WO2023037661A1 - Wireless communication system and wireless communication method - Google Patents

Wireless communication system and wireless communication method Download PDF

Info

Publication number
WO2023037661A1
WO2023037661A1 PCT/JP2022/020511 JP2022020511W WO2023037661A1 WO 2023037661 A1 WO2023037661 A1 WO 2023037661A1 JP 2022020511 W JP2022020511 W JP 2022020511W WO 2023037661 A1 WO2023037661 A1 WO 2023037661A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio
wireless communication
communication system
station
wireless device
Prior art date
Application number
PCT/JP2022/020511
Other languages
French (fr)
Japanese (ja)
Inventor
信康 金川
健 武井
茂則 金子
尚弘 池田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023037661A1 publication Critical patent/WO2023037661A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/08Secret communication by varying the polarisation of transmitted waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/65Environment-dependent, e.g. using captured environmental data

Definitions

  • the present invention relates to a wireless communication system and a wireless communication method, and more particularly to a wireless communication system and a wireless communication method using rotationally polarized wave communication suitable for cryptographic communication.
  • Patent Document 1 in rotary polarized wave communication, a pair of rotary polarized radio devices share time-series changes in polarization rotation, and cryptographic communication is performed using a physical quantity based on a dynamically changing polarization phase as a common key. A method is disclosed.
  • the present invention aims to share the same common key without being affected by error (uncertainty) when using a unique physical quantity based on propagation characteristics as a common key for cryptographic communication.
  • one of the representative wireless communication systems of the present invention is wireless communication in which a first wireless device and a second wireless device perform communication while keeping information confidential using a physical key.
  • the common key is kept secret, and the same common key is generated without being affected by errors (uncertainties). can be shared.
  • FIG. 10 is a diagram illustrating an example of processing when generating a common key
  • FIG. 3 is a flowchart showing a processing procedure performed by the master station 10 shown in FIG. 2
  • 3 is a diagram showing, in a flowchart, a processing procedure performed by a child station 20 shown in FIG. 2
  • FIG. This is a table in the case of rounding the lower bits of the provisional LSB with 0 or 1.
  • FIG. It is a table in the case of truncating the lower bits of the provisional LSB as rounding.
  • FIG. 10 is a diagram illustrating an example of processing when generating a common key
  • FIG. 3 is a flowchart showing a processing procedure performed by the master station 10 shown in FIG. 2
  • 3 is a diagram showing, in a flowchart, a processing procedure performed by a child station 20 shown in FIG. 2
  • FIG. This is a table in the case of rounding the lower bits of the provisional LSB with 0 or 1.
  • FIG. 2 is a diagram showing the configuration of a radio communication system according to Example 2 of the present invention
  • FIG. 4 is a diagram illustrating a first example of a common key handover method
  • FIG. 10 is a diagram illustrating a second example of a common key handover method
  • FIG. 10 is a diagram illustrating a third example of a common key handover method
  • FIG. 10 is a diagram showing a fourth example of a common key handover method
  • FIG. 12 is a diagram illustrating a fifth example of a common key handover method
  • FIG. 10 is a diagram showing a frequency and polarization angle hopping table as a first pattern of Example 3
  • FIG. 12 is a diagram showing a frequency-only hopping table for a case where the partner station does not have a rotary polarization communication function, as a second pattern of the third embodiment;
  • FIG. 12 is a diagram showing a hopping table that is changed in response to occurrence of a communication failure as a third pattern of the third embodiment;
  • 1 is a diagram showing an example of a configuration of a wireless communication system that performs confidential information communication using a polarization shift characteristic unique to a wireless device that performs communication as an encryption key;
  • FIG. FIG. 3 is a diagram showing an example of a communication protocol of each radio device of the radio communication system according to the present invention;
  • FIG. 10 is a diagram showing an outline of another example of a wireless communication system that performs confidential information communication using a polarization shift characteristic unique to a wireless device that performs communication as an encryption key; 19 is a diagram showing an example of a communication protocol used by each wireless device shown in FIG. 18;
  • FIG. FIG. 11 is a diagram showing a first configuration example and its operation mode as a representative example of a receiver of a radio communication system according to a fourth embodiment;
  • FIG. 4 is a diagram showing the relationship between a transmission waveform and a reception waveform;
  • FIG. 3 is a diagram showing correlation with a received signal by shifting a strong autocorrelation weak cross-correlation bit string shared by a transmitting station and a receiving station;
  • FIG. 12 is a diagram showing a second configuration example as a receiver used in the wireless communication system according to the fourth embodiment;
  • FIG. 12 is a diagram showing a third configuration example as a receiver of the wireless communication system according to the fourth embodiment;
  • FIG. 14 is a diagram showing a fourth configuration example as a representative example of a transmitter of a radio communication system according to the fourth embodiment;
  • FIG. 12 is a diagram showing a fifth configuration example as a transmitter used in the wireless communication system according to the fourth embodiment;
  • FIG. 12 is a diagram showing a sixth configuration example as a representative example of a wireless device pair (transmitter/receiver) used in the wireless communication system according to the fourth embodiment;
  • FIG. 17 is a diagram showing a seventh configuration example as a wireless device pair (transmitter/receiver) used in the wireless communication system according to the fourth embodiment;
  • FIG. 16 is a diagram showing an example of the configuration of a wireless communication system that performs confidential information communication using a polarization shift characteristic unique to a wireless device that performs communication as an encryption key.
  • This radio communication system comprises a master station 10-1 and slave stations 20-1, 20- and 2.
  • FIG. A shield 31, a reflector 32, and the like exist around the transmitter/receiver.
  • the polarization shift is 0° when performing rotational polarization communication.
  • FIG. 1 is a diagram showing a basic embodiment of the present invention as Example 1 of the present invention.
  • FIG. 1 is a graph showing the relationship between the polarization angle (transmitting side polarization angle) ⁇ TX of the radio wave sent from the transmitting side and the polarization angle (receiving side polarization angle) ⁇ RX of the radio wave received at the receiver side.
  • the sign bit is the provisional LSB, the sign bit will be exchanged between the master station and the slave station by communication. can be kept secret.
  • values such as the propagation time or propagation loss between a pair of wireless stations can be considered in addition to the above-described polarization angle.
  • a common key is generated based on the difference between the theoretical value of propagation time derived from the distance between wireless stations and the measured value, or the difference between the theoretical value of propagation loss (signal strength) and the measured value. It is desirable to
  • the encryption strength can be increased.
  • the master station 10 performs fraction processing (S106 shown in FIGS. 2 and 3) on the value DA obtained by discretizing the propagation characteristics with the provisional LSB, that is, tLSB as the least significant bit, to obtain the encryption key KEYA.
  • the value DB obtained by discretizing the propagation characteristic is treated as a provisional LSB, that is, tLSB as the least significant bit, and the fraction processing (S206 shown in FIGS. 2 and 4) and the uncertainty resolution processing (FIG. 2 and S207) shown in FIG. 4 to obtain the encryption key KEYB.
  • the master station 10 transmits tLSB of the value DA and two bits one bit lower than it (S102 shown in FIGS. 2 and 3).
  • the slave station 20 receives these 2 bits (shown in FIGS. 2 and 4, S202), predicts the result of rounding in the master station 10 (shown in FIGS. 2 and 4, S206),
  • This uncertainty elimination process (S207) is performed by matching the result of the uncertainty elimination process (S207 shown in FIGS. 2 and 4) of the value DB with the predicted value.
  • FIG. 3 is a flowchart showing the processing procedure performed by the master station 10 shown in FIG. Note that since the master station 10 is the subject of processing from step 100 (S100) to step 112 (S112) below, the notation of the subject of processing will be omitted below.
  • step 100 Processing is started as step 100 (S100).
  • step 101 the bit position k of the provisional LSB is set to the initial value k0.
  • step 102 the k-th bit and k ⁇ 1-th bit of the value DA obtained by discretizing the propagation characteristics are transmitted to the slave station 20.
  • step 104 the contents of transmission from the slave station 20 to the master station 10 are confirmed. If the content of transmission from the slave station 20 to the master station 10 is NG (corresponding to step 211 (S211) shown in FIG. 4), in step 112 (S112), the bit position k of the provisional LSB is moved one bit higher. Then, the process returns to step 102 (S102), and the process of step 102 (S102) is performed.
  • step 106 the value DA is left-shifted by k bits (the value DA is Arithmetic shift for signed integers) and rounding to KEYA.
  • the least significant bit of KEYA is transmitted from the parent station 10 to the child station 20, it may not be used as the encryption key, and the higher bits may be used as the encryption key.
  • step 108 encrypted communication with the slave station 20 is started using KEYA as a common key.
  • step 109 it is checked whether or not the encrypted communication has succeeded. If the cryptographic communication is not successful (N), go through step 112 (S112) (move the bit position k of the provisional LSB one bit higher), return to step 102 (S102), and step 102 (S102). process.
  • step 110 the series of processes is terminated, and the encrypted communication with the slave station 20 is continued using the KEYA as the common key.
  • FIG. 4 is a flowchart showing a processing procedure performed by the child station 20 shown in FIG. It should be noted that since the processing subject of the following steps 200 (S200) to step 212 (S212) is the child station 20, the notation of the processing subject will be omitted below. Processing is started as step 200 (S200). At step 201 (S201), the bit position k of the provisional LSB is set to the initial value k0.
  • step 202 the k-th bit and k-1-th bit of the value DA obtained by discretizing the propagation characteristics are received from the master station 10 (corresponding to step 102 (S102) shown in FIG. 3).
  • the difference ⁇ between the value DA and the value DB is calculated from the k-th and k-1-th bits of the value DA and the k-th and k-1-th bits of the value DB.
  • step 204 it is determined whether or not the value of the difference ⁇ is less than 1 provisional LSB. If the difference ⁇ is equal to or greater than 1 provisional LSB (N), the slave station 20 transmits "NG" to the master station 10 in step 211 (S211). Subsequently, in step 212 (S212), the bit position k of the provisional LSB is moved one bit higher, and the process of step 202 (S202) is performed.
  • the slave station 20 transmits "OK" to the master station 19 in step 205 (S205).
  • the value DB is left-shifted by k bits (arithmetic shift if DB is a signed integer), rounded, and set to KEYB.
  • step 207 the uncertainty resolution process shown in FIG. 5 or 6 is executed.
  • step 208 encrypted communication with the master station 10 is started using KEYB as a common key.
  • step 209 it is checked whether or not the encrypted communication has succeeded. If the encrypted communication is not successful (N), go through step 212 (S212) (move the bit position k of the provisional LSB to one bit higher), return to step 202 (S202), and step 202 (S202). process.
  • step 210 the series of processes is terminated, and the encrypted communication with the master station 10 is continued using KEYB as the common key.
  • step 207 S207
  • 5 and 6 show tables used for uncertainty processing.
  • FIG. 5 is a table when the lower bits of the provisional LSB (tLSB) are "rounded off by 0", which corresponds to the rounding off of decimal numbers, as the fraction processing (S106, S206).
  • FIG. 6 is a table for rounding down the lower bits of the temporary LSB (tLSB) as rounding (S106, S206).
  • Uncertainty elimination processing (S207) is executed based on these tables.
  • the horizontal direction is the parent station
  • the vertical direction is the child station
  • the provisional LSB (tLSB) its lower bit value
  • the rounding result are shown in parentheses.
  • the result after the uncertainty elimination process (S207) and the corrected value of the rounding result of the child station are shown in parentheses.
  • the top row indicates that the provisional LSB and the lower bits of the child station are 00, etc., and indicates that they become 0 when "0 is rounded off", and the leftmost column indicates that the parent station
  • the provisional LSB and the lower bits of are 00... and become 0 when "0 is rounded off”.
  • " ⁇ 0" indicates that correction is unnecessary.
  • the provisional LSB and the lower bits of the master station are 01 . becomes 1, and the correction of the rounding result of the slave station is "+1", indicating that addition of 1 is required.
  • FIG. 7 is a diagram showing the configuration of a radio communication system according to Embodiment 2 of the present invention.
  • FIG. 7(a) shows a configuration example in which a plurality of mobile stations, namely m1 station 20-1 and m2 station 20-2, exist for station A 10, which is a parent station.
  • Encrypted communication is performed between the parent station A station 10 and the moving child stations m1 station 20-1 and m2 station 20-2 using common keys KYAm1 and KEIAm2, respectively. Further, between the m1 station 20-1 and the m2 station 20-2, which are moving child stations, encrypted communication is performed using a common key KEYm1m2.
  • one moving child station m station 20 exists for a plurality of parent stations A station 10-1, B station 10-2 and C station 10-3. Give an example.
  • the shared key KEYAB is used between the parent stations A station 10-1 and B station 10-2, and the shared key KEYBC is used between the B station 10-2 and C station 10-3.
  • a common key KEYAm is used between the master station A station 10-1 and the moving slave station m station 20, and the master station B station 10-2 and the moving slave station m station 20 are connected. Between , the common key KEYBm is used, and encrypted communication is performed respectively.
  • FIG. 8 is a diagram showing a first example of a common key handover method.
  • a common key is generated and established from the polarization angle by the method according to the first embodiment between the master station and the slave station, and cryptographic communication is performed.
  • station m 20 which is a moving child station, exists in the service area 11-1 of station A 10-1, which is a parent station, each time encrypted communication is performed, between station A 10-1 and station m 20:
  • a common key KEYAm is generated and established from the polarization angle by the method according to the first embodiment, and cryptographic communication is performed using the common key KEYAm.
  • station m 20 which is a moving child station, enters service area 11-2 of station B 10-2, which is a parent station, each time encrypted communication is performed, A common key KEYBm is generated and established from the polarization angle by the method according to the first embodiment, and cryptographic communication is performed using the common key KEYBm.
  • FIG. 9 is a diagram showing a second example of a common key handover method.
  • a common key is generated and established to perform encrypted communication. That is, when a child station enters the service area of a parent station, a common key is generated and established from the polarization angle by the method according to the first embodiment between the parent station and the child station. is in the service area of this master station, encrypted communication is performed using the common key.
  • another common key is generated and established from the polarization angle by the method according to the first embodiment between the other master station and the slave station. , and thereafter, while the slave station is in the service area of another master station, encrypted communication is performed using another common key.
  • station m 20 When station m 20, which is a moving child station, enters the service area 11-1 of station A 10-1, which is a parent station, the communication between station A 10-1 and station m 20 according to the first embodiment A common key KEYAm is generated and established from the polarization angle according to the method, and cryptographic communication is performed using the common key KEYAm.
  • station m 20 which is a mobile station, enters the service area 11-2 of station B 10-2, which is a parent station, communication between station B 10-2 and station m 20 is performed according to the first embodiment.
  • a common key KEYBm is generated and established from the polarization angle by such a method, and cryptographic communication is performed using the common key KEYBm.
  • the overhead for generating and establishing a common key can be reduced, so communication efficiency can be improved.
  • FIG. 10 is a diagram showing a third example of a common key handover method.
  • a common key is generated and established from the polarization angle by the method according to the first embodiment between the master station and the slave station, Thereafter, even if the slave station enters the service area of another master station, it will continue to use the common key to perform encrypted communication.
  • the A station 10-1 and B station 10-2, which are parent stations, are equipped with antennas with high ground clearance and high gain because they are base stations. Therefore, communication over a longer distance than that of the m-station 20, which is a child station, is possible, and communication is also possible over ground communication lines.
  • the common key KEYAB is generated and established from the polarization angle by the method according to the first embodiment, and encrypted with the common key KEYAB. Communication is also possible.
  • station m 20 When station m 20, which is a moving child station, enters the service area 11-1 of station A 10-1, which is a parent station, the communication between station A 10-1 and station m 20 according to the first embodiment A common key KEYAm is generated and established from the polarization angle according to the method, and cryptographic communication is performed using the common key KEYAm.
  • station m 20 which is a moving child station, enters service area 11-2 of station B 10-2, which is a parent station, common key KEYAm is shared from station A 10-1 to station B 10-2. It is sent after being encrypted with the key KEYAB, or sent via a ground communication line. After that, the m-station 20 and the B-station 10-2 perform encrypted communication using the common key KEYAm.
  • the overhead for generating and establishing the common key can be reduced, so communication efficiency can be improved.
  • spoofing of the parent station or the child station can be prevented by using the common key as information for authentication at the time of handover.
  • FIG. 11 is a diagram showing a fourth example of the common key handover method.
  • a common key is generated and established from the polarization angle by the method according to the first embodiment between the master station and the slave station, Encrypted communication is performed using the common key, and when the slave station enters the service area of another master station, the first master station sends the first common key as authentication information to the other master station.
  • the A station 10-1 and B station 10-2, which are parent stations, are equipped with antennas with high ground clearance and high gain because they are base stations. Therefore, communication over a longer distance than that of the m-station 20, which is a child station, is possible, and communication is also possible over ground communication lines.
  • the common key KEYAB is generated and established from the polarization angle by the method according to the first embodiment, and encrypted with the common key KEYAB. Communication is also possible.
  • station m 20 When station m 20, which is a moving child station, enters the service area 11-1 of station A 10-1, which is a parent station, the communication between station A 10-1 and station m 20 according to the first embodiment A common key KEYAm is generated and established from the polarization angle according to the method, and cryptographic communication is performed using the common key KEYAm.
  • station m 20 which is a moving child station, enters the service area 11-2 of station B 10-2, which is a parent station, authentication information common to stations A 10-1 to B 10-2 is transmitted.
  • the key KEYAm is encrypted with the common key KEYAB and sent, or sent via a ground communication line.
  • Station B 10-2 confirms that encrypted communication with station m 20 is established using the common key KEYAm. Thereby, the B station 10-2 confirms that the m station 20 entering the service area 11-2 is valid. After that, the common key KEYBm is generated and established from the polarization angle by the method according to the first embodiment between the B station 10-2 and the m station 20, and after that, the m station 20 and the B station 10-2 performs encrypted communication using a common key KEYBm.
  • spoofing of the parent station or the child station can be prevented by using the common key as information for authentication during handover.
  • FIG. 12 is a diagram showing a fifth example of a common key handover method.
  • the child station confirms whether or not the previous day's encrypted communication is established for authentication at the start of work within the service area of the first parent station.
  • the parent station A station 10-1 confirms that encrypted communication with the child station m station 20 is established using the common key KEYAm from the previous day. Thereby, the A station 10-1 confirms that the m station 20 existing in the service area 11-1 is legitimate at the start of work.
  • the first embodiment is established between the A station 10-1 and the m station 20.
  • a common key KEYAm is generated and established from the polarization angle by the method according to the above, and cryptographic communication is performed using the common key KEYAm.
  • the subsequent operation mode is the same as the third example shown in FIG.
  • the common key as information for authentication at the time of handover, it is possible not only to prevent spoofing of the parent station or the child station, but also to use the common key from the previous day at the start of work. By using it as information for authentication, it is possible to prevent spoofing of the parent station or the child station.
  • a third embodiment of the present invention has an embodiment for hopping at least one of the frequency and the polarization angle used for communication.
  • FIG. 13 is a diagram showing a hopping table for hopping frequencies and polarization angles as the first pattern of the third embodiment.
  • the frequency and polarization angle used for communication are switched regularly in time series for each of steps 1 to n.
  • step 1 communication is performed at frequency f1 and polarization angle p1
  • step 2 communication is performed at frequency f2 and polarization angle p3
  • step 3 communication is performed at frequency f3 and polarization angle p3.
  • step n the frequency and polarization angle used for communication are periodically switched according to the form of communication at frequency fn and polarization angle pn.
  • the table of combinations of frequencies and polarization angles for each step can be kept secret from third parties to improve the secrecy of communication.
  • the hopping table is realized using the physical quantity of the polarization angle, the secrecy of the hopping table can be enhanced.
  • FIG. 14 is a diagram showing a hopping table for hopping only the frequency when the partner station does not have a rotary polarization communication function, as the second pattern of the third embodiment.
  • frequency and polarization angle hopping is performed by using a frequency and polarization angle hopping table prepared in advance. If it does not have a communication function, it performs only frequency hopping as in the second example.
  • the second pattern it is possible to communicate with a partner station that does not have a rotary polarization communication function, in other words, it is possible to maintain communication compatibility with conventional wireless stations.
  • the rotary polarized wave communication function may be exchanged to indicate whether or not they have
  • FIG. 15 is a diagram showing a hopping table that is changed in response to the occurrence of a communication failure as the third pattern of the third embodiment.
  • the hopping table is changed to avoid this.
  • step 5 if a communication failure occurs in step 5 due to interference by interfering waves, etc., in this step 5, the frequency and polarization used in another step (step 6 in the figure) are changed. Communicate with waves.
  • steps 5 and 6 are used in another step (step 7 in the figure). communication at the same frequency and polarization angle.
  • the frequency and polarization angle at which the communication failure occurs from the next time since communication is performed while avoiding at least one of them, it is possible to secure a more stable communication state that is resistant to interference caused by interfering waves.
  • FIG. 16 a configuration example of a confidential information communication system using polarization shift characteristics unique to a pair of wireless devices that communicate as an encryption key will be described with reference to FIGS. 16 to 20.
  • FIG. 16 a configuration example of a confidential information communication system using polarization shift characteristics unique to a pair of wireless devices that communicate as an encryption key
  • the absolute time can be obtained by separately using GPS or standard radio waves, it is possible to measure the propagation time or obtain the transmission timing of the radio wave at a specific polarization angle by synchronization. .
  • a transmitter of the master station 10-1 assigns a sine wave and a cosine wave of a plurality of polarization rotation frequencies of the same frequency and different phases to each bit of a bit string with strong autocorrelation and weak cross-correlation of a signal, Two summed sine waves and summed cosine waves obtained by superimposing a plurality of sine waves and a plurality of cosine waves, respectively, are up-converted at the carrier frequency, respectively, and radiated into space from spatially orthogonal antennas to obtain a rotationally polarized wave. to form the transmission wave of
  • each bit of the bit string with strong autocorrelation and weak cross-correlation has the same frequency and different phase. are allocated, and two added sine waves and added cosine waves obtained by superimposing the plurality of sine waves and the plurality of cosine waves are applied to the down-converted signal of the received wave through a delay device When multiplied, the result has extreme values at different delay amounts.
  • the received wave a plurality of sine waves and cosine waves of the same frequency and different phases are assigned to each bit of a bit string with strong autocorrelation and weak cross-correlation having different polarization shifts.
  • the diffused signal is mixed with the superposition of the wave and multiple cosine waves.
  • the received signal is included in the transmitted signal from the receiver with a different polarization shift. Information can be separated.
  • FIG. 17 is a diagram showing an example of a communication protocol for each radio in the radio communication system according to the present invention.
  • a communication protocol for one-to-one communication between the wireless devices A and B in a wireless communication system that performs confidential information communication using the polarization shift characteristics unique to the wireless devices that communicate as an encryption key will be described.
  • a processing mode until the wireless device A transmits a synchronization signal (bit) including an ID will be described.
  • the subject of the following processing mode is the wireless device A, the description of the subject is omitted.
  • the wireless device B is selected as the communication destination, and an ID shared by both wireless devices is determined in advance.
  • a division number (polarization division number) M for dividing one period of the rotationally polarized wave is set.
  • a plurality of identification code strings represented by bit strings having the number of bits of the number of divisions M are provided, and one of them is selected.
  • M sine waves and cosine waves having initial phases shifted by the period of the rotationally polarized wave divided by the number of divisions M are weighted with a synchronization signal (bit) including an ID spread by each bit of the identification code string.
  • the set of superimposed sine and cosine waves are upconverted at the carrier frequency.
  • the up-converted signals are radiated into space by two spatially orthogonal antennas, and transmitted as rotationally polarized transmission waves.
  • the processing mode of the wireless device B will be described. Although the subject of the following processing mode is the wireless device B, the description of the subject is omitted.
  • the received waves are received by two spatially orthogonal antennas, the received signals are down-converted at the carrier frequency. Demodulate the down-converted received signal.
  • a set of M sine waves and cosine waves whose initial phases are shifted by the period of the rotationally polarized wave divided by the polarization division number M weighted and added by each bit of the selected identification code string is generated as a synchronous replica signal. do.
  • the signals obtained by down-converting from the two antennas are multiplied by sequentially delaying the synchronous replica signal by M divisions of the rotational polarization cycle.
  • the multiplication result is compared with a predetermined threshold. If the comparison result does not exceed the threshold value (no), another identification code string is selected from the plurality of identification code strings and the process is repeated. If the comparison result exceeds the threshold (yes), the delay amount in that case is determined as the polarization shift.
  • the signals obtained by down-converting from the two antennas are demodulated to reproduce the information signal.
  • the ACK signal and the ID of the own station are processed in the same manner as the above-described processing performed by the wireless device A when transmitting. Send.
  • radio A receives a signal from radio B
  • the subject of the following processing mode is the wireless device A, the description of the subject is omitted.
  • a received wave from the wireless device B is received by two spatially orthogonal antennas, and the received signal is down-converted by the carrier frequency.
  • the received signal is demodulated, and one of the identification code strings selected from a plurality of identification code strings shared by both radios is weighted and added with each bit of the identification code string.
  • a set of M sine and cosine waves with an initial phase shift is generated as a synchronous replica signal.
  • the signals obtained by down-converting from the two antennas are multiplied by sequentially delaying the synchronous replica signal by M divisions of the rotational polarization cycle.
  • This multiplication result is compared with a predetermined threshold value. If the comparison result does not exceed the threshold value (no), the processing returns to the process of selecting another identification code string from among the plurality of identification code strings, and the above-described processing procedure is repeated. If the comparison result exceeds the threshold (yes), the processing from down-conversion of the received signal is repeated to reproduce the bit string transmitted by the wireless device B.
  • the reproduced bit string is information about ACK and ID (yes)
  • M sine waves and cosine waves whose initial phases are shifted by the period of the rotationally polarized wave divided by the division number M are added to the identification code string.
  • a set of weighted and superimposed sine and cosine waves with an information signal (bit) containing the ID spread at each bit is upconverted at the carrier frequency.
  • These up-converted signals are radiated into space by two spatially orthogonal antennas and transmitted as rotationally polarized transmission waves.
  • the reproduced bit string is not information related to ACK and ID (no)
  • the above-described series of processing procedures starting from down-conversion of the received signal are repeated.
  • FIG. 18 is a diagram showing an overview of another example of a wireless communication system that performs confidential information communication using a polarization shift characteristic unique to a wireless device that performs communication as an encryption key.
  • the master station in the operation of receiving a transmission wave from a slave station, the master station generates two summed sine waves and a summed cosine wave formed by superimposing a plurality of sine waves and a plurality of cosine waves, respectively.
  • the polarization shift detected by each child station can be known from the amount of delay when the received wave is multiplied by the signal down-converted by the carrier frequency.
  • the master station 10-1 operates in the same manner as in the wireless communication system shown in FIG. A wave shift is checked in advance and an ID-polarization shift table is created.
  • the master station 10-1 uses different bit strings with strong autocorrelation and weak cross-correlation for a plurality of slave stations having the same polarization shift, as in FIG. communication.
  • FIG. 19 is a diagram showing an example of a communication protocol used by each wireless device shown in FIG. 18.
  • FIG. 19 a processing mode using a communication protocol for one-to-many communication by a wireless communication system that performs confidential information communication using a polarization shift characteristic unique to a wireless device that performs communication as an encryption key will be described.
  • a processing mode until the wireless device 0 transmits a synchronization signal (bit) including an ID will be described.
  • the subject of the following processing mode is the wireless device 0, the description of the subject is omitted.
  • the wireless device n is selected as the communication destination, and an ID shared by both wireless devices is determined in advance.
  • a division number (polarization division number) M for dividing one period of the rotationally polarized wave is set.
  • a plurality of identification code strings represented by bit strings having the number of bits of the number of divisions M are provided, and one of them is selected.
  • the up-converted signal is radiated into space by two spatially orthogonal antennas and transmitted as a rotationally polarized transmission wave.
  • the processing mode of the wireless device n will be described. Although the subject of the following processing mode is the wireless device n, the description of the subject is omitted.
  • the received waves are received by two spatially orthogonal antennas, the received signals are down-converted at the carrier frequency. Demodulate the down-converted received signal.
  • a set of M sine waves and cosine waves whose initial phases are shifted by the period of the rotationally polarized wave divided by the polarization division number M weighted and added by each bit of the selected identification code string is generated as a synchronous replica signal. do.
  • the signals obtained by down-converting from the two antennas are multiplied by sequentially delaying the synchronous replica signal by M divisions of the rotational polarization cycle.
  • This multiplication result is compared with a predetermined threshold value. If the comparison result does not exceed the threshold value (no), another identification code string is selected from the plurality of identification code strings and the process is repeated.
  • the delay amount used at that time is determined as the polarization shift.
  • the synchronous replica signal is delayed by this polarization shift, and the signals obtained by down-converting from the two antennas are demodulated to reproduce the information signal.
  • the regenerated signal detects the synchronization bit (yes)
  • the ACK signal, the ID of the local station, and the value of the polarization shift are processed in the same manner as the radio 0 performed when transmitting. send to
  • a processing mode after the radio device 0 receives a signal from the radio device n will be described.
  • the subject of the following processing mode is the wireless device 0, the description of the subject is omitted.
  • a reception wave from a wireless device n is received by two spatially orthogonal antennas, and the received signal is down-converted by a carrier frequency.
  • the received signal is demodulated, and one of the identification code strings selected from a plurality of identification code strings shared by both radios is weighted and added with each bit of the identification code string.
  • a set of M sine and cosine waves with an initial phase shift is generated as a synchronous replica signal.
  • the signals obtained by down-converting from the two antennas are multiplied by sequentially delaying the synchronous replica signal by M divisions of the rotational polarization cycle.
  • This multiplication result is compared with a predetermined threshold value. If the comparison result does not exceed the threshold value (no), the processing returns to the process of selecting another identification code string from among the plurality of identification code strings, and the above-described processing procedure is repeated.
  • the processing from down-conversion of the received signal is repeated to reproduce the bit string transmitted by the wireless device n.
  • the reproduced bit string is information about ACK and ID (yes)
  • the ID and the polarization shift value are extracted from the reproduced bit string and stored.
  • the above processing procedure is repeated by the wireless device 0 for all other wireless devices that perform one-to-many communication. After the same processing is completed for all the wireless devices, individual information is simultaneously transmitted to a plurality of wireless devices n using the correspondence map of ID, polarization shift, and identification code string.
  • a wireless device (receiving A configuration example of a transmitter or transmitter) and a wireless device pair (transmitter/receiver) will be described.
  • CDMA code division multiple access
  • high-frequency mixers 105 and 106 can be realized not only by hardware but also by software radio consisting of DSP and software. This method can be implemented in a short development period and at low cost using general-purpose hardware.
  • FIG. 20 is a diagram showing a first configuration example and its operation mode as a representative example of a receiver of a radio communication system according to the fourth embodiment.
  • a first antenna 103 and a second antenna 104 which are spatially orthogonal to each other, receive transmission waves transmitted by a transmitter and use them as input signals.
  • each antenna (103, 104) is down-converted by the output of the carrier frequency generation circuit 101 and the first high frequency mixer 105 and the second high frequency mixer 106.
  • the output of the first high-frequency mixer 105 is branched into two and input to the receiving mixer 121 and the second analog-to-digital converter (ADC) 123 .
  • ADC analog-to-digital converter
  • the output of the polarization rotation frequency generation circuit 102 is branched through a first variable delay circuit 115 whose delay amount is controlled by a central processing unit (CPU) 109, and each of the branches is sent to a reception delay device 112-i.
  • Each ⁇ bit 111-i of the strong autocorrelation weak cross-correlation bit string 111 is weighted by the receive multiplier 113-i and superimposed by the receive summation circuit 114.
  • the result of this superposition and the output of the first high-frequency mixer 105 are multiplied by the receiving mixer 121, and the multiplied result is converted into a digital signal by the first analog-to-digital converter (ADC) 122, and the central processing unit ( CPU) 109.
  • ADC analog-to-digital converter
  • CPU central processing unit
  • the strong autocorrelation weak cross-correlation bit string 111 is generally called a "PN (Pseudo random noise) signal", and a typical example is an "M sequence”.
  • PN Pulseudo random noise
  • FIG. 21 is a diagram showing the relationship between a transmission waveform and a reception waveform.
  • the received waveform is generally delayed from the transmitted waveform by T (the difference in reference time between the transmitting station and the receiving station plus the propagation time).
  • T the difference in reference time between the transmitting station and the receiving station plus the propagation time.
  • PN code or M sequence a strong autocorrelation weak cross-correlation bit string
  • FIG. 22 is a diagram in which the strong autocorrelation weak cross-correlation bit string (PN code or M sequence) shared by the transmitting station and the receiving station is shifted by ⁇ t and correlated with the received signal.
  • PN code strong autocorrelation weak cross-correlation bit string
  • identifying T is the time at which the signal currently received at the receiving station was transmitted at the transmitting station. It leads to the identification (synchronization) of things.
  • the information about what time it was transmitted at the transmitting station leads to the information about what angle of polarization it was transmitted. Therefore, by continuously changing the polarization angle at the transmitting station, in the present invention, it is possible to obtain the relationship between the polarization angle at the transmitting station and the polarization angle at the receiving station, which is used as a common key. can be done.
  • the other two-branched output of the first harmonic mixer 105 is output by a second analog-to-digital converter (ADC) 123, and the output of the second harmonic mixer 106 is Each is converted into a digital signal by the third analog-to-digital converter 124 .
  • ADC analog-to-digital converter
  • Each digital signal becomes two inputs of a comparison circuit 127 via a second variable delay circuit 125 and a third variable delay circuit 126 whose delay amount is independently controlled by a central processing unit (CPU) 109 .
  • CPU central processing unit
  • the comparison circuit 127 outputs the difference between the input values as ⁇ 1 based on the determination threshold stored in the threshold storage circuit 128 and inputs this comparison output to the central processing unit (CPU) 109 .
  • CPU central processing unit
  • a central processing unit (CPU) 109 changes the delay amount of the first variable delay circuit 115 by using the properties of the strong autocorrelation weak cross-correlation bit string (PN code or M-sequence) 111 described above.
  • the delay amount that maximizes the output of one analog-to-digital converter 122 is measured, and the polarization shift with the transmitter that is communicating is determined based on this delay amount.
  • phase of the polarization rotation of the rotary polarized wave is not constant, and leads or lags. This phenomenon is illustrated by the solid line in the upper graph of FIG.
  • this bit string can be used as a cryptographic key to conceal the information signal by an appropriate cryptographic algorithm for communication, which has the effect of realizing a highly secure wireless communication system.
  • FIG. 23 is a diagram showing a second configuration example as a receiver used in the wireless communication system according to the fourth embodiment.
  • variable strong autocorrelation weak cross-correlation bit string 116 is used instead of the strong autocorrelation weak cross-correlation bit string 111.
  • variable strong autocorrelation weak cross-correlation bit string 116 can generate mutually different strong autocorrelation weak cross-correlation bit strings by the central processing unit (CPU) 109 .
  • the master station since the master station can transmit and receive simultaneously with a plurality of slave stations having the same polarization shift, there is an effect of increasing the communication capacity of the wireless communication system and improving the throughput. .
  • FIG. 24 is a diagram showing a third configuration example as a receiver of the wireless communication system according to the fourth embodiment.
  • a first antenna 103 and a second antenna 104 that are spatially orthogonal receive the transmission wave transmitted by the transmitter and use it as an input signal.
  • each antenna (103, 104) is down-converted by the output of the carrier frequency generation circuit 101 and the first high frequency mixer 105 and the second high frequency mixer 106.
  • the output of the second high-frequency mixer 106 is branched into two and input to the first reception mixer 121 and the second analog-to-digital converter (ADC) 123 .
  • ADC analog-to-digital converter
  • one of the outputs of the polarization rotation frequency generating circuit 102 is branched into two via a first variable delay circuit 115 whose delay amount is controlled by a central processing unit (CPU) 109, and each of the branches is Each ⁇ bit 111-i of the strong autocorrelation weak cross-correlation bit string 111 is weighted by the first receive multiplier 113-i through the first receive delay unit 112-i, and the first receive summation circuit 114 Overlap with .
  • CPU central processing unit
  • the result of this superimposition and the output of the second high-frequency mixer 106 are multiplied by the first reception mixer 121 , and the multiplication result is input to the reception synthesis circuit 131 .
  • the output of the first high-frequency mixer 105 is branched into two and input to the second reception mixer 141 and the third analog-to-digital converter (ADC) 124 .
  • ADC analog-to-digital converter
  • the other branch of the output of the polarization rotation frequency generation circuit 102 is passed through the polarization rotation frequency band 90° phase shifter 136, and the second output whose delay amount is controlled by the central processing unit (CPU) 109 , and each of the branches is subjected to second reception multiplication using each ⁇ bit 111-i of the strong autocorrelation weak cross-correlation bit string 111 via the second reception delay unit 132-i. weighted by the unit 133-i and superimposed by the second reception summation circuit 134;
  • the result of this superposition and the output of the first high-frequency mixer 105 are multiplied by the second reception mixer 141 , and the multiplication result is input to the reception synthesizing circuit 131 .
  • this reception synthesizing circuit 131 is converted into a digital signal by a first analog-to-digital converter (ADC) 122 and input to the central processing unit (CPU) 109 .
  • ADC analog-to-digital converter
  • the bifurcated other of the outputs of the first harmonic mixer 105 and the bifurcated other of the outputs of the second harmonic mixer 106 are coupled to a second analog-to-digital converter (ADC) 123 and a third analog converter (ADC) 123, respectively. It is converted into a digital signal by a digital converter (ADC) 124 .
  • ADC analog-to-digital converter
  • Each digital signal becomes two inputs of a comparison circuit 127 via a second variable delay circuit 125 and a third variable delay circuit 126 whose delay amount is independently controlled by a central processing unit (CPU) 109 .
  • CPU central processing unit
  • the comparison circuit 127 outputs the difference of each input value as ⁇ 1 based on the judgment threshold stored in the threshold storage circuit 128 and inputs this comparison output to the central processing unit (CPU) 109 .
  • the signal power for determining the polarization shift between the parent station and the child station can be doubled. .
  • the measurement accuracy of the polarization shift is improved, and the stability of the physical encryption key generated by the unique propagation characteristics between the transmitter and receiver used to conceal the information signal is increased, contributing to the further stabilization of the communication of the wireless communication system. do.
  • FIG. 25 is a diagram showing a fourth configuration example as a representative example of the transmitter of the wireless communication system according to the fourth embodiment.
  • a central processing unit (CPU) 109 generates and supplies information signals to a digital data generator 158 .
  • This digital data generator 158 inputs the bit string to a plurality of transmission multiplier circuits 157-i, weights each ⁇ bit 151-i of the strong autocorrelation weak cross-correlation bit string 151, and then divides it into two.
  • the first branch obtained by bifurcating the output of the polarization rotation frequency generation circuit 102 is delayed by the polarization rotation frequency band 90° phase shifter 168, and a plurality of first transmission delay multiplied by a plurality of first transmit multipliers 163-i with different phases via multipliers 162-i.
  • the outputs of a plurality of first transmission multipliers 163-i are superimposed by a first transmission summation circuit 164, and the output of this first transmission summation circuit 164 is fed to the first high frequency mixer by the output of the carrier wave frequency generation circuit 101. It is up-converted at 105 and radiated into space from the first antenna 103 .
  • a second branch obtained by bifurcating the output of the polarization rotation frequency generation circuit 102 is transmitted through a plurality of second transmission delay devices 152-i to a plurality of second transmission delay devices 152-i. Multiplied by multiplier 153-i.
  • the outputs of a plurality of second transmission multipliers 153-i are superimposed by a second transmission summation circuit 154, and the output of this second transmission summation circuit 154 is fed to a second high-frequency mixer by the output of the carrier wave frequency generation circuit 101. It is up-converted at 106 and radiated into space from a second antenna 104 that is spatially orthogonal to the first antenna 103 .
  • an information signal can be formed into a rotationally polarized wave by an aggregate of sine waves and cosine waves of the same polarization rotational frequency with different initial phases and different bit weights, and can be wirelessly communicated.
  • it is possible to increase the capacity and improve the throughput of the rotary polarization communication system.
  • FIG. 26 is a diagram showing a fifth configuration example as a transmitter used in the wireless communication system according to the fourth embodiment.
  • the difference from the fourth configuration example shown in FIG. is converted by the second transmission multiplier circuit 159 and supplied to the digital data generator 158 .
  • the information signal is encrypted and rotationally polarized wave communication can be performed, so that the wireless communication system can be made highly secure.
  • FIG. 27 is a diagram showing a sixth configuration example as a representative example of a wireless device pair (transmitter/receiver) used in the wireless communication system according to the fourth embodiment.
  • a first antenna 103 and a second antenna 104 that are spatially orthogonal receive the transmission wave transmitted by the transmitter and use it as an input signal.
  • each antenna (103, 104) is down-converted by the output of the carrier frequency generation circuit 101 and the first high frequency mixer 105 and the second high frequency mixer 106.
  • a first transmission/reception changeover switch 165 and a second transmission/reception changeover switch 166 are coupled to the first high-frequency mixer 105 and the second high-frequency mixer 106, and the output of the second transmission/reception changeover switch 166 is branched into two. is input to the first receive mixer 121 .
  • one of the two-branched output of the polarization rotation frequency generating circuit 102 is branched via a first variable delay circuit 115 whose delay amount is controlled by a central processing unit (CPU) 109, and each of the branches is Each ⁇ bit 111-i of the strong autocorrelation weak cross-correlation bit string 111 is weighted by the first receive multiplier 113-i through the first receive delay unit 112-i, and the first receive summation circuit 114 superimpose.
  • CPU central processing unit
  • the result of this superimposition and the output of the first high-frequency mixer 105 are multiplied by the first reception mixer 121 , and the multiplication result is input to the reception synthesizing circuit 131 .
  • the output of the first transmission/reception selector switch 165 is branched into two, one of which is input to the second reception mixer 141 .
  • the other branch of the output of the polarization rotation frequency generation circuit 102 is passed through the polarization rotation frequency band 90° phase shifter 136, and the central processing unit (CPU) 109 controls the amount of delay.
  • each of the branches via a second receive delay circuit 132-i and a second receive multiplier using each ⁇ bit 111-i of the strong autocorrelation weak cross-correlation bit string 111 133-i and superimposed by the second receive summation circuit 134.
  • the result of this superposition and the output of the first high-frequency mixer 105 are multiplied by the second reception mixer 141 , and the multiplication result is input to the reception synthesizing circuit 131 .
  • This reception synthesizing circuit 131 is converted into a digital signal by a first analog-to-digital converter (ADC) 122 and input to the central processing unit (CPU) 109 .
  • ADC analog-to-digital converter
  • the output of the first harmonic mixer 105 is the other branch of the first transmission/reception selector switch 165, and the output of the second harmonic mixer 106 is the other branch of the second transmission/reception selector switch 166, respectively.
  • ADC analog-to-digital converter
  • ADC analog-to-digital converter
  • CPU central processing unit
  • the comparison circuit 127 outputs the difference of each input value as ⁇ 1 based on the judgment threshold stored in the threshold storage circuit 128 , and inputs this comparison output to the second transmission multiplication circuit 159 .
  • a central processing unit (CPU) 109 generates an information signal including an ID unique to the wireless device stored in an ID memory 129, and a second transmission multiplier circuit 159 generates propagation path information unique to the pair of wireless devices communicating. This information signal encrypted with a physical key based on is supplied to the digital data generator 158 .
  • This digital data generator 158 inputs a bit string to a plurality of transmission multiplier circuits 157-i, weights each ⁇ bit 151-i of the strong autocorrelation weak cross-correlation bit string 151, and then divides it into two.
  • the first branch obtained by bifurcating the output of the polarization rotation frequency generation circuit 102 is delayed by the polarization rotation frequency band 90° phase shifter 168, and the plurality of first transmission delay devices 162-i are multiplied by a plurality of transmission multipliers 163-i with different phases via the transmission multipliers 163-i, the outputs of the plurality of transmission multipliers 163-i are superimposed by a transmission summation circuit 164, and the output of this transmission summation circuit 164 is used as the first transmission/reception switching. Input to the transmission terminal of the switch 165 .
  • the output of the common terminal of the first transmission/reception selector switch 165 is up-converted by the first high-frequency mixer 105 according to the output of the carrier wave frequency generation circuit 101 and radiated from the first antenna 103 into space.
  • the second branch obtained by branching the output of the polarization rotation frequency generation circuit 102 into two is passed through a plurality of second transmission delay devices 152-i to a plurality of second transmission multipliers with different phases.
  • the outputs of a plurality of transmission multipliers 153-i are superimposed in a transmission summation circuit 154, and the output of this transmission summation circuit 154 is input to the transmission terminal of the second transmission/reception selector switch 166.
  • the output of the common terminal of the second transmission/reception changeover switch 166 is up-converted by the second high-frequency mixer 106 by the output of the carrier wave frequency generation circuit 101, and the second antenna spatially orthogonal to the first antenna 103 is generated. 104 radiates into space.
  • the information signal is concealed by the propagation path characteristics unique to a specific wireless device pair that performs rotationally polarized wave communication, and a plurality of rotationally polarized waves having different initial phases are used. Since information signals can be transmitted, a highly secure and large-capacity radio communication system can be realized.
  • FIG. 28 is a diagram showing a seventh configuration example as a wireless device pair (transmitter/receiver) used in the wireless communication system according to the fourth embodiment.
  • variable strong autocorrelation weak cross-correlation bit strings 116 and 156 are used instead of the strong autocorrelation weak cross-correlation bit strings 111 and 151.
  • variable strong autocorrelation weak cross-correlation bit string 116 can generate mutually different strong autocorrelation weak cross-correlation bit strings by the central processing unit 109 . Since each value 116-i of this variable strong autocorrelation weak cross-correlation bit string 116 can be changed by the central processing unit (CPU) 109, one of the total number M of variable strong autocorrelation weak cross-correlation bit strings 116 is Selectively, the remaining M ⁇ 1 variable strong autocorrelation weak cross-correlation bitstreams 116 are not signaled.
  • CPU central processing unit
  • the input power of the receiving multipliers 113-i and 133-i is set to zero, and the polarization rotation period is divided by M for one of the selected variable strong autocorrelation weak cross-correlation bit strings 116.
  • the timings L timings where L ⁇ M are selected, and an information signal is sent to only one of the variable strong autocorrelation weak cross-correlation bit strings 116 selected only at the L timings.
  • the polarization of the electromagnetic waves emitted from the transmitter be uniformly distributed in the direction of polarization rotation.
  • L polarization angles are selected at equal intervals or randomly.
  • the central processing unit (CPU) 109 selects a plurality of variable strong autocorrelation and weak cross-correlation bit strings 116 and 156 to make it highly resistant to interference caused by interfering waves shown in the third embodiment.
  • the master station can transmit and receive simultaneously with a plurality of slave stations having the same polarization shift. Compared to the example, it is possible to increase the communication capacity and improve the throughput of the wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication system in which a first wireless device and a second wireless device anonymize information using a physical key and communicate in order to share the same common key without being affected by uncertainty due to error when using a common key for encrypted communication of unique physical quantities based on propagation characteristics, in which the first wireless device and the second wireless device share chronological change of dynamically changing propagation characteristics and communicate, the first wireless device transmits the least significant bit of a predetermined range of a first discrete value determined by the first wireless device on the basis of the propagation characteristics and a lower bit following the least significant bit in the first discrete value to the second wireless device, the second wireless device estimates a common key in the first wireless device from a second discrete value determined by the second wireless device on the basis of the propagation characteristics and from the least significant bit and the lower bit received from the first wireless device, and the common key becomes the physical key.

Description

無線通信システムおよび無線通信方法Wireless communication system and wireless communication method
 本発明は、無線通信システムおよび無線通信方法に関し、特に、暗号通信に好適な回転偏波通信を用いた無線通信システムおよび無線通信方法である。 The present invention relates to a wireless communication system and a wireless communication method, and more particularly to a wireless communication system and a wireless communication method using rotationally polarized wave communication suitable for cryptographic communication.
 無線通信では、外部に開かれた自由空間を伝送路とするために、原理的に通信情報を含む電磁波のエネルギーを外部者が容易に獲得可能である。このため、無線通信では、伝送すべき情報の秘匿が重要な技術課題となっている。 In wireless communication, since the free space that is open to the outside is used as a transmission path, in principle, an outsider can easily acquire the energy of the electromagnetic wave containing the communication information. Therefore, confidentiality of information to be transmitted is an important technical issue in wireless communication.
 情報の秘匿のための技術としては、暗号化して情報伝送を行う技術が使用されている。この暗号化による情報伝送の技術では、送り手と受け手とが共有する数学鍵を外部者から如何に秘匿するかという新たな課題が発生する。 As a technology for confidentiality of information, a technology that encrypts and transmits information is used. In this technique of information transmission by encryption, a new problem arises as to how to conceal the mathematical key shared by the sender and the receiver from outsiders.
 特許文献1には、回転偏波通信において一対の回転偏波無線機が偏波回転の時系列変化を共有し、動的変化する偏波位相に基づいた物理量を共通鍵として用いて暗号通信する方法が開示されている。 In Patent Document 1, in rotary polarized wave communication, a pair of rotary polarized radio devices share time-series changes in polarization rotation, and cryptographic communication is performed using a physical quantity based on a dynamically changing polarization phase as a common key. A method is disclosed.
特開2021-40258号公報Japanese Patent Application Laid-Open No. 2021-40258
 アンテナによる伝搬の可逆性により、送信側と受信側とを交換しても同一の伝搬特性を有するため、一対の無線局間で伝搬特性に基づく特有な物理量を共有できる。その一方で、送受信局間以外では共有できない。 Due to the reversibility of propagation by the antenna, even if the transmitting side and the receiving side are exchanged, they have the same propagation characteristics, so a pair of wireless stations can share unique physical quantities based on the propagation characteristics. On the other hand, it cannot be shared except between transmitting and receiving stations.
 これに対して、上記した従来技術によれば、一対の送受信局間で、伝搬特性に基づく特有な物理量を暗号通信のための共通鍵として用いることにより、共通鍵の秘匿性を高めることができる。 On the other hand, according to the conventional technology described above, by using a unique physical quantity based on the propagation characteristics as a common key for cryptographic communication between a pair of transmitting and receiving stations, the confidentiality of the common key can be enhanced. .
 しかし、上記した従来技術において、伝搬特性に基づく特有な物理量、即ちアナログ値を暗号通信のための共通鍵、即ちデジタル値への変換(デジタイズ)に伴う誤差(真値が不明なので「不確かさ」と呼ぶことも多い)の影響については、更なる考慮が望ましい。なぜなら、実質的に同一の物理量、即ちアナログ値をデジタイズする際に誤差(不確かさ)により異なるデジタル値に変換されることもあるので、一対の無線局間で同一の共通鍵を共有することができず、暗号通信が成立しないことも生じる。 However, in the above-described prior art, there is an error ("uncertainty" because the true value is unknown) associated with conversion (digitizing) of a unique physical quantity based on propagation characteristics, that is, an analog value, into a common key for cryptographic communication, that is, a digital value. (often referred to as ) should be considered further. This is because the same common key cannot be shared between a pair of radio stations, because when digitizing substantially the same physical quantity, that is, an analog value, it may be converted into a different digital value due to errors (uncertainty). It may not be possible, and the encrypted communication may not be established.
 そこで、本発明は、伝搬特性に基づく特有な物理量を暗号通信のための共通鍵として用いる際に、誤差(不確かさ)の影響を受けずに同一の共通鍵を共有できることを目的とする。 Therefore, the present invention aims to share the same common key without being affected by error (uncertainty) when using a unique physical quantity based on propagation characteristics as a common key for cryptographic communication.
 上記した課題を達成するために、代表的な本発明の無線通信システムの一つは、第1の無線機および第2の無線機が物理鍵を用いて情報を秘匿して通信を行う無線通信システムであって、第1の無線機および第2の無線機は、動的変化する伝搬特性の時系列変化を共有して通信を行い、第1の無線機は、自らが伝搬特性に基づいて求めた第1の離散値の所定範囲の最下位ビットおよび当該第1の離散値における前記最下位ビットに続く下位ビットを第2の無線機に送信し、第2の無線機は、自らが伝搬特性に基づいて求めた第2の離散値と第1の無線機から受信した前記最下位ビットおよび前記下位ビットとから第1の無線機における共通鍵を推定し、共通鍵が物理鍵となるものである。 In order to achieve the above-described problems, one of the representative wireless communication systems of the present invention is wireless communication in which a first wireless device and a second wireless device perform communication while keeping information confidential using a physical key. A system in which a first radio and a second radio share time-series changes in dynamically changing propagation characteristics to perform communication, and the first radio itself is based on the propagation characteristics transmitting the least significant bit of the predetermined range of the obtained first discrete value and the least significant bit following the least significant bit in the first discrete value to the second radio, and the second radio transmits estimating a common key in the first radio from the second discrete value obtained based on the characteristics and the least significant bit and the least significant bit received from the first radio, and the common key being a physical key is.
 本発明によれば、暫定LSB以下のビットのみを交換し、共通鍵に用いる上位ビットを交換することなく、共通鍵を秘匿し、誤差(不確かさ)の影響を受けずに同一の共通鍵を共有することができる。 According to the present invention, only the bits below the temporary LSB are exchanged, and the high-order bits used for the common key are not exchanged, the common key is kept secret, and the same common key is generated without being affected by errors (uncertainties). can be shared.
本発明の実施例1として、本発明の基本的な実施態様を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the basic embodiment of this invention as Example 1 of this invention. 共通鍵を生成する際の処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of processing when generating a common key; 図2に示す親局10が行う処理手順をフローチャートで示す図である。FIG. 3 is a flowchart showing a processing procedure performed by the master station 10 shown in FIG. 2; 図2に示す子局20が行う処理手順をフローチャートで示す図である。3 is a diagram showing, in a flowchart, a processing procedure performed by a child station 20 shown in FIG. 2; FIG. 端数処理として、暫定LSBの下位ビットを0捨1入する場合の表である。This is a table in the case of rounding the lower bits of the provisional LSB with 0 or 1. FIG. 端数処理として、暫定LSBの下位ビットを切り捨てる場合の表である。It is a table in the case of truncating the lower bits of the provisional LSB as rounding. 本発明の実施例2に係る無線通信システムの構成を示す図である。FIG. 2 is a diagram showing the configuration of a radio communication system according to Example 2 of the present invention; 共通鍵のハンドオーバー方法の第1例を示す図である。FIG. 4 is a diagram illustrating a first example of a common key handover method; 共通鍵のハンドオーバー方法の第2例を示す図である。FIG. 10 is a diagram illustrating a second example of a common key handover method; 共通鍵のハンドオーバー方法の第3例を示す図である。FIG. 10 is a diagram illustrating a third example of a common key handover method; 共通鍵のハンドオーバー方法の第4例を示す図である。FIG. 10 is a diagram showing a fourth example of a common key handover method; 共通鍵のハンドオーバー方法の第5例を示す図である。FIG. 12 is a diagram illustrating a fifth example of a common key handover method; 実施例3の第1パターンとして、周波数および偏波角のホッピングテーブルを示す図である。FIG. 10 is a diagram showing a frequency and polarization angle hopping table as a first pattern of Example 3; 実施例3の第2パターンとして、相手局が回転偏波通信機能を有しない場合に対して周波数のみのホッピングテーブルを示す図である。FIG. 12 is a diagram showing a frequency-only hopping table for a case where the partner station does not have a rotary polarization communication function, as a second pattern of the third embodiment; 実施例3の第3パターンとして、通信不良発生時に対処して変更するホッピングテーブルを示す図である。FIG. 12 is a diagram showing a hopping table that is changed in response to occurrence of a communication failure as a third pattern of the third embodiment; 通信を行う無線機に固有な偏波シフト特性を暗号鍵として情報秘匿通信を行う無線通信システムの構成の一例を示す図である。1 is a diagram showing an example of a configuration of a wireless communication system that performs confidential information communication using a polarization shift characteristic unique to a wireless device that performs communication as an encryption key; FIG. 本発明に係る無線通信システムの各無線機の通信プロトコルの一例を示す図である。FIG. 3 is a diagram showing an example of a communication protocol of each radio device of the radio communication system according to the present invention; 通信を行う無線機に固有な偏波シフト特性を暗号鍵として情報秘匿通信を行う無線通信システムの別の一例の概要を示す図である。FIG. 10 is a diagram showing an outline of another example of a wireless communication system that performs confidential information communication using a polarization shift characteristic unique to a wireless device that performs communication as an encryption key; 図18に示す各無線機が使用する通信プロトコルの一例を示す図である。19 is a diagram showing an example of a communication protocol used by each wireless device shown in FIG. 18; FIG. 実施例4に係る無線通信システムの受信機の代表例として、第1の構成例とその動作態様を示す図である。FIG. 11 is a diagram showing a first configuration example and its operation mode as a representative example of a receiver of a radio communication system according to a fourth embodiment; 送信波形と受信波形との関係を示す図である。FIG. 4 is a diagram showing the relationship between a transmission waveform and a reception waveform; 送信局と受信局が共有している強自己相関弱相互相関ビット列をずらして受信信号との相関をとった図である。FIG. 3 is a diagram showing correlation with a received signal by shifting a strong autocorrelation weak cross-correlation bit string shared by a transmitting station and a receiving station; 実施例4に係る無線通信システムに用いる受信機として、第2の構成例を示す図である。FIG. 12 is a diagram showing a second configuration example as a receiver used in the wireless communication system according to the fourth embodiment; 実施例4に係る無線通信システムの受信機として、第3の構成例を示す図である。FIG. 12 is a diagram showing a third configuration example as a receiver of the wireless communication system according to the fourth embodiment; 実施例4に係る無線通信システムの送信機の代表例として、第4の構成例を示す図である。FIG. 14 is a diagram showing a fourth configuration example as a representative example of a transmitter of a radio communication system according to the fourth embodiment; 実施例4に係る無線通信システムに用いる送信機として、第5の構成例を示す図である。FIG. 12 is a diagram showing a fifth configuration example as a transmitter used in the wireless communication system according to the fourth embodiment; 実施例4に係る無線通信システムに用いる無線機対(送受信機)の代表例として、第6の構成例を示す図である。FIG. 12 is a diagram showing a sixth configuration example as a representative example of a wireless device pair (transmitter/receiver) used in the wireless communication system according to the fourth embodiment; 実施例4に係る無線通信システムに用いる無線機対(送受信機)として、第7の構成例を示す図である。FIG. 17 is a diagram showing a seventh configuration example as a wireless device pair (transmitter/receiver) used in the wireless communication system according to the fourth embodiment;
 以下、本発明を実施するための形態として、実施例1から4について、図面を参照して説明する。ここで、図面の記載において、同一部分には同一の符号を付して示している。 Hereinafter, Embodiments 1 to 4 will be described with reference to the drawings as modes for carrying out the present invention. Here, in the description of the drawings, the same parts are indicated by the same reference numerals.
 本発明の実施例の説明に先立ち、本発明に係る情報秘匿通信を行う無線通信システムの概要を説明する。 Before describing the embodiments of the present invention, an outline of a wireless communication system that performs confidential information communication according to the present invention will be described.
 図16は、通信を行う無線機に固有な偏波シフト特性を暗号鍵として情報秘匿通信を行う無線通信システムの構成の一例を示す図である。
 この無線通信システムは、親局10-1および子局20-1と20-と2から構成される。送受信機の周囲には、遮蔽物31や反射板32などが存在している。
FIG. 16 is a diagram showing an example of the configuration of a wireless communication system that performs confidential information communication using a polarization shift characteristic unique to a wireless device that performs communication as an encryption key.
This radio communication system comprises a master station 10-1 and slave stations 20-1, 20- and 2. FIG. A shield 31, a reflector 32, and the like exist around the transmitter/receiver.
 親局10-1の送信機と子局20-1の受信機との間には、見通し伝搬路を遮る実体がないので、親局10-1の送信機と子局20-1の受信機とが回転偏波通信を行う際の偏波シフトは0°である。 Between the transmitter of the master station 10-1 and the receiver of the slave station 20-1, there is no entity that blocks the line-of-sight propagation path. The polarization shift is 0° when performing rotational polarization communication.
 一方、親局10-1の送信機と子局20-2の受信機との間には、見通し伝搬路上に遮蔽物31が存在するので、親局10-1の送信機の送信波は、反射板32を介して子局20-2の受信機の受信波となる。反射の際には、反射板32の法線ベクトルと送信波の入射ベクトルにより決定される固有の偏波シフトが発生し、回転偏波通信を行う際の偏波シフトは、0°とは異なる。また、偏波シフトは、送信波の入射ベクトルに依存するため、送信波の偏波角度と受信時の偏波角度との差は一定ではない。 On the other hand, between the transmitter of the master station 10-1 and the receiver of the slave station 20-2, there is a shielding object 31 on the line-of-sight propagation path. It becomes a received wave of the receiver of the slave station 20-2 via the reflector 32. FIG. Upon reflection, a unique polarization shift occurs that is determined by the normal vector of the reflector 32 and the incident vector of the transmitted wave, and the polarization shift when performing rotary polarization communication is different from 0°. . Moreover, since the polarization shift depends on the incident vector of the transmission wave, the difference between the polarization angle of the transmission wave and the polarization angle at the time of reception is not constant.
 図1は、本発明の実施例1として、本発明の基本的な実施態様を示す図である。
 図1には、送信側から送出した電波の偏波角(送信側偏波角)ΦTXに対する受信器側で受信した電波の偏波角(受信側偏波角)ΦRXの関係をグラフで示す。
FIG. 1 is a diagram showing a basic embodiment of the present invention as Example 1 of the present invention.
FIG. 1 is a graph showing the relationship between the polarization angle (transmitting side polarization angle) ΦTX of the radio wave sent from the transmitting side and the polarization angle (receiving side polarization angle) ΦRX of the radio wave received at the receiver side.
 上記したように、偏差シフトが、伝搬経路の途中における反射や回折などの影響により発生するために、ΦRX=ΦTXとならない。また、それのみならず、偏波シフトは、送信波の入射ベクトルに依存するので、送信波の偏波角度と受信波の偏波角度との差は一定ではない。そのため、必ずしも直線関係にならない。なお、アンテナおよび伝搬の可逆性により、送信側と受信側とを交換しても同一の曲線となる。 As described above, since the deviation shift occurs due to the effects of reflection, diffraction, etc. in the middle of the propagation path, ΦRX=ΦTX does not hold. Moreover, since the polarization shift depends on the incident vector of the transmission wave, the difference between the polarization angle of the transmission wave and the polarization angle of the reception wave is not constant. Therefore, the relationship is not necessarily linear. Note that due to the reciprocity of antennas and propagation, the curves are the same even if the transmit and receive sides are interchanged.
 また、送信局および受信局の条件が異なれば、送信側偏波角ΦTXと受信側偏波角ΦRXの関係は、図1で、条件1および条件2に示されるように、異なる曲線となる。 Also, if the conditions of the transmitting station and the receiving station are different, the relationship between the transmitting-side polarization angle ΦTX and the receiving-side polarization angle ΦRX will have different curves as shown in conditions 1 and 2 in FIG.
 そこで、曲線と直線ΦRX=ΦTXとの差、即ちΦRX―ΦTXの値、または、曲線と直線ΦRX=ΦTX+ΔΦとの差、即ち、ΦRX―ΦTX―ΔΦの値、を離散化した値DAおよびDBに基づき、共通鍵KEYA=KEYBを生成する第1の方法と、離散化した値DAおよび値DBの正負から、共通鍵KEYA=KEYBを生成する第2の方法と、が考えられる。 Therefore, the difference between the curve and the straight line ΦRX=ΦTX, that is, the value of ΦRX−ΦTX, or the difference between the curve and the straight line ΦRX=ΦTX+ΔΦ, that is, the value of ΦRX−ΦTX−ΔΦ, is converted into discretized values DA and DB. Based on this, a first method of generating the common key KEYA=KEYB and a second method of generating the common key KEYA=KEYB from the positive/negative of the discretized values DA and DB can be considered.
 まず、第1の方法によれば、1サンプリング当たりより多くのビット数の情報が得られるので、より多くのビット数からなる暗号鍵を生成することができる。しかしその反面、デジタル化に伴う誤差(不確かさ)の影響を受けやすいため、図2以降を用いて後述する不確かさ解消処理が必要となる。 First, according to the first method, a larger number of bits of information can be obtained per sampling, so an encryption key with a larger number of bits can be generated. On the other hand, however, it is susceptible to errors (uncertainty) associated with digitization, so it is necessary to perform uncertainty elimination processing, which will be described later with reference to FIG. 2 and subsequent figures.
 また、物理現象につきものの1/f揺らぎにより、上位ビットの変化が少なく、下位ビットの変化が多い傾向にあるので、この分布から暗号鍵を推測されることを防ぐために、ビット位置を交換(シャッフル)することが望ましい。ただし、ビット位置をシャッフルする操作として、元来含んでいる暗号化のアルゴリズムを用いる場合には、この限りではない。 In addition, due to 1/f fluctuations inherent in physical phenomena, there is a tendency for the upper bits to change less and the lower bits to change more. ). However, this is not the case when the originally included encryption algorithm is used as the bit position shuffling operation.
 次に、第2の方法によれば、1サンプリングあたり正負を表す符号(sign)の1ビットの情報しか得られないので、nビットの暗号鍵を生成するためにはnサンプルの値を得る必要がある。 Next, according to the second method, since only 1-bit information of a sign representing positive or negative is obtained per sampling, it is necessary to obtain values of n samples in order to generate an n-bit encryption key. There is
 また、サンプリングした値が0付近の場合には、デジタル化に伴う誤差(不確かさ)の影響を受けやすいため、図2以降を用いて後述する不確かさ解消処理が必要となる。この場合、符号ビットを暫定LSBとすると、親局と子局間で符号ビットを通信により交換することになるので、符号ビットよりの下位のビットを暫定LSBとすることにより、符号ビットの値を秘匿することができる。 Also, when the sampled value is near 0, it is susceptible to errors (uncertainty) associated with digitization, so it is necessary to perform uncertainty elimination processing, which will be described later using Fig. 2 and later. In this case, if the sign bit is the provisional LSB, the sign bit will be exchanged between the master station and the slave station by communication. can be kept secret.
 ここにおいて、暗号通信のための共通鍵として用いる伝搬特性に基づく特有な物理量としては、上記した偏波角度の他に、一対の無線局間の伝搬時間または伝搬損失などの値が考えられる。 Here, as a unique physical quantity based on propagation characteristics used as a common key for cryptographic communication, values such as the propagation time or propagation loss between a pair of wireless stations can be considered in addition to the above-described polarization angle.
 ここで、伝搬時間または伝搬損失の値を用いる場合も、暗号鍵として容易に推定されないためには、理論上の推定値と実測値との差に基づき、共通鍵を生成することが望ましい。具体的には、無線局間の距離から導かれる伝搬時間の理論値と実測値との差、または、伝搬損失(信号強度)の理論値と実測値との差、に基づき、共通鍵を生成することが望ましい。 Here, even if the value of propagation time or propagation loss is used, it is desirable to generate a common key based on the difference between the theoretically estimated value and the actually measured value so that it is not easily estimated as an encryption key. Specifically, a common key is generated based on the difference between the theoretical value of propagation time derived from the distance between wireless stations and the measured value, or the difference between the theoretical value of propagation loss (signal strength) and the measured value. It is desirable to
 そしてまた、こうして得られた共通鍵により暗号通信を行うことにより、情報を秘匿することが可能になるが、暗号通信の方法としては、従来から用いられているDESやAESによる方法でもよい。さらに、複数で多段の暗号化方式や暗号鍵を組み合わせること、例えば、従来の共通鍵に加えて本発明により得られた共通鍵を組み合わせること、により、暗号強度を高めることができる。 Also, by performing cryptographic communication using the common key thus obtained, it is possible to keep information confidential. Further, by combining a plurality of multistage encryption methods and encryption keys, for example, by combining a conventional common key with a common key obtained by the present invention, the encryption strength can be increased.
 図2は、伝搬特性の内の偏波角度の値を離散化した値DAおよびDBに基づき、共通鍵KEYA=KEYBを生成する際の処理の一例を示す図である。 FIG. 2 is a diagram showing an example of processing when generating a common key KEYA=KEYB based on values DA and DB obtained by discretizing the polarization angle values in the propagation characteristics.
 親局10では、伝搬特性を離散化した値DAを暫定LSB、すなわち、tLSBを最下位ビットとして端数処理(図2および図3に示す、S106)を行って、暗号鍵KEYAを得る。 The master station 10 performs fraction processing (S106 shown in FIGS. 2 and 3) on the value DA obtained by discretizing the propagation characteristics with the provisional LSB, that is, tLSB as the least significant bit, to obtain the encryption key KEYA.
 同様に、子局20では、伝搬特性を離散化した値DBを暫定LSB、すなわち、tLSBを最下位ビットとして、端数処理(図2および図4に示す、S206)および不確かさ解消処理(図2および図4に示す、S207)を行って、暗号鍵KEYBを得る。 Similarly, in the slave station 20, the value DB obtained by discretizing the propagation characteristic is treated as a provisional LSB, that is, tLSB as the least significant bit, and the fraction processing (S206 shown in FIGS. 2 and 4) and the uncertainty resolution processing (FIG. 2 and S207) shown in FIG. 4 to obtain the encryption key KEYB.
 このとき、親局10からは、値DAのtLSBおよびその1ビット下位の2ビットが送信される(図2および図3に示す、S102)。他方、子局20では、この2ビットを受信して(図2および図4に示す、S202)、親局10での端数処理(図2および図4に示す、S206)の結果を予測し、値DBの不確かさ解消処理(図2および図4に示す、S207)の結果を予測値に合わせることにより、この不確かさ解消処理(S207)を行う。 At this time, the master station 10 transmits tLSB of the value DA and two bits one bit lower than it (S102 shown in FIGS. 2 and 3). On the other hand, the slave station 20 receives these 2 bits (shown in FIGS. 2 and 4, S202), predicts the result of rounding in the master station 10 (shown in FIGS. 2 and 4, S206), This uncertainty elimination process (S207) is performed by matching the result of the uncertainty elimination process (S207 shown in FIGS. 2 and 4) of the value DB with the predicted value.
 図3は、図2に示す親局10が行う処理手順をフローチャートで示す図である。なお、以下のステップ100(S100)からステップ112(S112)の処理主体は、親局10であるので、以下では処理主体の表記を省略する。 FIG. 3 is a flowchart showing the processing procedure performed by the master station 10 shown in FIG. Note that since the master station 10 is the subject of processing from step 100 (S100) to step 112 (S112) below, the notation of the subject of processing will be omitted below.
 ステップ100(S100)として、処理を開始する。
 ステップ101(S101)で、暫定LSBのビット位置kを初期値k0とする。
Processing is started as step 100 (S100).
At step 101 (S101), the bit position k of the provisional LSB is set to the initial value k0.
 ステップ102(S102)で、伝搬特性を離散化した値DAのkビット目およびk-1ビット目を、子局20に送信する。 At step 102 (S102), the k-th bit and k−1-th bit of the value DA obtained by discretizing the propagation characteristics are transmitted to the slave station 20.
 ステップ104(S104)で、子局20から親局10への送信内容を確認する。
 子局20から親局10への送信内容がNGの場合には(図4に示すステップ211(S211)に対応)、ステップ112(S112)で、暫定LSBのビット位置kを1ビット上位に移動して、ステップ102(S102)に戻り、ステップ102(S102)の処理を行う。
At step 104 (S104), the contents of transmission from the slave station 20 to the master station 10 are confirmed.
If the content of transmission from the slave station 20 to the master station 10 is NG (corresponding to step 211 (S211) shown in FIG. 4), in step 112 (S112), the bit position k of the provisional LSB is moved one bit higher. Then, the process returns to step 102 (S102), and the process of step 102 (S102) is performed.
 子局20から親局10への送信内容がOKの場合には(図4に示すステップ205(S205)に対応)、ステップ106(S106)で、値DAをkビットだけ左シフト(値DAが符号付き整数の場合には算術シフト)し、端数処理をしてKEYAとする。なおここで、KEYAの最下位ビットは、親局10から子局20に送信されているので暗号鍵として使用せずに、それよりも上位ビットを暗号鍵として使ってもよい。 If the contents of transmission from the slave station 20 to the master station 10 are OK (corresponding to step 205 (S205) shown in FIG. 4), in step 106 (S106), the value DA is left-shifted by k bits (the value DA is Arithmetic shift for signed integers) and rounding to KEYA. Here, since the least significant bit of KEYA is transmitted from the parent station 10 to the child station 20, it may not be used as the encryption key, and the higher bits may be used as the encryption key.
 ステップ108(S108)で、KEYAを共通鍵として、子局20との暗号通信を開始する。 At step 108 (S108), encrypted communication with the slave station 20 is started using KEYA as a common key.
 ステップ109(S109)で、暗号通信が成功したか否かを確認する。
 暗号通信に成功しなかった場合(N)には、ステップ112(S112)を介して(暫定LSBのビット位置kを1ビット上位に移動)、ステップ102(S102)に戻り、ステップ102(S102)の処理を行う。
At step 109 (S109), it is checked whether or not the encrypted communication has succeeded.
If the cryptographic communication is not successful (N), go through step 112 (S112) (move the bit position k of the provisional LSB one bit higher), return to step 102 (S102), and step 102 (S102). process.
 暗号通信に成功した場合(Y)には、ステップ110(S110)で、一連の処理を終了し、引き続き、KEYAを共通鍵として子局20との暗号通信を継続する。 If the encrypted communication is successful (Y), at step 110 (S110), the series of processes is terminated, and the encrypted communication with the slave station 20 is continued using the KEYA as the common key.
 図4は、図2に示す子局20が行う処理手順をフローチャートで示す図である。なお、以下のステップ200(S200)からステップ212(S212)の処理主体は、子局20であるので、以下では処理主体の表記を省略する。
 ステップ200(S200)として、処理を開始する。
 ステップ201(S201)で、暫定LSBのビット位置kを初期値k0とする。
FIG. 4 is a flowchart showing a processing procedure performed by the child station 20 shown in FIG. It should be noted that since the processing subject of the following steps 200 (S200) to step 212 (S212) is the child station 20, the notation of the processing subject will be omitted below.
Processing is started as step 200 (S200).
At step 201 (S201), the bit position k of the provisional LSB is set to the initial value k0.
 ステップ202(S202)で、親局10から、伝搬特性を離散化した値DAのkビット目およびk-1ビット目を受信する(図3に示すステップ102(S102)に対応)。 At step 202 (S202), the k-th bit and k-1-th bit of the value DA obtained by discretizing the propagation characteristics are received from the master station 10 (corresponding to step 102 (S102) shown in FIG. 3).
 ステップ203(S203)で、値DAのkビット目およびk-1ビット目と、値DBのkビット目およびk-1ビット目とから、値DAと値DBとの差εを計算する。 At step 203 (S203), the difference ε between the value DA and the value DB is calculated from the k-th and k-1-th bits of the value DA and the k-th and k-1-th bits of the value DB.
 ステップ204(S204)で、差εの値が、1暫定LSB未満か否かを判断する。
 差εが1暫定LSB以上の場合(N)には、ステップ211(S211)で、“NG”を子局20から親局10に送信する。続いて、ステップ212(S212)で、暫定LSBのビット位置kを1ビット上位に移動して、ステップ202(S202)の処理を行う。
At step 204 (S204), it is determined whether or not the value of the difference ε is less than 1 provisional LSB.
If the difference ε is equal to or greater than 1 provisional LSB (N), the slave station 20 transmits "NG" to the master station 10 in step 211 (S211). Subsequently, in step 212 (S212), the bit position k of the provisional LSB is moved one bit higher, and the process of step 202 (S202) is performed.
 差εが1暫定LSB未満の場合(Y)には、ステップ205(S205)で、“OK”を子局20から親局19に送信する。 If the difference ε is less than 1 provisional LSB (Y), the slave station 20 transmits "OK" to the master station 19 in step 205 (S205).
 ステップ206(S206)で、値DBをkビットだけ左シフト(DBが符号付き整数の場合には算術シフト)し、端数処理をしてKEYBとする。 At step 206 (S206), the value DB is left-shifted by k bits (arithmetic shift if DB is a signed integer), rounded, and set to KEYB.
 ステップ207(S207)で、図5または図6に示す不確かさ解消処理を実行する。なおここで、KEYA(=KEYB)の最下位ビットは、親局10から子局20に送信されているので暗号鍵として使用せず、それよりも上位ビットを暗号鍵として使ってもよい。 At step 207 (S207), the uncertainty resolution process shown in FIG. 5 or 6 is executed. Here, since the least significant bit of KEYA (=KEYB) is transmitted from the master station 10 to the child station 20, it may not be used as the encryption key, and the higher bits may be used as the encryption key.
 ステップ208(S208)で、KEYBを共通鍵として親局10との暗号通信を開始する。 At step 208 (S208), encrypted communication with the master station 10 is started using KEYB as a common key.
 ステップ209(S209)で、暗号通信が成功したか否かを確認する。
 暗号通信に成功しなかった場合(N)には、ステップ212(S212)を介して(暫定LSBのビット位置kを1ビット上位に移動)、ステップ202(S202)に戻り、ステップ202(S202)の処理を行う。
At step 209 (S209), it is checked whether or not the encrypted communication has succeeded.
If the encrypted communication is not successful (N), go through step 212 (S212) (move the bit position k of the provisional LSB to one bit higher), return to step 202 (S202), and step 202 (S202). process.
 暗号通信に成功した場合(Y)には、ステップ210(S210)で、一連の処理を終了し、引き続き、KEYBを共通鍵として親局10との暗号通信を継続する。 If the encrypted communication is successful (Y), at step 210 (S210), the series of processes is terminated, and the encrypted communication with the master station 10 is continued using KEYB as the common key.
 次に、ステップ207(S207)の不確かさ解消処理について説明する。図5および図6に、不確かさ処理に用いる表を示す。 Next, the uncertainty elimination process in step 207 (S207) will be explained. 5 and 6 show tables used for uncertainty processing.
 図5は、端数処理(S106、S206)として、暫定LSB(tLSB)の下位ビットを十進数の四捨五入に相当する「0捨1入」する場合の表である。
 他方、図6は、端数処理(S106、S206)として、暫定LSB(tLSB)の下位ビットを切り捨てる場合の表である。
FIG. 5 is a table when the lower bits of the provisional LSB (tLSB) are "rounded off by 0", which corresponds to the rounding off of decimal numbers, as the fraction processing (S106, S206).
On the other hand, FIG. 6 is a table for rounding down the lower bits of the temporary LSB (tLSB) as rounding (S106, S206).
 これらの表により、不確かさ解消処理(S207)が実行される。
 それぞれの表においては、横方向は親局で、縦方向は子局であって、それぞれの暫定LSB(tLSB)、その下位ビットの値および括弧内に端数処理結果、を示している。また、親局と子局との交点には、不確かさ解消処理(S207)後の結果と括弧内に子局の端数処理結果の修正値を示している。
Uncertainty elimination processing (S207) is executed based on these tables.
In each table, the horizontal direction is the parent station, the vertical direction is the child station, and the provisional LSB (tLSB), its lower bit value, and the rounding result are shown in parentheses. At the intersection of the parent station and the child station, the result after the uncertainty elimination process (S207) and the corrected value of the rounding result of the child station are shown in parentheses.
 子局の端数処理結果の修正値については、「±0」が修正不要、「+1」が1加算、「-1」が1減算、が必要であることを示している。なお、「X」は、値DAと値DBとの差が1暫定LSB以上あり、端数処理のためには、暫定LSBをさらに上位に移動しなければならないことを表している。 Regarding the correction value of the rounding result of the slave station, "±0" indicates that correction is not required, "+1" indicates that 1 should be added, and "-1" indicates that 1 should be subtracted. "X" indicates that the difference between the value DA and the value DB is 1 provisional LSB or more, and the provisional LSB must be moved to a higher position for rounding.
 例えば、図5では、一番上の行では子局の暫定LSBと下位ビットは00…で、「0捨1入」されると0となることを示し、一番左側の列では、親局の暫定LSBと下位ビットは00…で、「0捨1入」されると0となるので、不確かさ解消処理(S207)後の結果は0のままで、子局の端数処理結果の修正は「±0」で修正不要であることを示している。 For example, in FIG. 5, the top row indicates that the provisional LSB and the lower bits of the child station are 00, etc., and indicates that they become 0 when "0 is rounded off", and the leftmost column indicates that the parent station The provisional LSB and the lower bits of are 00... and become 0 when "0 is rounded off". "±0" indicates that correction is unnecessary.
 また、同じ行の左から2番目の列では、親局の暫定LSBと下位ビットは01…で、「0捨1入」されると1となるので、不確かさ解消処理(S207)後の結果は1となり、子局の端数処理結果の修正は「+1」で、1加算が必要であることを示している。 Also, in the second column from the left in the same row, the provisional LSB and the lower bits of the master station are 01 . becomes 1, and the correction of the rounding result of the slave station is "+1", indicating that addition of 1 is required.
 図7は、本発明の実施例2に係る無線通信システムの構成を示す図である。
 図7の(a)には、親局であるA局10に対して、複数の移動する子局であるm1局20-1およびm2局20-2が存在する構成例を示す。
FIG. 7 is a diagram showing the configuration of a radio communication system according to Embodiment 2 of the present invention.
FIG. 7(a) shows a configuration example in which a plurality of mobile stations, namely m1 station 20-1 and m2 station 20-2, exist for station A 10, which is a parent station.
 親局であるA局10と移動する子局であるm1局20-1およびm2局20-2との間は、それぞれ共通鍵KYAm1およびKEIAm2により暗号通信が行われる。また、移動する子局である、m1局20-1とm2局20-2との間は、共通鍵KEYm1m2により暗号通信が行われる。 Encrypted communication is performed between the parent station A station 10 and the moving child stations m1 station 20-1 and m2 station 20-2 using common keys KYAm1 and KEIAm2, respectively. Further, between the m1 station 20-1 and the m2 station 20-2, which are moving child stations, encrypted communication is performed using a common key KEYm1m2.
 図7の(b)には、複数の親局であるA局10-1、B局10-2およびC局10-3に対して、1つの移動する子局であるm局20が存在する例を示す。 In (b) of FIG. 7, one moving child station m station 20 exists for a plurality of parent stations A station 10-1, B station 10-2 and C station 10-3. Give an example.
 親局である、A局10-1とB局10-2との間は共通鍵KEYABで、B局10-2とC局10-3との間は共通鍵KEYBCで、それぞれ暗号通信が行われる。また、親局であるA局10-1と移動する子局であるm局20との間は共通鍵KEYAmで、親局であるB局10-2と移動する子局であるm局20との間は共通鍵KEYBmで、それぞれ暗号通信が行われる。 The shared key KEYAB is used between the parent stations A station 10-1 and B station 10-2, and the shared key KEYBC is used between the B station 10-2 and C station 10-3. will be Further, a common key KEYAm is used between the master station A station 10-1 and the moving slave station m station 20, and the master station B station 10-2 and the moving slave station m station 20 are connected. Between , the common key KEYBm is used, and encrypted communication is performed respectively.
 次に、図8から図12により、異なる親局であるA局10-1、B局10-2およびC局10-3のサービスエリア11-1、11-2および11-3の間の共通鍵のハンドオーバー方法について説明する。 Next, referring to FIGS. 8 to 12, the common service areas 11-1, 11-2 and 11-3 of the different master stations A station 10-1, B station 10-2 and C station 10-3 A key handover method will be explained.
 図8は、共通鍵のハンドオーバー方法の第1例を示す図である。
 第1例では、暗号通信の都度、親局と子局との間で、実施例1に係る方法により、偏波角から共通鍵を生成し確立して、暗号通信を行う。
FIG. 8 is a diagram showing a first example of a common key handover method.
In the first example, each time cryptographic communication is performed, a common key is generated and established from the polarization angle by the method according to the first embodiment between the master station and the slave station, and cryptographic communication is performed.
 移動する子局であるm局20が、親局であるA局10-1のサービスエリア11-1に存在する時には、暗号通信の都度、A局10-1とm局20との間で、実施例1に係る方法により偏波角から共通鍵KEYAmを生成し確立して、共通鍵KEYAmにより暗号通信をする。 When station m 20, which is a moving child station, exists in the service area 11-1 of station A 10-1, which is a parent station, each time encrypted communication is performed, between station A 10-1 and station m 20: A common key KEYAm is generated and established from the polarization angle by the method according to the first embodiment, and cryptographic communication is performed using the common key KEYAm.
 続いて、移動する子局であるm局20が、親局であるB局10-2のサービスエリア11-2に入ると、暗号通信の都度、B局10-2とm局20との間で実施例1に係る方法により偏波角から共通鍵KEYBmを生成し確立して、共通鍵KEYBmにより暗号通信をする。 Subsequently, when station m 20, which is a moving child station, enters service area 11-2 of station B 10-2, which is a parent station, each time encrypted communication is performed, A common key KEYBm is generated and established from the polarization angle by the method according to the first embodiment, and cryptographic communication is performed using the common key KEYBm.
 このように、第1例によれば、共通鍵が頻繁に更新されるために、万一共通鍵が漏洩しても、被害を最小限に抑えることができる。 Thus, according to the first example, since the common key is frequently updated, even if the common key leaks, the damage can be minimized.
 図9は、共通鍵のハンドオーバー方法の第2例を示す図である。
 第2例では、子局が複数の親局のサービスエリアに入った時点毎に、共通鍵を生成し確立して、暗号通信を行う。すなわち、子局がある親局のサービスエリアに入った時点で、この親局と子局との間で実施例1に係る方法により偏波角から共通鍵を生成し確立して、以降子局がこの親局のサービスエリアにいる間は、その共通鍵を用いて暗号通信を行う。その後、子局が他の親局のサービスエリアに入った時点で、他の親局と子局との間で実施例1に係る方法により偏波角から別の共通鍵を生成し確立して、以降子局が他の親局のサービスエリアにいる間は、別の共通鍵を用いて暗号通信を行う。
FIG. 9 is a diagram showing a second example of a common key handover method.
In the second example, each time a slave station enters the service areas of a plurality of master stations, a common key is generated and established to perform encrypted communication. That is, when a child station enters the service area of a parent station, a common key is generated and established from the polarization angle by the method according to the first embodiment between the parent station and the child station. is in the service area of this master station, encrypted communication is performed using the common key. After that, when the slave station enters the service area of another master station, another common key is generated and established from the polarization angle by the method according to the first embodiment between the other master station and the slave station. , and thereafter, while the slave station is in the service area of another master station, encrypted communication is performed using another common key.
 移動する子局であるm局20が、親局であるA局10-1のサービスエリア11-1に入った時点で、A局10-1とm局20との間で実施例1に係る方法により偏波角から共通鍵KEYAmを生成し確立して、共通鍵KEYAmにより暗号通信をする。 When station m 20, which is a moving child station, enters the service area 11-1 of station A 10-1, which is a parent station, the communication between station A 10-1 and station m 20 according to the first embodiment A common key KEYAm is generated and established from the polarization angle according to the method, and cryptographic communication is performed using the common key KEYAm.
 続いて、移動する子局であるm局20が、親局であるB局10-2のサービスエリア11-2に入ると、B局10-2とm局20との間で実施例1に係る方法により偏波角から共通鍵KEYBmを生成し確立して、共通鍵KEYBmにより暗号通信をする。 Subsequently, when station m 20, which is a mobile station, enters the service area 11-2 of station B 10-2, which is a parent station, communication between station B 10-2 and station m 20 is performed according to the first embodiment. A common key KEYBm is generated and established from the polarization angle by such a method, and cryptographic communication is performed using the common key KEYBm.
 このように、第2例によれば、共通鍵を生成し確立するためのオーバーヘッドを減らすことができるので、通信効率を上げることができる。 Thus, according to the second example, the overhead for generating and establishing a common key can be reduced, so communication efficiency can be improved.
 図10は、共通鍵のハンドオーバー方法の第3例を示す図である。
 第3例では、子局が最初の親局のサービスエリアに入った時点で、親局と子局との間で実施例1に係る方法により偏波角から共通鍵を生成し確立して、以降は子局が他の親局のサービスエリアに入っても引き続きその共通鍵を用いて暗号通信を行う。
FIG. 10 is a diagram showing a third example of a common key handover method.
In the third example, when the slave station first enters the service area of the master station, a common key is generated and established from the polarization angle by the method according to the first embodiment between the master station and the slave station, Thereafter, even if the slave station enters the service area of another master station, it will continue to use the common key to perform encrypted communication.
 親局であるA局10-1およびB局10-2は、基地局であるために地上高もゲインも高いアンテナを備えている。そのために、子局であるm局20よりも長い距離の通信が可能である上、地上の通信回線での通信も可能である。 The A station 10-1 and B station 10-2, which are parent stations, are equipped with antennas with high ground clearance and high gain because they are base stations. Therefore, communication over a longer distance than that of the m-station 20, which is a child station, is possible, and communication is also possible over ground communication lines.
 また、A局10-1とB局10-2とが無線通信を行うときには、それに先立って実施例1に係る方法により偏波角から共通鍵KEYABを生成し確立して、共通鍵KEYABにより暗号通信をすることも可能である。 Further, when the A station 10-1 and the B station 10-2 perform wireless communication, prior to that, the common key KEYAB is generated and established from the polarization angle by the method according to the first embodiment, and encrypted with the common key KEYAB. Communication is also possible.
 移動する子局であるm局20が、親局であるA局10-1のサービスエリア11-1に入った時点で、A局10-1とm局20との間で実施例1に係る方法により偏波角から共通鍵KEYAmを生成し確立して、共通鍵KEYAmにより暗号通信をする。 When station m 20, which is a moving child station, enters the service area 11-1 of station A 10-1, which is a parent station, the communication between station A 10-1 and station m 20 according to the first embodiment A common key KEYAm is generated and established from the polarization angle according to the method, and cryptographic communication is performed using the common key KEYAm.
 続いて、移動する子局であるm局20が、親局であるB局10-2のサービスエリア11-2に入ると、A局10-1からB局10-2に共通鍵KEYAmを共通鍵KEYABで暗号化して送るか、地上の通信回線で送る。それ以降は、m局20とB局10-2とは、共通鍵KEYAmにより暗号通信をする。 Subsequently, when station m 20, which is a moving child station, enters service area 11-2 of station B 10-2, which is a parent station, common key KEYAm is shared from station A 10-1 to station B 10-2. It is sent after being encrypted with the key KEYAB, or sent via a ground communication line. After that, the m-station 20 and the B-station 10-2 perform encrypted communication using the common key KEYAm.
 このように、第3例によれば、共通鍵を生成し確立するためのオーバーヘッドを減らすことができるので通信効率を上げることができる。加えて、ハンドオーバー時に共通鍵を認証のための情報として使うことにより、親局または子局のなりすましを防ぐことができる。 Thus, according to the third example, the overhead for generating and establishing the common key can be reduced, so communication efficiency can be improved. In addition, spoofing of the parent station or the child station can be prevented by using the common key as information for authentication at the time of handover.
 図11は、共通鍵のハンドオーバー方法の第4例を示す図である。
 第4例では、子局が最初の親局のサービスエリアに入った時点で、親局と子局との間で実施例1に係る方法により偏波角から共通鍵を生成し確立して、その共通鍵を用いて暗号通信を行い、子局が他の親局のサービスエリアに入った時点で、最初の親局から他の親局に認証情報として最初の共通鍵を送る。
FIG. 11 is a diagram showing a fourth example of the common key handover method.
In the fourth example, when the slave station first enters the service area of the master station, a common key is generated and established from the polarization angle by the method according to the first embodiment between the master station and the slave station, Encrypted communication is performed using the common key, and when the slave station enters the service area of another master station, the first master station sends the first common key as authentication information to the other master station.
 親局であるA局10-1およびB局10-2は、基地局であるために地上高もゲインも高いアンテナを備えている。そのために、子局であるm局20よりも長い距離の通信が可能である上、地上の通信回線での通信も可能である。 The A station 10-1 and B station 10-2, which are parent stations, are equipped with antennas with high ground clearance and high gain because they are base stations. Therefore, communication over a longer distance than that of the m-station 20, which is a child station, is possible, and communication is also possible over ground communication lines.
 また、A局10-1とB局10-2とが無線通信を行うときには、それに先立って実施例1に係る方法により偏波角から共通鍵KEYABを生成し確立して、共通鍵KEYABにより暗号通信をすることも可能である。 Further, when the A station 10-1 and the B station 10-2 perform wireless communication, prior to that, the common key KEYAB is generated and established from the polarization angle by the method according to the first embodiment, and encrypted with the common key KEYAB. Communication is also possible.
 移動する子局であるm局20が、親局であるA局10-1のサービスエリア11-1に入った時点で、A局10-1とm局20との間で実施例1に係る方法により偏波角から共通鍵KEYAmを生成し確立して、共通鍵KEYAmにより暗号通信をする。 When station m 20, which is a moving child station, enters the service area 11-1 of station A 10-1, which is a parent station, the communication between station A 10-1 and station m 20 according to the first embodiment A common key KEYAm is generated and established from the polarization angle according to the method, and cryptographic communication is performed using the common key KEYAm.
 続いて、移動する子局であるm局20が、親局であるB局10-2のサービスエリア11-2に入ると、認証情報として、A局10-1からB局10-2に共通鍵KEYAmを、共通鍵KEYABで暗号化して送るか、地上の通信回線で送る。 Subsequently, when station m 20, which is a moving child station, enters the service area 11-2 of station B 10-2, which is a parent station, authentication information common to stations A 10-1 to B 10-2 is transmitted. The key KEYAm is encrypted with the common key KEYAB and sent, or sent via a ground communication line.
 B局10-2は、共通鍵KEYAmによりm局20との暗号通信が成立することを確認する。これにより、B局10-2は、サービスエリア11-2に入ってきたm局20が正当であることを確認する。その後、B局10-2とm局20との間で実施例1に係る方法により偏波角から共通鍵KEYBmを生成し確立して、それ以降は、m局20とB局10-2とは、共通鍵KEYBmにより暗号通信をする。 Station B 10-2 confirms that encrypted communication with station m 20 is established using the common key KEYAm. Thereby, the B station 10-2 confirms that the m station 20 entering the service area 11-2 is valid. After that, the common key KEYBm is generated and established from the polarization angle by the method according to the first embodiment between the B station 10-2 and the m station 20, and after that, the m station 20 and the B station 10-2 performs encrypted communication using a common key KEYBm.
 このように、第4例によれば、ハンドオーバー時に共通鍵を認証のための情報として使うことにより、親局または子局のなりすましを防ぐことができる。 Thus, according to the fourth example, spoofing of the parent station or the child station can be prevented by using the common key as information for authentication during handover.
 図12は、共通鍵のハンドオーバー方法の第5例を示す図である。
 第5例では、子局が最初の親局のサービスエリア内での始業時の認証のために、前日の暗号通信が成立するかどうかを確認する。
FIG. 12 is a diagram showing a fifth example of a common key handover method.
In the fifth example, the child station confirms whether or not the previous day's encrypted communication is established for authentication at the start of work within the service area of the first parent station.
 まず始業時に、親局であるA局10-1は、前日の共通鍵KEYAmにより子局であるm局20との暗号通信が成立することを確認する。これにより、A局10-1は、始業時にサービスエリア11-1に存在するm局20が正当であることを確認する。 First, at the start of work, the parent station A station 10-1 confirms that encrypted communication with the child station m station 20 is established using the common key KEYAm from the previous day. Thereby, the A station 10-1 confirms that the m station 20 existing in the service area 11-1 is legitimate at the start of work.
 その後、移動する子局であるm局20が、親局であるA局10-1のサービスエリア11-1に入った時点で、A局10-1とm局20との間で実施例1に係る方法により偏波角から共通鍵KEYAmを生成し確立して、共通鍵KEYAmにより暗号通信をする。以降の動作態様は、図11に示す第3の例と同一である。 After that, when the moving child station m station 20 enters the service area 11-1 of the parent station A station 10-1, the first embodiment is established between the A station 10-1 and the m station 20. A common key KEYAm is generated and established from the polarization angle by the method according to the above, and cryptographic communication is performed using the common key KEYAm. The subsequent operation mode is the same as the third example shown in FIG.
 このように、第5例によれば、ハンドオーバー時に共通鍵を認証のための情報として使うことにより、親局または子局のなりすましを防ぐことができるだけでなく、始業時にも前日の共通鍵を認証のための情報として使うことにより、親局または子局のなりすましを防ぐことができる。 Thus, according to the fifth example, by using the common key as information for authentication at the time of handover, it is possible not only to prevent spoofing of the parent station or the child station, but also to use the common key from the previous day at the start of work. By using it as information for authentication, it is possible to prevent spoofing of the parent station or the child station.
 本発明の実施例3は、通信に用いる周波数および偏波角の少なくともいずれかをホッピングするための実施態様を有するものである。
 図13は、実施例3の第1パターンとして周波数および偏波角をホッピングするためのホッピングテーブルを示す図である。
A third embodiment of the present invention has an embodiment for hopping at least one of the frequency and the polarization angle used for communication.
FIG. 13 is a diagram showing a hopping table for hopping frequencies and polarization angles as the first pattern of the third embodiment.
 第1パターンでは、ステップ1~nのステップごとに、時系列で定期的に、通信に用いる周波数および偏波角を切り替える。 In the first pattern, the frequency and polarization angle used for communication are switched regularly in time series for each of steps 1 to n.
 具体的には、ステップ1では、周波数f1および偏波角p1で通信を行い、ステップ2では、周波数f2および偏波角p3で通信を行い、ステップ3では、周波数f3および偏波角p3で通信を行い、以降、ステップnでは、周波数fnおよび偏波角pnで通信を行う形態によって、定期的に、通信に用いる周波数および偏波角を切り替える。 Specifically, in step 1, communication is performed at frequency f1 and polarization angle p1, in step 2, communication is performed at frequency f2 and polarization angle p3, and in step 3, communication is performed at frequency f3 and polarization angle p3. , and thereafter, in step n, the frequency and polarization angle used for communication are periodically switched according to the form of communication at frequency fn and polarization angle pn.
 周波数が異なると通信が成立しないことは当然のことであり、さらに、偏波角がθだけ異なると、信号強度はcosθと低下し、θ=90度のとき、理論上信号強度は0となるが、実際には信号強度は10~20dB低下する。 It goes without saying that if the frequencies differ, communication will not be established. Furthermore, if the polarization angles differ by θ, the signal strength will decrease to cos θ, and theoretically the signal strength will be 0 when θ=90 degrees. However, in practice the signal strength drops by 10-20 dB.
 偏波角をランダムに変えると、たとえ周波数が同一であっても、信号強度がランダムに変動するため、ホッピングテーブルの情報を予め持っていないと、正常な復号は困難となり、正常な通信が成り立たなくなる。 If the polarization angle is changed at random, the signal strength will fluctuate at random even if the frequency is the same. Therefore, unless you have the hopping table information in advance, normal decoding becomes difficult and normal communication is established. Gone.
 従来、通信の秘匿性のために、周期的に周波数を切り替える周波数ホッピングと呼ばれる方法が広く用いられている。これに対して、実施例3では、周波数だけでなく偏波角も定期的に切り替えることにより、通信の秘匿性を増すことができる。 Conventionally, a method called frequency hopping, which periodically switches frequencies, has been widely used for the confidentiality of communications. On the other hand, in the third embodiment, by periodically switching not only the frequency but also the polarization angle, the secrecy of communication can be increased.
 ステップごとの周波数と偏波角との組み合わせの表(ホッピングテーブル)は、第三者には秘匿した方が通信の秘匿性を高めることができるが、先の実施例1で得られた伝搬特性、特に偏波角の物理量を用いてホッピングテーブルを実現すれば、ホッピングテーブルの秘匿性を高めることができる。 The table of combinations of frequencies and polarization angles for each step (hopping table) can be kept secret from third parties to improve the secrecy of communication. In particular, if the hopping table is realized using the physical quantity of the polarization angle, the secrecy of the hopping table can be enhanced.
 図14は、実施例3の第2パターンとして、相手局が回転偏波通信機能を有しない場合に対して周波数のみをホッピングするためのホッピングテーブルを示す図である。 FIG. 14 is a diagram showing a hopping table for hopping only the frequency when the partner station does not have a rotary polarization communication function, as the second pattern of the third embodiment.
 相手局が回転偏波通信機能を有する場合には、予め用意しておいた周波数および偏波角のホッピングテーブルを用いるなどして周波数および偏波角ホッピングを実行するが、相手局が回転偏波通信機能を有しない場合には、第2例のように、周波数のみのホッピングを実行する。 If the partner station has a rotary polarization communication function, frequency and polarization angle hopping is performed by using a frequency and polarization angle hopping table prepared in advance. If it does not have a communication function, it performs only frequency hopping as in the second example.
 第2パターンによれば、回転偏波通信機能を有しない相手局に対しても通信が可能であり、つまりは従来方式の無線局との通信の互換性を保つことができる。ただし、第2例によれば、先の実施例1で得られた伝搬特性、特に偏波角の物理量を共通鍵とした暗号通信ができないため、共通鍵を何らかの方法で共有する必要がある。 According to the second pattern, it is possible to communicate with a partner station that does not have a rotary polarization communication function, in other words, it is possible to maintain communication compatibility with conventional wireless stations. However, according to the second example, it is not possible to perform cryptographic communication using the propagation characteristics obtained in the first embodiment, especially the physical quantity of the polarization angle, as a common key, so it is necessary to share the common key in some way.
 また、相手局が回転偏波通信機能を有するか否かを事前に確認するために、相手局と通信を開始するに先立って、相手局となる無線機との間で、回転偏波通信機能を有するか否かを示す情報を交換するようにしてもよい。 In addition, in order to confirm in advance whether the partner station has the rotary polarized wave communication function, prior to starting communication with the partner station, the rotary polarized wave communication function may be exchanged to indicate whether or not they have
 図15は、実施例3の第3パターンとして、通信不良発生時に対処して変更するホッピングテーブルを示す図である。 FIG. 15 is a diagram showing a hopping table that is changed in response to the occurrence of a communication failure as the third pattern of the third embodiment.
 第3パターンでは、周波数および偏波角のホッピングのいずれかで、妨害波による干渉などにより通信不良が発生した場合に、これを回避するためにホッピングテーブルを変更する。 In the third pattern, if a communication failure occurs due to interference by interfering waves or the like in either frequency or polarization angle hopping, the hopping table is changed to avoid this.
 図15の(a)に示すように、ステップ5で妨害波による干渉などにより通信不良が発生した場合には、このステップ5では、他のステップ(図では、ステップ6)で使用する周波数および偏波角で通信を行う。 As shown in FIG. 15(a), if a communication failure occurs in step 5 due to interference by interfering waves, etc., in this step 5, the frequency and polarization used in another step (step 6 in the figure) are changed. Communicate with waves.
 図15の(b)に示すように、ステップ5および6で妨害波による干渉などにより通信不良が発生した場合には、これらステップ5および6では、他のステップ(図では、ステップ7)で使用する周波数および偏波角で通信を行う。 As shown in FIG. 15(b), if communication failure occurs in steps 5 and 6 due to interference by interfering waves, these steps 5 and 6 are used in another step (step 7 in the figure). communication at the same frequency and polarization angle.
 図15の(c)に示すように、周波数f2で送信するステップ5~8のすべての偏波角で、妨害波による干渉などにより通信不良が発生した場合には、これらステップ5~8では、異なる周波数を用いるステップ(図では、周波数f3を使うステップ9)の周波数および偏波角で通信を行う。 As shown in FIG. 15(c), at all polarization angles in steps 5 to 8 for transmission at frequency f2, if communication failure occurs due to interference due to interfering waves, etc., in these steps 5 to 8, Communication is performed at the frequency and polarization angle of the step using different frequencies (step 9 using frequency f3 in the figure).
 以上、実施例3によれば、ホッピングに用いる周波数および偏波角の少なくともいずれかで妨害波による干渉などにより通信不良が発生した場合に、次回からは通信不良となった周波数および偏波角の少なくともいずれかを避けて通信を行うので、妨害波による干渉などに強くより安定な通信状態を確保することができる。 As described above, according to the third embodiment, when communication failure occurs due to interference due to interference waves at least one of the frequency and the polarization angle used for hopping, the frequency and polarization angle at which the communication failure occurs from the next time. Since communication is performed while avoiding at least one of them, it is possible to secure a more stable communication state that is resistant to interference caused by interfering waves.
 本発明に係る実施例4として、通信を行う無線機対に固有な偏波シフト特性を暗号鍵とする情報秘匿通信システムの構成例について、図16乃至図20を用いて説明する。 As a fourth embodiment according to the present invention, a configuration example of a confidential information communication system using polarization shift characteristics unique to a pair of wireless devices that communicate as an encryption key will be described with reference to FIGS. 16 to 20. FIG.
 なお、別途GPSや標準電波などを利用することにより絶対時刻を得られれば、伝搬時間を計測することや、同期をとって特定の偏波角で電波の送信タイミングを得ることは、可能である。 If the absolute time can be obtained by separately using GPS or standard radio waves, it is possible to measure the propagation time or obtain the transmission timing of the radio wave at a specific polarization angle by synchronization. .
 先ず、図16に示す無線通信システムにより、本発明に係る実施例4の動作態様について説明する。
 親局10-1の送信機が、信号を自己相関性が強く相互相関性の弱いビット列の各ビットに、同一の周波数かつ異なる位相の複数の偏波回転周波数の正弦波および余弦波を割り当て、複数の正弦波と複数の余弦波を夫々重ね合わせてできる二つの加算正弦波および加算余弦波を、夫々搬送波周波数でアップコンバートして、空間的に直交するアンテナから空間に放射し、回転偏波の送信波を形成する。
First, the operation mode of the fourth embodiment according to the present invention will be described using the wireless communication system shown in FIG.
A transmitter of the master station 10-1 assigns a sine wave and a cosine wave of a plurality of polarization rotation frequencies of the same frequency and different phases to each bit of a bit string with strong autocorrelation and weak cross-correlation of a signal, Two summed sine waves and summed cosine waves obtained by superimposing a plurality of sine waves and a plurality of cosine waves, respectively, are up-converted at the carrier frequency, respectively, and radiated into space from spatially orthogonal antennas to obtain a rotationally polarized wave. to form the transmission wave of
 子局20-1および20-2の受信機の回転偏波の受信波は、偏波シフトが異なるので、自己相関性が強く相互相関性の弱いビット列の各ビットに、同一の周波数かつ異なる位相の複数の正弦波および余弦波を割り当て、複数の正弦波と複数の余弦波を夫々重ね合わせてできる二つの加算正弦波および加算余弦波を、遅延器を介して該受信波のダウンコンバート信号に掛け合わせるとき、その結果は夫々異なる遅延量において極値をとる。 Since the received waves of the rotationally polarized waves of the receivers of the child stations 20-1 and 20-2 have different polarization shifts, each bit of the bit string with strong autocorrelation and weak cross-correlation has the same frequency and different phase. are allocated, and two added sine waves and added cosine waves obtained by superimposing the plurality of sine waves and the plurality of cosine waves are applied to the down-converted signal of the received wave through a delay device When multiplied, the result has extreme values at different delay amounts.
 従って、受信波の中に、異なる偏波シフトを有する自己相関性が強く相互相関性の弱いビット列の各ビットに、同一の周波数かつ異なる位相の複数の正弦波および余弦波を割り当てた複数の正弦波と複数の余弦波との重ね合わせで拡散された信号が混在している。この場合に、その重ね合わせを異なる遅延量で、受信波を搬送波によりダウンコンバートした信号に掛け合わせることで、該受信信号の中から、異なる偏波シフトの受信機からの送信信号中に含まれる情報を分離することが可能となる。 Therefore, in the received wave, a plurality of sine waves and cosine waves of the same frequency and different phases are assigned to each bit of a bit string with strong autocorrelation and weak cross-correlation having different polarization shifts. The diffused signal is mixed with the superposition of the wave and multiple cosine waves. In this case, by multiplying the superposition with the signal obtained by downconverting the received wave by the carrier wave with a different amount of delay, the received signal is included in the transmitted signal from the receiver with a different polarization shift. Information can be separated.
 図17は、本発明に係る無線通信システムの各無線機の通信プロトコルの一例を示す図である。
 図17により、通信を行う無線機に固有な偏波シフト特性を暗号鍵として情報秘匿通信を行う無線通信システムが、無線機AとBによる一対一通信を行う際の通信プロトコルを説明する。
FIG. 17 is a diagram showing an example of a communication protocol for each radio in the radio communication system according to the present invention.
With reference to FIG. 17, a communication protocol for one-to-one communication between the wireless devices A and B in a wireless communication system that performs confidential information communication using the polarization shift characteristics unique to the wireless devices that communicate as an encryption key will be described.
 先ず、無線機Aが、IDを含む同期信号(ビット)を送信するまでの処理態様を説明する。以下の処理態様の主体は、無線機Aであるが、主体の記載は省略する。
 通信先を無線機Bに選び、予め両無線機で共有しているIDを決定する。
First, a processing mode until the wireless device A transmits a synchronization signal (bit) including an ID will be described. Although the subject of the following processing mode is the wireless device A, the description of the subject is omitted.
The wireless device B is selected as the communication destination, and an ID shared by both wireless devices is determined in advance.
 回転偏波の一周期を分割する分割数(偏波分割数)Mを設定する。
 この分割数Mのビット数を持つビット列で表現される識別符号列を複数具備し、その内の一つを選択する。
A division number (polarization division number) M for dividing one period of the rotationally polarized wave is set.
A plurality of identification code strings represented by bit strings having the number of bits of the number of divisions M are provided, and one of them is selected.
 分割数Mで分割した回転偏波の周期分だけ初期位相のずれたM個の正弦波および余弦波に、該識別符号列の各ビットで拡散したIDを含む同期信号(ビット)で重み付けして重ね合わせた正弦波および余弦波の集合を、搬送波周波数でアップコンバートする。
 アップコンバートした信号を、夫々空間的に直交する2アンテナで空間に放射し回転偏波の送信波として送信する。
M sine waves and cosine waves having initial phases shifted by the period of the rotationally polarized wave divided by the number of divisions M are weighted with a synchronization signal (bit) including an ID spread by each bit of the identification code string. The set of superimposed sine and cosine waves are upconverted at the carrier frequency.
The up-converted signals are radiated into space by two spatially orthogonal antennas, and transmitted as rotationally polarized transmission waves.
 次に、無線機Bの処理態様を説明する。以下の処理態様の主体は、無線機Bであるが、主体の記載は省略する。
 空間的に直交する2アンテナで受信波を受信した後、その受信信号を搬送波周波数でダウンコンバートする。
 ダウンコンバートした受信信号を復調する。
Next, the processing mode of the wireless device B will be described. Although the subject of the following processing mode is the wireless device B, the description of the subject is omitted.
After the received waves are received by two spatially orthogonal antennas, the received signals are down-converted at the carrier frequency.
Demodulate the down-converted received signal.
 両無線機で共通して具備している複数の識別符号列の一つを選択する。
 選択した識別符号列の各ビットで重み付け加算された偏波分割数Mで分割した回転偏波の周期分だけ初期位相のずれたM個の正弦波および余弦波の集合を、同期レプリカ信号として生成する。
It selects one of a plurality of identification code strings commonly provided in both radios.
A set of M sine waves and cosine waves whose initial phases are shifted by the period of the rotationally polarized wave divided by the polarization division number M weighted and added by each bit of the selected identification code string is generated as a synchronous replica signal. do.
 この同期レプリカ信号を用いて、2つのアンテナからダウンコンバートして得られた信号との乗算を、同期レプリカ信号を回転偏波周期のM分割分だけ順次遅延させて実行する。 Using this synchronous replica signal, the signals obtained by down-converting from the two antennas are multiplied by sequentially delaying the synchronous replica signal by M divisions of the rotational polarization cycle.
 乗算結果を予め定めた閾値と比較する。
 比較結果が閾値を超えない場合(no)は、複数の識別符号列の中から別の識別符号列を選択して処理を繰り返す。
 比較結果が閾値を超える場合(yes)は、その場合の遅延量を偏波シフトと決定する。
The multiplication result is compared with a predetermined threshold.
If the comparison result does not exceed the threshold value (no), another identification code string is selected from the plurality of identification code strings and the process is repeated.
If the comparison result exceeds the threshold (yes), the delay amount in that case is determined as the polarization shift.
 この偏波シフト分だけ同期レプリカ信号を遅延させて、2つのアンテナからダウンコンバートして得られた信号を復調し情報信号を再生する。 By delaying the synchronous replica signal by this polarization shift, the signals obtained by down-converting from the two antennas are demodulated to reproduce the information signal.
 再生された信号から同期ビットを検出すれば(yes)、ACK信号および自局のIDを、先に説明した無線機Aが送信時に行った処理と同様の処理を行い、無線機Aに対して送信する。 If the sync bit is detected from the reproduced signal (yes), the ACK signal and the ID of the own station are processed in the same manner as the above-described processing performed by the wireless device A when transmitting. Send.
 次に、無線機Aが無線機Bから信号を受信した後の処理態様を説明する。以下の処理態様の主体は、無線機Aであるが、主体の記載は省略する。
 空間的に直交する2アンテナで無線機Bからの受信波を受信し、その受信信号を搬送波周波数でダウンコンバートする。
Next, a processing mode after radio A receives a signal from radio B will be described. Although the subject of the following processing mode is the wireless device A, the description of the subject is omitted.
A received wave from the wireless device B is received by two spatially orthogonal antennas, and the received signal is down-converted by the carrier frequency.
 受信信号を復調して、両無線機で共通して具備する複数の識別符号列から一つ選択した識別符号列の各ビットで重み付け加算された分割数Mで分割した回転偏波の周期分だけ初期位相のずれたM個の正弦波および余弦波の集合を、同期レプリカ信号として生成する。 The received signal is demodulated, and one of the identification code strings selected from a plurality of identification code strings shared by both radios is weighted and added with each bit of the identification code string. A set of M sine and cosine waves with an initial phase shift is generated as a synchronous replica signal.
 この同期レプリカ信号を用いて、2つのアンテナからダウンコンバートして得られた信号との乗算を、同期レプリカ信号を回転偏波周期のM分割分だけ順次遅延させて実行する。 Using this synchronous replica signal, the signals obtained by down-converting from the two antennas are multiplied by sequentially delaying the synchronous replica signal by M divisions of the rotational polarization cycle.
 この乗算結果を予め定めた閾値と比較する。
 比較結果が閾値を超えない場合(no)は、複数の識別符号列の中から別の識別符号列を選択する処理に戻って、先に説明した処理手順を繰り返す。
 比較結果が閾値を超える場合(yes)は、受信信号のダウンコンバートからの処理を繰り返して無線機Bが送信したビット列を再生する。
This multiplication result is compared with a predetermined threshold value.
If the comparison result does not exceed the threshold value (no), the processing returns to the process of selecting another identification code string from among the plurality of identification code strings, and the above-described processing procedure is repeated.
If the comparison result exceeds the threshold (yes), the processing from down-conversion of the received signal is repeated to reproduce the bit string transmitted by the wireless device B. FIG.
 再生したビット列が、ACKおよびIDに関する情報である場合(yes)は、分割数Mで分割した回転偏波の周期分だけ初期位相のずれたM個の正弦波および余弦波に、識別符号列の各ビットで拡散したIDを含む情報信号(ビット)で重み付けして重ね合わせた正弦波および余弦波の集合を搬送波周波数でアップコンバートする。 If the reproduced bit string is information about ACK and ID (yes), M sine waves and cosine waves whose initial phases are shifted by the period of the rotationally polarized wave divided by the division number M are added to the identification code string. A set of weighted and superimposed sine and cosine waves with an information signal (bit) containing the ID spread at each bit is upconverted at the carrier frequency.
 このアップコンバートした夫々の信号を、空間的に直交する2アンテナで空間に放射し回転偏波の送信波として送信する。 These up-converted signals are radiated into space by two spatially orthogonal antennas and transmitted as rotationally polarized transmission waves.
 再生したビット列が、ACKおよびIDに関する情報でない場合(no)は、上記した受信信号のダウンコンバートから始まる一連の処理手順を繰り返す。 If the reproduced bit string is not information related to ACK and ID (no), the above-described series of processing procedures starting from down-conversion of the received signal are repeated.
 図18は、通信を行う無線機に固有な偏波シフト特性を暗号鍵として情報秘匿通信を行う無線通信システムの別の一例の概要を示す図である。 FIG. 18 is a diagram showing an overview of another example of a wireless communication system that performs confidential information communication using a polarization shift characteristic unique to a wireless device that performs communication as an encryption key.
 図16に示す無線通信システムとは、以下の点で異なる。
・親局10-1に対して、子局20-1と同一の偏波シフトを有する子局20-5および20-6が存在する。
・親局10-1に対して、子局20-2と同一の偏波シフトを有する子局20-4および20-7が存在する。
・親局10-1に対して、子局20-1および20-2の両者と偏波シフトが異なる第二の遮蔽物33により見通し通信路が遮られる子局20-3が存在する。
It differs from the wireless communication system shown in FIG. 16 in the following points.
- For the master station 10-1, there are slave stations 20-5 and 20-6 having the same polarization shift as the slave station 20-1.
- For the master station 10-1, there are slave stations 20-4 and 20-7 having the same polarization shift as the slave station 20-2.
• With respect to the master station 10-1, there is a slave station 20-3 whose line-of-sight communication path is blocked by a second shield 33 having a different polarization shift from both the slave stations 20-1 and 20-2.
 ここで、無線通信の双対性によって、親局は子局からの送信波を受信する動作において、複数の正弦波と複数の余弦波を夫々重ね合わせてできる二つの加算正弦波および加算余弦波を、受信波を搬送波周波数でダウンコンバートした信号に掛け合わせる際の遅延量によって、各子局が検出する偏波シフトを知ることができる。 Here, due to the duality of wireless communication, in the operation of receiving a transmission wave from a slave station, the master station generates two summed sine waves and a summed cosine wave formed by superimposing a plurality of sine waves and a plurality of cosine waves, respectively. , the polarization shift detected by each child station can be known from the amount of delay when the received wave is multiplied by the signal down-converted by the carrier frequency.
 これにより、親局10-1は、図16に示す無線通信システムと同様な動作で、親局と子局とが共有する異なるIDが割り当てられた子局20-1乃至20-7との偏波シフトを予め調べておき、ID-偏波シフトテーブルを作成する。 As a result, the master station 10-1 operates in the same manner as in the wireless communication system shown in FIG. A wave shift is checked in advance and an ID-polarization shift table is created.
 親局10-1は、ID-偏波テーブルを用いて、同じ偏波シフトを有する複数の子局に対して、自己相関性が強く相互相関性の弱い異なるビット列を用いて、図16と同様な通信を行う。 Using the ID-polarization table, the master station 10-1 uses different bit strings with strong autocorrelation and weak cross-correlation for a plurality of slave stations having the same polarization shift, as in FIG. communication.
 これにより、親局と子局間の異なる偏波シフトと自己相関性が強く相互相関性の弱い異なるビット列との組合せにより、親局と同時に通信可能な子局の数が増加する。 As a result, the combination of different polarization shifts between the parent station and child stations and different bit strings with strong autocorrelation and weak cross-correlation increases the number of child stations that can communicate simultaneously with the parent station.
 図19は、図18に示す各無線機が使用する通信プロトコルの一例を示す図である。
 図19により、通信を行う無線機に固有な偏波シフト特性を暗号鍵として情報秘匿通信を行う無線通信システムが、一対多通信を行う際の通信プロトコルを用いた処理態様を説明する。
19 is a diagram showing an example of a communication protocol used by each wireless device shown in FIG. 18. FIG.
With reference to FIG. 19, a processing mode using a communication protocol for one-to-many communication by a wireless communication system that performs confidential information communication using a polarization shift characteristic unique to a wireless device that performs communication as an encryption key will be described.
 先ず、無線機0が、IDを含む同期信号(ビット)を送信するまでの処理態様を説明する。以下の処理態様の主体は、無線機0であるが、主体の記載は省略する。
 通信先を無線機nに選び、予め両無線機で共有しているIDを決定する。
First, a processing mode until the wireless device 0 transmits a synchronization signal (bit) including an ID will be described. Although the subject of the following processing mode is the wireless device 0, the description of the subject is omitted.
The wireless device n is selected as the communication destination, and an ID shared by both wireless devices is determined in advance.
 回転偏波の一周期を分割する分割数(偏波分割数)Mを設定する。
 この分割数Mのビット数を持つビット列で表現される識別符号列を複数具備し、その内の一つを選択する。
A division number (polarization division number) M for dividing one period of the rotationally polarized wave is set.
A plurality of identification code strings represented by bit strings having the number of bits of the number of divisions M are provided, and one of them is selected.
 分割数Mで分割した回転偏波の周期分だけ初期位相のずれたM個の正弦波および余弦波に該識別符号列の各ビットで拡散したIDを含む同期信号(ビット)で重み付けして重ね合わせた正弦波および余弦波の集合を、搬送波周波数でアップコンバートする。 M sine waves and cosine waves whose initial phases are shifted by the period of the rotationally polarized wave divided by the number of divisions M are weighted with a synchronization signal (bit) containing an ID spread by each bit of the identification code string and superimposed. The set of combined sine and cosine waves are upconverted at the carrier frequency.
 アップコンバートした信号を、夫々空間的に直交する2アンテナで空間に放射し回転偏波の送信波として送信する。 The up-converted signal is radiated into space by two spatially orthogonal antennas and transmitted as a rotationally polarized transmission wave.
 次に、無線機nの処理態様を説明する。以下の処理態様の主体は、無線機nであるが、主体の記載は省略する。
 空間的に直交する2アンテナで受信波を受信した後、その受信信号を搬送波周波数でダウンコンバートする。
 ダウンコンバートした受信信号を復調する。
Next, the processing mode of the wireless device n will be described. Although the subject of the following processing mode is the wireless device n, the description of the subject is omitted.
After the received waves are received by two spatially orthogonal antennas, the received signals are down-converted at the carrier frequency.
Demodulate the down-converted received signal.
 両無線機で共通して具備している複数の識別符号列の一つを選択する。
 選択した識別符号列の各ビットで重み付け加算された偏波分割数Mで分割した回転偏波の周期分だけ初期位相のずれたM個の正弦波および余弦波の集合を、同期レプリカ信号として生成する。
It selects one of a plurality of identification code strings commonly provided in both radios.
A set of M sine waves and cosine waves whose initial phases are shifted by the period of the rotationally polarized wave divided by the polarization division number M weighted and added by each bit of the selected identification code string is generated as a synchronous replica signal. do.
 この同期レプリカ信号を用いて、2つのアンテナからダウンコンバートして得られた信号との乗算を、同期レプリカ信号を回転偏波周期のM分割分だけ順次遅延させて実行する。 Using this synchronous replica signal, the signals obtained by down-converting from the two antennas are multiplied by sequentially delaying the synchronous replica signal by M divisions of the rotational polarization cycle.
 この乗算結果を予め定めた閾値と比較する。
 比較結果が閾値を超えない場合(no)は、複数の識別符号列の中から別の識別符号列を選択して処理を繰り返す。
This multiplication result is compared with a predetermined threshold value.
If the comparison result does not exceed the threshold value (no), another identification code string is selected from the plurality of identification code strings and the process is repeated.
 比較結果が閾値を超える場合(yes)は、その時に用いた遅延量を偏波シフトと決定する。
 この偏波シフト分だけ同期レプリカ信号を遅延させて、2つのアンテナからダウンコンバートして得られた信号を復調し情報信号を再生する。
If the comparison result exceeds the threshold (yes), the delay amount used at that time is determined as the polarization shift.
The synchronous replica signal is delayed by this polarization shift, and the signals obtained by down-converting from the two antennas are demodulated to reproduce the information signal.
 再生された信号が同期ビットを検出すれば(yes)、ACK信号、自局のIDおよびこの偏波シフトの値を、無線機0が送信時に行った処理と同様の処理を行い、無線機0に対して送信を行う。 If the regenerated signal detects the synchronization bit (yes), the ACK signal, the ID of the local station, and the value of the polarization shift are processed in the same manner as the radio 0 performed when transmitting. send to
 次に、無線機0が無線機nから信号を受信した後の処理態様を説明する。以下の処理態様の主体は、無線機0であるが、主体の記載は省略する。
 空間的に直交する2アンテナで無線機nからの受信波を受信し、その受信信号を搬送波周波数でダウンコンバートする。
Next, a processing mode after the radio device 0 receives a signal from the radio device n will be described. Although the subject of the following processing mode is the wireless device 0, the description of the subject is omitted.
A reception wave from a wireless device n is received by two spatially orthogonal antennas, and the received signal is down-converted by a carrier frequency.
 受信信号を復調して、両無線機で共通して具備する複数の識別符号列から一つ選択した識別符号列の各ビットで重み付け加算された分割数Mで分割した回転偏波の周期分だけ初期位相のずれたM個の正弦波および余弦波の集合を、同期レプリカ信号として生成する。 The received signal is demodulated, and one of the identification code strings selected from a plurality of identification code strings shared by both radios is weighted and added with each bit of the identification code string. A set of M sine and cosine waves with an initial phase shift is generated as a synchronous replica signal.
 この該同期レプリカ信号を用いて、2つのアンテナからダウンコンバートして得られた信号との乗算を、同期レプリカ信号を回転偏波周期のM分割分だけ順次遅延させて実行する。 Using this synchronous replica signal, the signals obtained by down-converting from the two antennas are multiplied by sequentially delaying the synchronous replica signal by M divisions of the rotational polarization cycle.
 この乗算結果を予め定めた閾値と比較する。
 比較結果が閾値を超えない場合(no)は、複数の識別符号列の中から別の識別符号列を選択する処理に戻って、先に説明した処理手順を繰り返す。
This multiplication result is compared with a predetermined threshold value.
If the comparison result does not exceed the threshold value (no), the processing returns to the process of selecting another identification code string from among the plurality of identification code strings, and the above-described processing procedure is repeated.
 比較結果が閾値を超える場合(yes)は、受信信号のダウンコンバートからの処理を繰り返して無線機nが送信したビット列を再生する。 If the comparison result exceeds the threshold (yes), the processing from down-conversion of the received signal is repeated to reproduce the bit string transmitted by the wireless device n.
 再生したビット列が、ACKおよびIDに関する情報である場合(yes)は、再生したビット列よりIDと偏波シフト値とを抽出して記憶する。 If the reproduced bit string is information about ACK and ID (yes), the ID and the polarization shift value are extracted from the reproduced bit string and stored.
 この記憶内容と具備する複数の識別符号列とを参照して、同時に伝送可能な情報量を極大化する両者の対応関係を計算し、ID、偏波シフトおよび識別符号列の対応マップを作成する。 By referring to the stored content and a plurality of identification code strings, a correspondence relationship between the two that maximizes the amount of information that can be transmitted simultaneously is calculated, and a correspondence map of ID, polarization shift and identification code string is created. .
 以上の処理手順を、無線機0は、一対多通信を行う全ての他の無線機に対して繰り返す。
 全ての無線機に対して同処理が終了した後に、ID、偏波シフトおよび識別符号列の対応マップを用いて、複数の無線機nに対して、同時に個別の情報を伝送する。
The above processing procedure is repeated by the wireless device 0 for all other wireless devices that perform one-to-many communication.
After the same processing is completed for all the wireless devices, individual information is simultaneously transmitted to a plurality of wireless devices n using the correspondence map of ID, polarization shift, and identification code string.
 次に、図20乃至図28により、本発明の実施例4として、通信を行う無線機に固有な偏波シフト特性を暗号鍵として情報秘匿通信を行う無線通信システムとして採用する、無線機(受信機または送信機)および無線機対(送受信機)の構成例について説明する。 Next, referring to FIGS. 20 to 28, as a fourth embodiment of the present invention, a wireless device (receiving A configuration example of a transmitter or transmitter) and a wireless device pair (transmitter/receiver) will be described.
 ここで、図20以降に示す構成の無線機および無線機対を用いることにより、無線機に伝搬時間を計測する機能を持たせることができる。また、可変の強自己相関弱相互相関ビット列による偏波角領域でのCDMA(符号分割多元接続)が可能となる。これにより、先の図7の(a)に示す1対多数の無線局間の通信を可能にすることができる。 Here, by using the wireless device and the wireless device pair configured as shown in FIG. In addition, CDMA (code division multiple access) in the polarization angle domain using variable strong autocorrelation and weak cross-correlation bit strings becomes possible. This enables communication between one-to-many wireless stations shown in FIG. 7(a).
 さらに、高周波ミキサ105および106より左側の構成部分は、ハードウェアによる実現方法だけでなく、DSPとソフトウェアとからなるソフトウェア無線により実現する方法も可能である。この方法により、汎用的なハードウェアを用いて短い開発期間かつ低コストで実現できる。 Furthermore, the components on the left side of high- frequency mixers 105 and 106 can be realized not only by hardware but also by software radio consisting of DSP and software. This method can be implemented in a short development period and at low cost using general-purpose hardware.
 また、現時点の技術では性能低下が伴うが、アンダーサンプリングによる方法を用いれば、高周波ミキサ105および106を含めて、DSPとソフトウェアとからなるソフトウェア無線により実現することも可能で、更なる低コスト化を可能にする。 In addition, although the current technology is accompanied by a decrease in performance, if a method based on undersampling is used, it is possible to realize a software radio comprising a DSP and software, including the high- frequency mixers 105 and 106, further reducing the cost. enable
 図20は、実施例4に係る無線通信システムの受信機の代表例として、第1の構成例とその動作態様を示す図である。
 空間的に直交する第一のアンテナ103および第二のアンテナ104は、送信機が送信した送信波を受信し入力信号とする。
FIG. 20 is a diagram showing a first configuration example and its operation mode as a representative example of a receiver of a radio communication system according to the fourth embodiment.
A first antenna 103 and a second antenna 104, which are spatially orthogonal to each other, receive transmission waves transmitted by a transmitter and use them as input signals.
 夫々のアンテナ(103、104)の出力は、搬送波周波数発生回路101の出力と、第一の高周波ミキサ105および第二の高周波ミキサ106により、ダウンコンバートされる。 The output of each antenna (103, 104) is down-converted by the output of the carrier frequency generation circuit 101 and the first high frequency mixer 105 and the second high frequency mixer 106.
 第一の高周波ミキサ105の出力は二分岐され、受信ミキサ121と第二のアナログデジタル変換器(ADC)123に入力される。 The output of the first high-frequency mixer 105 is branched into two and input to the receiving mixer 121 and the second analog-to-digital converter (ADC) 123 .
 一方で、偏波回転周波数発生回路102の出力を、中央演算ユニット(CPU)109で遅延量を制御される第一の可変遅延回路115を介し分岐し、分岐した各々を受信遅延器112-iを介し強自己相関弱相互相関ビット列111の各±ビット111-iを用いて受信乗算器113-iで重み付けし、受信総和回路114で重ね合わせる。 On the other hand, the output of the polarization rotation frequency generation circuit 102 is branched through a first variable delay circuit 115 whose delay amount is controlled by a central processing unit (CPU) 109, and each of the branches is sent to a reception delay device 112-i. Each ±bit 111-i of the strong autocorrelation weak cross-correlation bit string 111 is weighted by the receive multiplier 113-i and superimposed by the receive summation circuit 114.
 この重ね合わせた結果と第一の高周波ミキサ105の出力とを受信ミキサ121で掛け合わせ、掛け合わせた結果を第一のアナログデジタル変換器(ADC)122でデジタル信号に変換して中央演算ユニット(CPU)109に入力する。 The result of this superposition and the output of the first high-frequency mixer 105 are multiplied by the receiving mixer 121, and the multiplied result is converted into a digital signal by the first analog-to-digital converter (ADC) 122, and the central processing unit ( CPU) 109.
 ここで、強自己相関弱相互相関ビット列111は、一般には、「PN(Pseudo random Noise:疑似ノイズ)信号」などと呼ばれ、代表的なものとして「M系列」などがある。 Here, the strong autocorrelation weak cross-correlation bit string 111 is generally called a "PN (Pseudo random noise) signal", and a typical example is an "M sequence".
 図21は、送信波形と受信波形との関係を示す図である。
 図21に示すように、一般に受信波形は、送信波形からT(送信局と受信局との基準時刻の差に伝搬時間を加えたもの)だけ遅れたものとなる。ここで、送信波形に、強自己相関弱相互相関ビット列(PN符号やM系列)を重畳させる。
FIG. 21 is a diagram showing the relationship between a transmission waveform and a reception waveform.
As shown in FIG. 21, the received waveform is generally delayed from the transmitted waveform by T (the difference in reference time between the transmitting station and the receiving station plus the propagation time). Here, a strong autocorrelation weak cross-correlation bit string (PN code or M sequence) is superimposed on the transmission waveform.
 図22は、送信局と受信局が共有している強自己相関弱相互相関ビット列(PN符号やM系列)を、Δtだけずらして受信信号との相関をとった図である。 FIG. 22 is a diagram in which the strong autocorrelation weak cross-correlation bit string (PN code or M sequence) shared by the transmitting station and the receiving station is shifted by Δt and correlated with the received signal.
 強自己相関弱相互相関ビット列の性質としては、Δt=Tの時(タイミングが一致している時)に相関値が最大となり(強自己相関)、Δt=Tでない時(タイミングが一致していない時)に相関値が小さくなる(弱相互相関)。 The properties of strong autocorrelation and weak cross-correlation bit strings are that when Δt=T (when the timings match), the correlation value is maximized (strong autocorrelation), and when Δt=T (when the timings do not match). time), the correlation value becomes smaller (weak cross-correlation).
 以上のように、T(送信局と受信局の基準時刻の差に伝搬時間を加えたもの)を同定することは、現在受信局で受信している信号が送信局においてどの時刻において送信されたものかを同定(同期化)することにつながる。 As described above, identifying T (the difference between the reference times of the transmitting station and the receiving station plus the propagation time) is the time at which the signal currently received at the receiving station was transmitted at the transmitting station. It leads to the identification (synchronization) of things.
 特に、時刻と共に送信する電波の偏波を変える回転偏波においては、送信局においてどの時刻において送信されたものかという情報は、どの偏波角で送信されたものかという情報につながる。このため、送信局で連続して偏波角を変化させることによって、本発明においては、共通鍵として利用する送信局での偏波角と受信局での偏波角との関連を取得することができる。 In particular, in the case of rotating polarized waves that change the polarization of the transmitted radio wave with time, the information about what time it was transmitted at the transmitting station leads to the information about what angle of polarization it was transmitted. Therefore, by continuously changing the polarization angle at the transmitting station, in the present invention, it is possible to obtain the relationship between the polarization angle at the transmitting station and the polarization angle at the receiving station, which is used as a common key. can be done.
 図20に戻り、第一の高調波ミキサ105の出力の二分岐された他方の出力は、第二のアナログデジタル変換器(ADC)123により、また、第二の高調波ミキサ106の出力は、第三のアナログデジタル変換器124により、それぞれデジタル信号に変換される。 Returning to FIG. 20, the other two-branched output of the first harmonic mixer 105 is output by a second analog-to-digital converter (ADC) 123, and the output of the second harmonic mixer 106 is Each is converted into a digital signal by the third analog-to-digital converter 124 .
 それぞれのデジタル信号は、中央演算ユニット(CPU)109で遅延量を独立して制御される第二の可変遅延回路125および第三の可変遅延回路126を介して比較回路127の二入力となる。 Each digital signal becomes two inputs of a comparison circuit 127 via a second variable delay circuit 125 and a third variable delay circuit 126 whose delay amount is independently controlled by a central processing unit (CPU) 109 .
 この比較回路127は、各入力値の差分を閾値記憶回路128に格納されている判定閾値を基に、±1を出力して、この比較出力を中央演算ユニット(CPU)109に入力する。 The comparison circuit 127 outputs the difference between the input values as ±1 based on the determination threshold stored in the threshold storage circuit 128 and inputs this comparison output to the central processing unit (CPU) 109 .
 中央演算ユニット(CPU)109は、先に述べた強自己相関弱相互相関ビット列(PN符号やM系列)111の性質を利用して、第一の可変遅延回路115の遅延量を変化させ、第一のアナログデジタル変換器122の出力を最大とする遅延量を測定してこの遅延量により通信を行っている送信機との偏波シフトを決定する。 A central processing unit (CPU) 109 changes the delay amount of the first variable delay circuit 115 by using the properties of the strong autocorrelation weak cross-correlation bit string (PN code or M-sequence) 111 described above. The delay amount that maximizes the output of one analog-to-digital converter 122 is measured, and the polarization shift with the transmitter that is communicating is determined based on this delay amount.
 回転偏波通信においては、送受信機間が静的であれば空間的に直交する2アンテナの出力信号は直交する正弦波となる。図20の上のグラフの破線は、この関係を示す。また、図20の上のグラフに示すように、送信回転偏波と受信回転偏波との位相差はが一定であれば、位相シフトTだけ破線がシフトして一点鎖線となる。 In rotationally polarized wave communication, if the distance between the transmitter and receiver is static, the output signals from two spatially orthogonal antennas will be orthogonal sine waves. The dashed line in the upper graph of FIG. 20 shows this relationship. Also, as shown in the upper graph of FIG. 20, if the phase difference between the transmission rotationally polarized wave and the receiving rotationally polarized wave is constant, the dashed line is shifted by the phase shift T to form a dashed line.
 実際の通信環境では回転偏波の偏波回転の位相は一定ではなく、進みまたは遅れが生じる。この現象を、図20の上のグラフで実線で示す。この「進み」と「遅れ」を、「0」と「1」に対応付ければ、無線通信を行っている送受信機間の固有の伝播特性が生成する物理暗号鍵として、使用可能なビット列を得ることができる。  In the actual communication environment, the phase of the polarization rotation of the rotary polarized wave is not constant, and leads or lags. This phenomenon is illustrated by the solid line in the upper graph of FIG. By associating this "advance" and "delay" with "0" and "1", a bit string that can be used as a physical encryption key generated by the unique propagation characteristics between transceivers performing wireless communication can be obtained. be able to.
 以上、第1の構成例によれば、回転偏波を用いる無線通信において、無線通信を行う送受信機間の固有の伝播特性を用いて、他の無線機では知り得ない同伝搬特性固有の物理暗号鍵として使用可能なビット列を、このビット列に関する情報を無線機間で通信することなく自動的に取得可能である。 As described above, according to the first configuration example, in radio communication using rotationally polarized waves, by using the inherent propagation characteristics between transmitters and receivers that perform radio communication, physical characteristics unique to the same propagation characteristics that cannot be known by other radio devices can be obtained. A bit string that can be used as an encryption key can be automatically obtained without communicating information about this bit string between wireless devices.
 したがって、このビット列を暗号鍵として適当な暗号アルゴリズムにより情報信号を秘匿して通信可能となるので、高セキュアな無線通信システムを実現できる効果がある。 Therefore, this bit string can be used as a cryptographic key to conceal the information signal by an appropriate cryptographic algorithm for communication, which has the effect of realizing a highly secure wireless communication system.
 図23は、実施例4に係る無線通信システムに用いる受信機として、第2の構成例を示す図である。 FIG. 23 is a diagram showing a second configuration example as a receiver used in the wireless communication system according to the fourth embodiment.
 図20に示す第1の構成例と異なる点は、強自己相関弱相互相関ビット列111の代わりに可変強自己相関弱相互相関ビット列116を用いる点である。 The difference from the first configuration example shown in FIG. 20 is that a variable strong autocorrelation weak cross-correlation bit string 116 is used instead of the strong autocorrelation weak cross-correlation bit string 111.
 可変強自己相関弱相互相関ビット列116は、中央演算ユニット(CPU)109により互いに異なる強自己相関弱相互相関ビット列を生成することができる。 The variable strong autocorrelation weak cross-correlation bit string 116 can generate mutually different strong autocorrelation weak cross-correlation bit strings by the central processing unit (CPU) 109 .
 以上、第2の構成例によれば、親局が同じ偏波シフトを有する複数の子局と同時に送受信が可能となるので、無線通信システムの通信容量の増加およびスループットの向上を図る効果がある。 As described above, according to the second configuration example, since the master station can transmit and receive simultaneously with a plurality of slave stations having the same polarization shift, there is an effect of increasing the communication capacity of the wireless communication system and improving the throughput. .
 図24は、実施例4に係る無線通信システムの受信機として、第3の構成例を示す図である。 FIG. 24 is a diagram showing a third configuration example as a receiver of the wireless communication system according to the fourth embodiment.
 空間的に直交する第一のアンテナ103および第二のアンテナ104は、送信機が送信した送信波を受信し入力信号とする。 A first antenna 103 and a second antenna 104 that are spatially orthogonal receive the transmission wave transmitted by the transmitter and use it as an input signal.
 夫々のアンテナ(103、104)の出力は、搬送波周波数発生回路101の出力と、第一の高周波ミキサ105および第二の高周波ミキサ106により、ダウンコンバートされる。 The output of each antenna (103, 104) is down-converted by the output of the carrier frequency generation circuit 101 and the first high frequency mixer 105 and the second high frequency mixer 106.
 第二の高周波ミキサ106の出力は二分岐され、第一の受信ミキサ121と第二のアナログデジタル変換器(ADC)123に入力される。 The output of the second high-frequency mixer 106 is branched into two and input to the first reception mixer 121 and the second analog-to-digital converter (ADC) 123 .
 一方で、偏波回転周波数発生回路102の出力を二分岐した一方を、中央演算ユニット(CPU)109で遅延量を制御される第一の可変遅延回路115を介して分岐し、分岐した各々を第一の受信遅延器112-iを介して強自己相関弱相互相関ビット列111の各±ビット111-iを用いて第一の受信乗算器113-iで重み付けし、第一の受信総和回路114で重ね合わせる。 On the other hand, one of the outputs of the polarization rotation frequency generating circuit 102 is branched into two via a first variable delay circuit 115 whose delay amount is controlled by a central processing unit (CPU) 109, and each of the branches is Each ±bit 111-i of the strong autocorrelation weak cross-correlation bit string 111 is weighted by the first receive multiplier 113-i through the first receive delay unit 112-i, and the first receive summation circuit 114 Overlap with .
 この重ね合わせた結果と第二の高周波ミキサ106の出力とを第一の受信ミキサ121で掛け合わせ、掛け合わせた結果を受信合成回路131に入力する。 The result of this superimposition and the output of the second high-frequency mixer 106 are multiplied by the first reception mixer 121 , and the multiplication result is input to the reception synthesis circuit 131 .
 第一の高周波ミキサ105の出力は二分岐され、第二の受信ミキサ141と第三のアナログデジタル変換器(ADC)124に入力される。 The output of the first high-frequency mixer 105 is branched into two and input to the second reception mixer 141 and the third analog-to-digital converter (ADC) 124 .
 一方で、偏波回転周波数発生回路102の出力を二分岐した他方を、偏波回転周波数帯90°移相器136を通過させ、中央演算ユニット(CPU)109で遅延量を制御される第二の可変遅延回路135を介して分岐し、分岐した各々を第二の受信遅延器132-iを介して強自己相関弱相互相関ビット列111の各±ビット111-iを用いて第二の受信乗算器133-iで重み付けし、第二の受信総和回路134で重ね合わせる。 On the other hand, the other branch of the output of the polarization rotation frequency generation circuit 102 is passed through the polarization rotation frequency band 90° phase shifter 136, and the second output whose delay amount is controlled by the central processing unit (CPU) 109 , and each of the branches is subjected to second reception multiplication using each ±bit 111-i of the strong autocorrelation weak cross-correlation bit string 111 via the second reception delay unit 132-i. weighted by the unit 133-i and superimposed by the second reception summation circuit 134;
 この重ね合わせた結果と第一の高周波ミキサ105の出力とを第二の受信ミキサ141で掛け合わせ、掛け合わせた結果を受信合成回路131に入力する。 The result of this superposition and the output of the first high-frequency mixer 105 are multiplied by the second reception mixer 141 , and the multiplication result is input to the reception synthesizing circuit 131 .
 その上で、この受信合成回路131の出力を第一のアナログデジタル変換器(ADC)122でデジタル信号に変換して中央演算ユニット(CPU)109に入力する。 After that, the output of this reception synthesizing circuit 131 is converted into a digital signal by a first analog-to-digital converter (ADC) 122 and input to the central processing unit (CPU) 109 .
 第一の高調波ミキサ105の出力の二分岐された他方および第二の高調波ミキサ106の出力の二分岐された他方は、それぞれ第二のアナログデジタル変換器(ADC)123および第三のアナログデジタル変換器(ADC)124とによりデジタル信号に変換される。 The bifurcated other of the outputs of the first harmonic mixer 105 and the bifurcated other of the outputs of the second harmonic mixer 106 are coupled to a second analog-to-digital converter (ADC) 123 and a third analog converter (ADC) 123, respectively. It is converted into a digital signal by a digital converter (ADC) 124 .
 デジタル信号それぞれは、中央演算ユニット(CPU)109で遅延量を独立して制御される第二の可変遅延回路125および第三の可変遅延回路126を介して比較回路127の二入力となる。 Each digital signal becomes two inputs of a comparison circuit 127 via a second variable delay circuit 125 and a third variable delay circuit 126 whose delay amount is independently controlled by a central processing unit (CPU) 109 .
 この比較回路127は、各入力値の差分を閾値記憶回路128に格納されている判定閾値を基に±1を出力し、この比較出力を中央演算ユニット(CPU)109に入力する。 The comparison circuit 127 outputs the difference of each input value as ±1 based on the judgment threshold stored in the threshold storage circuit 128 and inputs this comparison output to the central processing unit (CPU) 109 .
 以上、第3の構成例によれば、図20に示す受信機の第1の構成例に比べて、親局と子局間の偏波シフトを決定するための信号電力を倍加することができる。 As described above, according to the third configuration example, compared to the first configuration example of the receiver shown in FIG. 20, the signal power for determining the polarization shift between the parent station and the child station can be doubled. .
 したがって、偏波シフトの測定精度が向上し、情報信号の秘匿に用いる送受信機間固有の伝播特性が生成する物理暗号鍵の安定性が増すため、無線通信システムの通信の更なる安定化に寄与する。 Therefore, the measurement accuracy of the polarization shift is improved, and the stability of the physical encryption key generated by the unique propagation characteristics between the transmitter and receiver used to conceal the information signal is increased, contributing to the further stabilization of the communication of the wireless communication system. do.
 図25は、実施例4に係る無線通信システムの送信機の代表例として、第4の構成例を示す図である。 FIG. 25 is a diagram showing a fourth configuration example as a representative example of the transmitter of the wireless communication system according to the fourth embodiment.
 中央演算ユニット(CPU)109が、情報信号を生成してデジタルデータ発生機158に供給する。 A central processing unit (CPU) 109 generates and supplies information signals to a digital data generator 158 .
 このデジタルデータ発生機158は、ビット列を複数の送信乗算回路157-iに入力し、強自己相関弱相互相関ビット列151の各±ビット151-iにより重み付けされたのち二分岐される。 This digital data generator 158 inputs the bit string to a plurality of transmission multiplier circuits 157-i, weights each ± bit 151-i of the strong autocorrelation weak cross-correlation bit string 151, and then divides it into two.
 二分岐した一方の分岐には、偏波回転周波数発生回路102の出力を二分岐した第一の分岐を、偏波回転周波数帯90°移相器168で遅延し、複数の第一の送信遅延器162-iを介して異なる位相で複数の第一の送信乗算器163-iで掛け合わせる。 In one of the two branches, the first branch obtained by bifurcating the output of the polarization rotation frequency generation circuit 102 is delayed by the polarization rotation frequency band 90° phase shifter 168, and a plurality of first transmission delay multiplied by a plurality of first transmit multipliers 163-i with different phases via multipliers 162-i.
 複数の第一の送信乗算器163-iの出力を第一の送信総和回路164で重ね合わせ、この第一の送信総和回路164の出力を、搬送波周波数発生回路101の出力により第一の高周波ミキサ105でアップコンバートして、第一のアンテナ103より空間に放射する。 The outputs of a plurality of first transmission multipliers 163-i are superimposed by a first transmission summation circuit 164, and the output of this first transmission summation circuit 164 is fed to the first high frequency mixer by the output of the carrier wave frequency generation circuit 101. It is up-converted at 105 and radiated into space from the first antenna 103 .
 二分岐した他方の分岐には、偏波回転周波数発生回路102の出力を二分岐した第二の分岐を複数の第二の送信遅延器152-iを介して異なる位相で複数の第二の送信乗算器153-iで掛け合わせる。 In the other bifurcated branch, a second branch obtained by bifurcating the output of the polarization rotation frequency generation circuit 102 is transmitted through a plurality of second transmission delay devices 152-i to a plurality of second transmission delay devices 152-i. Multiplied by multiplier 153-i.
 複数の第二の送信乗算器153-iの出力を第二の送信総和回路154で重ね合わせ、この第二の送信総和回路154の出力を、搬送波周波数発生回路101の出力により第二の高周波ミキサ106でアップコンバートして、第一のアンテナ103と空間的に直交する第二のアンテナ104より空間に放射する。 The outputs of a plurality of second transmission multipliers 153-i are superimposed by a second transmission summation circuit 154, and the output of this second transmission summation circuit 154 is fed to a second high-frequency mixer by the output of the carrier wave frequency generation circuit 101. It is up-converted at 106 and radiated into space from a second antenna 104 that is spatially orthogonal to the first antenna 103 .
 以上、第4の構成例によれば、情報信号を異なるビット重み付けされた初期位相の異なる同一偏波回転周波数の正弦波および余弦波の集合体で、回転偏波を形成し無線通信できる。これにより、回転偏波通信システムの容量増大とスループット向上を図ることができる。 As described above, according to the fourth configuration example, an information signal can be formed into a rotationally polarized wave by an aggregate of sine waves and cosine waves of the same polarization rotational frequency with different initial phases and different bit weights, and can be wirelessly communicated. As a result, it is possible to increase the capacity and improve the throughput of the rotary polarization communication system.
 図26は、実施例4に係る無線通信システムに用いる送信機として、第5の構成例を示す図である。 FIG. 26 is a diagram showing a fifth configuration example as a transmitter used in the wireless communication system according to the fourth embodiment.
 図25に示す第4の構成例と異なる点は、新たに暗号発生回路(EMP)119を追加し、中央演算ユニット109が生成する情報信号を、この暗号発生回路(EMP)119の出力を用いて、第二の送信乗算回路159により変換し、デジタルデータ発生機158に供給する点である。 The difference from the fourth configuration example shown in FIG. is converted by the second transmission multiplier circuit 159 and supplied to the digital data generator 158 .
 以上、第5の構成例によれば、情報信号が暗号化されて回転偏波通信ができるので、無線通信システムの高セキュア化を図ることができる。 As described above, according to the fifth configuration example, the information signal is encrypted and rotationally polarized wave communication can be performed, so that the wireless communication system can be made highly secure.
 図27は、実施例4に係る無線通信システムに用いる無線機対(送受信機)の代表例として、第6の構成例を示す図である。 FIG. 27 is a diagram showing a sixth configuration example as a representative example of a wireless device pair (transmitter/receiver) used in the wireless communication system according to the fourth embodiment.
 空間的に直交する第一のアンテナ103および第二のアンテナ104は、送信機が送信した送信波を受信し入力信号とする。 A first antenna 103 and a second antenna 104 that are spatially orthogonal receive the transmission wave transmitted by the transmitter and use it as an input signal.
 夫々のアンテナ(103、104)の出力は、搬送波周波数発生回路101の出力と、第一の高周波ミキサ105および第二の高周波ミキサ106により、ダウンコンバートされる。 The output of each antenna (103, 104) is down-converted by the output of the carrier frequency generation circuit 101 and the first high frequency mixer 105 and the second high frequency mixer 106.
 第一の高周波ミキサ105および第二の高周波ミキサ106には、第一の送受信切替スイッチ165および第二の送受信切替スイッチ166が結合し、第二の送受信切替スイッチ166の出力は二分岐され、一方は第一の受信ミキサ121に入力される。 A first transmission/reception changeover switch 165 and a second transmission/reception changeover switch 166 are coupled to the first high-frequency mixer 105 and the second high-frequency mixer 106, and the output of the second transmission/reception changeover switch 166 is branched into two. is input to the first receive mixer 121 .
 ここで、偏波回転周波数発生回路102の出力を二分岐した一方を、中央演算ユニット(CPU)109で遅延量を制御される第一の可変遅延回路115を介し分岐して、分岐の各々を第一の受信遅延器112-iを介し強自己相関弱相互相関ビット列111の各±ビット111-iを用いて第一の受信乗算器113-iで重み付けし、第一の受信総和回路114で重ね合わせる。 Here, one of the two-branched output of the polarization rotation frequency generating circuit 102 is branched via a first variable delay circuit 115 whose delay amount is controlled by a central processing unit (CPU) 109, and each of the branches is Each ±bit 111-i of the strong autocorrelation weak cross-correlation bit string 111 is weighted by the first receive multiplier 113-i through the first receive delay unit 112-i, and the first receive summation circuit 114 superimpose.
 この重ね合わせた結果と第一の高周波ミキサ105の出力とを第一の受信ミキサ121で掛け合わせ、掛け合わせた結果を受信合成回路131に入力する。
 他方、第一の送受信切替スイッチ165の出力は二分岐され、一方は第二の受信ミキサ141入力される。
The result of this superimposition and the output of the first high-frequency mixer 105 are multiplied by the first reception mixer 121 , and the multiplication result is input to the reception synthesizing circuit 131 .
On the other hand, the output of the first transmission/reception selector switch 165 is branched into two, one of which is input to the second reception mixer 141 .
 ここで、偏波回転周波数発生回路102の出力を二分岐した他方を、偏波回転周波数帯90°移相器136を通過させ、中央演算ユニット(CPU)109で遅延量を制御される第二の可変遅延回路135を介し分岐して、分岐の各々を第二の受信遅延器132-iを介し強自己相関弱相互相関ビット列111の各±ビット111-iを用いて第二の受信乗算器133-iで重み付けし、第二の受信総和回路134で重ね合わせる。 Here, the other branch of the output of the polarization rotation frequency generation circuit 102 is passed through the polarization rotation frequency band 90° phase shifter 136, and the central processing unit (CPU) 109 controls the amount of delay. each of the branches via a second receive delay circuit 132-i and a second receive multiplier using each ± bit 111-i of the strong autocorrelation weak cross-correlation bit string 111 133-i and superimposed by the second receive summation circuit 134. FIG.
 この重ね合わせた結果と第一の高周波ミキサ105の出力とを第二の受信ミキサ141で掛け合わせ、掛け合わせた結果を受信合成回路131に入力する。 The result of this superposition and the output of the first high-frequency mixer 105 are multiplied by the second reception mixer 141 , and the multiplication result is input to the reception synthesizing circuit 131 .
 この受信合成回路131の出力を、第一のアナログデジタル変換器(ADC)122でデジタル信号に変換し、中央演算ユニット(CPU)109に入力する。 The output of this reception synthesizing circuit 131 is converted into a digital signal by a first analog-to-digital converter (ADC) 122 and input to the central processing unit (CPU) 109 .
 第一の高調波ミキサ105の出力で第一の送受信切替スイッチ165の二分岐された他方と、第二の高調波ミキサ106の出力で第二の送受信切替スイッチ166の二分岐された他方、それぞれは、第二のアナログデジタル変換器(ADC)123および第三のアナログデジタル変換器(ADC)124によりデジタル信号に変換され、中央演算ユニット(CPU)109で遅延量を独立して制御される第二の可変遅延回路125および第三の可変遅延回路126を介し比較回路127の二入力となる。 The output of the first harmonic mixer 105 is the other branch of the first transmission/reception selector switch 165, and the output of the second harmonic mixer 106 is the other branch of the second transmission/reception selector switch 166, respectively. are converted into digital signals by a second analog-to-digital converter (ADC) 123 and a third analog-to-digital converter (ADC) 124, and the delay amount is independently controlled by the central processing unit (CPU) 109. It becomes two inputs of a comparison circuit 127 via two variable delay circuits 125 and a third variable delay circuit 126 .
 この比較回路127は、各入力値の差分を閾値記憶回路128に格納されている判定閾値を基に±1を出力し、この比較出力を第二の送信乗算回路159に入力する。 The comparison circuit 127 outputs the difference of each input value as ±1 based on the judgment threshold stored in the threshold storage circuit 128 , and inputs this comparison output to the second transmission multiplication circuit 159 .
 中央演算ユニット(CPU)109が、IDメモリ129に格納した無線機固有のIDを含む情報信号を生成して、第二の送信乗算回路159により、通信を行う無線機対に固有な伝搬路情報に基づく物理鍵で秘匿化されたこの情報信号を、デジタルデータ発生機158に供給する。 A central processing unit (CPU) 109 generates an information signal including an ID unique to the wireless device stored in an ID memory 129, and a second transmission multiplier circuit 159 generates propagation path information unique to the pair of wireless devices communicating. This information signal encrypted with a physical key based on is supplied to the digital data generator 158 .
 このデジタルデータ発生機158は、ビット列を複数の送信乗算回路157-iに入力し、強自己相関弱相互相関ビット列151の各±ビット151-iにより重み付けされた後に二分岐される。 This digital data generator 158 inputs a bit string to a plurality of transmission multiplier circuits 157-i, weights each ± bit 151-i of the strong autocorrelation weak cross-correlation bit string 151, and then divides it into two.
 一方の分岐については、偏波回転周波数発生回路102の出力を二分岐した第一の分岐を偏波回転周波数帯90°移相器168で遅延し、複数の第一の送信遅延器162-iを介して異なる位相で複数の送信乗算器163-iで掛け合わせ、複数の送信乗算器163-iの出力を送信総和回路164で重ね合わせ、この送信総和回路164の出力を第一の送受信切替スイッチ165の送信端子に入力する。 Regarding one branch, the first branch obtained by bifurcating the output of the polarization rotation frequency generation circuit 102 is delayed by the polarization rotation frequency band 90° phase shifter 168, and the plurality of first transmission delay devices 162-i are multiplied by a plurality of transmission multipliers 163-i with different phases via the transmission multipliers 163-i, the outputs of the plurality of transmission multipliers 163-i are superimposed by a transmission summation circuit 164, and the output of this transmission summation circuit 164 is used as the first transmission/reception switching. Input to the transmission terminal of the switch 165 .
 この第一の送受信切替スイッチ165の共通端子の出力は、搬送波周波数発生回路101の出力により第一の高周波ミキサ105でアップコンバートして、第一のアンテナ103より空間に放射される。 The output of the common terminal of the first transmission/reception selector switch 165 is up-converted by the first high-frequency mixer 105 according to the output of the carrier wave frequency generation circuit 101 and radiated from the first antenna 103 into space.
 他方の分岐については、偏波回転周波数発生回路102の出力を二分岐した第二の分岐を複数の第二の送信遅延器152-iを介して、異なる位相で複数の第二の送信乗算器153-iで掛け合わせ、複数の送信乗算器153-iの出力を送信総和回路154で重ね合わせ、この送信総和回路154の出力を第二の送受信切替スイッチ166の送信端子に入力する。 As for the other branch, the second branch obtained by branching the output of the polarization rotation frequency generation circuit 102 into two is passed through a plurality of second transmission delay devices 152-i to a plurality of second transmission multipliers with different phases. 153-i, the outputs of a plurality of transmission multipliers 153-i are superimposed in a transmission summation circuit 154, and the output of this transmission summation circuit 154 is input to the transmission terminal of the second transmission/reception selector switch 166. FIG.
 この第二の送受信切替スイッチ166の共通端子の出力は、搬送波周波数発生回路101の出力により第二の高周波ミキサ106でアップコンバートして、第一のアンテナ103と空間的に直交する第二のアンテナ104より空間に放射される。 The output of the common terminal of the second transmission/reception changeover switch 166 is up-converted by the second high-frequency mixer 106 by the output of the carrier wave frequency generation circuit 101, and the second antenna spatially orthogonal to the first antenna 103 is generated. 104 radiates into space.
 以上、第6の構成例によれば、情報信号が回転偏波通信を行う特定の無線機対に固有な伝搬路特性で情報信号を秘匿化して、複数の初期位相の異なる回転偏波に異なる情報信号を伝送可能となるので、高セキュア且つ大容量の無線通信システムを実現することができる。 As described above, according to the sixth configuration example, the information signal is concealed by the propagation path characteristics unique to a specific wireless device pair that performs rotationally polarized wave communication, and a plurality of rotationally polarized waves having different initial phases are used. Since information signals can be transmitted, a highly secure and large-capacity radio communication system can be realized.
 図28は、実施例4に係る無線通信システムに用いる無線機対(送受信機)として、第7の構成例を示す図である。 FIG. 28 is a diagram showing a seventh configuration example as a wireless device pair (transmitter/receiver) used in the wireless communication system according to the fourth embodiment.
 図27に示す第6の構成例と異なる点は、強自己相関弱相互相関ビット列111および151の替わりに、可変強自己相関弱相互相関ビット列116および156を用いる点である。 The difference from the sixth configuration example shown in FIG. 27 is that instead of the strong autocorrelation weak cross-correlation bit strings 111 and 151, variable strong autocorrelation weak cross-correlation bit strings 116 and 156 are used.
 例えば、可変強自己相関弱相互相関ビット列116は、中央演算ユニット109により互いに異なる強自己相関弱相互相関ビット列を生成することができる。この可変強自己相関弱相互相関ビット列116の各値116-iは、中央演算ユニット(CPU)109により変更可能であるから、可変強自己相関弱相互相関ビット列116の総数M個のうち1個を選択して、残りのM-1個の可変強自己相関弱相互相関ビット列116には信号を送らない。その上で、受信乗算器113-iおよび133-iの入力電力をゼロとし、選択された可変強自己相関弱相互相関ビット列116の中の一つに対して、偏波回転周期をM分割したタイミングの内、L<MなるL個のタイミングを選択して、該L個のタイミングにのみ選択された可変強自己相関弱相互相関ビット列116の中の一つにのみ情報信号を送る。 For example, the variable strong autocorrelation weak cross-correlation bit string 116 can generate mutually different strong autocorrelation weak cross-correlation bit strings by the central processing unit 109 . Since each value 116-i of this variable strong autocorrelation weak cross-correlation bit string 116 can be changed by the central processing unit (CPU) 109, one of the total number M of variable strong autocorrelation weak cross-correlation bit strings 116 is Selectively, the remaining M−1 variable strong autocorrelation weak cross-correlation bitstreams 116 are not signaled. Then, the input power of the receiving multipliers 113-i and 133-i is set to zero, and the polarization rotation period is divided by M for one of the selected variable strong autocorrelation weak cross-correlation bit strings 116. Among the timings, L timings where L<M are selected, and an information signal is sent to only one of the variable strong autocorrelation weak cross-correlation bit strings 116 selected only at the L timings.
 これにより、実施例3で示す偏波角ホッピングが実現する。実施例3に関する先の説明のように、送信機から放射される電磁波の偏波は、偏波回転の方向に対して一様に分布することが望ましい。例えば、M個の偏波角度に対してL個の偏波角度は等間隔に選択するかランダムに選択する。 This realizes the polarization angle hopping shown in the third embodiment. As described above with respect to the third embodiment, it is desirable that the polarization of the electromagnetic waves emitted from the transmitter be uniformly distributed in the direction of polarization rotation. For example, for M polarization angles, L polarization angles are selected at equal intervals or randomly.
 以上、第7の構成例によれば、中央演算ユニット(CPU)109による複数の可変強自己相関弱相互相関ビット列116および156の選択により、実施例3で示した、妨害波による干渉などに強くより安定な通信状態を確保することができる効果に加えて、親局が同じ偏波シフトを有する複数の子局と同時に送受信が可能となるので、図27に示す無線機対の第1の構成例と比べて、無線通信システムの通信容量の増加およびスループットの向上を図ることができる。 As described above, according to the seventh configuration example, the central processing unit (CPU) 109 selects a plurality of variable strong autocorrelation and weak cross-correlation bit strings 116 and 156 to make it highly resistant to interference caused by interfering waves shown in the third embodiment. In addition to the effect of ensuring a more stable communication state, the master station can transmit and receive simultaneously with a plurality of slave stations having the same polarization shift. Compared to the example, it is possible to increase the communication capacity and improve the throughput of the wireless communication system.
 以上、本発明の各実施例について説明したが、本発明は、上述した各実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。 Although the respective embodiments of the present invention have been described above, the present invention is not limited to the above-described respective embodiments, and various modifications are possible without departing from the gist of the present invention.
10…親局、11…サービスエリア、20…子局、31,33…遮蔽物、32…反射板、101…搬送波周波数発生回路、102…偏波回転周波数発生回路、103,104…アンテナ、105,106…高周波ミキサ、109…CPU、111,151…強自己相関弱相互相関ビット列、112,132…受信遅延器、113,133…受信乗算器、114…受信総和回路、115,125,126,135…可変遅延回路、116,156…可変強自己相関弱相互相関ビット列、119…暗号発生回路、121,141…受信ミキサ、122,123,124…アナログデジタル変換器、127…比較回路、128…閾値記憶回路、129…IDメモリ、131…受信合成回路、136,168…偏波回転周波数帯90°移相器、152…送信遅延器、153,163…送信乗算器、154,164…送信総和回路、157,159…送信乗算回路、158…デジタルデータ発生機、165,166…送受信切替スイッチ Reference Signs List 10 Master station 11 Service area 20 Slave station 31, 33 Shield 32 Reflector 101 Carrier frequency generation circuit 102 Polarization rotation frequency generation circuit 103, 104 Antenna 105 , 106... High-frequency mixer 109... CPU 111, 151... Strong autocorrelation weak cross-correlation bit string 112, 132... Receiving delay unit 113, 133... Receiving multiplier 114... Receiving summation circuit 115, 125, 126, 135... variable delay circuit 116, 156... variable strong autocorrelation weak cross-correlation bit string 119... encryption generator circuit 121, 141... receiving mixer 122, 123, 124... analog-to-digital converter 127... comparison circuit 128... Threshold storage circuit 129 ID memory 131 reception synthesizing circuit 136, 168 polarization rotation frequency band 90° phase shifter 152 transmission delayer 153, 163 transmission multiplier 154, 164 transmission total Circuits 157, 159... Transmission multiplier circuit 158... Digital data generator 165, 166... Transmission/reception selector switch

Claims (15)

  1.  第1の無線機および第2の無線機が物理鍵を用いて情報を秘匿して通信を行う無線通信システムであって、
     前記第1の無線機および前記第2の無線機は、動的変化する伝搬特性の時系列変化を共有して通信を行い、
     前記第1の無線機は、自らが前記伝搬特性に基づいた求めた第1の離散値の所定範囲の最下位ビットおよび当該第1の離散値における前記最下位ビットに続く下位ビットを前記第2の無線機に送信し、
     前記第2の無線機は、自らが前記伝搬特性に基づいて求めた第2の離散値と前記第1の無線機から受信した前記最下位ビットおよび前記下位ビットとから前記第1の無線機における共通鍵を推定し、
     前記共通鍵が前記物理鍵となる
    ことを特徴とする無線通信システム。
    A wireless communication system in which a first wireless device and a second wireless device communicate with confidential information using a physical key,
    The first radio and the second radio communicate by sharing time-series changes in dynamically changing propagation characteristics,
    The first wireless device converts the least significant bit of the predetermined range of the first discrete value obtained by itself based on the propagation characteristics and the least significant bit of the first discrete value to the second to the radio of
    The second radio uses a second discrete value obtained by itself based on the propagation characteristics and the least significant bit and the least significant bit received from the first radio to deduce a common key,
    A wireless communication system, wherein the common key is the physical key.
  2.  請求項1に記載の無線通信システムであって、
     前記伝搬特性が、前記第1および前記第2の無線機間の伝搬時間である
    ことを特徴とする無線通信システム。
    A wireless communication system according to claim 1,
    A wireless communication system, wherein the propagation characteristic is a propagation time between the first and second radios.
  3.  請求項1に記載の無線通信システムであって、
     前記伝搬特性が、前記第1および前記第2の無線機間の伝搬損失または信号強度である
    ことを特徴とする無線通信システム。 
    A wireless communication system according to claim 1,
    A wireless communication system, wherein the propagation characteristic is propagation loss or signal strength between the first and second radios.
  4.  請求項1に記載の無線通信システムであって、
     前記第1の無線機および前記第2の無線機は、回転偏波通信機能を用いて通信を行い、
     前記伝搬特性が、回転偏波の偏波角である
    ことを特徴とする無線通信システム。
    A wireless communication system according to claim 1,
    The first radio and the second radio communicate using a rotationally polarized wave communication function,
    A wireless communication system, wherein the propagation characteristic is a polarization angle of a rotationally polarized wave.
  5.  請求項1に記載の無線通信システムであって、
     前記第1の無線機および前記第2の無線機は、相互に回転偏波通信機能を有するか否かの情報を交換し、
     前記第1の無線機および前記第2の無線機が共に前記回転偏波通信機能を有する場合には、前記伝搬特性が回転偏波の偏波角である
    ことを特徴とする無線通信システム。
    A wireless communication system according to claim 1,
    the first radio and the second radio mutually exchange information as to whether or not they have a rotationally polarized wave communication function;
    A radio communication system according to claim 1, wherein said propagation characteristic is a polarization angle of a rotationally polarized wave when both said first radio device and said second radio device have said rotationally polarized wave communication function.
  6.  請求項4または5に記載の無線通信システムであって、
     前記通信に使用する周波数および前記偏波角の角度の少なくともいずれかを時系列的に変える
    ことを特徴とする無線通信システム。
    The wireless communication system according to claim 4 or 5,
    A radio communication system characterized in that at least one of the frequency used for the communication and the angle of the polarization angle is changed in time series.
  7.  請求項6に記載の無線通信システムであって、
     前記周波数および前記偏波角の角度の少なくともいずれかが妨害波による干渉を受ける場合に、当該干渉を受ける周波数および偏波角の角度の少なくともいずれかを除外する
    ことを特徴とする無線通信システム。
    A wireless communication system according to claim 6,
    A radio communication system characterized in that, when at least one of the frequency and the polarization angle is subject to interference by an interfering wave, at least one of the frequency and the polarization angle subject to the interference is excluded.
  8.  請求項4に記載の無線通信システムであって、
     前記第1の無線機および前記第2の無線機は、強自己相関弱相互相関ビット列を共有すると共に、前記回転偏波に当該強自己相関弱相互相関ビット列を重畳して送信し、当該送信による受信信号と前記強自己相関弱相互相関ビット列との相関が最大となる時間差を、前記回転偏波の前記時系列変化として共有する
    ことを特徴とする無線通信システム。
    A wireless communication system according to claim 4,
    The first radio and the second radio share a strong autocorrelation weak cross-correlation bit string and transmit the strong autocorrelation weak cross-correlation bit string superimposed on the rotationally polarized wave, A radio communication system, wherein a time difference at which correlation between a received signal and said strong autocorrelation and weak cross-correlation bit sequence is maximized is shared as said time series change of said rotationally polarized wave.
  9.  請求項8に記載の無線通信システムであって、
     前記回転偏波に前記強自己相関弱相互相関ビット列を重畳するために、前記回転偏波の偏波角を前記強自己相関弱相互相関ビット列により変調する
    ことを特徴とする無線通信システム。
    A wireless communication system according to claim 8,
    A radio communication system characterized by modulating a polarization angle of said rotationally polarized wave with said strong autocorrelation weak cross-correlation bit string in order to superimpose said strong autocorrelation weak cross-correlation bit string on said rotationally polarized wave.
  10.  請求項8または9に記載の無線通信システムであって、
     前記強自己相関弱相互相関ビット列は、PN符号やM系列の信号である
    ことを特徴とする無線通信システム。
    The wireless communication system according to claim 8 or 9,
    A wireless communication system, wherein the strong autocorrelation weak cross-correlation bit string is a PN code or an M-sequence signal.
  11.  請求項1から10のいずれか1項に記載の無線通信システムであって、
     前記第1の無線機および前記第2の無線機それぞれは、複数の無線機の内の1台である
    ことを特徴とする無線通信システム。
    A wireless communication system according to any one of claims 1 to 10,
    A wireless communication system, wherein each of the first wireless device and the second wireless device is one of a plurality of wireless devices.
  12.  第1の無線機および第2の無線機が物理鍵を用いて情報を秘匿して通信を行う無線通信方法であって、
     前記第1の無線機および前記第2の無線機は、動的変化する伝搬特性の時系列変化を共有して通信を行い、
     前記第1の無線機は、自らが前記伝搬特性に基づいて第1の離散値を求め、当該第1の離散値の所定範囲の最下位ビットおよび当該第1の離散値における前記最下位ビットに続く下位ビットを前記第2の無線機に送信し、
     前記第2の無線機は、自らが前記伝搬特性に基づいて第2の離散値を求め、前記第1の無線機から受信した前記最下位ビットおよび前記下位ビットと前記第2の離散値とから前記第1の無線機における共通鍵を推定し、
     前記共通鍵を前記物理鍵とする
    ことを特徴とする無線通信方法。
    A wireless communication method in which a first wireless device and a second wireless device communicate with confidential information using a physical key,
    The first radio and the second radio communicate by sharing time-series changes in dynamically changing propagation characteristics,
    The first radio obtains a first discrete value by itself based on the propagation characteristics, and converts the least significant bit in a predetermined range of the first discrete value and the least significant bit in the first discrete value transmitting the following lower bits to the second radio;
    The second radio device itself obtains a second discrete value based on the propagation characteristic, and from the least significant bit and the least significant bit received from the first radio device and the second discrete value estimating a common key in the first radio;
    A wireless communication method, wherein the common key is the physical key.
  13.  請求項12に記載の無線通信方法であって、
     前記伝搬特性が、前記第1および前記第2の無線機間の伝搬時間である
    ことを特徴とする無線通信方法。
    A wireless communication method according to claim 12,
    A radio communication method, wherein the propagation characteristic is a propagation time between the first and second radios.
  14.  請求項12に記載の無線通信方法であって、
     前記伝搬特性が、前記第1および前記第2の無線機間の伝搬損失または信号強度である
    ことを特徴とする無線通信方法。
    A wireless communication method according to claim 12,
    A radio communication method, wherein the propagation characteristic is propagation loss or signal strength between the first and second radios.
  15.  請求項12に記載の無線通信方法であって、
     前記第1の無線機および前記第2の無線機は、回転偏波通信機能を用いて通信を行い、
     前記伝搬特性が、回転偏波の偏波角である
    ことを特徴とする無線通信方法。
    A wireless communication method according to claim 12,
    The first radio and the second radio communicate using a rotationally polarized wave communication function,
    A wireless communication method, wherein the propagation characteristic is a polarization angle of a rotationally polarized wave.
PCT/JP2022/020511 2021-09-10 2022-05-17 Wireless communication system and wireless communication method WO2023037661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-147469 2021-09-10
JP2021147469A JP2023040480A (en) 2021-09-10 2021-09-10 Wireless communication system and wireless communication method

Publications (1)

Publication Number Publication Date
WO2023037661A1 true WO2023037661A1 (en) 2023-03-16

Family

ID=85506307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020511 WO2023037661A1 (en) 2021-09-10 2022-05-17 Wireless communication system and wireless communication method

Country Status (2)

Country Link
JP (1) JP2023040480A (en)
WO (1) WO2023037661A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199263A (en) * 2007-02-13 2008-08-28 Doshisha Secret key generation method in radio communication and radio communication device
JP2021040258A (en) * 2019-09-04 2021-03-11 株式会社日立製作所 Wireless system and wireless communication method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199263A (en) * 2007-02-13 2008-08-28 Doshisha Secret key generation method in radio communication and radio communication device
JP2021040258A (en) * 2019-09-04 2021-03-11 株式会社日立製作所 Wireless system and wireless communication method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HASHIMOTO, TOORU ET AL.: "Security Evaluation of Wireless Secret Key Generation System Using ESPAR Antenna", IPSJ SYMPOSIUM SERIES, IPSJ, JP, vol. 2006, 25 October 2006 (2006-10-25) - 1 December 2006 (2006-12-01), JP , pages 669 - 672, XP009544445, ISSN: 1344-0640 *
TATSUYA MATSUMOTO, SHUICHI SASAOKA, MASATO IWAI : "Secret Key Agreement Scheme Using Random Number Transmission over a Public Channel and Partial Sequence Selection Based on Radio Propagation Characteristics", IEICE TRANSACTIONS ON COMMUNICATIONS, vol. J99-B, no. 9, 1 September 2016 (2016-09-01), pages 665 - 674, XP009544581, DOI: 10.14923/transcomj.2016APP0017 *

Also Published As

Publication number Publication date
JP2023040480A (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US7499548B2 (en) Terminal authentication in a wireless network
AU707271B2 (en) Establishment of cryptographic keys in radio networks
JP2007506291A (en) Polarization state technology for wireless communication
EP1233547A1 (en) Data transmitting apparatus, radio communication system and radio communication method
US8358613B1 (en) Transmitter-directed security for wireless-communications
JP5986323B2 (en) Highly secure wireless communication system
AU702129B2 (en) Apparatus and method for generating pseudorandom quantities based upon radio channel characteristics
CN101253654A (en) Method and system for combined polarimetric and coherent processing for a wireless system
Guo et al. Testbed for cooperative jamming cancellation in physical layer security
JP6228108B2 (en) Wireless communication system
CN112104582B (en) I/Q domain modulation method, double domain modulation method and multiple access communication method
US20220329344A1 (en) Communication devices and methods for secure communication
CN104040981A (en) Carrier frequency offset compensation in beamforming systems
Yang et al. Outage performance of cognitive radio networks with a coverage-limited RIS for interference elimination
JP2011024211A (en) Method and device for receiving signal
WO2021120027A1 (en) Message signal broadcasting method and device employing phase discontinuity r-csk modulation
WO2023037661A1 (en) Wireless communication system and wireless communication method
US20200145265A1 (en) Device, Method, And System For Obscuring A Transmitted Radio Frequency Signal Using Polarization Modulation To Avoid Interception
JP2004187197A (en) Radio communication system, radio communication method and radio station
US20180152258A1 (en) Wireless communication system, shielded yard wireless communication system, and wireless communication device
JP2008199263A (en) Secret key generation method in radio communication and radio communication device
JP2021040258A (en) Wireless system and wireless communication method
US10749273B2 (en) Wireless communication system and wireless surveillance control system
US10148338B1 (en) Wireless communication system
Ranstrom et al. Physical Layer Security using Chaotic Antenna Arrays in Point-to-Point Wireless Communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22865924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22865924

Country of ref document: EP

Kind code of ref document: A1