WO2023038053A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2023038053A1
WO2023038053A1 PCT/JP2022/033527 JP2022033527W WO2023038053A1 WO 2023038053 A1 WO2023038053 A1 WO 2023038053A1 JP 2022033527 W JP2022033527 W JP 2022033527W WO 2023038053 A1 WO2023038053 A1 WO 2023038053A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
layer
emitting layer
display device
Prior art date
Application number
PCT/JP2022/033527
Other languages
French (fr)
Japanese (ja)
Inventor
若彦 金子
之人 齊藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202280060613.7A priority Critical patent/CN117916656A/en
Priority to JP2023546964A priority patent/JPWO2023038053A1/ja
Publication of WO2023038053A1 publication Critical patent/WO2023038053A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a liquid crystal display device.
  • a liquid crystal display device has red, green, and blue light-emitting layers (color conversion layers and wavelength conversion layers), and external light excites the red, green, and blue light-emitting layers to emit light, thereby displaying an image.
  • a transflective liquid crystal display device having a reflective mode for displaying and a transmissive mode for displaying an image by exciting light-emitting layers of red, green, and blue to emit light using a backlight unit as an excitation light source.
  • a transflective liquid crystal display device displays an image in a bright place by exciting the light-emitting layer mainly by external light, and displays an image in a dark place by exciting the light-emitting layer mainly by a backlight unit. can be done.
  • Patent Document 1 discloses a wavelength conversion layer that receives external light incident from the viewing side and outputs wavelength-converted light, a liquid crystal layer that is disposed on the viewing side of the wavelength conversion layer, and a wavelength conversion layer. a polarizing layer disposed between the layer and the liquid crystal layer; and a reflective layer disposed on the opposite side of the wavelength conversion layer from the viewing side and reflecting the light from the wavelength conversion layer.
  • This document describes a liquid crystal display device in which the light passes through the polarizing layer and the liquid crystal layer and is emitted to the viewing side, and that a backlight is provided on the side opposite to the viewing side of the transmissive portion.
  • the surface of the light-emitting layer has the property of reflecting part of the light, there was a problem that outside light would be reflected on the surface of the light-emitting layer, especially outdoors, and the contrast would not be high.
  • An object of the present invention is to solve such problems, and to provide a semi-transmissive liquid crystal display device which has a small difference in color gamut between the reflection mode and the transmission mode and has high contrast even under external light. It is in.
  • the present invention solves the problem with the following configuration.
  • a liquid crystal display device including a backlight unit and a liquid crystal panel, the liquid crystal panel includes, from the backlight side, a first polarizer, a liquid crystal cell, and a second polarizer; Between the backlight unit and the liquid crystal cell, there is further provided a light-emitting layer that emits light when excited by light emitted from the backlight unit and also excited by external light incident from the outside of the liquid crystal display device to emit light. , Having a ⁇ / 4 retardation layer between the first polarizer and the light emitting layer, A liquid crystal display device having a visible light reflecting layer between a light emitting layer and a backlight unit.
  • the liquid crystal display according to [1] which has a color absorption layer that absorbs light in at least a part of the wavelength range other than the wavelength emitted by the light-emitting layer and the excitation wavelength of the light-emitting layer, on the viewing side of the light-emitting layer.
  • Device. [3] The liquid crystal display device according to [1] or [2], wherein the backlight unit emits light having a wavelength that excites the light-emitting layer.
  • the light-emitting layer has a red light-emitting region that excites and emits red light, a green light-emitting region that excites and emits green light, and a blue light-emitting region that excites and emits blue light, [1] to [4]
  • the liquid crystal display device according to any one of 1.
  • the present invention it is possible to provide a transflective liquid crystal display device that has high light utilization efficiency, a small difference in color gamut between reflection mode and transmission mode, and high contrast even under external light.
  • FIG. 2 is a diagram for explaining the operation of the liquid crystal display device shown in FIG. 1 in a reflective mode
  • FIG. 2 is a diagram for explaining the operation of the liquid crystal display device shown in FIG. 1 in a transmission mode
  • FIG. FIG. 4 is a diagram conceptually showing another example of the liquid crystal display device of the present invention
  • It is a graph showing the relationship between wavelength and transmittance.
  • It is a graph showing the relationship between wavelength and intensity of fluorescence.
  • 2 is a diagram conceptually showing the configuration of a liquid crystal display device of Comparative Example 1.
  • FIG. 3 is a diagram conceptually showing the configuration of a liquid crystal display device of Comparative Example 2.
  • FIG. 1 is a diagram for explaining the operation of the liquid crystal display device shown in FIG. 1 in a reflective mode
  • FIG. 2 is a diagram for explaining the operation of the liquid crystal display device shown in FIG. 1 in a transmission mode
  • FIG. FIG. 4 is a diagram conceptually
  • the numerical range represented by “-” means a range including the numerical values before and after "-” as lower and upper limits.
  • “(meth)acrylate” is a notation representing both acrylate and methacrylate
  • “(meth)acryloyl group” is a notation representing both an acryloyl group and a methacryloyl group
  • “(Meth)acrylic” is a notation representing both acrylic and methacrylic.
  • terms such as “same” and “same” shall include the margin of error generally accepted in the technical field.
  • angles mean that the difference from the exact angle is within a range of less than 5 degrees, unless otherwise specified.
  • the difference from the exact angle is preferably less than 4 degrees, more preferably less than 3 degrees.
  • the liquid crystal display device of the present invention is A liquid crystal display device including a backlight unit and a liquid crystal panel, the liquid crystal panel includes, from the backlight side, a first polarizer, a liquid crystal cell, and a second polarizer; Between the backlight unit and the liquid crystal cell, there is further provided a light-emitting layer that emits light when excited by light emitted from the backlight unit and also excited by external light incident from the outside of the liquid crystal display device to emit light. , Having a ⁇ / 4 retardation layer between the first polarizer and the light emitting layer, The liquid crystal display device has a visible light reflecting layer between the light emitting layer and the backlight unit. Embodiments of the liquid crystal display device of the present invention will be described below with reference to the drawings.
  • FIG. 1 shows a diagram conceptually showing an example of the configuration of the liquid crystal display device of the present invention.
  • the liquid crystal display device 100 shown in FIG. 1 includes a backlight unit 101, a glass substrate 111, a visible light reflecting layer 121, a red light emitting region 131R, a green light emitting region 131G and a blue light emitting region 131R, which are separated by partition walls 132 and arranged in the plane direction.
  • a light-emitting layer 131 having a light-emitting region 131B, a ⁇ /4 retardation layer 141, a first polarizer 151, a barrier layer 190, a transparent electrode 161, an alignment film 171, a liquid crystal layer 180, and an alignment film 172.
  • transparent electrodes 162R, 162G and 162B arranged in the plane direction separated by a black matrix 192, the glass substrate 112, and the second polarizer 152 in this order.
  • the laminate from the first polarizer 151 to the second polarizer 152 including the liquid crystal layer 180 is the liquid crystal panel 105 of the present invention. Also, the laminate from the glass substrate 112 to the barrier layer 190 is the liquid crystal cell 106 in the present invention.
  • the liquid crystal display device 100 of the present invention has a light-emitting layer 131 between the backlight unit 101 and the liquid crystal panel 105 . Further, a ⁇ /4 retardation layer 141 is provided between the first polarizer 151 and the light emitting layer 131 .
  • the liquid crystal display device 100 shown in FIG. 1 has the visible light reflecting layer 121 between the light emitting layer 131 and the backlight unit 101 as a preferred embodiment.
  • the visible light reflecting layer 121 reflects at least the wavelength of the light emitted by the light emitting layer 131 and transmits the light of the wavelength of the excitation light that excites the light emitting layer 131 .
  • FIG. 2A and 2B are diagrams for explaining the action of the liquid crystal display device 100 in the reflective mode
  • FIGS. 3A and 3B are diagrams for explaining the action of the liquid crystal display device 100 in the transmissive mode. 2 and 3, illustration of some members is omitted for explanation.
  • FIG. 2 shows a portion corresponding to a certain pixel of the liquid crystal display device 100.
  • the light emitting layer 131 includes only one of red light emitting region 131R, green light emitting region 131G and blue light emitting region 131B. is shown.
  • FIG. 2 is a diagram for explaining the case where this pixel is lit.
  • the liquid crystal display device 100 in the reflective mode, does not turn on the backlight unit and uses external light I0 to display an image. Specifically, as indicated by the row of arrows in the middle of FIG. 2, external light I 0 enters the liquid crystal display device 100 from the second polarizer 152 side, which is the viewing side. Since the incident external light is basically unpolarized, it is converted into linearly polarized light in the transmission axis direction of the second polarizer 152 by passing through the second polarizer 152 . The light converted to linearly polarized light passes through liquid crystal cell 106 .
  • the liquid crystal cell 106 changes the alignment state of liquid crystal molecules by applying a voltage to the liquid crystal layer 180, thereby rotating the polarization direction of linearly polarized light and transmitting it. In the illustrated example, when the corresponding pixel is lit, the liquid crystal cell 106 rotates the polarization direction of the linearly polarized light by 90° and transmits the light.
  • the linearly polarized light that has passed through the liquid crystal cell 106 enters the first polarizer 151 .
  • the transmission axis of the first polarizer 151 is orthogonal to the transmission axis of the second polarizer 152 . Since the polarization direction of the linearly polarized light transmitted through the second polarizer 152 is rotated by 90° by the liquid crystal cell 106 , the linearly polarized light incident on the first polarizer 151 is transmitted through the first polarizer 151 .
  • the linearly polarized light transmitted through the first polarizer 151 enters the ⁇ /4 retardation layer 141 .
  • the ⁇ /4 retardation layer 141 converts linearly polarized light transmitted through the first polarizer 151 into circularly polarized light. In the illustrated example, as an example, conversion into clockwise circularly polarized light (right circularly polarized light) will be described. The right-handed circularly polarized light converted by the ⁇ /4 retardation layer 141 enters the light-emitting layer 131 .
  • the circularly polarized light incident on the light-emitting layer 131 includes a wavelength that excites the light-emitting layer 131 , such as ultraviolet (UV) light, and excites the light-emitting layer 131 .
  • the light I 1 emitted by the light emitting layer 131 has no directivity and travels in various directions. Also, the emitted light I1 is unpolarized. Of the light I 1 emitted by the light emitting layer 131 , the light emitted toward the viewing side enters the ⁇ /4 retardation layer 141 as it is.
  • the light emitted toward the backlight unit 101 enters the visible light reflecting layer 121 arranged between the light emitting layer 131 and the backlight unit 101, and is reflected toward the viewing side.
  • the visible light reflecting layer 121 By having the visible light reflecting layer 121, the utilization efficiency of the light I 1 emitted by the light emitting layer 131 can be improved.
  • the light I 1 emitted from the light-emitting layer 131 enters the ⁇ /4 retardation layer 141 either directly or after being reflected by the visible light reflecting layer 121 . Since the light I 1 is non-polarized, the light I 1 passes through the ⁇ /4 retardation layer 141 while remaining non-polarized. The light I 1 that has passed through the ⁇ /4 retardation layer 141 enters the first polarizer 151 and is converted into linearly polarized light. The light converted to linearly polarized light passes through liquid crystal cell 106 . The liquid crystal cell 106 rotates the polarization direction of the linearly polarized light by 90° and transmits it.
  • the linearly polarized light that has passed through the liquid crystal cell 106 enters the second polarizer 152 . Since the transmission axis of the second polarizer 152 is orthogonal to the transmission axis of the first polarizer 151 , the linearly polarized light I 2 whose polarization direction is rotated 90° by the liquid crystal cell 106 is transmitted through the second polarizer 152 . and emitted from the liquid crystal display device 100 .
  • the excitation light may reach the light-emitting layer 131 without being blocked, but the light emitted by the light-emitting layer 131 is The light is converted into linearly polarized light by , passes through the liquid crystal cell 106 while maintaining the polarization direction, enters the second polarizer 152 , and is blocked. Therefore, the light emitted by the light emitting layer 131 is not emitted from the liquid crystal display device 100, and this pixel does not light up.
  • the liquid crystal display device 100 can display an image by turning on or off each pixel with the liquid crystal cell 106 .
  • the surface of the light-emitting layer 131 has the property of reflecting light, part of the external light is reflected on the surface of the light-emitting layer 131 . Since light in the visible light region is reflected on the surface of the light-emitting layer 131, when the light reflected by the surface of the light-emitting layer 131 is emitted from the viewing side of the liquid crystal display device 100, the difference in brightness and color between pixels is increased. The difference becomes small and the contrast is lowered.
  • the liquid crystal display device 100 of the present invention has the ⁇ /4 retardation layer 141 between the first polarizer 151 and the light emitting layer 131 .
  • the ⁇ /4 retardation layer 141 between the first polarizer 151 and the light emitting layer 131 .
  • This left-handed circularly polarized light enters the ⁇ /4 retardation layer 141 and is converted into linearly polarized light, which is converted into linearly polarized light in a direction orthogonal to the polarization direction of the linearly polarized light before being reflected. That is, the left-handed circularly polarized light is converted into linearly polarized light with a polarization direction perpendicular to the transmission axis of the first polarizer 151 . Therefore, this linearly polarized light does not pass through the first polarizer 151 and is shielded. Thereby, it is possible to suppress the light reflected by the surface of the light emitting layer 131 from being emitted from the liquid crystal display device 100 .
  • the backlight unit 101 lights up and emits light I3 having a wavelength that excites the light-emitting layer 131, eg, ultraviolet (UV).
  • a wavelength that excites the light-emitting layer 131 eg, ultraviolet (UV).
  • UV ultraviolet
  • the backlight unit 101 lights up and emits light I3 having a wavelength that excites the light-emitting layer 131, eg, ultraviolet (UV).
  • at least light having an excitation wavelength such as ultraviolet (UV) passes through the visible light reflecting layer 121 and enters the light emitting layer 131 .
  • the light I 4 emitted by the light-emitting layer 131 enters the ⁇ /4 retardation layer 141 either directly or after being reflected by the visible light reflecting layer 121 .
  • the light I 4 passes through the ⁇ /4 retardation layer 141 while remaining unpolarized.
  • the light I 4 that has passed through the ⁇ /4 retardation layer 141 enters the first polarizer 151 and is converted into linearly polarized light.
  • the light converted to linearly polarized light passes through liquid crystal cell 106 .
  • the liquid crystal cell 106 rotates the polarization direction of the linearly polarized light by 90° and transmits it.
  • the linearly polarized light that has passed through the liquid crystal cell 106 enters the second polarizer 152 .
  • the linearly polarized light I 5 whose polarization direction is rotated 90° by the liquid crystal cell 106 is transmitted through the second polarizer 152 . and emitted from the liquid crystal display device 100 .
  • each pixel can be lit or extinguished to display an image.
  • the transmission mode if external light is present, the effects of the reflection mode shown in FIG. 2 are also superimposed. That is, the light-emitting layer 131 is excited by both external light and light from the backlight unit to emit light.
  • the light-emitting layer 131 When there is external light, part of the external light is reflected on the surface of the light emitting layer 131, as in the case of the reflection mode described above. If the ⁇ /4 retardation layer 141 is not provided, the light reflected by the surface of the light-emitting layer 131 is emitted from the liquid crystal display device 100, resulting in a decrease in contrast, as in the case of the reflective mode. do. Moreover, in the transmissive mode, the light-emitting layer 131 is excited by both the outside light and the light from the backlight unit, so the amount of light emitted from the light-emitting layer 131 is greater than in the reflective mode.
  • the ratio of the light emitted by the light-emitting layer and the light reflected by the surface of the light-emitting layer is different from that in the reflection mode.
  • a color gamut difference occurs between the reflective mode and the transmissive mode.
  • the liquid crystal display device 100 of the present invention has the ⁇ /4 retardation layer 141 between the first polarizer 151 and the light emitting layer 131 . Accordingly, even in the transmissive mode, it is possible to suppress the light reflected by the surface of the light emitting layer 131 from being emitted from the liquid crystal display device 100, thereby suppressing a decrease in contrast. In addition, since the light reflected by the surface of the light-emitting layer 131 can be suppressed from being emitted from the liquid crystal display device 100, the light emitted by the light-emitting layer and the light reflected by the surface of the light-emitting layer can be suppressed in the reflection mode and the transmission mode. The difference in ratio to light is reduced, and the difference in color gamut between the reflective mode and the transmissive mode can be reduced.
  • the visible light reflecting layer 121 is provided between the light-emitting layer 131 and the backlight unit 101 as a preferred embodiment, but the liquid crystal display device of the present invention includes the visible light reflecting layer 121. You don't have to. As described above, by having the visible light reflecting layer 121, the utilization efficiency of the light emitted by the light emitting layer 131 can be improved.
  • the liquid crystal display device of the present invention may have a color absorption layer between the second polarizer and the light emitting layer that absorbs light in at least part of the wavelength range other than the wavelength emitted by the light emitting layer.
  • FIG. 4 shows a conceptual diagram of another example of the liquid crystal display device of the present invention.
  • the liquid crystal display device 200 shown in FIG. 4 includes a backlight unit 201, a glass substrate 211, a visible light reflecting layer 221, a red light emitting region 231R, a green light emitting region 231G and a blue light emitting region 231R, which are separated by partition walls 232 and arranged in the plane direction.
  • a light-emitting layer 231 having a light-emitting region 231B, a ⁇ /4 retardation layer 241, a first polarizer 251, a barrier layer 290, a transparent electrode 261, an alignment film 271, a liquid crystal layer 280, and an alignment film 272.
  • transparent electrodes 262R, 262G and 262B arranged in the plane direction separated by a black matrix 292, a glass substrate 212, a color absorption layer 242, and a second polarizer 252 in this order.
  • the liquid crystal display device 200 shown in FIG. 4 has the same configuration as that of the liquid crystal display device 100 shown in FIG.
  • the color absorption layer 242 absorbs light in at least part of the wavelength range other than the wavelength emitted by the light emitting layer 231 and the excitation wavelength of the light emitting layer 231 .
  • FIG. 6 which is a graph of the emission intensity of the light-emitting layer in Examples described later, the phosphor used as the light-emitting layer 231 often emits light with a sharp peak.
  • the color absorption layer 242 that absorbs light in a wavelength range other than the peak wavelength and light in a wavelength range other than the excitation wavelength of the light emitting layer 231 between the light emitting layer 231 and the second polarizer 252
  • the color absorption layer 242 that absorbs light in a wavelength range other than the peak wavelength and light in a wavelength range other than the excitation wavelength of the light emitting layer 231 between the light emitting layer 231 and the second polarizer 252
  • light having a wavelength other than the wavelength emitted by the light-emitting layer 231 can be absorbed and prevented from being emitted from the liquid crystal display device 200 . This makes it possible to further suppress a decrease in contrast and further reduce the difference in color gamut between the reflective mode and the transmissive mode.
  • the color absorption layer 242 does not absorb the light of the wavelength emitted by the light emitting layer 231 , the excitation wavelength component of the external light incident from the second polarizer 252 side can be transmitted and made incident on the light emitting layer 231 . , and the light-emitting layer 231 can be properly excited to emit light.
  • the color absorption layer 242 is arranged between the second polarizer 252 and the glass substrate 212, but the configuration is not limited to this.
  • the color absorption layer 242 may be arranged on the viewer side from the light emitting layer 231, for example, it may be between the light emitting layer 231 and the ⁇ /4 retardation layer 241, or the ⁇ /4 retardation layer 241 and the first polarizer 251 .
  • the protective film of the polarizer 252 may be used as a color absorption layer because the thickness can be made thinner.
  • the first polarizer and the second polarizer are linear polarizers, have unidirectional polarization axes, and have the function of transmitting specific linearly polarized light.
  • a general linear polarizer such as an absorption polarizer containing an iodine compound and a reflective polarizer such as a wire grid can be used.
  • the polarization axis is synonymous with the transmission axis.
  • the absorbing polarizing plate for example, any of an iodine polarizing plate, a dye polarizing plate using a dichroic dye, and a polyene polarizing plate can be used.
  • Iodine-based polarizing plates and dye-based polarizing plates are generally produced by allowing polyvinyl alcohol to adsorb iodine or a dichroic dye and stretching the resultant.
  • a well-known liquid crystal cell can be mentioned as a liquid crystal cell.
  • the drive mode of the liquid crystal cell is not particularly limited, and specific examples include IPS (In Plane Switching) mode, FFS (Fringe Field Switching) mode, VA (Vertical Alignment) mode, TN (Twisted Nematic) mode, and the like. mode can be mentioned.
  • the liquid crystal cell selects whether the linearly polarized light transmitted through the polarizer is transmitted while maintaining the polarization direction or transmitted with the polarization direction rotated by 90°, depending on whether the voltage is turned on or off.
  • the liquid crystal cell 106 includes a liquid crystal layer and an electrode pair (a transparent electrode 161 and a transparent electrode 162) for applying a voltage to the liquid crystal layer, as well as an electrode pair (a transparent electrode 161 and a transparent electrode 162) for applying a voltage to the liquid crystal layer.
  • Alignment films 171 and 172 for aligning liquid crystal molecules, a glass substrate 112, a barrier layer 190, a photospacer 195, and the like may be provided.
  • the barrier layer 190 is a barrier layer against impurities diffusing from the light emitting layer and the ⁇ /4 layer into the liquid crystal cell.
  • a known ⁇ /4 retardation layer can be used as the ⁇ /4 retardation layer.
  • the ⁇ /4 retardation layer is preferably configured using a material whose birefringence is inversely dispersed. As a result, the ⁇ /4 retardation layer can handle light with a wide band of wavelengths.
  • the ⁇ /4 retardation layer converts linearly polarized light into circularly polarized light, and also converts circularly polarized light into linearly polarized light.
  • the light-emitting layer is excited by light emitted from the backlight unit to emit light, and is also excited by external light incident from the outside of the liquid crystal display device to emit light, thereby converting the wavelength of light.
  • the light-emitting layer may have a plurality of light-emitting regions that emit light of different wavelengths corresponding to each pixel.
  • the light-emitting layer includes a red light-emitting region 131R that emits red light when excited by ultraviolet light, a green light-emitting region 131G that emits green light, and a blue light-emitting region that emits blue light. 131B, respectively.
  • partition walls (black matrix) 132 are provided to partition each light emitting region.
  • the light-emitting layer As the light-emitting layer (light-emitting region), various known light-emitting layers (wavelength conversion layers) in which a phosphor is dispersed in a matrix such as a curable resin can be used.
  • the light-emitting layer converts at least part of the excitation light into red, green, or blue light due to the effect of the phosphor contained therein. Wavelength-converted and emitted.
  • the excitation wavelength for exciting the light-emitting layer is preferably in the ultraviolet region.
  • ultraviolet light means light having a central wavelength in a wavelength band of 200 nm or more and 380 nm or less
  • blue light means light having a central wavelength in a wavelength band of 400 nm or more and 500 nm or less.
  • Light is light having an emission central wavelength in a wavelength band of more than 500 nm and not more than 600 nm
  • red light is light having an emission central wavelength in a wavelength band of more than 600 nm and not more than 680 nm.
  • the phosphor is at least excited by incident excitation light and emits fluorescence.
  • the type of phosphor contained in the fluorescent layer is not particularly limited, and various known phosphors may be appropriately selected according to the required wavelength conversion performance.
  • Examples of such phosphors include organic fluorescent dyes and organic fluorescent pigments, phosphors obtained by doping phosphates, aluminates, metal oxides with rare earth ions, metal sulfides, metal nitrides, and the like.
  • Examples include a phosphor obtained by doping a semiconducting substance with activation ions, and a phosphor utilizing a quantum confinement effect known as a quantum dot.
  • quantum dots which have a narrow emission spectrum width, can realize a light source with excellent color reproducibility when used in a display, and have excellent emission quantum efficiency, are preferably used in the present invention.
  • quantum dots for example, paragraphs 0060 to 0066 of JP-A-2012-169271 can be referred to, but they are not limited to those described here. Moreover, a commercial item can be used for a quantum dot without any restrictions.
  • the emission wavelength of quantum dots can usually be adjusted by the composition and size of the particles.
  • the phosphors are preferably uniformly dispersed in the matrix, but may be unevenly distributed in the matrix. Moreover, only 1 type may be used for fluorescent substance and it may use 2 or more types together. When two or more phosphors are used together, two or more phosphors having different wavelengths of emitted light may be used.
  • quantum dot a so-called quantum rod or a tetrapod-type quantum dot, which has a rod-like shape and emits polarized light with directivity, may be used.
  • Suitable matrix materials include epoxies, acrylates, norbornenes, polyethylenes, poly(vinyl butyral): poly(vinyl acetate), polyureas, polyurethanes; aminosilicones (AMS), polyphenylmethylsiloxanes, polyphenylalkylsiloxanes, polydiphenyl Silicones and silicone derivatives, including but not limited to siloxanes, polydialkylsiloxanes, silsesquioxanes, fluorinated silicones, and vinyl- and hydride-substituted silicones; including but not limited to methyl methacrylate, butyl methacrylate, and lauryl methacrylate styrenic polymers such as polystyrene, aminopolystyrene (APS), and poly(acrylonitrile ethylene styrene) (AES); polymers crosslinked with di
  • a polymerizable composition (coating composition) containing two or more polymerizable compounds may be cured as the matrix of the light-emitting layer.
  • the matrix that forms the light-emitting layer in other words, the polymerizable composition that forms the light-emitting layer, may contain necessary components such as viscosity modifiers and solvents, if necessary.
  • the polymerizable composition that forms the light-emitting layer is a polymerizable composition for forming the light-emitting layer.
  • the amount of the matrix resin may be appropriately determined according to the type of functional material contained in the light-emitting layer.
  • the thickness of the light-emitting layer may also be appropriately determined according to the type and application of the light-emitting layer.
  • the thickness of the light-emitting layer is preferably 5 to 200 ⁇ m, more preferably 10 to 150 ⁇ m, from the viewpoint of handleability and light emission properties.
  • the thickness of the light-emitting layer is intended to be the average thickness, and the average thickness is obtained by measuring the thickness of the light-emitting layer at 10 or more arbitrary points and arithmetically averaging them.
  • a polymerization initiator e.g., a silane coupling agent, or the like may be added to the polymerizable composition that forms the light-emitting layer.
  • the backlight unit emits light having an excitation wavelength that excites the light-emitting layer.
  • the backlight unit is preferably a planar light source that emits planar light.
  • the backlight unit may have a light source that emits excitation light and a light guide plate that guides and planarly emits the excitation light emitted from the light source. They may be arranged in a plane.
  • a light-emitting diode As a light source, a light-emitting diode, a laser light source, or the like having a central wavelength in the excitation wavelength band can be used.
  • the excitation wavelength is in the ultraviolet region
  • an ultraviolet light emitting diode that emits ultraviolet light may be used as the light source.
  • the backlight unit may have a diffusion film that diffuses light, a reflector that is arranged on the side opposite to the emission surface side, and the like.
  • the visible light reflecting layer reflects at least the wavelength of the light emitted by the light-emitting layer, and has a wavelength-selective reflectivity of transmitting the light of the wavelength of the excitation light that excites the light-emitting layer.
  • a laminate (so-called dielectric multilayer film) is preferably used.
  • the dielectric multilayer film has a structure in which optically anisotropic layers and isotropic layers are alternately laminated.
  • a film in which layers with a low refractive index (low refractive index layers) and layers with a high refractive index (high refractive index layers) are alternately laminated has a structural structure between many low refractive index layers and high refractive index layers. Interference is known to reflect certain wavelengths of light.
  • the wavelength reflected by the dielectric multilayer film and the reflectance can be adjusted by the refractive index difference between the low refractive index layer and the high refractive index layer, thickness, lamination layers, and the like.
  • the reflectance increases as the number of layers of the low refractive index layer and the number of the high refractive index layers increases, the reflectance can be adjusted by adjusting the number of layers.
  • the width of the reflection band can be adjusted by the difference in refractive index between the low refractive index layer and the high refractive index layer.
  • the visible light reflective layer includes, for example, an R reflective layer that reflects red light emitted by the luminescent layer, a G reflective layer that reflects green light emitted by the luminescent layer, and a blue reflective layer that reflects blue light emitted by the luminescent layer.
  • a configuration having a B reflective layer may also be used.
  • the refractive index difference between the low-refractive-index layer and the high-refractive-index layer of the dielectric multilayer film as each reflective layer, the thickness, the lamination layers, etc. are adjusted, and the selective reflection central wavelength of each reflective layer is adjusted.
  • a desired range may be obtained.
  • the bandwidth of the reflection peak in the dielectric multilayer film depends on the difference between the refractive index in the slow axis direction of the optically anisotropic layer and the refractive index of the isotropic layer. Increased bandwidth. Therefore, by adjusting the difference between the refractive index in the slow axis direction of the optically anisotropic layer and the refractive index of the isotropic layer to adjust the bandwidth of the reflection peak in the dielectric multilayer film, The reflection bandwidth can be adjusted (widened).
  • Materials that are particularly preferably used as the dielectric multilayer film include PEN (polyethylene naphthalate) and PET (polyethylene terephthalate) as the optically anisotropic layer, and (isotropically adjusted d) PEN, PET and PMMA (polymethyl methacrylate resin).
  • the dielectric multilayer film can be formed by conventionally known methods such as stretching and extrusion molding. Further, in the case of a configuration having a plurality of dielectric multilayer films, after forming each dielectric multilayer film, the dielectric multilayer films may be bonded together to form a visible light reflecting layer. Alternatively, the thickness before processing may be adjusted so that a plurality of different dielectric multilayer films are formed, and the plurality of dielectric multilayer films may be integrally formed by stretching, extrusion molding, or the like.
  • the thickness of the dielectric multilayer film is preferably in the range of 2.0-50 ⁇ m, more preferably in the range of 8.0-30 ⁇ m.
  • a cholesteric liquid crystal layer means a layer in which a cholesteric liquid crystal phase is fixed.
  • the cholesteric liquid crystal layer may be any layer as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained.
  • the cholesteric liquid crystal layer is a layer obtained by aligning a polymerizable liquid crystal compound in a cholesteric liquid crystal phase, polymerizing it by ultraviolet irradiation or heating, and curing it.
  • the cholesteric liquid crystal layer is preferably a layer that has no fluidity, and at the same time, is a layer that has been changed to a state in which an external field or external force does not cause a change in the alignment state.
  • the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal compound in the layer may no longer exhibit liquid crystallinity.
  • the polymerizable liquid crystal compound may be polymerized by a curing reaction and no longer have liquid crystallinity.
  • Cholesteric liquid crystal phases are known to exhibit selective reflectivity at specific wavelengths.
  • the selective reflection central wavelength of the cholesteric liquid crystal phase becomes longer as the helical pitch becomes longer.
  • the helical pitch is one pitch of the helical structure of the cholesteric liquid crystal phase (the period of the helical structure), in other words, one turn of the helical structure.
  • the helical pitch is the length in the helical axis direction at which the director of the liquid crystal compound constituting the cholesteric liquid crystal phase (long axis direction in the case of a rod-like liquid crystal compound) rotates 360°.
  • the helical pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the liquid crystal compound and the addition concentration of the chiral agent when forming the cholesteric liquid crystal layer. Therefore, a desired helical pitch can be obtained by adjusting these. That is, when the cholesteric liquid crystal layer is used as the visible light reflecting layer, the type of chiral agent and the additive concentration of the chiral agent are adjusted so that the central wavelength of selective reflection of the cholesteric liquid crystal layer is in the range including the emission wavelength of the light emitting layer. It is sufficient to adjust the helical pitch of the cholesteric liquid crystal phase by adjusting.
  • the visible light reflecting layer includes, for example, a cholesteric liquid crystal layer that reflects red light emitted by the light emitting layer, a cholesteric liquid crystal layer that reflects green light emitted by the light emitting layer, and a blue light that is reflected by the light emitting layer.
  • a configuration including a cholesteric liquid crystal layer may be employed.
  • the type of chiral agent used in forming each cholesteric liquid crystal layer and the concentration of the chiral agent added are adjusted so that the central wavelength of selective reflection of each cholesteric liquid crystal layer falls within the desired range.
  • the helical pitch of the cholesteric liquid crystal phase may be adjusted.
  • the cholesteric liquid crystal phase exhibits selective reflectivity for either left or right circularly polarized light at a specific wavelength. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction (sense) of the spiral of the cholesteric liquid crystal phase.
  • the selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the spiral of the cholesteric liquid crystal phase is twisted to the right, and reflects left circularly polarized light when the spiral is twisted to the left.
  • the visible light reflecting layer consists of a cholesteric liquid crystal layer that reflects right-handed circularly polarized light in a wavelength range including the emission wavelength of the light emitting layer, and the light emitting wavelength of the light emitting layer.
  • a cholesteric liquid crystal layer that reflects left-handed circularly polarized light in a wavelength range including for example, a cholesteric liquid crystal layer that reflects right-handed circularly polarized red light emitted by the light-emitting layer, a cholesteric liquid crystal layer that reflects left-handed circularly polarized red light emitted by the light-emitting layer, and a cholesteric liquid crystal layer that reflects right-handed circularly polarized green light emitted by the light-emitting layer.
  • a reflecting cholesteric liquid crystal layer a cholesteric liquid crystal layer reflecting left-handed circularly polarized green light emitted by the light-emitting layer, a cholesteric liquid crystal layer reflecting right-handed circularly polarized blue light emitted by the light-emitting layer, and blue light emitted by the light-emitting layer.
  • a configuration having a cholesteric liquid crystal layer that reflects left-handed circularly polarized light is preferable.
  • the direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer and/or the type of chiral agent added.
  • the width of the selective reflection band can be controlled by adjusting ⁇ n.
  • ⁇ n can be adjusted by the type and mixing ratio of the liquid crystal compounds forming the cholesteric liquid crystal layer, and the temperature during orientation fixation. Therefore, the wavelength bandwidth can be adjusted by adjusting the type and mixing ratio of the liquid crystal compounds, the temperature at the time of orientation fixation, and the like to adjust the half width ⁇ of the selective reflection band.
  • the reflective layer may be configured to have two or more cholesteric liquid crystal layers with different selective reflection wavelengths.
  • the reflective layer By forming the reflective layer into a structure in which two or more cholesteric liquid crystal layers having different selective reflection wavelengths are laminated, the reflection band of the reflective layer can be widened.
  • a cholesteric liquid crystal layer is prepared by dissolving a liquid crystal compound, a chiral agent, a polymerization initiator, and a surfactant added as necessary in a solvent. It can be formed by applying it to the formed base layer, drying it to obtain a coating film, orienting the liquid crystal compound in the coating film, and irradiating the coating film with an actinic ray to cure the liquid crystal composition. .
  • the visible light reflective layer has a plurality of cholesteric liquid crystal layers
  • the layers are peeled off from the support and bonded together to form a plurality of cholesteric liquid crystal layers.
  • a visible light reflecting layer having a structure in which liquid crystal layers are laminated may be formed.
  • the next cholesteric liquid crystal layer is sequentially formed on the previously formed cholesteric liquid crystal layer so that a plurality of cholesteric liquid crystal layers are laminated. You may form the visible light reflection layer which has.
  • liquid crystal compound used for forming the cholesteric liquid crystal layer
  • various known rod-like liquid crystal compounds and discotic liquid crystal compounds are used.
  • a polymerizable liquid crystal compound is preferable.
  • liquid crystal compound Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), U.S. Pat. No. 4,683,327, U.S. Pat. 22586, WO 1995/24455, WO 1997/00600, WO 1998/23580, WO 1998/52905, WO 2016/194327 and WO 2016/052367 Publications, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469 and JP-A-11-80081, and JP-A-2001-328973, etc. Compounds are exemplified.
  • the liquid crystal composition may contain two or more liquid crystal compounds.
  • the content of the liquid crystal compound in the liquid crystal composition is not particularly limited, but is preferably 80 to 99.9% by mass, and preferably 84 to 99.9% by mass based on the solid content mass (mass excluding the solvent) of the liquid crystal composition. 5% by mass is more preferable, and 87 to 99% by mass is even more preferable.
  • chiral agent Various known chiral agents can be used.
  • a chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the induced helical sense or helical pitch is different, so it may be selected depending on the purpose.
  • the force by which the chiral agent induces the helical structure of the cholesteric liquid crystal phase is called helical twisting power (HTP).
  • HTP helical twisting power
  • Examples of chiral agents include Liquid Crystal Device Handbook (Chapter 3, Section 4-3, Chiral Agents for TN and STN, page 199, Japan Society for the Promotion of Science, 142nd Committee, 1989), and JP-A-2003-287623. Publications, JP-A-2002-302487, JP-A-2002-80478, JP-A-2002-80851, JP-A-2010-181852 and JP-A-2014-034581 and the like are exemplified. be.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially chiral compound or planar chiral compound that does not contain an asymmetric carbon atom can also be used as the chiral agent. Examples of axially or planarly chiral compounds include binaphthyl, helicene, paracyclophane and derivatives thereof.
  • the chiral agent may have a polymerizable group.
  • the polymerization reaction of the polymerizable chiral agent and the polymerizable liquid crystal compound produces a repeating unit derived from the polymerizable liquid crystal compound and a repeating unit derived from the chiral agent.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same type of group as the polymerizable group possessed by the polymerizable liquid crystal compound.
  • the chiral agent may be a liquid crystal compound.
  • the chiral agent may also be a chiral agent that undergoes re-isomerization, dimerization, isomerization and dimerization, etc. upon irradiation with light, thereby changing HTP.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, relative to the total molar amount of the liquid crystal compound.
  • the liquid crystal composition further contains a polymerization initiator, a cross-linking agent, an alignment control agent, a surfactant, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a coloring material, and a metal. Oxide fine particles and the like may be contained within a range that does not degrade the optical performance.
  • the liquid crystal composition may contain a solvent.
  • the color absorption layer absorbs light in at least a part of the wavelength range other than the wavelength emitted by the light emitting layer and the excitation wavelength of the light emitting layer.
  • a material that absorbs light in a predetermined wavelength range may be used as the light absorption layer.
  • the resin may contain a light absorbing material.
  • a light absorbing material For example, when the light to be absorbed is visible light, a colored resin material, paper, an inorganic material, or the like can be used as the absorption layer.
  • the light-absorbing material is not limited, and known light-absorbing materials can be used depending on the wavelength range to be absorbed. For example, when the light to be absorbed is visible light, known light absorbers such as inorganic pigments, organic pigments such as insoluble azo pigments, and dyes such as azo and anthraquinone can be used.
  • the inorganic pigment is a composite oxide pigment, for example, cobalt green (TiO2.CoO.NiO.ZrO2 or CoO.Cr2O3.TiO2.Al2O3 ) is exemplified for green , and cobalt for blue .
  • Blue CoO.Al 2 O 3
  • red iron oxide (Fe 2 O 3 ).
  • Lead molybdate, lead chromate, and their mixtures are exemplified as materials having blue-green absorption.
  • the light absorption layer may be configured to have two or more light absorption materials that absorb light in different wavelength ranges.
  • the light-absorbing layer includes a light-absorbing material that exhibits absorption in a wavelength range between the wavelength at which the red light-emitting region emits light and the wavelength at which the green light-emitting region emits light, the wavelength at which the green light-emitting region emits light, and the By having a light-absorbing material that exhibits absorption in a wavelength range between the wavelength at which the light is emitted, the light in at least a part of the wavelength range other than the wavelength at which the light-emitting layer emits light and the excitation wavelength of the light-emitting layer is absorbed. shall be allowed.
  • the thickness of the light absorption layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 1 to 3 ⁇ m.
  • Example 1 ⁇ Production of the first laminate> A first laminate 102 portion of the liquid crystal display device 100 as shown in FIG. 1 was produced as follows. Non-alkali glass having a thickness of 0.5 mm was used as the glass substrate 111 . On the glass substrate 111, a visible light reflecting layer 121 having a property of transmitting light having a transmission wavelength of about 385 nm as shown in FIG.
  • grid-like partition walls 132 with a height of 10 ⁇ m and an opening size of 100 ⁇ 300 ⁇ m were formed on the visible light reflecting layer 121 by photolithography using a photosensitive black resist.
  • a red light-emitting region 131R, a green light-emitting region 131G, and a blue light-emitting region 131B are formed by photolithography using a phosphor resist having an excitation wavelength of 385 nm in the openings corresponding to the RGB pixels of the grid-like partition wall 132, and a light-emitting layer is formed. 131 was formed.
  • FIG. 6 shows the optical properties of the phosphor resist used.
  • a laminated film of the ⁇ /4 retardation layer 141 and the first polarizer 151 was transferred onto the light-emitting layer 131 in a predetermined optical axis direction.
  • the first polarizer 151 a polarizing element obtained by dyeing a PVA (polyvinyl alcohol) resin with a dichroic dye as described below was used.
  • PVA polyvinyl alcohol
  • first polarizer > 0.01% of the dye of compound (1), 0.01% of the dye (red, 2BP; C.I. Direct Red 81) manufactured by Toa Kasei Co., Ltd., and 0 of the dye represented by the following structural formula (2) 0.03%, 0.03% of the dye represented by the following structural formula (3), and 0.1% of Glauber's salt in an aqueous solution at 45° C., and polyvinyl alcohol (PVA) with a thickness of 75 ⁇ m as a substrate for 4 minutes. Soaked.
  • the dye of compound (1) 0.01% of the dye (red, 2BP; C.I. Direct Red 81) manufactured by Toa Kasei Co., Ltd.
  • the dye represented by the following structural formula (2) 0.03%
  • 0.03% of the dye represented by the following structural formula (3) 0.03%
  • Glauber's salt in an aqueous solution at 45° C.
  • PVA polyvinyl alcohol
  • This film was stretched 5 times in a 3% boric acid aqueous solution at 50°C, washed with water while maintaining tension, and dried to obtain a neutral color (gray in the parallel position and black in the orthogonal position). 1 polarizer 151 was obtained.
  • a barrier layer 190 was formed by coating and baking a transparent resin on the first polarizer 151 . Further, an ITO (indium tin oxide) film was formed as a transparent electrode 161 on the barrier layer 190 by sputtering.
  • ITO indium tin oxide
  • a portion of the second laminate 103 of the liquid crystal display device 100 as shown in FIG. 1 was manufactured as follows.
  • As the glass substrate 112 non-alkali glass having a thickness of 0.5 mm, which is the same as the glass substrate 111, was used.
  • a black matrix 192 was formed on the glass substrate 112 in a shape corresponding to the partition walls 132 of the first laminate 102 by photolithography.
  • an ITO film was formed by sputtering and etched in stripes so as to have a shape corresponding to the RGB pixels of the first laminate 102 to form transparent electrodes 162R, 162G and 162B corresponding to each pixel.
  • photospacers 195 having a height of 5 ⁇ m and a diameter of 10 ⁇ m were formed at the position of the black matrix with an appropriate density to form the second laminate 103 .
  • a polyimide film was applied to the transparent electrode side surface of each of the first laminated body 102 and the second laminated body 103 produced, and baked.
  • the polyimide film formed on the first laminate 102 was subjected to optical rubbing so that the alignment axis coincided with the optical axis of the first polarizer 151 to form an alignment film 171 .
  • the polyimide film formed on the second laminate 103 was subjected to optical rubbing so that the alignment axis was perpendicular to the optical axis of the first polarizer 151 to form an alignment film 172 .
  • a UV curing epoxy resin was dispensed so as to surround along the edge of the surface of the alignment film 172 side of the second laminate 103 to prepare a sealing pattern.
  • ODF one drop fill
  • a twisted nematic liquid crystal material is dropped on the alignment film 172 side of the second laminate 103, and placed in a vacuum so that the alignment film 171 side of the first laminate 102 is on the liquid crystal side. They were laminated together and the edge epoxy resin was UV-cured and sealed.
  • a liquid crystal layer 180 was formed by subjecting the liquid crystal material to a low temperature treatment at a predetermined temperature for initial alignment treatment.
  • the second polarizer 152 was attached to the surface of the glass substrate 112 opposite to the liquid crystal layer 180 with an adhesive so that the optical axis coincided with the light distribution axis of the alignment film 172 .
  • LED light-emitting diode
  • PCB polychlorinated biphenyl
  • a liquid crystal display device 100 was produced by arranging the backlight unit 101 on the glass substrate 111 side of the laminate produced above.
  • Example 2 A liquid crystal display device 200 as shown in FIG. 4 was manufactured in the same manner as in Example 1, except that the color absorption layer 242 was arranged between the glass substrate 212 and the second polarizer 252 as follows. After encapsulating the liquid crystal layer 280, a color absorption layer 242 having light absorption characteristics as shown in FIG. Next, the second polarizer 252 was pasted on the color absorption layer 242 with an adhesive so that the optical axis coincided with the light distribution axis of the alignment film 272 .
  • Example 1 A liquid crystal display device as shown in FIG. 8 was manufactured in the same manner as in Example 1 except that the ⁇ /4 retardation layer was not provided and the visible light reflecting layer was changed to a reflecting layer 321 formed as follows. bottom.
  • a first laminate 302 portion of the liquid crystal display device 300 as shown in FIG. 8 was manufactured as follows. Non-alkali glass with a thickness of 0.5 mm was used as the glass substrate 311 . An aluminum film having a thickness of 100 nm was formed on the glass substrate 311 by sputtering, and the reflective layer 321 was formed by etching leaving half of each pixel region.
  • grid-like partition walls 332 with a height of 10 ⁇ m and an opening size of 100 ⁇ 300 ⁇ m were formed on the reflective layer 321 by photolithography using a photosensitive black resist.
  • a red light-emitting region 331R, a green light-emitting region 331G, and a blue light-emitting region 331B are formed by photolithography using a phosphor resist having an excitation wavelength of 385 nm in the openings corresponding to the RGB pixels of the grid-like partition wall 132, and a light-emitting layer is formed.
  • 331 was formed.
  • the optical properties of the phosphor resist used are the same as those shown in FIG.
  • the first polarizer 351 was transferred onto the light-emitting layer 331 in a predetermined optical axis direction.
  • a barrier layer 390 was formed by coating and baking a transparent resin on the first polarizer 351 .
  • a transparent electrode 361 was formed on the barrier layer 390 by sputtering an ITO film.
  • Example 2 A liquid crystal display device was produced in the same manner as in Example 1, except that the ⁇ /4 retardation layer was not provided.
  • CM700d manufactured by Minolta
  • the backlight unit was turned on and adjusted to a luminance of 10000 cd/m 2 .
  • the voltage applied to the liquid crystal layer was 5 V applied to the pixels other than the color to be measured to turn them off, so that each color of RGB was lit in a single color, and the color coordinates were measured.
  • the color coordinates of each of RGB were measured using a CM700d (manufactured by Minolta) in a reflection mode using external light with an indirect illuminance of about 100,000 lx.
  • the voltage applied to the liquid crystal layer was 5 V applied to the pixels other than the color to be measured to turn them off, so that each color of RGB was lit in a single color, and the color coordinates were measured.
  • a spectrometer (Minolta CM700d) was used to measure the light reflected from the surface or inside of the liquid crystal display device from the light source built into the spectrometer. .
  • Contrast in reflection mode using ambient light with an indirect illumination of about 100000 lx was measured with SR-UL1R (Topcon). With the backlight unit turned on, the contrast was defined as the luminance ratio between the voltage applied to all pixels of 5 V for all black and the voltage applied to all pixels of 0 V for all white.
  • liquid crystal display device 101 201, 301, 401 backlight unit 102, 202, 302 first laminate 103, 203, 303 second laminate 105, 205, 305, 405 liquid crystal panel 106, 206 , 306 liquid crystal cell 111, 112, 211, 212, 311, 312, 411, 412 glass substrate 121, 221 visible light reflecting layer 131, 231, 331 light emitting layer 131R, 231R, 331R red light emitting region 131G, 231G, 331G green light emitting Regions 131B, 231B, 331B Blue light-emitting regions 132, 232, 332 Partitions 141, 241 ⁇ /4 retardation layer 242 Color absorption layer 151, 251, 351, 451 First polarizer 152, 252, 352, 452 Second polarizer 161, 162R, 162G, 162B, 261, 262R, 262G, 262B, 361, 362R, 362G,

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

The purpose of the present invention is to provide a semi-transmissive liquid crystal display device which has high light utilization efficiency and in which the difference in color gamut between a reflective mode and a transmissive mode is small, and contrast is high in external light. This liquid crystal display device includes a backlight unit (101) and a liquid crystal panel (105), the liquid crystal panel (105) including a first polarizer (151), a liquid crystal layer (180), and a second polarizer (152) in the stated order from the backlight unit (101) side, and the liquid crystal display device furthermore having, between the backlight unit (101) and the liquid crystal panel (105), a light-emitting layer (131) that emits light as a result of being excited by light emitted from the backlight unit (101), and also emits light as a result of being excited by external light incident from outside the liquid crystal display device, and having a λ/4 phase difference layer (141) between the first polarizer (151) and the light-emitting layer (131).

Description

液晶表示装置liquid crystal display
 本発明は、液晶表示装置に関する。 The present invention relates to a liquid crystal display device.
 液晶表示装置において、赤、緑及び青の各色の発光層(色変換層、波長変換層)を有し、外光によって赤、緑及び青の各色の発光層を励起して発光させて画像を表示する反射モードと、バックライトユニットを励起光源として、赤、緑及び青の各色の発光層を励起して発光させ画像を表示する透過モードとを有する半透過型の液晶表示装置が開示されている。半透過型の液晶表示装置は、明るい場所では、主に外光によって発光層を励起して画像を表示し、暗い場所では、主にバックライトユニットによって発光層を励起して画像を表示することができる。 A liquid crystal display device has red, green, and blue light-emitting layers (color conversion layers and wavelength conversion layers), and external light excites the red, green, and blue light-emitting layers to emit light, thereby displaying an image. Disclosed is a transflective liquid crystal display device having a reflective mode for displaying and a transmissive mode for displaying an image by exciting light-emitting layers of red, green, and blue to emit light using a backlight unit as an excitation light source. there is A transflective liquid crystal display device displays an image in a bright place by exciting the light-emitting layer mainly by external light, and displays an image in a dark place by exciting the light-emitting layer mainly by a backlight unit. can be done.
 例えば、特許文献1には、視認側から入射してくる外光を受けて波長変換された光を出力する波長変換層と、波長変換層よりも視認側に配置された液晶層と、波長変換層と液晶層との間に配置された偏光層と、波長変換層の視認側とは反対側に配置され、波長変換層からの光を反射する反射層と、を備え、反射層で反射された光が、偏光層、液晶層を通過して、視認側に射出する液晶表示装置が記載されており、透過部の視認側とは反対側にバックライトが設けられることも記載されている。 For example, Patent Document 1 discloses a wavelength conversion layer that receives external light incident from the viewing side and outputs wavelength-converted light, a liquid crystal layer that is disposed on the viewing side of the wavelength conversion layer, and a wavelength conversion layer. a polarizing layer disposed between the layer and the liquid crystal layer; and a reflective layer disposed on the opposite side of the wavelength conversion layer from the viewing side and reflecting the light from the wavelength conversion layer. This document describes a liquid crystal display device in which the light passes through the polarizing layer and the liquid crystal layer and is emitted to the viewing side, and that a backlight is provided on the side opposite to the viewing side of the transmissive portion.
特開2020-109425号公報Japanese Patent Application Laid-Open No. 2020-109425
 発光層は、その表面が一部の光を反射する性質を持つため、特に屋外では、発光層の表面で外光が反射されてしまい、コントラストが高くならないという問題があった。 Since the surface of the light-emitting layer has the property of reflecting part of the light, there was a problem that outside light would be reflected on the surface of the light-emitting layer, especially outdoors, and the contrast would not be high.
 また、特許文献1に記載されるような半透過型の液晶表示装置においては、反射モードと透過モードとで色域に差が生じて見え方が異なってしまうという問題があった。具体的には、上記のとおり、発光層の表面で外光が反射されてしまうため、周囲の明るさによって、液晶表示装置から出射される光のRGBの比率が変わってしまう。そのため、反射モードと透過モードとで色域に差が生じてしまう。 In addition, in the transflective liquid crystal display device as described in Patent Document 1, there is a problem that the appearance differs due to the difference in color gamut between the reflective mode and the transmissive mode. Specifically, as described above, external light is reflected on the surface of the light-emitting layer, so the ratio of RGB of light emitted from the liquid crystal display device changes depending on the brightness of the surroundings. Therefore, a difference occurs in the color gamut between the reflective mode and the transmissive mode.
 本発明の課題は、このような問題点を解決することにあり、反射モードと透過モードとで色域の差が小さく、外光下でもコントラストが高い半透過型の液晶表示装置を提供することにある。 An object of the present invention is to solve such problems, and to provide a semi-transmissive liquid crystal display device which has a small difference in color gamut between the reflection mode and the transmission mode and has high contrast even under external light. It is in.
 本発明は、以下の構成によって課題を解決する。 The present invention solves the problem with the following configuration.
 [1] バックライトユニットと、液晶パネルとを含む、液晶表示装置であって、
 液晶パネルが、バックライト側から、第1偏光子と、液晶セルと、第2偏光子とを含み、
 バックライトユニットと液晶セルとの間に、バックライトユニットから出射される光により励起されて発光し、液晶表示装置の外側から入射される外光によっても励起されて発光する発光層をさらに有し、
 第1偏光子と発光層との間にλ/4位相差層を有し、
 発光層とバックライトユニットとの間に、可視光反射層を有する、液晶表示装置。
 [2] 発光層よりも視認側に、発光層が発光する波長および発光層の励起波長以外の少なくとも一部の波長域の光を吸収する色吸収層を有する、[1]に記載の液晶表示装置。
 [3] バックライトユニットは、発光層を励起する波長を含む光を出射する、[1]または[2]に記載の液晶表示装置。
 [4] 発光層は、蛍光体を含む、[1]~[3]のいずれかに記載の液晶表示装置。
 [5] 発光層は、赤色光を励起発光する赤色発光領域と、緑色光を励起発光する緑色発光領域と、青色光を励起発光する青色発光領域と、を有する、[1]~[4]のいずれかに記載の液晶表示装置。
[1] A liquid crystal display device including a backlight unit and a liquid crystal panel,
the liquid crystal panel includes, from the backlight side, a first polarizer, a liquid crystal cell, and a second polarizer;
Between the backlight unit and the liquid crystal cell, there is further provided a light-emitting layer that emits light when excited by light emitted from the backlight unit and also excited by external light incident from the outside of the liquid crystal display device to emit light. ,
Having a λ / 4 retardation layer between the first polarizer and the light emitting layer,
A liquid crystal display device having a visible light reflecting layer between a light emitting layer and a backlight unit.
[2] The liquid crystal display according to [1], which has a color absorption layer that absorbs light in at least a part of the wavelength range other than the wavelength emitted by the light-emitting layer and the excitation wavelength of the light-emitting layer, on the viewing side of the light-emitting layer. Device.
[3] The liquid crystal display device according to [1] or [2], wherein the backlight unit emits light having a wavelength that excites the light-emitting layer.
[4] The liquid crystal display device according to any one of [1] to [3], wherein the light-emitting layer contains a phosphor.
[5] The light-emitting layer has a red light-emitting region that excites and emits red light, a green light-emitting region that excites and emits green light, and a blue light-emitting region that excites and emits blue light, [1] to [4] The liquid crystal display device according to any one of 1.
 本発明によれば、光の利用効率が高く、反射モードと透過モードとで色域の差が小さく、外光下でもコントラストが高い半透過型の液晶表示装置を提供することができる。 According to the present invention, it is possible to provide a transflective liquid crystal display device that has high light utilization efficiency, a small difference in color gamut between reflection mode and transmission mode, and high contrast even under external light.
本発明の液晶表示装置の構成の一例を概念的に示す図である。It is a figure which shows notionally an example of a structure of the liquid crystal display device of this invention. 図1に示す液晶表示装置の反射モードにおける作用を説明するための図である。2 is a diagram for explaining the operation of the liquid crystal display device shown in FIG. 1 in a reflective mode; FIG. 図1に示す液晶表示装置の透過モードにおける作用を説明するための図である。2 is a diagram for explaining the operation of the liquid crystal display device shown in FIG. 1 in a transmission mode; FIG. 本発明の液晶表示装置の他の一例を概念的に示す図である。FIG. 4 is a diagram conceptually showing another example of the liquid crystal display device of the present invention; 波長と透過率との関係を表すグラフである。It is a graph showing the relationship between wavelength and transmittance. 波長と蛍光の強度との関係を表すグラフである。It is a graph showing the relationship between wavelength and intensity of fluorescence. 波長と輝度との関係を表すグラフである。It is a graph showing the relationship between wavelength and luminance. 比較例1の液晶表示装置の構成を概念的に示す図である。2 is a diagram conceptually showing the configuration of a liquid crystal display device of Comparative Example 1. FIG. 比較例2の液晶表示装置の構成を概念的に示す図である。3 is a diagram conceptually showing the configuration of a liquid crystal display device of Comparative Example 2. FIG.
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本明細書において、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの両方を表す表記であり、「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の両方を表す表記であり、「(メタ)アクリル」とは、アクリル及びメタクリルの両方を表す表記である。
 本明細書において、「同一」、「同じ」等の用語は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、角度についての「同一」、「同じ」等の用語は、特に記載がなければ、厳密な角度との差異が5度未満の範囲内であることを意味する。厳密な角度との差異は、4度未満であることが好ましく、3度未満であることがより好ましい。
The present invention will be described in detail below. In this specification, the numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
Further, in this specification, "(meth)acrylate" is a notation representing both acrylate and methacrylate, and "(meth)acryloyl group" is a notation representing both an acryloyl group and a methacryloyl group, "(Meth)acrylic" is a notation representing both acrylic and methacrylic.
In this specification, terms such as "same" and "same" shall include the margin of error generally accepted in the technical field. In this specification, terms such as "same" and "same" with respect to angles mean that the difference from the exact angle is within a range of less than 5 degrees, unless otherwise specified. The difference from the exact angle is preferably less than 4 degrees, more preferably less than 3 degrees.
[液晶表示装置]
 本発明の液晶表示装置は、
 バックライトユニットと、液晶パネルとを含む、液晶表示装置であって、
 液晶パネルが、バックライト側から、第1偏光子と、液晶セルと、第2偏光子とを含み、
 バックライトユニットと液晶セルとの間に、バックライトユニットから出射される光により励起されて発光し、液晶表示装置の外側から入射される外光によっても励起されて発光する発光層をさらに有し、
 第1偏光子と発光層との間にλ/4位相差層を有し、
 発光層とバックライトユニットとの間に、可視光反射層を有する、液晶表示装置である。
 以下に、本発明の液晶表示装置の実施形態について図面を参照して説明する。
[Liquid crystal display device]
The liquid crystal display device of the present invention is
A liquid crystal display device including a backlight unit and a liquid crystal panel,
the liquid crystal panel includes, from the backlight side, a first polarizer, a liquid crystal cell, and a second polarizer;
Between the backlight unit and the liquid crystal cell, there is further provided a light-emitting layer that emits light when excited by light emitted from the backlight unit and also excited by external light incident from the outside of the liquid crystal display device to emit light. ,
Having a λ / 4 retardation layer between the first polarizer and the light emitting layer,
The liquid crystal display device has a visible light reflecting layer between the light emitting layer and the backlight unit.
Embodiments of the liquid crystal display device of the present invention will be described below with reference to the drawings.
 図1に、本発明の液晶表示装置の構成の一例を概念的に表す図を示す。
 図1に示す液晶表示装置100は、バックライトユニット101と、ガラス基板111と、可視光反射層121と、隔壁132によって隔てられ面方向に配列される赤色発光領域131R、緑色発光領域131Gおよび青色発光領域131Bを有する発光層131と、λ/4位相差層141と、第1偏光子151と、バリア層190と、透明電極161と、配向膜171と、液晶層180と、配向膜172と、ブラックマトリクス192によって隔てられ面方向に配列される透明電極162R、162Gおよび162Bと、ガラス基板112と、第2偏光子152と、をこの順に有する。
FIG. 1 shows a diagram conceptually showing an example of the configuration of the liquid crystal display device of the present invention.
The liquid crystal display device 100 shown in FIG. 1 includes a backlight unit 101, a glass substrate 111, a visible light reflecting layer 121, a red light emitting region 131R, a green light emitting region 131G and a blue light emitting region 131R, which are separated by partition walls 132 and arranged in the plane direction. A light-emitting layer 131 having a light-emitting region 131B, a λ/4 retardation layer 141, a first polarizer 151, a barrier layer 190, a transparent electrode 161, an alignment film 171, a liquid crystal layer 180, and an alignment film 172. , transparent electrodes 162R, 162G and 162B arranged in the plane direction separated by a black matrix 192, the glass substrate 112, and the second polarizer 152 in this order.
 図1に示す例において、液晶層180を含む第1偏光子151から第2偏光子152までの積層体が、本発明における液晶パネル105である。また、ガラス基板112からバリア層190までの積層体が、本発明における液晶セル106である。 In the example shown in FIG. 1, the laminate from the first polarizer 151 to the second polarizer 152 including the liquid crystal layer 180 is the liquid crystal panel 105 of the present invention. Also, the laminate from the glass substrate 112 to the barrier layer 190 is the liquid crystal cell 106 in the present invention.
 図1に示すとおり、本発明の液晶表示装置100は、バックライトユニット101と、液晶パネル105との間に発光層131を有する。また、第1偏光子151と、発光層131との間にλ/4位相差層141を有する。 As shown in FIG. 1, the liquid crystal display device 100 of the present invention has a light-emitting layer 131 between the backlight unit 101 and the liquid crystal panel 105 . Further, a λ/4 retardation layer 141 is provided between the first polarizer 151 and the light emitting layer 131 .
 また、図1に示す液晶表示装置100においては、好ましい態様として、発光層131と、バックライトユニット101との間に可視光反射層121を有する。可視光反射層121は、少なくとも発光層131が発光する光の波長を反射し、発光層131を励起する励起光の波長の光を透過するものである。 In addition, the liquid crystal display device 100 shown in FIG. 1 has the visible light reflecting layer 121 between the light emitting layer 131 and the backlight unit 101 as a preferred embodiment. The visible light reflecting layer 121 reflects at least the wavelength of the light emitted by the light emitting layer 131 and transmits the light of the wavelength of the excitation light that excites the light emitting layer 131 .
 このような液晶表示装置100の作用を図2および図3を用いて説明する。
 図2は、液晶表示装置100の反射モードにおける作用を説明する図であり、図3は、液晶表示装置100の透過モードにおける作用を説明する図である。なお、図2および図3においては、説明のため、一部の部材の図示を省略している。
The operation of such a liquid crystal display device 100 will be described with reference to FIGS. 2 and 3. FIG.
2A and 2B are diagrams for explaining the action of the liquid crystal display device 100 in the reflective mode, and FIGS. 3A and 3B are diagrams for explaining the action of the liquid crystal display device 100 in the transmissive mode. 2 and 3, illustration of some members is omitted for explanation.
 図2は、液晶表示装置100のある画素に対応する部分を示すものであり、図において、発光層131は、赤色発光領域131R、緑色発光領域131Gおよび青色発光領域131Bのいずれかの領域のみを示したものである。図2は、この画素が点灯する場合を説明する図である。 FIG. 2 shows a portion corresponding to a certain pixel of the liquid crystal display device 100. In the figure, the light emitting layer 131 includes only one of red light emitting region 131R, green light emitting region 131G and blue light emitting region 131B. is shown. FIG. 2 is a diagram for explaining the case where this pixel is lit.
 図2に示すように、反射モードにおいては、液晶表示装置100は、バックライトユニットを点灯せず、外光I0を利用して画像を表示する。具体的には、図2の真ん中の矢印の列で示すように、視認側である第2偏光子152側から外光I0が液晶表示装置100に入射する。入射した外光は基本的に無偏光であるため、第2偏光子152を通過することで、第2偏光子152の透過軸方向の直線偏光に変換される。直線偏光に変換された光は液晶セル106を通過する。液晶セル106は、液晶層180への電圧の印加によって、液晶分子の配向状態を変化させることで、直線偏光の偏光方向を回転させて透過するものである。図示例においては、該当する画素を点灯させる場合には、液晶セル106は、直線偏光の偏光方向を90°回転させて透過する。 As shown in FIG. 2, in the reflective mode, the liquid crystal display device 100 does not turn on the backlight unit and uses external light I0 to display an image. Specifically, as indicated by the row of arrows in the middle of FIG. 2, external light I 0 enters the liquid crystal display device 100 from the second polarizer 152 side, which is the viewing side. Since the incident external light is basically unpolarized, it is converted into linearly polarized light in the transmission axis direction of the second polarizer 152 by passing through the second polarizer 152 . The light converted to linearly polarized light passes through liquid crystal cell 106 . The liquid crystal cell 106 changes the alignment state of liquid crystal molecules by applying a voltage to the liquid crystal layer 180, thereby rotating the polarization direction of linearly polarized light and transmitting it. In the illustrated example, when the corresponding pixel is lit, the liquid crystal cell 106 rotates the polarization direction of the linearly polarized light by 90° and transmits the light.
 液晶セル106を透過した直線偏光は、第1偏光子151に入射する。第1偏光子151は、透過軸が第2偏光子152の透過軸と直交するものである。第2偏光子152を透過した直線偏光は、その偏光方向が液晶セル106によって90°回転されているため、第1偏光子151に入射した直線偏光は、第1偏光子151を透過する。第1偏光子151を透過した直線偏光は、λ/4位相差層141に入射する。 The linearly polarized light that has passed through the liquid crystal cell 106 enters the first polarizer 151 . The transmission axis of the first polarizer 151 is orthogonal to the transmission axis of the second polarizer 152 . Since the polarization direction of the linearly polarized light transmitted through the second polarizer 152 is rotated by 90° by the liquid crystal cell 106 , the linearly polarized light incident on the first polarizer 151 is transmitted through the first polarizer 151 . The linearly polarized light transmitted through the first polarizer 151 enters the λ/4 retardation layer 141 .
 λ/4位相差層141は、第1偏光子151を透過した直線偏光を、円偏光に変換する。図示例においては、一例として時計回りの旋回方向の円偏光(右円偏光)に変換するものとして説明する。λ/4位相差層141によって変換された右円偏光は、発光層131に入射する。 The λ/4 retardation layer 141 converts linearly polarized light transmitted through the first polarizer 151 into circularly polarized light. In the illustrated example, as an example, conversion into clockwise circularly polarized light (right circularly polarized light) will be described. The right-handed circularly polarized light converted by the λ/4 retardation layer 141 enters the light-emitting layer 131 .
 発光層131に入射した円偏光は、発光層131を励起する波長、例えば、紫外線(UV)を含んでおり、発光層131を励起する。これにより、発光層131は光I1を発光する。発光層131が発光する光I1は、指向性がないため、種々の方向に進行する。また、発光した光I1は、無偏光である。発光層131が発光した光I1のうち、視認側に向かって発光した光は、そのまま、λ/4位相差層141に入射する。また、バックライトユニット101側に向かって発光した光は、発光層131とバックライトユニット101との間に配置される可視光反射層121に入射し、視認側に向けて反射される。可視光反射層121を有することで、発光層131が発光した光I1の利用効率を向上できる。 The circularly polarized light incident on the light-emitting layer 131 includes a wavelength that excites the light-emitting layer 131 , such as ultraviolet (UV) light, and excites the light-emitting layer 131 . This causes the light emitting layer 131 to emit light I 1 . The light I 1 emitted by the light emitting layer 131 has no directivity and travels in various directions. Also, the emitted light I1 is unpolarized. Of the light I 1 emitted by the light emitting layer 131 , the light emitted toward the viewing side enters the λ/4 retardation layer 141 as it is. Further, the light emitted toward the backlight unit 101 enters the visible light reflecting layer 121 arranged between the light emitting layer 131 and the backlight unit 101, and is reflected toward the viewing side. By having the visible light reflecting layer 121, the utilization efficiency of the light I 1 emitted by the light emitting layer 131 can be improved.
 図2の右側の矢印の列で示すように、発光層131で発光した光I1は直接、あるいは、可視光反射層121で反射されてλ/4位相差層141に入射する。光I1は無偏光であるため、光I1は無偏光のまま、λ/4位相差層141を透過する。λ/4位相差層141を透過した光I1は、第1偏光子151に入射し、直線偏光に変換される。直線偏光に変換された光は液晶セル106を通過する。液晶セル106は、直線偏光の偏光方向を90°回転させて透過する。液晶セル106を透過した直線偏光は、第2偏光子152に入射する。第2偏光子152は、透過軸が第1偏光子151の透過軸と直交するものであるため、液晶セル106によって偏光方向が90°回転されている直線偏光I2は、第2偏光子152を透過し、液晶表示装置100から出射される。 As indicated by the row of arrows on the right side of FIG. 2, the light I 1 emitted from the light-emitting layer 131 enters the λ/4 retardation layer 141 either directly or after being reflected by the visible light reflecting layer 121 . Since the light I 1 is non-polarized, the light I 1 passes through the λ/4 retardation layer 141 while remaining non-polarized. The light I 1 that has passed through the λ/4 retardation layer 141 enters the first polarizer 151 and is converted into linearly polarized light. The light converted to linearly polarized light passes through liquid crystal cell 106 . The liquid crystal cell 106 rotates the polarization direction of the linearly polarized light by 90° and transmits it. The linearly polarized light that has passed through the liquid crystal cell 106 enters the second polarizer 152 . Since the transmission axis of the second polarizer 152 is orthogonal to the transmission axis of the first polarizer 151 , the linearly polarized light I 2 whose polarization direction is rotated 90° by the liquid crystal cell 106 is transmitted through the second polarizer 152 . and emitted from the liquid crystal display device 100 .
 なお、図2においては、画素を点灯させる場合を説明したが、画素を消灯させる場合には、液晶セル106への電圧の印加状態を切り替えて、例えば、図示例では、直線偏光の偏光方向を回転させずに透過する状態にする。これにより、外光I0が第2偏光子152を透過して変換された直線偏光が、液晶セル106を偏光方向を保ったまま透過し、第1偏光子151に入射するが、この直線偏光は偏光方向が、第1偏光子151の透過軸と直交するため、透過されない。そのため、発光層131に光が到達せず、発光しないため、この画素は点灯しない。あるいは、第1偏光子151、第2偏光子152およびλ/4位相差層141は、可視光に最適化されているため、発光層131を励起する紫外線等に対しては、これらの層は十分に作用せず、偏光状態が適正に変換されないため、励起光が遮光されずに、発光層131に到達してしまう場合もあるが、発光層131が発光した光は、第1偏光子151によって直線偏光に変換され、液晶セル106を偏光方向を保ったまま透過し、第2偏光子152に入射して遮光される。そのため、発光層131が発光した光は液晶表示装置100から出射されず、この画素は点灯しない。 In FIG. 2, the case of turning on the pixels has been described. Make it transparent without rotating. As a result, the linearly polarized light converted by the external light I 0 passing through the second polarizer 152 passes through the liquid crystal cell 106 while maintaining the polarization direction, and enters the first polarizer 151. This linearly polarized light is not transmitted because its polarization direction is orthogonal to the transmission axis of the first polarizer 151 . Therefore, light does not reach the light-emitting layer 131 and does not emit light, so this pixel does not light up. Alternatively, since the first polarizer 151, the second polarizer 152, and the λ/4 retardation layer 141 are optimized for visible light, these layers are Since it does not act sufficiently and the polarization state is not properly converted, the excitation light may reach the light-emitting layer 131 without being blocked, but the light emitted by the light-emitting layer 131 is The light is converted into linearly polarized light by , passes through the liquid crystal cell 106 while maintaining the polarization direction, enters the second polarizer 152 , and is blocked. Therefore, the light emitted by the light emitting layer 131 is not emitted from the liquid crystal display device 100, and this pixel does not light up.
 液晶表示装置100は、液晶セル106によって画素ごとに点灯あるいは消灯することで画像を表示することができる。 The liquid crystal display device 100 can display an image by turning on or off each pixel with the liquid crystal cell 106 .
 ここで、発光層131は、その表面が光を反射する性質を持つため、発光層131の表面で外光の一部が反射されてしまう。発光層131の表面では可視光域の光が反射されるため、発光層131の表面で反射された光が液晶表示装置100の視認側から出射されると、画素同士の明暗差および色味の差が小さくなってしまいコントラストが低下してしまう。 Here, since the surface of the light-emitting layer 131 has the property of reflecting light, part of the external light is reflected on the surface of the light-emitting layer 131 . Since light in the visible light region is reflected on the surface of the light-emitting layer 131, when the light reflected by the surface of the light-emitting layer 131 is emitted from the viewing side of the liquid crystal display device 100, the difference in brightness and color between pixels is increased. The difference becomes small and the contrast is lowered.
 これに対して、本発明の液晶表示装置100は、第1偏光子151と発光層131との間にλ/4位相差層141を有する。これにより、発光層131の表面で反射される光が液晶表示装置100から出射されることを抑制し、コントラストが低下することを抑制できる。 On the other hand, the liquid crystal display device 100 of the present invention has the λ/4 retardation layer 141 between the first polarizer 151 and the light emitting layer 131 . As a result, it is possible to suppress the light reflected by the surface of the light-emitting layer 131 from being emitted from the liquid crystal display device 100, thereby suppressing a decrease in contrast.
 具体的には、図2に示すように、液晶表示装置100に入射した外光I0がλ/4位相差層141を透過し、発光層131に入射する際は円偏光に変換されている。そのため、図2の左側の矢印の列で示すように、発光層131の表面で反射された円偏光は、逆の旋回方向の円偏光に変換される。図示例では左円偏光となる。この左円偏光はλ/4位相差層141に入射し直線偏光に変換されるが、反射される前の直線偏光の偏光方向と直交する方向の直線偏光に変換される。すなわち、左円偏光は、第1偏光子151の透過軸と直交する偏光方向の直線偏光に変換される。そのため、この直線偏光は、第1偏光子151を透過せず遮光される。これにより、発光層131の表面で反射される光が液晶表示装置100から出射されることを抑制することができる。 Specifically, as shown in FIG. 2, external light I 0 incident on the liquid crystal display device 100 is transmitted through the λ/4 retardation layer 141 and converted into circularly polarized light when incident on the light emitting layer 131. . Therefore, as indicated by the row of arrows on the left side of FIG. 2, the circularly polarized light reflected by the surface of the light emitting layer 131 is converted into circularly polarized light in the opposite direction of rotation. In the illustrated example, it is left-handed circularly polarized light. This left-handed circularly polarized light enters the λ/4 retardation layer 141 and is converted into linearly polarized light, which is converted into linearly polarized light in a direction orthogonal to the polarization direction of the linearly polarized light before being reflected. That is, the left-handed circularly polarized light is converted into linearly polarized light with a polarization direction perpendicular to the transmission axis of the first polarizer 151 . Therefore, this linearly polarized light does not pass through the first polarizer 151 and is shielded. Thereby, it is possible to suppress the light reflected by the surface of the light emitting layer 131 from being emitted from the liquid crystal display device 100 .
 次に、図3を用いて、液晶表示装置100の透過モードにおける作用を説明する。 Next, the operation of the liquid crystal display device 100 in the transmissive mode will be described with reference to FIG.
 透過モードにおいては、バックライトユニット101が点灯し、発光層131を励起する波長、例えば、紫外線(UV)を含む光I3を出射する。バックライトユニット101が出射した光I3のうち、少なくとも紫外線(UV)等の励起波長の光は可視光反射層121を透過し、発光層131に入射する。これにより、発光層131は光I4を発光する。図2に示す例と同様に、発光層131が発光した光I4は直接、あるいは、可視光反射層121で反射されてλ/4位相差層141に入射する。光I1は無偏光であるため、光I4は無偏光のまま、λ/4位相差層141を透過する。λ/4位相差層141を透過した光I4は、第1偏光子151に入射し、直線偏光に変換される。直線偏光に変換された光は液晶セル106を通過する。液晶セル106は、直線偏光の偏光方向を90°回転させて透過する。液晶セル106を透過した直線偏光は、第2偏光子152に入射する。第2偏光子152は、透過軸が第1偏光子151の透過軸と直交するものであるため、液晶セル106によって偏光方向が90°回転されている直線偏光I5は、第2偏光子152を透過し、液晶表示装置100から出射される。 In the transmissive mode, the backlight unit 101 lights up and emits light I3 having a wavelength that excites the light-emitting layer 131, eg, ultraviolet (UV). Of the light I 3 emitted from the backlight unit 101 , at least light having an excitation wavelength such as ultraviolet (UV) passes through the visible light reflecting layer 121 and enters the light emitting layer 131 . This causes the light-emitting layer 131 to emit light I 4 . As in the example shown in FIG. 2, the light I 4 emitted by the light-emitting layer 131 enters the λ/4 retardation layer 141 either directly or after being reflected by the visible light reflecting layer 121 . Since the light I 1 is unpolarized, the light I 4 passes through the λ/4 retardation layer 141 while remaining unpolarized. The light I 4 that has passed through the λ/4 retardation layer 141 enters the first polarizer 151 and is converted into linearly polarized light. The light converted to linearly polarized light passes through liquid crystal cell 106 . The liquid crystal cell 106 rotates the polarization direction of the linearly polarized light by 90° and transmits it. The linearly polarized light that has passed through the liquid crystal cell 106 enters the second polarizer 152 . Since the transmission axis of the second polarizer 152 is orthogonal to the transmission axis of the first polarizer 151 , the linearly polarized light I 5 whose polarization direction is rotated 90° by the liquid crystal cell 106 is transmitted through the second polarizer 152 . and emitted from the liquid crystal display device 100 .
 なお、反射モードの場合と同様に、液晶セル106への電圧の印加状態を切り替えることで、画素ごとに点灯あるいは消灯して画像を表示することができる。 As in the case of the reflection mode, by switching the voltage application state to the liquid crystal cell 106, each pixel can be lit or extinguished to display an image.
 ここで、透過モードの場合に、外光が存在すると、図2に示した反射モードの作用も重畳して作用する。すなわち、外光とバックライトユニットからの光の両方で発光層131が励起されて発光する。 Here, in the case of the transmission mode, if external light is present, the effects of the reflection mode shown in FIG. 2 are also superimposed. That is, the light-emitting layer 131 is excited by both external light and light from the backlight unit to emit light.
 外光が存在する場合には、上述した反射モードの場合と同様に、外光の一部が発光層131の表面で反射される。λ/4位相差層141を有さない場合には、反射モードの場合と同様に、発光層131の表面で反射された光が液晶表示装置100から出射されてコントラストが低下するという問題が発生する。また、透過モードの場合には、外光とバックライトユニットからの光の両方で発光層131を励起しているため、反射モードの場合よりも発光層131の発光量が多くなる。そのため、発光層が発光した光と発光層の表面で反射された光との比率が、反射モードの場合とは異なるものとなる。これにより、反射モードと透過モードとで色域に差が生じてしまうという問題が生じる。 When there is external light, part of the external light is reflected on the surface of the light emitting layer 131, as in the case of the reflection mode described above. If the λ/4 retardation layer 141 is not provided, the light reflected by the surface of the light-emitting layer 131 is emitted from the liquid crystal display device 100, resulting in a decrease in contrast, as in the case of the reflective mode. do. Moreover, in the transmissive mode, the light-emitting layer 131 is excited by both the outside light and the light from the backlight unit, so the amount of light emitted from the light-emitting layer 131 is greater than in the reflective mode. Therefore, the ratio of the light emitted by the light-emitting layer and the light reflected by the surface of the light-emitting layer is different from that in the reflection mode. As a result, there arises a problem that a color gamut difference occurs between the reflective mode and the transmissive mode.
 これに対して、本発明の液晶表示装置100は、第1偏光子151と発光層131との間にλ/4位相差層141を有する。これにより、透過モードの場合も、発光層131の表面で反射される光が液晶表示装置100から出射されることを抑制し、コントラストが低下することを抑制できる。また、発光層131の表面で反射される光が液晶表示装置100から出射されるのを抑制できるため、反射モードと透過モードとで、発光層が発光した光と発光層の表面で反射された光との比率の差が小さくなり、反射モードと透過モードとの色域の差を小さくすることができる。 On the other hand, the liquid crystal display device 100 of the present invention has the λ/4 retardation layer 141 between the first polarizer 151 and the light emitting layer 131 . Accordingly, even in the transmissive mode, it is possible to suppress the light reflected by the surface of the light emitting layer 131 from being emitted from the liquid crystal display device 100, thereby suppressing a decrease in contrast. In addition, since the light reflected by the surface of the light-emitting layer 131 can be suppressed from being emitted from the liquid crystal display device 100, the light emitted by the light-emitting layer and the light reflected by the surface of the light-emitting layer can be suppressed in the reflection mode and the transmission mode. The difference in ratio to light is reduced, and the difference in color gamut between the reflective mode and the transmissive mode can be reduced.
 なお、図1に示す例では、好ましい態様として、発光層131と、バックライトユニット101との間に可視光反射層121を有するが、本発明の液晶表示装置は、可視光反射層121を有さなくてもよい。前述のとおり、可視光反射層121を有することで、発光層131が発光した光の利用効率を向上することができる。 Note that in the example shown in FIG. 1, the visible light reflecting layer 121 is provided between the light-emitting layer 131 and the backlight unit 101 as a preferred embodiment, but the liquid crystal display device of the present invention includes the visible light reflecting layer 121. You don't have to. As described above, by having the visible light reflecting layer 121, the utilization efficiency of the light emitted by the light emitting layer 131 can be improved.
 また、本発明の液晶表示装置は、第2偏光子と発光層との間に、発光層が発光する波長以外の少なくとも一部の波長域の光を吸収する色吸収層を有する構成としてもよい。
 図4に、本発明の液晶表示装置の他の一例の概念図を示す。
Further, the liquid crystal display device of the present invention may have a color absorption layer between the second polarizer and the light emitting layer that absorbs light in at least part of the wavelength range other than the wavelength emitted by the light emitting layer. .
FIG. 4 shows a conceptual diagram of another example of the liquid crystal display device of the present invention.
 図4に示す液晶表示装置200は、バックライトユニット201と、ガラス基板211と、可視光反射層221と、隔壁232によって隔てられ面方向に配列される赤色発光領域231R、緑色発光領域231Gおよび青色発光領域231Bを有する発光層231と、λ/4位相差層241と、第1偏光子251と、バリア層290と、透明電極261と、配向膜271と、液晶層280と、配向膜272と、ブラックマトリクス292によって隔てられ面方向に配列される透明電極262R、262Gおよび262Bと、ガラス基板212と、色吸収層242と、第2偏光子252と、をこの順に有する。 The liquid crystal display device 200 shown in FIG. 4 includes a backlight unit 201, a glass substrate 211, a visible light reflecting layer 221, a red light emitting region 231R, a green light emitting region 231G and a blue light emitting region 231R, which are separated by partition walls 232 and arranged in the plane direction. A light-emitting layer 231 having a light-emitting region 231B, a λ/4 retardation layer 241, a first polarizer 251, a barrier layer 290, a transparent electrode 261, an alignment film 271, a liquid crystal layer 280, and an alignment film 272. , transparent electrodes 262R, 262G and 262B arranged in the plane direction separated by a black matrix 292, a glass substrate 212, a color absorption layer 242, and a second polarizer 252 in this order.
 図4に示す液晶表示装置200は、色吸収層242を有する以外は図1に示す液晶表示装置100と同様の構成を有するので、同様の構成については説明を省略する。 The liquid crystal display device 200 shown in FIG. 4 has the same configuration as that of the liquid crystal display device 100 shown in FIG.
 色吸収層242は、発光層231が発光する波長および発光層231の励起波長以外の少なくとも一部の波長域の光を吸収するものである。後述する実施例の発光層の発光強度のグラフである図6に示すとおり、発光層231として用いられる蛍光体は、ピークが鋭い光を発光する場合が多い。そのため、ピーク波長以外の波長域の光および発光層231の励起波長以外の波長域の光を吸収する色吸収層242を、発光層231と第2偏光子252との間に配置することで、発光層231の表面で反射した外光のうち、発光層231が発光する波長以外の波長の光を吸収して、液晶表示装置200から出射することを抑制できる。これにより、コントラストの低下をより抑制でき、また、反射モードと透過モードとの色域の差をより小さくすることができる。 The color absorption layer 242 absorbs light in at least part of the wavelength range other than the wavelength emitted by the light emitting layer 231 and the excitation wavelength of the light emitting layer 231 . As shown in FIG. 6, which is a graph of the emission intensity of the light-emitting layer in Examples described later, the phosphor used as the light-emitting layer 231 often emits light with a sharp peak. Therefore, by arranging the color absorption layer 242 that absorbs light in a wavelength range other than the peak wavelength and light in a wavelength range other than the excitation wavelength of the light emitting layer 231 between the light emitting layer 231 and the second polarizer 252, Of the external light reflected on the surface of the light-emitting layer 231 , light having a wavelength other than the wavelength emitted by the light-emitting layer 231 can be absorbed and prevented from being emitted from the liquid crystal display device 200 . This makes it possible to further suppress a decrease in contrast and further reduce the difference in color gamut between the reflective mode and the transmissive mode.
 また、色吸収層242は、発光層231が発光する波長の光を吸収しないので、第2偏光子252側から入射した外光の励起波長成分を透過して、発光層231に入射させることができ、発光層231を適正に励起して発光させることができる。 In addition, since the color absorption layer 242 does not absorb the light of the wavelength emitted by the light emitting layer 231 , the excitation wavelength component of the external light incident from the second polarizer 252 side can be transmitted and made incident on the light emitting layer 231 . , and the light-emitting layer 231 can be properly excited to emit light.
 ここで、図4に示す例では、色吸収層242は、第2偏光子252とガラス基板212との間に配置する構成としたが、これに限定はされない。色吸収層242は、発光層231より視認側に配置されていればよく、例えば、発光層231とλ/4位相差層241との間であってもよいし、λ/4位相差層241と第1偏光子251との間であってもよい。
 厚さをより薄くできる点から、偏光子252の保護フィルムを色吸収層としてもよい。
Here, in the example shown in FIG. 4, the color absorption layer 242 is arranged between the second polarizer 252 and the glass substrate 212, but the configuration is not limited to this. The color absorption layer 242 may be arranged on the viewer side from the light emitting layer 231, for example, it may be between the light emitting layer 231 and the λ/4 retardation layer 241, or the λ/4 retardation layer 241 and the first polarizer 251 .
The protective film of the polarizer 252 may be used as a color absorption layer because the thickness can be made thinner.
 以下、本発明の液晶表示装置の構成要素について説明する。 The constituent elements of the liquid crystal display device of the present invention will be described below.
 <偏光子>
 第1偏光子および第2偏光子は、直線偏光子であり、一方向の偏光軸を有し、特定の直線偏光を透過する機能を有する。
 直線偏光子としては、ヨウ素化合物を含む吸収型偏光板およびワイヤーグリッドなどの反射型偏光板等の一般的な直線偏光板が利用可能である。なお、偏光軸とは、透過軸と同義である。
 吸収型偏光板としては、例えば、ヨウ素系偏光板、二色性染料を利用した染料系偏光板、および、ポリエン系偏光板の、いずれも用いることができる。ヨウ素系偏光板、および染料系偏光板は、一般に、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸することで作製される。
<Polarizer>
The first polarizer and the second polarizer are linear polarizers, have unidirectional polarization axes, and have the function of transmitting specific linearly polarized light.
As the linear polarizer, a general linear polarizer such as an absorption polarizer containing an iodine compound and a reflective polarizer such as a wire grid can be used. The polarization axis is synonymous with the transmission axis.
As the absorbing polarizing plate, for example, any of an iodine polarizing plate, a dye polarizing plate using a dichroic dye, and a polyene polarizing plate can be used. Iodine-based polarizing plates and dye-based polarizing plates are generally produced by allowing polyvinyl alcohol to adsorb iodine or a dichroic dye and stretching the resultant.
 <液晶セル>
 液晶セルとしては、公知の液晶セルを挙げることができる。液晶セルの駆動モードは特に限定されるものではなく、具体例としては、IPS(In Plane Switching)モード、FFS(Fringe Field Switching)モード、VA(Vertical Alignment)モード、TN(Twisted Nematic)モード等各種モードを挙げることができる。
 液晶セルは電圧のオンオフによって、偏光子を透過した直線偏光を、偏光方向を保ったまま透過するか、偏光方向を90°回転させて透過するかを選択する。
<Liquid crystal cell>
A well-known liquid crystal cell can be mentioned as a liquid crystal cell. The drive mode of the liquid crystal cell is not particularly limited, and specific examples include IPS (In Plane Switching) mode, FFS (Fringe Field Switching) mode, VA (Vertical Alignment) mode, TN (Twisted Nematic) mode, and the like. mode can be mentioned.
The liquid crystal cell selects whether the linearly polarized light transmitted through the polarizer is transmitted while maintaining the polarization direction or transmitted with the polarization direction rotated by 90°, depending on whether the voltage is turned on or off.
 図1に示すように、液晶セル106は、通常の液晶セルと同様に、液晶層および液晶層に電圧を印加する電極対(透明電極161および透明電極162)に加えて、液晶層180中の液晶分子を配向する配向膜171、172、ガラス基板112、バリア層190、フォトスペーサ―195等を有していてもよい。バリア層190は、発光層およびλ/4層から液晶セルに拡散する不純物に対するバリア層である。 As shown in FIG. 1, the liquid crystal cell 106 includes a liquid crystal layer and an electrode pair (a transparent electrode 161 and a transparent electrode 162) for applying a voltage to the liquid crystal layer, as well as an electrode pair (a transparent electrode 161 and a transparent electrode 162) for applying a voltage to the liquid crystal layer. Alignment films 171 and 172 for aligning liquid crystal molecules, a glass substrate 112, a barrier layer 190, a photospacer 195, and the like may be provided. The barrier layer 190 is a barrier layer against impurities diffusing from the light emitting layer and the λ/4 layer into the liquid crystal cell.
 <λ/4位相差層>
 λ/4位相差層(λ/4板)は、所定の波長λnmにおける面内レターデーション値がRe(λ)=λ/4(または、この奇数倍)を示す板である。この式は、可視光域のいずれかの波長(例えば、550nm)において達成されていればよい。
 λ/4位相差層としては、公知のλ/4位相差層が利用可能である。
<λ/4 retardation layer>
A λ/4 retardation layer (λ/4 plate) is a plate having an in-plane retardation value of Re(λ)=λ/4 (or an odd multiple thereof) at a predetermined wavelength λnm. This formula should be achieved at any wavelength (for example, 550 nm) in the visible light range.
A known λ/4 retardation layer can be used as the λ/4 retardation layer.
 ここで、λ/4位相差層は、複屈折率が逆分散となる材料を用いて構成されていることが好ましい。これにより、λ/4位相差層は広帯域の波長の光に対応できる。 Here, the λ/4 retardation layer is preferably configured using a material whose birefringence is inversely dispersed. As a result, the λ/4 retardation layer can handle light with a wide band of wavelengths.
 λ/4位相差層は、直線偏光を円偏光に変換し、また、円偏光を直線偏光に変換する。 The λ/4 retardation layer converts linearly polarized light into circularly polarized light, and also converts circularly polarized light into linearly polarized light.
 <発光層>
 発光層は、バックライトユニットから出射される光により励起されて発光し、また、液晶表示装置の外側から入射される外光によっても励起されて発光することで光の波長を変換する波長変換層である。発光層は、各画素に対応して異なる波長の光を発光する発光領域を複数、有していてもよい。例えば、図1に示す例のように、発光層は、紫外線により励起されて赤色光を発光する赤色発光領域131Rと、緑色光を発光する緑色発光領域131Gと、青色光を発光する青色発光領域131Bと、をそれぞれ複数有する。また、図1に示す例では、各発光領域を区画する隔壁(ブラックマトリクス)132を有する。
<Light emitting layer>
The light-emitting layer is excited by light emitted from the backlight unit to emit light, and is also excited by external light incident from the outside of the liquid crystal display device to emit light, thereby converting the wavelength of light. is. The light-emitting layer may have a plurality of light-emitting regions that emit light of different wavelengths corresponding to each pixel. For example, as in the example shown in FIG. 1, the light-emitting layer includes a red light-emitting region 131R that emits red light when excited by ultraviolet light, a green light-emitting region 131G that emits green light, and a blue light-emitting region that emits blue light. 131B, respectively. Further, in the example shown in FIG. 1, partition walls (black matrix) 132 are provided to partition each light emitting region.
 発光層(発光領域)としては、蛍光体を硬化性の樹脂等のマトリックス中に分散してなる、種々の公知の発光層(波長変換層)を利用可能である。例えば、外光またはバックライトユニットからの励起光が発光層に入射すると、発光層は、内部に含有する蛍光体の効果により、この励起光の少なくとも一部を赤色光、緑色光あるいは青色光に波長変換して出射する。発光層を励起する励起波長は紫外領域であることが好ましい。 As the light-emitting layer (light-emitting region), various known light-emitting layers (wavelength conversion layers) in which a phosphor is dispersed in a matrix such as a curable resin can be used. For example, when external light or excitation light from a backlight unit is incident on the light-emitting layer, the light-emitting layer converts at least part of the excitation light into red, green, or blue light due to the effect of the phosphor contained therein. Wavelength-converted and emitted. The excitation wavelength for exciting the light-emitting layer is preferably in the ultraviolet region.
 ここで、紫外線とは、200nm以上380nm以下の波長帯域に中心波長を有する光のことであり、~青色光とは、400nm以上500nm以下の波長帯域に中心波長を有する光のことであり、緑色光とは、500nmを超え600nm以下の波長帯域に発光中心波長を有する光のことであり、赤色光とは、600nmを超え680nm以下の波長帯域に発光中心波長を有する光のことである。 Here, ultraviolet light means light having a central wavelength in a wavelength band of 200 nm or more and 380 nm or less, and blue light means light having a central wavelength in a wavelength band of 400 nm or more and 500 nm or less. Light is light having an emission central wavelength in a wavelength band of more than 500 nm and not more than 600 nm, and red light is light having an emission central wavelength in a wavelength band of more than 600 nm and not more than 680 nm.
 蛍光体は、少なくとも、入射する励起光により励起され蛍光を発光する。
 蛍光層に含有される蛍光体の種類には特に限定はなく、求められる波長変換の性能等に応じて、種々の公知の蛍光体を適宜選択すればよい。
 このような蛍光体の例として、例えば有機蛍光染料および有機蛍光顔料の他、リン酸塩やアルミン酸塩、金属酸化物等に希土類イオンをドープした蛍光体、金属硫化物や金属窒化物等の半導体性の物質に賦活性のイオンをドープした蛍光体、量子ドットとして知られる量子閉じ込め効果を利用した蛍光体等が例示される。中でも、発光スペクトル幅が狭く、ディスプレイに用いた場合の色再現性に優れた光源が実現でき、かつ、発光量子効率に優れる量子ドットは、本発明では好適に用いられる。
The phosphor is at least excited by incident excitation light and emits fluorescence.
The type of phosphor contained in the fluorescent layer is not particularly limited, and various known phosphors may be appropriately selected according to the required wavelength conversion performance.
Examples of such phosphors include organic fluorescent dyes and organic fluorescent pigments, phosphors obtained by doping phosphates, aluminates, metal oxides with rare earth ions, metal sulfides, metal nitrides, and the like. Examples include a phosphor obtained by doping a semiconducting substance with activation ions, and a phosphor utilizing a quantum confinement effect known as a quantum dot. Among them, quantum dots, which have a narrow emission spectrum width, can realize a light source with excellent color reproducibility when used in a display, and have excellent emission quantum efficiency, are preferably used in the present invention.
 量子ドットについては、例えば特開2012-169271号公報の段落0060~0066を参照することができるが、ここに記載のものに限定されるものではない。また、量子ドットは、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズにより調節することができる。 Regarding quantum dots, for example, paragraphs 0060 to 0066 of JP-A-2012-169271 can be referred to, but they are not limited to those described here. Moreover, a commercial item can be used for a quantum dot without any restrictions. The emission wavelength of quantum dots can usually be adjusted by the composition and size of the particles.
 蛍光体は、マトリックス中に均一に分散されるのが好ましいが、マトリックス中に偏りをもって分散されてもよい。また、蛍光体は、1種のみを用いてもよいし、2種以上を併用してもよい。
 2種以上の蛍光体を併用する場合には、発光光の波長が異なる2種以上の蛍光体を使用してもよい。
The phosphors are preferably uniformly dispersed in the matrix, but may be unevenly distributed in the matrix. Moreover, only 1 type may be used for fluorescent substance and it may use 2 or more types together.
When two or more phosphors are used together, two or more phosphors having different wavelengths of emitted light may be used.
 また、量子ドットとして、形状がロッド状で指向性を持ち偏光を発する、いわゆる量子ロッドや、テトラポッド型量子ドットを用いてもよい。 Also, as the quantum dot, a so-called quantum rod or a tetrapod-type quantum dot, which has a rod-like shape and emits polarized light with directivity, may be used.
 また、マトリックスは、発光層に用いられる公知のものが各種利用可能である。好適なマトリックス材料には、エポキシ、アクリレート、ノルボルネン、ポリエチレン、ポリ(ビニルブチラール):ポリ(ビニルアセテート)、ポリ尿素、ポリウレタン;アミノシリコーン(AMS)、ポリフェニルメチルシロキサン、ポリフェニルアルキルシロキサン、ポリジフェニルシロキサン、ポリジアルキルシロキサン、シルセスキオキサン、フッ化シリコーン、ならびにビニルおよび水素化物置換シリコーンを含むがこれらに限定されない、シリコーンおよびシリコーン誘導体;メチルメタクリレート、ブチルメタクリレート、およびラウリルメタクリレートを含むがこれらに限定されない、モノマーから形成される、アクリルポリマーおよびコポリマー;ポリスチレン、アミノポリスチレン(APS)、およびポリ(アクリルニトリルエチレンスチレン)(AES)等のスチレン系ポリマー;ジビニルベンゼン等、二官能性モノマーと架橋したポリマー;リガンド材料との架橋に好適な架橋剤、リガンドアミン(例えば、APSまたはPEIリガンドアミン)と結合してエポキシを形成するエポキシド等が挙げられるが、これらに限定されない。 In addition, various known matrices used in the light-emitting layer can be used. Suitable matrix materials include epoxies, acrylates, norbornenes, polyethylenes, poly(vinyl butyral): poly(vinyl acetate), polyureas, polyurethanes; aminosilicones (AMS), polyphenylmethylsiloxanes, polyphenylalkylsiloxanes, polydiphenyl Silicones and silicone derivatives, including but not limited to siloxanes, polydialkylsiloxanes, silsesquioxanes, fluorinated silicones, and vinyl- and hydride-substituted silicones; including but not limited to methyl methacrylate, butyl methacrylate, and lauryl methacrylate styrenic polymers such as polystyrene, aminopolystyrene (APS), and poly(acrylonitrile ethylene styrene) (AES); polymers crosslinked with difunctional monomers such as divinylbenzene; cross-linking agents suitable for cross-linking with ligand materials, epoxides that combine with ligand amines (eg, APS or PEI ligand amines) to form epoxies, and the like.
 また、発光層のマトリックスとして、2種以上の重合性化合物を含む重合性組成物(塗布組成物)を硬化させても良い。 Alternatively, a polymerizable composition (coating composition) containing two or more polymerizable compounds may be cured as the matrix of the light-emitting layer.
 発光層を形成するマトリックス、言い換えれば、発光層となる重合性組成物は、必要に応じて、粘度調節剤や溶媒等の必要な成分を含んでもよい。なお、発光層となる重合性組成物とは、言い換えれば、発光層を形成するための重合性組成物である。 The matrix that forms the light-emitting layer, in other words, the polymerizable composition that forms the light-emitting layer, may contain necessary components such as viscosity modifiers and solvents, if necessary. In other words, the polymerizable composition that forms the light-emitting layer is a polymerizable composition for forming the light-emitting layer.
 発光層において、マトリックスとなる樹脂の量は、発光層が含む機能性材料の種類等に応じて、適宜、決定すればよい。 In the light-emitting layer, the amount of the matrix resin may be appropriately determined according to the type of functional material contained in the light-emitting layer.
 発光層の厚さも、発光層の種類や用途等に応じて、適宜、決定すればよい。発光層が量子ドットを含有する場合には、取り扱い性および発光特性の点で、発光層の厚さは、5~200μmが好ましく、10~150μmがより好ましい。
 なお、発光層の上記厚さは平均厚さを意図し、平均厚さは発光層の任意の10点以上の厚さを測定して、それらを算術平均して求める。
The thickness of the light-emitting layer may also be appropriately determined according to the type and application of the light-emitting layer. When the light-emitting layer contains quantum dots, the thickness of the light-emitting layer is preferably 5 to 200 μm, more preferably 10 to 150 μm, from the viewpoint of handleability and light emission properties.
The thickness of the light-emitting layer is intended to be the average thickness, and the average thickness is obtained by measuring the thickness of the light-emitting layer at 10 or more arbitrary points and arithmetically averaging them.
 なお、発光層となる重合性組成物には、必要に応じて、重合開始剤やシランカップリング剤等を添加してもよい。 If necessary, a polymerization initiator, a silane coupling agent, or the like may be added to the polymerizable composition that forms the light-emitting layer.
 <バックライトユニット>
 バックライトユニットは、発光層を励起する励起波長を含む光を出射するものである。図1に示すように、バックライトユニットは面状の光を出射する面状光源であるのが好ましい。バックライトユニットは、励起光を出射する光源と、光源から出射された励起光を導光して面状に出射する導光板とを有する構成であってもよいし、励起光を出射する光源を面状に配列したものであってもよい。
<Backlight unit>
The backlight unit emits light having an excitation wavelength that excites the light-emitting layer. As shown in FIG. 1, the backlight unit is preferably a planar light source that emits planar light. The backlight unit may have a light source that emits excitation light and a light guide plate that guides and planarly emits the excitation light emitted from the light source. They may be arranged in a plane.
 光源としては励起波長帯域に中心波長を有する発光ダイオード、レーザー光源等を用いることができる。励起波長が紫外領域の波長である場合には、光源として紫外光を発光する紫外線発光ダイオードを用いればよい。 As a light source, a light-emitting diode, a laser light source, or the like having a central wavelength in the excitation wavelength band can be used. When the excitation wavelength is in the ultraviolet region, an ultraviolet light emitting diode that emits ultraviolet light may be used as the light source.
 また、バックライトユニットは、光を拡散する拡散フィルム、出射面側とは反対側に配置される反射板等を有していてもよい。 In addition, the backlight unit may have a diffusion film that diffuses light, a reflector that is arranged on the side opposite to the emission surface side, and the like.
 <可視光反射層>
 可視光反射層は、少なくとも発光層が発光する光の波長を反射し、発光層を励起する励起光の波長の光を透過する波長選択反射性を有するものである。
<Visible light reflective layer>
The visible light reflecting layer reflects at least the wavelength of the light emitted by the light-emitting layer, and has a wavelength-selective reflectivity of transmitting the light of the wavelength of the excitation light that excites the light-emitting layer.
 特定の波長の光を選択的に反射する可視光反射層としては、コレステリック液晶相を固定してなるコレステリック液晶層、または、光学異方性層と等方性層とを交互に複数層積層した積層体(いわゆる誘電体多層膜)が好適に用いられる。 As the visible light reflecting layer that selectively reflects light of a specific wavelength, a cholesteric liquid crystal layer obtained by fixing a cholesteric liquid crystal phase, or a plurality of optically anisotropic layers and isotropic layers alternately laminated. A laminate (so-called dielectric multilayer film) is preferably used.
 <<誘電体多層膜>>
 誘電体多層膜は、光学異方性層と等方性層とを交互に積層した構成を有する。
 屈折率が低い層(低屈折率層)と屈折率が高い層(高屈折率層)とを交互に積層したフィルムは、多数の低屈折率層と高屈折率層との間の構造的な干渉によって、特定の波長の光を反射することが知られている。
<<dielectric multilayer film>>
The dielectric multilayer film has a structure in which optically anisotropic layers and isotropic layers are alternately laminated.
A film in which layers with a low refractive index (low refractive index layers) and layers with a high refractive index (high refractive index layers) are alternately laminated has a structural structure between many low refractive index layers and high refractive index layers. Interference is known to reflect certain wavelengths of light.
 誘電体多層膜が反射する波長、および、反射率は、低屈折率層と高屈折率層との屈折率差、厚み、積層層等によって調整することができる。具体的には、低屈折率層および高屈折率層の厚さdを、反射する光の波長λと屈折率nから、d=λ/(4×n)に設定することで、反射する光の波長λを調整することができる。また、反射率は、低屈折率層および高屈折率層の積層数が多いほど高くなるため、積層数を調整することで反射率を調整することができる。また、反射帯域の幅は、低屈折率層と高屈折率層との屈折率差によって調整することができる。 The wavelength reflected by the dielectric multilayer film and the reflectance can be adjusted by the refractive index difference between the low refractive index layer and the high refractive index layer, thickness, lamination layers, and the like. Specifically, the thickness d of the low refractive index layer and the high refractive index layer is set to d = λ / (4 × n) from the wavelength λ of the reflected light and the refractive index n, so that the reflected light can be adjusted. In addition, since the reflectance increases as the number of layers of the low refractive index layer and the number of the high refractive index layers increases, the reflectance can be adjusted by adjusting the number of layers. Also, the width of the reflection band can be adjusted by the difference in refractive index between the low refractive index layer and the high refractive index layer.
 従って、可視光反射層として誘電体多層膜を用いる場合には、誘電体多層膜の選択反射中心波長が発光層が発光する波長を含む範囲となるように低屈折率層と高屈折率層との屈折率差、厚み、積層層等を調整すればよい。また、可視光反射層は、例えば、発光層が発光した赤色光を反射するR反射層、発光層が発光した緑色光を反射するG反射層、および、発光層が発光した青色光を反射するB反射層を有する構成としてもよい。この場合には、各反射層としての誘電体多層膜の低屈折率層と高屈折率層との屈折率差、厚み、積層層等をそれぞれ調整して各反射層の選択反射中心波長がそれぞれ所望の範囲となるようにすればよい。 Therefore, when a dielectric multilayer film is used as the visible light reflecting layer, the low refractive index layer and the high refractive index layer are combined so that the selective reflection center wavelength of the dielectric multilayer film is in a range including the wavelength emitted by the light emitting layer. The refractive index difference, thickness, lamination layers, etc. may be adjusted. The visible light reflective layer includes, for example, an R reflective layer that reflects red light emitted by the luminescent layer, a G reflective layer that reflects green light emitted by the luminescent layer, and a blue reflective layer that reflects blue light emitted by the luminescent layer. A configuration having a B reflective layer may also be used. In this case, the refractive index difference between the low-refractive-index layer and the high-refractive-index layer of the dielectric multilayer film as each reflective layer, the thickness, the lamination layers, etc. are adjusted, and the selective reflection central wavelength of each reflective layer is adjusted. A desired range may be obtained.
 ここで、誘電体多層膜における反射ピークの帯域幅は、光学異方性層の遅相軸方向の屈折率と、等方性層の屈折率との差に依存し、屈折率差が大きいほど帯域幅が大きくなる。従って、光学異方性層の遅相軸方向の屈折率と、等方性層の屈折率との差を調整して誘電体多層膜における反射ピークの帯域幅を調整することで、反射層の反射帯域幅を調整(広帯域化)することができる。 Here, the bandwidth of the reflection peak in the dielectric multilayer film depends on the difference between the refractive index in the slow axis direction of the optically anisotropic layer and the refractive index of the isotropic layer. Increased bandwidth. Therefore, by adjusting the difference between the refractive index in the slow axis direction of the optically anisotropic layer and the refractive index of the isotropic layer to adjust the bandwidth of the reflection peak in the dielectric multilayer film, The reflection bandwidth can be adjusted (widened).
 誘電体多層膜として、特に好適に用いられる材料は、光学異方性層としてはPEN(ポリエチレンナフタレート)、PET(ポリエチレンテレフタレート)が挙げられ、等方性層として、(等方性に調整された)PEN、PETおよびPMMA(ポリメタクリル酸メチル樹脂)が挙げられる。 Materials that are particularly preferably used as the dielectric multilayer film include PEN (polyethylene naphthalate) and PET (polyethylene terephthalate) as the optically anisotropic layer, and (isotropically adjusted d) PEN, PET and PMMA (polymethyl methacrylate resin).
 誘電体多層膜は、延伸、押出成形等の従来公知の方法で形成することができる。また、複数の誘電体多層膜を有する構成の場合には、各誘電体多層膜を形成した後、誘電体多層膜を貼り合わせて可視光反射層を作製すればよい。あるいは、異なる複数の誘電体多層膜が形成されるように加工前の厚さを調整して延伸、押出成形等によって複数の誘電体多層膜を一体的に形成してもよい。 The dielectric multilayer film can be formed by conventionally known methods such as stretching and extrusion molding. Further, in the case of a configuration having a plurality of dielectric multilayer films, after forming each dielectric multilayer film, the dielectric multilayer films may be bonded together to form a visible light reflecting layer. Alternatively, the thickness before processing may be adjusted so that a plurality of different dielectric multilayer films are formed, and the plurality of dielectric multilayer films may be integrally formed by stretching, extrusion molding, or the like.
 誘電体多層膜の厚さは好ましくは2.0~50μmの範囲、より好ましくは8.0~30μmの範囲であればよい。 The thickness of the dielectric multilayer film is preferably in the range of 2.0-50 μm, more preferably in the range of 8.0-30 μm.
 <<コレステリック液晶層>>
 コレステリック液晶層は、コレステリック液晶相を固定した層を意味する。コレステリック液晶層は、コレステリック液晶相となっている液晶化合物の配向が保持されている層であればよい。例えば、コレステリック液晶層は、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射または加熱等によって重合させて、硬化させて得られる層である。コレステリック液晶層は、流動性が無く、同時に、外場または外力によって配向状態に変化を生じさせることがない状態に変化した層であることが好ましい。
 なお、コレステリック液晶層においては、コレステリック液晶相の光学的性質が層中において保持されていれば十分であり、層中の液晶化合物はもはや液晶性を示していなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、もはや液晶性を失っていてもよい。
<<Cholesteric liquid crystal layer>>
A cholesteric liquid crystal layer means a layer in which a cholesteric liquid crystal phase is fixed. The cholesteric liquid crystal layer may be any layer as long as the orientation of the liquid crystal compound in the cholesteric liquid crystal phase is maintained. For example, the cholesteric liquid crystal layer is a layer obtained by aligning a polymerizable liquid crystal compound in a cholesteric liquid crystal phase, polymerizing it by ultraviolet irradiation or heating, and curing it. The cholesteric liquid crystal layer is preferably a layer that has no fluidity, and at the same time, is a layer that has been changed to a state in which an external field or external force does not cause a change in the alignment state.
In the cholesteric liquid crystal layer, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained in the layer, and the liquid crystal compound in the layer may no longer exhibit liquid crystallinity. For example, the polymerizable liquid crystal compound may be polymerized by a curing reaction and no longer have liquid crystallinity.
 コレステリック液晶相は、特定の波長において選択反射性を示すことが知られている。一般的なコレステリック液晶相において、選択反射の中心波長(選択反射中心波長)λは、コレステリック液晶相における螺旋ピッチPに依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋ピッチを調節することによって、選択反射中心波長を調節できる。コレステリック液晶相の選択反射中心波長は、螺旋ピッチが長いほど、長波長になる。
 なお、螺旋ピッチとは、すなわち、コレステリック液晶相の螺旋構造1ピッチ分(螺旋の周期)であり、言い換えれば、螺旋の巻き数1回分である。すなわち、螺旋ピッチとは、コレステリック液晶相を構成する液晶化合物のダイレクター(棒状液晶化合物であれば長軸方向)が360°回転する螺旋軸方向の長さである。
Cholesteric liquid crystal phases are known to exhibit selective reflectivity at specific wavelengths. In a general cholesteric liquid crystal phase, the central wavelength of selective reflection (selective reflection central wavelength) λ depends on the helical pitch P in the cholesteric liquid crystal phase, and follows the relationship between the average refractive index n of the cholesteric liquid crystal phase and λ = n × P. . Therefore, by adjusting this helical pitch, the selective reflection central wavelength can be adjusted. The selective reflection central wavelength of the cholesteric liquid crystal phase becomes longer as the helical pitch becomes longer.
The helical pitch is one pitch of the helical structure of the cholesteric liquid crystal phase (the period of the helical structure), in other words, one turn of the helical structure. In other words, the helical pitch is the length in the helical axis direction at which the director of the liquid crystal compound constituting the cholesteric liquid crystal phase (long axis direction in the case of a rod-like liquid crystal compound) rotates 360°.
 コレステリック液晶相の螺旋ピッチは、コレステリック液晶層を形成する際に、液晶化合物と共に用いるカイラル剤の種類、および、カイラル剤の添加濃度に依存する。従って、これらを調節することによって、所望の螺旋ピッチを得ることができる。
 すなわち、可視光反射層としてコレステリック液晶層を用いる場合には、コレステリック液晶層の選択反射中心波長が発光層の発光波長を含む範囲となるようにカイラル剤の種類、および、カイラル剤の添加濃度を調整してコレステリック液晶相の螺旋ピッチを調整すればよい。また、可視光反射層は、例えば、発光層が発光した赤色光を反射するコレステリック液晶層、発光層が発光した緑色光を反射するコレステリック液晶層、および、発光層が発光した青色光を反射するコレステリック液晶層を有する構成としてもよい。この場合には、各コレステリック液晶層を形成する際のカイラル剤の種類、および、カイラル剤の添加濃度をそれぞれ調整して、各コレステリック液晶層の選択反射中心波長がそれぞれ所望の範囲となるようにコレステリック液晶相の螺旋ピッチを調整すればよい。
The helical pitch of the cholesteric liquid crystal phase depends on the type of chiral agent used together with the liquid crystal compound and the addition concentration of the chiral agent when forming the cholesteric liquid crystal layer. Therefore, a desired helical pitch can be obtained by adjusting these.
That is, when the cholesteric liquid crystal layer is used as the visible light reflecting layer, the type of chiral agent and the additive concentration of the chiral agent are adjusted so that the central wavelength of selective reflection of the cholesteric liquid crystal layer is in the range including the emission wavelength of the light emitting layer. It is sufficient to adjust the helical pitch of the cholesteric liquid crystal phase by adjusting. The visible light reflecting layer includes, for example, a cholesteric liquid crystal layer that reflects red light emitted by the light emitting layer, a cholesteric liquid crystal layer that reflects green light emitted by the light emitting layer, and a blue light that is reflected by the light emitting layer. A configuration including a cholesteric liquid crystal layer may be employed. In this case, the type of chiral agent used in forming each cholesteric liquid crystal layer and the concentration of the chiral agent added are adjusted so that the central wavelength of selective reflection of each cholesteric liquid crystal layer falls within the desired range. The helical pitch of the cholesteric liquid crystal phase may be adjusted.
 なお、ピッチの調節については富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および、「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載される方法を用いることができる。 For pitch adjustment, refer to Fujifilm Research Report No. 50 (2005) p. 60-63 for a detailed description. As for the method of measuring the sense and pitch of the helix, the methods described in "Introduction to Liquid Crystal Chemistry Experiments", edited by the Japanese Liquid Crystal Society, published by Sigma Publishing, 2007, page 46, and "Liquid Crystal Handbook", Liquid Crystal Handbook Editing Committee, Maruzen, page 196 are used. be able to.
 また、コレステリック液晶相は、特定の波長において左右いずれかの円偏光に対して選択反射性を示す。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相の螺旋の捩れ方向(センス)による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。従って、可視光反射層としてコレステリック液晶層を用いる場合には、可視光反射層は、発光層の発光波長を含む波長域の光の右円偏光を反射するコレステリック液晶層と、発光層の発光波長を含む波長域の光の左円偏光を反射するコレステリック液晶層とを有する構成とすることが好ましい。例えば、発光層が発光した赤色光の右円偏光を反射するコレステリック液晶層、発光層が発光した赤色光の左円偏光を反射するコレステリック液晶層、発光層が発光した緑色光の右円偏光を反射するコレステリック液晶層、発光層が発光した緑色光の左円偏光を反射するコレステリック液晶層、発光層が発光した青色光の右円偏光を反射するコレステリック液晶層、および、発光層が発光した青色光の左円偏光を反射するコレステリック液晶層を有する構成とすることが好ましい。
 なお、コレステリック液晶相の旋回の方向は、コレステリック液晶層を形成する液晶化合物の種類および/または添加されるカイラル剤の種類によって調節できる。
In addition, the cholesteric liquid crystal phase exhibits selective reflectivity for either left or right circularly polarized light at a specific wavelength. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction (sense) of the spiral of the cholesteric liquid crystal phase. The selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the spiral of the cholesteric liquid crystal phase is twisted to the right, and reflects left circularly polarized light when the spiral is twisted to the left. Therefore, when a cholesteric liquid crystal layer is used as the visible light reflecting layer, the visible light reflecting layer consists of a cholesteric liquid crystal layer that reflects right-handed circularly polarized light in a wavelength range including the emission wavelength of the light emitting layer, and the light emitting wavelength of the light emitting layer. and a cholesteric liquid crystal layer that reflects left-handed circularly polarized light in a wavelength range including For example, a cholesteric liquid crystal layer that reflects right-handed circularly polarized red light emitted by the light-emitting layer, a cholesteric liquid crystal layer that reflects left-handed circularly polarized red light emitted by the light-emitting layer, and a cholesteric liquid crystal layer that reflects right-handed circularly polarized green light emitted by the light-emitting layer. A reflecting cholesteric liquid crystal layer, a cholesteric liquid crystal layer reflecting left-handed circularly polarized green light emitted by the light-emitting layer, a cholesteric liquid crystal layer reflecting right-handed circularly polarized blue light emitted by the light-emitting layer, and blue light emitted by the light-emitting layer. A configuration having a cholesteric liquid crystal layer that reflects left-handed circularly polarized light is preferable.
The direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer and/or the type of chiral agent added.
 また、コレステリック液晶層において、選択反射を示す選択反射帯域(円偏光反射帯域)の半値幅Δλ(nm)は、コレステリック液晶相のΔnと螺旋のピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯域の幅の制御は、Δnを調節して行うことができる。Δnは、コレステリック液晶層を形成する液晶化合物の種類およびその混合比率、ならびに、配向固定時の温度により調節できる。したがって、液晶化合物の種類およびその混合比率、ならびに、配向固定時の温度等を調整して、選択反射帯域の半値幅Δλを調整することで、波長帯域幅を調整することができる。 In addition, in the cholesteric liquid crystal layer, the half width Δλ (nm) of the selective reflection band (circularly polarized light reflection band) indicating selective reflection depends on Δn of the cholesteric liquid crystal phase and the spiral pitch P, and is given by Δλ=Δn×P. Follow relationship. Therefore, the width of the selective reflection band can be controlled by adjusting Δn. Δn can be adjusted by the type and mixing ratio of the liquid crystal compounds forming the cholesteric liquid crystal layer, and the temperature during orientation fixation. Therefore, the wavelength bandwidth can be adjusted by adjusting the type and mixing ratio of the liquid crystal compounds, the temperature at the time of orientation fixation, and the like to adjust the half width Δλ of the selective reflection band.
 また、反射層において波長帯域幅を広くする場合には、選択反射波長が異なるコレステリック液晶層を2層以上有する構成としてもよい。反射層を、選択反射波長が異なる2層以上のコレステリック液晶層を積層した構成とすることで、反射層の反射帯域を広帯域化することができる。 In addition, in the case of widening the wavelength bandwidth in the reflective layer, it may be configured to have two or more cholesteric liquid crystal layers with different selective reflection wavelengths. By forming the reflective layer into a structure in which two or more cholesteric liquid crystal layers having different selective reflection wavelengths are laminated, the reflection band of the reflective layer can be widened.
 (コレステリック液晶層の形成方法)
 コレステリック液晶層の形成方法は特に制限されず、種々の公知の方法で形成すればよい。例えば、コレステリック液晶層は、液晶化合物、カイラル剤および重合開始剤、さらに必要に応じて添加される界面活性剤等を溶媒に溶解させた液晶組成物を、支持体上に、あるいは支持体上に形成された下地層に塗布し、乾燥させて塗膜を得て、塗膜中の液晶化合物を配向させて、この塗膜に活性光線を照射して液晶組成物を硬化することで、形成できる。
(Method for Forming Cholesteric Liquid Crystal Layer)
The method of forming the cholesteric liquid crystal layer is not particularly limited, and may be formed by various known methods. For example, a cholesteric liquid crystal layer is prepared by dissolving a liquid crystal compound, a chiral agent, a polymerization initiator, and a surfactant added as necessary in a solvent. It can be formed by applying it to the formed base layer, drying it to obtain a coating film, orienting the liquid crystal compound in the coating film, and irradiating the coating film with an actinic ray to cure the liquid crystal composition. .
 また、可視光反射層が、複数のコレステリック液晶層を有する構成の場合には、各コレステリック液晶層をそれぞれ支持体上に形成した後に、支持体から剥離して貼合することで、複数のコレステリック液晶層が積層された構成を有する可視光反射層を形成すればよい。あるいは、1つ目のコレステリック液晶層を支持体上に形成した後に、次のコレステリック液晶層を、先に形成したコレステリック液晶層上に順次形成して、複数のコレステリック液晶層が積層された構成を有する可視光反射層を形成してもよい。 In the case where the visible light reflective layer has a plurality of cholesteric liquid crystal layers, after each cholesteric liquid crystal layer is formed on a support, the layers are peeled off from the support and bonded together to form a plurality of cholesteric liquid crystal layers. A visible light reflecting layer having a structure in which liquid crystal layers are laminated may be formed. Alternatively, after the first cholesteric liquid crystal layer is formed on the support, the next cholesteric liquid crystal layer is sequentially formed on the previously formed cholesteric liquid crystal layer so that a plurality of cholesteric liquid crystal layers are laminated. You may form the visible light reflection layer which has.
 (液晶化合物)
 コレステリック液晶層の形成に用いられる液晶化合物としても制限はなく、種々の公知の棒状液晶化合物および円盤状液晶化合物が用いられる。また、重合性液晶化合物が好ましい。
(liquid crystal compound)
The liquid crystal compound used for forming the cholesteric liquid crystal layer is not particularly limited, and various known rod-like liquid crystal compounds and discotic liquid crystal compounds are used. Moreover, a polymerizable liquid crystal compound is preferable.
 液晶化合物としては、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号、米国特許第5622648号および米国特許第5770107号の各明細書、国際公開第1995/22586号、国際公開第1995/24455号、国際公開第1997/00600号、国際公開第1998/23580号、国際公開第1998/52905号、国際公開第2016/194327号および国際公開第2016/052367号公報、特開平1-272551号公報、特開平6-16616号公報、特開平7-110469号公報および特開平11-80081号公報、ならびに、特開2001-328973号公報等に記載されている各化合物が例示される。
 液晶組成物は、2種類以上の液晶化合物を含んでいてもよい。
As a liquid crystal compound, Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), U.S. Pat. No. 4,683,327, U.S. Pat. 22586, WO 1995/24455, WO 1997/00600, WO 1998/23580, WO 1998/52905, WO 2016/194327 and WO 2016/052367 Publications, JP-A-1-272551, JP-A-6-16616, JP-A-7-110469 and JP-A-11-80081, and JP-A-2001-328973, etc. Compounds are exemplified.
The liquid crystal composition may contain two or more liquid crystal compounds.
 また、液晶組成物中の液晶化合物の含有量は特に制限されないが、液晶組成物の固形分質量(溶媒を除いた質量)に対して、80~99.9質量%が好ましく、84~99.5質量%がより好ましく、87~99質量%がさらに好ましい。 The content of the liquid crystal compound in the liquid crystal composition is not particularly limited, but is preferably 80 to 99.9% by mass, and preferably 84 to 99.9% by mass based on the solid content mass (mass excluding the solvent) of the liquid crystal composition. 5% by mass is more preferable, and 87 to 99% by mass is even more preferable.
 (カイラル剤)
 カイラル剤としては各種公知のものを使用することができる。
 カイラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。カイラル剤によって、誘起する螺旋のセンスまたは螺旋ピッチが異なるため、目的に応じて選択すればよい。カイラル剤がコレステリック液晶相の螺旋構造を誘起する力は、螺旋誘起力(HTP:Helical Twisting Power)と呼ばれる。同じ濃度のカイラル剤を用いた場合、HTPが大きいカイラル剤ほど螺旋ピッチは小さくなる。
(chiral agent)
Various known chiral agents can be used.
A chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase. Depending on the chiral agent, the induced helical sense or helical pitch is different, so it may be selected depending on the purpose. The force by which the chiral agent induces the helical structure of the cholesteric liquid crystal phase is called helical twisting power (HTP). When the same concentration of chiral agent is used, the higher the HTP of the chiral agent, the smaller the helical pitch.
 カイラル剤の例としては、液晶デバイスハンドブック(第3章4-3項、TN、STN用カイラル剤、199頁、日本学術振興会第142委員会編、1989)、ならびに、特開2003-287623号公報、特開2002-302487号公報、特開2002-80478号公報、特開2002-80851号公報、特開2010-181852号公報および特開2014-034581号公報等に記載される化合物が例示される。
 カイラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物または面性不斉化合物もカイラル剤として用いることができる。軸性不斉化合物または面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファンおよびこれらの誘導体が含まれる。カイラル剤は、重合性基を有していてもよい。
Examples of chiral agents include Liquid Crystal Device Handbook (Chapter 3, Section 4-3, Chiral Agents for TN and STN, page 199, Japan Society for the Promotion of Science, 142nd Committee, 1989), and JP-A-2003-287623. Publications, JP-A-2002-302487, JP-A-2002-80478, JP-A-2002-80851, JP-A-2010-181852 and JP-A-2014-034581 and the like are exemplified. be.
A chiral agent generally contains an asymmetric carbon atom, but an axially chiral compound or planar chiral compound that does not contain an asymmetric carbon atom can also be used as the chiral agent. Examples of axially or planarly chiral compounds include binaphthyl, helicene, paracyclophane and derivatives thereof. The chiral agent may have a polymerizable group.
 カイラル剤と液晶化合物とが、いずれも重合性基を有する場合は、重合性カイラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、カイラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性カイラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であることが好ましい。
 また、カイラル剤は、液晶化合物であってもよい。また、カイラル剤は、光の照射によって、戻り異性化、二量化、ならびに、異性化および二量化等を生じて、HTPが変化するカイラル剤であってもよい。
When both the chiral agent and the liquid crystal compound have a polymerizable group, the polymerization reaction of the polymerizable chiral agent and the polymerizable liquid crystal compound produces a repeating unit derived from the polymerizable liquid crystal compound and a repeating unit derived from the chiral agent. can form a polymer having repeating units with In this aspect, the polymerizable group possessed by the polymerizable chiral agent is preferably the same type of group as the polymerizable group possessed by the polymerizable liquid crystal compound.
Also, the chiral agent may be a liquid crystal compound. The chiral agent may also be a chiral agent that undergoes re-isomerization, dimerization, isomerization and dimerization, etc. upon irradiation with light, thereby changing HTP.
 液晶組成物における、カイラル剤の含有量は、液晶化合物全モル量に対して、0.01~200モル%が好ましく、1~30モル%がより好ましい。 The content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, relative to the total molar amount of the liquid crystal compound.
 (その他の添加剤)
 液晶組成物は、必要に応じて、さらに、重合開始剤、架橋剤、配向制御剤、界面活性剤、重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、および、金属酸化物微粒子等を、光学性能を低下させない範囲で含んでいてもよい。また、液晶組成物は、溶媒を含んでいてもよい。
(Other additives)
If necessary, the liquid crystal composition further contains a polymerization initiator, a cross-linking agent, an alignment control agent, a surfactant, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a coloring material, and a metal. Oxide fine particles and the like may be contained within a range that does not degrade the optical performance. Moreover, the liquid crystal composition may contain a solvent.
 <色吸収層>
 色吸収層は、発光層が発光する波長および発光層の励起波長以外の少なくとも一部の波長域の光を吸収するものである。
<Color absorption layer>
The color absorption layer absorbs light in at least a part of the wavelength range other than the wavelength emitted by the light emitting layer and the excitation wavelength of the light emitting layer.
 光吸収層としては、所定の波長域の光を吸収する材料を用いてもよい。あるいは、樹脂中に光吸収材料を含有させる構成としてもよい。
 例えば、吸収する光が可視光の場合には、吸収層として、有色の樹脂材料、紙、無機材料等を用いることができる。
 光吸収材料としては限定はなく、吸収する波長域に応じで、公知の光吸収材料を用いることができる。例えば、吸収する光が可視光の場合には、無機顔料、不溶性アゾ顔料等の有機顔料、および、アゾやアントラキノン等の染料等の公知の光吸収剤を用いることができる。無機顔料は複合酸化物系顔料で、例えば緑ではコバルトグリーン(TiO2・CoO・NiO・ZrO2、又は、CoO・Cr23・TiO2・Al23)が例示され、青ではコバルトブルー(CoO・Al23)が例示され、赤では酸化鉄(Fe23)が例示される。青緑に吸収を持つ材料としてはモリブデン酸鉛・クロム酸鉛、その配合物が例示される。
A material that absorbs light in a predetermined wavelength range may be used as the light absorption layer. Alternatively, the resin may contain a light absorbing material.
For example, when the light to be absorbed is visible light, a colored resin material, paper, an inorganic material, or the like can be used as the absorption layer.
The light-absorbing material is not limited, and known light-absorbing materials can be used depending on the wavelength range to be absorbed. For example, when the light to be absorbed is visible light, known light absorbers such as inorganic pigments, organic pigments such as insoluble azo pigments, and dyes such as azo and anthraquinone can be used. The inorganic pigment is a composite oxide pigment, for example, cobalt green (TiO2.CoO.NiO.ZrO2 or CoO.Cr2O3.TiO2.Al2O3 ) is exemplified for green , and cobalt for blue . Blue (CoO.Al 2 O 3 ) is exemplified, and red is iron oxide (Fe 2 O 3 ). Lead molybdate, lead chromate, and their mixtures are exemplified as materials having blue-green absorption.
 また、光吸収層は、異なる波長域の光を吸収する2種以上の光吸収材料を有する構成としてもよい。例えば、光吸収層は、赤色発光領域が発光する波長と、緑色発光領域が発光する波長との間の波長域に吸収を示す光吸収材料と、緑色発光領域が発光する波長と、青色発光領域が発光する波長との間の波長域に吸収を示す光吸収材料とを有する構成とすることで、発光層が発光する波長および発光層の励起波長以外の少なくとも一部の波長域の光を吸収するものとすることができる。 Also, the light absorption layer may be configured to have two or more light absorption materials that absorb light in different wavelength ranges. For example, the light-absorbing layer includes a light-absorbing material that exhibits absorption in a wavelength range between the wavelength at which the red light-emitting region emits light and the wavelength at which the green light-emitting region emits light, the wavelength at which the green light-emitting region emits light, and the By having a light-absorbing material that exhibits absorption in a wavelength range between the wavelength at which the light is emitted, the light in at least a part of the wavelength range other than the wavelength at which the light-emitting layer emits light and the excitation wavelength of the light-emitting layer is absorbed. shall be allowed.
 光吸収層の厚さは好ましくは1~10μmの範囲、より好ましくは1~3μmの範囲であればよい。 The thickness of the light absorption layer is preferably in the range of 1 to 10 µm, more preferably in the range of 1 to 3 µm.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on examples. Materials, usage amounts, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed to be limited by the examples shown below.
[実施例1]
<第1積層体の作製>
 図1に示すような液晶表示装置100の第1積層体102部分を以下のようにして作製した。
 ガラス基板111として厚さ0.5mmの無アルカリガラスを用いた。ガラス基板111の上に図5に示すような透過波長385nm付近を透過する特性の可視光反射層121を無機誘電体の積層蒸着法で形成した。
[Example 1]
<Production of the first laminate>
A first laminate 102 portion of the liquid crystal display device 100 as shown in FIG. 1 was produced as follows.
Non-alkali glass having a thickness of 0.5 mm was used as the glass substrate 111 . On the glass substrate 111, a visible light reflecting layer 121 having a property of transmitting light having a transmission wavelength of about 385 nm as shown in FIG.
 次に、可視光反射層121の上に、高さ10μm開口サイズ100×300μmの格子状の隔壁132を感光性黒色レジストを用いたフォトリソグラフィで形成した。格子状の隔壁132のRGBの各画素に対応する開口部に励起波長385nmの蛍光体レジストを用いてフォトリソグラフィにより赤色発光領域131R、緑色発光領域131G、青色発光領域131Bをそれぞれ形成し、発光層131を形成した。用いた蛍光体レジストの光学特性を図6に示す。 Next, grid-like partition walls 132 with a height of 10 μm and an opening size of 100×300 μm were formed on the visible light reflecting layer 121 by photolithography using a photosensitive black resist. A red light-emitting region 131R, a green light-emitting region 131G, and a blue light-emitting region 131B are formed by photolithography using a phosphor resist having an excitation wavelength of 385 nm in the openings corresponding to the RGB pixels of the grid-like partition wall 132, and a light-emitting layer is formed. 131 was formed. FIG. 6 shows the optical properties of the phosphor resist used.
 次に、発光層131の上に、λ/4位相差層141と第1偏光子151との積層フイルムを所定の光軸方向で転写した。 Next, a laminated film of the λ/4 retardation layer 141 and the first polarizer 151 was transferred onto the light-emitting layer 131 in a predetermined optical axis direction.
 第1偏光子151は、以下に記載の、PVA(ポリビニルアルコール)系樹脂を二色性染料によって染色された、偏光素子を用いることとした。 For the first polarizer 151, a polarizing element obtained by dyeing a PVA (polyvinyl alcohol) resin with a dichroic dye as described below was used.
<第1偏光子の作製>
 化合物(1)の染料を0.01%、東亜化成株式会社製 染料(レッド、2BP;シー・アイ・ダイレクト・レッド81)を0.01%、下記構造式(2)で示される染料を0.03%、下記構造式(3)で示される染料0.03%、及び、芒硝0.1%の濃度とした45℃の水溶液に、基板として厚さ75μmのポリビニルアルコール(PVA)を4分間浸漬した。
 このフィルムを3%ホウ酸水溶液中で50℃で5倍に延伸し、緊張状態を保ったまま水洗、乾燥することによって、中性色(平行位ではグレーで、直交位では黒色)となる第1偏光子151を得た。
<Production of first polarizer>
0.01% of the dye of compound (1), 0.01% of the dye (red, 2BP; C.I. Direct Red 81) manufactured by Toa Kasei Co., Ltd., and 0 of the dye represented by the following structural formula (2) 0.03%, 0.03% of the dye represented by the following structural formula (3), and 0.1% of Glauber's salt in an aqueous solution at 45° C., and polyvinyl alcohol (PVA) with a thickness of 75 μm as a substrate for 4 minutes. Soaked.
This film was stretched 5 times in a 3% boric acid aqueous solution at 50°C, washed with water while maintaining tension, and dried to obtain a neutral color (gray in the parallel position and black in the orthogonal position). 1 polarizer 151 was obtained.
化合物(1)
Figure JPOXMLDOC01-appb-C000001
compound (1)
Figure JPOXMLDOC01-appb-C000001
構造式(2)
Figure JPOXMLDOC01-appb-C000002
Structural formula (2)
Figure JPOXMLDOC01-appb-C000002
構造式(3)
Figure JPOXMLDOC01-appb-C000003
Structural formula (3)
Figure JPOXMLDOC01-appb-C000003
 第1偏光子151の上に透明樹脂を塗布焼成しバリア層190を形成した。さらに、バリア層190の上に透明電極161としてITO(酸化インジウムスズ)膜をスパッタリングにより成膜した。 A barrier layer 190 was formed by coating and baking a transparent resin on the first polarizer 151 . Further, an ITO (indium tin oxide) film was formed as a transparent electrode 161 on the barrier layer 190 by sputtering.
<第2積層体の作製>
 図1に示すような液晶表示装置100の第2積層体103部分を以下のようにして作製した。
 ガラス基板112としてガラス基板111と同様の厚さ0.5mmの無アルカリガラスを用いた。ガラス基板112の上にブラックマトリクス192を第1積層体102の隔壁132に対応する形状にフォトリソグラフィにより形成した。次に、ITO膜をスパッタリングにより成膜し、第1積層体102のRGB画素に対応する形状となるようにストライプ状にエッチングし、各画素に対応する透明電極162R、162G、162Bを形成した。次に、ブラックマトリクスの位置に高さ5μm、直径10μmのフォトスペーサー195を適切な密度で形成し、第2積層体103を形成した。
<Production of the second laminate>
A portion of the second laminate 103 of the liquid crystal display device 100 as shown in FIG. 1 was manufactured as follows.
As the glass substrate 112, non-alkali glass having a thickness of 0.5 mm, which is the same as the glass substrate 111, was used. A black matrix 192 was formed on the glass substrate 112 in a shape corresponding to the partition walls 132 of the first laminate 102 by photolithography. Next, an ITO film was formed by sputtering and etched in stripes so as to have a shape corresponding to the RGB pixels of the first laminate 102 to form transparent electrodes 162R, 162G and 162B corresponding to each pixel. Next, photospacers 195 having a height of 5 μm and a diameter of 10 μm were formed at the position of the black matrix with an appropriate density to form the second laminate 103 .
<液晶層の封入>
 作製した第1積層体102および第2積層体103それぞれの透明電極側の表面にポリイミド膜を塗布、焼成した。第1積層体102上に形成したポリイミド膜に、配向軸が第1偏光子151の光軸に一致するように光ラビングを行い配向膜171を形成した。第2積層体103上に形成したポリイミド膜に、配向軸が第1偏光子151の光軸と直交するように光ラビングを行い配向膜172を形成した。
<Encapsulation of liquid crystal layer>
A polyimide film was applied to the transparent electrode side surface of each of the first laminated body 102 and the second laminated body 103 produced, and baked. The polyimide film formed on the first laminate 102 was subjected to optical rubbing so that the alignment axis coincided with the optical axis of the first polarizer 151 to form an alignment film 171 . The polyimide film formed on the second laminate 103 was subjected to optical rubbing so that the alignment axis was perpendicular to the optical axis of the first polarizer 151 to form an alignment film 172 .
 次に第2積層体103の配向膜172側の表面の縁に沿って囲むようにUV硬化エポキシ樹脂をディスペンスして封止パターンを準備した。ODF(one drop fill)装置を使い、第2積層体103の配向膜172側にツイストネマティック型液晶材料を滴下し、第1積層体102の配向膜171側が液晶側となるように、真空中で貼り合わせ、縁のエポキシ樹脂をUV硬化して封止した。液晶材料を所定の温度で低温処理して初期配向処理を行い、液晶層180を形成した。 Next, a UV curing epoxy resin was dispensed so as to surround along the edge of the surface of the alignment film 172 side of the second laminate 103 to prepare a sealing pattern. Using an ODF (one drop fill) device, a twisted nematic liquid crystal material is dropped on the alignment film 172 side of the second laminate 103, and placed in a vacuum so that the alignment film 171 side of the first laminate 102 is on the liquid crystal side. They were laminated together and the edge epoxy resin was UV-cured and sealed. A liquid crystal layer 180 was formed by subjecting the liquid crystal material to a low temperature treatment at a predetermined temperature for initial alignment treatment.
 次に、ガラス基板112の液晶層180とは反対側の表面に第2偏光子152を光軸が配向膜172の配光軸と一致する様に粘着剤で貼りつけた。 Next, the second polarizer 152 was attached to the surface of the glass substrate 112 opposite to the liquid crystal layer 180 with an adhesive so that the optical axis coincided with the light distribution axis of the alignment film 172 .
<バックライトユニットの作製>
 PCB(ポリ塩化ビフェニル)基板上に波長385nmのLED(発光ダイオード)チップをアレイ状に実装し配線し、発光面側に拡散シートを貼り合わせてバックライトユニット101を作製した。
<Fabrication of backlight unit>
LED (light-emitting diode) chips with a wavelength of 385 nm were mounted on a PCB (polychlorinated biphenyl) substrate in an array and wired, and a diffusion sheet was bonded to the light-emitting surface side to produce a backlight unit 101 .
 上記で作製した積層体のガラス基板111側にバックライトユニット101を配置して液晶表示装置100を作製した。 A liquid crystal display device 100 was produced by arranging the backlight unit 101 on the glass substrate 111 side of the laminate produced above.
[実施例2]
 ガラス基板212と第2偏光子252との間に色吸収層242を以下のようにして配置した以外は、実施例1と同様にして図4に示すような液晶表示装置200を作製した。
 液晶層280の封入後、ガラス基板212の液晶層280とは反対側の表面に、図7に示すような光吸収特性を持つ色吸収層242を貼り合わせた。次に、色吸収層242の上に、第2偏光子252を光軸が配向膜272の配光軸と一致する様に粘着剤で貼りつけた。
[Example 2]
A liquid crystal display device 200 as shown in FIG. 4 was manufactured in the same manner as in Example 1, except that the color absorption layer 242 was arranged between the glass substrate 212 and the second polarizer 252 as follows.
After encapsulating the liquid crystal layer 280, a color absorption layer 242 having light absorption characteristics as shown in FIG. Next, the second polarizer 252 was pasted on the color absorption layer 242 with an adhesive so that the optical axis coincided with the light distribution axis of the alignment film 272 .
[比較例1]
 λ/4位相差層を有さず、可視光反射層を下記のようにして形成した反射層321に変更した以外は、実施例1と同様にして図8に示すような液晶表示装置を作製した。
[Comparative Example 1]
A liquid crystal display device as shown in FIG. 8 was manufactured in the same manner as in Example 1 except that the λ/4 retardation layer was not provided and the visible light reflecting layer was changed to a reflecting layer 321 formed as follows. bottom.
<第1積層体の作製>
 図8に示すような液晶表示装置300の第1積層体302部分を以下のようにして作製した。
 ガラス基板311として厚さ0.5mmの無アルカリガラスを用いた。ガラス基板311の上にスパッタリングにより厚さ100nmのアルミニウム膜を成膜し、画素領域ごとに半分を残してエッチングし反射層321を形成した。
<Production of the first laminate>
A first laminate 302 portion of the liquid crystal display device 300 as shown in FIG. 8 was manufactured as follows.
Non-alkali glass with a thickness of 0.5 mm was used as the glass substrate 311 . An aluminum film having a thickness of 100 nm was formed on the glass substrate 311 by sputtering, and the reflective layer 321 was formed by etching leaving half of each pixel region.
 次に、反射層321の上に、高さ10μm開口サイズ100×300μmの格子状の隔壁332を感光性黒色レジストを用いたフォトリソグラフィで形成した。格子状の隔壁132のRGBの各画素に対応する開口部に励起波長385nmの蛍光体レジストを用いてフォトリソグラフィにより赤色発光領域331R、緑色発光領域331G、青色発光領域331Bをそれぞれ形成し、発光層331を形成した。用いた蛍光体レジストの光学特性は実施例1で示した図6と同様である。 Next, grid-like partition walls 332 with a height of 10 μm and an opening size of 100×300 μm were formed on the reflective layer 321 by photolithography using a photosensitive black resist. A red light-emitting region 331R, a green light-emitting region 331G, and a blue light-emitting region 331B are formed by photolithography using a phosphor resist having an excitation wavelength of 385 nm in the openings corresponding to the RGB pixels of the grid-like partition wall 132, and a light-emitting layer is formed. 331 was formed. The optical properties of the phosphor resist used are the same as those shown in FIG.
 次に、発光層331の上に、第1偏光子351を所定の光軸方向で転写した。第1偏光子351の上に透明樹脂を塗布焼成しバリア層390を形成した。さらに、バリア層390の上に透明電極361をITO膜をスパッタリングにより成膜した。 Next, the first polarizer 351 was transferred onto the light-emitting layer 331 in a predetermined optical axis direction. A barrier layer 390 was formed by coating and baking a transparent resin on the first polarizer 351 . Furthermore, a transparent electrode 361 was formed on the barrier layer 390 by sputtering an ITO film.
[比較例2]
 λ/4位相差層を有さない以外は実施例1と同様にして液晶表示装置を作製した。
[Comparative Example 2]
A liquid crystal display device was produced in the same manner as in Example 1, except that the λ/4 retardation layer was not provided.
[評価]
 作製した液晶表示装置について以下の評価を行った。なお、準備として、作製した液晶表示装置の、透明電極に銀ペーストでリード電極を接続した。また、測定室内は、窓から外光をディフューザーで拡散して間接照度約100000lx(屋外での平均照度)に調整して利用した。
[evaluation]
The following evaluations were performed on the manufactured liquid crystal display device. As a preparation, a lead electrode was connected to the transparent electrode of the manufactured liquid crystal display device with a silver paste. In addition, in the measurement room, outside light was diffused by a diffuser from a window to adjust the indirect illuminance to about 100000 lx (average illuminance outdoors) before use.
<色域測定>
 まず、透過モードにおいて、RGBそれぞれの色座標をCM700d(ミノルタ製)を用いて測定した。バックライトユニットはONで輝度10000cd/m2に調整した。液晶層への印可電圧は測定色以外の画素に5Vを印可して消灯することで、RGB各色を単色で点灯してそれぞれ色座標を測定した。
<Color gamut measurement>
First, in the transmission mode, the color coordinates of each of RGB were measured using CM700d (manufactured by Minolta). The backlight unit was turned on and adjusted to a luminance of 10000 cd/m 2 . The voltage applied to the liquid crystal layer was 5 V applied to the pixels other than the color to be measured to turn them off, so that each color of RGB was lit in a single color, and the color coordinates were measured.
 次に、バックライトユニットをOFFにして間接照度約100000lxの外光を用いる反射モードにおいて、RGBそれぞれの色座標をCM700d(ミノルタ製)を用いて測定した。液晶層への印可電圧は測定色以外の画素に5Vを印可して消灯することで、RGB各色を単色で点灯してそれぞれ色座標を測定した。 Next, with the backlight unit turned off, the color coordinates of each of RGB were measured using a CM700d (manufactured by Minolta) in a reflection mode using external light with an indirect illuminance of about 100,000 lx. The voltage applied to the liquid crystal layer was 5 V applied to the pixels other than the color to be measured to turn them off, so that each color of RGB was lit in a single color, and the color coordinates were measured.
<パネル表面反射率>
 バックライトユニットをOFFにし、全画素消灯の状態で、分光計(ミノルタCM700d)を用いて、分光計に内蔵される光源からの光が液晶表示装置の表面あるいは内部で反射した反射光を測定した。
<Panel surface reflectance>
With the backlight unit turned off and all pixels turned off, a spectrometer (Minolta CM700d) was used to measure the light reflected from the surface or inside of the liquid crystal display device from the light source built into the spectrometer. .
<コントラスト>
 間接照度約100000lxの外光を用いる反射モードにおけるコントラストをSR-UL1R(Topcon)で測定した。バックライトユニットはONの状態で、全画素への印可電圧を5Vとして全黒とした場合と、0Vとして全白とした場合とでの輝度比をコントラストとした。
<Contrast>
Contrast in reflection mode using ambient light with an indirect illumination of about 100000 lx was measured with SR-UL1R (Topcon). With the backlight unit turned on, the contrast was defined as the luminance ratio between the voltage applied to all pixels of 5 V for all black and the voltage applied to all pixels of 0 V for all white.
 結果を表1に示す。 The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1から、本発明の実施例は、比較例に比べてコントラストが高く、また、透過モードと反射モードとで色域の差が小さくなることがわかる。
 また、実施例1と実施例2との対比から、色吸収層を有することでコントラストがより高くなることがわかる。
 以上の結果から本発明の効果は明らかである。
From Table 1, it can be seen that the example of the present invention has a higher contrast than the comparative example, and the difference in color gamut between the transmissive mode and the reflective mode is small.
Also, from the comparison between Example 1 and Example 2, it can be seen that the presence of the color absorption layer increases the contrast.
From the above results, the effect of the present invention is clear.
 100、200、300、400 液晶表示装置
 101、201、301、401 バックライトユニット
 102、202、302 第1積層体
 103、203、303 第2積層体
 105、205、305、405 液晶パネル
 106、206、306 液晶セル
 111、112、211、212、311、312、411,412 ガラス基板
 121、221 可視光反射層
 131、231、331 発光層
 131R、231R、331R 赤色発光領域
 131G、231G、331G 緑色発光領域
 131B、231B、331B 青色発光領域
 132、232、332 隔壁
 141、241 λ/4位相差層
 242 色吸収層
 151、251、351、451 第1偏光子
 152、252、352、452 第2偏光子
 161、162R、162G、162B、261、262R、262G、262B、361、362R、362G、362B、461R、461G、461B、462 透明電極
 171、172、271、272、371、372 配向膜
 180、280、380、480 液晶層
 190、290、390 バリア層
 192、292、392、492 ブラックマトリクス
 195、295、395 フォトスペーサー
 321、421R、421G、421B 反射層
 441R、441G、441B λ/4層
 465R 赤色カラーフィルタ
 465G 緑色カラーフィルタ
 465B 青色カラーフィルタ
100, 200, 300, 400 liquid crystal display device 101, 201, 301, 401 backlight unit 102, 202, 302 first laminate 103, 203, 303 second laminate 105, 205, 305, 405 liquid crystal panel 106, 206 , 306 liquid crystal cell 111, 112, 211, 212, 311, 312, 411, 412 glass substrate 121, 221 visible light reflecting layer 131, 231, 331 light emitting layer 131R, 231R, 331R red light emitting region 131G, 231G, 331G green light emitting Regions 131B, 231B, 331B Blue light-emitting regions 132, 232, 332 Partitions 141, 241 λ/4 retardation layer 242 Color absorption layer 151, 251, 351, 451 First polarizer 152, 252, 352, 452 Second polarizer 161, 162R, 162G, 162B, 261, 262R, 262G, 262B, 361, 362R, 362G, 362B, 461R, 461G, 461B, 462 transparent electrode 171, 172, 271, 272, 371, 372 orientation film 180, 280, 380, 480 liquid crystal layer 190, 290, 390 barrier layer 192, 292, 392, 492 black matrix 195, 295, 395 photospacer 321, 421R, 421G, 421B reflective layer 441R, 441G, 441B λ/4 layer 465R red color filter 465G green color filter 465B blue color filter

Claims (5)

  1.  バックライトユニットと、液晶パネルとを含む、液晶表示装置であって、
     前記液晶パネルが、前記バックライト側から、第1偏光子と、液晶セルと、第2偏光子とを含み、
     前記バックライトユニットと前記液晶セルとの間に、前記バックライトユニットから出射される光により励起されて発光し、前記液晶表示装置の外側から入射される外光によっても励起されて発光する発光層をさらに有し、
     前記第1偏光子と前記発光層との間にλ/4位相差層を有し、
     前記発光層と前記バックライトユニットとの間に、可視光反射層を有する、液晶表示装置。
    A liquid crystal display device including a backlight unit and a liquid crystal panel,
    the liquid crystal panel includes, from the backlight side, a first polarizer, a liquid crystal cell, and a second polarizer;
    A light-emitting layer between the backlight unit and the liquid crystal cell that emits light when excited by light emitted from the backlight unit and emits light when excited by external light incident from the outside of the liquid crystal display device. further having
    Having a λ / 4 retardation layer between the first polarizer and the light emitting layer,
    A liquid crystal display device comprising a visible light reflecting layer between the light emitting layer and the backlight unit.
  2.  前記発光層よりも視認側に、前記発光層が発光する波長および発光層の励起波長以外の少なくとも一部の波長域の光を吸収する色吸収層を有する、請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, further comprising a color absorption layer that absorbs light in at least a part of the wavelength range other than the wavelength emitted by the light emitting layer and the excitation wavelength of the light emitting layer, on the viewing side of the light emitting layer. .
  3.  前記バックライトユニットは、前記発光層を励起する波長を含む光を出射する、請求項1または2に記載の液晶表示装置。 The liquid crystal display device according to claim 1 or 2, wherein the backlight unit emits light having a wavelength that excites the light emitting layer.
  4.  前記発光層は、蛍光体を含む、請求項1または2に記載の液晶表示装置。 The liquid crystal display device according to claim 1 or 2, wherein the light-emitting layer contains a phosphor.
  5.  前記発光層は、赤色光を励起発光する赤色発光領域と、緑色光を励起発光する緑色発光領域と、青色光を励起発光する青色発光領域と、を有する、請求項1または2に記載の液晶表示装置。
     
    3. The liquid crystal according to claim 1, wherein the light-emitting layer has a red light-emitting region that emits light upon excitation of red light, a green light-emitting region that emits light upon excitation of green light, and a blue light-emitting region that emits light upon excitation of blue light. display device.
PCT/JP2022/033527 2021-09-10 2022-09-07 Liquid crystal display device WO2023038053A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280060613.7A CN117916656A (en) 2021-09-10 2022-09-07 Liquid crystal display device having a light shielding layer
JP2023546964A JPWO2023038053A1 (en) 2021-09-10 2022-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021147763 2021-09-10
JP2021-147763 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023038053A1 true WO2023038053A1 (en) 2023-03-16

Family

ID=85506355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033527 WO2023038053A1 (en) 2021-09-10 2022-09-07 Liquid crystal display device

Country Status (3)

Country Link
JP (1) JPWO2023038053A1 (en)
CN (1) CN117916656A (en)
WO (1) WO2023038053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075814A1 (en) * 2022-10-05 2024-04-11 株式会社ジャパンディスプレイ Fluorescence detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107719A (en) * 2000-09-28 2002-04-10 Seiko Epson Corp Liquid crystal device and electronic appliance
JP2019159098A (en) * 2018-03-13 2019-09-19 株式会社ポラテクノ Display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107719A (en) * 2000-09-28 2002-04-10 Seiko Epson Corp Liquid crystal device and electronic appliance
JP2019159098A (en) * 2018-03-13 2019-09-19 株式会社ポラテクノ Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075814A1 (en) * 2022-10-05 2024-04-11 株式会社ジャパンディスプレイ Fluorescence detection device

Also Published As

Publication number Publication date
CN117916656A (en) 2024-04-19
JPWO2023038053A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5912042B2 (en) Liquid crystal display with fluorescent backlight emitting polarized light
US6469755B1 (en) Illuminating arrangement with reflector having inclined irregularities or corrugations
JP4394146B2 (en) LCD panel with improved image contrast
JP3916667B2 (en) Illumination system, linear polarizer for such an illumination system and display device having such an illumination system
US11042058B2 (en) Image display device
WO2016002434A1 (en) Liquid crystal display device
WO2016002343A1 (en) Liquid crystal display device
JP3304054B2 (en) Switchable liquid crystal device and method of manufacturing the same
JP2015520864A (en) Electro-optic switching element and electro-optic display
US7510748B2 (en) Broadband reflection type brightness enhancement polarizer and liquid crystal display having the same
WO2004063779A1 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
JPH09304770A (en) Separation layer for circular polarized light, optical element, polarization light source device and liquid crystal display device
WO2023038053A1 (en) Liquid crystal display device
JPWO2018212070A1 (en) Backlight unit and liquid crystal display device
JPH1031210A (en) Reflection type color display device
JP2023155243A (en) Surface light source comprising polarizer and liquid crystal display device using the same
JP3651611B2 (en) Reflective color display
CN114170922A (en) Display panel and method for manufacturing the same
JP2005283673A (en) Liquid crystal display device
JP2017097217A (en) Optical film and image display device
WO2023120321A1 (en) Led display device
CN114241933B (en) Display panel and method for manufacturing the same
US12025877B2 (en) Display panel and manufacturing method thereof
JP7333263B2 (en) Wavelength-selective reflective film and backlight unit
JP7189170B2 (en) Planar lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546964

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280060613.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE