WO2023037527A1 - Terminal, procédé de communication radio et station de base - Google Patents

Terminal, procédé de communication radio et station de base Download PDF

Info

Publication number
WO2023037527A1
WO2023037527A1 PCT/JP2021/033426 JP2021033426W WO2023037527A1 WO 2023037527 A1 WO2023037527 A1 WO 2023037527A1 JP 2021033426 W JP2021033426 W JP 2021033426W WO 2023037527 A1 WO2023037527 A1 WO 2023037527A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
precoding
srs
transmission
information
Prior art date
Application number
PCT/JP2021/033426
Other languages
English (en)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN202180104148.8A priority Critical patent/CN118251852A/zh
Priority to PCT/JP2021/033426 priority patent/WO2023037527A1/fr
Publication of WO2023037527A1 publication Critical patent/WO2023037527A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • precoding frequency selective precoding
  • frequency selective precoding control in the frequency direction of UL transmission
  • the details of this operation have not been sufficiently studied. For example, when frequency selective precoding is performed, sufficient consideration has not been given as to what conditions/rules/parameters should be used to control precoding. If precoding is not properly applied, throughput may decrease or communication quality may deteriorate.
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately control precoding even when precoding is selectively performed in the frequency direction.
  • a terminal includes a receiving unit that receives one first instruction regarding wideband precoding and a plurality of second instructions regarding subband precoding, the one first instruction and the plurality of a second indication of to the codebook transmission of the physical uplink shared channel.
  • precoding can be appropriately controlled even when precoding is selectively performed in the frequency direction.
  • FIG. 5 is a diagram showing an example of Y fields according to the first embodiment.
  • 6A and 6B are diagrams showing Example 1 of the first embodiment.
  • 7A and 7B are diagrams showing Example 2 of the first embodiment.
  • FIG. 8 is a diagram showing an example of mapping 1 according to the first embodiment.
  • FIG. 9A and 9B are diagrams showing an example of mapping 2 of the first embodiment.
  • FIG. 10 is a diagram showing an example of the second embodiment.
  • 11A to 11C are diagrams showing an example of a procedure according to the first embodiment.
  • 12A to 12D are diagrams showing an example of aspect 3-1.
  • 13A to 13C are diagrams showing an example of mode 3-2.
  • 14A and 14B are diagrams showing examples of variations of the third embodiment.
  • FIG. 15 is a diagram showing an example of the fourth embodiment.
  • FIG. 16 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment;
  • FIG. 17 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 18 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment
  • FIG. 19 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • FIG. 20 is a diagram illustrating an example of a vehicle according to one embodiment
  • a user terminal may support Codebook (CB)-based transmission and/or Non-Codebook (NCB)-based transmission.
  • CB Codebook
  • NCB Non-Codebook
  • the UE uses at least a Sounding Reference Signal (SRS) resource index (SRS Resource Index (SRI)) to use at least one of the CB-based and NCB-based Physical Uplink Shared Channel (PUSCH) ) may determine a precoder (precoding matrix) for transmission.
  • SRS Sounding Reference Signal
  • SRI Sounding Reference Signal Resource Index
  • the UE receives information (SRS configuration information, e.g., parameters in "SRS-Config" of the RRC control element) used for transmission of measurement reference signals (e.g., Sounding Reference Signal (SRS))).
  • SRS configuration information e.g., parameters in "SRS-Config" of the RRC control element
  • measurement reference signals e.g., Sounding Reference Signal (SRS)
  • the UE receives information on one or more SRS resource sets (SRS resource set information, e.g., "SRS-ResourceSet” of the RRC control element) and information on one or more SRS resources (SRS resource information, eg, "SRS-Resource” of the RRC control element).
  • SRS resource set information e.g., "SRS-ResourceSet” of the RRC control element
  • SRS resource information e.g. "SRS-Resource” of the RRC control element
  • One SRS resource set may be associated with a predetermined number of SRS resources (a predetermined number of SRS resources may be grouped together).
  • Each SRS resource may be identified by an SRS resource indicator (SRI) or an SRS resource ID (Identifier).
  • the SRS resource set information may include an SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, an SRS resource type, and SRS usage information.
  • SRS-ResourceSetId SRS resource set ID
  • SRS-ResourceId SRS resource set ID
  • SRS resource type SRS resource type
  • SRS usage information SRS usage information
  • usage of RRC parameter, "SRS-SetUse” of L1 (Layer-1) parameter) is, for example, beam management (beamManagement), codebook (CB), noncodebook (noncodebook ( NCB)), antenna switching, and the like.
  • SRS for codebook or non-codebook applications may be used for precoder determination for codebook-based or non-codebook-based Physical Uplink Shared Channel (PUSCH) transmission based on SRI.
  • PUSCH Physical Uplink Shared Channel
  • the UE selects a precoder for PUSCH transmission based on SRI, Transmitted Rank Indicator (TRI) and Transmitted Precoding Matrix Indicator (TPMI), etc. may be determined.
  • the UE may determine the precoder for PUSCH transmission based on the SRI for NCB-based transmission.
  • SRI, TRI, TPMI, etc. may be notified to the UE using downlink control information (DCI).
  • DCI downlink control information
  • the SRI may be specified by the SRS Resource Indicator field (SRI field) of the DCI, or the parameter "srs-ResourceIndicator” included in the RRC information element "Configured GrantConfig" of the configured grant PUSCH (configured grant PUSCH). ” may be specified by
  • TRI and TPMI may be specified by DCI precoding information and number of layers field ("Precoding information and number of layers" field).
  • Precoding information and number of layers may be specified by DCI precoding information and number of layers field.
  • precoding information and layer number field is also simply referred to as the "precoding field”.
  • the maximum number of layers (maximum rank) for UL transmission may be set in the UE by the RRC parameter "maxRank”.
  • the UE may report UE capability information regarding the precoder type, and the base station may configure the precoder type based on the UE capability information through higher layer signaling.
  • the UE capability information may be precoder type information (which may be represented by the RRC parameter “pusch-TransCoherence”) that the UE uses in PUSCH transmission.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information may be, for example, a master information block (MIB), a system information block (SIB), or the like.
  • the UE is based on the precoder type information (which may be represented by the RRC parameter "codebookSubset") included in the PUSCH configuration information ("PUSCH-Config" information element of RRC signaling) notified by higher layer signaling, A precoder to be used for PUSCH transmission may be determined.
  • the UE may be configured with a subset of codebooks specified by TPMI with codebookSubset.
  • the precoder type is either full coherent, fully coherent, coherent, partial coherent, non coherent, or a combination of at least two of these (for example, “complete and fullyAndPartialAndNonCoherent”, “partialAndNonCoherent”, etc.).
  • Perfect coherence may mean that all antenna ports used for transmission are synchronized (it may be expressed as being able to match the phase, applying the same precoder, etc.). Partial coherence may mean that some of the antenna ports used for transmission are synchronized, but some of the antenna ports are not synchronized with other ports. Non-coherent may mean that each antenna port used for transmission is not synchronized.
  • a UE that supports fully coherent precoder types may be assumed to support partially coherent and non-coherent precoder types.
  • a UE that supports a partially coherent precoder type may be assumed to support a non-coherent precoder type.
  • the precoder type may be read as coherency, PUSCH transmission coherence, coherence type, coherence type, codebook type, codebook subset, codebook subset type, or the like.
  • the UE obtains the TPMI index from the DCI (e.g., DCI format 0_1, etc.) that schedules the UL transmission from multiple precoders (which may be referred to as precoding matrices, codebooks, etc.) for CB-based transmissions. may determine a precoding matrix corresponding to .
  • DCI e.g., DCI format 0_1, etc.
  • precoders which may be referred to as precoding matrices, codebooks, etc.
  • the UE uses a non-codebook SRS resource set with a maximum of 4 SRS resources configured by RRC, and the maximum of 4 may be indicated by the DCI (2-bit SRI field).
  • the UE may determine the number of layers (transmission rank) for PUSCH based on the SRI field. For example, the UE may determine that the number of SRS resources specified by the SRI field is the same as the number of layers for PUSCH. Also, the UE may calculate a precoder for the SRS resource.
  • the transmission beam of the PUSCH is configured may be calculated based on (a measurement of) the associated CSI-RS. Otherwise, the PUSCH transmit beam may be designated by the SRI.
  • the UE may set whether to use codebook-based PUSCH transmission or non-codebook-based PUSCH transmission by a higher layer parameter "txConfig" indicating the transmission scheme.
  • the parameter may indicate a "codebook” or “nonCodebook” value.
  • codebook-based PUSCH (codebook-based PUSCH transmission, codebook-based transmission) may mean PUSCH when the UE is configured with "codebook” as the transmission scheme.
  • non-codebook-based PUSCH (non-codebook-based PUSCH transmission, non-codebook-based transmission) may refer to PUSCH when the UE is configured with "non-codebook" as the transmission scheme.
  • SRI field (SRI field) Rel.
  • one SRS resource set for non-codebook is configured with up to four 1-port SRS resources and associated with NZP CSI-RS.
  • the SRI field in DCI implicitly indicates the rank and precoder for non-codebooks.
  • Equation 1 the size of the SRI field in DCI format 0_1/0_2 is given by Equation 1 below.
  • Equation 2 included in Equation 1 is the number of combinations for selecting k out of N SRSs , and is also called binomial coefficients.
  • Equation 2 is sometimes represented as C(N SRS ,k).
  • the ceiling function used in Equation 1 is sometimes denoted as ceil(x).
  • N SRS is the number of SRS resources in the SRS resource set set by the SRS resource set list (srs-ResourceSetToAddModList) and associated with the non-codebook application.
  • maxMIMO-Layers indicating the maximum number of Multi Input Multi Output (MIMO) layers
  • maxMIMO-Layers is set
  • L max is Given. Otherwise, L max is given by the maximum number of layers for PUSCH supported by the UE.
  • UL sub-band precoding Rel. 18 NR and later, when performing UL transmission (e.g., PUSCH transmission), support UL sub-band precoding (or frequency selective precoding) that applies multiple precoding in the frequency domain. is assumed.
  • Frequency selective precoding may be read as subband precoding, separate precoding, frequency group precoding, or frequency direction precoding.
  • the frequency domain may be read as the frequency domain or the frequency direction.
  • a frequency unit may be read as a frequency resource unit, a subband unit, a frequency part unit, or a bandwidth unit.
  • the case of PUSCH with 2 CWs is preferably considered in the SRI indication in DCI for Y frequency parts.
  • A/B and “at least one of A and B” may be read interchangeably. Also, in the present disclosure, “A/B/C” may mean “at least one of A, B and C.”
  • activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably.
  • supporting, controlling, controllable, operating, capable of operating, etc. may be read interchangeably.
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters
  • information elements IEs
  • settings etc.
  • MAC Control Element CE
  • update command activation/deactivation command, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), and the like.
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), or the like.
  • DCI downlink control information
  • UCI uplink control information
  • indices, identifiers (ID), indicators, resource IDs, etc. may be read interchangeably.
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
  • DMRS port group e.g., spatial relationship group, Code Division Multiplexing (CDM) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g., reference signal resource, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI State (unified TCI state), common TCI state (common TCI state), Quasi-Co-Location (QCL), QCL assumption, etc. may be read interchangeably.
  • TCI state downlink Transmission Configuration Indication state
  • DL TCI state uplink TCI state
  • UL TCI state uplink TCI state
  • unified TCI State unified TCI state
  • common TCI state common TCI state
  • QCL Quasi-Co-Location
  • single TRP, single TRP system, single TRP transmission, and single PDSCH may be read interchangeably.
  • multi-TRP, multi-TRP system, multi-TRP transmission, and multi-PDSCH may be read interchangeably.
  • a single DCI, a single PDCCH, multiple TRPs based on a single DCI, and activating two TCI states on at least one TCI codepoint may be read interchangeably.
  • single TRP single TRP
  • channels with single TRP channels with one TCI state/spatial relationship
  • multi-TRP not enabled by RRC/DCI multiple TCI states/spatial relations enabled by RRC/DCI shall not be set
  • neither CORESET Pool Index (CORESETPoolIndex) value of 1 shall be set for any CORESET
  • neither codepoint of the TCI field shall be mapped to two TCI states.
  • multi-TRP channels with multi-TRP, channels with multiple TCI state/spatial relationships, multi-TRP enabled by RRC/DCI, multiple TCI state/spatial relationships enabled by RRC/DCI and at least one of multi-TRP based on a single DCI and multi-TRP based on multiple DCIs
  • multi-TRPs based on multi-DCI setting a CORESET pool index (CORESETPoolIndex) value of 1 for a CORESET, may be read interchangeably.
  • multiple TRPs based on a single DCI, where at least one codepoint of a TCI field is mapped to two TCI states may be read interchangeably.
  • TRP#2 Secondary TRP
  • single DCI sDCI
  • single PDCCH multi-TRP system based on single DCI
  • sDCI-based MTRP activating two TCI states on at least one TCI codepoint
  • multi-DCI multi-PDCI
  • multi-PDCCH multi-PDCCH
  • multi-TRP system based on multi-DCI
  • indexes, IDs, indicators, and resource IDs may be read interchangeably.
  • single DCI sDCI
  • single PDCCH single PDCCH
  • multi-TRP MTRP
  • scheduling multiple PUSCHs corresponding to different SRIs
  • sDCI-based MTRP Transmission activating two TCI states on at least one TCI codepoint
  • multi-DCI multi-PDCCH
  • multi-TRP system based on multi-DCI
  • mDCI-based MTRP mDCI-based MTRP transmission
  • multi-DCI is used for MTRP
  • repetition one repetition
  • occasion and channel
  • channel may be read interchangeably.
  • UL data, TB, CW, and UCI may be read interchangeably.
  • two CW/TBs transmitted using PUSCH may be CW/TBs with different contents or CW/TBs with the same contents.
  • a PUSCH that transmits two CWs/TBs may be considered as one PUSCH transmitted simultaneously or repeatedly.
  • frequency part, subband, one or more RBs, one or more PRBs, RBG, and PRG may be read interchangeably.
  • the SRI field, the TPMI field, the "precoding information and number of layers” field, the existing SRI field, the existing TPMI field, the existing "precoding information and number of layers” field, the new SRI field, the new TPMI field, the new "pre The coding information and the "number of layers” field may be read interchangeably.
  • DCI in the following embodiments may be limited to a specific DCI format among DCI formats for scheduling PUSCH (eg, DCI formats 0_0, 0_1, 0_2), or may correspond to a plurality of DCI formats. good too.
  • common control the same control, the same processing
  • different control may be performed for each DCI format.
  • PUSCH transmission in the following embodiments may or may not be premised on the use of multiple panels (may be applied regardless of the panel).
  • PUSCH transmission is taken as an example of UL transmission, but it is not limited to this. It may be applied to channels/signals with frequency selective precoding. Also, in the following description, frequency-selective precoding will be described, but precoding in the time direction (time-selective precoding) may be similarly applied.
  • the number of frequency parts may be defined in the specification, may be configured, or may be reported by the UE as UE capabilities.
  • a UE may receive a configuration of an SRS resource set and receive a DCI containing multiple indications of SRS resources within said SRS resource set.
  • One of the multiple indications may be field/existing SRI field/new SRI field.
  • the UE may apply the multiple indications to multiple frequency portions used for non-codebook transmission of UL transmissions (eg, PUSCH), respectively.
  • the UE may receive one first indication for wideband precoding (W1) and multiple second indications for subband precoding (W2).
  • the UE may apply the one first indication and the plurality of second indications for codebook transmission of UL transmissions (eg, PUSCH).
  • the first indication may be a field in RRC IE/MAC CE/DCI (eg existing field/existing "precoding information and rank number" field/new field/new TPMI field).
  • One of the plurality of second indications may be a field within the DCI (eg, new field/new TPMI field).
  • the granularity/number Y of frequency portions for UL frequency selective precoding (e.g., frequency selective precoding) for UL transmissions such as PUSCH may be set or specified in the specification. may be reported by the UE as a UE capability.
  • UL frequency selective precoding for NCB-based PUSCH may be supported/enabled.
  • This embodiment relates to SRI indication for Y frequency parts.
  • the existing SRI field in DCI format 0_1/0_2 may be used for the (implicit) indication of rank and precoder for the first frequency part.
  • each frequency part may be indicated using a new SRI field.
  • Each new SRI field may follow either of fields 1 and 2 below.
  • the resources (SRS resource #0, #1, . . . #N SRS -1) need to be indicated. Therefore, there are N SRS cases in the indication.
  • the DCI size for each new SRI field is preferably fixed.
  • the DCI may include an existing SRI field for the first frequency part and a new SRI field for each of the second to Yth frequency parts. good.
  • the size of the existing SRI field may be given by Equation 1 above.
  • the size of each new SRI field may be max(ceil(log 2 (C(N SRS ,r)))) or ceil(log 2 (max(C(N SRS ,r)))) bits.
  • Option 2 reduces the size of each new SRI field more than Option 1.
  • N SRS /L max may be supported for PUSCH with more than four layers/ranks.
  • a 4-bit legacy SRI field may indicate the first frequency part.
  • FIG. 6A shows an example of association between the value of the existing SRI field (index) for the first frequency part and one or more SRIs.
  • FIG. 6B shows an example of associations between new SRI field (index) values for the second and subsequent frequency portions and one or more SRIs.
  • SRS resources for other frequency parts are only SRS resources #0, #1, #2, and #3. No additional indication (field, bit) may be used.
  • the UE may assume that the value of each new SRI field for the second and subsequent frequency parts is the same as the value of the existing SRI field for the first frequency part.
  • a 3-bit legacy SRI field may indicate the first frequency part.
  • FIG. 7A shows an example of association between the value of the existing SRI field (index) for the first frequency part and one or more SRIs.
  • FIG. 7B shows an example of associations between new SRI field (index) values for the second and subsequent frequency portions and one or more SRIs.
  • mapping between the SRI field (existing SRI field/new SRI field) and the frequency part (subband) may follow either mapping 1 or 2 below.
  • Y fields (fields #1, #2, . . . , #Y) in the DCI correspond to Y frequency portions (frequency portions #1, #2, . do.
  • the first field (field #1) is an existing SRI field
  • each of the second and subsequent fields (field #2, . . . , #Y) is a new SRI field.
  • the association between the SRI field value (index) and the SRI (SRS resource ID) may be defined in the specification or may be set.
  • the number of SRI fields using mapping 2 is less than the number of SRI fields using mapping 1.
  • the first field (field #1) is the existing SRI field
  • Each of the second and subsequent fields (Field #2, . . . , #Y/2) is a new SRI field.
  • Field #1 corresponds to frequency portions #1 and #2.
  • Field #2 corresponds to frequency portions #3 and #4.
  • Field #Y/2 corresponds to frequency portions #Y-1, #Y.
  • the value of each of Y/2 fields, the value of the first SRI field index of the two SRIs corresponding to that field, and the value of the first SRI field index of the two SRIs corresponding to that field may be defined in the specification or may be set.
  • the UE can appropriately determine SRS resources corresponding to multiple frequency portions of NCB-based transmission.
  • This embodiment relates to SRI indication in DCI for Y frequency parts for PUSCH carrying two TB/CW.
  • the first embodiment may be applied for each set of SRI fields.
  • the layer indicated by the SRI for the first frequency part may be used.
  • the same layer may be assumed over all frequency parts.
  • FIG. 10 shows an example in which mapping 1 of the first embodiment is used for each CW/TB.
  • the Y fields (fields #1, #2, . . . , #Y) for the first CW/TB correspond to the Y frequency portions (frequency portions #1, #2, . . . , #Y) respectively.
  • the Y fields (fields #1, #2, . . . , #Y) for the second CW/TB correspond to the Y frequency portions (frequency portions #1, #2, . . . , #Y) respectively.
  • the UE can appropriately determine SRS resources corresponding to multiple frequency parts even when transmitting NCB-based PUSCH carrying multiple TB/CW.
  • ⁇ Analysis> 1 shows an example of a procedure according to the first embodiment
  • the UE performs transmission based on SRS resources #0, #1, #2, and #3.
  • Each resource set may be associated with a NZP CSI-RS.
  • the base station indicates two SRS resources for each frequency part for NCB-based PUSCH. For each frequency part, precoders for the same four SRS resources are selected.
  • the precoders of SRS for selection can be different for each frequency part, as in the example of FIG. 11C.
  • the precoders on different frequency parts may be based on UE measurements of DL CSI-RS on different frequency parts. The question is how such an operation is carried out.
  • This embodiment relates to SRS resource configuration for NCB-based transmission.
  • the SRS resource configuration may follow at least one of aspects 3-1 and 3-2 below.
  • the SRS resources within one SRS resource set may be precoded at the level of one or more frequency parts.
  • the precoding granularity may be 1 or X frequency parts. This operation may also be referred to as frequency partial level precoding, frequency partial precoding, subband level precoding, subband precoding, and so on.
  • the X frequency portions may be referred to as subbands, frequency portion groups, and so on.
  • This frequency sub-level precoding may be configured/enabled/disabled by RRC signaling dependent on UE capability reports.
  • SRS resource #0 has the same spatial QCL as the associated NZP CSI-RS and has different precoding (digital beamforming) per frequency part.
  • the UE may apply the same precoder as the indicated SRS resources for each frequency part. In other words, if different precoding is used by the UE for SRS resources for the first and fourth frequency parts, different precoding may be applied to PUSCH for the first and fourth frequency parts. .
  • aspect 3-1 may depend on the UE implementation. Considering the complexity of the UE, indicate at least one of whether the UE supports/enables frequency sub-level precoded SRS, granularity of frequency sub-level precoding, number of frequency sub-level precoding. , new UE capabilities and/or new RRC signaling may be introduced.
  • SRS resource #0 has the same spatial QCL as the associated NZP CSI-RS and has different precoding (digital beamforming) per frequency part.
  • An SRS resource group (1 or X SRS resources) for precoding at the level of one or more frequency parts is introduced.
  • the precoding granularity may be 1 or X frequency parts. This operation may also be referred to as frequency partial level precoding, frequency partial precoding, subband precoding, and so on.
  • This frequency sub-level precoding may be configured/enabled/disabled by RRC signaling dependent on UE capability reports.
  • Each SRS resource group may correspond to one or X frequency parts.
  • Each SRS resource group may be configured with up to four 1-port SRS resources, or may be configured with more than four 1-port SRS resources.
  • the SRS resource is narrowband (bandwidth of the frequency part). All SRS resources within the same SRS resource set for an NCB are of the same spatial QCL as the associated SRS resource set.
  • the maximum number of SRS resource groups in each SRS resource set may be Z.
  • Z may depend on UE capability signaling.
  • the maximum number of SRS resources in each SRS resource set may be Z*G and may depend on UE capability signaling.
  • G may be the number of SRS resources per group.
  • the SRI field (one or more SRIs associated with the SRI field) in the DCI does not indicate the actual SRS resource ID, but instead indicates the SRS resource within each SRS resource group for each frequency part.
  • a new (renumbered) ID may be indicated.
  • the IDs (#0, #1, #2, #3) indicated by the SRI may be renumbered according to the order of the SRS resources within the corresponding SRS resource group.
  • the IDs (#0, #1, #2, #3) indicated by the SRI are repeated in the order from lowest to highest SRS resource IDs within the corresponding SRS resource group. May be numbered.
  • a plurality of SRS resources respectively corresponding to a plurality of frequency parts may be a plurality of SRS resources within the same SRS resource set.
  • the SRS resource set may have NCB usage.
  • the SRS resource groups within the SRS resource set may be transmitted in a TDM manner. It may be specified that the UE does not expect the SRS resource groups for different frequency portions within the SRS resource set to overlap in symbols.
  • the IDs (#0, #1, #2, #3) indicated by the SRI may be renumbered according to the order of the SRS resource IDs from lowest to highest within the corresponding SRS resource group.
  • Multiple SRS resources in different RBs may be transmitted simultaneously in one (same) symbol.
  • a new UE capability may be defined to indicate that the UE supports this simultaneous transmission feature.
  • a new UE capability may be defined that indicates the maximum number of SRS resources. If this simultaneous transmission feature is supported, the network may configure several SRS resources for different frequency portions that overlap within one symbol according to the UE capabilities.
  • At least one of the first embodiment and the second embodiment may be applied to the TPMI field/"precoding information and number of layers" field in CB-based PUSCH.
  • the UE can appropriately determine SRS resources corresponding to multiple frequency portions of NCB-based transmission.
  • This embodiment relates to CB-based transmission.
  • W1 means long-term or wideband PMI and W2 means short-term or sub-band PMI, as shown in FIG.
  • the UE may comply with at least one of aspects 4-1 and 4-2 below.
  • ⁇ Aspect 4-1>> When using a dual-stage codebook, the existing fields of "precoding information and number of layers" may be used to indicate the rank of W1 and TPMI. Y new TPMI fields may be introduced in W2's PMI indication for each frequency part.
  • a new table may be used because it is necessary to indicate PMI for Y number of TPMI fields, and there is no need to indicate RI.
  • the new table may show the association between the index value indicated by the TPMI field and the TPMI for each rank.
  • W1 may be indicated in the RRC IE/MAC CE (for the long term).
  • DCI may indicate only W2 for each frequency part out of W1 and W2.
  • the DCI may comply with at least one of DCI1 and DCI2 below.
  • [DCI2] (Y ⁇ 1) new TPMI fields or Y new TPMI fields may be introduced in the W2 indication for each frequency part.
  • the existing field of "precoding information and number of layers" may not be required.
  • the UE can appropriately determine precoders (eg, TPMI) corresponding to multiple frequency parts of the CB-based transmission.
  • precoders eg, TPMI
  • RRC IE Radio Resource Control IE
  • a higher layer parameter may indicate whether to enable the feature.
  • UE capabilities may indicate whether the UE supports the feature.
  • a UE for which a higher layer parameter corresponding to that function is set may perform that function. It may be defined that "UEs for which upper layer parameters corresponding to the function are not set shall not perform the function (for example, according to Rel. 15/16)".
  • a UE that has reported/transmitted a UE capability indicating that it supports that function may perform that function. It may be specified that "a UE that does not report UE capabilities indicating that it supports the feature shall not perform that feature (eg according to Rel. 15/16)".
  • a UE may perform a function if it reports/transmits a UE capability indicating that it supports the function and the higher layer parameters corresponding to the function are configured. "If the UE does not report/transmit a UE capability indicating that it supports the function, or if the higher layer parameters corresponding to the function are not configured, the UE does not perform the function (e.g., Rel. 15/ 16) may be defined.
  • Which embodiment/option/choice/function among the above multiple embodiments is used may be set by higher layer parameters, may be reported by the UE as UE capabilities, or may be specified in the specification. It may be specified or determined by reported UE capabilities and higher layer parameter settings.
  • UE capabilities may indicate whether or not to support at least one of the following functions.
  • - Frequency-selective precoding for UL transmission eg, PUSCH
  • UL transmission may be NCB-based PUSCH or CB-based PUSCH.
  • Instructions divided into W1 and W2. A plurality of W2, each corresponding to a plurality of frequency portions.
  • UE capabilities may indicate at least one of the following: • Maximum number of frequency parts for frequency selective precoding for UL transmission (eg PUSCH) for a certain condition (eg at least one of BW, antenna port, rank, frequency range, N SRS ).
  • UL transmission may be NCB-based PUSCH or CB-based PUSCH.
  • the UE can implement the above functions while maintaining compatibility with existing specifications.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 16 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 17 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the transmitting/receiving unit 120 may transmit a setting of a sounding reference signal (SRS) resource set and transmit downlink control information including a plurality of instructions for SRS resources in the SRS resource set.
  • the control unit 110 may apply the plurality of instructions respectively to a plurality of frequency parts used for reception of non-codebook transmission on the physical uplink shared channel.
  • SRS sounding reference signal
  • the transmitting/receiving unit 120 may transmit one first instruction regarding wideband precoding and a plurality of second instructions regarding subband precoding.
  • the control unit 110 may apply the one first instruction and the plurality of second instructions to reception of codebook transmission of the physical uplink shared channel.
  • FIG. 18 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transmitting/receiving unit 220 may receive a setting of a sounding reference signal (SRS) resource set and receive downlink control information including multiple indications of SRS resources in the SRS resource set.
  • the control unit 210 may apply the plurality of instructions to each of the plurality of frequency parts used for non-codebook transmission of the physical uplink shared channel.
  • SRS sounding reference signal
  • the number of the plurality of frequency parts may be Y.
  • the downlink control information may include Y or Y/2 fields for the SRS resources.
  • the physical uplink shared channel may include two codewords.
  • the number of frequency portions in the plurality may be Y.
  • the downlink control information may include 2Y fields for the SRS resources.
  • Each SRS resource in the SRS resource set may use part of the band of the physical uplink shared channel.
  • the transmitting/receiving unit 220 may receive one first instruction regarding wideband precoding and a plurality of second instructions regarding subband precoding.
  • the control unit 210 may apply the one first instruction and the plurality of second instructions to codebook transmission of the physical uplink shared channel.
  • the plurality of second indications may respectively correspond to the plurality of frequency portions used for the codebook transmission.
  • the transmitting/receiving unit 220 may receive downlink control information including one field indicating the one first instruction and a plurality of fields respectively indicating the plurality of second instructions.
  • the transmitting/receiving unit 220 receives a radio resource control (RRC) information element (IE) or a medium access control (MAC) control element (CE) indicating the one first instruction, and indicates the plurality of second instructions respectively.
  • RRC radio resource control
  • MAC medium access control
  • CE control element
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 19 is a diagram illustrating an example of hardware configurations of a base station and user terminals according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
  • the moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary.
  • Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them.
  • the mobile body may be a mobile body that autonomously travels based on an operation command.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • a vehicle e.g., car, airplane, etc.
  • an unmanned mobile object e.g., drone, self-driving car, etc.
  • a robot manned or unmanned .
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 20 is a diagram showing an example of a vehicle according to one embodiment.
  • a vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, Various sensors (including current sensor 50, rotation speed sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service A unit 59 and a communication module 60 are provided.
  • the driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 .
  • the electronic control unit 49 may be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52.
  • air pressure signal of front wheels 46/rear wheels 47 vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor
  • the information service unit 59 controls various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing various types of information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), camera, positioning locator (eg, Global Navigation Satellite System (GNSS), etc.), map information (eg, High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU.
  • the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 .
  • the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 60 may be internal or external to electronic control 49 .
  • the external device may be, for example, the above-described base station 10, user terminal 20, or the like.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 may transmit at least one of signals from the various sensors 50 to 58 and information obtained based on the signals input to the electronic control unit 49 to an external device via wireless communication. .
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle.
  • Communication module 60 also stores various information received from external devices in memory 62 available to microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be read as sidelink channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or a decimal number
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these.
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • Maximum transmit power described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Un terminal selon un aspect de la présente invention comprend une unité de réception qui reçoit une première instruction relative à un précodage à large bande et de multiples secondes instructions associées à un précodage de sous-bande, et une unité de commande qui applique la première instruction et les multiples secondes instructions à la transmission d'un livre de codes dans un canal partagé de liaison montante physique. Un aspect de la présente divulgation permet de commander de manière appropriée le précodage même lorsque le précodage est effectué sélectivement dans la direction de la fréquence.
PCT/JP2021/033426 2021-09-10 2021-09-10 Terminal, procédé de communication radio et station de base WO2023037527A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180104148.8A CN118251852A (zh) 2021-09-10 2021-09-10 终端、无线通信方法以及基站
PCT/JP2021/033426 WO2023037527A1 (fr) 2021-09-10 2021-09-10 Terminal, procédé de communication radio et station de base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033426 WO2023037527A1 (fr) 2021-09-10 2021-09-10 Terminal, procédé de communication radio et station de base

Publications (1)

Publication Number Publication Date
WO2023037527A1 true WO2023037527A1 (fr) 2023-03-16

Family

ID=85506241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033426 WO2023037527A1 (fr) 2021-09-10 2021-09-10 Terminal, procédé de communication radio et station de base

Country Status (2)

Country Link
CN (1) CN118251852A (fr)
WO (1) WO2023037527A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511916A (ja) * 2009-11-19 2013-04-04 インターデイジタル パテント ホールディングス インコーポレイテッド マルチキャリアシステムにおけるコンポーネントキャリアのアクティブ化/非アクティブ化
WO2018174641A2 (fr) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Procédé et appareil de transmission de données dans un système de communication sans fil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511916A (ja) * 2009-11-19 2013-04-04 インターデイジタル パテント ホールディングス インコーポレイテッド マルチキャリアシステムにおけるコンポーネントキャリアのアクティブ化/非アクティブ化
WO2018174641A2 (fr) * 2017-03-23 2018-09-27 Samsung Electronics Co., Ltd. Procédé et appareil de transmission de données dans un système de communication sans fil

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.214, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.6.0, 30 June 2021 (2021-06-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 172, XP052029956 *
MEDIATEK INC.: "Codebook based transmission for UL", 3GPP DRAFT; R1-1710816 UL MIMO V2 FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051300020 *

Also Published As

Publication number Publication date
CN118251852A (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
WO2023037527A1 (fr) Terminal, procédé de communication radio et station de base
WO2023037526A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023058150A1 (fr) Terminal, procédé de communication radio et station de base
WO2023053385A1 (fr) Terminal, procédé de communication radio, et station de base
WO2023037450A1 (fr) Terminal, procédé de communication sans fil, et station de base
WO2023084702A1 (fr) Terminal, procédé de communication sans fil, et station de base
WO2023073908A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023090343A1 (fr) Terminal, procédé de communication sans fil, et station de base
WO2023152792A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023090243A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023152791A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023063233A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023063234A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023152903A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023152982A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023152902A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023090339A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023084643A1 (fr) Terminal, procédé de communication radio et station de base
WO2023152901A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023084642A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023085352A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023095289A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023095288A1 (fr) Terminal, procédé de communication sans fil et station de base
WO2023157461A1 (fr) Terminal, procédé de communication sans fil, et station de base
WO2023162435A1 (fr) Terminal, procédé de communication radio et station de base

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE