WO2023037620A1 - Magnesium-tolerant plant, method for producing magnesium-tolerant plant, method for cultivating magnesium-tolerant plant, and gene - Google Patents

Magnesium-tolerant plant, method for producing magnesium-tolerant plant, method for cultivating magnesium-tolerant plant, and gene Download PDF

Info

Publication number
WO2023037620A1
WO2023037620A1 PCT/JP2022/012317 JP2022012317W WO2023037620A1 WO 2023037620 A1 WO2023037620 A1 WO 2023037620A1 JP 2022012317 W JP2022012317 W JP 2022012317W WO 2023037620 A1 WO2023037620 A1 WO 2023037620A1
Authority
WO
WIPO (PCT)
Prior art keywords
mtip1
protein
amino acid
acid sequence
magnesium
Prior art date
Application number
PCT/JP2022/012317
Other languages
French (fr)
Japanese (ja)
Inventor
均 尾之内
憲哉 林
篤 海藤
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Publication of WO2023037620A1 publication Critical patent/WO2023037620A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • the present invention relates to magnesium-tolerant plants, methods for producing magnesium-tolerant plants, methods for cultivating magnesium-tolerant plants, and genes.
  • This application claims priority based on Japanese Patent Application No. 2021-147788 filed in Japan on September 10, 2021, the content of which is incorporated herein.
  • Non-Patent Document 1 a method has already been developed for producing plants showing resistance to high concentrations of Na + by genetic engineering techniques.
  • Mg 2+ it has been reported that a quadruple mutant lacking four DELLA protein genes in Arabidopsis thaliana exhibits resistance to high concentrations of Mg 2+ (Non-Patent Document 2).
  • Non-Patent Document 1 since the DELLA protein shown in Non-Patent Document 1 is involved in the response to the plant hormone gibberellin, introduction of mutations into the DELLA protein gene has undesirable effects on crops, such as plant elongation and early flowering. Therefore, it is desired to develop a method for imparting resistance to high-concentration Mg 2+ by techniques other than the introduction of mutations into the DELLA protein gene.
  • the present invention was made to solve the above problems, and an object of the present invention is to provide a magnesium-tolerant plant. Another object of the present invention is to provide a method for producing a magnesium-tolerant plant. Another object of the present invention is to provide a method for cultivating the magnesium-tolerant plant. Another object of the present invention is to provide a gene capable of improving the magnesium tolerance of plants.
  • the present inventors found that the magnesium tolerance of plants can be improved by increasing the expression level of the MTIP1 (Mg transporter-interacting protein 1) protein. I have perfected my invention. That is, the present invention has the following aspects.
  • the MTIP1 protein is a protein selected from the group consisting of the following (A) to (C).
  • a protein that contributes to the improvement of magnesium tolerance in plants through enhanced expression or function C having an amino acid sequence with a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function
  • a method for producing a magnesium-tolerant plant which comprises enhancing the expression or function of MTIP1 protein in the plant.
  • MTIP1 protein is a protein selected from the group consisting of (A) to (C) below.
  • A a protein having the amino acid sequence represented by SEQ ID NO: 1;
  • B having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1;
  • a protein that contributes to the improvement of magnesium tolerance in plants through enhanced expression or function (C) having an amino acid sequence with a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function (9)
  • a method for cultivating a magnesium-tolerant plant which comprises cultivating the plant according to any one of (1) to (6) above in a high-concentration magnesium environment.
  • the uORF of the MTIP1 gene encodes a peptide selected from the group consisting of the following (D) to (F), and disruption of the uORF causes SEQ ID NO: All or part of the deletion, substitution, insertion, addition, or combination thereof in the region corresponding to the amino acid sequence represented by any one of 41 to 67, loss of the ability to suppress translation of the MTIP1 protein, or The gene according to (14) above, which is suppressed.
  • magnesium-tolerant plants can be provided. Moreover, according to the present invention, a method for producing a magnesium-tolerant plant can be provided. Moreover, according to this invention, the cultivation method of the said magnesium tolerance plant can be provided. Further, according to the present invention, genes capable of improving magnesium tolerance in plants can be provided.
  • FIG. 1 is a schematic diagram showing an example of the structure of MTIP1 mRNA containing uORF and mORF, and a diagram showing the results of comparison of amino acid sequences translated from uORF among plants.
  • FIG. 2 is a schematic diagram showing an example of a mechanism for maintaining homeostasis of Mg 2+ concentration in cells by uORF-mediated MTIP1 expression control.
  • FIG. 2 is a diagram explaining mutation sites introduced into the uORF of the MTIP1 gene in the mutants obtained in Examples.
  • FIG. 10 is a graph showing the effect of promoting mORF translation by mutations introduced into the uORF of the MTIP1 gene.
  • FIG. FIG. 10 is an image showing the results of improving plant tolerance to high concentrations of Mg 2+ by increasing the expression level of MTIP1 protein.
  • the plant of the embodiment is a magnesium-tolerant plant in which MTIP1 protein expression or function is enhanced.
  • the enhanced expression of MTIP1 protein means that the expression level of MTIP1 protein is increased compared to the expression level of MTIP1 protein in the control plant.
  • the expression level of the MTIP1 protein can be confirmed, for example, by using an antibody against the MTIP1 protein or expression analysis using a reporter protein such as luciferase.
  • the enhancement of the function of the MTIP1 protein means that the function of the MTIP1 protein is improved as compared with the function of the MTIP1 protein of the control plant.
  • the MTIP1 protein causes Mg 2+ stored in the vacuoles to enter the cytoplasm through binding with the magnesium transporter MRS2-1 (AGI code: At1g16010), which is mainly present in the vacuoles, and promotes plant cell growth. It is presumed to increase the Mg 2+ concentration in the cytoplasm.
  • MTIP1 proteins with improved functions include, for example, MTIP1 proteins with improved binding ability to the above-described magnesium transporters compared to wild-type plant MTIP1 proteins.
  • Examples of the control plant that serves as a control for the enhancement of the plant of the embodiment include a wild-type plant of the plant.
  • Examples of the control plant for the enhancement in the event of artificial genetic modification described later include plants that have not undergone the above artificial genetic modification.
  • magnesium in magnesium tolerance is a concept including magnesium ion (Mg 2+ ) and magnesium salt.
  • magnesium salts include magnesium sulfate, magnesium chloride, magnesium oxide, magnesium hydroxide, and hydrates thereof.
  • Magnesium is a component of chlorophyll, so normally the right amount of magnesium is available for plant growth.
  • the magnesium concentration in the growth environment such as soil is excessive, dehydration or water absorption inhibition due to increased osmotic pressure in the extraroot region, growth inhibition due to excessive Mg 2+ uptake into plant cells, and excessive magnesium It is known that symptoms of disease appear.
  • Magnesium tolerant plants of embodiments have improved tolerance to magnesium due to the presence of excess magnesium in the growing environment compared to control plants of said plants. Therefore, the magnesium-tolerant plant of the embodiment can grow better than the control plant, even in a high-concentration magnesium environment.
  • improving the magnesium tolerance of plants includes strengthening and improving magnesium tolerance, and imparting magnesium tolerance to plants that do not have magnesium tolerance.
  • the fact that the magnesium tolerance of the plant is improved is, for example, by growing the plant A and the control plant of the plant A, and growing the plant A in an environment with a higher concentration of magnesium than the control plant. is also good, it can be evaluated that the magnesium tolerance of plant A is improved.
  • a magnesium-rich environment includes an amount of magnesium at a concentration that induces growth inhibition or hypermagnesium in control plants of the magnesium-tolerant plants of the embodiments.
  • the environment may be, for example, a root zone environment such as soil or a cultivation solution, or, in the case of cultured cells, a cell culture environment such as a medium.
  • a concentration varies depending on the target plant, considering the cultivation example of Arabidopsis thaliana on an agar medium (solid medium) shown in the examples below, for example, when the Mg 2+ molar concentration in the medium is 5 mM or more can be exemplified, and may be 5 to 100 mM, 10 to 80 mM, or 15 to 50 mM.
  • the concentration of magnesium corresponding to the Mg 2+ molar concentration in the medium can be exemplified.
  • a high concentration of magnesium in soil can be exemplified by, for example, a case where the content of exchangeable Mg 2+ in soil is 50 mg/100 g or more in terms of MgO, and may be 50 to 200 mg/100 g, or 80 to 150 mg/ It may be 100g.
  • the expression or function of the MTIP1 protein in the plant of the embodiment is preferably artificially enhanced, preferably enhanced by genetic modification, and preferably enhanced by genetic modification of the plant genome.
  • Genetic modification here refers to modifying a sequence that affects the expression or function of MTIP1 protein. It is preferable that the plant according to the embodiment has a modified genome sequence so that the expression or function of the MTIP1 protein is enhanced.
  • targets for genetic modification include the above-mentioned main ORF (also referred to as the main ORF or mORF) of the MTIP1 gene that encodes the MTIP1 protein, as well as the expression regulatory region of the MTIP1 gene.
  • main ORF also referred to as the main ORF or mORF
  • the modification may be a modification to the sequence of the endogenous MTIP1 gene and/or its expression regulatory region that the plant originally has, and the sequence-modified MTIP1 gene and/or its expression regulatory region is newly added. may have been introduced.
  • Sequence modifications include, for example, deletion, substitution, insertion, addition, and combinations thereof of part or all of the nucleotide sequence in the mORF of the MTIP1 gene and/or the expression regulatory region of the MTIP1 gene.
  • an MTIP1 protein with enhanced function can be obtained by modifying the mORF sequence of the MTIP1 gene.
  • sequence of the expression control region of the MTIP1 gene the transcription or translation of mRNA is enhanced, and the expression level of the MTIP1 protein can be enhanced.
  • the plant of the embodiment may have the modified region as a heterozygote or as a homozygote, as long as the effects of the present invention are exhibited.
  • MTIP1 protein The amino acid sequence represented by SEQ ID NO: 1 is the amino acid sequence of Arabidopsis thaliana MTIP1 (AGI code: At1g70780).
  • the MTIP1 protein in the present specification is not limited to the above-mentioned Arabidopsis thaliana MTIP1 protein, and broadly encompasses proteins having functions equivalent to those of the Arabidopsis thaliana MTIP1 protein.
  • the MTIP1 protein may be, for example, an Arabidopsis thaliana MTIP1 homolog or ortholog.
  • a person skilled in the art can obtain a protein having a function equivalent to that of Arabidopsis thaliana MTIP1 from the sequence information of Arabidopsis thaliana MTIP1. It has been confirmed that the amino acid sequence of the MTIP1 gene is widely conserved from angiosperms to pteridophytes.
  • MTIP1 proteins include proteins selected from the group consisting of (A) to (C) below.
  • A a protein having the amino acid sequence represented by SEQ ID NO: 1;
  • B having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1;
  • a protein that contributes to the improvement of magnesium tolerance in plants through expression or enhanced function (C) having an amino acid sequence with a sequence identity of 30% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function A protein that contributes to the improvement of magnesium tolerance in plants by
  • the Arabidopsis thaliana MTIP1 protein is known to have the ability to bind to magnesium transporters. Therefore, in the present specification, "a protein that contributes to the improvement of magnesium tolerance in plants by enhancing its expression or function" may be rephrased as "a protein that has the ability to bind to a magnesium transporter”.
  • examples of MTIP1 proteins include proteins selected from the group consisting of (A1) to (C1) below.
  • A1 a protein having the amino acid sequence represented by SEQ ID NO: 1;
  • B1 having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1;
  • a protein having the ability to bind to a magnesium transporter (C1)
  • magnesium transporter examples include MRS2-1 of Arabidopsis thaliana, which is a magnesium transporter that exists in vacuoles and is found to interact with the MTIP1 protein, and a magnesium transporter with an equivalent function.
  • the MTIP1 protein has a highly conserved region (14th to 100th amino acid sequences of the amino acid sequence represented by SEQ ID NO: 1) among the MTIP1 proteins of various plant species.
  • MTIP1 proteins include proteins selected from the group consisting of (A2) to (C2) below.
  • A2) a protein having the amino acid sequence represented by SEQ ID NO: 1;
  • a protein (C2 ) The sequence identity with the 14th to 100th amino acid sequences of the amino acid sequence represented by SEQ ID NO: 1 is 50% or more, and the sequence identity with the amino acid sequence represented by SEQ ID NO: 1 is 30%
  • the number of amino acids that may be deleted, substituted or added to SEQ ID NO: 1 is preferably 1 to 100, and 1 to 90. preferably 1 to 80, preferably 1 to 70, preferably 1 to 60, preferably 1 to 50, preferably 1 to 40, preferably 1 to 30, preferably 1 to 20 , preferably 1 to 15, more preferably 1 to 10, even more preferably 1 to 5, and particularly preferably 1 to 3.
  • sequence identity of an amino acid sequence having a sequence identity of 50% or more with the 14th to 100th amino acid sequences of the amino acid sequence represented by SEQ ID NO: 1 preferably 60% to 100%, preferably 70% to 100%, preferably 80% to 100%, preferably 90% to 100%, preferably 95% to 100%, more preferably 98% % or more and 100% or less, more preferably 99% or more and 100% or less, can be exemplified.
  • the amino acid sequence having a sequence identity of 30% or more to the amino acid sequence represented by SEQ ID NO: 1 is , preferably 40% to 100%, preferably 50% to 100%, preferably 60% to 100%, preferably 70% to 100%, preferably 80% to 100%, preferably 90%
  • amino acid sequences having an identity of 95% or more and 100% or less, more preferably 98% or more and 100% or less, still more preferably 99% or more and 100% or less can be exemplified.
  • Amino acid sequence identity can be calculated using the BLASTP program provided by NCBI (National Center of Biotechnology Information).
  • the gene encoding the MTIP1 protein is a gene encoding any protein selected from the group consisting of (A) to (C), (A1) to (C1) and (A2) to (C2). and preferably a gene encoding any protein selected from the group consisting of (A) to (C).
  • Examples of the gene encoding the protein (A) include a polynucleotide having the nucleotide sequence represented by SEQ ID NO:2.
  • the nucleotide sequence represented by SEQ ID NO: 2 is the nucleotide sequence of the mORF coding region that encodes the Arabidopsis thaliana MTIP1 protein.
  • the expression regulatory region of the MTIP1 gene is not particularly limited as long as it has the function of regulating the expression level of the MTIP1 gene product. Examples include promoters, silencers, enhancers, and the like, and the upstream ORF of the MTIP1 gene described below is preferred.
  • the MTIP1 gene has an upstream ORF (also referred to as an upstream ORF or uORF) conserved among the MTIP1 genes of each plant on the 5' untranslated region side of the main ORF (major ORF) encoding the above MTIP1 protein. ing.
  • upstream ORF also referred to as an upstream ORF or uORF
  • Fig. 1 is a schematic diagram showing an example of the structure of MTIP1 mRNA containing uORF and mORF, and a diagram showing the results of comparing the amino acid sequences (SEQ ID NOS: 3 to 40) translated from uORF between plants.
  • the inventors have clarified that a peptide encoded by the uORF of the MTIP1 gene is involved in the translational regulation of the MTIP1 protein depending on the intracellular Mg 2+ concentration. They also found that disruption of the uORF of the MTIP1 gene facilitates the enhancement of the expression of the MTIP1 protein even in a high-concentration magnesium environment, and that the magnesium tolerance of plants can be improved.
  • Examples of magnesium-tolerant plants of the embodiments include plants in which the MTIP1 protein expression is enhanced to improve magnesium tolerance and the MTIP1 protein expression is enhanced by disruption of the uORF of the MTIP1 gene.
  • a magnesium-tolerant plant in which the uORF of the MTIP1 gene is disrupted can be exemplified as the magnesium-tolerant plant of the embodiment.
  • the plant species whose uORF amino acid sequences are shown in Fig. 1 are representative species of each taxonomic group (Order) in seed plants.
  • the inventors have revealed that the conserved region and initiation codon of the uORF of the MTIP1 gene are involved in the ability to suppress translation of the mORF of the MTIP1 gene (previous report: Hayashi et al. 2017 Nucleic Acids Res. 45:8844 -8858). As shown in Fig.
  • the peptide encoded by the uORF of the MTIP1 gene according to the embodiment has the ability to suppress the translation of MTIP1 protein in response to Mg 2+ .
  • Examples of the uORF of the MTIP1 gene include polynucleotides encoding peptides selected from the group consisting of (D) to (F) below.
  • E in the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67
  • one or more amino acids A peptide having a deleted, substituted, or added amino acid sequence and having the ability to inhibit translation of the MTIP1 protein
  • F having a sequence identity of 70 with the amino acid sequence represented by any one of SEQ ID NOS: 41 to 67 % or more and having the ability to suppress the translation of the MTIP1 protein
  • the uORF of the MTIP1 gene is a polynucleotide encoding a peptide selected from the group consisting of (D1) to (F1) below.
  • D1 a peptide having the amino acid sequence represented by SEQ ID NO: 41
  • E1 having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 41, Peptide having the ability to suppress the translation of the MTIP1 protein
  • F1 A peptide having an amino acid sequence having a sequence identity of 70% or more with the amino acid sequence represented by SEQ ID NO: 41 and having the ability to suppress the translation of the MTIP1 protein
  • the number of amino acids that may be deleted, substituted, or added is preferably 1 to 6, preferably 1 to 5, 1 to 3 is more preferred, and 1 or 2 is even more preferred.
  • the amino acid sequence having a sequence identity of 70% or more is preferably 75% or more to the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67. % or less, preferably 80% or more and 100% or less, preferably 85% or more and 100% or less, more preferably 90% or more and 100% or less, and still more preferably 93% or more and 100% or less .
  • the conserved region is preferably on the C-terminal side.
  • the terminal amino acid of the amino acid sequence (conserved region) represented by any one of SEQ ID NOs: 41 to 67 is 1 from the C-terminal side of the peptide encoded by the uORF of the MTIP1 gene. It is preferably in the 1st to 20th positions, more preferably in the 1st to 15th positions, and further preferably in the 1st to 10th positions.
  • it preferably has terminal amino acids of the amino acid sequence (conserved region) represented by any one of SEQ ID NOs: 41 to 67 at positions 1 to 20 from the C-terminal side, and A polynucleotide encoding a peptide having a total length of preferably 20 to 100 amino acids, more preferably 25 to 90 amino acids, and even more preferably 30 to 80 amino acids can be exemplified.
  • the MTIP1 gene is a gene encoding any protein selected from the group consisting of (A) to (C), and the uORF is any one of SEQ ID NOs: 41 to 67.
  • the terminal amino acid of the amino acid sequence (conserved region) represented by is 1 to 20 from the C-terminal side, and preferably has a total length of 20 to 100 amino acids, more preferably a total length of 25 to 90 amino acids, More preferably, a polynucleotide encoding a peptide with a total length of 30 to 80 amino acids can be exemplified.
  • An example of the uORF of the MTIP1 gene is a polynucleotide encoding a peptide consisting of an amino acid sequence represented by any one of SEQ ID NOs: 3 to 40 shown in FIG.
  • the uORF encoding the peptide having the amino acid sequence represented by SEQ ID NO: 3, which has the amino acid sequence represented by SEQ ID NO: 41 in (D) above, is a polynucleotide having the nucleotide sequence represented by SEQ ID NO: 68. mentioned.
  • the nucleotide sequence represented by SEQ ID NO: 68 is the uORF nucleotide sequence of MTIP1 of Arabidopsis thaliana.
  • Disruption of the uORF includes deletion, substitution, insertion, addition, or a combination of all or part of the base sequence of the uORF of the MTIP1 gene, resulting in loss or suppression of the ability to suppress translation of the MTIP1 protein. can be exemplified. Disruption of the uORF is sufficient as long as the ability to suppress translation of the MTIP1 protein is lost or suppressed.
  • disruption of the uORF includes: A state in which the ability to suppress translation of the MTIP1 protein is lost or suppressed by deletion, substitution, insertion, addition, or a combination thereof of all or part of the nucleotide sequence can be exemplified.
  • the ability to suppress the translation of the MTIP1 protein can be lost or suppressed.
  • insertion or deletion of another sequence into or from the uORF sequence of the MTIP1 gene causes a frameshift, which can result in loss or suppression of the ability to suppress translation of the MTIP1 protein.
  • the addition or substitution of another sequence to the uORF sequence of the MTIP1 gene causes a structural change in the gene product, which can result in the loss or suppression of the ability to suppress translation of the MTIP1 protein.
  • conserveed regions corresponding to the amino acid sequences represented by SEQ ID NOs: 41 to 67 can be easily identified by a person skilled in the art by aligning the amino acid sequences of the uORFs of MTIP1 mRNA of each plant, as illustrated in FIG. Identifiable.
  • the magnesium-tolerant plant of the embodiment may have improved magnesium tolerance by disruption of the uORF, the uORF in the magnesium-tolerant plant can be confirmed, for example, in a control plant of the plant of the embodiment.
  • a polynucleotide having a uORF encoding any peptide selected from the group consisting of (D) to (F) and (D1) to (F1) as the MTIP1 gene encoding the MTIP1 protein more preferably Polynucleotides having a uORF encoding any peptide selected from the group consisting of (D1) to (F1) are exemplified.
  • the MTIP1 gene encoding the MTIP1 protein encodes any protein selected from the group consisting of (A) to (C), (A1) to (C1) and (A2) to (C2); Examples of polynucleotides having a uORF encoding any peptide selected from the group consisting of (D) to (F) and (D1) to (F1) are shown below.
  • the MTIP1 protein is one in which the MTIP1 gene encoding the MTIP1 protein has a uORF encoding any peptide selected from the group consisting of (D) to (F) and (D1) to (F1). Illustrate.
  • the MTIP1 protein is any protein selected from the group consisting of (A) to (C), (A1) to (C1), and (A2) to (C2), and encodes the MTIP1 protein.
  • the MTIP1 gene has a uORF encoding any peptide selected from the group consisting of (D) to (F) and (D1) to (F1).
  • wild-type MTIP1 mRNA has a uORF upstream of the MTIP1 mORF.
  • short peptides of 33-70 amino acids are synthesized when the uORF is translated by the ribosome.
  • Mg 2+ concentration in the cytoplasm is high, it is thought that the ribosomes that synthesized themselves are stagnated in the uORF in response to Mg 2+ .
  • FIG. 2 is a schematic diagram showing an example of a mechanism for maintaining intracellular Mg 2+ concentration homeostasis by uORF-mediated MTIP1 expression control.
  • Mg 2+ concentration in the cytoplasm is low (Fig. 2, bottom)
  • ribosomes start scanning from the upstream of uORF, and ribosomes skip the uORF and resume translation at the mORF, resulting in translation of the mORF. is considered to be
  • Interaction of the translated MTIP1 protein with the Mg 2+ transporter is thought to result in the influx of Mg 2+ from the vacuole to the cytoplasm through the Mg 2+ transporter.
  • the Mg 2+ concentration in the cytoplasm is sufficient (Fig.
  • ribosomes are stagnant in the uORF, which suppresses the above-mentioned skipping and translation restart, and the mORF-encoded MTIP1 protein is suppressed. It is believed that translation is suppressed. In this way, it is thought that the uORF suppresses the translation of the MTIP1 protein and suppresses the influx of Mg 2+ from the vacuole to the cytoplasm via the Mg 2+ transporter.
  • the Mg 2+ concentration in the cytoplasm is likely to be further increased.
  • enhancement of homeostatic maintenance that keeps the Mg 2+ concentration in the cytoplasm constant contributes to the improvement of magnesium tolerance in plants. Being able to improve performance is an unexpected result that goes beyond normal assumptions.
  • the expression level of the wild-type MTIP1 gene is controlled by the uORF in a high-concentration magnesium environment. It is very useful as a technique for enhancing the expression of MTIP1 protein in . For example, it is considered that the expression or function of MTIP1 protein can be more effectively enhanced in a high-concentration magnesium environment, compared to the case of enhancing the transcription level of MTIP1 mRNA using an overexpression promoter.
  • the type of plant used in this embodiment is not particularly limited as long as the effects of the present invention can be obtained. Since the MTIP1 gene and its uORF peptide sequence are widely conserved among plant species, they are widely applicable to plants in general.
  • the plant of the present embodiment is preferably a seed plant, more preferably an angiosperm.
  • Plants of the present embodiment include, for example, grasses such as rice, wheat and corn; solanaceous plants such as eggplants, tomatoes, capsicums, potatoes and tobacco; cucurbitaceous plants such as cucumbers, melons and pumpkins; , soybeans, beans and other leguminous plants, Asteraceous plants such as chrysanthemum and lettuce, Chenopodiaceous plants such as spinach, Rosaceous plants such as strawberries and apples, Grape plants such as grapes, Rutaceous plants such as mandarin oranges, Arabidopsis thaliana , rape, cabbage, broccoli, cauliflower, Chinese cabbage, Japanese radish, and the like, and among the above examples, cruciferous plants belonging to the cruciferous family are preferred.
  • the term "plant” may be the entire plant body or a part thereof.
  • plants according to embodiments include seeds, plant cells, plant cultured cells, cell masses, callus, plant tissues, and organs.
  • next-generation plants (progeny) or clones of the magnesium-tolerant plants of the embodiments are also included in the magnesium-tolerant plants of the embodiments, as long as they have magnesium tolerance.
  • the plant of the present embodiment may have sodium tolerance to high concentrations of sodium (sodium salt or Na + ion) in addition to magnesium tolerance.
  • a high sodium concentration is a concentration of sodium that induces stunting or hypernatremia in control plants.
  • the sodium tolerance may be possessed by conventionally known sodium-tolerant plants such as those shown in Non-Patent Document 1, for example.
  • the main cause of salt damage caused by sea water is the high concentrations of Na + and Mg 2+ ions contained in sea water. can be suitably used for the cultivation of
  • a method for producing a magnesium-tolerant plant of the embodiment is a method including enhancing the expression or function of MTIP1 protein in the plant. Magnesium tolerance can be improved by enhancing the expression or function of the MTIP1 protein in the plant of interest. According to this production method, the magnesium-tolerant plant of the above embodiment can be produced.
  • a method for improving magnesium tolerance in plants which includes enhancing the expression or function of MTIP1 protein in plants.
  • the enhancement of MTIP1 protein expression means that the expression level of MTIP1 protein is increased as compared with the expression level of MTIP1 protein in the control plant.
  • the enhanced function of MTIP1 protein means that the function of MTIP1 protein is improved as compared with the function of MTIP1 protein in the control plant.
  • MTIP1 proteins examples include those exemplified in the magnesium-tolerant plants of the above embodiments.
  • the expression or function enhancement of MTIP1 protein in plants can be artificially enhanced by genetic engineering techniques. For example, it is preferable to enhance the expression or function of the MTIP1 protein by genetically modifying the target plant to improve magnesium tolerance.
  • the enhancement improves the magnesium tolerance of the plant by enhancing the expression of the MTIP1 protein, and disrupting the uORF of the MTIP1 gene of the plant to reduce the MTIP1 protein. It is preferable to increase the expression level of
  • Examples of uORFs and their destruction include those exemplified in the magnesium-tolerant plants of the above embodiments.
  • the method for producing a magnesium-tolerant plant of the embodiment can be exemplified by a method for producing a magnesium-tolerant plant comprising disrupting the uORF of the MTIP1 gene.
  • the method for producing a magnesium-tolerant plant of the embodiment includes: enhancing the expression or function of the MTIP1 protein in a plant; and evaluating the magnesium tolerance of the plant and selecting a magnesium-tolerant plant.
  • Magnesium tolerance can be evaluated by growing plants in a high-concentration magnesium environment and observing the growth state. If the growth is good, it can be evaluated as having magnesium tolerance.
  • the plant whose magnesium tolerance is improved is not particularly limited, but is preferably a seed plant, more preferably an angiosperm. Plants include those exemplified in the magnesium-tolerant plants of the above embodiments.
  • the plant species produced may be magnesium-tolerant as well as sodium-tolerant to high concentrations of sodium (sodium salts or Na + ions).
  • the sodium tolerance may be possessed by conventionally known sodium-tolerant plants such as those shown in Non-Patent Document 1, for example.
  • a plant with improved sodium tolerance and magnesium tolerance can be produced by further enhancing the expression or function of MTIP1 protein in an existing plant with improved sodium tolerance by genetic engineering techniques.
  • a plant with improved sodium tolerance and magnesium tolerance can be produced by crossing an existing plant with improved sodium tolerance and the magnesium-tolerant plant of the present embodiment.
  • a method for cultivating a magnesium-tolerant plant of the embodiment includes cultivating the magnesium-tolerant plant of the embodiment in a high-concentration magnesium environment.
  • a high concentration of magnesium is an amount of magnesium at a concentration that induces growth inhibition or hypermagnesium in control plants of magnesium-tolerant plants of interest.
  • Examples of high-concentration magnesium environments include media with a Mg 2+ molar concentration of 5 mM or more, which may be 5 to 100 mM, 10 to 80 mM, or 15 to 50 mM. There may be.
  • a high-concentration magnesium environment in soil can be exemplified by, for example, a case where the content of exchangeable Mg 2+ in soil is 50 mg / 100 g or more in terms of MgO, and may be 50 to 200 mg / 100 g. It may be 150mg/100g.
  • the plant can be cultivated satisfactorily with improved resistance to magnesium stress even in a high-concentration magnesium environment.
  • Wild-type MTIP1 mRNA has a uORF upstream of the mORF of MTIP1, but the gene of one embodiment of the present invention is an MTIP1 gene in which the uORF is disrupted, and the MTIP1 protein encoded by the MTIP1 gene is Provided is the MTIP1 gene, which is a protein selected from the group consisting of the following (A) to (C).
  • A a protein having the amino acid sequence represented by SEQ ID NO: 1;
  • B having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1;
  • a protein that contributes to the improvement of magnesium tolerance in plants through enhanced expression or function (C) having an amino acid sequence with a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function A protein that contributes to the improvement of magnesium tolerance in plants by
  • the uORF of the MTIP1 gene encodes a peptide selected from the group consisting of (D) to (F) below, and the disruption of the uORF is any one of SEQ ID NOS: 41 to 67
  • the ability to suppress translation of the MTIP1 protein is lost or suppressed by deletion, substitution, insertion, addition, or a combination thereof of all or part of the nucleotide sequence in the region corresponding to the amino acid sequence represented by Preferably.
  • a gene in the present embodiment may be a nucleic acid such as DNA or RNA, and includes polynucleotides on the genome, as well as polynucleotides, mRNA, cDNA, and isolated gene clones of gene products thereof.
  • the expression of MTIP1 protein is easily enhanced in plants, and the magnesium tolerance of plants can be improved.
  • a plant having or introduced with the gene of the embodiment has improved magnesium tolerance.
  • the oligonucleotide pair of sequences gR2for (SEQ ID NO: 69: 5′-ATTGCGTTCACGGGTCGAGGCCA-3′) and gR2rev (SEQ ID NO: 70: 5′-AAACTGGCCTCGACCCGTGAACG-3′) and gR3for (SEQ ID NO: 71: 5'-ATTGGATCCGAAAGCGAAAACAG-3') and gR3rev (SEQ ID NO: 72: 5'-AAACCTGTTTTCGCTTTCGGATC-3') were annealed to generate a genome-editing binary vector plasmid pKI1.1R (previous report: Tsutsui, H.
  • the T-DNA region of pKI1.1R contains an expression cassette that expresses gRNA, an expression cassette that expresses Cas9 protein in meristems, and an expression cassette that expresses red fluorescent protein RFP in seeds.
  • the prepared plasmid was introduced into the Agrobacterium C58C1RifR (pGV2260) strain, and Arabidopsis thaliana (ecotype Col-0) was infected with the Agrobacterium by the floral dip method.
  • Arabidopsis thaliana ecotype Col-0
  • T1 seeds collected from Agrobacterium-infected plants seeds emitting red fluorescence were selected as transgenic seeds, sown in Jiffy Seven (manufactured by Sakata Seed Co., Ltd.) and cultivated under constant light conditions at 22°C. bottom.
  • DNA was extracted from rosette leaves of transgenic plants of the T1 generation and subjected to heteroduplex mobility assay (HMA) and sequence analysis to detect mutations introduced into the uORF of the MTIP1 gene.
  • HMA heteroduplex mobility assay
  • Transient expression analysis A transient expression system was used to investigate how the mutations in the MTIP1 uORF caused by genome editing affect the expression of the MTIP1 protein.
  • the gene encoding the luciferase NanoLuc (Nluc) derived from Oplophorus gracilirostris (Nluc) with a PEST sequence added to the protein (NlucP) was transferred to the cauliflower mosaic virus 35S RNA promoter. Plasmid pNH007 was constructed which was ligated downstream of (35S promoter).
  • plasmid pNL1.2 manufactured by Promega
  • primers NlucPfor SEQ ID NO: 79: 5'-GAAAGATGGCGTCGACGGTCTTCACACTCGAAGA-3'
  • NlucPrev SEQ ID NO: 80: 5'-TCATCTTCATCTTCGAGCTCTTAGACGTTGATGCGAGCTG-3
  • Plasmid pNH007 was prepared by inserting the resulting PCR fragment between the SalI and SacI sites of plasmid pKM56 (previous report: Hayashi et al. 2017) using the SLiCE method.
  • primers AT1G70780 5′UTRfor (SEQ ID NO: 81: 5′-ATTTGGAGAGAACCAAACAATCACATTCTTCTC-3′) and AT1G70780 5′UTRrev (SEQ ID NO: 82: 5′) were obtained from wild-type Arabidopsis thaliana (ecotype Col-0) and mutant genomic DNA.
  • -AGAGTCGACAACATCTTCGAAATCGAGA-3' was used to amplify the 5' untranslated region of the MTIP1 gene by PCR.
  • the 35S promoter region was amplified using plasmid pBI221 as a template and primers pUC19rev3 (SEQ ID NO: 83: 5'-GACCATGATTACGCCAAGCT-3') and AT1G70780 35Srev (SEQ ID NO: 84: 5'-TGTGATTGTTGGTTCTCTCCAAATGAAATGAACT-3').
  • pUC19rev3 SEQ ID NO: 83: 5'-GACCATGATTACGCCAAGCT-3'
  • AT1G70780 35Srev SEQ ID NO: 84: 5'-TGTGATTGTTGGTTCTCTCCAAATGAAATGAACT-3'
  • the PCR fragment of the 35S promoter region and the PCR fragment of the MTIP1 5' untranslated region were fused using overlap PCR.
  • the fused PCR fragment was cut with EcoRV and SalI and inserted between the EcoRV site in the 35S promoter of plasmid pNH00
  • the reporter plasmid thus prepared and the internal standard plasmid pKM56 (Hayashi et al. 2017) (a plasmid with a construct in which the luciferase [Eluc-PEST] gene derived from the Brazilian click beetle (Pyrearinus termitilluminans) is linked downstream of the 35S promoter ) was introduced into protoplasts of Arabidopsis thaliana cultured cells MM2d using the polyethylene glycol (PEG) method.
  • PEG polyethylene glycol
  • washing buffer 0.4 M mannitol, 5 mM CaCl 2 , and 0.5 M 2-(N-morpholino)ethanesulfonic acid, pH 5.8 was added and mixed.
  • Protoplasts were harvested by centrifugation and resuspended in 1000 ⁇ l modified liquid LS medium containing 0.4 M mannitol without MgSO 4 .
  • 450 ⁇ l of the protoplast suspension was dispensed into two microtubes, 3 ⁇ l of 300 mM MgSO 4 (final concentration: 2.0 mM) was added to one, and the same amount of water was added to the other.
  • Wild-type MTIP1 5′ was observed in both media containing 2 mM MgSO 4 (Mg + ), which is sufficient for the growth of wild-type Arabidopsis thaliana, and in media without Mg salts (Mg ⁇ ).
  • Reporter plasmids with mutant MTIP1 5' untranslated regions showed higher Nluc activity than reporter plasmids with untranslated regions.
  • the difference between the wild-type and mutants was remarkable when they were cultured in a medium (Mg + ) containing 2 mM MgSO 4 . This result suggests that genome-edited mutations in the MTIP1 uORF had a stimulatory effect on the translation of the major ORF and increased the expression of the MTIP1 protein.
  • Mg resistance test of MTIP1 uORF disruption strain Selected by PCR, HMA, and sequence analysis. In addition, lines with no red fluorescence of seeds were selected to establish mutant homozygous lines in which the T-DNA was deleted. Seeds of the homozygous mutant lines thus established were grown together with seeds of wild-type Arabidopsis thaliana (ecotype Col-0) on MGRL agar medium containing 20 mM MgSO 4 (previous report: Fujiwara, T., Hirai, M. Y., Chino, M., Komeda, Y. & Naito, S. Effects of Sulfur Nutrition on Expression of the Soybean Seed Storage Protein Genes in Transgenic Petunia. Plant Physiol. 99, (1992). Cultivated for 2 weeks. The composition of the medium used is shown below.

Abstract

The present invention relates to a magnesium-tolerant plant in which the expression or function of an MTIP1 protein is enhanced. The present invention relates to a method for producing a magnesium-tolerant plant that includes enhancing the expression or function of an MTIP1 protein of the plant.

Description

マグネシウム耐性植物、マグネシウム耐性植物の製造方法、マグネシウム耐性植物の栽培方法、及び遺伝子Magnesium-tolerant plant, method for producing magnesium-tolerant plant, method for cultivating magnesium-tolerant plant, and gene
 本発明は、マグネシウム耐性植物、マグネシウム耐性植物の製造方法、マグネシウム耐性植物の栽培方法、及び遺伝子に関する。
 本願は、2021年9月10日に、日本に出願された特願2021-147788号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to magnesium-tolerant plants, methods for producing magnesium-tolerant plants, methods for cultivating magnesium-tolerant plants, and genes.
This application claims priority based on Japanese Patent Application No. 2021-147788 filed in Japan on September 10, 2021, the content of which is incorporated herein.
 地球温暖化による異常気象や海水面の上昇に起因する農作物の塩害被害は、世界の多くの地域で深刻な問題となってきている。日本国内においても、近年、大型台風の増加に伴い、農耕地への海水の混入による農作物の塩害被害の発生が増加している。今後、地球温暖化が進むにつれて農作物の塩害被害はますます増加することが予想されるため、塩害に強い農作物の作出が望まれている。海水による塩害の主な要因は、海水中に含まれる高濃度のNaイオン及びMg2+イオンである。そのうちのNaについては、高濃度のNaに耐性を示す植物を遺伝子工学的手法により作出する方法がすでに開発されている(非特許文献1)。Mg2+については、シロイヌナズナの4つのDELLAタンパク質遺伝子が欠損した四重変異体が、高濃度のMg2+に対して耐性を示すことが報告されている(非特許文献2)。 Salt damage to agricultural products caused by abnormal weather and rising sea levels due to global warming has become a serious problem in many regions of the world. Also in Japan, with the recent increase in large typhoons, there has been an increase in the occurrence of salt damage to crops due to seawater intrusion into agricultural lands. In the future, as global warming progresses, salt damage to agricultural products is expected to increase more and more. The main cause of salt damage by seawater is high concentrations of Na + ions and Mg 2+ ions contained in seawater. As for Na + among them, a method has already been developed for producing plants showing resistance to high concentrations of Na + by genetic engineering techniques (Non-Patent Document 1). Regarding Mg 2+ , it has been reported that a quadruple mutant lacking four DELLA protein genes in Arabidopsis thaliana exhibits resistance to high concentrations of Mg 2+ (Non-Patent Document 2).
 しかし、非特許文献1に示されるDELLAタンパク質は、植物ホルモンであるジベレリンへの応答に関与するため、DELLAタンパク質遺伝子への変異導入は、植物の徒長や早咲きなど農作物として望ましくない影響をもたらす。そのため、DELLAタンパク質遺伝子への変異導入以外の手法により、高濃度Mg2+に対する耐性を付与する方法の開発が求められる。 However, since the DELLA protein shown in Non-Patent Document 1 is involved in the response to the plant hormone gibberellin, introduction of mutations into the DELLA protein gene has undesirable effects on crops, such as plant elongation and early flowering. Therefore, it is desired to develop a method for imparting resistance to high-concentration Mg 2+ by techniques other than the introduction of mutations into the DELLA protein gene.
 本発明は、上記のような問題点を解消するためになされたものであり、マグネシウム耐性植物の提供を目的とする。
 また本発明は、マグネシウム耐性植物の製造方法の提供を目的とする。
 また本発明は、前記マグネシウム耐性植物の栽培方法の提供を目的とする。
 また本発明は、植物のマグネシウム耐性を向上可能な遺伝子の提供を目的とする。
The present invention was made to solve the above problems, and an object of the present invention is to provide a magnesium-tolerant plant.
Another object of the present invention is to provide a method for producing a magnesium-tolerant plant.
Another object of the present invention is to provide a method for cultivating the magnesium-tolerant plant.
Another object of the present invention is to provide a gene capable of improving the magnesium tolerance of plants.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、MTIP1(Mg transporter-interacting protein 1)タンパク質の発現量を増加させることにより、植物のマグネシウム耐性を向上可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を有する。
Means for Solving the Problems As a result of intensive studies aimed at solving the above problems, the present inventors found that the magnesium tolerance of plants can be improved by increasing the expression level of the MTIP1 (Mg transporter-interacting protein 1) protein. I have perfected my invention.
That is, the present invention has the following aspects.
(1)MTIP1タンパク質の発現又は機能が亢進している、マグネシウム耐性植物。(2)前記MTIP1タンパク質が、以下の(A)~(C)からなる群から選ばれるタンパク質である、前記(1)に記載の植物。
 (A)配列番号1で表されるアミノ酸配列を有するタンパク質
 (B)配列番号1で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
 (C)配列番号1で表されるアミノ酸配列との配列同一性が90%以上であるアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
(3)遺伝子改変により前記MTIP1タンパク質の発現又は機能が亢進されている、前記(1)又は(2)に記載の植物。
(4)前記MTIP1タンパク質の発現の亢進により、マグネシウム耐性が向上され、
 前記MTIP1タンパク質をコードするMTIP1遺伝子のuORFの破壊により、前記MTIP1タンパク質の発現が亢進している、前記(1)~(3)のいずれか一つに記載の植物。
(5)前記MTIP1遺伝子の前記uORFが、以下の(D)~(F)からなる群から選ばれるペプチドをコードする、前記(4)に記載の植物。
 (D)配列番号41~67のいずれか一つで表されるアミノ酸配列を有するペプチド
 (E)配列番号41~67のいずれか一つで表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
 (F)配列番号41~67のいずれか一つで表されるアミノ酸配列との配列同一性が70%以上であるアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
(6)種子植物である、前記(1)~(5)のいずれか一つに記載の植物。
(7)植物のMTIP1タンパク質の発現又は機能を亢進させることを含む、マグネシウム耐性植物の製造方法。
(8)前記MTIP1タンパク質が、以下の(A)~(C)からなる群から選ばれるタンパク質である、前記(7)に記載の製造方法。
 (A)配列番号1で表されるアミノ酸配列を有するタンパク質
 (B)配列番号1で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
 (C)配列番号1で表されるアミノ酸配列との配列同一性が90%以上であるアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
(9)遺伝子改変によりMTIP1タンパク質の発現又は機能を亢進させる、前記(7)又は(8)に記載の製造方法。
(10)MTIP1タンパク質の発現を亢進させることにより、前記植物のマグネシウム耐性を向上させ、
 前記植物の前記MTIP1タンパク質をコードするMTIP1遺伝子のuORFを破壊することで、前記MTIP1タンパク質の発現量を増加させる、前記(7)~(9)のいずれか一つに記載の製造方法。
(11)前記MTIP1遺伝子の前記uORFが、以下の(D)~(F)からなる群から選ばれるペプチドをコードする、前記(10)に記載の製造方法。
 (D)配列番号41~67のいずれか一つで表されるアミノ酸配列を有するペプチド (E)配列番号41~67のいずれか一つで表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
 (F)配列番号41~67のいずれか一つで表されるアミノ酸配列との配列同一性が70%以上であるアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
(12)前記植物が、種子植物である、前記(7)~(11)のいずれか一つに記載の製造方法。
(13)前記(1)~(6)のいずれか一つに記載の植物を、高濃度のマグネシウム環境下で栽培することを含む、マグネシウム耐性植物の栽培方法。
(14)uORFが破壊されたMTIP1遺伝子であり、
 前記MTIP1遺伝子にコードされるMTIP1タンパク質が、以下の(A)~(C)からなる群から選ばれるタンパク質である、MTIP1遺伝子。
 (A)配列番号1で表されるアミノ酸配列を有するタンパク質
 (B)配列番号1で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
 (C)配列番号1で表されるアミノ酸配列との配列同一性が90%以上であるアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
(15)前記MTIP1遺伝子の前記uORFが、以下の(D)~(F)からなる群から選ばれるペプチドをコードし、前記uORFの破壊が、配列番号41~67のいずれか一つで表されるアミノ酸配列に対応する領域における、全部又は一部の欠失、置換、挿入、付加、若しくはそれらの組み合わせによって、前記MTIP1タンパク質の翻訳抑制能が喪失又は抑制された、前記(14)に記載の遺伝子。
 (D)配列番号41~67のいずれか一つで表されるアミノ酸配列を有するペプチド (E)配列番号41~67のいずれか一つで表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
 (F)配列番号41~67のいずれか一つで表されるアミノ酸配列との配列同一性が70%以上であるアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
(1) A magnesium-tolerant plant in which the expression or function of MTIP1 protein is enhanced. (2) The plant according to (1) above, wherein the MTIP1 protein is a protein selected from the group consisting of the following (A) to (C).
(A) a protein having the amino acid sequence represented by SEQ ID NO: 1; (B) having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1; A protein that contributes to the improvement of magnesium tolerance in plants through enhanced expression or function (C) having an amino acid sequence with a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function (3) The plant according to (1) or (2), wherein the expression or function of the MTIP1 protein is enhanced by genetic modification.
(4) enhanced expression of the MTIP1 protein improves magnesium tolerance,
The plant according to any one of (1) to (3) above, wherein the expression of the MTIP1 protein is enhanced by disruption of the uORF of the MTIP1 gene that encodes the MTIP1 protein.
(5) The plant according to (4) above, wherein the uORF of the MTIP1 gene encodes a peptide selected from the group consisting of (D) to (F) below.
(D) a peptide having an amino acid sequence represented by any one of SEQ ID NOs: 41 to 67 (E) in the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67, one or more amino acids A peptide having a deleted, substituted, or added amino acid sequence and having the ability to inhibit translation of the MTIP1 protein (F) having a sequence identity of 70 with the amino acid sequence represented by any one of SEQ ID NOS: 41 to 67 % or more, and the plant according to any one of the above (1) to (5), which is a peptide (6) seed plant having the ability to suppress the translation of the MTIP1 protein.
(7) A method for producing a magnesium-tolerant plant, which comprises enhancing the expression or function of MTIP1 protein in the plant.
(8) The production method according to (7) above, wherein the MTIP1 protein is a protein selected from the group consisting of (A) to (C) below.
(A) a protein having the amino acid sequence represented by SEQ ID NO: 1; (B) having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1; A protein that contributes to the improvement of magnesium tolerance in plants through enhanced expression or function (C) having an amino acid sequence with a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function (9) The production method according to (7) or (8) above, wherein the expression or function of MTIP1 protein is enhanced by genetic modification.
(10) improving the magnesium tolerance of the plant by enhancing the expression of the MTIP1 protein;
The production method according to any one of (7) to (9) above, wherein the expression level of the MTIP1 protein is increased by disrupting the uORF of the MTIP1 gene encoding the MTIP1 protein in the plant.
(11) The production method according to (10) above, wherein the uORF of the MTIP1 gene encodes a peptide selected from the group consisting of (D) to (F) below.
(D) a peptide having an amino acid sequence represented by any one of SEQ ID NOs: 41 to 67 (E) in the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67, one or more amino acids A peptide having a deleted, substituted, or added amino acid sequence and having the ability to inhibit translation of the MTIP1 protein (F) having a sequence identity of 70 with the amino acid sequence represented by any one of SEQ ID NOS: 41 to 67 % or more and having the ability to suppress translation of the MTIP1 protein (12) The production method according to any one of (7) to (11), wherein the plant is a seed plant. .
(13) A method for cultivating a magnesium-tolerant plant, which comprises cultivating the plant according to any one of (1) to (6) above in a high-concentration magnesium environment.
(14) uORF-disrupted MTIP1 gene,
The MTIP1 gene, wherein the MTIP1 protein encoded by the MTIP1 gene is a protein selected from the group consisting of (A) to (C) below.
(A) a protein having the amino acid sequence represented by SEQ ID NO: 1; (B) having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1; A protein that contributes to the improvement of magnesium tolerance in plants through enhanced expression or function (C) having an amino acid sequence with a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function (15) the uORF of the MTIP1 gene encodes a peptide selected from the group consisting of the following (D) to (F), and disruption of the uORF causes SEQ ID NO: All or part of the deletion, substitution, insertion, addition, or combination thereof in the region corresponding to the amino acid sequence represented by any one of 41 to 67, loss of the ability to suppress translation of the MTIP1 protein, or The gene according to (14) above, which is suppressed.
(D) a peptide having an amino acid sequence represented by any one of SEQ ID NOs: 41 to 67 (E) in the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67, one or more amino acids A peptide having a deleted, substituted, or added amino acid sequence and having the ability to inhibit translation of the MTIP1 protein (F) having a sequence identity of 70 with the amino acid sequence represented by any one of SEQ ID NOS: 41 to 67 % or more and having the ability to suppress the translation of the MTIP1 protein
 本発明によれば、マグネシウム耐性植物を提供できる。
 また本発明によれば、マグネシウム耐性植物の製造方法を提供できる。
 また本発明によれば、前記マグネシウム耐性植物の栽培方法を提供できる。
 また本発明によれば、植物のマグネシウム耐性を向上可能な遺伝子を提供できる。
According to the present invention, magnesium-tolerant plants can be provided.
Moreover, according to the present invention, a method for producing a magnesium-tolerant plant can be provided.
Moreover, according to this invention, the cultivation method of the said magnesium tolerance plant can be provided.
Further, according to the present invention, genes capable of improving magnesium tolerance in plants can be provided.
uORF及びmORFを含むMTIP1のmRNAの構造の一例を示す模式図と、uORFが翻訳されたアミノ酸配列の各植物間での比較結果を示す図である。FIG. 1 is a schematic diagram showing an example of the structure of MTIP1 mRNA containing uORF and mORF, and a diagram showing the results of comparison of amino acid sequences translated from uORF among plants. uORFが介するMTIP1の発現制御による、細胞内でのMg2+濃度の恒常性維持機構の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a mechanism for maintaining homeostasis of Mg 2+ concentration in cells by uORF-mediated MTIP1 expression control. 実施例で取得した変異体の、MTIP1遺伝子のuORFに導入された変異箇所を説明する図である。FIG. 2 is a diagram explaining mutation sites introduced into the uORF of the MTIP1 gene in the mutants obtained in Examples. MTIP1遺伝子のuORFに導入された変異による、mORFの翻訳の促進的効果を示すグラフである。FIG. 10 is a graph showing the effect of promoting mORF translation by mutations introduced into the uORF of the MTIP1 gene. FIG. MTIP1タンパク質の発現量の増加により、高濃度のMg2+に対する植物の耐性が向上した結果を示す画像である。FIG. 10 is an image showing the results of improving plant tolerance to high concentrations of Mg 2+ by increasing the expression level of MTIP1 protein.
 以下、本発明のマグネシウム耐性植物、マグネシウム耐性植物の製造方法、マグネシウム耐性植物の栽培方法、及び遺伝子の実施形態を説明する。 Hereinafter, embodiments of the magnesium-tolerant plant, the method for producing the magnesium-tolerant plant, the method for cultivating the magnesium-tolerant plant, and the gene of the present invention will be described.
≪マグネシウム耐性植物≫
 実施形態の植物は、MTIP1タンパク質の発現又は機能が亢進している、マグネシウム耐性植物である。
≪Magnesium-tolerant plant≫
The plant of the embodiment is a magnesium-tolerant plant in which MTIP1 protein expression or function is enhanced.
 MTIP1タンパク質の発現が亢進していることとは、前記植物のコントロールの植物におけるMTIP1タンパク質の発現量と比較して、MTIP1タンパク質の発現量が増加していることを意味する。MTIP1タンパク質の発現量は、例えば、MTIP1タンパク質に対する抗体の利用や、ルシフェラーゼ等のレポータータンパク質を利用した発現解析により確認できる。 The enhanced expression of MTIP1 protein means that the expression level of MTIP1 protein is increased compared to the expression level of MTIP1 protein in the control plant. The expression level of the MTIP1 protein can be confirmed, for example, by using an antibody against the MTIP1 protein or expression analysis using a reporter protein such as luciferase.
 MTIP1タンパク質の機能が亢進していることとは、前記植物のコントロールの植物のMTIP1タンパク質の機能と比較して、MTIP1タンパク質の機能が向上していることを意味する。MTIP1タンパク質は、主に液胞に存在するマグネシウムトランスポーターMRS2-1(AGIコード:At1g16010)との結合を介して、液胞内に貯蔵されたMg2+を細胞質内へと流入させ、植物細胞の細胞質内のMg2+濃度を上昇させると推定される。機能が向上したMTIP1タンパク質としては、例えば、野生型の植物のMTIP1タンパク質と比較し、上記のマグネシウムトランスポーターとの結合能が向上したMTIP1タンパク質を例示できる。 The enhancement of the function of the MTIP1 protein means that the function of the MTIP1 protein is improved as compared with the function of the MTIP1 protein of the control plant. The MTIP1 protein causes Mg 2+ stored in the vacuoles to enter the cytoplasm through binding with the magnesium transporter MRS2-1 (AGI code: At1g16010), which is mainly present in the vacuoles, and promotes plant cell growth. It is presumed to increase the Mg 2+ concentration in the cytoplasm. MTIP1 proteins with improved functions include, for example, MTIP1 proteins with improved binding ability to the above-described magnesium transporters compared to wild-type plant MTIP1 proteins.
 実施形態の植物に対する前記亢進の対照となるコントロールの植物とは、当該植物の野生型の植物を例示できる。後述の人為的な遺伝子改変が為された場合の前記亢進のコントロールの植物は、上記の人為的な遺伝子改変が為されていない植物を例示できる。 Examples of the control plant that serves as a control for the enhancement of the plant of the embodiment include a wild-type plant of the plant. Examples of the control plant for the enhancement in the event of artificial genetic modification described later include plants that have not undergone the above artificial genetic modification.
 本明細書において、マグネシウム耐性におけるマグネシウムとは、マグネシウムイオン(Mg2+)、及びマグネシウム塩を包含する概念である。
 マグネシウム塩としては、一例として、硫酸マグネシウム、塩化マグネシウム、酸化マグネシウム、水酸化マグネシウム、及びそれらの水和物が挙げられる。
In the present specification, magnesium in magnesium tolerance is a concept including magnesium ion (Mg 2+ ) and magnesium salt.
Examples of magnesium salts include magnesium sulfate, magnesium chloride, magnesium oxide, magnesium hydroxide, and hydrates thereof.
 マグネシウムはクロロフィルの構成要素であることから、通常、適正量のマグネシウムは植物の生育に利用される。しかし、土壌等の生育環境におけるマグネシウム濃度が過剰である場合、根外域の浸透圧が高くなることによる脱水又は吸水阻害や、植物細胞内に過剰のMg2+が取り込まれることによる生育阻害、マグネシウム過剰症の症状が現れることが知られる。
 実施形態のマグネシウム耐性植物は、前記植物のコントロールの植物と比較して、生育環境における過剰量のマグネシウムの存在に起因するマグネシウムへの耐性が向上されている。そのため、実施形態のマグネシウム耐性植物は、高濃度のマグネシウム環境下であっても、前記植物のコントロールの植物に比べ良好に生育することが可能である。
Magnesium is a component of chlorophyll, so normally the right amount of magnesium is available for plant growth. However, when the magnesium concentration in the growth environment such as soil is excessive, dehydration or water absorption inhibition due to increased osmotic pressure in the extraroot region, growth inhibition due to excessive Mg 2+ uptake into plant cells, and excessive magnesium It is known that symptoms of disease appear.
Magnesium tolerant plants of embodiments have improved tolerance to magnesium due to the presence of excess magnesium in the growing environment compared to control plants of said plants. Therefore, the magnesium-tolerant plant of the embodiment can grow better than the control plant, even in a high-concentration magnesium environment.
 本明細書において、植物のマグネシウム耐性の向上とは、マグネシウム耐性の強化、改良、及びマグネシウム耐性を有さない植物に対して、マグネシウム耐性を付与することを含む。 As used herein, improving the magnesium tolerance of plants includes strengthening and improving magnesium tolerance, and imparting magnesium tolerance to plants that do not have magnesium tolerance.
 植物のマグネシウム耐性が向上されていることは、例えば、植物Aと当該植物Aのコントロールの植物とをそれぞれ生育させ、より高濃度のマグネシウム環境下で、植物Aの生育ほうがコントロールの植物の生育よりも良好である場合、植物Aのマグネシウム耐性が向上されていると評価できる。 The fact that the magnesium tolerance of the plant is improved is, for example, by growing the plant A and the control plant of the plant A, and growing the plant A in an environment with a higher concentration of magnesium than the control plant. is also good, it can be evaluated that the magnesium tolerance of plant A is improved.
 高濃度のマグネシウム環境とは、実施形態のマグネシウム耐性植物のコントロールの植物に、生育阻害又はマグネシウム過剰症を誘発させる濃度のマグネシウム量を含む。上記環境とは、例えば、土壌や栽培溶液等の根域環境であってよく、培養細胞の場合には培地等の細胞培養環境であってよい。かかる濃度は、対象の植物によっても異なるが、後述の実施例において示されるシロイヌナズナの寒天培地(固形培地)での栽培例を考慮し、例えば、培地中のMg2+モル濃度が5mM以上である場合を例示でき、5~100mMであってもよく、10~80mMであってもよく、15~50mMであってもよい。なお、1mM=mol/mである。土壌の場合は、上記の培地中のMg2+モル濃度に対応する濃度のマグネシウム量を例示できる。土壌における高濃度のマグネシウムとは、例えば、土壌中の交換性Mg2+の含量がMgO換算で50mg/100g以上である場合を例示でき、50~200mg/100gであってもよく、80~150mg/100gであってもよい。 A magnesium-rich environment includes an amount of magnesium at a concentration that induces growth inhibition or hypermagnesium in control plants of the magnesium-tolerant plants of the embodiments. The environment may be, for example, a root zone environment such as soil or a cultivation solution, or, in the case of cultured cells, a cell culture environment such as a medium. Although such a concentration varies depending on the target plant, considering the cultivation example of Arabidopsis thaliana on an agar medium (solid medium) shown in the examples below, for example, when the Mg 2+ molar concentration in the medium is 5 mM or more can be exemplified, and may be 5 to 100 mM, 10 to 80 mM, or 15 to 50 mM. Note that 1 mM=mol/ m3 . In the case of soil, the concentration of magnesium corresponding to the Mg 2+ molar concentration in the medium can be exemplified. A high concentration of magnesium in soil can be exemplified by, for example, a case where the content of exchangeable Mg 2+ in soil is 50 mg/100 g or more in terms of MgO, and may be 50 to 200 mg/100 g, or 80 to 150 mg/ It may be 100g.
 実施形態の植物のMTIP1タンパク質の発現又は機能は人為的に亢進されていることが好ましく、遺伝子改変により亢進されていることが好ましく、植物ゲノムに対する遺伝子改変により亢進されていることが好ましい。ここでの遺伝子改変とは、MTIP1タンパク質の発現又は機能に影響を及ぼす配列を改変することをいう。実施形態に係る植物は、MTIP1タンパク質の発現又は機能が亢進するよう、ゲノム配列が改変されたものであることが好ましい。 The expression or function of the MTIP1 protein in the plant of the embodiment is preferably artificially enhanced, preferably enhanced by genetic modification, and preferably enhanced by genetic modification of the plant genome. Genetic modification here refers to modifying a sequence that affects the expression or function of MTIP1 protein. It is preferable that the plant according to the embodiment has a modified genome sequence so that the expression or function of the MTIP1 protein is enhanced.
 遺伝子改変の対象は、上記のMTIP1タンパク質をコードするMTIP1遺伝子のmain ORF(主要ORF、又はmORFともいう)の他、MTIP1遺伝子の発現調節領域を例示できる。 Examples of targets for genetic modification include the above-mentioned main ORF (also referred to as the main ORF or mORF) of the MTIP1 gene that encodes the MTIP1 protein, as well as the expression regulatory region of the MTIP1 gene.
 前記改変は、植物が本来有する内在性のMTIP1遺伝子及び/又はその発現調節領域の配列に対しての改変であってもよく、配列が改変されたMTIP1遺伝子及び/又はその発現調節領域が新たに導入されたものであってもよい。 The modification may be a modification to the sequence of the endogenous MTIP1 gene and/or its expression regulatory region that the plant originally has, and the sequence-modified MTIP1 gene and/or its expression regulatory region is newly added. may have been introduced.
 配列の改変としては、例えば、MTIP1遺伝子のmORF及び/又はMTIP1遺伝子の発現調節領域における、一部又は全部の塩基配列の欠失、置換、挿入、付加、及びそれらの組み合わせが挙げられる。例えば、MTIP1遺伝子のmORFの配列が改変されることにより、機能が亢進されたMTIP1タンパク質を得ることができる。例えば、MTIP1遺伝子の発現調節領域の配列が改変されることにより、mRNAの転写又は翻訳の亢進が生じ、MTIP1タンパク質の発現量を亢進できる。 Sequence modifications include, for example, deletion, substitution, insertion, addition, and combinations thereof of part or all of the nucleotide sequence in the mORF of the MTIP1 gene and/or the expression regulatory region of the MTIP1 gene. For example, an MTIP1 protein with enhanced function can be obtained by modifying the mORF sequence of the MTIP1 gene. For example, by modifying the sequence of the expression control region of the MTIP1 gene, the transcription or translation of mRNA is enhanced, and the expression level of the MTIP1 protein can be enhanced.
 実施形態の植物は、本発明の効果が発揮されるのであれば、前記改変された領域をヘテロ接合体として有していてもよく、ホモ接合体として有していてもよい。 The plant of the embodiment may have the modified region as a heterozygote or as a homozygote, as long as the effects of the present invention are exhibited.
(MTIP1タンパク質)
 配列番号1で表されるアミノ酸配列は、シロイヌナズナ(Arabidopsis thaliana)のMTIP1(AGIコード:At1g70780)のアミノ酸配列である。
(MTIP1 protein)
The amino acid sequence represented by SEQ ID NO: 1 is the amino acid sequence of Arabidopsis thaliana MTIP1 (AGI code: At1g70780).
 本明細書におけるMTIP1タンパク質は、上記のシロイヌナズナのMTIP1タンパク質に限定されず、シロイヌナズナのMTIP1タンパク質と同等の機能を有するタンパク質を広く包含する。MTIP1タンパク質としては、例えばシロイヌナズナのMTIP1のホモログやオーソログであってよい。当業者であれば、シロイヌナズナのMTIP1の配列情報から、シロイヌナズナのMTIP1と同等の機能を有するタンパク質を取得することができる。MTIP1遺伝子のアミノ酸配列は、被子植物からシダ植物まで広く保存が確認されている。 The MTIP1 protein in the present specification is not limited to the above-mentioned Arabidopsis thaliana MTIP1 protein, and broadly encompasses proteins having functions equivalent to those of the Arabidopsis thaliana MTIP1 protein. The MTIP1 protein may be, for example, an Arabidopsis thaliana MTIP1 homolog or ortholog. A person skilled in the art can obtain a protein having a function equivalent to that of Arabidopsis thaliana MTIP1 from the sequence information of Arabidopsis thaliana MTIP1. It has been confirmed that the amino acid sequence of the MTIP1 gene is widely conserved from angiosperms to pteridophytes.
 MTIP1タンパク質の一例としては、以下の(A)~(C)からなる群から選ばれるタンパク質を例示できる。
 (A)配列番号1で表されるアミノ酸配列を有するタンパク質
 (B)配列番号1で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
 (C)配列番号1で表されるアミノ酸配列との配列同一性が30%以上であるアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
Examples of MTIP1 proteins include proteins selected from the group consisting of (A) to (C) below.
(A) a protein having the amino acid sequence represented by SEQ ID NO: 1; (B) having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1; A protein that contributes to the improvement of magnesium tolerance in plants through expression or enhanced function (C) having an amino acid sequence with a sequence identity of 30% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function A protein that contributes to the improvement of magnesium tolerance in plants by
 シロイヌナズナのMTIP1タンパク質は、マグネシウムトランスポーターとの結合能を有することが知られている。したがって、本明細書において、「発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質」は、「マグネシウムトランスポーターとの結合能を有するタンパク質」と言い換えてもよい。 The Arabidopsis thaliana MTIP1 protein is known to have the ability to bind to magnesium transporters. Therefore, in the present specification, "a protein that contributes to the improvement of magnesium tolerance in plants by enhancing its expression or function" may be rephrased as "a protein that has the ability to bind to a magnesium transporter".
 別の側面として、MTIP1タンパク質の一例としては、以下の(A1)~(C1)からなる群から選ばれるタンパク質を例示できる。
 (A1)配列番号1で表されるアミノ酸配列を有するタンパク質
 (B1)配列番号1で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、マグネシウムトランスポーターとの結合能を有するタンパク質
 (C1)配列番号1で表されるアミノ酸配列との配列同一性が30%以上であるアミノ酸配列を有し、マグネシウムトランスポーターとの結合能を有するタンパク質
As another aspect, examples of MTIP1 proteins include proteins selected from the group consisting of (A1) to (C1) below.
(A1) a protein having the amino acid sequence represented by SEQ ID NO: 1; (B1) having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1; A protein having the ability to bind to a magnesium transporter (C1) A protein having an amino acid sequence having a sequence identity of 30% or more with the amino acid sequence represented by SEQ ID NO: 1 and having the ability to bind to a magnesium transporter
 前記マグネシウムトランスポーターとしては、液胞に存在しMTIP1タンパク質との相互作用が認められるマグネシウムトランスポーターであるシロイヌナズナのMRS2-1、及びそれと同等の機能を有するマグネシウムトランスポーターを例示する。 Examples of the magnesium transporter include MRS2-1 of Arabidopsis thaliana, which is a magnesium transporter that exists in vacuoles and is found to interact with the MTIP1 protein, and a magnesium transporter with an equivalent function.
 MTIP1タンパク質は、各植物種の有するMTIP1タンパク質の間で、保存性の高い領域(配列番号1で表されるアミノ酸配列の第14番目~第100番目のアミノ酸配列)を有する。
 MTIP1タンパク質の一例としては、以下の(A2)~(C2)からなる群から選ばれるタンパク質を例示できる。
 (A2)配列番号1で表されるアミノ酸配列を有するタンパク質
 (B2)配列番号1で表されるアミノ酸配列の第14番目~第100番目のアミノ酸配列との配列同一性が50%以上であり、配列番号1で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
 (C2)配列番号1で表されるアミノ酸配列の第14番目~第100番目のアミノ酸配列との配列同一性が50%以上であり、配列番号1で表されるアミノ酸配列との配列同一性が30%以上であるアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
The MTIP1 protein has a highly conserved region (14th to 100th amino acid sequences of the amino acid sequence represented by SEQ ID NO: 1) among the MTIP1 proteins of various plant species.
Examples of MTIP1 proteins include proteins selected from the group consisting of (A2) to (C2) below.
(A2) a protein having the amino acid sequence represented by SEQ ID NO: 1; A protein (C2 ) The sequence identity with the 14th to 100th amino acid sequences of the amino acid sequence represented by SEQ ID NO: 1 is 50% or more, and the sequence identity with the amino acid sequence represented by SEQ ID NO: 1 is 30% A protein having the above amino acid sequence and contributing to the improvement of plant magnesium tolerance through expression or enhanced function
 ここで、前記(B)、(B1)及び(B2)において、配列番号1において、欠失、置換若しくは付加されてもよいアミノ酸の数としては、1~100個が好ましく、1~90個が好ましく、1~80個が好ましく、1~70個が好ましく、1~60個が好ましく、1~50個が好ましく、1~40個が好ましく、1~30個が好ましく、1~20個が好ましく、1~15個が好ましく、1~10個がより好ましく、1~5個がさらに好ましく、1~3個が特に好ましい。 Here, in (B), (B1) and (B2) above, the number of amino acids that may be deleted, substituted or added to SEQ ID NO: 1 is preferably 1 to 100, and 1 to 90. preferably 1 to 80, preferably 1 to 70, preferably 1 to 60, preferably 1 to 50, preferably 1 to 40, preferably 1 to 30, preferably 1 to 20 , preferably 1 to 15, more preferably 1 to 10, even more preferably 1 to 5, and particularly preferably 1 to 3.
 前記(B2)及び(C2)において、配列番号1で表されるアミノ酸配列の第14番目~第100番目のアミノ酸配列との配列同一性が50%以上であるアミノ酸配列の前記配列同一性としては、好ましくは60%以上100%以下、好ましくは70%以上100%以下、好ましくは80%以上100%以下、好ましくは90%以上100%以下、好ましくは95%以上100%以下、より好ましくは98%以上100%以下、さらに好ましくは99%以上100%以下の同一性を例示できる。 In the above (B2) and (C2), the sequence identity of an amino acid sequence having a sequence identity of 50% or more with the 14th to 100th amino acid sequences of the amino acid sequence represented by SEQ ID NO: 1 , preferably 60% to 100%, preferably 70% to 100%, preferably 80% to 100%, preferably 90% to 100%, preferably 95% to 100%, more preferably 98% % or more and 100% or less, more preferably 99% or more and 100% or less, can be exemplified.
 前記(C)、(C1)及び(C2)において、配列番号1で表されるアミノ酸配列に対する配列同一性が30%以上であるアミノ酸配列としては、配列番号1で表されるアミノ酸配列に対して、好ましくは40%以上100%以下、好ましくは50%以上100%以下、好ましくは60%以上100%以下、好ましくは70%以上100%以下、好ましくは80%以上100%以下、好ましくは90%以上100%以下、好ましくは95%以上100%以下、より好ましくは98%以上100%以下、さらに好ましくは99%以上100%以下の同一性を有するアミノ酸配列を例示できる。 In (C), (C1) and (C2) above, the amino acid sequence having a sequence identity of 30% or more to the amino acid sequence represented by SEQ ID NO: 1 is , preferably 40% to 100%, preferably 50% to 100%, preferably 60% to 100%, preferably 70% to 100%, preferably 80% to 100%, preferably 90% Examples of amino acid sequences having an identity of 95% or more and 100% or less, more preferably 98% or more and 100% or less, still more preferably 99% or more and 100% or less, can be exemplified.
 アミノ酸配列の同一性は、NCBI(National Center of Biotechnology Information)から提供されているBLASTPのプログラムを用いて算出できる。 Amino acid sequence identity can be calculated using the BLASTP program provided by NCBI (National Center of Biotechnology Information).
 MTIP1タンパク質をコードする遺伝子としては、前記(A)~(C)、前記(A1)~(C1)及び前記(A2)~(C2)からなる群から選ばれるいずれかのタンパク質をコードする遺伝子が挙げられ、前記(A)~(C)からなる群から選ばれるいずれかのタンパク質をコードする遺伝子が好ましい。
 前記(A)のタンパク質をコードする遺伝子としては、配列番号2で表される塩基配列を有するポリヌクレオチドが挙げられる。配列番号2で表される塩基配列は、シロイヌナズナのMTIP1タンパク質をコードするmORFのコーディング領域の塩基配列である。
The gene encoding the MTIP1 protein is a gene encoding any protein selected from the group consisting of (A) to (C), (A1) to (C1) and (A2) to (C2). and preferably a gene encoding any protein selected from the group consisting of (A) to (C).
Examples of the gene encoding the protein (A) include a polynucleotide having the nucleotide sequence represented by SEQ ID NO:2. The nucleotide sequence represented by SEQ ID NO: 2 is the nucleotide sequence of the mORF coding region that encodes the Arabidopsis thaliana MTIP1 protein.
(MTIP1遺伝子のuORF)
 MTIP1遺伝子の発現調節領域は、MTIP1遺伝子産物の発現量を調整する機能を有するものであれば特に制限されず、例えば、転写調節、転写後調節、又は翻訳調節機能を有する配列が挙げられる。一例として、プロモーター、サイレンサー、エンハンサー等を例示でき、以下に説明するMTIP1遺伝子の上流ORFが好ましい。
(uORF of MTIP1 gene)
The expression regulatory region of the MTIP1 gene is not particularly limited as long as it has the function of regulating the expression level of the MTIP1 gene product. Examples include promoters, silencers, enhancers, and the like, and the upstream ORF of the MTIP1 gene described below is preferred.
 MTIP1遺伝子は、上記のMTIP1タンパク質をコードするmain ORF(主要ORF)の5′非翻訳領域側に、各植物のMTIP1遺伝子間で保存されたupstream ORF(上流ORF、又はuORFともいう)を有している。 The MTIP1 gene has an upstream ORF (also referred to as an upstream ORF or uORF) conserved among the MTIP1 genes of each plant on the 5' untranslated region side of the main ORF (major ORF) encoding the above MTIP1 protein. ing.
 図1は、uORF及びmORFを含むMTIP1のmRNAの構造の一例を示す模式図と、uORFが翻訳されたアミノ酸配列(配列番号3~40)の各植物間での比較結果を示す図である。 Fig. 1 is a schematic diagram showing an example of the structure of MTIP1 mRNA containing uORF and mORF, and a diagram showing the results of comparing the amino acid sequences (SEQ ID NOS: 3 to 40) translated from uORF between plants.
 発明者らは、MTIP1遺伝子のuORFにコードされるペプチドが、細胞内のMg2+濃度に応じたMTIP1のタンパク質の翻訳調節に関与していることを明らかにした。そして、前記MTIP1遺伝子のuORFの破壊により、高濃度のマグネシウム環境下であっても前記MTIP1タンパク質の発現を容易に亢進させ、植物のマグネシウム耐性を向上可能であることを見出だした。 The inventors have clarified that a peptide encoded by the uORF of the MTIP1 gene is involved in the translational regulation of the MTIP1 protein depending on the intracellular Mg 2+ concentration. They also found that disruption of the uORF of the MTIP1 gene facilitates the enhancement of the expression of the MTIP1 protein even in a high-concentration magnesium environment, and that the magnesium tolerance of plants can be improved.
 実施形態のマグネシウム耐性植物として、MTIP1タンパク質の発現の亢進によりマグネシウム耐性が向上され、前記MTIP1遺伝子のuORFの破壊により、前記MTIP1タンパク質の発現が亢進している植物を例示できる。 Examples of magnesium-tolerant plants of the embodiments include plants in which the MTIP1 protein expression is enhanced to improve magnesium tolerance and the MTIP1 protein expression is enhanced by disruption of the uORF of the MTIP1 gene.
 別の側面として、実施形態のマグネシウム耐性植物として、前記MTIP1遺伝子のuORFが破壊された、マグネシウム耐性植物を例示できる。 As another aspect, a magnesium-tolerant plant in which the uORF of the MTIP1 gene is disrupted can be exemplified as the magnesium-tolerant plant of the embodiment.
 図1にuORFのアミノ酸配列を示した植物種は、種子植物における各分類群の目(Order)を代表する種を例示している。配列番号3~40で表されるアミノ酸配列全長のうち、配列番号41~67に対応する約17アミノ酸が高度に保存された保存領域が存在する(図1参照)。発明者らは、MTIP1遺伝子のuORFの当該保存領域及び開始コドンが、MTIP1遺伝子のmORFの翻訳抑制能に関与することを明らかにしている(既報:Hayashi et al. 2017 Nucleic Acids Res. 45:8844-8858)。図1に示すように、保存領域の存在は、例えば、裸子植物のPinus canariensis、被子植物の系統基部に位置するAmborella trichopoda、単子葉類のOryza sativa、その他の双子葉類に属する各植物種間で確認でき、MTIP1遺伝子のuORFの保存領域のアミノ酸配列は、少なくとも種子植物において広く保存されていることが確認できる。 The plant species whose uORF amino acid sequences are shown in Fig. 1 are representative species of each taxonomic group (Order) in seed plants. Among the full-length amino acid sequences represented by SEQ ID NOs: 3-40, there is a conserved region in which approximately 17 amino acids corresponding to SEQ ID NOs: 41-67 are highly conserved (see FIG. 1). The inventors have revealed that the conserved region and initiation codon of the uORF of the MTIP1 gene are involved in the ability to suppress translation of the mORF of the MTIP1 gene (previous report: Hayashi et al. 2017 Nucleic Acids Res. 45:8844 -8858). As shown in Fig. 1, the presence of conserved regions is found among, for example, gymnosperm Pinus canariensis, Amborella trichopoda located at the base of angiosperms, monocotyledons Oryza sativa, and other dicotyledonous plant species. , and it can be confirmed that the amino acid sequence of the conserved region of the uORF of the MTIP1 gene is widely conserved at least in seed plants.
 実施形態に係るMTIP1遺伝子の前記uORFがコードするペプチドは、Mg2+に応答したMTIP1タンパク質の翻訳抑制能を有する。 The peptide encoded by the uORF of the MTIP1 gene according to the embodiment has the ability to suppress the translation of MTIP1 protein in response to Mg 2+ .
 前記MTIP1遺伝子の前記uORFとしては、以下の(D)~(F)からなる群から選ばれるペプチドをコードするポリヌクレオチドを例示できる。
 (D)配列番号41~67のいずれか一つで表されるアミノ酸配列を有するペプチド
 (E)配列番号41~67のいずれか一つで表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
 (F)配列番号41~67のいずれか一つで表されるアミノ酸配列との配列同一性が70%以上であるアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
Examples of the uORF of the MTIP1 gene include polynucleotides encoding peptides selected from the group consisting of (D) to (F) below.
(D) a peptide having an amino acid sequence represented by any one of SEQ ID NOs: 41 to 67 (E) in the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67, one or more amino acids A peptide having a deleted, substituted, or added amino acid sequence and having the ability to inhibit translation of the MTIP1 protein (F) having a sequence identity of 70 with the amino acid sequence represented by any one of SEQ ID NOS: 41 to 67 % or more and having the ability to suppress the translation of the MTIP1 protein
 より好ましくは、前記MTIP1遺伝子の前記uORFとしては、以下の(D1)~(F1)からなる群から選ばれるペプチドをコードするポリヌクレオチドを例示できる。
 (D1)配列番号41で表されるアミノ酸配列を有するペプチド
 (E1)配列番号41で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
 (F1)配列番号41で表されるアミノ酸配列との配列同一性が70%以上であるアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
More preferably, the uORF of the MTIP1 gene is a polynucleotide encoding a peptide selected from the group consisting of (D1) to (F1) below.
(D1) a peptide having the amino acid sequence represented by SEQ ID NO: 41 (E1) having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 41, Peptide having the ability to suppress the translation of the MTIP1 protein (F1) A peptide having an amino acid sequence having a sequence identity of 70% or more with the amino acid sequence represented by SEQ ID NO: 41 and having the ability to suppress the translation of the MTIP1 protein
 ここで、前記(E)及び(E1)における、配列番号41~67において、欠失、置換若しくは付加されてもよいアミノ酸の数としては、1~6個が好ましく、1~5個が好ましく、1~3個がより好ましく、1又は2個がさらに好ましい。 Here, in SEQ ID NOS: 41 to 67 in (E) and (E1), the number of amino acids that may be deleted, substituted, or added is preferably 1 to 6, preferably 1 to 5, 1 to 3 is more preferred, and 1 or 2 is even more preferred.
 前記(F)及び(F1)において、配列同一性が70%以上であるアミノ酸配列としては、配列番号41~67のいずれか一つで表されるアミノ酸配列に対して、好ましくは75%以上100%以下、好ましくは80%以上100%以下、好ましくは85%以上100%以下、より好ましくは90%以上100%以下、さらに好ましくは93%以上100%以下の同一性を有するアミノ酸配列を例示できる。 In (F) and (F1) above, the amino acid sequence having a sequence identity of 70% or more is preferably 75% or more to the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67. % or less, preferably 80% or more and 100% or less, preferably 85% or more and 100% or less, more preferably 90% or more and 100% or less, and still more preferably 93% or more and 100% or less .
 前記MTIP1遺伝子のuORFにコードされるペプチドにおいて、前記保存領域はC末端側にあることが好ましい。前記MTIP1遺伝子の前記uORFとしては、配列番号41~67のいずれか一つで表されるアミノ酸配列(保存領域)の末端のアミノ酸は、MTIP1遺伝子のuORFにコードされるペプチドのC末端側から1~20番目にあることが好ましく、1~15番目にあることがより好ましく、1~10番目にあることがさらに好ましい。 In the peptide encoded by the uORF of the MTIP1 gene, the conserved region is preferably on the C-terminal side. As the uORF of the MTIP1 gene, the terminal amino acid of the amino acid sequence (conserved region) represented by any one of SEQ ID NOs: 41 to 67 is 1 from the C-terminal side of the peptide encoded by the uORF of the MTIP1 gene. It is preferably in the 1st to 20th positions, more preferably in the 1st to 15th positions, and further preferably in the 1st to 10th positions.
 図1に示されるアラインメントの結果からも理解されるように、MTIP1遺伝子の前記uORFでは、開始コドン及び保存領域以外の配列の制限に乏しい。
 そのため、前記MTIP1遺伝子の前記uORFの全長を特定するものとして、好ましくは上記の(D)~(F)及び上記の(D1)~(F1)からなる群から選ばれるいずれか一つ以上の要件、より好ましくは上記の(D)の要件、さらに好ましくは上記の(D1)~(F1)からなる群から選ばれるいずれか一つ以上の要件を満たす、又は、
 別の側面として、好ましくは配列番号41~67のいずれか一つで表されるアミノ酸配列(保存領域)の末端のアミノ酸を、C末端側から1~20番目に有し、且つ、
 好ましくは全長が20~100アミノ酸、より好ましくは全長が25~90アミノ酸、さらに好ましくは全長が30~80アミノ酸であるペプチドをコードするポリヌクレオチドを例示できる。
As can be seen from the alignment results shown in FIG. 1, the uORF of the MTIP1 gene lacks sequence restrictions other than the initiation codon and conserved regions.
Therefore, for specifying the full length of the uORF of the MTIP1 gene, any one or more requirements preferably selected from the group consisting of the above (D) to (F) and the above (D1) to (F1) , more preferably the requirements of (D) above, more preferably any one or more requirements selected from the group consisting of (D1) to (F1) above, or
As another aspect, it preferably has terminal amino acids of the amino acid sequence (conserved region) represented by any one of SEQ ID NOs: 41 to 67 at positions 1 to 20 from the C-terminal side, and
A polynucleotide encoding a peptide having a total length of preferably 20 to 100 amino acids, more preferably 25 to 90 amino acids, and even more preferably 30 to 80 amino acids can be exemplified.
 MTIP1遺伝子及びそのuORFの一例として、MTIP1遺伝子が前記(A)~(C)からなる群から選ばれるいずれかのタンパク質をコードする遺伝子であり、そのuORFが、配列番号41~67のいずれか一つで表されるアミノ酸配列(保存領域)の末端のアミノ酸を、C末端側から1~20番目に有し、且つ、好ましくは全長が20~100アミノ酸、より好ましくは全長が25~90アミノ酸、さらに好ましくは全長が30~80アミノ酸であるペプチドをコードするポリヌクレオチドを例示できる。 As an example of the MTIP1 gene and its uORF, the MTIP1 gene is a gene encoding any protein selected from the group consisting of (A) to (C), and the uORF is any one of SEQ ID NOs: 41 to 67. The terminal amino acid of the amino acid sequence (conserved region) represented by is 1 to 20 from the C-terminal side, and preferably has a total length of 20 to 100 amino acids, more preferably a total length of 25 to 90 amino acids, More preferably, a polynucleotide encoding a peptide with a total length of 30 to 80 amino acids can be exemplified.
 かかるMTIP1遺伝子の前記uORFの一例として、図1に示す配列番号3~40のいずれか一つで表されるアミノ酸配列からなるペプチドをコードするポリヌクレオチドを例示できる。  An example of the uORF of the MTIP1 gene is a polynucleotide encoding a peptide consisting of an amino acid sequence represented by any one of SEQ ID NOs: 3 to 40 shown in FIG. 
 前記(D)の配列番号41で表されるアミノ酸配列を有する、配列番号3で表されるアミノ酸配列を有するペプチドをコードするuORFとしては、配列番号68で表される塩基配列を有するポリヌクレオチドが挙げられる。配列番号68で表される塩基配列は、シロイヌナズナのMTIP1のuORFの塩基配列である。 The uORF encoding the peptide having the amino acid sequence represented by SEQ ID NO: 3, which has the amino acid sequence represented by SEQ ID NO: 41 in (D) above, is a polynucleotide having the nucleotide sequence represented by SEQ ID NO: 68. mentioned. The nucleotide sequence represented by SEQ ID NO: 68 is the uORF nucleotide sequence of MTIP1 of Arabidopsis thaliana.
 前記uORFの破壊としては、MTIP1遺伝子の前記uORFの、塩基配列の全部又は一部の欠失、置換、挿入、付加、若しくはそれらの組み合わせによって、MTIP1タンパク質の翻訳抑制能が喪失又は抑制された状態を例示できる。uORFの破壊は、MTIP1タンパク質の翻訳抑制能が喪失又は抑制された状態とできるものであればよい。 Disruption of the uORF includes deletion, substitution, insertion, addition, or a combination of all or part of the base sequence of the uORF of the MTIP1 gene, resulting in loss or suppression of the ability to suppress translation of the MTIP1 protein. can be exemplified. Disruption of the uORF is sufficient as long as the ability to suppress translation of the MTIP1 protein is lost or suppressed.
 配列番号41~67に挙げたuORFの保存配列は、MTIP1タンパク質の翻訳抑制能に関する重要な働きをしていると考えられる。
 MTIP1遺伝子のuORFの効率的な破壊の観点から、前記uORFの破壊としては、MTIP1遺伝子の前記uORFの、配列番号41~67のいずれか一つで表されるアミノ酸配列に対応する保存領域における、塩基配列の全部又は一部の欠失、置換、挿入、付加、若しくはそれらの組み合わせによって、MTIP1タンパク質の翻訳抑制能が喪失又は抑制された状態を例示できる。
The uORF conserved sequences listed in SEQ ID NOS: 41 to 67 are considered to play an important role in the ability of MTIP1 protein to suppress translation.
From the viewpoint of efficient disruption of the uORF of the MTIP1 gene, disruption of the uORF includes: A state in which the ability to suppress translation of the MTIP1 protein is lost or suppressed by deletion, substitution, insertion, addition, or a combination thereof of all or part of the nucleotide sequence can be exemplified.
 例えば、植物のゲノム上のMTIP1遺伝子のuORFの一部又は全部の塩基配列が欠失されることにより、MTIP1タンパク質の翻訳抑制能を喪失又は抑制させることができる。例えば、MTIP1遺伝子のuORFの配列に別の配列が挿入されたり欠失されたりすることにより、フレームシフトが生じ、MTIP1タンパク質の翻訳抑制能を喪失又は抑制させることができる。例えば、MTIP1遺伝子のuORFの配列に別の配列が付加されたり置換されたりすることにより、遺伝子産物の構造変化が生じ、MTIP1タンパク質の翻訳抑制能を喪失又は抑制させることができる。 For example, by deleting a part or all of the nucleotide sequence of the uORF of the MTIP1 gene on the plant genome, the ability to suppress the translation of the MTIP1 protein can be lost or suppressed. For example, insertion or deletion of another sequence into or from the uORF sequence of the MTIP1 gene causes a frameshift, which can result in loss or suppression of the ability to suppress translation of the MTIP1 protein. For example, the addition or substitution of another sequence to the uORF sequence of the MTIP1 gene causes a structural change in the gene product, which can result in the loss or suppression of the ability to suppress translation of the MTIP1 protein.
 配列番号41~67で表されるアミノ酸配列に対応する保存領域は、図1に例示するように、各植物のMTIP1 mRNAのuORFのアミノ酸配列のアラインメントを行うことで、当業者であれば容易に特定可能である。 Conserved regions corresponding to the amino acid sequences represented by SEQ ID NOs: 41 to 67 can be easily identified by a person skilled in the art by aligning the amino acid sequences of the uORFs of MTIP1 mRNA of each plant, as illustrated in FIG. Identifiable.
 なお、実施形態のマグネシウム耐性植物は、前記uORFの破壊によりマグネシウム耐性が向上されていてもよいので、マグネシウム耐性植物における前記uORFは、例えば、実施形態の植物のコントロールの植物において確認することができる。
 MTIP1タンパク質をコードするMTIP1遺伝子として、好ましくは前記(D)~(F)及び前記(D1)~(F1)からなる群から選ばれるいずれかのペプチドをコードするuORFを有するポリヌクレオチド、より好ましくは前記(D1)~(F1)からなる群から選ばれるいずれかのペプチドをコードするuORFを有するポリヌクレオチドを例示する。
 MTIP1タンパク質をコードするMTIP1遺伝子として、前記(A)~(C)、前記(A1)~(C1)及び前記(A2)~(C2)からなる群から選ばれるいずれかのタンパク質をコードし、前記(D)~(F)及び前記(D1)~(F1)からなる群から選ばれるいずれかのペプチドをコードするuORFを有するポリヌクレオチドを例示する。 MTIP1タンパク質としては、当該MTIP1タンパク質をコードするMTIP1遺伝子が、前記(D)~(F)及び前記(D1)~(F1)からなる群から選ばれるいずれかのペプチドをコードするuORFを有するものを例示する。
 MTIP1タンパク質としては、前記(A)~(C)、前記(A1)~(C1)、及び前記(A2)~(C2)からなる群から選ばれるいずれかのタンパク質であり、当該MTIP1タンパク質をコードするMTIP1遺伝子が、前記(D)~(F)及び前記(D1)~(F1)からなる群から選ばれるいずれかのペプチドをコードするuORFを有するものを例示する。
In addition, since the magnesium-tolerant plant of the embodiment may have improved magnesium tolerance by disruption of the uORF, the uORF in the magnesium-tolerant plant can be confirmed, for example, in a control plant of the plant of the embodiment. .
A polynucleotide having a uORF encoding any peptide selected from the group consisting of (D) to (F) and (D1) to (F1) as the MTIP1 gene encoding the MTIP1 protein, more preferably Polynucleotides having a uORF encoding any peptide selected from the group consisting of (D1) to (F1) are exemplified.
The MTIP1 gene encoding the MTIP1 protein encodes any protein selected from the group consisting of (A) to (C), (A1) to (C1) and (A2) to (C2); Examples of polynucleotides having a uORF encoding any peptide selected from the group consisting of (D) to (F) and (D1) to (F1) are shown below. The MTIP1 protein is one in which the MTIP1 gene encoding the MTIP1 protein has a uORF encoding any peptide selected from the group consisting of (D) to (F) and (D1) to (F1). Illustrate.
The MTIP1 protein is any protein selected from the group consisting of (A) to (C), (A1) to (C1), and (A2) to (C2), and encodes the MTIP1 protein. The MTIP1 gene has a uORF encoding any peptide selected from the group consisting of (D) to (F) and (D1) to (F1).
 uORFの存在によってMTIP1タンパク質の翻訳が抑制されるメカニズムの詳細は不明ではあるが、以下のメカニズムが考えられる。
 図1に示すように、野生型のMTIP1 mRNAには、MTIP1のmORFの上流にuORFが存在する。リボソームがuORFを翻訳すると、一例として、33~70アミノ酸の短いペプチドが合成される。この際、細胞質内のMg2+濃度が高い場合には、Mg2+に応答して、自身を合成したリボソームをuORFに停滞させると考えられる。
Although the details of the mechanism by which the uORF suppresses translation of the MTIP1 protein are unknown, the following mechanism is conceivable.
As shown in FIG. 1, wild-type MTIP1 mRNA has a uORF upstream of the MTIP1 mORF. As an example, short peptides of 33-70 amino acids are synthesized when the uORF is translated by the ribosome. At this time, when the Mg 2+ concentration in the cytoplasm is high, it is thought that the ribosomes that synthesized themselves are stagnated in the uORF in response to Mg 2+ .
 図2は、uORFが介するMTIP1の発現制御による、細胞内でのMg2+濃度の恒常性維持機構の一例を示す模式図である。
 細胞質内のMg2+濃度が低い場合(図2下)では、uORFの上流からリボソームがスキャニングを開始し、リボソームがuORFを読み飛ばしたり、mORFで翻訳を再開したりすることによりmORFの翻訳が為されると考えられる。翻訳されたMTIP1タンパク質とMg2+トランスポーターとの相互作用により、Mg2+トランスポーターを通じて液胞から細胞質へMg2+の流入が生じると考えられる。
 一方、細胞質内のMg2+濃度が十分である場合(図2上)では、uORFにリボソームが停滞していることで、上記の読み飛ばしや翻訳再開が抑制され、mORFにコードされるMTIP1タンパク質の翻訳が抑制されるものと考えられる。このようにして、uORFによりMTIP1タンパク質の翻訳が抑制され、Mg2+トランスポーターを介した液胞から細胞質へのMg2+の流入が抑制されると考えられる。
FIG. 2 is a schematic diagram showing an example of a mechanism for maintaining intracellular Mg 2+ concentration homeostasis by uORF-mediated MTIP1 expression control.
When the Mg 2+ concentration in the cytoplasm is low (Fig. 2, bottom), ribosomes start scanning from the upstream of uORF, and ribosomes skip the uORF and resume translation at the mORF, resulting in translation of the mORF. is considered to be Interaction of the translated MTIP1 protein with the Mg 2+ transporter is thought to result in the influx of Mg 2+ from the vacuole to the cytoplasm through the Mg 2+ transporter.
On the other hand, when the Mg 2+ concentration in the cytoplasm is sufficient (Fig. 2, top), ribosomes are stagnant in the uORF, which suppresses the above-mentioned skipping and translation restart, and the mORF-encoded MTIP1 protein is suppressed. It is believed that translation is suppressed. In this way, it is thought that the uORF suppresses the translation of the MTIP1 protein and suppresses the influx of Mg 2+ from the vacuole to the cytoplasm via the Mg 2+ transporter.
 uORFを破壊して上記のフィードバック機構に逆らい、高濃度のMg2+環境下でMTIP1タンパク質の発現又は機能を亢進させると、さらに細胞質内のMg2+濃度が高められる方向にあると考えられる。通常であれば細胞質内のMg2+濃度を一定に保つ恒常性維持を増強させるほうが、植物のマグネシウム耐性の向上に寄与すると想定されるところ、むしろMTIP1タンパク質の発現又は機能を亢進させることで耐マグネシウム性を向上できることは、通常の想定を超える予想外の結果である。 If the uORF is disrupted to oppose the feedback mechanism described above and the expression or function of the MTIP1 protein is enhanced in a high-concentration Mg 2+ environment, the Mg 2+ concentration in the cytoplasm is likely to be further increased. Normally, it is assumed that enhancement of homeostatic maintenance that keeps the Mg 2+ concentration in the cytoplasm constant contributes to the improvement of magnesium tolerance in plants. Being able to improve performance is an unexpected result that goes beyond normal assumptions.
 何故このような効果が得られるのか、その詳細は不明ではあるが、以下のような状況が考えられる。
 MTIP1タンパク質の発現量が増え、液胞のMg2+トランスポーターが活性化されると、液胞からのMg2+の流出状態が続き、液胞中のMg2+濃度が極度に低くなるものと想定される。すると、MTIP1タンパクが活性化させるトランスポーターとは異なる種類のMg2+トランスポーター(例えば、細胞膜や液胞膜に存在する。)の発現が向上し、液胞内にMg2+を戻したり、細胞膜から細胞外へのMg2+の排出を亢進させたりするなどして、結果的に植物のマグネシウム耐性が向上されていることが考えられる。
Although the details of why such an effect is obtained are unknown, the following situations are conceivable.
It is assumed that when the expression level of MTIP1 protein increases and the vacuolar Mg 2+ transporter is activated, the Mg 2+ outflow from the vacuoles continues and the Mg 2+ concentration in the vacuoles becomes extremely low. be. Then, the expression of a different type of Mg 2+ transporter (for example, present in the cell membrane or vacuolar membrane) from the transporter activated by the MTIP1 protein is improved, and Mg 2+ is returned to the vacuole or removed from the cell membrane. It is conceivable that the magnesium tolerance of plants is improved as a result, for example, by enhancing the excretion of Mg 2+ to the outside of cells.
 本来、野生型のMTIP1遺伝子は、uORFにより高濃度のマグネシウム環境下での発現量が制御されているので、上記uORFの破壊によってのMTIP1タンパク質の翻訳を亢進することは、高濃度のマグネシウム環境下でMTIP1タンパク質の発現を亢進させる手法として、非常に有用である。例えば、過剰発現プロモーターを利用してMTIP1 mRNAの転写量を亢進させる場合と比較して、高濃度のマグネシウム環境下で、より効果的にMTIP1タンパク質の発現又は機能を亢進できると考えられる。 Originally, the expression level of the wild-type MTIP1 gene is controlled by the uORF in a high-concentration magnesium environment. It is very useful as a technique for enhancing the expression of MTIP1 protein in . For example, it is considered that the expression or function of MTIP1 protein can be more effectively enhanced in a high-concentration magnesium environment, compared to the case of enhancing the transcription level of MTIP1 mRNA using an overexpression promoter.
(植物)
 本実施形態の植物の種類としては、本発明の効果が得られるのであれば、特に制限されるものではない。MTIP1遺伝子及びそのuORFのペプチド配列は、植物種間で広く保存されていることから、植物全般に広く適用可能である。本実施形態の植物としては、種子植物が好ましく、被子植物がより好ましい。
(plant)
The type of plant used in this embodiment is not particularly limited as long as the effects of the present invention can be obtained. Since the MTIP1 gene and its uORF peptide sequence are widely conserved among plant species, they are widely applicable to plants in general. The plant of the present embodiment is preferably a seed plant, more preferably an angiosperm.
 本実施形態の植物の種類としては、例えば、イネ、コムギ、トウモロコシ等のイネ科植物、ナス、トマト、トウガラシ、ジャガイモ、タバコ等のナス科植物、キュウリ、メロン、カボチャ等のウリ科植物、エンドウ、ダイズ、インゲン等のマメ科植物、シュンギク、レタス等のキク科植物、ホウレンソウ等のアカザ科植物、イチゴ、リンゴ等のバラ科植物、ブドウ等のブドウ科植物、ミカン等のミカン科植物、シロイヌナズナ、アブラナ、キャベツ、ブロッコリー、カリフラワー、ハクサイ、ダイコン等のアブラナ科植物等を挙げることができ、上記に例示したなかではアブラナ科に属するアブラナ科植物であることが好ましい。 Plants of the present embodiment include, for example, grasses such as rice, wheat and corn; solanaceous plants such as eggplants, tomatoes, capsicums, potatoes and tobacco; cucurbitaceous plants such as cucumbers, melons and pumpkins; , soybeans, beans and other leguminous plants, Asteraceous plants such as chrysanthemum and lettuce, Chenopodiaceous plants such as spinach, Rosaceous plants such as strawberries and apples, Grape plants such as grapes, Rutaceous plants such as mandarin oranges, Arabidopsis thaliana , rape, cabbage, broccoli, cauliflower, Chinese cabbage, Japanese radish, and the like, and among the above examples, cruciferous plants belonging to the cruciferous family are preferred.
 本明細書において「植物」とは、植物体全体であっても、その一部であってもよい。実施形態に係る植物として、例えば、種子、植物細胞、植物培養細胞、細胞塊、カルス、植物組織、及び器官が挙げられる。また、マグネシウム耐性を有するものであれば、実施形態のマグネシウム耐性植物の次世代植物(子孫)又はクローンも、実施形態のマグネシウム耐性植物に含まれる。 As used herein, the term "plant" may be the entire plant body or a part thereof. Examples of plants according to embodiments include seeds, plant cells, plant cultured cells, cell masses, callus, plant tissues, and organs. In addition, next-generation plants (progeny) or clones of the magnesium-tolerant plants of the embodiments are also included in the magnesium-tolerant plants of the embodiments, as long as they have magnesium tolerance.
 本実施形態の植物は、マグネシウム耐性の他に、高濃度のナトリウム(ナトリウム塩又はNaイオン)に対するナトリウム耐性を備えていてもよい。高濃度のナトリウムとは、コントロールの植物に生育阻害又はナトリウム過剰症を誘発させる濃度のナトリウム量である。 The plant of the present embodiment may have sodium tolerance to high concentrations of sodium (sodium salt or Na + ion) in addition to magnesium tolerance. A high sodium concentration is a concentration of sodium that induces stunting or hypernatremia in control plants.
 ナトリウム耐性は、例えば、非特許文献1に示されるような従来公知のナトリウム耐性植物が有するものであってよい。 The sodium tolerance may be possessed by conventionally known sodium-tolerant plants such as those shown in Non-Patent Document 1, for example.
 海水による塩害の主な要因は、海水中に含まれる高濃度のNaイオンとMg2+イオンであるため、マグネシウム及びナトリウムの両方の耐性が向上された植物は、海水による塩害の生じた土地での栽培に好適に利用可能である。 The main cause of salt damage caused by sea water is the high concentrations of Na + and Mg 2+ ions contained in sea water. can be suitably used for the cultivation of
≪マグネシウム耐性植物の製造方法≫
 実施形態のマグネシウム耐性植物の製造方法は、植物のMTIP1タンパク質の発現又は機能を亢進させることを含む方法である。対象の植物においてMTIP1タンパク質の発現又は機能を亢進させることにより、マグネシウム耐性を向上可能である。本製造方法によれば、上記実施形態のマグネシウム耐性植物を製造可能である。
≪Method for producing magnesium-tolerant plant≫
A method for producing a magnesium-tolerant plant of the embodiment is a method including enhancing the expression or function of MTIP1 protein in the plant. Magnesium tolerance can be improved by enhancing the expression or function of the MTIP1 protein in the plant of interest. According to this production method, the magnesium-tolerant plant of the above embodiment can be produced.
 また、本発明の一実施形態として、植物のMTIP1タンパク質の発現又は機能を亢進させることを含む、植物のマグネシウム耐性を向上させる方法を提供する。 In addition, as one embodiment of the present invention, a method for improving magnesium tolerance in plants is provided, which includes enhancing the expression or function of MTIP1 protein in plants.
 MTIP1タンパク質の発現の亢進とは、前記植物のコントロールの植物におけるMTIP1タンパク質の発現量と比較して、MTIP1タンパク質の発現量が増加していることを意味する。
 MTIP1タンパク質の機能の亢進とは、前記植物のコントロールの植物のMTIP1タンパク質の機能と比較して、MTIP1タンパク質の機能が向上していることを意味する。
The enhancement of MTIP1 protein expression means that the expression level of MTIP1 protein is increased as compared with the expression level of MTIP1 protein in the control plant.
The enhanced function of MTIP1 protein means that the function of MTIP1 protein is improved as compared with the function of MTIP1 protein in the control plant.
 実施形態のマグネシウム耐性植物の製造方法について、実施形態のマグネシウム耐性植物についての説明と重複する内容については、説明を省略する。 Regarding the method for producing the magnesium-tolerant plant of the embodiment, the explanation of the contents overlapping with the explanation of the magnesium-tolerant plant of the embodiment will be omitted.
 MTIP1タンパク質としては、上記の実施形態のマグネシウム耐性植物で例示したものが挙げられる。 Examples of MTIP1 proteins include those exemplified in the magnesium-tolerant plants of the above embodiments.
 植物のMTIP1タンパク質の発現又は機能の亢進は、遺伝子工学的手法により人為的に亢進させることができる。例えば、マグネシウム耐性を向上させる対象の植物に対する遺伝子改変により、MTIP1タンパク質の発現又は機能を亢進させることが好ましい。 The expression or function enhancement of MTIP1 protein in plants can be artificially enhanced by genetic engineering techniques. For example, it is preferable to enhance the expression or function of the MTIP1 protein by genetically modifying the target plant to improve magnesium tolerance.
 実施形態のマグネシウム耐性植物の製造方法において、前記亢進は、MTIP1タンパク質の発現を亢進させることにより、前記植物のマグネシウム耐性を向上させ、前記植物のMTIP1遺伝子のuORFを破壊することで、前記MTIP1タンパク質の発現量を増加させることであることが好ましい。 In the method for producing a magnesium-tolerant plant of the embodiment, the enhancement improves the magnesium tolerance of the plant by enhancing the expression of the MTIP1 protein, and disrupting the uORF of the MTIP1 gene of the plant to reduce the MTIP1 protein. It is preferable to increase the expression level of
 uORF及びその破壊の例としては、上記の実施形態のマグネシウム耐性植物で例示したものが挙げられる。 Examples of uORFs and their destruction include those exemplified in the magnesium-tolerant plants of the above embodiments.
 別の側面として、実施形態のマグネシウム耐性植物の製造方法として、前記MTIP1遺伝子のuORFを破壊することを含む、マグネシウム耐性植物の製造方法を例示できる。 As another aspect, the method for producing a magnesium-tolerant plant of the embodiment can be exemplified by a method for producing a magnesium-tolerant plant comprising disrupting the uORF of the MTIP1 gene.
 植物の遺伝子改変の手法としては、マグネシウム耐性を向上させる対象の植物の種類に応じて、適用可能な種々の手法を適宜採用可能である。例えば、アグロバクテリウム法、パーティクルガン法、エレクトロポレーション法等を用いた遺伝子導入法による、相同組換え技術や、ゲノム編集技術等を例示できる。 As a method for genetic modification of plants, various applicable methods can be appropriately adopted depending on the type of plant to be improved in magnesium tolerance. For example, homologous recombination technology, genome editing technology, etc. by gene introduction methods using Agrobacterium method, particle gun method, electroporation method, etc. can be exemplified.
 実施形態のマグネシウム耐性植物の製造方法は、
 植物のMTIP1タンパク質の発現又は機能を亢進させること、及び
 前記植物のマグネシウム耐性を評価し、マグネシウム耐性を有する植物を選抜すること、を含むことができる。
The method for producing a magnesium-tolerant plant of the embodiment includes:
enhancing the expression or function of the MTIP1 protein in a plant; and evaluating the magnesium tolerance of the plant and selecting a magnesium-tolerant plant.
 マグネシウム耐性の評価は、高濃度のマグネシウム環境下で植物を生育させて生育状態を観察し、生育が良好な場合であれば、マグネシウム耐性を有すると評価できる。  Magnesium tolerance can be evaluated by growing plants in a high-concentration magnesium environment and observing the growth state. If the growth is good, it can be evaluated as having magnesium tolerance.
 マグネシウム耐性が向上される前記植物は、特に制限されるものではないが、種子植物が好ましく、被子植物がより好ましい。植物としては、上記の実施形態のマグネシウム耐性植物で例示したものが挙げられる。 The plant whose magnesium tolerance is improved is not particularly limited, but is preferably a seed plant, more preferably an angiosperm. Plants include those exemplified in the magnesium-tolerant plants of the above embodiments.
 製造される植物の種類は、マグネシウム耐性の他に、高濃度のナトリウム(ナトリウム塩又はNaイオン)に対するナトリウム耐性を備えていてもよい。 The plant species produced may be magnesium-tolerant as well as sodium-tolerant to high concentrations of sodium (sodium salts or Na + ions).
 ナトリウム耐性は、例えば、非特許文献1に示されるような従来公知のナトリウム耐性植物が有するものであってよい。例えば、既存のナトリウム耐性が向上された植物に、遺伝子工学的手法によりさらにMTIP1タンパク質の発現又は機能を亢進させ、ナトリウム耐性及びマグネシウム耐性が向上された植物を製造できる。また、既存のナトリウム耐性が向上された植物と、本実施形態のマグネシウム耐性植物とをかけ合わせ、ナトリウム耐性及びマグネシウム耐性が向上された植物を製造できる。 The sodium tolerance may be possessed by conventionally known sodium-tolerant plants such as those shown in Non-Patent Document 1, for example. For example, a plant with improved sodium tolerance and magnesium tolerance can be produced by further enhancing the expression or function of MTIP1 protein in an existing plant with improved sodium tolerance by genetic engineering techniques. In addition, a plant with improved sodium tolerance and magnesium tolerance can be produced by crossing an existing plant with improved sodium tolerance and the magnesium-tolerant plant of the present embodiment.
≪マグネシウム耐性植物の栽培方法≫
 実施形態のマグネシウム耐性植物の栽培方法は、実施形態のマグネシウム耐性植物を、高濃度のマグネシウム環境下で栽培することを含む。
<<Cultivation method of magnesium-tolerant plant>>
A method for cultivating a magnesium-tolerant plant of the embodiment includes cultivating the magnesium-tolerant plant of the embodiment in a high-concentration magnesium environment.
 高濃度のマグネシウムとは、対象の植物のマグネシウム耐性植物のコントロールの植物に、生育阻害又はマグネシウム過剰症を誘発させる濃度のマグネシウム量であり、一例として、上記のマグネシウム耐性植物で挙げたマグネシウム量を例示できる。
 高濃度のマグネシウム環境下としては、培地の場合は、Mg2+モル濃度が5mM以上である場合を例示でき、5~100mMであってもよく、10~80mMであってもよく、15~50mMであってもよい。土壌における高濃度のマグネシウム環境下とは、例えば、土壌中の交換性Mg2+の含量がMgO換算で50mg/100g以上である場合を例示でき、50~200mg/100gであってもよく、80~150mg/100gであってもよい。
A high concentration of magnesium is an amount of magnesium at a concentration that induces growth inhibition or hypermagnesium in control plants of magnesium-tolerant plants of interest. I can give an example.
Examples of high-concentration magnesium environments include media with a Mg 2+ molar concentration of 5 mM or more, which may be 5 to 100 mM, 10 to 80 mM, or 15 to 50 mM. There may be. A high-concentration magnesium environment in soil can be exemplified by, for example, a case where the content of exchangeable Mg 2+ in soil is 50 mg / 100 g or more in terms of MgO, and may be 50 to 200 mg / 100 g. It may be 150mg/100g.
 実施形態のマグネシウム耐性植物の栽培方法によれば、高濃度のマグネシウム環境下であっても、マグネシウムストレスへの耐性が向上された状態で、当該植物を良好に栽培できる。 According to the method for cultivating a magnesium-tolerant plant of the embodiment, the plant can be cultivated satisfactorily with improved resistance to magnesium stress even in a high-concentration magnesium environment.
≪遺伝子≫
 野生型のMTIP1 mRNAは、MTIP1のmORFの上流にuORFを有するが、本発明の一実施形態の遺伝子として、uORFが破壊されたMTIP1遺伝子であり、前記MTIP1遺伝子にコードされる前記MTIP1タンパク質が、以下の(A)~(C)からなる群から選ばれるタンパク質である、MTIP1遺伝子を提供する。
 (A)配列番号1で表されるアミノ酸配列を有するタンパク質
 (B)配列番号1で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
 (C)配列番号1で表されるアミノ酸配列との配列同一性が90%以上であるアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
≪Genes≫
Wild-type MTIP1 mRNA has a uORF upstream of the mORF of MTIP1, but the gene of one embodiment of the present invention is an MTIP1 gene in which the uORF is disrupted, and the MTIP1 protein encoded by the MTIP1 gene is Provided is the MTIP1 gene, which is a protein selected from the group consisting of the following (A) to (C).
(A) a protein having the amino acid sequence represented by SEQ ID NO: 1; (B) having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1; A protein that contributes to the improvement of magnesium tolerance in plants through enhanced expression or function (C) having an amino acid sequence with a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function A protein that contributes to the improvement of magnesium tolerance in plants by
 実施形態の遺伝子は、前記MTIP1遺伝子の前記uORFが、以下の(D)~(F)からなる群から選ばれるペプチドをコードし、前記uORFの破壊が、配列番号41~67のいずれか一つで表されるアミノ酸配列に対応する領域における、塩基配列の全部又は一部の欠失、置換、挿入、付加、若しくはそれらの組み合わせによって、前記MTIP1タンパク質の翻訳抑制能が喪失又は抑制されたものであることが好ましい。
 (D)配列番号41~67のいずれか一つで表されるアミノ酸配列を有するペプチド
 (E)配列番号41~67のいずれか一つで表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
 (F)配列番号41~67のいずれか一つで表されるアミノ酸配列との配列同一性が70%以上であるアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
In the gene of the embodiment, the uORF of the MTIP1 gene encodes a peptide selected from the group consisting of (D) to (F) below, and the disruption of the uORF is any one of SEQ ID NOS: 41 to 67 The ability to suppress translation of the MTIP1 protein is lost or suppressed by deletion, substitution, insertion, addition, or a combination thereof of all or part of the nucleotide sequence in the region corresponding to the amino acid sequence represented by Preferably.
(D) a peptide having an amino acid sequence represented by any one of SEQ ID NOs: 41 to 67 (E) in the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67, one or more amino acids A peptide having a deleted, substituted, or added amino acid sequence and having the ability to inhibit translation of the MTIP1 protein (F) having a sequence identity of 70 with the amino acid sequence represented by any one of SEQ ID NOS: 41 to 67 % or more and having the ability to suppress the translation of the MTIP1 protein
 本実施形態の遺伝子とは、DNA、RNA等の核酸であってよく、ゲノム上のポリヌクレオチドの他、その遺伝子産物のポリヌクレオチド、mRNA、cDNA、及び単離された遺伝子クローンを含む。 A gene in the present embodiment may be a nucleic acid such as DNA or RNA, and includes polynucleotides on the genome, as well as polynucleotides, mRNA, cDNA, and isolated gene clones of gene products thereof.
 実施形態の遺伝子によれば、高濃度のマグネシウム環境下であっても、植物においてMTIP1タンパク質の発現が容易に亢進され、植物のマグネシウム耐性を向上可能である。実施形態の遺伝子を有する又は導入された植物は、マグネシウム耐性が向上される。 According to the gene of the embodiment, even in a high-concentration magnesium environment, the expression of MTIP1 protein is easily enhanced in plants, and the magnesium tolerance of plants can be improved. A plant having or introduced with the gene of the embodiment has improved magnesium tolerance.
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will now be described in more detail with reference to examples, but the present invention is not limited to the following examples.
1. ゲノム編集によるMTIP1遺伝子のuORFへの変異導入
 CRISPR/Cas9システムを用いてシロイヌナズナのMTIP1遺伝子のuORFに変異を導入するために、MTIP1 uORFの一部の領域と一致する配列を含む2種類のguide RNA (gRNA) を発現させるバイナリーベクタープラスミドをそれぞれ作製した。このバイナリーベクタープラスミドの作製のため、gR2for (配列番号69:5′-ATTGCGTTCACGGGTCGAGGCCA-3′) と gR2rev (配列番号70:5′-AAACTGGCCTCGACCCGTGAACG-3′) という配列のオリゴヌクレオチドペアと、gR3for (配列番号71:5′-ATTGGATCCGAAAGCGAAAACAG-3′)とgR3rev (配列番号72:5′-AAACCTGTTTTCGCTTTCGGATC-3′)という配列のオリゴヌクレオチドペアをそれぞれアニールさせ、ゲノム編集用バイナリーベクタープラスミドpKI1.1R (既報:Tsutsui, H. & Higashiyama, T. pKAMA-ITACHI Vectors for Highly Efficient CRISPR/Cas9-Mediated Gene Knockout in Arabidopsis thaliana. Plant Cell Physiol. 58, 46-56 (2017)) のAarI部位にそれぞれ挿入した。pKI1.1RのT-DNA領域には、gRNAを発現させる発現カセットに加え、Cas9タンパク質を分裂組織で発現させる発現カセットと赤色蛍光タンパク質RFPを種子で発現させる発現カセットが含まれる。
1. Introduction of mutations into the uORF of the MTIP1 gene by genome editing In order to introduce mutations into the uORF of the MTIP1 gene of Arabidopsis thaliana using the CRISPR/Cas9 system, two types of mutagenesis containing a sequence that matches a partial region of the MTIP1 uORF were generated. A binary vector plasmid expressing guide RNA (gRNA) was constructed. For construction of this binary vector plasmid, the oligonucleotide pair of sequences gR2for (SEQ ID NO: 69: 5′-ATTGCGTTCACGGGTCGAGGCCA-3′) and gR2rev (SEQ ID NO: 70: 5′-AAACTGGCCTCGACCCGTGAACG-3′) and gR3for (SEQ ID NO: 71: 5'-ATTGGATCCGAAAGCGAAAACAG-3') and gR3rev (SEQ ID NO: 72: 5'-AAACCTGTTTTCGCTTTCGGATC-3') were annealed to generate a genome-editing binary vector plasmid pKI1.1R (previous report: Tsutsui, H. & Higashiyama, T. pKAMA-ITACHI Vectors for Highly Efficient CRISPR/Cas9-Mediated Gene Knockout in Arabidopsis thaliana. Plant Cell Physiol. 58, 46-56 (2017)). The T-DNA region of pKI1.1R contains an expression cassette that expresses gRNA, an expression cassette that expresses Cas9 protein in meristems, and an expression cassette that expresses red fluorescent protein RFP in seeds.
 作製したプラスミドをアグロバクテリウムC58C1RifR (pGV2260)株に導入し、フローラルディップ法によりそのアグロバクテリウムをシロイヌナズナ(エコタイプCol-0)に感染させた。アグロバクテリウムを感染させた植物から採取したT1種子の中から赤色蛍光を発する種子を形質転換種子として選抜し、ジフィーセブン(サカタのタネ社製)に播種して22℃の恒明条件下で栽培した。T1世代の形質転換植物のロゼット葉からDNAを抽出してheteroduplex mobility assay (HMA)とシークエンス解析を行い、MTIP1遺伝子のuORFに導入された変異を検出した。その結果、野生型(WT)の塩基配列(図3中の塩基配列:配列番号73,図3中のアミノ酸配列:配列番号74)に対し、MTIP1 uORFの保存領域を含む55塩基の領域が欠失した変異体(変異体1、図3中の塩基配列:配列番号75,図3中のアミノ酸配列:配列番号76)と、MTIP1 uORFの保存領域の上流に2塩基挿入が生じた変異体(変異体2、図3中の塩基配列:配列番号77,図3中のアミノ酸配列:配列番号78)を得た。これらの2つの変異体のいずれにおいても、MTIP1 uORFの保存領域の大部分のアミノ酸配列が変化していた(図3)。 The prepared plasmid was introduced into the Agrobacterium C58C1RifR (pGV2260) strain, and Arabidopsis thaliana (ecotype Col-0) was infected with the Agrobacterium by the floral dip method. Among the T1 seeds collected from Agrobacterium-infected plants, seeds emitting red fluorescence were selected as transgenic seeds, sown in Jiffy Seven (manufactured by Sakata Seed Co., Ltd.) and cultivated under constant light conditions at 22°C. bottom. DNA was extracted from rosette leaves of transgenic plants of the T1 generation and subjected to heteroduplex mobility assay (HMA) and sequence analysis to detect mutations introduced into the uORF of the MTIP1 gene. As a result, a 55-base region containing the conserved region of MTIP1 uORF was deleted from the wild-type (WT) nucleotide sequence (nucleotide sequence in FIG. 3: SEQ ID NO: 73, amino acid sequence in FIG. 3: SEQ ID NO: 74). A mutant (mutant 1, nucleotide sequence in FIG. 3: SEQ ID NO: 75, amino acid sequence in FIG. 3: SEQ ID NO: 76) and a mutant with a two-base insertion upstream of the conserved region of MTIP1 uORF ( Mutant 2 (nucleotide sequence in FIG. 3: SEQ ID NO: 77, amino acid sequence in FIG. 3: SEQ ID NO: 78) was obtained. Both of these two mutants changed the amino acid sequence of most of the conserved regions of MTIP1 uORF (Fig. 3).
 2. 一過的発現解析
 ゲノム編集によりMTIP1 uORFに生じた変異が、MTIP1タンパク質の発現にどのような影響を与えるかを、一過的発現系を用いて調べた。この解析で使用するプラスミドを構築するために、まずトゲオキヒオドシエビ[Oplophorus gracilirostris]由来のルシフェラーゼNanoLuc (Nluc)にPEST配列を付加したタンパク質 (NlucP) をコードする遺伝子が、カリフラワーモザイクウイルス35S RNAプロモーター(35Sプロモーター)の下流に連結されたプラスミドpNH007を作製した。このプラスミドpNH007の作製のため、プラスミドpNL1.2 (プロメガ社製) を鋳型にして、プライマーNlucPfor (配列番号79:5′-GAAAGATGGCGTCGACGGTCTTCACACTCGAAGA-3′) と NlucPrev (配列番号80:5′- TCATCTTCATCTTCGAGCTCTTAGACGTTGATGCGAGCTG-3′) を用いてNlucPコード領域をPCR法により増幅した。得られたPCR断片をプラスミドpKM56 (既報:Hayashi et al. 2017)の SalI部位とSacI部位の間にSLiCE法を用いて挿入することにより、プラスミドpNH007を作製した。
2. Transient expression analysis A transient expression system was used to investigate how the mutations in the MTIP1 uORF caused by genome editing affect the expression of the MTIP1 protein. To construct the plasmid used in this analysis, the gene encoding the luciferase NanoLuc (Nluc) derived from Oplophorus gracilirostris (Nluc) with a PEST sequence added to the protein (NlucP) was transferred to the cauliflower mosaic virus 35S RNA promoter. Plasmid pNH007 was constructed which was ligated downstream of (35S promoter). To construct this plasmid pNH007, plasmid pNL1.2 (manufactured by Promega) was used as a template, and primers NlucPfor (SEQ ID NO: 79: 5'-GAAAGATGGCGTCGACGGTCTTCACACTCGAAGA-3') and NlucPrev (SEQ ID NO: 80: 5'-TCATCTTCATCTTCGAGCTCTTAGACGTTGATGCGAGCTG-3) were used. ′) was used to amplify the NlucP coding region by PCR. Plasmid pNH007 was prepared by inserting the resulting PCR fragment between the SalI and SacI sites of plasmid pKM56 (previous report: Hayashi et al. 2017) using the SLiCE method.
 次に、野生型シロイヌナズナ(エコタイプCol-0)と変異体のゲノムDNAからプライマーAT1G70780 5′UTRfor (配列番号81:5′-ATTTGGAGAGAACCAACAATCACATTCTTCTC-3′) とAT1G70780 5′UTRrev (配列番号82:5′-AGAGTCGACAACATCTTCGAAATCGAGAGA-3′)を用いてMTIP1遺伝子の5′ 非翻訳領域をPCR法により増幅した。一方で、プラスミドpBI221を鋳型にしてプライマーpUC19rev3 (配列番号83:5′-GACCATGATTACGCCAAGCT-3′) とAT1G70780 35Srev (配列番号84:5′-TGTGATTGTTGGTTCTCTCCAAATGAAATGAACT-3′) を用いて35Sプロモーター領域を増幅した。次に、オーバーラップPCR法を用いて、35Sプロモーター領域のPCR断片とMTIP1 5′ 非翻訳領域のPCR断片を融合させた。融合させたPCR断片をEcoRVとSalIで切断し、プラスミドpNH007の35Sプロモーター内のEcoRV部位とNlucPコード領域上流のSalI部位の間に挿入した。 Next, primers AT1G70780 5′UTRfor (SEQ ID NO: 81: 5′-ATTTGGAGAGAACCAAACAATCACATTCTTCTC-3′) and AT1G70780 5′UTRrev (SEQ ID NO: 82: 5′) were obtained from wild-type Arabidopsis thaliana (ecotype Col-0) and mutant genomic DNA. -AGAGTCGACAACATCTTCGAAATCGAGAGA-3') was used to amplify the 5' untranslated region of the MTIP1 gene by PCR. On the other hand, the 35S promoter region was amplified using plasmid pBI221 as a template and primers pUC19rev3 (SEQ ID NO: 83: 5'-GACCATGATTACGCCAAGCT-3') and AT1G70780 35Srev (SEQ ID NO: 84: 5'-TGTGATTGTTGGTTCTCTCCAAATGAAATGAACT-3'). Next, the PCR fragment of the 35S promoter region and the PCR fragment of the MTIP1 5' untranslated region were fused using overlap PCR. The fused PCR fragment was cut with EcoRV and SalI and inserted between the EcoRV site in the 35S promoter of plasmid pNH007 and the SalI site upstream of the NlucP coding region.
 そのようにして作製したレポータープラスミドと内部標準プラスミドpKM56 (Hayashi et al. 2017)(35Sプロモーターの下流にブラジル産ヒカリコメツキムシ(Pyrearinus termitilluminans)由来のルシフェラーゼ[Eluc-PEST]遺伝子を繋いだコンストラクトを持つプラスミド)をポリエチレングリコール(PEG)法を用いてシロイヌナズナ培養細胞MM2dのプロトプラストへ導入した。その際に、1.5 × 105個のプロトプラストを100 μlのMaMg溶液 (5 mM morpholinoethanesulfonic acid, 15 mM MgCl2, 0.4 M mannitol, pH 5.8)に懸濁し、レポータープラスミドと内部標準プラスミドを5 μgずつ含むDNA溶液15 μlを加えた後、115 μl のPEG溶液 (40% PEG4000, 0.1 mM CaCl2, 0.2 M mannitol) と混合した。室温で15分間静置した後、800 μl の洗浄バッファー (0.4 M mannitol, 5 mM CaCl2, and 0.5 M 2-(N-morpholino)ethanesulfonic acid, pH 5.8) を加えて混和した。遠心分離によりプロトプラストを回収し、0.4 Mマンニトールを含みMgSO4を含まない1000 μlの改変液体LS培地に再懸濁した。プロトプラスト懸濁液を450 μlずつ2本のマイクロチューブに分注し、一方には3 μlの300 mM MgSO4(終濃度2.0 mM)を加え、もう一方には同量の水を加えた。22℃の暗所で24時間培養した後、遠心分離によりプロトプラストを回収し、100 μlの抽出バッファー(100 mM(NaH2/Na2H)PO4 and 5 mM DTT, pH 7)に懸濁した。ボルテックスミキサーを用いて振盪させることにより、プロトプラストを破砕し、遠心分離後に上清に含まれる細胞抽出液を回収した。細胞抽出液中のNlucとElucの活性をNano-Glo Luciferase Assay System (プロメガ社製)とLuciferase Assay System (プロメガ社製)を用いて、ルミノメーターLumat LB9507 (Berthold社製)で測定した。各レポータープラスミドについてそれぞれ3反復の実験を行い、Eluc活性で標準化したNluc活性の平均値と標準偏差を算出した。 The reporter plasmid thus prepared and the internal standard plasmid pKM56 (Hayashi et al. 2017) (a plasmid with a construct in which the luciferase [Eluc-PEST] gene derived from the Brazilian click beetle (Pyrearinus termitilluminans) is linked downstream of the 35S promoter ) was introduced into protoplasts of Arabidopsis thaliana cultured cells MM2d using the polyethylene glycol (PEG) method. At that time, 1.5 × 10 5 protoplasts were suspended in 100 µl of MaMg solution (5 mM morpholinoethanesulfonic acid, 15 mM MgCl 2 , 0.4 M mannitol, pH 5.8) containing 5 µg each of reporter plasmid and internal standard plasmid. After adding 15 μl of DNA solution, it was mixed with 115 μl of PEG solution (40% PEG4000, 0.1 mM CaCl 2 , 0.2 M mannitol). After allowing to stand at room temperature for 15 minutes, 800 μl of washing buffer (0.4 M mannitol, 5 mM CaCl 2 , and 0.5 M 2-(N-morpholino)ethanesulfonic acid, pH 5.8) was added and mixed. Protoplasts were harvested by centrifugation and resuspended in 1000 μl modified liquid LS medium containing 0.4 M mannitol without MgSO 4 . 450 μl of the protoplast suspension was dispensed into two microtubes, 3 μl of 300 mM MgSO 4 (final concentration: 2.0 mM) was added to one, and the same amount of water was added to the other. After culturing for 24 hours in the dark at 22°C, protoplasts were collected by centrifugation and suspended in 100 μl of extraction buffer (100 mM (NaH 2 /Na 2 H)PO 4 and 5 mM DTT, pH 7). . The protoplasts were disrupted by shaking using a vortex mixer, and the cell extract contained in the supernatant was collected after centrifugation. The activities of Nluc and Eluc in the cell extract were measured using Nano-Glo Luciferase Assay System (Promega) and Luciferase Assay System (Promega) with a luminometer Lumat LB9507 (Berthold). Triplicate experiments were performed for each reporter plasmid, and the mean and standard deviation of Nluc activity normalized by Eluc activity were calculated.
 結果を図4に示す。野生型のシロイヌナズナの生育に十分量である2 mM MgSO4を含む培地(Mg +)とMg塩を含まない培地(Mg -)のいずれの培地で培養した場合にも、野生型のMTIP1 5′ 非翻訳領域を持つレポータープラスミドと比べて、変異体のMTIP1 5′ 非翻訳領域を持つレポータープラスミドは高いNluc活性を示した。特に、2 mM MgSO4を含む培地(Mg +)で培養した場合を参照すると、野生型と変異体とで、その差は顕著であった。この結果から、ゲノム編集によりMTIP1 uORFに生じた変異が主要ORFの翻訳に促進的効果を及ぼし、MTIP1タンパク質の発現量を増加させたことが示唆された。 The results are shown in FIG. Wild-type MTIP1 5′ was observed in both media containing 2 mM MgSO 4 (Mg + ), which is sufficient for the growth of wild-type Arabidopsis thaliana, and in media without Mg salts (Mg − ). Reporter plasmids with mutant MTIP1 5' untranslated regions showed higher Nluc activity than reporter plasmids with untranslated regions. In particular, the difference between the wild-type and mutants was remarkable when they were cultured in a medium (Mg + ) containing 2 mM MgSO 4 . This result suggests that genome-edited mutations in the MTIP1 uORF had a stimulatory effect on the translation of the major ORF and increased the expression of the MTIP1 protein.
3. MTIP1 uORF破壊株のMg耐性試験
 シロイヌナズナのMTIP1 uORF破壊株の表現系解析を行うために、ゲノム編集でMTIP1 uORFに生じた、上記の変異体1の変異をホモ接合体として持つ系統を、PCR、HMA、シークエンス解析により選抜した。さらに、T-DNAが除かれた変異ホモ接合体系統を確立するために、種子の赤色蛍光が見られない系統を選抜した。そのようにして確立した変異ホモ接合体系統の種子を野生型シロイヌナズナ(エコタイプCol-0)の種子とともに20 mM MgSO4を含むMGRL寒天培地 (既報:Fujiwara, T., Hirai, M. Y., Chino, M., Komeda, Y. & Naito, S. Effects of Sulfur Nutrition on Expression of the Soybean Seed Storage Protein Genes in Transgenic Petunia. Plant Physiol. 99, (1992).) に播種し、22℃の恒明条件下で2週間栽培した。使用した培地の組成を以下に示す。
3. Mg resistance test of MTIP1 uORF disruption strain Selected by PCR, HMA, and sequence analysis. In addition, lines with no red fluorescence of seeds were selected to establish mutant homozygous lines in which the T-DNA was deleted. Seeds of the homozygous mutant lines thus established were grown together with seeds of wild-type Arabidopsis thaliana (ecotype Col-0) on MGRL agar medium containing 20 mM MgSO 4 (previous report: Fujiwara, T., Hirai, M. Y., Chino, M., Komeda, Y. & Naito, S. Effects of Sulfur Nutrition on Expression of the Soybean Seed Storage Protein Genes in Transgenic Petunia. Plant Physiol. 99, (1992). Cultivated for 2 weeks. The composition of the medium used is shown below.
 1.75 mM sodium phosphate buffer (pH 5.8)
 20 mM MgSO4
 2.0 mM Ca(NO3)2
 3.0 mM KNO3
 67 μM Na2EDTA
 8.6 μM FeSO4
 10.3 μM MnSO4
 30 μM H3BO3
 1.0 μM ZnSO4
 24 nM (NH4)6Mo7O24
 130 nM CoCl2
 1 μM CuSO4
1.75mM sodium phosphate buffer (pH 5.8)
20 mM MgSO4
2.0 mM Ca( NO3 ) 2
3.0 mM KNO3
67 μM Na2EDTA
8.6 µM FeSO4
10.3 μM MnSO4
30 μM H3BO3
1.0 μM ZnSO4
24 nM ( NH4 ) 6Mo7O24
130 nM CoCl2
1 μM CuSO4
 結果を図5に示す。図5に示されるとおり、野生型植物では高濃度のMg2+による生育阻害が観察され、特に地上部の著しい矮化が見られた。一方、変異体では野生型植物と比べて生育が大幅に改善されていた。このことから、MTIP1 uORFの破壊によるMTIP1タンパク質の発現量の増加により、高濃度のMg2+に対する植物の耐性を向上できたことが示された。
 本実験で用いた培地に含まれる20 mMのMgSO4は、海水に含まれるにMg2+ 濃度(モル基準)の40%にあたる。このことから、本発明を適用した変異体(MTIP1 uORF破壊株)が、非常に優れたマグネシウム耐性を有することが分かる。
The results are shown in FIG. As shown in FIG. 5, in wild-type plants, growth inhibition due to high concentrations of Mg 2+ was observed, and remarkable dwarfing of the above-ground part was observed. On the other hand, the mutant had significantly improved growth compared to the wild-type plant. This indicated that disruption of the MTIP1 uORF increased the expression level of the MTIP1 protein, which improved the tolerance of plants to high concentrations of Mg 2+ .
20 mM MgSO 4 contained in the medium used in this experiment corresponds to 40% of the Mg 2+ concentration (on a molar basis) contained in seawater. From this, it can be seen that the mutant (MTIP1 uORF disruption strain) to which the present invention is applied has extremely excellent magnesium tolerance.
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。 Each configuration and combination thereof in each embodiment is an example, and addition, omission, replacement, and other modifications of the configuration are possible without departing from the scope of the present invention. Moreover, the present invention is not limited by each embodiment, but is limited only by the scope of the claims.

Claims (15)

  1.  MTIP1タンパク質の発現又は機能が亢進している、マグネシウム耐性植物。 A magnesium-tolerant plant in which the expression or function of the MTIP1 protein is enhanced.
  2.  前記MTIP1タンパク質が、以下の(A)~(C)からなる群から選ばれるタンパク質である、請求項1に記載の植物。
     (A)配列番号1で表されるアミノ酸配列を有するタンパク質
     (B)配列番号1で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
     (C)配列番号1で表されるアミノ酸配列との配列同一性が90%以上であるアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
    The plant according to claim 1, wherein the MTIP1 protein is a protein selected from the group consisting of (A) to (C) below.
    (A) a protein having the amino acid sequence represented by SEQ ID NO: 1; (B) having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1; A protein that contributes to the improvement of magnesium tolerance in plants through enhanced expression or function (C) having an amino acid sequence with a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function A protein that contributes to the improvement of magnesium tolerance in plants by
  3.  遺伝子改変により前記MTIP1タンパク質の発現又は機能が亢進されている、請求項1又は2に記載の植物。 The plant according to claim 1 or 2, wherein the expression or function of the MTIP1 protein is enhanced by genetic modification.
  4.  前記MTIP1タンパク質の発現の亢進により、マグネシウム耐性が向上され、
     前記MTIP1タンパク質をコードするMTIP1遺伝子のuORFの破壊により、前記MTIP1タンパク質の発現が亢進している、請求項1~3のいずれか一項に記載の植物。
    Magnesium tolerance is improved by enhancing the expression of the MTIP1 protein,
    4. The plant according to any one of claims 1 to 3, wherein disruption of the uORF of the MTIP1 gene encoding the MTIP1 protein enhances the expression of the MTIP1 protein.
  5.  前記MTIP1遺伝子の前記uORFが、以下の(D)~(F)からなる群から選ばれるペプチドをコードする、請求項4に記載の植物。
     (D)配列番号41~67のいずれか一つで表されるアミノ酸配列を有するペプチド
     (E)配列番号41~67のいずれか一つで表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
     (F)配列番号41~67のいずれか一つで表されるアミノ酸配列との配列同一性が70%以上であるアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
    5. The plant according to claim 4, wherein said uORF of said MTIP1 gene encodes a peptide selected from the group consisting of (D) to (F) below.
    (D) a peptide having an amino acid sequence represented by any one of SEQ ID NOs: 41 to 67 (E) in the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67, one or more amino acids A peptide having a deleted, substituted, or added amino acid sequence and having the ability to inhibit translation of the MTIP1 protein (F) having a sequence identity of 70 with the amino acid sequence represented by any one of SEQ ID NOS: 41 to 67 % or more and having the ability to suppress the translation of the MTIP1 protein
  6.  種子植物である、請求項1~5のいずれか一項に記載の植物。 The plant according to any one of claims 1 to 5, which is a seed plant.
  7.  植物のMTIP1タンパク質の発現又は機能を亢進させることを含む、マグネシウム耐性植物の製造方法。 A method for producing a magnesium-tolerant plant, comprising enhancing the expression or function of the plant's MTIP1 protein.
  8.  前記MTIP1タンパク質が、以下の(A)~(C)からなる群から選ばれるタンパク質である、請求項7に記載の製造方法。
     (A)配列番号1で表されるアミノ酸配列を有するタンパク質
     (B)配列番号1で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
     (C)配列番号1で表されるアミノ酸配列との配列同一性が90%以上であるアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
    The production method according to claim 7, wherein the MTIP1 protein is a protein selected from the group consisting of (A) to (C) below.
    (A) a protein having the amino acid sequence represented by SEQ ID NO: 1; (B) having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1; A protein that contributes to the improvement of magnesium tolerance in plants through enhanced expression or function (C) having an amino acid sequence with a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function A protein that contributes to the improvement of magnesium tolerance in plants by
  9.  遺伝子改変によりMTIP1タンパク質の発現又は機能を亢進させる、請求項7又は8に記載の製造方法。 The production method according to claim 7 or 8, wherein the expression or function of MTIP1 protein is enhanced by genetic modification.
  10.  MTIP1タンパク質の発現を亢進させることにより、前記植物のマグネシウム耐性を向上させ、
     前記植物の前記MTIP1タンパク質をコードするMTIP1遺伝子のuORFを破壊することで、前記MTIP1タンパク質の発現量を増加させる、請求項7~9のいずれか一項に記載の製造方法。
    improving the magnesium tolerance of the plant by enhancing the expression of the MTIP1 protein,
    The production method according to any one of claims 7 to 9, wherein the expression level of the MTIP1 protein is increased by disrupting the uORF of the MTIP1 gene encoding the MTIP1 protein in the plant.
  11.  前記MTIP1遺伝子の前記uORFが、以下の(D)~(F)からなる群から選ばれるペプチドをコードする、請求項10に記載の製造方法。
     (D)配列番号41~67のいずれか一つで表されるアミノ酸配列を有するペプチド
     (E)配列番号41~67のいずれか一つで表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
     (F)配列番号41~67のいずれか一つで表されるアミノ酸配列との配列同一性が70%以上であるアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
    The production method according to claim 10, wherein the uORF of the MTIP1 gene encodes a peptide selected from the group consisting of (D) to (F) below.
    (D) a peptide having an amino acid sequence represented by any one of SEQ ID NOs: 41 to 67 (E) in the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67, one or more amino acids A peptide having a deleted, substituted, or added amino acid sequence and having the ability to inhibit translation of the MTIP1 protein (F) having a sequence identity of 70 with the amino acid sequence represented by any one of SEQ ID NOS: 41 to 67 % or more and having the ability to suppress the translation of the MTIP1 protein
  12.  前記植物が、種子植物である、請求項7~11のいずれか一項に記載の製造方法。 The production method according to any one of claims 7 to 11, wherein the plant is a seed plant.
  13.  請求項1~6のいずれか一項に記載の植物を、高濃度のマグネシウム環境下で栽培することを含む、マグネシウム耐性植物の栽培方法。 A method for cultivating a magnesium-tolerant plant, which comprises cultivating the plant according to any one of claims 1 to 6 in a high-concentration magnesium environment.
  14.  uORFが破壊されたMTIP1遺伝子であり、
     前記MTIP1遺伝子にコードされるMTIP1タンパク質が、以下の(A)~(C)からなる群から選ばれるタンパク質である、MTIP1遺伝子。
     (A)配列番号1で表されるアミノ酸配列を有するタンパク質
     (B)配列番号1で表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
     (C)配列番号1で表されるアミノ酸配列との配列同一性が90%以上であるアミノ酸配列を有し、発現又は機能の亢進により植物のマグネシウム耐性の向上に寄与するタンパク質
    a uORF-disrupted MTIP1 gene,
    The MTIP1 gene, wherein the MTIP1 protein encoded by the MTIP1 gene is a protein selected from the group consisting of (A) to (C) below.
    (A) a protein having the amino acid sequence represented by SEQ ID NO: 1; (B) having an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1; A protein that contributes to the improvement of magnesium tolerance in plants through enhanced expression or function (C) having an amino acid sequence with a sequence identity of 90% or more with the amino acid sequence represented by SEQ ID NO: 1, and enhanced in expression or function A protein that contributes to the improvement of magnesium tolerance in plants by
  15.  前記MTIP1遺伝子の前記uORFが、以下の(D)~(F)からなる群から選ばれるペプチドをコードし、前記uORFの破壊が、配列番号41~67のいずれか一つで表されるアミノ酸配列に対応する領域における、全部又は一部の欠失、置換、挿入、付加、若しくはそれらの組み合わせによって、前記MTIP1タンパク質の翻訳抑制能が喪失又は抑制された、請求項14に記載の遺伝子。
     (D)配列番号41~67のいずれか一つで表されるアミノ酸配列を有するペプチド
     (E)配列番号41~67のいずれか一つで表されるアミノ酸配列において、1又は複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
     (F)配列番号41~67のいずれか一つで表されるアミノ酸配列との配列同一性が70%以上であるアミノ酸配列を有し、前記MTIP1タンパク質の翻訳抑制能を有するペプチド
    The uORF of the MTIP1 gene encodes a peptide selected from the group consisting of (D) to (F) below, and the disruption of the uORF is an amino acid sequence represented by any one of SEQ ID NOS: 41 to 67 15. The gene according to claim 14, wherein the ability to suppress translation of the MTIP1 protein is lost or suppressed by deletion, substitution, insertion, addition, or a combination thereof, in whole or in part, in the region corresponding to .
    (D) a peptide having an amino acid sequence represented by any one of SEQ ID NOs: 41 to 67 (E) in the amino acid sequence represented by any one of SEQ ID NOs: 41 to 67, one or more amino acids A peptide having a deleted, substituted, or added amino acid sequence and having the ability to inhibit translation of the MTIP1 protein (F) having a sequence identity of 70 with the amino acid sequence represented by any one of SEQ ID NOS: 41 to 67 % or more and having the ability to suppress the translation of the MTIP1 protein
PCT/JP2022/012317 2021-09-10 2022-03-17 Magnesium-tolerant plant, method for producing magnesium-tolerant plant, method for cultivating magnesium-tolerant plant, and gene WO2023037620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-147788 2021-09-10
JP2021147788A JP2023040675A (en) 2021-09-10 2021-09-10 Magnesium-tolerant plant, method for producing magnesium-tolerant plant, method for cultivating magnesium-tolerant plant and gene

Publications (1)

Publication Number Publication Date
WO2023037620A1 true WO2023037620A1 (en) 2023-03-16

Family

ID=85507359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012317 WO2023037620A1 (en) 2021-09-10 2022-03-17 Magnesium-tolerant plant, method for producing magnesium-tolerant plant, method for cultivating magnesium-tolerant plant, and gene

Country Status (2)

Country Link
JP (1) JP2023040675A (en)
WO (1) WO2023037620A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Journal of the American College of Cardiology", vol. 69, 25 March 2021, ELSEVIER, AMSTERDAM, NL, ISSN: 0735-1097, article HAYASHI NORIYA: "Studies on upstream open reading frame-eoncoded peptides that cause ribosome stalling in plants [an abstract of entire text]", pages: 1 - 4, XP093046000 *
DATABASE Uniprot Uniprot; . . : "At1g70780", XP093046028 *
HAYASHI NORIYA, SASAKI SHUN, TAKAHASHI HIRO, YAMASHITA YUI, NAITO SATOSHI, ONOUCHI HITOSHI: "Identification of Arabidopsis thaliana upstream open reading frames encoding peptide sequences that cause ribosomal arrest", NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, GB, vol. 45, no. 15, 6 September 2017 (2017-09-06), GB , pages 8844 - 8858, XP093046008, ISSN: 0305-1048, DOI: 10.1093/nar/gkx528 *
UM TAEYOUNG, PARK TAEHYEON, SHIM JAE SUNG, KIM YOUN SHIC, LEE GANG-SEOB, CHOI IK-YOUNG, KIM JU-KON, SEO JUN SUNG, PARK SOO CHUL: "Application of Upstream Open Reading Frames (uORFs) Editing for the Development of Stress-Tolerant Crops", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 22, no. 7, pages 3743, XP093046007, DOI: 10.3390/ijms22073743 *

Also Published As

Publication number Publication date
JP2023040675A (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US9556422B2 (en) Highly glyphosate-resistant mutated gene, method of modification and use thereof
Guo et al. SOS1 is a key systemic regulator of salt secretion and K+/Na+ homeostasis in the recretohalophyte Karelinia caspia
US20160068860A1 (en) Transgenic plants
CN110713526B (en) Wheat stress-resistant protein TaBZR2D and coding gene and application thereof
WO2011018662A1 (en) Stress tolerant plants
US20110099650A1 (en) Compositions and method for modulating plant root hair development
US10184129B2 (en) Method and compositions to promote plant growth in metal contaminated environments
US7968768B2 (en) Generation of plants with improved drought tolerance
Wang et al. Isolation and characterization of a tonoplast Na+/H+ antiporter from the halophyte Nitraria sibirica
WO2023037620A1 (en) Magnesium-tolerant plant, method for producing magnesium-tolerant plant, method for cultivating magnesium-tolerant plant, and gene
US10351875B2 (en) Method for producing transgenic plant with increased content of 20-hydroxyecdysone using CYP85 gene from Spinacia oleracea and the plant thereof
KR101346586B1 (en) Method for producing transgenic plant with increased ability of immune response against pathogen using reca1 gene from arabidopsis thaliana and the plant thereof
US20160002664A1 (en) Generation of crops resistant to cereal rust disease by silencing of specific pathogen genes
CN102174092B (en) ABA (abscisic acid) and salt related protein STS1 (steroid sulfatase 1) and encoding genes and application thereof
KR101642795B1 (en) Gene increasing tolerance to salt stress derived from Oryza sativa and uses thereof
US11414673B2 (en) Hypersensitive ABA receptors having modified PP2C-binding interfaces
Wu et al. A plant defensin gene from Orychophragmus violaceus can improve Brassica napus’ resistance to Sclerotinia sclerotiorum
KR101412555B1 (en) Method for producing transgenic plant with increased resistance to environmental stresses using OsCYP19-4 gene
KR101402602B1 (en) Method for producing transgenic plant with increased resistance to environmental stresses using oscyp18-2 gene
US11713341B1 (en) Antimicrobial NCR13 variant peptides
CN114644691B (en) EIP1 protein, coding gene thereof and drought resisting application
US11618903B2 (en) Methods for improving plant abiotic stress tolerance and yield
EP2451830B1 (en) Method for increasing the resistance of a plant or a part thereof to a pathogen, method for screening the resistance of a plant or part thereof to a pathogen, and use thereof
US20140068810A1 (en) Use of aldh7 for improved stress tolerance
KR101376961B1 (en) Gmc3h9 gene from glycine max and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22865923

Country of ref document: EP

Kind code of ref document: A1