WO2023037451A1 - Image processing device, method, and program - Google Patents

Image processing device, method, and program Download PDF

Info

Publication number
WO2023037451A1
WO2023037451A1 PCT/JP2021/033030 JP2021033030W WO2023037451A1 WO 2023037451 A1 WO2023037451 A1 WO 2023037451A1 JP 2021033030 W JP2021033030 W JP 2021033030W WO 2023037451 A1 WO2023037451 A1 WO 2023037451A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
processing target
area
pixels
Prior art date
Application number
PCT/JP2021/033030
Other languages
French (fr)
Japanese (ja)
Inventor
由実 菊地
卓 佐野
正人 小野
真二 深津
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023546630A priority Critical patent/JPWO2023037451A1/ja
Priority to PCT/JP2021/033030 priority patent/WO2023037451A1/en
Publication of WO2023037451A1 publication Critical patent/WO2023037451A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation

Definitions

  • the embodiments of the present invention relate to an image processing device, method and program.
  • transparent objects when reconstructing 3D content from content captured as monocular images or stereo images, the presence of transparent objects in the content poses a problem.
  • glass, smoke used in stage performances, or fog that appears depending on the weather are objects that are farther away than the original subject and can be seen through other objects ( hereinafter sometimes referred to as transparent objects) are included in many contents.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an image processing apparatus, method, and program capable of improving quality when an image includes a translucent object. to provide.
  • An image processing apparatus includes an extracting unit that extracts one or more processing target regions based on characteristic elements of pixels of a moving image, and the extracted processing targets in consecutive frames of the moving image.
  • a feature quantity measuring unit for measuring a feature quantity of pixels in a region obtained by tracking the region; and a mask generation unit that generates information indicating the shape and position of the processed region as mask information of the image.
  • An image processing method is a method performed by an image processing apparatus, comprising: an extracting unit for extracting one or more processing target regions based on characteristic elements of pixels of a moving image; a feature amount measuring unit for measuring a feature amount of pixels in a region obtained by following the extracted processing target area in consecutive frames; and an average of the feature amounts measured by the feature amount measuring unit and a mask generating unit that generates information indicating the shape and position of the processing target area extracted by the extracting unit as mask information of the image when it is within the range.
  • FIG. 1 is a diagram showing an application example of an image processing system according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing an example of the processing operation by the translucent area extracting unit.
  • FIG. 3 is a diagram showing an example of a semi-transparent area extracted from an image by a semi-transparent area extraction unit.
  • FIG. 4 is a flow chart showing an example of the processing operation of the feature amount measuring unit.
  • FIG. 5 is a flow chart showing an example of the processing operation of the original image acquisition unit.
  • FIG. 6 is a flowchart illustrating an example of the processing operation of the feature quantity comparison unit.
  • FIG. 7 is a flowchart illustrating an example of a processing operation of a mask generation unit;
  • FIG. 8 is a block diagram showing an example of the hardware configuration of the translucent area processing device of the image processing system according to one embodiment of the present invention.
  • FIG. 1 is a diagram showing an application example of an image processing system according to one embodiment of the present invention.
  • the image processing system according to one embodiment of the present invention has a translucent area processing device (image processing device) 100 and a 3D image processing device 120 .
  • the semi-transparent area processing device 100 has a semi-transparent area extracting section 11 , a feature amount measuring section 12 , an original image obtaining section 13 , a feature amount comparing section 14 and a mask generating section 15 .
  • the 3D image processing device 120 also has a depth map generation unit 21 and a flick management unit 22 .
  • a semi-transparent area processing device 100 extracts a semi-transparent area in an image, such as fog or smoke in a stage production, and optimizes depth information for this semi-transparent area.
  • the 3D image processing device 120 may be integrated with the translucent region processing device 100 .
  • the semi-transparent area extraction unit 11 of the semi-transparent area processing device 100 extracts a semi-transparent area in the image and processes the information of this area.
  • the extracted translucent area is a smoke area.
  • FIG. 2 is a flow chart showing an example of processing operations by a semi-transparent region extraction unit. Since the color of smoke varies depending on conditions such as stage lighting and environment, a case where the color of smoke is whitish will be described here as an example.
  • the semi-transparent region extracting unit 11 examines the values of pixels in a whitish region in the image for any frame in the moving image. are held as area A1, area A2, area A3, . . . , area An (S11). Examples of range U here can be shown in (1) and (2) below. (1) (For RGB) 240 ⁇ R ⁇ 255, 240 ⁇ G ⁇ 255, 240 ⁇ B ⁇ 255 (2) (For YUV (YCbCr)) 240 ⁇ Y ⁇ 255, -10 ⁇ Cb ⁇ 0, -10 ⁇ Cr ⁇ 0
  • the value range U is not particularly limited as long as it is information about pixels obtained from an image, and may be hue information or luminance information, as long as the characteristics of each pixel can be accurately extracted. Also, the value range U may be freely changed by an image editor based on an empirical rule based on the characteristics of each image, or an optimum solution may be set by a computer (including machine learning). .
  • FIG. 3 is a diagram showing an example of a semi-transparent area extracted from an image by a semi-transparent area extraction unit. The example shown in FIG. 3 shows that regions A1, A2, and A3 in image G1 are extracted as regions corresponding to whitish smoke.
  • the translucent area extraction unit 11 holds the pixel values In of the representative points X1, X2, X3, . ).
  • the representative point may be the barycentric point of the area An or the point where the (x, y) coordinates of the area An are the minimum values.
  • the translucent area extracting unit 11 tracks the area A1, area A2, area A3, .
  • the semi-transparent region extracting unit 11 passes the region information of the tracked region to the feature quantity measuring unit 12 (S14).
  • This area information includes shape information and position information of the area. The processing procedure of the feature amount measuring unit 12 will be described later.
  • the semi-transparent area extraction unit 11 determines whether or not the average pixel value Kn, which will be described later, returned from the feature amount measurement unit 12 is within the value range U described above (S15). If the average pixel value Kn is not within the value range U (No in S15), the translucent area extraction unit 11 deletes (discards) the area An (S17), and the process for the area An ends.
  • the translucent area extraction unit 11 passes the area information on the area An to the mask generation unit 15 (S16).
  • the area information of area An includes shape information MAn of area An and position information NAn of area An. The processing operation of the mask generation unit 15 will be described later.
  • FIG. 4 is a flow chart showing an example of the processing operation of the feature amount measuring unit.
  • the feature amount measuring unit 12 continues to measure all pixel values within the area An in the information passed from the translucent area extracting unit 11 for each frame (S21).
  • the feature amount measurement unit 12 calculates the average value of all pixel values measured in S21 and holds this average value as the average pixel value Kn (S22).
  • the feature amount measuring unit 12 returns the average pixel value Kn of the area An, which was held in S22, to the translucent area extracting unit 11 (S23).
  • the group consisting of the translucent region extracting section 11 and the feature quantity measuring section 12 and the group consisting of the original image obtaining section 13 and the feature quantity comparing section 14 may operate independently of each other. , both groups may exchange information and operate while complementing each other.
  • FIG. 5 is a flow chart showing an example of the processing operation of the original image acquisition unit.
  • the original image acquiring unit 13 shoots in advance each image showing the range to be shot using an imaging device (not shown) (S31).
  • the original image acquisition unit 13 analyzes each image captured in S31, and stores a set W of feature values of pixels of each analyzed image in an internal memory (S32). ).
  • the feature set W may include various numerical values that characterize the pixels of the image, such as RGB values and luminance values of all pixels.
  • the original image acquisition unit 13 passes the feature amount set W of the pixels of the image to the feature amount comparison unit 14 in response to the request from the feature amount comparison unit 14 (S33).
  • FIG. 6 is a flowchart illustrating an example of the processing operation of the feature quantity comparison unit.
  • the feature quantity comparison unit 14 receives the values of the feature quantity set W of the pixels of the original image from the original image acquisition unit 13 . Then, the feature quantity comparison unit 14 compares the feature quantity set W with the feature quantity V of pixels of consecutive frames of the moving image to be processed (S41).
  • the feature quantity comparison unit 14 calculates Z according to the following formula (1).
  • Z
  • the feature quantity comparison unit 14 determines whether or not the calculated value of Z is within the value range T specified by the following equation (2) (S42). 0 ⁇ T ⁇ a (a is a positive number) Expression (2)
  • the feature quantity comparison unit 14 sets the n regions in which the pixel group within the value range U exists as region B1, region B2, region B3, . . . , region Bn. are stored in an internal memory or the like (S43).
  • a in the above equation (2) may be a value set as a suitable value based on empirical rules by the editor of the image, or may be a value calculated by calculation processing.
  • This representative point may be the center of gravity of the area Bn, or the point where the coordinate values (x, y) of the area Bn are the minimum values.
  • the feature amount comparison unit 14 passes the shape information MBn and the position information NBn, which are area information in the area Bn, to the mask generation unit 15 (S45), and returns to the processing of S41.
  • FIG. 7 is a flowchart illustrating an example of a processing operation of a mask generation unit.
  • the mask generation unit 15 extracts the area information (shape and position information) of the area An from the translucent area extraction unit 11 or the area information (shape and position information) of the area Bn from the feature amount comparison unit 14. ) is received (S51).
  • the mask generation unit 15 extracts the area information (shape and position information) of the area An from the translucent area extraction unit 11 or the area information (shape and position information) of the area Bn from the feature amount comparison unit 14. ) is received (S51).
  • the mask generation unit 15 extracts the area information (shape and position information) of the area An from the translucent area extraction unit 11 or the area information (shape and position information) of the area Bn from the feature amount comparison unit 14. ) is received (S51).
  • the mask generation unit 15 extracts the area information (shape and position information) of the area An from the translucent area extraction unit 11 or the area information (shape and
  • the mask generation unit 15 generates moving averages FMAn, FMBn, FNAn for F (variable) frames going back from the present to the past for the shape information MAn, MBn and the position information NAn, NBn in the area information received in S51. , and FNBn are calculated (S52).
  • the value of F may be set as any positive number.
  • a value of about 20 to 60 is suitable for a 60fps video.
  • the value of F may be changed according to the weight of processing.
  • the mask generation unit 15 determines that the values of the moving averages FMAn and FMBn calculated in S52 are included in the value range GM shown in the following equation (3), and that the values of the moving averages FNAn and FNBn calculated in S52 are It is determined whether or not it is included in the range of GN indicated by the following formula (4) (S53). 0 ⁇ GM ⁇ b (b is a positive number) Equation (3) 0 ⁇ GN ⁇ b (c is a positive number) Equation (4)
  • the mask generation unit 15 passes the shape information MAn, MBn and the position information NAn, NBn, which are area information, to the depth map generation unit 21 of the 3D image processing device 120 as mask information at this time. (S54). Further, when No in S53, the mask generation unit 15 terminates the process without passing the region information to the depth map generation unit 21 (S55). By calculating the moving average in the above S52 and determining this value in S53, mask information is generated slowly, so that image flickering can be prevented.
  • the depth map generator 21 may be held within the image processing system, or may be used in an external processing device or module.
  • the depth map generation unit 21 that has received the mask information generates depth information for each image based on this mask information. Further, when flicker is recognized in the depth information generated by the depth map generation unit 21, the flick management unit 22 notifies the semi-transparent area extraction unit 11 and the original image acquisition unit 13 of the semi-transparent area processing device 100. do. Upon receiving this notification, the semi-transparent area extraction unit 11 and the original image acquisition unit 13 start the above processing.
  • FIG. 8 is a block diagram showing an example of the hardware configuration of the translucent area processing device of the image processing system according to one embodiment of the present invention.
  • the translucent area processing device 100 according to the above embodiment is configured by, for example, a server computer or a personal computer, and hardware such as a CPU (Central Processing Unit). It has a hardware processor 111A.
  • a program memory 111B, a data memory 112, an input/output interface 113 and a communication interface 114 are connected to the hardware processor 111A via a bus 115. .
  • the communication interface 114 includes, for example, one or more wireless communication interface units, and allows information to be sent and received to and from a communication network NW.
  • a wireless interface an interface adopting a low-power wireless data communication standard such as a wireless LAN (Local Area Network) is used.
  • the input/output interface 113 is connected to an input device 200 and an output device 300 attached to the translucent area processing apparatus 100 and used by a user or the like.
  • the input/output interface 113 captures operation data input by a user or the like through an input device 200 such as a keyboard, touch panel, touchpad, mouse, etc., and outputs data to a liquid crystal or organic EL device.
  • a process for outputting to and displaying on an output device 300 including a display device using (Electro Luminescence) or the like is performed.
  • devices built in the translucent area processing apparatus 100 may be used, or other devices that can communicate with the translucent area processing apparatus 100 via the network NW.
  • Information terminal input and output devices may be used.
  • the program memory 111B is a non-temporary tangible storage medium, for example, a non-volatile memory that can be written and read at any time, such as a HDD (Hard Disk Drive) or SSD (Solid State Drive), It is used in combination with a nonvolatile memory such as ROM (Read Only Memory), and stores programs necessary for executing various control processes and the like according to one embodiment.
  • a non-volatile memory such as a HDD (Hard Disk Drive) or SSD (Solid State Drive)
  • ROM Read Only Memory
  • the data memory 112 is used as a tangible storage medium, for example, by combining the above-described nonvolatile memory and a volatile memory such as RAM (random access memory), and various processes are performed. It is used to store various data acquired and created in the process.
  • RAM random access memory
  • a semi-transparent area processing device 100 includes a semi-transparent area extraction section 11, a feature amount measurement section 12, and an original image acquisition section 13 shown in FIG. , a feature comparison unit 14, and a mask generation unit 15.
  • FIG. 1 A semi-transparent area processing device 100 according to an embodiment of the present invention includes a semi-transparent area extraction section 11, a feature amount measurement section 12, and an original image acquisition section 13 shown in FIG. , a feature comparison unit 14, and a mask generation unit 15.
  • Each information storage unit used as a working memory by each unit of the translucent area processing apparatus 100 can be configured by using the data memory 112 shown in FIG.
  • these configured storage areas are not essential components in the translucent area processing device 100.
  • an external storage medium such as a USB (Universal Serial Bus) memory, or a database located in the cloud It may be an area provided in a storage device such as a server (database server).
  • the processing function units in each of the translucent region extraction unit 11, the feature amount measurement unit 12, the original image acquisition unit 13, the feature amount comparison unit 14, and the mask generation unit 15 are all stored in the program memory 111B. It can be realized by causing the hardware processor 111A to read and execute the program. Some or all of these processing functions may be implemented in a variety of other forms, including integrated circuits such as Application Specific Integrated Circuits (ASICs) or Field-Programmable Gate Arrays (FPGAs). may be implemented.
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field-Programmable Gate Arrays
  • the image processing apparatus extracts one or more processing target regions based on the characteristic elements of the pixels of the moving image, and follows the extracted processing target regions in consecutive frames of the moving image.
  • a feature amount of pixels in the area is measured, and information indicating the shape and position of the extracted processing target area is generated as image mask information when the average of the measured feature amounts is within a predetermined range. This makes it possible to prevent the occurrence of flicker in a moving image due to the movement of an area where objects in the background cannot be seen through.
  • each embodiment can be applied to a program (software means) that can be executed by a computer (computer), for example, a magnetic disk (floppy disk, hard disk) etc.), optical discs (CD-ROM, DVD, MO, etc.), semiconductor memory (ROM, RAM, flash memory, etc.) and other recording media, or transmitted and distributed via communication media can be
  • the programs stored on the medium also include a setting program for configuring software means (including not only execution programs but also tables and data structures) to be executed by the computer.
  • a computer that realizes this device reads a program recorded on a recording medium, and optionally constructs software means by a setting program, and executes the above-described processing by controlling the operation by this software means.
  • the term "recording medium” as used herein is not limited to those for distribution, and includes storage media such as magnetic disks, semiconductor memories, etc. provided in computers or devices connected via a network.
  • the present invention is not limited to the above-described embodiments, and can be variously modified in the implementation stage without departing from the gist of the present invention. Further, each embodiment may be implemented in combination as appropriate, in which case the combined effect can be obtained. Furthermore, various inventions are included in the above embodiments, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiments, if the problem can be solved and effects can be obtained, the configuration with the constituent elements deleted can be extracted as an invention.

Abstract

An image processing device according to one embodiment of the present invention comprises an extraction unit that extracts one or more processing target regions on the basis of characteristic elements of pixels of a moving image, a feature measurement unit that measures features of pixels in a region obtained by tracking the extracted processing target regions in continuous frames of the moving image, and a mask generation unit that generates image mask information that is information indicating the shapes and positions of the processing target regions extracted by the extraction unit when an average value of the features measured by the feature measurement unit falls within a predetermined range.

Description

画像処理装置、方法およびプログラムImage processing device, method and program
 本発明の実施形態は、画像処理装置、方法およびプログラムに関する。 The embodiments of the present invention relate to an image processing device, method and program.
 コンピュータ(computer)上で動作するプログラム(program)および画像処理用チップ(chip)などの計算機を使って、単眼画像(single perspective image)またはステレオ画像(stereo image)として撮影されたコンテンツ(contents)から3Dコンテンツ(three-dimensional contents)を自動で再構成(画像処理)する技術がある(例えば特許文献1参照)。 From contents captured as a single perspective image or stereo image using a computer such as a program running on a computer and an image processing chip There is a technique for automatically reconstructing (image processing) 3D contents (three-dimensional contents) (see Patent Document 1, for example).
日本国特開2011-18269号公報Japanese Patent Application Laid-Open No. 2011-18269
 上記のように、単眼画像またはステレオ画像として撮影されたコンテンツから3Dコンテンツを再構成する際は、コンテンツ中の透過物の存在が問題となる。 
 例えば、ガラス(glass)、舞台演出などに使われるスモーク(smoke)、または天候に応じて現れる霧、などのように、本来の被写体よりも遠くに位置する別の被写体が透過して見える物体(以下、透過物と称されることがある)が多くのコンテンツの中に含まれる。
As described above, when reconstructing 3D content from content captured as monocular images or stereo images, the presence of transparent objects in the content poses a problem.
For example, glass, smoke used in stage performances, or fog that appears depending on the weather, are objects that are farther away than the original subject and can be seen through other objects ( hereinafter sometimes referred to as transparent objects) are included in many contents.
 この透過物の在否および奥行位置をヒト(human)が認知することは容易であるが、計算機にとっては、この透過物の在否を正しく把握したり、また、この透過物が、どの奥行きの位置に存在しているかを判断したりすることは困難である。 It is easy for a human to recognize the presence or absence of this transparent object and the depth position, but for a computer, it is necessary to correctly grasp the presence or absence of this transparent object, and to determine at what depth this transparent object exists. It is difficult to judge whether or not it exists at a position.
 この透過物の在否の判断と奥行き位置の判断とが困難であるために、計算機により自動的に3Dコンテンツが再構成された場合に、例えば、霧がかかった風景で、さらに霧よりも遠くの方に薄っすらと見えている任意の物体、ここでは物体Aを計算機で処理して抽出しようとした場合、抽出の可否は霧の濃淡によって変化してしまう。 Since it is difficult to determine the presence or absence of this transparent object and to determine the depth position, when 3D content is automatically reconstructed by a computer, for example, in a foggy landscape, further away than the fog If an arbitrary object faintly visible in the direction of , here, object A is processed and extracted by a computer, whether or not it can be extracted changes depending on the density of the fog.
 ここで、霧の濃さが物体Aの抽出可否の境界点付近であった場合、物体Aが抽出できることと、できないこととが繰り返されるため、動画として3Dコンテンツが構成されたときに、フレーム(frame)ごとに奥行き情報処理の結果が比較的高い頻度で変化してしまい、フリッカー(flicker)が発生して映像の品質が低下してしまうという問題がある。 Here, when the density of the fog is near the boundary point of whether or not object A can be extracted, the fact that object A can be extracted and the fact that it cannot be extracted are repeated. There is a problem that the result of depth information processing changes with a relatively high frequency for each frame, flicker occurs, and the image quality deteriorates.
 この発明は、上記事情に着目してなされたもので、その目的とするところは、画像に半透過物が含まれるときの品質を向上させることができるようにした画像処理装置、方法およびプログラムを提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an image processing apparatus, method, and program capable of improving quality when an image includes a translucent object. to provide.
 本発明の一態様に係る画像処理装置は、動画像の画素の特徴要素に基づいて1つ以上の処理対象領域を抽出する抽出部と、前記動画像の連続するフレームにおける前記抽出された処理対象領域を追従して得た領域内の画素の特徴量を測定する特徴量測定部と、前記特徴量測定部により測定された特徴量の平均が所定の範囲であるときに、前記抽出部により抽出された処理対象領域の形状および位置を示す情報を画像のマスク情報として生成するマスク生成部と、を備える。 An image processing apparatus according to an aspect of the present invention includes an extracting unit that extracts one or more processing target regions based on characteristic elements of pixels of a moving image, and the extracted processing targets in consecutive frames of the moving image. a feature quantity measuring unit for measuring a feature quantity of pixels in a region obtained by tracking the region; and a mask generation unit that generates information indicating the shape and position of the processed region as mask information of the image.
 本発明の一態様に係る画像処理方法は、画像処理装置により行なわれる方法であって、動画像の画素の特徴要素に基づいて1つ以上の処理対象領域を抽出する抽出部と、前記動画像の連続するフレームにおける前記抽出された処理対象領域を追従して得た領域内の画素の特徴量を測定する特徴量測定部と、前記特徴量測定部により測定された特徴量の平均が所定の範囲であるときに、前記抽出部により抽出された処理対象領域の形状および位置を示す情報を画像のマスク情報として生成するマスク生成部と、を備える。 An image processing method according to an aspect of the present invention is a method performed by an image processing apparatus, comprising: an extracting unit for extracting one or more processing target regions based on characteristic elements of pixels of a moving image; a feature amount measuring unit for measuring a feature amount of pixels in a region obtained by following the extracted processing target area in consecutive frames; and an average of the feature amounts measured by the feature amount measuring unit and a mask generating unit that generates information indicating the shape and position of the processing target area extracted by the extracting unit as mask information of the image when it is within the range.
 本発明によれば、画像に半透過物が含まれるときの品質を向上させることができる。 According to the present invention, it is possible to improve the quality when a translucent object is included in an image.
図1は、本発明の一実施形態に係る画像処理システム(system)の適用例を示す図である。FIG. 1 is a diagram showing an application example of an image processing system according to an embodiment of the present invention. 図2は、半透明領域抽出部による処理動作の一例を示すフローチャート(flowchart)である。FIG. 2 is a flow chart showing an example of the processing operation by the translucent area extracting unit. 図3は、半透明領域抽出部により画像から抽出された半透明領域の一例を示す図である。FIG. 3 is a diagram showing an example of a semi-transparent area extracted from an image by a semi-transparent area extraction unit. 図4は、特徴量測定部の処理動作の一例を示すフローチャートである。FIG. 4 is a flow chart showing an example of the processing operation of the feature amount measuring unit. 図5は、元画像取得部の処理動作の一例を示すフローチャートである。FIG. 5 is a flow chart showing an example of the processing operation of the original image acquisition unit. 図6は、特徴量比較部の処理動作の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of the processing operation of the feature quantity comparison unit. 図7は、マスク生成部の処理動作の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of a processing operation of a mask generation unit; 図8は、本発明の一実施形態に係る画像処理システムの半透明領域処理装置のハードウエア(hardware)構成の一例を示すブロック図(block diagram)である。FIG. 8 is a block diagram showing an example of the hardware configuration of the translucent area processing device of the image processing system according to one embodiment of the present invention.
 以下、図面を参照しながら、この発明に係わる一実施形態を説明する。 
 図1は、本発明の一実施形態に係る画像処理システムの適用例を示す図である。 
 図1に示されるように、本発明の一実施形態に係る画像処理システムは、半透明領域処理装置(画像処理装置)100および3D画像処理装置120を有する。 
 半透明領域処理装置100は、半透明領域抽出部11、特徴量測定部12、元画像取得部13、特徴量比較部14、およびマスク(mask)生成部15を有する。 
 また、3D画像処理装置120は、デプスマップ(Depth Map)生成部21およびフリック(flick)管理部22を有する。
An embodiment according to the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing an application example of an image processing system according to one embodiment of the present invention.
As shown in FIG. 1, the image processing system according to one embodiment of the present invention has a translucent area processing device (image processing device) 100 and a 3D image processing device 120 .
The semi-transparent area processing device 100 has a semi-transparent area extracting section 11 , a feature amount measuring section 12 , an original image obtaining section 13 , a feature amount comparing section 14 and a mask generating section 15 .
The 3D image processing device 120 also has a depth map generation unit 21 and a flick management unit 22 .
 半透明領域処理装置100は、画像中の半透明領域、例えば霧、または舞台演出のスモークなど、を抽出し、この半透明領域に対して奥行情報の最適化を施す。 
 3D画像処理装置120は、半透明領域処理装置100と一体であってもよい。
A semi-transparent area processing device 100 extracts a semi-transparent area in an image, such as fog or smoke in a stage production, and optimizes depth information for this semi-transparent area.
The 3D image processing device 120 may be integrated with the translucent region processing device 100 .
 半透明領域処理装置100半透明領域抽出部11は、画像中の半透明の領域を抽出して、この領域の情報を処理する。以降の説明では、抽出された半透明領域はスモークの領域であるとして説明する。 The semi-transparent area extraction unit 11 of the semi-transparent area processing device 100 extracts a semi-transparent area in the image and processes the information of this area. In the following description, it is assumed that the extracted translucent area is a smoke area.
 図2は、半透明領域抽出部による処理動作の一例を示すフローチャートである。 
 スモークの色は舞台照明および環境などの状態によって様々なので、ここでは一例としてスモークの色が白っぽい場合を例に挙げて説明する。
FIG. 2 is a flow chart showing an example of processing operations by a semi-transparent region extraction unit.
Since the color of smoke varies depending on conditions such as stage lighting and environment, a case where the color of smoke is whitish will be described here as an example.
 半透明領域抽出部11は、動画像中の任意のフレームに対して、画像における白っぽい領域の画素の値を調べ、この画素値が指定の値域Uの範囲内である画素群が存在するn個の領域を、領域A1、領域A2、領域A3、・・・、領域Anとして保持する(S11)。ここでの値域Uの例は、以下の(1)、(2)で示され得る。 
 (1) (RGBの場合)240<R≦255、240<G≦255、240<B≦255
 (2) (YUV(YCbCr)の場合)240<Y≦255、-10<Cb≦0、-10<Cr≦0
The semi-transparent region extracting unit 11 examines the values of pixels in a whitish region in the image for any frame in the moving image. are held as area A1, area A2, area A3, . . . , area An (S11). Examples of range U here can be shown in (1) and (2) below.
(1) (For RGB) 240 < R ≤ 255, 240 < G ≤ 255, 240 < B ≤ 255
(2) (For YUV (YCbCr)) 240<Y≤255, -10<Cb≤0, -10<Cr≤0
 ここで、値域Uは、画像から得られる画素の情報であれば、色相情報でも良いし、輝度情報でも良いし、各画素の特徴が的確に抽出されるものであれば、特に限られない。また、値域Uは画像編集者が各画像の特徴を捉えて、この編集者により経験則で自由に変更されても良いし、計算機(機械学習などを含む)により最適解が設定されてもよい。 Here, the value range U is not particularly limited as long as it is information about pixels obtained from an image, and may be hue information or luminance information, as long as the characteristics of each pixel can be accurately extracted. Also, the value range U may be freely changed by an image editor based on an empirical rule based on the characteristics of each image, or an optimum solution may be set by a computer (including machine learning). .
 図3は、半透明領域抽出部により画像から抽出された半透明領域の一例を示す図である。 
 図3に示された例では、画像G1における領域A1、A2、およびA3が白っぽいスモークに該当する領域として抽出されたことが示される。
FIG. 3 is a diagram showing an example of a semi-transparent area extracted from an image by a semi-transparent area extraction unit.
The example shown in FIG. 3 shows that regions A1, A2, and A3 in image G1 are extracted as regions corresponding to whitish smoke.
 次に、半透明領域抽出部11は、領域A1、領域A2、領域A3、・・・、領域An内の代表点X1、X2、X3、・・・、Xnの画素値Inを保持する(S12)。このとき、代表点は領域Anの重心点でも良いし、領域Anの(x、y)座標が最小値の点でも良い。 Next, the translucent area extraction unit 11 holds the pixel values In of the representative points X1, X2, X3, . ). At this time, the representative point may be the barycentric point of the area An or the point where the (x, y) coordinates of the area An are the minimum values.
 次に、半透明領域抽出部11は、動画像での連続するフレームにて、領域A1、領域A2、領域A3、・・・、領域Anを追従する(S13)。 
 半透明領域抽出部11は、追従している領域の領域情報を特徴量測定部12に渡す(S14)。この領域情報とは、領域の形状情報および位置情報を含む。特徴量測定部12の処理の手順は後述する。
Next, the translucent area extracting unit 11 tracks the area A1, area A2, area A3, .
The semi-transparent region extracting unit 11 passes the region information of the tracked region to the feature quantity measuring unit 12 (S14). This area information includes shape information and position information of the area. The processing procedure of the feature amount measuring unit 12 will be described later.
 次に、半透明領域抽出部11は、特徴量測定部12から返ってきた、後述する平均画素値Knが、前述の値域Uの範囲内か否かを判定する(S15)。
 平均画素値Knが値域Uの範囲内でない場合は(S15のNo)、半透明領域抽出部11は、領域Anを削除(破棄)して(S17)、領域Anに係る処理が終了する。
Next, the semi-transparent area extraction unit 11 determines whether or not the average pixel value Kn, which will be described later, returned from the feature amount measurement unit 12 is within the value range U described above (S15).
If the average pixel value Kn is not within the value range U (No in S15), the translucent area extraction unit 11 deletes (discards) the area An (S17), and the process for the area An ends.
 一方で、平均画素値Knが値域Uの範囲内である場合は(S15のYes)、半透明領域抽出部11は、領域Anに係る領域情報をマスク生成部15に渡し(S16)、S11の処理に戻る。領域Anの領域情報とは、領域Anの形状情報MAnおよび領域Anの位置情報NAnを含む。マスク生成部15の処理動作については後述する。 On the other hand, if the average pixel value Kn is within the value range U (Yes in S15), the translucent area extraction unit 11 passes the area information on the area An to the mask generation unit 15 (S16). Return to processing. The area information of area An includes shape information MAn of area An and position information NAn of area An. The processing operation of the mask generation unit 15 will be described later.
 次に、特徴量測定部12の処理動作について説明する。図4は、特徴量測定部の処理動作の一例を示すフローチャートである。 
 まず、特徴量測定部12は、半透明領域抽出部11から渡された情報における領域An内の全ての画素値をフレームごとに測定し続ける(S21)。
Next, the processing operation of the feature quantity measuring unit 12 will be described. FIG. 4 is a flow chart showing an example of the processing operation of the feature amount measuring unit.
First, the feature amount measuring unit 12 continues to measure all pixel values within the area An in the information passed from the translucent area extracting unit 11 for each frame (S21).
 特徴量測定部12は、S21で測定された全ての画素値の平均値を算出し、この平均値を平均画素値Knとして保持する(S22)。特徴量測定部12は、S22で保持された、領域Anの平均画素値Knを半透明領域抽出部11に返す(S23)。 The feature amount measurement unit 12 calculates the average value of all pixel values measured in S21 and holds this average value as the average pixel value Kn (S22). The feature amount measuring unit 12 returns the average pixel value Kn of the area An, which was held in S22, to the translucent area extracting unit 11 (S23).
 次に、図1の元画像取得部13の処理動作および特徴量比較部14の処理動作について順次説明する。 
 元画像取得部13および特徴量比較部14が設けられることで、前述の半透明領域抽出部11および特徴量測定部12にて実施された処理において課題が発生した場合に、この課題を解決する補完を行なうことで、高い画像の品質を保つことができる。
Next, the processing operation of the original image acquiring unit 13 and the processing operation of the feature quantity comparing unit 14 shown in FIG. 1 will be sequentially described.
By providing the original image acquisition unit 13 and the feature amount comparison unit 14, if a problem occurs in the processing performed by the semi-transparent region extraction unit 11 and the feature amount measurement unit 12, the problem can be solved. By performing the complementing, high image quality can be maintained.
 このため、半透明領域抽出部11と特徴量測定部12でなるグループ(group)、および元画像取得部13と特徴量比較部14でなるグループとは、互いに独立して動作しても良いし、双方のグループ間で情報を授受し合って互いに補完しながら動作しても良い。 Therefore, the group consisting of the translucent region extracting section 11 and the feature quantity measuring section 12 and the group consisting of the original image obtaining section 13 and the feature quantity comparing section 14 may operate independently of each other. , both groups may exchange information and operate while complementing each other.
 前述の半透明領域抽出部11および特徴量測定部12による処理動作時における課題として想定され得る具体的な事項は、例えば(1)「スモークに類似する特徴量を有する領域の数が著しく多いために、計算量が著しく多くなるため、処理時間が増大してしまう。」および(2)「(ライブ(live)会場などのように、照明が頻繁に高速で点滅し続ける場合などにおいて)画像の特性上で良好な結果を得ることが困難である。」、などである。 Specific matters that can be assumed as problems during the processing operations of the translucent region extracting unit 11 and the feature amount measuring unit 12 are, for example, (1) "Because the number of regions having feature amounts similar to smoke is remarkably large, In addition, the amount of calculation increases significantly, so the processing time increases." It is difficult to obtain good results in terms of characteristics.", etc.
 図5は、元画像取得部の処理動作の一例を示すフローチャートである。 
 まず、元画像取得部13は、撮影計画に基づき、図示しない撮像装置を用いて、撮影を予定している範囲が写っている各画像を予め撮影する(S31)。 
 次に、元画像取得部13は、S31で撮影した各画像を解析し、この解析された各画像の画素の特徴量のセット(set)Wを内部メモリ(internal memory)などに保持する(S32)。 
 特徴量のセットWには、全画素のRGB値および輝度値など、画像の画素の特徴が示される種々の数値が含まれても良い。 
 そして、元画像取得部13は、特徴量比較部14からの要求に応じて、画像の画素の特徴量のセットWを特徴量比較部14に渡す(S33)。
FIG. 5 is a flow chart showing an example of the processing operation of the original image acquisition unit.
First, based on the shooting plan, the original image acquiring unit 13 shoots in advance each image showing the range to be shot using an imaging device (not shown) (S31).
Next, the original image acquisition unit 13 analyzes each image captured in S31, and stores a set W of feature values of pixels of each analyzed image in an internal memory (S32). ).
The feature set W may include various numerical values that characterize the pixels of the image, such as RGB values and luminance values of all pixels.
Then, the original image acquisition unit 13 passes the feature amount set W of the pixels of the image to the feature amount comparison unit 14 in response to the request from the feature amount comparison unit 14 (S33).
 図6は、特徴量比較部の処理動作の一例を示すフローチャートである。 
 まず、特徴量比較部14は、元画像取得部13から、元画像の画素の特徴量のセットWの値を受け取る。 
 そして、特徴量比較部14は、この特徴量のセットWと、処理対象である動画像の連続するフレームの画素の特徴量Vとを比較する(S41)。
FIG. 6 is a flowchart illustrating an example of the processing operation of the feature quantity comparison unit.
First, the feature quantity comparison unit 14 receives the values of the feature quantity set W of the pixels of the original image from the original image acquisition unit 13 .
Then, the feature quantity comparison unit 14 compares the feature quantity set W with the feature quantity V of pixels of consecutive frames of the moving image to be processed (S41).
 特徴量比較部14は、以下の式(1)に従って、Zを算出する。 
 Z=|V-W| …式(1)
The feature quantity comparison unit 14 calculates Z according to the following formula (1).
Z = | V - W | ... formula (1)
 特徴量比較部14は、この算出したZの値が、以下の式(2)により指定される値域Tの範囲にあるか否かを判定する(S42)。 
 0<T≦a(aは正の数) …式(2)
The feature quantity comparison unit 14 determines whether or not the calculated value of Z is within the value range T specified by the following equation (2) (S42).
0<T≦a (a is a positive number) Expression (2)
 S42でYesであれば、特徴量比較部14は、上記値域Uの範囲にある画素群が存在するn個の領域を、領域B1、領域B2、領域B3、・・・、領域Bnとして設定して、内部メモリなどに保持する(S43)。 If YES in S42, the feature quantity comparison unit 14 sets the n regions in which the pixel group within the value range U exists as region B1, region B2, region B3, . . . , region Bn. are stored in an internal memory or the like (S43).
 ここで、特徴量のセットWと特徴量Vは互いに同種の特徴量であれば、色相を表す数値でも良いし、輝度を表す数値でも良い。また、上記式(2)のaは、画像の編集者により経験則から適した値として設定された値でも良いし、計算処理にて算出された値でも良い。 Here, as long as the feature amount set W and the feature amount V are of the same type, they may be numerical values representing hue or luminance. Also, a in the above equation (2) may be a value set as a suitable value based on empirical rules by the editor of the image, or may be a value calculated by calculation processing.
 次に、領域B1、領域B2、領域B3、・・・、領域Bn内の代表点Y1、Y2、Y3、・・・、Ynの画素値Jnを内部メモリなどに保持する(S44)。この代表点は領域Bnの重心点でも良いし、領域Bnの座標値(x、y)が最小値である点でも良い。 
 最後に、特徴量比較部14は、領域Bn内の領域情報である形状情報MBnと位置情報NBnとをマスク生成部15に渡し(S45)、S41の処理に戻る。
Next, the pixel values Jn of the representative points Y1, Y2, Y3, . . . , Yn in the regions B1, B2, B3, . This representative point may be the center of gravity of the area Bn, or the point where the coordinate values (x, y) of the area Bn are the minimum values.
Finally, the feature amount comparison unit 14 passes the shape information MBn and the position information NBn, which are area information in the area Bn, to the mask generation unit 15 (S45), and returns to the processing of S41.
 図7は、マスク生成部の処理動作の一例を示すフローチャートである。 
 まず、マスク生成部15は、前述の半透明領域抽出部11からの領域Anの領域情報(形状および位置の情報)あるいは、特徴量比較部14からの領域Bnの領域情報(形状および位置の情報)の少なくとも一方を受け取る(S51)。以降では、領域Anの領域情報と領域Bnの領域情報の双方が受け取られたとして説明する。
FIG. 7 is a flowchart illustrating an example of a processing operation of a mask generation unit;
First, the mask generation unit 15 extracts the area information (shape and position information) of the area An from the translucent area extraction unit 11 or the area information (shape and position information) of the area Bn from the feature amount comparison unit 14. ) is received (S51). In the following description, it is assumed that both the area information of area An and the area information of area Bn have been received.
 マスク生成部15は、S51で受け取った領域情報における形状情報MAn、MBnおよび位置情報NAn、NBnについて、現在から過去に遡ったF(変数)フレーム分の移動平均(moving average)FMAn、FMBn、FNAn、およびFNBnをそれぞれ算出する(S52)。 The mask generation unit 15 generates moving averages FMAn, FMBn, FNAn for F (variable) frames going back from the present to the past for the shape information MAn, MBn and the position information NAn, NBn in the area information received in S51. , and FNBn are calculated (S52).
 ここで、Fの値は任意の正の数として設定されても良い。Fの目安の一例としては、60fpsの動画において、20~60くらいの数値が適している。処理の重さに応じて、このFの値は変更されても良い。 Here, the value of F may be set as any positive number. As an example of a guideline for F, a value of about 20 to 60 is suitable for a 60fps video. The value of F may be changed according to the weight of processing.
 マスク生成部15は、S52で算出された移動平均FMAn、FMBnの値が、以下の式(3)で示される値域GMの範囲に含まれ、S52で算出された移動平均FNAn、FNBnの値が以下の式(4)で示されるGNの範囲に含まれているか否かを判定する(S53)。 
 0<GM≦b(bは正の数) …式(3)
 0<GN≦b(cは正の数) …式(4)
The mask generation unit 15 determines that the values of the moving averages FMAn and FMBn calculated in S52 are included in the value range GM shown in the following equation (3), and that the values of the moving averages FNAn and FNBn calculated in S52 are It is determined whether or not it is included in the range of GN indicated by the following formula (4) (S53).
0<GM≤b (b is a positive number) Equation (3)
0<GN≦b (c is a positive number) Equation (4)
 S53でYesの場合、マスク生成部15は、領域情報である、形状情報MAn、MBnおよび位置情報NAn、NBnを、このときのマスク情報として、3D画像処理装置120のデプスマップ生成部21へ渡す(S54)。また、S53でNoのときは、マスク生成部15は、領域情報をデプスマップ生成部21には渡さずに(S55)、処理を終了する。
 上記のS52で移動平均が算出されて、S53で、この値が判定されることで、マスク情報の生成が緩やかに行なわれるため、画像のフリッカーを防止することができる。 
 なお、上記のデプスマップ生成部21は、画像処理システム内で保持されても良いし、外部の処理装置またはモジュール(module)などに用いられても良い。
In the case of Yes in S53, the mask generation unit 15 passes the shape information MAn, MBn and the position information NAn, NBn, which are area information, to the depth map generation unit 21 of the 3D image processing device 120 as mask information at this time. (S54). Further, when No in S53, the mask generation unit 15 terminates the process without passing the region information to the depth map generation unit 21 (S55).
By calculating the moving average in the above S52 and determining this value in S53, mask information is generated slowly, so that image flickering can be prevented.
The depth map generator 21 may be held within the image processing system, or may be used in an external processing device or module.
 また、マスク情報を受け取ったデプスマップ生成部21は、このマスク情報に基づいて、各画像の奥行情報を生成する。また、フリック管理部22は、デプスマップ生成部21により生成された奥行情報にフリッカーが認められるときは、これを半透明領域処理装置100の半透明領域抽出部11および元画像取得部13に通知する。半透明領域抽出部11および元画像取得部13は、この通知を受けて上記の処理を開始する。 Also, the depth map generation unit 21 that has received the mask information generates depth information for each image based on this mask information. Further, when flicker is recognized in the depth information generated by the depth map generation unit 21, the flick management unit 22 notifies the semi-transparent area extraction unit 11 and the original image acquisition unit 13 of the semi-transparent area processing device 100. do. Upon receiving this notification, the semi-transparent area extraction unit 11 and the original image acquisition unit 13 start the above processing.
 図8は、本発明の一実施形態に係る画像処理システムの半透明領域処理装置のハードウエア構成の一例を示すブロック図である。 
 図8に示された例では、上記の実施形態に係る半透明領域処理装置100は、例えばサーバコンピュータ(server computer)またはパーソナルコンピュータ(personal computer)により構成され、CPU(Central Processing Unit)等のハードウエアプロセッサ(hardware processor)111Aを有する。そして、このハードウエアプロセッサ111Aに対し、プログラムメモリ(program memory)111B、データメモリ(data memory)112、入出力インタフェース(interface)113及び通信インタフェース114が、バス(bus)115を介して接続される。3D画像処理装置120についても同様である。
FIG. 8 is a block diagram showing an example of the hardware configuration of the translucent area processing device of the image processing system according to one embodiment of the present invention.
In the example shown in FIG. 8, the translucent area processing device 100 according to the above embodiment is configured by, for example, a server computer or a personal computer, and hardware such as a CPU (Central Processing Unit). It has a hardware processor 111A. A program memory 111B, a data memory 112, an input/output interface 113 and a communication interface 114 are connected to the hardware processor 111A via a bus 115. . The same applies to the 3D image processing device 120 as well.
 通信インタフェース114は、例えば1つ以上の無線の通信インタフェースユニットを含んでおり、通信ネットワーク(network)NWとの間で情報の送受信を可能にする。無線インタフェースとしては、例えば無線LAN(Local Area Network)などの小電力無線データ通信規格が採用されたインタフェースが使用される。 The communication interface 114 includes, for example, one or more wireless communication interface units, and allows information to be sent and received to and from a communication network NW. As the wireless interface, an interface adopting a low-power wireless data communication standard such as a wireless LAN (Local Area Network) is used.
 入出力インタフェース113には、半透明領域処理装置100に付設される、利用者などにより用いられる入力デバイス(device)200および出力デバイス300が接続される。 
 入出力インタフェース113は、キーボード、タッチパネル(touch panel)、タッチパッド(touchpad)、マウス(mouse)等の入力デバイス200を通じて利用者などにより入力された操作データを取り込むとともに、出力データを液晶または有機EL(Electro Luminescence)等が用いられた表示デバイスを含む出力デバイス300へ出力して表示させる処理を行なう。なお、入力デバイス200および出力デバイス300には、半透明領域処理装置100に内蔵されたデバイスが使用されてもよく、また、ネットワークNWを介して半透明領域処理装置100と通信可能である他の情報端末の入力デバイスおよび出力デバイスが使用されてもよい。
The input/output interface 113 is connected to an input device 200 and an output device 300 attached to the translucent area processing apparatus 100 and used by a user or the like.
The input/output interface 113 captures operation data input by a user or the like through an input device 200 such as a keyboard, touch panel, touchpad, mouse, etc., and outputs data to a liquid crystal or organic EL device. A process for outputting to and displaying on an output device 300 including a display device using (Electro Luminescence) or the like is performed. As the input device 200 and the output device 300, devices built in the translucent area processing apparatus 100 may be used, or other devices that can communicate with the translucent area processing apparatus 100 via the network NW. Information terminal input and output devices may be used.
 プログラムメモリ111Bは、非一時的な有形の記憶媒体として、例えば、HDD(Hard Disk Drive)またはSSD(Solid State Drive)等の随時書込みおよび読出しが可能な不揮発性メモリ(non-volatile memory)と、ROM(Read Only Memory)等の不揮発性メモリとが組み合わせて使用されたもので、一実施形態に係る各種制御処理等を実行する為に必要なプログラムが格納されている。 The program memory 111B is a non-temporary tangible storage medium, for example, a non-volatile memory that can be written and read at any time, such as a HDD (Hard Disk Drive) or SSD (Solid State Drive), It is used in combination with a nonvolatile memory such as ROM (Read Only Memory), and stores programs necessary for executing various control processes and the like according to one embodiment.
 データメモリ112は、有形の記憶媒体として、例えば、上記の不揮発性メモリと、RAM(Random Access Memory)等の揮発性メモリ(volatile memory)とが組み合わせて使用されたもので、各種処理が行なわれる過程で取得および作成された各種データが記憶される為に用いられる。 The data memory 112 is used as a tangible storage medium, for example, by combining the above-described nonvolatile memory and a volatile memory such as RAM (random access memory), and various processes are performed. It is used to store various data acquired and created in the process.
 本発明の一実施形態に係る半透明領域処理装置100は、ソフトウエア(software)による処理機能部として、図1に示される半透明領域抽出部11、特徴量測定部12、元画像取得部13、特徴量比較部14、およびマスク生成部15を有するデータ処理装置として構成され得る。 A semi-transparent area processing device 100 according to an embodiment of the present invention includes a semi-transparent area extraction section 11, a feature amount measurement section 12, and an original image acquisition section 13 shown in FIG. , a feature comparison unit 14, and a mask generation unit 15. FIG.
 半透明領域処理装置100の各部によるワークメモリ(working memory)などとして用いられる各情報記憶部は、図8に示されたデータメモリ112が用いられることで構成され得る。ただし、これらの構成される記憶領域は半透明領域処理装置100内に必須の構成ではなく、例えば、USB(Universal Serial Bus)メモリなどの外付け記憶媒体、又はクラウド(cloud)に配置されたデータベースサーバ(database server)等の記憶装置に設けられた領域であってもよい。 Each information storage unit used as a working memory by each unit of the translucent area processing apparatus 100 can be configured by using the data memory 112 shown in FIG. However, these configured storage areas are not essential components in the translucent area processing device 100. For example, an external storage medium such as a USB (Universal Serial Bus) memory, or a database located in the cloud It may be an area provided in a storage device such as a server (database server).
 上記の半透明領域抽出部11、特徴量測定部12、元画像取得部13、特徴量比較部14、およびマスク生成部15の各部における処理機能部は、いずれも、プログラムメモリ111Bに格納されたプログラムを上記ハードウエアプロセッサ111Aにより読み出させて実行させることにより実現され得る。なお、これらの処理機能部の一部または全部は、特定用途向け集積回路(ASIC(Application Specific Integrated Circuit))またはFPGA(Field-Programmable Gate Array)などの集積回路を含む、他の多様な形式によって実現されてもよい。 The processing function units in each of the translucent region extraction unit 11, the feature amount measurement unit 12, the original image acquisition unit 13, the feature amount comparison unit 14, and the mask generation unit 15 are all stored in the program memory 111B. It can be realized by causing the hardware processor 111A to read and execute the program. Some or all of these processing functions may be implemented in a variety of other forms, including integrated circuits such as Application Specific Integrated Circuits (ASICs) or Field-Programmable Gate Arrays (FPGAs). may be implemented.
 本実施形態に係る画像処理装置は、動画像の画素の特徴要素に基づいて1つ以上の処理対象領域を抽出し、動画像の連続するフレームにおける抽出された処理対象領域を追従して得た領域内の画素の特徴量を測定し、測定された特徴量の平均が所定の範囲であるときに、抽出された処理対象領域の形状および位置を示す情報を画像のマスク情報として生成する。これにより、奥の物体が透けて見えていない領域の動きによる動画中のフリッカー発生を防止可能とする。 The image processing apparatus according to the present embodiment extracts one or more processing target regions based on the characteristic elements of the pixels of the moving image, and follows the extracted processing target regions in consecutive frames of the moving image. A feature amount of pixels in the area is measured, and information indicating the shape and position of the extracted processing target area is generated as image mask information when the average of the measured feature amounts is within a predetermined range. This makes it possible to prevent the occurrence of flicker in a moving image due to the movement of an area where objects in the background cannot be seen through.
 また、各実施形態に記載された手法は、計算機(コンピュータ)に実行させることができるプログラム(ソフトウエア手段)として、例えば磁気ディスク(フロッピー(登録商標)ディスク(Floppy disk)、ハードディスク(hard disk)等)、光ディスク(optical disc)(CD-ROM、DVD、MO等)、半導体メモリ(ROM、RAM、フラッシュメモリ(Flash memory)等)等の記録媒体に格納し、また通信媒体により伝送して頒布され得る。なお、媒体側に格納されるプログラムには、計算機に実行させるソフトウエア手段(実行プログラムのみならずテーブル(table)、データ構造も含む)を計算機内に構成させる設定プログラムをも含む。本装置を実現する計算機は、記録媒体に記録されたプログラムを読み込み、また場合により設定プログラムによりソフトウエア手段を構築し、このソフトウエア手段によって動作が制御されることにより上述した処理を実行する。なお、本明細書でいう記録媒体は、頒布用に限らず、計算機内部あるいはネットワークを介して接続される機器に設けられた磁気ディスク、半導体メモリ等の記憶媒体を含むものである。 In addition, the method described in each embodiment can be applied to a program (software means) that can be executed by a computer (computer), for example, a magnetic disk (floppy disk, hard disk) etc.), optical discs (CD-ROM, DVD, MO, etc.), semiconductor memory (ROM, RAM, flash memory, etc.) and other recording media, or transmitted and distributed via communication media can be The programs stored on the medium also include a setting program for configuring software means (including not only execution programs but also tables and data structures) to be executed by the computer. A computer that realizes this device reads a program recorded on a recording medium, and optionally constructs software means by a setting program, and executes the above-described processing by controlling the operation by this software means. The term "recording medium" as used herein is not limited to those for distribution, and includes storage media such as magnetic disks, semiconductor memories, etc. provided in computers or devices connected via a network.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 It should be noted that the present invention is not limited to the above-described embodiments, and can be variously modified in the implementation stage without departing from the gist of the present invention. Further, each embodiment may be implemented in combination as appropriate, in which case the combined effect can be obtained. Furthermore, various inventions are included in the above embodiments, and various inventions can be extracted by combinations selected from a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiments, if the problem can be solved and effects can be obtained, the configuration with the constituent elements deleted can be extracted as an invention.
  100…半透明領域処理装置
  120…3D画像処理装置
  11…半透明領域抽出部
  12…特徴量測定部
  13…元画像取得部
  14…特徴量比較部
  15…マスク生成部
DESCRIPTION OF SYMBOLS 100... Semi-transparent area processing apparatus 120... 3D image processing apparatus 11... Semi-transparent area extraction part 12... Feature amount measurement part 13... Original image acquisition part 14... Feature amount comparison part 15... Mask generation part

Claims (8)

  1.  動画像の画素の特徴要素に基づいて1つ以上の処理対象領域を抽出する抽出部と、
     前記動画像の連続するフレームにおける前記抽出された処理対象領域を追従して得た領域内の画素の特徴量を測定する特徴量測定部と、
     前記特徴量測定部により測定された特徴量の平均が所定の範囲であるときに、前記抽出部により抽出された処理対象領域の形状および位置を示す情報を画像のマスク情報として生成するマスク生成部と、
     を備えた画像処理装置。
    an extraction unit that extracts one or more processing target regions based on characteristic elements of pixels of a moving image;
    a feature quantity measuring unit that measures a feature quantity of pixels in a region obtained by following the extracted processing target region in successive frames of the moving image;
    A mask generation unit that generates information indicating the shape and position of the processing target region extracted by the extraction unit as mask information of an image when the average of the feature amounts measured by the feature amount measurement unit is within a predetermined range. and,
    An image processing device with
  2.  前記抽出部は、
      前記画像における画素の値が所定の値域の範囲内である領域を前記処理対象領域として抽出する、
     請求項1に記載の画像処理装置。
    The extractor is
    Extracting an area in which pixel values in the image are within a predetermined value range as the processing target area;
    The image processing apparatus according to claim 1.
  3.  前記マスク生成部は、
      前記連続するフレームのうち現在から遡った所定数のフレームにおける、前記抽出部により抽出された処理対象領域の形状および位置を示す情報の移動平均を算出し、前記算出した移動平均が所定の値域に含まれるときに、前記遡った所定数のフレームにおける、前記抽出部により抽出された処理対象領域の形状および位置を示す情報を前記マスク情報として生成する、
     請求項1に記載の画像処理装置。
    The mask generation unit
    calculating a moving average of information indicating the shape and position of the processing target area extracted by the extracting unit in a predetermined number of frames preceding the present among the consecutive frames, and calculating the moving average within a predetermined value range; When included, information indicating the shape and position of the processing target region extracted by the extracting unit in the predetermined number of frames going back is generated as the mask information.
    The image processing apparatus according to claim 1.
  4.  撮影された画像の各画素の特徴量と、前記動画像の連続するフレームにおける画素の特徴量との差分が所定の値域に含まれるときに、当該値域に含まれる画素が存在する1つ以上の領域を処理対象領域として特定する特定部をさらに備え、
     前記マスク生成部は、
      当該特定された処理対象領域の形状および位置を示す情報を画像のマスク情報として生成する、
     請求項1に記載の画像処理装置。
    When the difference between the feature amount of each pixel of a photographed image and the feature amount of pixels in consecutive frames of the moving image falls within a predetermined value range, one or more pixels having pixels included in the value range exist. further comprising a specifying unit that specifies the area as a processing target area,
    The mask generation unit
    generating information indicating the shape and position of the identified processing target area as mask information of the image;
    The image processing apparatus according to claim 1.
  5.  画像処理装置により行なわれる方法であって、
     動画像の画素の特徴要素に基づいて1つ以上の処理対象領域を抽出する抽出部と、
     前記動画像の連続するフレームにおける前記抽出された処理対象領域を追従して得た領域内の画素の特徴量を測定する特徴量測定部と、
     前記特徴量測定部により測定された特徴量の平均が所定の範囲であるときに、前記抽出部により抽出された処理対象領域の形状および位置を示す情報を画像のマスク情報として生成するマスク生成部と、
     を備える画像処理方法。
    A method performed by an image processing device, comprising:
    an extraction unit that extracts one or more processing target regions based on characteristic elements of pixels of a moving image;
    a feature quantity measuring unit that measures a feature quantity of pixels in a region obtained by following the extracted processing target region in successive frames of the moving image;
    A mask generation unit that generates information indicating the shape and position of the processing target region extracted by the extraction unit as mask information of an image when the average of the feature amounts measured by the feature amount measurement unit is within a predetermined range. and,
    An image processing method comprising:
  6.  前記抽出部は、
      前記画像における画素の値が所定の値域の範囲内である領域を前記処理対象領域として抽出する、
     請求項5に記載の画像処理方法。
    The extractor is
    Extracting an area in which pixel values in the image are within a predetermined value range as the processing target area;
    6. The image processing method according to claim 5.
  7.  前記マスク生成部は、
      前記連続するフレームのうち現在から遡った所定数のフレームにおける、前記抽出部により抽出された処理対象領域の形状および位置を示す情報の移動平均を算出し、前記算出した移動平均が所定の値域に含まれるときに、前記遡った所定数のフレームにおける、前記抽出部により抽出された処理対象領域の形状および位置を示す情報を
    前記マスク情報として生成する、
     請求項5に記載の画像処理方法。
    The mask generation unit
    calculating a moving average of information indicating the shape and position of the processing target area extracted by the extracting unit in a predetermined number of frames preceding the present among the consecutive frames, and calculating the moving average within a predetermined value range; When included, information indicating the shape and position of the processing target region extracted by the extracting unit in the predetermined number of frames going back is generated as the mask information.
    6. The image processing method according to claim 5.
  8.  請求項1乃至4のいずれか1項に記載の画像処理装置の前記各部としてプロセッサを機能させる画像処理プログラム。 An image processing program that causes a processor to function as each part of the image processing apparatus according to any one of claims 1 to 4.
PCT/JP2021/033030 2021-09-08 2021-09-08 Image processing device, method, and program WO2023037451A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023546630A JPWO2023037451A1 (en) 2021-09-08 2021-09-08
PCT/JP2021/033030 WO2023037451A1 (en) 2021-09-08 2021-09-08 Image processing device, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/033030 WO2023037451A1 (en) 2021-09-08 2021-09-08 Image processing device, method, and program

Publications (1)

Publication Number Publication Date
WO2023037451A1 true WO2023037451A1 (en) 2023-03-16

Family

ID=85506167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033030 WO2023037451A1 (en) 2021-09-08 2021-09-08 Image processing device, method, and program

Country Status (2)

Country Link
JP (1) JPWO2023037451A1 (en)
WO (1) WO2023037451A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203337A (en) * 2012-03-29 2013-10-07 Fuji Heavy Ind Ltd Driving support device
WO2019064825A1 (en) * 2017-09-27 2019-04-04 ソニー株式会社 Information processing device, information processing method, control device, and image processing device
WO2019229793A1 (en) * 2018-05-28 2019-12-05 日本電気株式会社 Training data set generation device, training data set generation method and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203337A (en) * 2012-03-29 2013-10-07 Fuji Heavy Ind Ltd Driving support device
WO2019064825A1 (en) * 2017-09-27 2019-04-04 ソニー株式会社 Information processing device, information processing method, control device, and image processing device
WO2019229793A1 (en) * 2018-05-28 2019-12-05 日本電気株式会社 Training data set generation device, training data set generation method and recording medium

Also Published As

Publication number Publication date
JPWO2023037451A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
KR20180105876A (en) Method for tracking image in real time considering both color and shape at the same time and apparatus therefor
Fernandez-Sanchez et al. Background subtraction model based on color and depth cues
US20230394743A1 (en) Sub-pixel data simulation system
CA2913432A1 (en) System and method for identifying, analyzing, and reporting on players in a game from video
US11720745B2 (en) Detecting occlusion of digital ink
JP2018055644A (en) Image processing apparatus and control method thereof
US10916031B2 (en) Systems and methods for offloading image-based tracking operations from a general processing unit to a hardware accelerator unit
CN105469427B (en) One kind is for method for tracking target in video
JP2015518594A (en) Integrated interactive segmentation method using spatial constraints for digital image analysis
US20230237777A1 (en) Information processing apparatus, learning apparatus, image recognition apparatus, information processing method, learning method, image recognition method, and non-transitory-computer-readable storage medium
US20200167933A1 (en) Image processing apparatus, image processing method, and a non-transitory computer readable storage medium
JP2006285952A (en) Image processing method, image processor, program, and recording medium
JP5356036B2 (en) Group tracking in motion capture
US11657568B2 (en) Methods and systems for augmented reality tracking based on volumetric feature descriptor data
JP7014005B2 (en) Image processing equipment and methods, electronic devices
WO2023037451A1 (en) Image processing device, method, and program
JP6993556B2 (en) Information processing equipment, information processing method, program
US20210125317A1 (en) Learning device, image generation device, learning method, image generation method, and program
JP2019021333A (en) Image processing device, image processing method and program
Molodetskikh et al. Temporally coherent person matting trained on fake-motion dataset
CN112085025B (en) Object segmentation method, device and equipment
US11202000B2 (en) Learning apparatus, image generation apparatus, learning method, image generation method, and program
JP4177689B2 (en) Video feature information generator
JP6331914B2 (en) Algorithm generating apparatus, algorithm generating method and algorithm generating computer program
TWI757965B (en) Deep learning method for augmented reality somatosensory game machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546630

Country of ref document: JP