WO2023038115A1 - 通信システム、ゲートウェイ、コントローラ、及びプログラム - Google Patents

通信システム、ゲートウェイ、コントローラ、及びプログラム Download PDF

Info

Publication number
WO2023038115A1
WO2023038115A1 PCT/JP2022/033880 JP2022033880W WO2023038115A1 WO 2023038115 A1 WO2023038115 A1 WO 2023038115A1 JP 2022033880 W JP2022033880 W JP 2022033880W WO 2023038115 A1 WO2023038115 A1 WO 2023038115A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
vrf
community
unit
n6dn
Prior art date
Application number
PCT/JP2022/033880
Other languages
English (en)
French (fr)
Inventor
聡 松嶋
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022032733A external-priority patent/JP2023041588A/ja
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2023038115A1 publication Critical patent/WO2023038115A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/64Routing or path finding of packets in data switching networks using an overlay routing layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • the present invention relates to communication systems, gateways, controllers, and programs.
  • Patent Literature 1 describes slicing in a mobile network conforming to 5G (5th Generation). [Prior art documents] [Patent Literature] [Patent Document 1] JP 2019-176384 A
  • a communication system may comprise a controller.
  • the communication system may comprise an SR gateway that converts GTP-U compliant packets received from the mobile network into SRv6 compliant packets.
  • the SR gateway may have a VRF generator that generates a plurality of gNBVRFs, which are VRFs corresponding to each of the plurality of gNBs, and a plurality of DNVRFs, which are VRFs corresponding to each of the plurality of DNs.
  • the SR gateway may have a message advertiser that advertises a message to the controller containing information of the gNBVRFs and DNVRFs generated by the VRF generator.
  • the controller may have a correspondence information generator that generates correspondence information that associates a plurality of gNBVRFs with a plurality of DNVRFs based on the message.
  • the controller may have an information acquisition unit for acquiring PFCP session information to be notified when the UE is attached.
  • the controller comprises a route information generating unit for generating route information for a UPF destination address corresponding to the UE, the route information including a DNVRF SID corresponding to the UE, based on the PFCP session information and the corresponding information. good.
  • the controller may have a route information advertising unit that advertises route information to the SR gateway.
  • the message advertising unit stores the N3RAN prefix corresponding to the gNBVRF and the N6DN SID corresponding to the DNVRF in the NLRI for each of all combinations of the plurality of gNBVRFs and the plurality of DNVRFs, and stores the above in the community attribute.
  • the message containing the N3RAN community corresponding to gNBVRF and the N6DN community corresponding to the DNVRF may be advertised to the controller.
  • the message advertising unit for a combination of the first gNBVRF of the plurality of gNBVRFs and the first DNVRF of the plurality of DNVRFs, the N3RAN prefix corresponding to the first gNBVRF and the first The N6DN SID corresponding to the DNVRF of 1 is stored in the NLRI in the MP_REACH_NLRI attribute, and the N3RAN community corresponding to the first gNBVRF and the N6DN community corresponding to the first DNVRF are stored in the community attribute.
  • the message may be advertised to the controller.
  • the N6 DN SID corresponding to the first DNVRF may be a common Anycast SID indicating the first DNVRF present in each of the multiple SR gateways.
  • the message advertising unit sets the NLRI type to Access for the plurality of gNBVRFs, stores the N3RAN prefix corresponding to the gBNVRF in the NLRI in the MP_REACH_NLRI attribute, and stores the N3RAN community corresponding to the gBNVRF in the community attribute.
  • the message is advertised to the controller, the NLRI type is set to Core for the plurality of DNVRFs, the node ID indicating the SR gateway is stored in the NLRI in the MP_REACH_NLRI attribute, and the community of the N6DN corresponding to the DNVRF is set as the community attribute. , and a message with the N6DN SID corresponding to the DNVRF may be advertised to the controller.
  • the message advertising unit sets the NLRI type to Access for the first gNBVRF of the plurality of gNBVRFs, stores the N3RAN prefix corresponding to the first gNBVRF in the NLRI in the MP_REACH_NLRI attribute, and stores the first to the controller, and for the first DNVRF among the plurality of DNVRFs, the NLRI type is Core, and the node ID indicating the SR gateway is MP_REACH_NLRI.
  • a message may be advertised to the controller by storing it in the NLRI in the attribute, storing the community of the N6DN corresponding to the first DNVRF in the community attribute, and adding the N6DN SID corresponding to the first DNVRF.
  • the controller provides DN community association information that associates a DN name that can identify the N6DN that indicates the VRF corresponding to the DN with the community attribute of the N6DN, and N3RAN prefixes and N6DN SIDs that correspond to each of a plurality of DN names. , and DN related information in which the N3RAN community can be registered, and the corresponding information generating unit stores the N6DN community included in the message advertised by the message advertising unit. If any of the community attributes of the DN community associated information match, the DN name corresponding to the matched community attribute is identified, and the N3RAN prefix included in the message is added to the DN related information corresponding to the identified DN name.
  • the correspondence information may be generated.
  • the PFCP session information may include the address of the UE, the address of the gNB accommodating the UE, the address of the UPF corresponding to the UE, the DN name of the DN with which the UE communicates, and the route information generator identifies the correspondence information corresponding to the DN name included in the PFCP session information, and searches for the identified correspondence information using the gNB address included in the PFCP session information as a key, thereby obtaining the correspondence
  • the N3RAN prefix corresponding to the gNB address in the information may be identified, and the route information may be generated using the N6DN SID and N3RAN community corresponding to the identified N3RAN prefix.
  • a gateway may comprise a converter for converting GTP-U compliant packets received from the mobile network into SRv6 compliant packets.
  • the gateway may comprise a VRF generator that generates a plurality of gNBVRFs, which are VRFs corresponding to each of the plurality of gNBs, and a plurality of DNVRFs, which are VRFs corresponding to each of the plurality of DNs.
  • the gateway may comprise a message advertiser that advertises to the controller a message containing information of the gNBVRFs and DNVRFs generated by the VRF generator.
  • a program for causing a computer to function as the gateway.
  • a controller may comprise a message receiver that receives a message containing information of a plurality of gNBVRFs, which are VRFs corresponding to each of the plurality of gNBs, and a plurality of DNVRFs, which are VRFs corresponding to each of the plurality of DNs.
  • the controller may comprise a correspondence information generator that generates correspondence information that associates multiple gNBVRFs with multiple DNVRFs based on the message.
  • the controller may comprise an information acquisition unit for acquiring PFCP session information to be notified when the UE is attached.
  • the controller may comprise a route information generator for generating route information for a UPF destination address corresponding to the UE, the route information including a DNVRF SID corresponding to the UE, based on the PFCP session information and the correspondence information.
  • the controller may comprise a route information advertising unit that advertises route information to the gateway.
  • a program for causing a computer to function as the controller.
  • a communication system may comprise a controller and an SR gateway for converting GTP-U compliant packets received from a mobile network into SRv6 compliant packets.
  • the SR gateway receives the IP network path information and the VRF SID from the VRF connected to the IP network, it advertises the SR policy including the VRF information and the SR gateway SID in the ED of the NLRI to the controller. You may have an advertising section.
  • the controller may have a matching unit that matches the VRF and the SR gateway based on the information advertised from the VRF or the information of the preset VRF and the information advertised by the advertisement unit.
  • the controller may have an identification unit that identifies the UPF and gNB corresponding to the IP network to which the VRF is connected by referring to the PFCP session advertised when the UE is attached.
  • the controller may have an advertising unit that advertises the UPF routing information and the SID of the SR gateway to the VRF corresponding to the gNB identified by the identifying unit.
  • the SR gateway may have a packet forwarding unit that imports the SID of the VRF corresponding to the UPF as the path of the UPF and forwards a predetermined type of packet to the UPF.
  • FIG. 1 schematically shows an example of the configuration of a communication system 10; 4 is an explanatory diagram for describing an example of processing in the communication system 10; FIG. An example of the functional configuration of the N4BGPC 300 and the logical configuration of the conversion unit 410 are schematically shown. 4 is an explanatory diagram for describing an example of processing in the communication system 10; FIG. An example of the functional configuration of the N4BGPC 300 and the logical configuration of the conversion unit 410 are schematically shown. An example of the hardware constitutions of the computer 1200 which functions as N4BGPC300 or SRGW400 is shown roughly.
  • a technique for identifying network slices in a mobile network is known, but it was closed within the mobile network. Although it is desirable to be able to manage network slices including IP networks, the setting of route information and the like can become very complicated.
  • the communication system 10 according to this embodiment provides a technique for reducing the complexity of setting.
  • FIG. 1 schematically shows an example of the configuration of the communication system 10.
  • the communication system 10 includes an N4BGPC (N4 Border Gateway Protocol Controller) 300 .
  • N4BGPC 300 may be an example of a controller.
  • the N4BGPC 300 may be arranged within the SRNW (Segment Routing Network) 20 .
  • the communication system 10 includes an SRGW (Segment Routing Gateway) 400 .
  • SRGW 400 may be located within SRNW 20 .
  • the SRGW 400 may have a function to convert SRv6-compliant packets received from the IP network into GTP-U-compliant packets.
  • the SRGW 400 may have the capability to convert GTP-U compliant packets received from the mobile network into SRv6 compliant packets.
  • the N4BGPC300 controls the SRGW400.
  • the N4BGPC 300 may perform processing related to route control of the SRGW 400 .
  • VRF Virtual Routing and Forwarding
  • VRF 204 VRF 204
  • VRF 206 VRF 208
  • VRF 210 VRF 220
  • SRGW 400 may include both VRF 210 and VRF 220 .
  • the VRF 202 is connected to an SMF (Session Management Function) 110 .
  • the VRF 204 , VRF 206 and VRF 208 are connected to a UPF (User Plane Function) 120 .
  • VRF 210 is connected to gNB (gNodeB) 130 . In the example shown in FIG. 1 , multiple VRFs 210 are each connected to multiple gNBs 130 .
  • the VRF 220 is connected to a DN (Data Network) 30 . In the example shown in FIG. 1, each of the multiple VRFs 220 is connected to multiple DNs 30 .
  • the N4BGPC300 acquires information on the mobile network from the SMF110.
  • N4BGPC300 acquires PFCP (Packet Forwarding Control Protocol) session information of UE40 from SMF110, for example.
  • PFCP Packet Forwarding Control Protocol
  • the PFCP session information includes, for example, the address of UE40.
  • the PFCP session information includes, for example, the address of gNB 130 accommodating UE 40 .
  • PFCP session information contains the address of UPF120 corresponding to UE40, for example.
  • PFCP session information contains the network instance corresponding to UE40, for example.
  • a network instance is, for example, information corresponding to slice identification information that can identify a slice corresponding to the UE 40 in a mobile network as an access network instance.
  • the slice identification information is, for example, S-NSSAI (Single-Network Slice Selection Assistance Information).
  • PFCP session information may include the access network instance.
  • PFCP session information may include a core network instance.
  • a core network instance is, for example, information corresponding to DN identification information that can identify a DN.
  • the SRGW 400 includes a transforming section 410 and a transforming section 450 .
  • the conversion unit 410 has a function of converting a packet conforming to GTP-U into a packet conforming to SRv6.
  • the conversion unit 410 converts GTP4. It may have the function of D.
  • the converter 410 converts GTP6. It may have the function of D.
  • the conversion unit 450 has a function of converting SRv6-compliant packets into GTP-U-compliant packets.
  • the conversion unit 450 converts GTP4. It may have the function of E.
  • the conversion unit 450 converts GTP6. It may have the function of E.
  • the N4BGPC 300 executes path setting for relaying communication between the UE (User Equipment) 40 connected to the gNB 130 and the communication partner connected to the DN 30.
  • the communication partner may be any communication device, for example any server on the Internet.
  • FIG. 2 is an explanatory diagram for explaining an example of processing in the communication system 10.
  • the conversion unit 410 of the SRGW 400 acquires packets transmitted by the UE 40 , which would conventionally be transferred to the UPF 120 , and transfers them to the DN 30 via the VRF 220 .
  • the N4BGPC 300 executes settings for that purpose.
  • the VRF 220 connected to the DN30 advertises the route information of the DN30, the community attribute indicating the DN, and the SID222 of the VRF220 to the N4BGPC300 and the SRGW400 respectively.
  • the N4BGPC 300 may set the route information of the DN 30 in advance.
  • the conversion unit 410 of the SRGW 400 When the conversion unit 410 of the SRGW 400 receives an advertisement from the VRF 220, the SR policy including information indicating the VRF 220, the community attribute indicating the DN, and the SID 411 of the conversion unit 410 are transferred to the ED (End Point) of the NLRI to the N4BGPC 300. Advertise on The information indicating the VRF 220 may be the SID 222 of the VRF 220, for example.
  • the N4BGPC 300 matches the VRF 220 and the SRGW 400 based on the information of the DN 30 advertised from the VRF 220 or set in advance and the information advertised from the conversion unit 410 .
  • N4BGPC300 identifies UPF120 and gNB130 corresponding to DN30 to which VRF220 is connected with reference to the PFCP session 510 notified from SMF110 when UE40 is attached.
  • the N4BGPC 300 advertises the path information of the UPF 120, the community attribute indicating the UPF, and the SID 411 of the converter 410 to the VRF 210 corresponding to the specified gNB 130.
  • each of those SRGWs 400 may advertise an SR policy containing individual SID 411 values to the N4BGPC 300.
  • SRGWs 400 may receive SR policies containing SID 411 values advertised by other SRGWs 400 .
  • N4BGPC and all SRGWs 400 may adopt SID 411 advertised by any one SRGW 400 according to a common algorithm.
  • the VRF 210 can transfer the packet to the SRGW 400.
  • the conversion unit 410 of the SRGW 400 converts the packet into a packet conforming to SRv6, and transfers the packet to the VRF 220 .
  • the packet is transferred from VRF 220 to the communication partner of DN 30 .
  • the conversion unit 410 of the SRGW 400 may transfer special packets to the UPF 120 instead of the DN 30.
  • the conversion unit 410 of the SRGW 400 imports the SID of the VRF 206 corresponding to the UPF 120 as the route of the UPF 120, and transfers predetermined types of packets to the UPF 120.
  • An example of a predefined type of packet is a GTP-U message.
  • the N4BGPC 300 comprises an acquisition unit 302 , a matching unit 304 , an identification unit 306 and an advertisement unit 308 .
  • the N4BGPC 300 may be provided with a part of them without being provided with all of them, or may be provided with a configuration other than these.
  • the conversion unit 410 includes a packet conversion unit 412 , an acquisition unit 414 , an SR policy generation unit 416 , an advertisement unit 418 and a packet transfer unit 420 .
  • the conversion unit 410 may be provided with a part of these without being provided with all of them, and may be provided with a configuration other than these.
  • the acquisition unit 302 acquires various types of information. For example, the acquisition unit 302 acquires the PFCP session 510 from the SMF 110 . For example, the acquisition unit 302 acquires information advertised from the VRF. For example, the acquisition unit 302 acquires information advertised from the SRGW 400 . The acquisition unit 302 may acquire route information of the DN 30 set in advance.
  • the matching unit 304 executes matching using the information acquired by the acquisition unit 302. For example, the matching unit 304 matches the VRF 220 and the SRGW 400 based on information advertised from the VRF 220 and information advertised from the conversion unit 410 of the SRGW 400 . Also, for example, the matching unit 304 matches the VRF 220 and the SRGW 400 based on the route information of the DN 30 and information advertised from the conversion unit 410 of the SRGW 400 .
  • the identification unit 306 executes identification processing related to route setting.
  • the identifying unit 306 refers to the PFCP session 510 acquired by the acquiring unit 302 to identify the UPF 120 and gNB 130 corresponding to the IP network to which the VRF 220 is connected.
  • the advertising unit 308 executes advertising processing. For example, the advertising unit 308 advertises the path information of the UPF 120 identified by the identifying unit 306, the community attribute indicating the UPF, and the SID 411 of the converting unit 410 of the SRGW 400 to the VRF 210 corresponding to the gNB 130 identified by the identifying unit 306.
  • the packet conversion unit 412 converts GTP-U compliant packets into SRv6 compliant packets.
  • the packet converter 412 may convert GTP-U compliant packets received from the mobile network into SRv6 compliant packets.
  • the acquisition unit 414 acquires various types of information. For example, the acquisition unit 414 acquires information advertised by VRF.
  • the SR policy generation unit 416 generates an SR policy. For example, when the acquisition unit 414 receives the route information of the IP network, the community attribute indicating the IP network, and the SID of the VRF from the VRF connected to the IP network, the SR policy generation unit 416 generates the ED of the NLRI. create an SR policy that includes the SID of the VRF in question.
  • the advertising unit 418 executes advertising processing. For example, the advertisement unit 418 advertises the SR policy generated by the SR policy generation unit 416, the community attribute indicating the IP network, and the SID of the SRGW 400 to the N4BGPC300.
  • the packet transfer unit 420 transfers packets. For example, when the packet forwarding unit 420 receives a packet addressed to DN30 from the VRF210, it forwards the packet to the VRF220 using the route information received from the VRF220.
  • the packet transfer unit 420 may transfer special packets to the UPF 120 instead of the DN 30.
  • the packet forwarding unit 420 imports the SID of the VRF 206 corresponding to the UPF 120 as the path of the UPF 120 and forwards packets of a predetermined type to the UPF 120 .
  • An example of a predefined type of packet is a GTP-U message.
  • FIG. 4 is an explanatory diagram for explaining an example of processing in the communication system 10.
  • FIG. Here, processing related to packet transfer from the UE 40 to the DN 30 in the communication system 10 will be described.
  • the SRGW 400 acquires packets transmitted by the UE 40 that would conventionally be transferred to the UPF 120 and transfers them to the DN 30 .
  • the N4BGPC 300 executes settings for that purpose.
  • VRF name of VRF210 corresponding to gNB130 is N3RAN
  • VRF name of VRF220 corresponding to DN30 is N6DN.
  • the N4BGPC 300 For example, first, the N4BGPC 300 generates a DN community association table that associates the DN name of the N6DN with the community attributes of the N6DN. As an example, the N4BGPC 300 generates a DN community binding table of the form illustrated in Table 1. The N4BGPC 300 then registers combinations of multiple DN names and community attributes in the DN community linking table. The N4BGPC 300 may perform registration according to instructions from an operator or the like.
  • the DN community association table may be an example of DN community association information that associates N6DN DN names with N6DN community attributes.
  • the DN community linking information may thus have a table format, but may be data linking the N6DN DN name and the N6DN community attribute without having the table format.
  • the N4BGPC 300 generates a DN table capable of registering N3RAN prefixes, N6DN SIDs, and N3RAN communities corresponding to each of a plurality of DN names.
  • the N4BGPC 300 generates a DN table of the form illustrated in Table 2.
  • the DN table may be an example of DN-related information that can register N3RAN prefixes, N6DN SIDs, and N3RAN communities.
  • the DN-related information may have a table format in this way, but it may also be data that links N3RAN prefixes, N6DN SIDs, and N3RAN communities without having a table format.
  • the N4BGPC300 generates a DN table linking table linking the DN name and the pointer indicating the DN table.
  • the N4BGPC 300 generates a DN table linking table of the format illustrated in Table 3.
  • a DN table linking table may be an example of DN related information linking information linking a DN name and a pointer indicating DN related information.
  • the DN related information associated information may have a table format in this way, but may be data associated with a DN name and a pointer indicating a DN table without having a table format.
  • the SRGW 400 generates multiple VRFs 210 corresponding to multiple gNBs 130 respectively.
  • the SRGW 400 generates multiple VRFs 220 corresponding to each of the multiple DNs 30 .
  • the SRGW 400 then advertises the information of the multiple VRFs 210 and the multiple VRFs 220 to the N4BGPC 300 .
  • the SRGW 400 may include information on multiple VRFs 210 and multiple VRFs 220 in a BGP message and send it to the N4BGPC 300 .
  • SRGW 400 may include information of multiple VRFs 210 and multiple VRFs 220 in a BGP update message and send it to N4BGPC 300 .
  • Such a message may be described as GW Discovery Route.
  • SRGW 400 may configure all combinations of VRF 210 and VRF 220 and advertise information on all combinations to N4BGPC 300. Also, SRGW 400 may advertise all VRF 210 and VRF 220 information to N4BGPC 300 , and N4BGPC 300 may configure all combinations of VRF 210 and VRF 220 .
  • the former may be described as the first method, and the latter as the second method.
  • the SRGW 400 stores the N3RAN prefix and N6DN SID in the NLRI and generates a GW Discovery Route storing the N6DN community and N3RAN community in the community attribute for each of all combinations of VRF210 and VRF220. and advertise to N4BGPC 300.
  • the GW Discovery Route may be a BGP-LS (Link State) Route.
  • the SRGW 400 includes the first VRF 210, the second VRF 210, the third VRF 210, the first VRF 220, the second VRF 220, and the third VRF 220 will be described as an example.
  • the SRGW 400 stores the N3RAN prefix corresponding to the first VRF 210 and the N6DN SID corresponding to the first VRF 220 in the NLRI in the MP_REACH_NLRI attribute for the combination of the first VRF 210 and the first VRF 220.
  • the N3RAN community corresponding to the first VRF 210 and the N6DN community corresponding to the first VRF 220 are stored in community attributes to generate a GW Discovery Route.
  • the N6DN SID corresponding to the first VRF 220 may be stored in the BGP-LS attribute.
  • the N3RAN prefix corresponding to the first VRF 210 may be the addresses of one or more gNBs 130 connected to the first VRF 210 .
  • the N6DN SID corresponding to the first VRF 220 may be the SID indicating the first VRF 220 in the SRGW 400.
  • the SID indicating the first VRF 220 may be a common Anycast SID indicating the first VRF 220 existing in each of the multiple SRGWs 400 .
  • it may be the SID of the VRF 250 of one or more PE (Provider Edge) routers 50 connected to the first VRF 220 .
  • the SRGW 400 stores the N3RAN prefix corresponding to the first VRF 210 and the N6DN SID corresponding to the second VRF 220 in the NLRI in the MP_REACH_NLRI attribute for the combination of the first VRF 210 and the second VRF 220.
  • the N3RAN community corresponding to the first VRF 210 and the N6DN community corresponding to the second VRF 220 are stored in community attributes to generate a GW Discovery Route.
  • the N6DN SID corresponding to the second VRF 220 may be stored in the BGP-LS attribute.
  • the SRGW 400 sets the N3RAN prefix corresponding to the first VRF 210 and the N6DN SID corresponding to the third VRF 220 to the NLRI in the MP_REACH_NLRI attribute. store, and generate a GW Discovery Route in which the N3RAN community corresponding to the first VRF 210 and the N6DN community corresponding to the third VRF 220 are stored in the community attributes.
  • the N6DN SID corresponding to the third VRF 220 may be stored in the BGP-LS attribute.
  • the SRGW 400 stores the N3RAN prefix corresponding to the second VRF 210 and the N6DN SID corresponding to the first VRF 220 in the NLRI in the MP_REACH_NLRI attribute for the combination of the second VRF 210 and the first VRF 220.
  • the N3RAN community corresponding to the second VRF 210 and the N6DN community corresponding to the first VRF 220 are stored in community attributes to generate a GW Discovery Route.
  • the N6DN SID corresponding to the first VRF 220 may be stored in the BGP-LS attribute.
  • the SRGW 400 adds the N3RAN prefix corresponding to the second VRF 210 and the N6DN SID corresponding to the second VRF 220 to the NLRI in the MP_REACH_NLRI attribute. store, and generate a GW Discovery Route in which the N3RAN community corresponding to the second VRF 210 and the N6DN community corresponding to the second VRF 220 are stored in the community attribute.
  • the N6DN SID corresponding to the second VRF 220 may be stored in the BGP-LS attribute.
  • the SRGW 400 adds the N3RAN prefix corresponding to the second VRF 210 and the N6DN SID corresponding to the third VRF 220 to the NLRI in the MP_REACH_NLRI attribute. store, and generate a GW Discovery Route in which the N3RAN community corresponding to the second VRF 210 and the N6DN community corresponding to the third VRF 220 are stored in the community attributes.
  • the N6DN SID corresponding to the third VRF 220 may be stored in the BGP-LS attribute.
  • the SRGW 400 stores the N3RAN prefix corresponding to the third VRF 210 and the N6DN SID corresponding to the first VRF 220 in the NLRI in the MP_REACH_NLRI attribute.
  • the N3RAN community corresponding to the third VRF 210 and the N6DN community corresponding to the first VRF 220 are stored in community attributes to generate a GW Discovery Route.
  • the N6DN SID corresponding to the first VRF 220 may be stored in the BGP-LS attribute.
  • the SRGW 400 sets the N3RAN prefix corresponding to the third VRF 210 and the N6DN SID corresponding to the second VRF 220 to the NLRI in the MP_REACH_NLRI attribute. store, and generate a GW Discovery Route in which the N3RAN community corresponding to the third VRF 210 and the N6DN community corresponding to the second VRF 220 are stored in the community attributes.
  • the N6DN SID corresponding to the second VRF 220 may be stored in the BGP-LS attribute.
  • the SRGW 400 sets the N3RAN prefix corresponding to the third VRF 210 and the N6DN SID corresponding to the third VRF 220 to the NLRI in the MP_REACH_NLRI attribute. store, and generate a GW Discovery Route in which the N3RAN community corresponding to the third VRF 210 and the N6DN community corresponding to the third VRF 220 are stored in the community attributes.
  • the N6DN SID corresponding to the third VRF 220 may be stored in the BGP-LS attribute.
  • the SRGW 400 may divide the NLRI types and generate GW Discovery Routes.
  • the type of NLRI that stores the N3RAN prefix is Access
  • the type of NLRI that stores the N6DN SID is Core.
  • the SRGW 400 may generate a GW Discovery Route in which the NLRI type is Access, the N3RAN prefix is stored in the NLRI in the MP_REACH_NLRI attribute, and the N3RAN community is stored in the community attribute.
  • the N3RAN prefixes of the multiple VRFs 210 may be stored in one BGP update message having a common N3RAN community attribute.
  • the SRGW 400 sets the NLRI type to Core for a plurality of VRFs 220, stores the node ID indicating the SRGW 400 itself in the NLRI in the MP_REACH_NLRI attribute, stores the N6DN community in the community attribute, and assigns the N6DN SID to the GW A Discovery Route may be generated. SRGW 400 then advertises the generated GW Discovery Route to N4BGPC 300 . GW Discovery Route may be BGP-LS Route.
  • the SRGW 400 includes the first VRF 210, the second VRF 210, the third VRF 210, the first VRF 220, the second VRF 220, and the third VRF 220 will be described as an example.
  • the SRGW 400 sets the NLRI type to Access, stores the N3RAN prefix corresponding to the first VRF 210 in the NLRI in the MP_REACH_NLRI attribute, and stores the N3RAN community corresponding to the first VRF 210 in the community attribute to create a GW Discovery Route. may be generated. Also, the SRGW 400 sets the NLRI type to Access, stores the N3RAN prefix corresponding to the second VRF 210 in the NLRI in the MP_REACH_NLRI attribute, and stores the N3RAN community corresponding to the second VRF 210 in the community attribute for GW Discovery. A Route may be generated.
  • the SRGW 400 sets the NLRI type to Access, stores the N3RAN prefix corresponding to the third VRF 210 in the NLRI in the MP_REACH_NLRI attribute, and stores the N3RAN community corresponding to the third VRF 210 in the community attribute for GW Discovery.
  • a Route may be generated.
  • the SRGW 400 sets the NLRI type to Core, stores the node ID indicating itself in the NLRI in the MP_REACH_NLRI attribute, stores the N6DN community corresponding to the first VRF 220 in the community attribute, A GW Discovery Route with the corresponding N6DN SID may be generated. Also, the SRGW 400 sets the NLRI type to Core, stores the node ID indicating itself in the NLRI in the MP_REACH_NLRI attribute, stores the N6DN community corresponding to the second VRF 220 in the community attribute, A GW Discovery Route with the corresponding N6DN SID may be generated.
  • the SRGW 400 sets the NLRI type to Core, stores the node ID indicating the SRGW 400 itself in the NLRI in the MP_REACH_NLRI attribute, stores the N6DN community corresponding to the third VRF 220 in the community attribute, A GW Discovery Route with the corresponding N6DN SID may be generated.
  • the N4BGPC300 can grasp the combination of the VRF210 and the VRF220 from the received GW Discovery Route.
  • N4BGPC 300 may configure all combinations of VRF 210 and VRF 220 .
  • the N4BGPC300 identifies the DN name corresponding to the matching community attribute.
  • the N4BGPC 300 then refers to the DN table linking table to identify the DN table pointer corresponding to the identified DN name.
  • the N4BGPC300 registers the N3RAN prefix, N6DN SID, and N3RAN community included in the GW Discovery Route in the DN table indicated by the identified DN table pointer. N4BGPC300 registers the information of multiple GW Discovery Routes received from SRGW400 in the DN table corresponding to each of multiple DN names. This will prepare the database.
  • the DN table may be a Patricia tree structure keyed by the N3RAN prefix.
  • the N4BGPC 300 acquires the PFCP session information of the UE 40 from the SMF 110. N4BGPC300 acquires the PFCP session information notified from SMF110 when UE40 is attached.
  • the PFCP session information may include the address of the UE40.
  • PFCP session information may include the address of the gNB 130 hosting the UE 40 .
  • PFCP session information may include the address of UPF 120 corresponding to UE 40 .
  • PFCP session information may include the network instance corresponding to UE 40 .
  • PFCP session information may include the access network instance.
  • PFCP session information may include a core network instance.
  • PFCP session information may include the Core DN name.
  • the N4BGPC 300 When the N4BGPC 300 acquires the PFCP session information of the UE 40, it generates route information addressed to the UPF 120.
  • the N4BGPC 300 searches the DN table linking table with the Core DN name included in the PFCP session information, identifies the pointer indicating the DN table corresponding to the Core DN name, and identifies the DN table indicated by the pointer.
  • the N4BGPC 300 searches the identified DN table using the address (N3RAN prefix) of the gNB 130 included in the PFCP session information as a key to identify the entry of the N3RAN prefix in the DN table.
  • a DN table lookup may identify the N3RAN prefix entry by the longest prefix match.
  • N4BGPC300 uses the N6DN SID and N3RAN community in the entry to generate route information for the destination address of UPF120 and advertise it to SRGW400.
  • N4BGPC300 stores the address of UPF 120 in NLRI
  • adds the N6DN SID in the entry and stores the community of N3RAN in the entry as the community attribute of the route.
  • Route information for the destination address of UPF 120 advertised to SRGW 400 is GTP4.
  • the N4BGPC 300 may use the community attribute specifying the N6DN VRF for routing information for the destination address of the UPF 120 advertised to multiple SRGWs 400 with different N6DN SIDs. If the community can identify the VRF 220 as the N6DN VRF in all the target SRGW 400, the N4BGPC 300, instead of advertising multiple UPF 120 destination address routing information with the N6DN SID corresponding to each individual SRGW 400, only one common UPF 120 destination address route information to which the N6DN community is added may be advertised.
  • a community attribute that identifies the N6DN may be a Color community.
  • a community attribute that identifies the N6DN may be used by defining a community attribute that is directly aimed at identifying the N6DN.
  • N4BGPC 300 knows the community of N3RAN in advance, and when advertising the route information for UPF 120 that identifies N6DN VRF by community attribute to SRGW 400, the UPF 120 route with only the community attribute that identifies N6DN without searching the DN table. You can advertise. At this time, the SRGW 400 does not need to advertise the GW Discovery Route to the N4BGPC 300.
  • the SRGW 400 refers to the community attribute of the received routing information, recognizes that the routing information is the routing information to be imported into the VRF 210 of the N3RAN, and imports the routing information with the UPF 120 as the destination into the VRF 210. . As a result, the SRGW 400 can acquire packets transmitted by the UE 40 that would conventionally be transferred to the UPF 120 and transfer them to the DN 30 .
  • FIG. 5 schematically shows an example of the functional configuration of the N4BGPC 300 and the logical configuration of the conversion unit 410.
  • the N4BGPC 300 includes a storage unit 312 , a generation unit 314 , a registration unit 316 , a message reception unit 318 , a correspondence information generation unit 320 , an information acquisition unit 322 , a route information generation unit 324 and an advertisement unit 326 .
  • the conversion unit 410 includes a VRF generation unit 422 , an advertisement unit 424 , a route information reception unit 426 , a route setting unit 428 , a packet conversion unit 430 and a packet transfer unit 432 .
  • the generation unit 314 generates DN community binding information.
  • the generating unit 314 generates, for example, a DN community linking table.
  • the generating unit 314 causes the storage unit 312 to store the generated DN community associated information.
  • the registration unit 316 registers combinations of multiple DN names and community attributes in the DN community association information.
  • the registration unit 316 may perform registration according to instructions from the operator of the communication system 10 or the like.
  • the generating unit 314 generates DN related information.
  • the generating unit 314 generates, for example, a DN table.
  • the generating unit 314 causes the storage unit 312 to store the generated DN related information.
  • the generating unit 314 generates DN related information linking information.
  • the generating unit 314 generates, for example, a DN table linking table.
  • the generating unit 314 causes the storage unit 312 to store the generated DN related information linking information.
  • the VRF generation unit 422 generates VRF.
  • the VRF generator 422 generates multiple gNBVRFs corresponding to the multiple gNBs 130 respectively.
  • VRF 210 may be an example of a gNBVRF.
  • the VRF generation unit 422 generates multiple DNVRFs corresponding to each of the multiple DNs 30 .
  • VRF 220 may be an example of a DNVRF.
  • the advertisement unit 424 advertises the VRF information generated by the VRF generation unit 422 to the N4BGPC 300.
  • Advertisement unit 424 advertises to N4BGPC 300 a message including information of multiple gNBVRFs and multiple DNVRFs generated by VRF generation unit 422, for example.
  • the message may be a BGP message.
  • the message may be a BGP update message.
  • the message may be GW Discovery Route.
  • GW Discovery Route may be BGP-LS Route.
  • Advertisement portion 424 may be an example of a message advertisement portion.
  • the message receiver 318 receives messages advertised by the advertiser 424 .
  • the advertising unit 424 may configure all combinations of gNBVRF and DNVRF and advertise information of all combinations to the N4BGPC 300.
  • the advertising unit 424 stores the N3RAN prefix corresponding to the gNBVRF and the N6DN SID corresponding to the DNVRF in the NRLI for each of all combinations of a plurality of gNBVRFs and a plurality of DNVRFs, and stores the N6DN SID corresponding to the gNBVRF in the community attribute.
  • Advertise to N4BGPC 300 a message containing the community of N3RAN and the community of N6DN corresponding to DNVRF.
  • the advertising unit 424 selects, for a combination of the first gNBVRF among the plurality of gNBVRFs and the first DNVRF among the plurality of DNVRFs, the N3RAN prefix corresponding to the first gNBVRF and the first N6DN SID corresponding to this DNVRF is stored in the NLRI in the MP_REACH_NLRI attribute, and the N3RAN community corresponding to the first gNBVRF and the N6DN community corresponding to the first DNVRF are stored in the community attribute.
  • the N6DN SID corresponding to the first DNVRF may be stored in the BGP-LS attribute.
  • the N3RAN prefix corresponding to the first gNBVRF may be the address of one or more gNBs 130 connected to the first gNBVRF.
  • the N6DN SID corresponding to the first DNVRF may be the SID indicating the first DNVRF in SRGW400.
  • the SID indicating the first DNVRF may be a common Anycast SID indicating the first DNVRF present in each of the multiple SRGWs 400 .
  • the SID indicating the first DNVRF may be the SID of the VRF 250 of one or more PE routers 50 connected to the first DNVRF.
  • the advertising unit 424 may advertise all gNBVRF and DNVRF information to the N4BGPC 300, and the N4BGPC 300 may configure all combinations of gNBVRF and DNVRF. For example, the advertising unit 424 sets the NLRI type to Access for a plurality of gNBVRFs, stores the N3RAN prefix corresponding to the gBNVRF in the NLRI in the MP_REACH_NLRI attribute, and stores the N3RAN community corresponding to the gBNVRF in the community attribute.
  • N4BGPC300 for multiple GNVRFs
  • the NLRI type is Core
  • the node ID indicating SRGW400 is stored in NLRI in the MP_REACH_NLRI attribute
  • the N6DN community corresponding to GNVRF is stored in the community attribute
  • GNVRF is supported Advertise to N4BGPC 300 a message with the N6DN SID assigned.
  • the advertising unit 424 sets the NLRI type to Access for the first gNBVRF of the plurality of gNBVRFs, stores the N3RAN prefix corresponding to the first gNBVRF in the NLRI in the MP_REACH_NLRI attribute, and stores the first A message in which the N3RAN community corresponding to the gNBVRF is stored in the community attribute is advertised to the N4BGPC 300, and for the first DNVRF among the plurality of DNVRFs, the NLRI type is Core, and the node ID indicating the SRGW 400 is set in the MP_REACH_NLRI attribute. It is stored in the NLRI, the community of the N6DN corresponding to the first DNVRF is stored in the community attribute, and a message with the N6DN SID corresponding to the first DNVRF is advertised to the N4BGPC300.
  • the correspondence information generation unit 320 generates correspondence information that associates multiple gNBVRFs with multiple DNVRFs based on the message received by the message reception unit 318 .
  • the correspondence information generation unit 320 When the N6DN community included in the message matches any of the community attributes of the DN community associated information stored in the storage unit 312, the correspondence information generation unit 320 generates a DN name corresponding to the matching community attribute. Identify. Then, the correspondence information generating unit 320 refers to the DN related information associated information stored in the storage unit 312 to specify the DN related information indicated by the DN related information pointer corresponding to the specified DN name.
  • the correspondence information generation unit 320 registers the N3RAN prefix, N6DN SID, and N3RAN community included in the message in the identified DN-related information.
  • Correspondence information generating section 320 registers the information of the plurality of messages received from advertising section 424 in the DN related information corresponding to each of the plurality of DN names. Accordingly, the correspondence information generation unit 320 generates correspondence information. That is, the correspondence information may be DN related information in which a plurality of pieces of information are registered.
  • the information acquisition unit 322 acquires the PFCP session information of the UE40.
  • the information acquisition unit 322 may acquire the PFCP session information of the UE 40 from the SMF 110 .
  • the information acquisition unit 322 acquires PFCP session information notified from the SMF 110 when the UE 40 is attached to the mobile network.
  • the route information generation unit 324 generates route information addressed to the UPF 120 when the information acquisition unit 322 acquires the PFCP session information of the UE 40 . Based on the PFCP session information and the correspondence information generated by the correspondence information generation unit 320, the route information generation unit 324 is the route information for the destination address of the UPF 120 corresponding to the UE 40, and the SID of the DNVRF corresponding to the UE 40. You may generate routing information that includes:
  • the route information generation unit 324 searches the DN related information linking information stored in the storage unit 312 using the DN name included in the PFCP session information, and identifies a pointer indicating correspondence information corresponding to the DN name. , specifies the corresponding information indicated by the pointer.
  • the route information generation unit 324 searches for the identified correspondence information using the address of the gNB included in the PFCP session information as a key, thereby identifying the N3RAN prefix corresponding to the address of the gNB in the correspondence information.
  • Route information is generated using the N6DN SID and N3RAN community corresponding to the N3RAN prefix.
  • the route information generation unit 324 identifies the DN table corresponding to the DN name, and assigns the gNB address (N3RAN prefix) to identify the entry for that N3RAN prefix in the DN table. Then, the route information generation unit 324 generates route information using the community of N6DN SID and N3RAN in the specified entry.
  • the advertisement unit 326 advertises the route information generated by the route information generation unit 324 to the SRGW 400.
  • the advertising unit 326 stores the address of UPF 120 in NLRI, stores the address of N4BGPC 300 in Nextop-Address, adds the N6DN SID in the entry, and uses the N3RAN community in the entry as the community attribute of the route. Generate a stored BGP update message to advertise to the SRGW 400 .
  • the advertising section 326 may be an example of a route information advertising section.
  • the routing information generator 324 may use community attributes specifying the N6DN VRF in routing information for the destination address of the UPF 120 advertised to multiple SRGWs 400 with different N6DN SIDs. If the DNVRF can be identified as N6DN VRF in all target SRGW 400 by the community, the advertising unit 326 adds the N6DN SID corresponding to each individual SRGW 400, instead of advertising multiple UPF 120 destination address route information, Only one common UPF 120 destination address route information to which the N6DN community is added may be advertised to all SRGWs 400 .
  • the advertising unit 326 may advertise the UPF 120 route without searching the DN table if the N3RAN community is known in advance and the route information for the UPF 120 specifying the N6DN VRF is advertised to the SRGW 400 by the community attribute. . At this time, the SRGW 400 does not need to advertise the GW Discovery Route to the N4BGPC 300.
  • the route information receiving unit 426 receives the route information advertised by the advertising unit 326.
  • the route setting unit 428 executes route setting based on the route information received by the advertising unit 326 .
  • the route setting unit 428 can recognize that the route information is route information to be imported into the VRF 210 of the N3RAN by referring to the community attribute of the received route information. In this case, the route setting unit 428 imports the route information with the UPF 120 as the destination to the VRF 210 concerned.
  • the packet conversion unit 430 converts GTP-U compliant packets into SRv6 compliant packets.
  • the packet converter 430 may convert GTP-U compliant packets received from the mobile network into SRv6 compliant packets.
  • the packet transfer unit 432 transfers packets.
  • the packet forwarding unit 432 forwards packets according to the route setting by the route setting unit 428 .
  • the packet transfer unit 432 causes the packet conversion unit 430 to change a packet transmitted by the UE 40 and arriving at the VRF 210 and destined for the UPF 120, and transfers the packet to the corresponding DN 30 via the corresponding VRF 220. control to
  • FIG. 6 schematically shows an example of the hardware configuration of computer 1200 that functions as N4BGPC300 or SRGW400.
  • Programs installed on the computer 1200 cause the computer 1200 to function as one or more "parts" of the apparatus of the present embodiments, or cause the computer 1200 to operate or perform operations associated with the apparatus of the present invention. Multiple "units" can be executed and/or the computer 1200 can be caused to execute the process or steps of the process according to the present invention.
  • Such programs may be executed by CPU 1212 to cause computer 1200 to perform certain operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • a computer 1200 includes a CPU 1212 , a RAM 1214 and a graphics controller 1216 , which are interconnected by a host controller 1210 .
  • Computer 1200 also includes input/output units such as communication interface 1222 , storage device 1224 , DVD drive, and IC card drive, which are connected to host controller 1210 via input/output controller 1220 .
  • the DVD drive may be a DVD-ROM drive, a DVD-RAM drive, and the like.
  • Storage devices 1224 may be hard disk drives, solid state drives, and the like.
  • Computer 1200 also includes legacy input/output units, such as ROM 1230 and keyboard, which are connected to input/output controller 1220 via input/output chip 1240 .
  • the CPU 1212 operates according to programs stored in the ROM 1230 and RAM 1214, thereby controlling each unit.
  • Graphics controller 1216 retrieves image data generated by CPU 1212 into a frame buffer or the like provided in RAM 1214 or itself, and causes the image data to be displayed on display device 1218 .
  • a communication interface 1222 communicates with other electronic devices via a network.
  • Storage device 1224 stores programs and data used by CPU 1212 within computer 1200 .
  • the DVD drive reads programs or data from a DVD-ROM or the like and provides them to the storage device 1224 .
  • the IC card drive reads programs and data from IC cards and/or writes programs and data to IC cards.
  • ROM 1230 stores therein programs such as boot programs that are executed by computer 1200 upon activation and/or programs that depend on the hardware of computer 1200 .
  • Input/output chip 1240 may also connect various input/output units to input/output controller 1220 via USB ports, parallel ports, serial ports, keyboard ports, mouse ports, and the like.
  • the program is provided by a computer-readable storage medium such as a DVD-ROM or an IC card.
  • the program is read from a computer-readable storage medium, installed in storage device 1224 , RAM 1214 , or ROM 1230 , which are also examples of computer-readable storage media, and executed by CPU 1212 .
  • the information processing described within these programs is read by computer 1200 to provide coordination between the programs and the various types of hardware resources described above.
  • An apparatus or method may be configured by implementing information operations or processing according to the use of computer 1200 .
  • the CPU 1212 executes a communication program loaded into the RAM 1214 and sends communication processing to the communication interface 1222 based on the processing described in the communication program. you can command.
  • the communication interface 1222 reads transmission data stored in a transmission buffer area provided in a recording medium such as a RAM 1214, a storage device 1224, a DVD-ROM, or an IC card under the control of the CPU 1212, and transmits the read transmission data. Data is transmitted to the network, or received data received from the network is written in a receive buffer area or the like provided on the recording medium.
  • the CPU 1212 causes the RAM 1214 to read all or necessary portions of files or databases stored in an external recording medium such as a storage device 1224, a DVD drive (DVD-ROM), an IC card, etc. Various types of processing may be performed on the data. CPU 1212 may then write back the processed data to an external recording medium.
  • an external recording medium such as a storage device 1224, a DVD drive (DVD-ROM), an IC card, etc.
  • Various types of processing may be performed on the data.
  • CPU 1212 may then write back the processed data to an external recording medium.
  • CPU 1212 performs various types of operations on data read from RAM 1214, information processing, conditional decisions, conditional branching, unconditional branching, and information retrieval, which are described throughout this disclosure and are specified by instruction sequences of programs. Various types of processing may be performed, including /replace, etc., and the results written back to RAM 1214 . In addition, the CPU 1212 may search for information in a file in a recording medium, a database, or the like.
  • the CPU 1212 selects the first attribute from among the plurality of entries. searches for an entry that matches the specified condition of the attribute value of the attribute, reads the attribute value of the second attribute stored in the entry, and thereby determines the first attribute that satisfies the predetermined condition. An attribute value of the associated second attribute may be obtained.
  • the programs or software modules described above may be stored in a computer-readable storage medium on or near computer 1200 .
  • a recording medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, whereby the program can be transferred to the computer 1200 via the network. offer.
  • the blocks in the flowcharts and block diagrams in this embodiment may represent steps in the process in which the operations are performed or "parts" of the device responsible for performing the operations. Certain steps and “sections” may be provided with dedicated circuitry, programmable circuitry provided with computer readable instructions stored on a computer readable storage medium, and/or computer readable instructions provided with computer readable instructions stored on a computer readable storage medium. It may be implemented by a processor. Dedicated circuitry may include digital and/or analog hardware circuitry, and may include integrated circuits (ICs) and/or discrete circuitry.
  • ICs integrated circuits
  • Programmable circuits such as Field Programmable Gate Arrays (FPGAs), Programmable Logic Arrays (PLAs), etc., perform AND, OR, EXCLUSIVE OR, NOT AND, NOT OR, and other logical operations. , flip-flops, registers, and memory elements.
  • FPGAs Field Programmable Gate Arrays
  • PLAs Programmable Logic Arrays
  • a computer-readable storage medium may comprise any tangible device capable of storing instructions to be executed by a suitable device, such that a computer-readable storage medium having instructions stored thereon may be illustrated in flowchart or block diagram form. It will comprise an article of manufacture containing instructions that can be executed to create means for performing specified operations. Examples of computer-readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like.
  • Computer readable storage media include floppy disks, diskettes, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory) , electrically erasable programmable read only memory (EEPROM), static random access memory (SRAM), compact disc read only memory (CD-ROM), digital versatile disc (DVD), Blu-ray disc, memory stick , integrated circuit cards, and the like.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • EEPROM electrically erasable programmable read only memory
  • SRAM static random access memory
  • CD-ROM compact disc read only memory
  • DVD digital versatile disc
  • Blu-ray disc memory stick , integrated circuit cards, and the like.
  • the computer readable instructions may be assembler instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state configuration data, or instructions such as Smalltalk, JAVA, C++, etc. any source or object code written in any combination of one or more programming languages, including object-oriented programming languages, and conventional procedural programming languages such as the "C" programming language or similar programming languages; may include
  • Computer readable instructions are used to produce means for a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus, or programmable circuits to perform the operations specified in the flowchart or block diagrams.
  • a general purpose computer, special purpose computer, or other programmable data processor locally or over a wide area network (WAN) such as the Internet, etc., to execute such computer readable instructions. It may be provided in the processor of the device or in a programmable circuit. Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Computer And Data Communications (AREA)

Abstract

コントローラと、GTP-Uに準拠したパケットをSRv6に準拠したパケットに変換するSRゲートウェイとを備え、SRゲートウェイは、IPネットワークに接続されたVRFからIPネットワークの経路情報及びVRFのSIDを受信した場合に、NLRIのEDにVRFの情報を含むSRポリシと、SRゲートウェイのSIDとをコントローラに広告する広告部を有し、コントローラは、VRFから広告された情報又は予め設定しておいたVRFの情報、及び広告部によって広告された情報に基づいて、VRFとSRゲートウェイとをマッチングするマッチング部と、PFCPセッションを参照して、VRFが接続されているIPネットワークに対応するUPF及びgNBを特定する特定部と、特定部が特定したgNBに対応するVRFに、UPFの経路情報及びSRゲートウェイのSIDを広告する広告部とを有する、通信システムを提供する。

Description

通信システム、ゲートウェイ、コントローラ、及びプログラム
 本発明は、通信システム、ゲートウェイ、コントローラ、及びプログラムに関する。
 特許文献1には、5G(5th Generation)に準拠するモバイルネットワークにおけるスライシングについて記載されている。
 [先行技術文献]
 [特許文献]
 [特許文献1]特開2019-176384号公報
一般的開示
 本発明の一実施態様によれば、通信システムが提供される。通信システムは、コントローラを備えてよい。通信システムは、モバイルネットワークから受信したGTP-Uに準拠したパケットをSRv6に準拠したパケットに変換するSRゲートウェイを備えてよい。SRゲートウェイは、複数のgNBのそれぞれに対応するVRFである複数のgNBVRFと、複数のDNのそれぞれに対応するVRFである複数のDNVRFとを生成するVRF生成部を有してよい。SRゲートウェイは、VRF生成部によって生成された複数のgNBVRF及び複数のDNVRFの情報を含むメッセージをコントローラに広告するメッセージ広告部を有してよい。コントローラは、メッセージに基づいて、複数のgNBVRFと複数のDNVRFとを対応付ける対応情報を生成する対応情報生成部を有してよい。コントローラは、UEがアタッチされたときに通知されるPFCPセッション情報を取得する情報取得部を有してよい。コントローラは、PFCPセッション情報及び対応情報に基づいて、UEに対応するUPFの宛先アドレスに対する経路情報であって、UEに対応するDNVRFのSIDを含む経路情報を生成する経路情報生成部を有してよい。コントローラは、経路情報をSRゲートウェイに広告する経路情報広告部を有してよい。
 上記メッセージ広告部は、上記複数のgNBVRF及び上記複数のDNVRFの全組み合わせのそれぞれについて、NLRIに、上記gNBVRFに対応するN3RANプレフィクス及び上記DNVRFに対応するN6DN SIDを格納し、コミュニティ属性に、上記gNBVRFに対応するN3RANのコミュニティ及び上記DNVRFに対応するN6DNのコミュニティとを格納した上記メッセージを上記コントローラに広告してよい。上記メッセージ広告部は、上記複数のgNBVRFのうちの第1のgNBVRFと、上記複数のDNVRFのうちの第1のDNVRFとの組み合わせについて、上記第1のgNBVRFに対応するN3RANプレフィクスと、上記第1のDNVRFに対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、上記第1のgNBVRFに対応するN3RANのコミュニティと上記第1のDNVRFに対応するN6DNのコミュニティとをコミュニティ属性に格納した上記メッセージを上記コントローラに広告してよい。上記第1のDNVRFに対応するN6DN SIDは、複数のSRゲートウェイそれぞれに存在する第1のDNVRFを示す共通のAnycast SIDであってよい。
 上記メッセージ広告部は、上記複数のgNBVRFについて、NLRIタイプをAccessとして、上記gBNVRFに対応するN3RANプレフィクスをMP_REACH_NLRI属性の中のNLRIに格納し、上記gBNVRFに対応するN3RANのコミュニティをコミュニティ属性に格納したメッセージを上記コントローラに広告し、上記複数のDNVRFについて、NLRIタイプをCoreとし、上記SRゲートウェイを示すノードIDをMP_REACH_NLRI属性の中のNLRIに格納し、上記DNVRFに対応するN6DNのコミュニティをコミュニティ属性に格納し、上記DNVRFに対応するN6DN SIDを付与したメッセージを上記コントローラに広告してよい。上記メッセージ広告部は、上記複数のgNBVRFのうちの第1のgNBVRFについて、NLRIタイプをAccessとし、上記第1のgNBVRFに対応するN3RANプレフィクスをMP_REACH_NLRI属性の中のNLRIに格納し、上記第1のgNBVRFに対応するN3RANのコミュニティをコミュニティ属性に格納したメッセージを上記コントローラに広告し、上記複数のDNVRFのうちの第1のDNVRFについて、NLRIタイプをCoreとし、上記SRゲートウェイを示すノードIDをMP_REACH_NLRI属性の中のNLRIに格納し、上記第1のDNVRFに対応するN6DNのコミュニティをコミュニティ属性に格納し、上記第1のDNVRFに対応するN6DN SIDを付与したメッセージを上記コントローラに広告してよい。
 上記コントローラは、DNに対応するVRFを示すN6DNを識別可能なDN名と上記N6DNのコミュニティ属性とを紐付けるDNコミュニティ紐付情報と、複数のDN名のそれぞれに対応する、N3RANプレフィクス、N6DN SID、及びN3RANのコミュニティを登録可能なDN関連情報とを記憶する記憶部を有してよく、上記対応情報生成部は、上記メッセージ広告部によって広告された上記メッセージに含まれるN6DNのコミュニティが、上記DNコミュニティ紐付情報のいずれかのコミュニティ属性と一致した場合に、一致したコミュニティ属性に対応するDN名を特定し、特定したDN名に対応する上記DN関連情報に、上記メッセージに含まれるN3RANプレフィクス、N6DN SID、及びN3RANのコミュニティを登録することによって、上記対応情報を生成してよい。上記PFCPセッション情報は、上記UEのアドレス、上記UEを収容しているgNBのアドレス、上記UEに対応するUPFのアドレス、上記UEが通信するDNのDN名を含んでよく、上記経路情報生成部は、上記PFCPセッション情報に含まれるDN名に対応する上記対応情報を特定し、特定した上記対応情報に対して、上記PFCPセッション情報に含まれるgNBのアドレスをキーとして検索することによって、上記対応情報における上記gNBのアドレスに対応するN3RANプレフィクスを特定し、特定したN3RANプレフィクスに対応するN6DN SID及びN3RANのコミュニティを用いて、上記経路情報を生成してよい。
 本発明の一実施態様によれば、ゲートウェイが提供される。ゲートウェイは、モバイルネットワークから受信したGTP-Uに準拠したパケットをSRv6に準拠したパケットに変換する変換部を備えてよい。ゲートウェイは、複数のgNBのそれぞれに対応するVRFである複数のgNBVRFと、複数のDNのそれぞれに対応するVRFである複数のDNVRFとを生成するVRF生成部を備えてよい。ゲートウェイは、VRF生成部が生成した複数のgNBVRF及び複数のDNVRFの情報を含むメッセージをコントローラに広告するメッセージ広告部を備えてよい。
 本発明の一実施態様によれば、コンピュータを、上記ゲートウェイとして機能させるためのプログラムが提供される。
 本発明の一実施態様によれば、コントローラが提供される。コントローラは、複数のgNBのそれぞれに対応するVRFである複数のgNBVRF、及び複数のDNのそれぞれに対応するVRFである複数のDNVRFの情報を含むメッセージを受信するメッセージ受信部を備えてよい。コントローラは、メッセージに基づいて、複数のgNBVRFと複数のDNVRFとを対応付ける対応情報を生成する対応情報生成部を備えてよい。コントローラは、UEがアタッチされたときに通知されるPFCPセッション情報を取得する情報取得部を備えてよい。コントローラは、PFCPセッション情報及び対応情報に基づいて、UEに対応するUPFの宛先アドレスに対する経路情報であって、UEに対応するDNVRFのSIDを含む経路情報を生成する経路情報生成部を備えてよい。コントローラは、経路情報をゲートウェイに広告する経路情報広告部を備えてよい。
 本発明の一実施態様によれば、コンピュータを、上記コントローラとして機能させるためのプログラムが提供される。
 本発明の一実施態様によれば、通信システムが提供される。通信システムは、コントローラと、モバイルネットワークから受信したGTP-Uに準拠したパケットをSRv6に準拠したパケットに変換するSRゲートウェイとを備えてよい。SRゲートウェイは、IPネットワークに接続されたVRFからIPネットワークの経路情報及びVRFのSIDを受信した場合に、NLRIのEDにVRFの情報を含むSRポリシと、SRゲートウェイのSIDとをコントローラに広告する広告部を有してよい。コントローラは、VRFから広告された情報または予め設定しておいたVRFの情報、及び広告部によって広告された情報に基づいて、VRFとSRゲートウェイとをマッチングするマッチング部を有してよい。コントローラは、UEがアタッチされたときに通知されるPFCPセッションを参照して、VRFが接続されているIPネットワークに対応するUPF及びgNBを特定する特定部を有してよい。コントローラは、特定部が特定したgNBに対応するVRFに、UPFの経路情報及びSRゲートウェイのSIDを広告する広告部を有してよい。前記SRゲートウェイは、前記UPFの経路として、前記UPFに対応するVRFのSIDをインポートし、予め定められた種類のパケットを前記UPFに転送するパケット転送部を有してよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
通信システム10の構成の一例を概略的に示す。 通信システム10における処理の一例について説明するための説明図である。 N4BGPC300の機能構成及び変換部410の論理構成の一例を概略的に示す。 通信システム10における処理の一例について説明するための説明図である。 N4BGPC300の機能構成及び変換部410の論理構成の一例を概略的に示す。 N4BGPC300又はSRGW400として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。
 モバイルネットワークにおいてネットワークスライスを識別する技術が知られているが、モバイルネットワーク内に閉じていた。IPネットワークも含めてネットワークスライスを管理可能にできることが望ましいが、経路情報等の設定が非常に煩雑になり得る。本実施形態に係る通信システム10では、設定の煩雑さを低減する技術を提供する。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、通信システム10の構成の一例を概略的に示す。通信システム10は、N4BGPC(N4 Border Gateway Protocol Controller)300を備える。N4BGPC300は、コントローラの一例であってよい。N4BGPC300は、SRNW(Segment Routing Network)20内に配置されてよい。通信システム10は、SRGW(Segment Routing Gateway)400を備える。SRGW400は、SRNW20内に配置されてよい。
 SRGW400は、IPネットワークから受信したSRv6に準拠したパケットをGTP-Uに準拠したパケットに変換する機能を有してよい。SRGW400は、モバイルネットワークから受信したGTP-Uに準拠したパケットをSRv6に準拠したパケットに変換する機能を有してよい。
 N4BGPC300は、SRGW400を制御する。N4BGPC300は、SRGW400の経路制御に関する処理を実行してよい。
 図1に示す例において、SRNW20には、VRF(Virtual Routing and Forwarding)202、VRF204、VRF206、VRF208、VRF210、及びVRF220が配置されている。なお、各VRFが実現されるルータの図示を省略している。SRGW400は、VRF210を含んでも良い。SRGW400は、VRF220を含んでも良い。SRGW400は、VRF210及びVRF220両方を含んでも良い。
 VRF202は、SMF(Session Management Function)110に接続されている。VRF204、VRF206、及びVRF208は、UPF(User Plane Function)120に接続されている。VRF210は、gNB(gNodeB)130に接続されている。図1に示す例において、複数のVRF210のそれぞれが複数のgNB130に接続されている。VRF220は、DN(Data Network)30に接続されている。図1に示す例において、複数のVRF220のそれぞれが複数のDN30に接続されている。
 N4BGPC300は、SMF110からモバイルネットワークに関する情報を取得する。N4BGPC300は、例えば、UE40のPFCP(Packet Forwarding Control Protocol)セッション情報をSMF110から取得する。
 PFCPセッション情報は、例えば、UE40のアドレスを含む。PFCPセッション情報は、例えば、UE40を収容しているgNB130のアドレスを含む。PFCPセッション情報は、例えば、UE40に対応するUPF120のアドレスを含む。PFCPセッション情報は、例えば、UE40に対応するネットワークインスタンスを含む。ネットワークインスタンスは、例えば、アクセスネットワークインスタンスとして、モバイルネットワークにおいてUE40に対応するスライスを識別可能なスライス識別情報に対応する情報である。スライス識別情報は、例えば、S-NSSAI(Single-Network Slice Selection Assistance Information)である。PFCPセッション情報は、アクセスネットワークインスタンスを含んでよい。PFCPセッション情報は、コアネットワークインスタンスを含んでよい。コアネットワークインスタンスは、例えば、DNを識別可能なDN識別情報に対応する情報である。
 SRGW400は、変換部410及び変換部450を備える。変換部410は、GTP-Uに準拠したパケットをSRv6に準拠したパケットに変換する機能を有する。変換部410は、GTP4.Dの機能を有してよい。変換部410は、GTP6.Dの機能を有してよい。
 変換部450は、SRv6に準拠したパケットをGTP-Uに準拠したパケットに変換する機能を有する。変換部450は、GTP4.Eの機能を有してよい。変換部450は、GTP6.Eの機能を有してよい。
 本実施形態において、N4BGPC300は、gNB130に接続されているUE(User Equipment)40と、DN30に接続されている通信相手との通信を中継するための経路設定を実行する。通信相手は、例えば、インターネット上の任意のサーバ等の、任意の通信装置であってよい。
 図2は、通信システム10における処理の一例について説明するための説明図である。図2に示す例において、SRGW400の変換部410は、UE40によって送信されたパケットであって、従来であればUPF120に転送されるパケットを取得して、VRF220を介してDN30に転送する。N4BGPC300は、そのための設定を実行する。
 例えば、まず、DN30に接続されたVRF220が、DN30の経路情報と、DNを示すコミュニティ属性と、VRF220のSID222とをN4BGPC300及びSRGW400のそれぞれに広告する。N4BGPC300は、予めDN30の経路情報を設定しておいてもよい。
 SRGW400の変換部410は、VRF220からの広告を受け付けた場合に、NLRIのED(End Point)にVRF220を示す情報を含むSRポリシと、DNを示すコミュニティ属性と、変換部410のSID411とをN4BGPC300に広告する。VRF220を示す情報は、例えば、VRF220のSID222であってよい。
 N4BGPC300は、VRF220から広告された、又は予め設定しておいたDN30の情報及び変換部410から広告された情報に基づいて、VRF220とSRGW400とをマッチングする。N4BGPC300は、UE40がアタッチされたときにSMF110から通知されるPFCPセッション510を参照して、VRF220が接続されているDN30に対応するUPF120及びgNB130を特定する。N4BGPC300は、特定したgNB130に対応するVRF210に、UPF120の経路情報と、UPFを示すコミュニティ属性と、変換部410のSID411とを広告する。
 複数のSRGW400が存在する場合、それらSRGW400はそれぞれ個別のSID411値を含むSRポリシをN4BGPC300に広告してよい。SRGW400は、他のSRGW400が広告するSID411値を含むSRポリシを受信してよい。N4BGPCとすべてのSRGW400は,共通のアルゴリズムによって、どれか1つのSRGW400が広告したSID411を採択してよい。
 上記構成により、gNB130がUE40から受信したパケットをVRF210に転送したときに、VRF210に、当該パケットをSRGW400に転送させることができる。SRGW400の変換部410は、当該パケットのSRv6に準拠したパケットに変換して、VRF220に転送する。当該パケットは、VRF220から、DN30の通信相手に転送される。
 SRGW400の変換部410は、特殊なパケットについては、DN30ではなく、UPF120に転送するようにしてもよい。例えば、SRGW400の変換部410は、UPF120の経路として、UPF120に対応するVRF206のSIDをインポートし、予め定められた種類のパケットについては、UPF120に転送する。予め定められた種類のパケットの例として、GTP-Uメッセージが挙げられる。
 図3は、N4BGPC300の機能構成及び変換部410の論理構成の一例を概略的に示す。N4BGPC300は、取得部302、マッチング部304、特定部306、及び広告部308を備える。N4BGPC300は、これらの全てを備えずに一部を備えてもよく、これら以外の構成を備えてもよい。変換部410は、パケット変換部412、取得部414、SRポリシ生成部416、広告部418、及びパケット転送部420を備える。変換部410は、これらの全てを備えずに一部を備えてもよく、これら以外の構成を備えてもよい。
 取得部302は、各種情報を取得する。例えば、取得部302は、SMF110からPFCPセッション510を取得する。例えば、取得部302は、VRFから広告された情報を取得する。例えば、取得部302は、SRGW400から広告された情報を取得する。取得部302は、予め設定されたDN30の経路情報を取得してもよい。
 マッチング部304は、取得部302が取得した情報を用いたマッチングを実行する。例えば、マッチング部304は、VRF220から広告された情報と、SRGW400の変換部410から広告された情報とに基づいて、VRF220とSRGW400とをマッチングする。また、例えば、マッチング部304は、DN30の経路情報と、SRGW400の変換部410から広告された情報とに基づいて、VRF220とSRGW400とをマッチングする。
 特定部306は、経路設定に関する特定処理を実行する。例えば、特定部306は、取得部302が取得したPFCPセッション510を参照して、VRF220が接続されているIPネットワークに対応するUPF120及びgNB130を特定する。
 広告部308は、広告処理を実行する。例えば、広告部308は、特定部306が特定したgNB130に対応するVRF210に、特定部306が特定したUPF120の経路情報と、UPFを示すコミュニティ属性と、SRGW400の変換部410のSID411を広告する。
 パケット変換部412は、GTP-Uに準拠したパケットをSRv6に準拠したパケットに変換する。パケット変換部412は、モバイルネットワークから受信したGTP-Uに準拠したパケットをSRv6に準拠したパケットに変換してよい。
 取得部414は、各種情報を取得する。例えば、取得部414は、VRFによって広告された情報を取得する。
 SRポリシ生成部416は、SRポリシを生成する。SRポリシ生成部416は、例えば、取得部414が、IPネットワークに接続されたVRFからIPネットワークの経路情報と、IPネットワークを示すコミュニティ属性と、当該VRFのSIDを受信した場合に、NLRIのEDに当該VRFのSIDを含むSRポリシを生成する。
 広告部418は、広告処理を実行する。例えば、広告部418は、SRポリシ生成部416が生成したSRポリシと、IPネットワークを示すコミュニティ属性と、SRGW400のSIDとをN4BGPC300に広告する。
 パケット転送部420は、パケットの転送を実行する。例えば、パケット転送部420は、DN30宛のパケットをVRF210から受信した場合に、VRF220から受信した経路情報を用いて、当該パケットをVRF220に転送する。
 パケット転送部420は、特殊なパケットについては、DN30ではなく、UPF120に転送するようにしてもよい。例えば、パケット転送部420は、UPF120の経路として、UPF120に対応するVRF206のSIDをインポートし、予め定められた種類のパケットについては、UPF120に転送する。予め定められた種類のパケットの例として、GTP-Uメッセージが挙げられる。
 図4は、通信システム10における処理の一例について説明するための説明図である。ここでは、通信システム10における、UE40からDN30へのパケットの転送に関連する処理について説明する。
 図4に示す例において、SRGW400は、UE40によって送信されたパケットであって、従来であればUPF120に転送されるパケットを取得して、DN30に転送する。N4BGPC300は、そのための設定を実行する。
 ここでは、gNB130に対応するVRF210のVRF名をN3RAN、DN30に対応するVRF220のVRF名をN6DNとして、説明する。
 例えば、まず、N4BGPC300は、N6DNのDN名とN6DNのコミュニティ属性とを紐付けるDNコミュニティ紐付テーブルを生成する。一例として、N4BGPC300は、表1に例示する形式のDNコミュニティ紐付テーブルを生成する。そして、N4BGPC300は、複数のDN名及びコミュニティ属性の組み合わせをDNコミュニティ紐付テーブルに登録する。N4BGPC300は、オペレータ等の指示に従って、登録を実行してよい。
Figure JPOXMLDOC01-appb-T000001
 DNコミュニティ紐付テーブルは、N6DNのDN名とN6DNのコミュニティ属性とを紐付けたDNコミュニティ紐付情報の一例であってよい。DNコミュニティ紐付情報は、このように、テーブルの形式を有してよいが、テーブルの形式は有さずに、N6DNのDN名とN6DNのコミュニティ属性とを紐付けたデータであってもよい。
 また、N4BGPC300は、複数のDN名のそれぞれに対応する、N3RANプレフィクス、N6DN SID、及びN3RANのコミュニティを登録可能なDNテーブルを生成する。一例として、N4BGPC300は、表2に例示する形式のDNテーブルを生成する。
Figure JPOXMLDOC01-appb-T000002
 DNテーブルは、N3RANプレフィクス、N6DN SID、及びN3RANのコミュニティを登録可能なDN関連情報の一例であってよい。DN関連情報は、このように、テーブルの形式を有してよいが、テーブルの形式は有さずに、N3RANプレフィクス、N6DN SID、及びN3RANのコミュニティを紐付けたデータであってもよい。
 そして、N4BGPC300は、DN名とDNテーブルを示すポインタとを紐付けたDNテーブル紐付テーブルを生成する。一例として、N4BGPC300は、表3に例示する形式のDNテーブル紐付テーブルを生成する。
Figure JPOXMLDOC01-appb-T000003
 DNテーブル紐付テーブルは、DN名とDN関連情報を示すポインタとを紐付けたDN関連情報紐付情報の一例であってよい。DN関連情報紐付情報は、このように、テーブルの形式を有してよいが、テーブルの形式は有さずに、DN名とDNテーブルを示すポインタと紐付けたデータであってもよい。
 SRGW400は、複数のgNB130のそれぞれに対応する複数のVRF210を生成する。SRGW400は、複数のDN30のそれぞれに対応する複数のVRF220を生成する。そして、SRGW400は、複数のVRF210及び複数のVRF220の情報をN4BGPC300に広告する。
 SRGW400は、BGPメッセージに複数のVRF210及び複数のVRF220の情報を含めて、N4BGPC300に送信してよい。SRGW400は、BGPアップデートメッセージに複数のVRF210及び複数のVRF220の情報を含めて、N4BGPC300に送信してよい。このようなメッセージをGW Discovery Routeと記載する場合がある。
 SRGW400は、VRF210とVRF220の全ての組み合わせを構成して、全ての組み合わせの情報をN4BGPC300に広告してよい。また、SRGW400が、全てのVRF210及びVRF220の情報をN4BGPC300に広告し、N4BGPC300が、VRF210とVRF220の全ての組み合わせを構成してもよい。前者を代1の方式と記載し、後者を第2の方式と記載する場合がある。
 第1の方式の場合、SRGW400は、VRF210とVRF220の全組み合わせのそれぞれについて、NLRIにN3RANプレフィクス及びN6DN SIDを格納し、コミュニティ属性にN6DNのコミュニティ及びN3RANのコミュニティを格納したGW Discovery Routeを生成して、N4BGPC300に広告してよい。GW Discovery Routeは、BGP-LS(Link State) Routeであってよい。
 ここで、SRGW400が、第1のVRF210、第2のVRF210、第3のVRF210、第1のVRF220、第2のVRF220、及び第3のVRF220を含む場合を例に挙げて、説明する。
 SRGW400は、第1のVRF210と第1のVRF220との組み合わせについて、第1のVRF210に対応するN3RANプレフィクスと、第1のVRF220に対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、第1のVRF210に対応するN3RANのコミュニティと第1のVRF220に対応するN6DNのコミュニティとをコミュニティ属性に格納したGW Discovery Routeを生成する。第1のVRF220に対応するN6DN SIDは、BGP-LS属性に格納してもよい。第1のVRF210に対応するN3RANプレフィクスとは、第1のVRF210に接続された1又は複数のgNB130のアドレスであってよい。第1のVRF220に対応するN6DN SIDとは、SRGW400中の第1のVRF220を示すSIDであってよい。第1のVRF220を示すSIDは、複数のSRGW400それぞれに存在する第1のVRF220を示す共通のAnycast SIDであってよい。または第1のVRF220に接続された1又は複数のPE(Provider Edge)ルータ50のVRF250のSIDであってよい。
 SRGW400は、第1のVRF210と第2のVRF220との組み合わせについて、第1のVRF210に対応するN3RANプレフィクスと、第2のVRF220に対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、第1のVRF210に対応するN3RANのコミュニティと第2のVRF220に対応するN6DNのコミュニティとをコミュニティ属性に格納したGW Discovery Routeを生成する。第2のVRF220に対応するN6DN SIDは、BGP-LS属性に格納してもよい。また、SRGW400は、第1のVRF210と第3のVRF220との組み合わせについて、第1のVRF210に対応するN3RANプレフィクスと、第3のVRF220に対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、第1のVRF210に対応するN3RANのコミュニティと第3のVRF220に対応するN6DNのコミュニティとをコミュニティ属性に格納したGW Discovery Routeを生成する。第3のVRF220に対応するN6DN SIDは、BGP-LS属性に格納してもよい。
 SRGW400は、第2のVRF210と第1のVRF220との組み合わせについて、第2のVRF210に対応するN3RANプレフィクスと、第1のVRF220に対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、第2のVRF210に対応するN3RANのコミュニティと第1のVRF220に対応するN6DNのコミュニティとをコミュニティ属性に格納したGW Discovery Routeを生成する。第1のVRF220に対応するN6DN SIDは、BGP-LS属性に格納してもよい。また、SRGW400は、第2のVRF210と第2のVRF220との組み合わせについて、第2のVRF210に対応するN3RANプレフィクスと、第2のVRF220に対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、第2のVRF210に対応するN3RANのコミュニティと第2のVRF220に対応するN6DNのコミュニティとをコミュニティ属性に格納したGW Discovery Routeを生成する。第2のVRF220に対応するN6DN SIDは、BGP-LS属性に格納してもよい。また、SRGW400は、第2のVRF210と第3のVRF220との組み合わせについて、第2のVRF210に対応するN3RANプレフィクスと、第3のVRF220に対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、第2のVRF210に対応するN3RANのコミュニティと第3のVRF220に対応するN6DNのコミュニティとをコミュニティ属性に格納したGW Discovery Routeを生成する。第3のVRF220に対応するN6DN SIDは、BGP-LS属性に格納してもよい。
 SRGW400は、第3のVRF210と第1のVRF220との組み合わせについて、第3のVRF210に対応するN3RANプレフィクスと、第1のVRF220に対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、第3のVRF210に対応するN3RANのコミュニティと第1のVRF220に対応するN6DNのコミュニティとをコミュニティ属性に格納したGW Discovery Routeを生成する。第1のVRF220に対応するN6DN SIDは、BGP-LS属性に格納してもよい。また、SRGW400は、第3のVRF210と第2のVRF220との組み合わせについて、第3のVRF210に対応するN3RANプレフィクスと、第2のVRF220に対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、第3のVRF210に対応するN3RANのコミュニティと第2のVRF220に対応するN6DNのコミュニティとをコミュニティ属性に格納したGW Discovery Routeを生成する。第2のVRF220に対応するN6DN SIDは、BGP-LS属性に格納してもよい。また、SRGW400は、第3のVRF210と第3のVRF220との組み合わせについて、第3のVRF210に対応するN3RANプレフィクスと、第3のVRF220に対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、第3のVRF210に対応するN3RANのコミュニティと第3のVRF220に対応するN6DNのコミュニティとをコミュニティ属性に格納したGW Discovery Routeを生成する。第3のVRF220に対応するN6DN SIDは、BGP-LS属性に格納してもよい。
 第2の方式の場合、SRGW400は、NLRIのタイプを分けて、GW Discovery Routeを生成してよい。例えば、N3RANプレフィクスを格納するNLRIのタイプをAccessとし、N6DN SIDを格納するNLRIのタイプをCoreとする。SRGW400は、複数のVRF210について、NLRIタイプをAccessとして、N3RANプレフィクスをMP_REACH_NLRI属性の中のNLRIに格納し、N3RANのコミュニティをコミュニティ属性に格納したGW Discovery Routeを生成してよい。同じUPF120にアクセス可能なVRF210が複数あるとき、共通のN3RANのコミュニティ属性を持つ1つのBGPアップデートメッセージに複数の当該VRF210がもつN3RANプレフィクスを格納してよい。また、SRGW400は、複数のVRF220について、NLRIタイプをCoreとして、SRGW400自身を示すノードIDをMP_REACH_NLRI属性の中のNLRIに格納し、N6DNのコミュニティをコミュニティ属性に格納し、N6DN SIDを付与したたGW Discovery Routeを生成してよい。そして、SRGW400は、生成したGW Discovery RouteをN4BGPC300に広告する。GW Discovery Routeは、BGP-LS Routeであってよい。
 ここで、SRGW400が、第1のVRF210、第2のVRF210、第3のVRF210、第1のVRF220、第2のVRF220、及び第3のVRF220を含む場合を例に挙げて、説明する。
 SRGW400は、NLRIタイプをAccessとし、第1のVRF210に対応するN3RANプレフィクスをMP_REACH_NLRI属性の中のNLRIに格納し、第1のVRF210に対応するN3RANのコミュニティをコミュニティ属性に格納したGW Discovery Routeを生成してよい。また、SRGW400は、NLRIタイプをAccessとし、第2のVRF210に対応するN3RANプレフィクスをMP_REACH_NLRI属性の中のNLRIに格納し、第2のVRF210に対応するN3RANのコミュニティをコミュニティ属性に格納したGW Discovery Routeを生成してよい。また、SRGW400は、NLRIタイプをAccessとし、第3のVRF210に対応するN3RANプレフィクスをMP_REACH_NLRI属性の中のNLRIに格納し、第3のVRF210に対応するN3RANのコミュニティをコミュニティ属性に格納したGW Discovery Routeを生成してよい。
 また、SRGW400は、NLRIタイプをCoreとし、SRGW400自身を示すノードIDをMP_REACH_NLRI属性の中のNLRIに格納し、第1のVRF220に対応するN6DNのコミュニティをコミュニティ属性に格納し、第1のVRF220に対応するN6DN SIDを付与したGW Discovery Routeを生成してよい。また、SRGW400は、NLRIタイプをCoreとし、SRGW400自身を示すノードIDをMP_REACH_NLRI属性の中のNLRIに格納し、第2のVRF220に対応するN6DNのコミュニティをコミュニティ属性に格納し、第2のVRF220に対応するN6DN SIDを付与したGW Discovery Routeを生成してよい。また、SRGW400は、NLRIタイプをCoreとし、SRGW400自身を示すノードIDをMP_REACH_NLRI属性の中のNLRIに格納し、第3のVRF220に対応するN6DNのコミュニティをコミュニティ属性に格納し、第3のVRF220に対応するN6DN SIDを付与したGW Discovery Routeを生成してよい。
 第1の方式の場合、N4BGPC300は、受信したGW Discovery Routeによって、VRF210とVRF220との組み合わせを把握できる。第2の方式の場合、N4BGPC300が、VRF210とVRF220との全組み合わせを構成してよい。
 N4BGPC300は、SRGW400から取得したGW Discovery RouteのN6DNのコミュニティが、DNコミュニティ紐付テーブルのいずれかのコミュニティ属性と一致した場合に、一致したコミュニティ属性に対応するDN名を特定する。そして、N4BGPC300は、DNテーブル紐付テーブルを参照して、特定したDN名に対応するDNテーブルポインタを特定する。
 N4BGPC300は、特定したDNテーブルポインタによって示されるDNテーブルに、GW Discovery Routeに含まれるN3RANプレフィクス、N6DN SID、及びN3RANのコミュニティを登録する。N4BGPC300は、複数のDN名のそれぞれに対応するDNテーブルに、SRGW400から受信した複数のGW Discovery Routeの情報を登録する。これにより、データベースの準備が整う。DNテーブルは、N3RANプレフィクスをキーとするパトリシアツリー構造であってよい。
 N4BGPC300は、UE40のPFCPセッション情報をSMF110から取得する。N4BGPC300は、UE40がアタッチされたときにSMF110から通知されるPFCPセッション情報を取得する。
 PFCPセッション情報は、UE40のアドレスを含んでよい。PFCPセッション情報は、UE40を収容しているgNB130のアドレスを含んでよい。PFCPセッション情報は、UE40に対応するUPF120のアドレスを含んでよい。PFCPセッション情報は、UE40に対応するネットワークインスタンスを含んでよい。PFCPセッション情報は、アクセスネットワークインスタンスを含んでよい。PFCPセッション情報は、コアネットワークインスタンスを含んでよい。PFCPセッション情報は、Core DN名を含んでよい。
 N4BGPC300は、UE40のPFCPセッション情報を取得した場合に、UPF120宛の経路情報を生成する。N4BGPC300は、PFCPセッション情報に含まれるCore DN名で、DNテーブル紐付テーブルを検索して、Core DN名に対応するDNテーブルを示すポインタを特定し、ポインタが示すDNテーブルを特定する。N4BGPC300は、特定したDNテーブルに対して、PFCPセッション情報に含まれるgNB130のアドレス(N3RANプレフィクス)をキーとして検索を実行し、DNテーブルの当該N3RANプレフィクスのエントリを特定する。DNテーブルの検索は、ロンゲストプレフィクスマッチによってN3RANプレフィックスエントリを特定してよい。
 N4BGPC300は、エントリ内のN6DN SID、N3RANのコミュニティを用いて、UPF120の宛先アドレスに対する経路情報を生成し、SRGW400に広告する。例えば、N4BGPC300は、NLRIにUPF120のアドレスを格納し、Nexthop-AddressにN4BGPC300のアドレスを格納し、エントリ内のN6DN SIDを付加し、当該経路のコミュニティ属性として、エントリ内のN3RANのコミュニティを格納したBGPアップデートメッセージを生成して、SRGW400に広告する。SRGW400に広告するUPF120の宛先アドレスに対する経路情報は、GTP4.DまたはGTP6.Dを示す経路情報であってよい。
 N4BGPC300は、それぞれ異なるN6DN SIDを持つ複数のSRGW400に対して広告するUPF120の宛先アドレスに対する経路情報に、N6DN VRFを特定するコミュニティ属性を使用してよい。当該コミュニティによって、対象となる全てのSRGW400においてVRF220をN6DN VRFとして特定できる場合、N4BGPC300はそれぞれ個別のSRGW400に対応するN6DN SIDを付加した、複数のUPF120宛先アドレス経路情報を広告するかわりに、全SRGW400に対して、当該N6DNコミュニティを付加した共通のUPF120宛先アドレス経路情報を1つだけ広告してよい。N6DNを特定するコミュニティ属性は、Colorコミュニティであってよい。N6DNを特定するコミュニティ属性は、N6DNを特定することを直接の目的としたコミュニティ属性を定義して用いても良い。
 N4BGPC300は、N3RANのコミュニティがあらかじめ分かっており、コミュニティ属性によってN6DN VRFを特定するUPF120宛経路情報をSRGW400に広告する場合、DNテーブルを検索せずにN6DNを特定するコミュニティ属性のみ付与したUPF120経路を広告してよい。このときSRGW400は、GW Discovery RouteをN4BGPC300に対して広告しなくてよい。
 SRGW400は、受信した経路情報のコミュニティ属性を参照することにより、当該経路情報が、N3RANのVRF210にインポートする経路情報であると認識し、VRF210に対して、UPF120を宛先とする経路情報をインポートする。これにより、SRGW400は、UE40によって送信されたパケットであって、従来であればUPF120に転送されるパケットを取得して、DN30に転送することができる。
 図5は、N4BGPC300の機能構成及び変換部410の論理構成の一例を概略的に示す。N4BGPC300は、記憶部312、生成部314、登録部316、メッセージ受信部318、対応情報生成部320、情報取得部322、経路情報生成部324、及び広告部326を備える。変換部410は、VRF生成部422、広告部424、経路情報受信部426、経路設定部428、パケット変換部430、及びパケット転送部432を備える。
 生成部314は、DNコミュニティ紐付情報を生成する。生成部314は、例えば、DNコミュニティ紐付テーブルを生成する。生成部314は、生成したDNコミュニティ紐付情報を記憶部312に記憶させる。
 登録部316は、複数のDN名及びコミュニティ属性の組み合わせをDNコミュニティ紐付情報に登録する。登録部316は、通信システム10のオペレータ等の指示に従って、登録を実行してよい。
 生成部314は、DN関連情報を生成する。生成部314は、例えば、DNテーブルを生成する。生成部314は、生成したDN関連情報を記憶部312に記憶させる。
 生成部314は、DN関連情報紐付情報を生成する。生成部314は、例えば、DNテーブル紐付テーブルを生成する。生成部314は、生成したDN関連情報紐付情報を記憶部312に記憶させる。
 VRF生成部422は、VRFを生成する。例えば、VRF生成部422は、複数のgNB130のそれぞれに対応する複数のgNBVRFを生成する。VRF210は、gNBVRFの一例であってよい。例えば、VRF生成部422は、複数のDN30のそれぞれに対応する複数のDNVRFを生成する。VRF220は、DNVRFの一例であってよい。
 広告部424は、VRF生成部422によって生成されたVRFの情報をN4BGPC300に広告する。広告部424は、例えば、VRF生成部422によって生成された複数のgNBVRF及び複数のDNVRFの情報を含むメッセージをN4BGPC300に広告する。当該メッセージは、BGPメッセージであってよい。当該メッセージは、BGPアップデートメッセージであってよい。当該メッセージは、GW Discovery Routeであってよい。GW Discovery Routeは、BGP-LS Routeであってよい。広告部424は、メッセージ広告部の一例であってよい。メッセージ受信部318は、広告部424によって広告されたメッセージを受信する。
 広告部424は、gNBVRFとDNVRFの全ての組み合わせを構成して、全ての組み合わせの情報をN4BGPC300に広告してよい。例えば、広告部424は、複数のgNBVRF及び複数のDNVRFの全組み合わせのそれぞれについて、NRLIに、gNBVRFに対応するN3RANプレフィクス及びDNVRFに対応するN6DN SIDを格納し、コミュニティ属性に、gNBVRFに対応するN3RANのコミュニティ及びDNVRFに対応するN6DNのコミュニティとを格納したメッセージをN4BGPC300に広告する。
 具体例として、広告部424は、複数のgNBVRFのうちの第1のgNBVRFと、複数のDNVRFのうちの第1のDNVRFとの組み合わせについて、第1のgNBVRFに対応するN3RANプレフィクスと、第1のDNVRFに対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、第1のgNBVRFに対応するN3RANのコミュニティと第1のDNVRFに対応するN6DNのコミュニティとをコミュニティ属性に格納したメッセージをN4BGPC300に広告する。第1のDNVRFに対応するN6DN SIDは、BGP-LS属性に格納してもよい。第1のgNBVRFに対応するN3RANプレフィクスは、第1のgNBVRFに接続された1又は複数のgNB130のアドレスであってよい。第1のDNVRFに対応するN6DN SIDは、SRGW400中の第1のDNVRFを示すSIDであってよい。第1のDNVRFを示すSIDは、複数のSRGW400それぞれに存在する第1のDNVRFを示す共通のAnycast SIDであってもよい。また、第1のDNVRFを示すSIDは、第1のDNVRFに接続された1又は複数のPEルータ50のVRF250のSIDであってもよい。
 また、広告部424が、全てのgNBVRF及びDNVRFの情報をN4BGPC300に広告し、N4BGPC300が、gNBVRFとDNVRFの全ての組み合わせを構成してもよい。例えば、広告部424は、複数のgNBVRFについて、NLRIタイプをAccessとして、gBNVRFに対応するN3RANプレフィクスをMP_REACH_NLRI属性の中のNLRIに格納し、gBNVRFに対応するN3RANのコミュニティをコミュニティ属性に格納したメッセージをN4BGPC300に広告し、複数のGNVRFについて、NLRIタイプをCoreとし、SRGW400を示すノードIDをMP_REACH_NLRI属性の中のNLRIに格納し、GNVRFに対応するN6DNのコミュニティをコミュニティ属性に格納し、GNVRFに対応するN6DN SIDを付与したメッセージをN4BGPC300に広告する。
 具体例として、広告部424は、複数のgNBVRFのうちの第1のgNBVRFについて、NLRIタイプをAccessとし、第1のgNBVRFに対応するN3RANプレフィクスをMP_REACH_NLRI属性の中のNLRIに格納し、第1のgNBVRFに対応するN3RANのコミュニティをコミュニティ属性に格納したメッセージをN4BGPC300に広告し、複数のDNVRFのうちの第1のDNVRFについて、NLRIタイプをCoreとし、SRGW400を示すノードIDをMP_REACH_NLRI属性の中のNLRIに格納し、第1のDNVRFに対応するN6DNのコミュニティをコミュニティ属性に格納し、第1のDNVRFに対応するN6DN SIDを付与したメッセージをN4BGPC300に広告する。
 対応情報生成部320は、メッセージ受信部318が受信したメッセージに基づいて、複数のgNBVRFと複数のDNVRFとを対応付ける対応情報を生成する。対応情報生成部320は、メッセージに含まれるN6DNのコミュニティが、記憶部312に記憶されているDNコミュニティ紐付情報のいずれかのコミュニティ属性と一致した場合に、一致したコミュニティ属性に対応するDN名を特定する。そして、対応情報生成部320は、記憶部312に記憶されているDN関連情報紐付情報を参照して、特定したDN名に対応するDN関連情報ポインタによって示されるDN関連情報を特定する。対応情報生成部320は、特定したDN関連情報に、メッセージに含まれるN3RANプレフィクス、N6DN SID、及びN3RANのコミュニティを登録する。対応情報生成部320は、複数のDN名のそれぞれに対応するDN関連情報に、広告部424から受信した複数のメッセージの情報を登録する。これにより、対応情報生成部320は、対応情報を生成する。すなわち、対応情報は、複数の情報が登録されたDN関連情報であってよい。
 情報取得部322は、UE40のPFCPセッション情報を取得する。情報取得部322は、UE40のPFCPセッション情報をSMF110から取得してよい。例えば、情報取得部322は、UE40がモバイルネットワークにアタッチされたときにSMF110から通知されるPFCPセッション情報を取得する。
 経路情報生成部324は、情報取得部322が、UE40のPFCPセッション情報を取得した場合に、UPF120宛の経路情報を生成する。経路情報生成部324は、PFCPセッション情報と、対応情報生成部320によって生成された対応情報に基づいて、UE40に対応するUPF120の宛先アドレスに対する経路情報であって、UE40に対応するDNVRFのSIDを含む経路情報を生成してよい。
 例えば、経路情報生成部324は、PFCPセッション情報に含まれるDN名で、記憶部312に記憶されているDN関連情報紐付情報を検索して、DN名に対応する対応情報を示すポインタを特定し、ポインタが示す対応情報を特定する。経路情報生成部324は、特定した対応情報に対して、PFCPセッション情報に含まれるgNBのアドレスをキーとして検索することによって、対応情報における当該gNBのアドレスに対応するN3RANプレフィクスを特定し、特定したN3RANプレフィクスに対応するN6DN SID及びN3RANのコミュニティを用いて、経路情報を生成する。
 具体例として、対応情報がDNテーブルである場合、経路情報生成部324は、DN名に対応するDNテーブルを特定して、当該DNテーブルに対して、PFCPセッション情報に含まれるgNBのアドレス(N3RANプレフィクス)をキーとして検索を実行し、DNテーブルの当該N3RANプレフィクスのエントリを特定する。そして、経路情報生成部324は、特定したエントリ内のN6DN SID、N3RANのコミュニティを用いて、経路情報を生成する。
 広告部326は、経路情報生成部324によって生成された経路情報をSRGW400に広告する。例えば、広告部326は、NLRIにUPF120のアドレスを格納し、Nexthop-AddressにN4BGPC300のアドレスを格納し、エントリ内のN6DN SIDを付加し、当該経路のコミュニティ属性として、エントリ内のN3RANのコミュニティを格納したBGPアップデートメッセージを生成して、SRGW400に広告する。広告部326は、経路情報広告部の一例であってよい。
 経路情報生成部324は、それぞれ異なるN6DN SIDを持つ複数のSRGW400に対して広告するUPF120の宛先アドレスに対する経路情報に、N6DN VRFを特定するコミュニティ属性を使用してもよい。当該コミュニティによって、対象となる全てのSRGW400においてDNVRFをN6DN VRFとして特定できる場合、広告部326はそれぞれ個別のSRGW400に対応するN6DN SIDを付加した、複数のUPF120宛先アドレス経路情報を広告するかわりに、全SRGW400に対して、当該N6DNコミュニティを付加した共通のUPF120宛先アドレス経路情報を1つだけ広告してもよい。
 なお、広告部326は、N3RANのコミュニティがあらかじめ分かっており、コミュニティ属性によってN6DN VRFを特定するUPF120宛経路情報をSRGW400に広告する場合、DNテーブルを検索せずにUPF120経路を広告してもよい。このときSRGW400は、GW Discovery RouteをN4BGPC300に対して広告しなくてよい。
 経路情報受信部426は、広告部326によって広告された経路情報を受信する。経路設定部428は、広告部326が受信した経路情報に基づいて、経路設定を実行する。経路設定部428は、受信した経路情報のコミュニティ属性を参照することにより、当該経路情報が、N3RANのVRF210にインポートする経路情報であると認識し得る。この場合、経路設定部428は、当該VRF210に対して、UPF120を宛先とする経路情報をインポートする。
 パケット変換部430は、GTP-Uに準拠したパケットをSRv6に準拠したパケットに変換する。パケット変換部430は、モバイルネットワークから受信したGTP-Uに準拠したパケットをSRv6に準拠したパケットに変換してよい。
 パケット転送部432は、パケットの転送を実行する。パケット転送部432は、経路設定部428による経路設定に従って、パケットを転送する。例えば、パケット転送部432は、UE40によって送信され、VRF210に到達した、宛先がUPF120のパケットについて、パケット変換部430に変化を行わせて、対応するVRF220を介して、対応するDN30に向けて転送するよう制御する。
 図6は、N4BGPC300又はSRGW400として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、本実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。
 本実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ、及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。DVDドライブは、DVD-ROMドライブ及びDVD-RAMドライブ等であってよい。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボードのようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。
 CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。
 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVDドライブは、プログラム又はデータをDVD-ROM等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。
 ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。
 プログラムは、DVD-ROM又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。
 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。
 また、CPU1212は、記憶装置1224、DVDドライブ(DVD-ROM)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。
 様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。
 上で説明したプログラム又はソフトウエアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。
 本実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。
 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、ブルーレイ(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。
 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。
 コンピュータ可読命令は、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。プロセッサの例としては、コンピュータプロセッサ、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 通信システム、20 SRNW、30 DN、40 UE、50 PEルータ、110 SMF、120 UPF、130 gNB、202、204、206、208、210、220 VRF、222 SID、250 VRF、300 N4BGPC、302 取得部、304 マッチング部、306 特定部、308 広告部、312 記憶部、314 生成部、316 登録部、318 メッセージ受信部、320 対応情報生成部、322 情報取得部、324 経路情報生成部、326 広告部、400 SRGW、410 変換部、412 パケット変換部、414 取得部、416 SRポリシ生成部、418 広告部、420 パケット転送部、422 VRF生成部、424 広告部、426 経路情報受信部、428 経路設定部、430 パケット変換部、432 パケット転送部、450 変換部、510 PFCPセッション、1200 コンピュータ、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インタフェース、1224 記憶装置、1230 ROM、1240 入出力チップ

Claims (14)

  1.  コントローラと、
     モバイルネットワークから受信したGTP-Uに準拠したパケットをSRv6に準拠したパケットに変換するSRゲートウェイと
     を備え、
     前記SRゲートウェイは、
     複数のgNBのそれぞれに対応するVRFである複数のgNBVRFと、複数のDNのそれぞれに対応するVRFである複数のDNVRFとを生成するVRF生成部と、
     前記VRF生成部によって生成された前記複数のgNBVRF及び前記複数のDNVRFの情報を含むメッセージを前記コントローラに広告するメッセージ広告部と
     を有し、
     前記コントローラは、
     前記メッセージに基づいて、複数のgNBVRFと複数のDNVRFとを対応付ける対応情報を生成する対応情報生成部と、
     UEがアタッチされたときに通知されるPFCPセッション情報を取得する情報取得部と、
     前記PFCPセッション情報及び前記対応情報に基づいて、前記UEに対応するUPFの宛先アドレスに対する経路情報であって、前記UEに対応するDNVRFのSIDを含む経路情報を生成する経路情報生成部と、
     前記経路情報を前記SRゲートウェイに広告する経路情報広告部と
     を有する、通信システム。
  2.  前記メッセージ広告部は、前記複数のgNBVRF及び前記複数のDNVRFの全組み合わせのそれぞれについて、NLRIに、前記gNBVRFに対応するN3RANプレフィクス及び前記DNVRFに対応するN6DN SIDを格納し、コミュニティ属性に、前記gNBVRFに対応するN3RANのコミュニティ及び前記DNVRFに対応するN6DNのコミュニティとを格納した前記メッセージを前記コントローラに広告する、請求項1に記載の通信システム。
  3.  前記メッセージ広告部は、前記複数のgNBVRFのうちの第1のgNBVRFと、前記複数のDNVRFのうちの第1のDNVRFとの組み合わせについて、前記第1のgNBVRFに対応するN3RANプレフィクスと、前記第1のDNVRFに対応するN6DN SIDとを、MP_REACH_NLRI属性の中のNLRIに格納し、前記第1のgNBVRFに対応するN3RANのコミュニティと前記第1のDNVRFに対応するN6DNのコミュニティとをコミュニティ属性に格納した前記メッセージを前記コントローラに広告する、請求項2に記載の通信システム。
  4.  前記第1のDNVRFに対応するN6DN SIDは、複数のSRゲートウェイそれぞれに存在する第1のDNVRFを示す共通のAnycast SIDである、請求項3に記載の通信システム。
  5.  前記メッセージ広告部は、前記複数のgNBVRFについて、NLRIタイプをAccessとして、前記gBNVRFに対応するN3RANプレフィクスをMP_REACH_NLRI属性の中のNLRIに格納し、前記gBNVRFに対応するN3RANのコミュニティをコミュニティ属性に格納したメッセージを前記コントローラに広告し、前記複数のDNVRFについて、NLRIタイプをCoreとし、前記SRゲートウェイを示すノードIDをMP_REACH_NLRI属性の中のNLRIに格納し、前記DNVRFに対応するN6DNのコミュニティをコミュニティ属性に格納し、前記DNVRFに対応するN6DN SIDを付与したメッセージを前記コントローラに広告する、請求項1に記載の通信システム。
  6.  前記メッセージ広告部は、前記複数のgNBVRFのうちの第1のgNBVRFについて、NLRIタイプをAccessとし、前記第1のgNBVRFに対応するN3RANプレフィクスをMP_REACH_NLRI属性の中のNLRIに格納し、前記第1のgNBVRFに対応するN3RANのコミュニティをコミュニティ属性に格納したメッセージを前記コントローラに広告し、前記複数のDNVRFのうちの第1のDNVRFについて、NLRIタイプをCoreとし、前記SRゲートウェイを示すノードIDをMP_REACH_NLRI属性の中のNLRIに格納し、前記第1のDNVRFに対応するN6DNのコミュニティをコミュニティ属性に格納し、前記第1のDNVRFに対応するN6DN SIDを付与したメッセージを前記コントローラに広告する、請求項5に記載の通信システム。
  7.  前記コントローラは、
     DNに対応するVRFを示すN6DNを識別可能なDN名と前記N6DNのコミュニティ属性とを紐付けるDNコミュニティ紐付情報と、複数のDN名のそれぞれに対応する、N3RANプレフィクス、N6DN SID、及びN3RANのコミュニティを登録可能なDN関連情報とを記憶する記憶部
     を有し、
     前記対応情報生成部は、前記メッセージ広告部によって広告された前記メッセージに含まれるN6DNのコミュニティが、前記DNコミュニティ紐付情報のいずれかのコミュニティ属性と一致した場合に、一致したコミュニティ属性に対応するDN名を特定し、特定したDN名に対応する前記DN関連情報に、前記メッセージに含まれるN3RANプレフィクス、N6DN SID、及びN3RANのコミュニティを登録することによって、前記対応情報を生成する、請求項2から6のいずれか一項に記載の通信システム。
  8.  前記PFCPセッション情報は、前記UEのアドレス、前記UEを収容しているgNBのアドレス、前記UEに対応するUPFのアドレス、前記UEが通信するDNのDN名を含み、
     前記経路情報生成部は、前記PFCPセッション情報に含まれるDN名に対応する前記対応情報を特定し、特定した前記対応情報に対して、前記PFCPセッション情報に含まれるgNBのアドレスをキーとして検索することによって、前記対応情報における前記gNBのアドレスに対応するN3RANプレフィクスを特定し、特定したN3RANプレフィクスに対応するN6DN SID及びN3RANのコミュニティを用いて、前記経路情報を生成する、請求項7に記載の通信システム。
  9.  モバイルネットワークから受信したGTP-Uに準拠したパケットをSRv6に準拠したパケットに変換する変換部と、
     複数のgNBのそれぞれに対応するVRFである複数のgNBVRFと、複数のDNのそれぞれに対応するVRFである複数のDNVRFとを生成するVRF生成部と、
     前記VRF生成部が生成した前記複数のgNBVRF及び前記複数のDNVRFの情報を含むメッセージをコントローラに広告するメッセージ広告部と
     を備えるゲートウェイ。
  10.  コンピュータを、請求項9に記載のゲートウェイとして機能させるためのプログラム。
  11.  複数のgNBのそれぞれに対応するVRFである複数のgNBVRF、及び複数のDNのそれぞれに対応するVRFである複数のDNVRFの情報を含むメッセージを受信するメッセージ受信部と、
     前記メッセージに基づいて、複数のgNBVRFと複数のDNVRFとを対応付ける対応情報を生成する対応情報生成部と、
     UEがアタッチされたときに通知されるPFCPセッション情報を取得する情報取得部と、
     前記PFCPセッション情報及び前記対応情報に基づいて、前記UEに対応するUPFの宛先アドレスに対する経路情報であって、前記UEに対応するDNVRFのSIDを含む経路情報を生成する経路情報生成部と、
     前記経路情報をゲートウェイに広告する経路情報広告部と
     を備える、コントローラ。
  12.  コンピュータを、請求項11に記載のコントローラとして機能させるためのプログラム。
  13.  コントローラと、
     モバイルネットワークから受信したGTP-Uに準拠したパケットをSRv6に準拠したパケットに変換するSRゲートウェイと
     を備え、
     前記SRゲートウェイは、
     IPネットワークに接続されたVRFから前記IPネットワークの経路情報及び前記VRFのSIDを受信した場合に、NLRIのEDに前記VRFの情報を含むSRポリシと、前記SRゲートウェイのSIDとを前記コントローラに広告する広告部
     を有し、
     前記コントローラは、
     前記VRFから広告された情報又は予め設定しておいた前記VRFの情報、及び前記広告部によって広告された情報に基づいて、前記VRFと前記SRゲートウェイとをマッチングするマッチング部と、
     UEがアタッチされたときに通知されるPFCPセッションを参照して、前記VRFが接続されている前記IPネットワークに対応するUPF及びgNBを特定する特定部と、
     前記特定部が特定した前記gNBに対応するVRFに、前記UPFの経路情報及び前記SRゲートウェイのSIDを広告する広告部と
     を有する、通信システム。
  14.  前記SRゲートウェイは、
     前記UPFの経路として、前記UPFに対応するVRFのSIDをインポートし、予め定められた種類のパケットを前記UPFに転送するパケット転送部
     を有する、請求項13に記載の通信システム。
PCT/JP2022/033880 2021-09-13 2022-09-09 通信システム、ゲートウェイ、コントローラ、及びプログラム WO2023038115A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-148957 2021-09-13
JP2021148957 2021-09-13
JP2022-032733 2022-03-03
JP2022032733A JP2023041588A (ja) 2021-09-13 2022-03-03 通信システム、ゲートウェイ、コントローラ、及びプログラム

Publications (1)

Publication Number Publication Date
WO2023038115A1 true WO2023038115A1 (ja) 2023-03-16

Family

ID=85506439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033880 WO2023038115A1 (ja) 2021-09-13 2022-09-09 通信システム、ゲートウェイ、コントローラ、及びプログラム

Country Status (2)

Country Link
TW (1) TWI802503B (ja)
WO (1) WO2023038115A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200128469A1 (en) * 2018-10-19 2020-04-23 Huawei Technologies Co., Ltd. Method and system for network routing
US20210126831A1 (en) * 2019-10-24 2021-04-29 Cisco Technology, Inc. METHOD AND APPARATUS FOR MOBILE PACKET CORE MECHANISM FOR GiLAN NETWORK SLICES WITH SEGMENT ROUTING
US11095559B1 (en) * 2019-09-18 2021-08-17 Cisco Technology, Inc. Segment routing (SR) for IPV6 (SRV6) techniques for steering user plane (UP) traffic through a set of user plane functions (UPFS) with traffic handling information
JP7165784B1 (ja) * 2021-06-24 2022-11-04 ソフトバンク株式会社 通信システム、プログラム、及び通信制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554059B (zh) * 2013-11-12 2016-10-11 Using a distributed network of large number of nodes in the MPLS network architecture
US11212850B2 (en) * 2019-06-19 2021-12-28 Cisco Technology, Inc. Network slice support of respective transport protocols

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200128469A1 (en) * 2018-10-19 2020-04-23 Huawei Technologies Co., Ltd. Method and system for network routing
US11095559B1 (en) * 2019-09-18 2021-08-17 Cisco Technology, Inc. Segment routing (SR) for IPV6 (SRV6) techniques for steering user plane (UP) traffic through a set of user plane functions (UPFS) with traffic handling information
US20210126831A1 (en) * 2019-10-24 2021-04-29 Cisco Technology, Inc. METHOD AND APPARATUS FOR MOBILE PACKET CORE MECHANISM FOR GiLAN NETWORK SLICES WITH SEGMENT ROUTING
JP7165784B1 (ja) * 2021-06-24 2022-11-04 ソフトバンク株式会社 通信システム、プログラム、及び通信制御方法

Also Published As

Publication number Publication date
TWI802503B (zh) 2023-05-11
TW202312711A (zh) 2023-03-16

Similar Documents

Publication Publication Date Title
EP2252011B1 (en) Scalable routing policy construction using dynamic redefinition of routing preference value
CN106464564B (zh) 用于网络分组封装和路由的方法、系统和计算机可读介质
CN114584465A (zh) 在公共云中执行在线服务
CN108259347B (zh) 一种报文传输方法和装置
CN109547349B (zh) 基于虚拟路由的流量管理方法、装置、终端及存储介质
CN109729012B (zh) 一种单播报文传输方法和装置
US10348668B2 (en) Overlay network over a messaging network
CN107547346B (zh) 一种报文传输方法和装置
JP2016019052A (ja) パケット処理装置、制御プログラム、及びパケット処理装置の制御方法
Rodriguez-Natal et al. Programmable overlays via openoverlayrouter
US10243851B2 (en) System and method for forwarder connection information in a content centric network
CN114640557A (zh) 网关以及云网络系统
EP3829111A1 (en) Dynamic mapping of nodes responsible for monitoring traffic of an evolved packet core
JP5601067B2 (ja) 中継装置
WO2023038115A1 (ja) 通信システム、ゲートウェイ、コントローラ、及びプログラム
US9929951B1 (en) Techniques for using mappings to manage network traffic
WO2022270609A1 (ja) 通信システム、プログラム、及び通信制御方法
JP2023041588A (ja) 通信システム、ゲートウェイ、コントローラ、及びプログラム
CN116939035A (zh) 数据处理方法、装置、电子设备以及存储介质
JP7274633B2 (ja) 通信システム、コントローラ、プログラム、及び情報処理方法
WO2023042759A1 (ja) 通信システム、コントローラ、プログラム、及び情報処理方法
JP7216788B1 (ja) 通信システム
JP2024031200A (ja) 情報処理装置、プログラム、及び情報処理方法
US20230421499A1 (en) Packet transmission method and apparatus
CN112468600B (zh) 一种基于网络矩阵的应用消息通知方法、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE