 훈련 시스템.
  14. 제 12 항에 있어서,
    상기 제 3 루트는,
    상기 프레임의 상단 및 하단에 각각 복수 개로 형성되고 측방향을 따라서 상단 및 하단에 교번하여 배치되어, 상기 칼릭스 구조 모사 장치를 위에서 바라볼 때 복수 개의 상기 제 3 루트가 완전히 겹쳐지지 않는 것을 특징으로 하는 신장 수술 훈련 시스템.
  15. 제 12 항에 있어서,
    상기 칼릭스 구조 모사 장치의 내부에 형성된 복수 개의 루트 중에서 삽입 대상이 되는 루트를 설정하는 제어 장치;
    설정된 상기 루트의 내부로 상기 훈련 장비가 삽입되었는지를 판단하는 판단 장치; 및
    상기 훈련 장비가 설정된 상기 루트의 내부로 삽입되었는지 여부를 표시하는 출력 장치를 더 포함하는 신장 수술 훈련 시스템.
PCT/KR2022/013434 2021-09-07 2022-09-07 신장 수술 훈련 시스템 WO2023038424A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280004445.XA CN116097330A (zh) 2021-09-07 2022-09-07 肾脏手术训练系统
US17/925,833 US20240161654A1 (en) 2021-09-07 2022-09-07 Training system for renal surgery
EP22800564.1A EP4170632A1 (en) 2021-09-07 2022-09-07 Renal surgery training system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0118902 2021-09-07
KR10-2021-0118910 2021-09-07
KR1020210118910A KR20230036263A (ko) 2021-09-07 2021-09-07 신장 내부 삽입 훈련 시스템
KR1020210118902A KR20230036260A (ko) 2021-09-07 2021-09-07 신장 수술 훈련 시스템

Publications (1)

Publication Number Publication Date
WO2023038424A1 true WO2023038424A1 (ko) 2023-03-16

Family

ID=85507431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013434 WO2023038424A1 (ko) 2021-09-07 2022-09-07 신장 수술 훈련 시스템

Country Status (4)

Country Link
US (1) US20240161654A1 (ko)
EP (1) EP4170632A1 (ko)
CN (1) CN116097330A (ko)
WO (1) WO2023038424A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130062110A (ko) * 2011-12-02 2013-06-12 조준범 교육용 실험 장치
WO2015095715A1 (en) 2013-12-20 2015-06-25 Intuitive Surgical Operations, Inc. Simulator system for medical procedure training
US20160240106A1 (en) * 2015-02-13 2016-08-18 Boston Scientific Scimed, Inc. Training devices and methods of using the same
KR20180120673A (ko) * 2016-01-06 2018-11-06 마이크로-컨트롤 스펙트라-피직스 6개의 자유도로 지지 플레이트의 운동을 발생시키기 위한 시스템
KR20200104818A (ko) * 2019-02-27 2020-09-04 서울대학교병원 경요도 내시경 수술의 트레이닝 장치
KR102290797B1 (ko) * 2020-08-24 2021-08-20 주식회사 이지엔도서지컬 인공 신장 모듈 및 이를 포함하는 신장 내시경 시뮬레이터 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130062110A (ko) * 2011-12-02 2013-06-12 조준범 교육용 실험 장치
WO2015095715A1 (en) 2013-12-20 2015-06-25 Intuitive Surgical Operations, Inc. Simulator system for medical procedure training
US20160240106A1 (en) * 2015-02-13 2016-08-18 Boston Scientific Scimed, Inc. Training devices and methods of using the same
KR20180120673A (ko) * 2016-01-06 2018-11-06 마이크로-컨트롤 스펙트라-피직스 6개의 자유도로 지지 플레이트의 운동을 발생시키기 위한 시스템
KR20200104818A (ko) * 2019-02-27 2020-09-04 서울대학교병원 경요도 내시경 수술의 트레이닝 장치
KR102290797B1 (ko) * 2020-08-24 2021-08-20 주식회사 이지엔도서지컬 인공 신장 모듈 및 이를 포함하는 신장 내시경 시뮬레이터 시스템

Also Published As

Publication number Publication date
EP4170632A1 (en) 2023-04-26
US20240161654A1 (en) 2024-05-16
CN116097330A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
EP1062905B1 (en) Intubating laryngoscope providing for ready interchange of blades and corresponding intubating laryngoscope system
ATE166159T1 (de) Verfahren und gerät zum beobachten von objekten bei geringer beleuchtung
WO2022045466A1 (ko) 인공 신장 모듈 및 이를 포함하는 신장 내시경 시뮬레이터 시스템
WO2023038424A1 (ko) 신장 수술 훈련 시스템
CN104203067B (zh) 医疗系统
CN106999019B (zh) 图像处理装置、图像处理方法、记录介质以及内窥镜装置
US10194792B2 (en) Optical device, sheath and endotracheal intubation system
WO2013019078A2 (ko) 퍼팅 플레이트 장치 및 이를 이용한 가상 골프 시뮬레이션 장치
WO2021215702A1 (ko) 상기도 검체 채취를 위한 다자유도 원격 검진 장치
WO2010117192A2 (ko) 비접촉식 센서를 이용한 골프 스윙 연습 장치
WO2011002226A2 (en) Virtual golf simulation apparatus and swing plate for the same
RU2123718C1 (ru) Способ ввода информации в компьютер
US4300570A (en) Diagnostic method
US20090088601A1 (en) Endoscope and endoscopy method
CN107860778A (zh) 一种胶囊内窥镜脏污检测装置及检测方法
JPH0850252A (ja) 内視鏡検査プローブのための立体画像作成アセンブリ
WO2023106668A1 (ko) 동력수용체에 의해 제어되는 내시경
WO2023106772A1 (ko) 의료기기용 동력제공장치
WO2020009471A1 (ko) 두께 확인 및 큐대 지지용 당구포인터
EP3829694A1 (en) End cap for medical liquid injection apparatus and medical liquid injection apparatus set
WO2019066495A1 (ko) 패그 보드, 재활 훈련 시스템 및 재활 훈련 방법
WO2024101964A1 (ko) 내시경 시뮬레이터
WO2021153875A1 (ko) 휴대용 혈관 모형 시뮬레이션 장치
KR20230036263A (ko) 신장 내부 삽입 훈련 시스템
WO2022119009A1 (ko) 관절용 내시경

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17925833

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022800564

Country of ref document: EP

Effective date: 20221116

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22800564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE