WO2023037411A1 - Stator for dynamoelectric machine and dynamoelectric machine - Google Patents

Stator for dynamoelectric machine and dynamoelectric machine Download PDF

Info

Publication number
WO2023037411A1
WO2023037411A1 PCT/JP2021/032859 JP2021032859W WO2023037411A1 WO 2023037411 A1 WO2023037411 A1 WO 2023037411A1 JP 2021032859 W JP2021032859 W JP 2021032859W WO 2023037411 A1 WO2023037411 A1 WO 2023037411A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
stator
conductor
electric machine
rectangular wire
Prior art date
Application number
PCT/JP2021/032859
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 野口
公男 西村
洋三 廣瀬
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2021/032859 priority Critical patent/WO2023037411A1/en
Publication of WO2023037411A1 publication Critical patent/WO2023037411A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation

Definitions

  • the present invention relates to a rotating electrical machine stator and rotating electrical machine, and more particularly to a rotating electrical machine stator and rotating electrical machine capable of improving heat dissipation.
  • a U-shaped flat wire coil having an insulating coating is inserted into slots of a stator core in which insulating paper is inserted, and flat wire coils protruding from the slots are inserted into the slots of the stator core.
  • the rectangular wire coil is connected by joining the ends of the wire coil.
  • the insulating resin bobbin as described in Patent Document 1 needs to be inserted into the slot, it requires a certain degree of mechanical strength, and there is a limit to how thin it can be made. Further, when such an insulating resin bobbin is used, a gap is generated between the inner wall of the slot and the insulating resin bobbin, and between the insulating resin bobbin and the coil to be inserted into the insulating resin bobbin. Therefore, there is a problem that it is difficult to further improve the heat dissipation performance of the rotating electric machine stator as described in Patent Document 1 due to the thinness limit of the insulating resin bobbin and the occurrence of these gaps.
  • the present invention has been made in view of such problems of the conventional technology, and an object of the present invention is to provide a stator for a rotating electrical machine and a rotating electrical machine that can improve heat dissipation.
  • the inventors of the present invention have made extensive studies to achieve the above object, and as a result, the above object has been achieved by providing a rectangular wire coil having a conductor having a rectangular wire shape and insulating projections provided on the peripheral surface of the conductor. I found that it can be done, and came to complete the present invention.
  • the stator for a rotating electric machine of the present invention includes a stator core having a slot, a rectangular wire coil disposed through the slot, and a resin material filled in the slot together with the rectangular wire coil.
  • This rectangular wire coil has a conductor having a rectangular wire shape and insulating projections provided on the peripheral surface of the conductor.
  • the rotating electrical machine of the present invention includes a rotating electrical machine stator and a rotating electrical machine rotor.
  • This stator for a rotating electrical machine is the stator for a rotating electrical machine according to the present invention.
  • a stator for a rotating electrical machine and a rotating electrical machine that can improve heat dissipation, since it has a conductor having a rectangular wire shape and a rectangular wire coil having insulating projections installed on the peripheral surface of the conductor.
  • FIG. 1 is a perspective view showing a main part of an embodiment of a rotating electric machine of the present invention
  • FIG. FIG. 2 is a partial cross-sectional view of a slot portion of a stator used in the rotating electrical machine shown in FIG. 1 taken perpendicularly to the axial direction of the stator
  • FIG. 2 is a partial cross-sectional view of a slot portion of a stator used in the rotating electrical machine of FIG. 1 cut along the circumferential direction of the stator
  • 1 is a perspective view showing an example of a conductor having a rectangular wire shape
  • FIG. 5 is a cross-sectional view cut along the axis of the conductor, schematically showing a state in which an adhesive is attached to the conductor shown in FIG. 4;
  • FIG. 5 is a cross-sectional view cut along the axis of the conductor, schematically showing a state in which an adhesive and insulating particles are attached to the conductor of FIG. 4;
  • FIG. FIG. 7 is a front view schematically showing a state in which the rectangular wire-shaped coil shown in FIG. 6 is inserted into slots of a stator core;
  • FIG. 8 is a partial cross-sectional view of a slot portion into which the rectangular wire-shaped coil shown in FIG. 7 is inserted, taken perpendicularly to the axial direction of the stator;
  • FIG. 8 is a front view schematically showing how the end portion side of the flat wire coil of FIG. 7 is bent;
  • FIG. 5 is a cross-sectional view showing a rectangular wire coil used in another embodiment of the rotary electric machine of the present invention
  • FIG. 5 is a cross-sectional view showing a rectangular wire coil used in still another embodiment of the rotating electric machine of the present invention
  • FIG. 8 is a plan view showing a rectangular wire coil used in still another embodiment of the rotating electric machine of the present invention
  • FIG. 8 is a plan view showing a rectangular wire coil used in still another embodiment of the rotating electric machine of the present invention
  • a stator for a rotating electrical machine and a rotating electrical machine according to the present invention will be described in detail below with reference to the drawings. Note that the dimensional ratios in the drawings quoted below are exaggerated for convenience of explanation, and may differ from the actual ratios.
  • the rotating electrical machine 60 of this embodiment includes a rotating electrical machine stator 40 and a rotating electrical machine rotor 50 .
  • the rotating electric machine stator 40 of the present embodiment has slots 20A that are drilled in a direction parallel to the axis and extend radially in a cross section perpendicular to the axis. It has a stator core 20, a flat wire coil 10 penetrating through the slot 20A, and a resin material 30 filled in the slot 20A together with the flat wire coil 10.
  • FIG. 1 the rotating electrical machine stator 40 of the present embodiment has slots 20A that are drilled in a direction parallel to the axis and extend radially in a cross section perpendicular to the axis. It has a stator core 20, a flat wire coil 10 penetrating through the slot 20A, and a resin material 30 filled in the slot 20A together with the flat wire coil 10.
  • the rectangular wire coil 10 protruding from the slot 20A of the stator core 20 is cast in the resin material 30.
  • flat wire coils projecting from a plurality of slots of a stator core are actually connected. Assembled.
  • the rectangular wire coil 10 used in this embodiment has a conductor 15 having a rectangular wire shape and an insulating projection 16 provided on the peripheral surface 15A of the conductor 15.
  • the insulating protrusion 16 has a structure in which an insulating material 161 is fixed to the peripheral surface 15A of the conductor 15 with an adhesive 169.
  • the insulating material 161 constitutes insulating particles 163 having a spherical shape.
  • the insulating protrusions 16 exhibit a protective function, an electrical insulation function, and a resin filling promotion function.
  • the protection function is that when the conductor 15 is inserted into the slot 20A, the insulating projection 16 contacts the inner wall of the slot 20A before the conductor 15, so that the conductor 15 contacts the inner wall of the slot 20A and the conductor 15 It means the function to suppress or prevent the occurrence of scratches on the surface.
  • the electrical insulation function means the function of ensuring or improving the electrical insulation between the conductor 15 and the inner wall of the slot 20A by the insulating projection 16.
  • the electrical insulation between the conductor 15 and the inner wall of the slot 20A may be ensured only by the insulating projection 16, but the electrical insulation may be ensured by the insulating projection 16 and the resin material 30 described above.
  • the resin material 30 can also improve the insulating properties, the insulating projections 16 can be formed more simply than the insulating coating that is previously formed on the rectangular wire-shaped conductor.
  • the function of promoting resin filling means that the insulating projection 16 forms a gap between the conductor 15 and the inner wall of the slot 20A, and facilitates filling of the resin material 30 into this gap.
  • the resin material 30 described above forms a heat transfer path in this gap and contributes to electrical insulation between the conductor 15 and the inner wall of the slot 20A.
  • the dimension between the conductor 15 and the inner wall of the slot 20A can be narrowed within a range in which the resin material 30 can be filled.
  • the rotating electrical machine stator 40 of the present embodiment since the conductor 15 having a rectangular wire shape and the rectangular wire coil having the insulating protrusions 16 provided on the peripheral surface 15A of the conductor are provided, the protection function and the electrical insulation function described above are provided. Also, the function of promoting resin filling is exhibited, and the heat dissipation can be improved. In addition, since there is no need to use an insulating resin bobbin, which has a limit in thinning, the space factor of the conductor in the slot can be increased. Furthermore, since the resin material 30 can ensure or compensate for the electrical insulation function, there is no need to use an expensive rectangular wire coil with an insulating coating formed in advance, and the cost can be reduced.
  • the rotary electric machine 60 of the present embodiment includes the stator 40 for a rotary electric machine, it is possible to increase the space factor of the conductors in the slots. Therefore, even if the motor size is the same, the output performance of the motor is improved. are doing.
  • the insulating protrusion 16 has a structure in which the insulating material 161 (insulating particles 163) is fixed to the peripheral surface 15A of the conductor 15 by the adhesive 169, the gap filled with the resin becomes uniform and stable to some extent, and the above-described The protective function, electrical insulation function, and resin filling promotion function thus obtained are exhibited more stably and effectively.
  • the insulating particles 163 preferably have a particle size of 5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the insulating particles 163 preferably have a particle size of 200 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less. From the viewpoint of being able to cope with even higher voltage motors, it is preferable to set the particle size to 10 ⁇ m or more and 100 ⁇ m or less.
  • the particle sizes are uniform.
  • the particle size of the insulating particles and the fiber diameter of the insulating fibers to be described later are obtained by observing the insulating particles, insulating fibers, etc. in a cross section of the insulating protrusion cut along the height direction with a scanning electron microscope (SEM) or the like. It is defined as the maximum distance between any two points on the contour line of insulating particles or insulating fibers.
  • the shape of the insulating particles 163 is spherical, polyhedral, or three-dimensional star-shaped rather than cubic, plate-shaped, scale-shaped, or needle-shaped.
  • a typical example of the three-dimensional star shape is a shape obtained by forming a plurality of protrusions on the surface of a spherical particle, that is, a so-called confetti shape.
  • the insulating particles 163 have a shape suitable for sieving, and the particle size can be easily adjusted, so that they are easy to handle. Furthermore, the insulating particles 163 having a spherical shape or a confetti shape are less likely to damage the inner wall of the slot 20A. Moreover, the insulating particles 163 having a polyhedral shape or a confetti shape with projections on the surface are preferable because the gaps between the particles can be easily increased. Furthermore, since the particle size can be made uniform in the upstream process of the production process, it is easy to form a gap of a fixed size around the conductor 15, which is easy to fill with resin. It is easy to improve the quality of the stator and rotating electric machine.
  • the ratio of the actual surface area of the flat wire coil 10 to the apparent surface area of the flat wire coil 10 is preferably 1.1 or more and 3.0 or less, and more preferably 1.1 or more and 2.0 or less. It is more preferable to have By setting this ratio to 1.1 or more and 3.0 or less, it is possible to form a gap that facilitates resin filling, and the protective function, electrical insulation function, and resin filling promotion function described above can be exhibited more effectively.
  • the apparent surface area of the flat wire coil is defined as the area of the circumscribed surface of the flat wire coil that is measured only in consideration of the insulating protrusions 16 and without considering the holes and grooves existing between the insulating protrusions 16. do. Such an apparent surface area can be calculated, for example, by actual measurement using a scanning electron microscope (SEM) photograph.
  • SEM scanning electron microscope
  • the actual surface area of the flat wire coil is defined as the actual surface area of the flat wire coil measured in consideration of not only the insulating protrusions 16 but also the holes and grooves existing between the insulating protrusions 16 .
  • Such an actual surface area can be calculated by, for example, a mercury intrusion method or actual measurement using a scanning electron microscope (SEM) photograph.
  • the height h of the insulating protrusion 16 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more. Also, the height h of the insulating protrusion 16 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less. From the viewpoint that the gaps that are easily filled with resin can be made thin, and the above-described protective function, electrical insulation function, and resin filling promotion function can be more effectively exhibited, the height h of the insulating protrusions 16 is set to 10 ⁇ m or more and 100 ⁇ m or less. It is preferable to
  • the height h of the insulating protrusion 16 is defined as the distance from the part in contact with the conductor 15 to the farthest protrusion.
  • a portion in contact with the conductor 15 is made of an adhesive 169 or an insulating material 161 .
  • the ratio of the projected area of the insulating protrusions 16 to the apparent surface area of the flat wire coil 10 is preferably 1% by area or more, more preferably 5% by area or more, and more preferably 10% by area or more. More preferred. Also, this ratio is preferably 90 area % or less, more preferably 80 area % or less, and even more preferably 70 area % or less.
  • the insulating projections 16 are formed of insulating particles or insulating fibers, by setting this ratio to 1 area % or more and 70 area % or less, the peripheral surface 15A of the conductor 15 is physically protected from damage and the like. A gap that is easily filled with resin can be formed, and the protective function, electrical insulation function, and resin filling promotion function described above can be exhibited more effectively.
  • a conductor 15 having a rectangular wire shape as shown in FIG. 4 is formed into a U shape by a bending device using a mold.
  • an adhesive 169 is applied to the straight portion of the conductor 15 as shown in FIG. 5 by brush or spray.
  • insulating particles 163 are formed with adhesive 169 as shown in FIG. It is fixed to the peripheral surface 15A of the conductor 15, and the insulating projection 16 is formed on the peripheral surface 15A of the rectangular wire-shaped conductor 15. As shown in FIG. In this manner, the rectangular wire coil 10 used in the rotating electric machine stator of the present embodiment is obtained.
  • the rectangular wire coil 10 thus obtained is inserted into slots (not shown) of the stator core 20 .
  • slots not shown
  • only a portion (four) of the rectangular wire coils 10 is shown.
  • gaps are formed between the conductors 15 and between the conductors 15 and the inner wall of the slot 20A by insulating projections 16 provided on the peripheral surface 15A. can do.
  • the base of the rectangular wire-shaped coil 10 is restrained by a holding jig 201, the tip of the rectangular wire-shaped coil 10 is brought into contact with a bending jig 203, and the projecting portions of the plurality of flat wire-shaped coils 10 are shown by arrows. Bend as indicated by Z. Furthermore, although not shown, this bending causes the ends of the flat wire coils to come into contact with each other, and the flat wire coils 10 are connected by welding them together.
  • the resin material 30 is filled in the slots 20A and the rectangular wire coils 10 projecting from the slots 20A of the stator core 20 are cast with the resin material 30. 1 to 3 is obtained.
  • insulating particles are added to the adhesive raw material in advance and dispersed uniformly, and after coating the conductor with the insulating particles, the adhesive on the surface side is dissolved.
  • the insulating particles may protrude from the adhesive.
  • the insulating particles can be evenly arranged on the peripheral surface of the conductor, so that the above-described protecting function, electrical insulating function, and resin filling promoting function can be exhibited more effectively.
  • the rectangular wire-shaped coil obtained by such a manufacturing method is easier to widen the gap and has a better resin filling property than the rectangular wire-shaped coil obtained by the above-described manufacturing method.
  • the rectangular wire coil 11 used in the rotary electric machine of the present embodiment is similar to the rectangular wire coil shown in FIGS. has the same structure as
  • the insulating material 161 is the insulating particles 163 having a confetti shape. It is possible to form a gap that is easy to fill with resin, and the protective function, electrical insulation function, and resin filling promotion function described above can be exhibited more effectively.
  • the insulating projections 16 have a structure in which insulating particles 163 are fixed to the peripheral surface 15A of the conductor 15 with an adhesive 169 .
  • the insulating protrusion 16 has a structure in which a part of the insulating particles 163 is embedded in a layer made of the adhesive 169 .
  • the ratio of the embedding depths d2 and d3 of the insulating particles 163 to the particle diameter d1 of the insulating particles 163 is 1/4 or more and 3/4 or less.
  • the rectangular wire coil 12 used in the rotating electric machine of this embodiment has the insulating particles 163 embedded in the above-described predetermined amount.
  • the gap becomes stable, and it is possible to form a gap that is less likely to cause resin filling defects and is easy to be filled with resin.
  • the protective function, electrical insulation function, and resin filling promotion function described above are exhibited more effectively.
  • the gap is formed to facilitate resin filling, the filling pressure during resin filling can be stabilized at a low level, and the quality of resin filling can be improved.
  • the insulating protrusions 16 are formed of insulating fibers 165 that are spirally wound around the peripheral surface 15A of the conductor 15. It has the same structure as the rectangular wire coil shown in FIGS.
  • the insulating fiber 165 may be mechanically wound around the conductor 15 and fixed, or may be fixed with an adhesive (not shown).
  • the insulating fiber 165 is mechanically wound around the conductor 15. Therefore, by adjusting the pitch of the spiral during winding, it is easy to form a gap of a certain size. In addition, by adjusting the pitch of the spiral during winding, the actual surface area and the projected area of the insulating protrusions can be easily adjusted, making it easy to form appropriate gaps between the insulating fibers 165 . As a result, in addition to the advantages of the first embodiment, the resin flow resistance of the resin material can be reduced, and not only the above-described protection function, electrical insulation function, and resin filling promotion function can be exhibited more effectively, Production efficiency is superior to that of the embodiment.
  • the insulating fiber 165 in addition to ordinary fibers, fibers formed from woven fabric, non-woven fabric, and knitted fabric can be used. Furthermore, the insulating fiber 165 preferably has a fiber diameter of 5 ⁇ m or more, more preferably 10 ⁇ m or more. Also, the fiber diameter is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less. The fiber diameter is preferably 10 ⁇ m or more and 100 ⁇ m or less from the viewpoint of being able to cope with even higher voltages of motors.
  • the insulating protrusions 16 are formed of an insulating fiber aggregate 167 provided on the peripheral surface 15A of the conductor 15. , has the same structure as the rectangular wire coil shown in FIGS.
  • the insulating fiber assembly 167 is made of woven fabric.
  • the insulating fiber assembly 167 may be mechanically wound around the conductor 15 and fixed, or may be fixed with an adhesive (not shown).
  • the conductor 15 is covered with the insulating fiber assembly 167, and there is no insulating protrusion due to insulating particles that are difficult to align in height on the surface thereof.
  • it is possible to suppress interference such as catching when inserting the flat wire coil into the slot, and improve the insertability.
  • production equipment and storage equipment can be simplified.
  • the insulating fiber assembly 167 an insulating fiber assembly made of woven fabric, non-woven fabric, or knitted fabric can be mentioned. Furthermore, the insulating fiber assembly 167 preferably has a thickness of 5 ⁇ m or more, more preferably 10 ⁇ m or more. Also, the thickness is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 100 ⁇ m or less. The thickness is preferably 10 ⁇ m or more and 100 ⁇ m or less from the viewpoint of being able to cope with even higher voltage motors.
  • thermosetting resins such as epoxy resins and unsaturated polyester resins. These resins are sufficient as long as they have ordinary insulating properties, but if it is desired to achieve excellent insulating properties between the coil and the stator core, resins with excellent insulating properties may be used.
  • Examples of materials for the insulating material 161 include ceramic, glass, resin, and cellulose (paper). Ceramics and glass are preferable to resins and papers from the viewpoint of placing importance on wear resistance and hardness in the slot. Ceramic is preferable to glass from the viewpoint of being less likely to break. From the viewpoint of facilitating the insertion of the flat wire coil into the slot, an insulating material having a small coefficient of friction is preferable. Examples of such an insulating material include an insulating material having self-lubricating properties and an insulating material having a small surface roughness.
  • the adhesive 169 for example, it is preferable that the insulating material can be fixed to the conductor while withstanding the heat resistance temperature of about 180° C. to 250° C. of the motor. .
  • the adhesive preferably has flexibility from the viewpoint of conformability.

Abstract

This stator for a dynamoelectric machine stator comprises a stator core having slots, a flat wire coil arranged through the slots, and a resin member arranged filled in the slots together with the flat wire coil. The flat wire coil has a conductor that has a flat wire form, and insulating projections arranged on the circumferential surface of the conductor.

Description

回転電機用ステータ及び回転電機Rotating electric machine stator and rotating electric machine
 本発明は、回転電機用ステータ及び回転電機に係り、さらに詳細には、放熱性を向上し得る回転電機用ステータ及び回転電機に関する。 The present invention relates to a rotating electrical machine stator and rotating electrical machine, and more particularly to a rotating electrical machine stator and rotating electrical machine capable of improving heat dissipation.
 一般的に、平角線型コイルを用いたステータにおいては、絶縁紙が挿入されたステータコアのスロット内に、絶縁被膜を有する全体形状がU字形状の平角線型コイルを挿入し、スロット同士から突出した平角線型コイルの端部同士を接合して平角線型コイルを結線している。 In general, in a stator using flat wire coils, a U-shaped flat wire coil having an insulating coating is inserted into slots of a stator core in which insulating paper is inserted, and flat wire coils protruding from the slots are inserted into the slots of the stator core. The rectangular wire coil is connected by joining the ends of the wire coil.
 従来、ステータコアのスロット内にコイルを挿入する際に、コイルに傷が生じることを回避しつつ、スロット内のコイルの絶縁性を担保するために、スロット内に絶縁樹脂製ボビンを挿入した回転電機用ステータが提案されている(特許文献1参照。)。 Conventionally, when a coil is inserted into a slot of a stator core, an insulating resin bobbin is inserted into the slot to ensure the insulation of the coil while avoiding damage to the coil. A stator for a motor has been proposed (see Patent Document 1).
国際公開第2020/017133号WO2020/017133
 しかしながら、特許文献1に記載されたような絶縁樹脂製ボビンは、スロット内に挿入する必要があるために、一定の機械的強度を必要とし、その薄肉化に限界がある。また、このような絶縁樹脂製ボビンを用いると、スロットの内壁と絶縁樹脂製ボビンとの間、絶縁樹脂製ボビンと絶縁樹脂製ボビンに挿入されるコイルとの間に隙間が生じる。従って、絶縁樹脂製ボビンの薄肉化限界性やこれら隙間の発生によって、特許文献1に記載されたような回転電機用ステータにおいては、放熱性を更に向上することが難しいという問題点があった。 However, since the insulating resin bobbin as described in Patent Document 1 needs to be inserted into the slot, it requires a certain degree of mechanical strength, and there is a limit to how thin it can be made. Further, when such an insulating resin bobbin is used, a gap is generated between the inner wall of the slot and the insulating resin bobbin, and between the insulating resin bobbin and the coil to be inserted into the insulating resin bobbin. Therefore, there is a problem that it is difficult to further improve the heat dissipation performance of the rotating electric machine stator as described in Patent Document 1 due to the thinness limit of the insulating resin bobbin and the occurrence of these gaps.
 本発明は、このような従来技術の有する課題に鑑みてなされたものであって、放熱性を向上し得る回転電機用ステータ及び回転電機を提供することを目的とする。 The present invention has been made in view of such problems of the conventional technology, and an object of the present invention is to provide a stator for a rotating electrical machine and a rotating electrical machine that can improve heat dissipation.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、平角線形状を有する導体と導体の周面に設置された絶縁突起を有する平角線型コイルを備えることにより、上記目的が達成できることを見出し、本発明を完成するに至った。 The inventors of the present invention have made extensive studies to achieve the above object, and as a result, the above object has been achieved by providing a rectangular wire coil having a conductor having a rectangular wire shape and insulating projections provided on the peripheral surface of the conductor. I found that it can be done, and came to complete the present invention.
 すなわち、本発明の回転電機用ステータは、スロットを有するステータコアと、スロット内に貫通配置された平角線型コイルと、平角線型コイルと共にスロット内に充填配置された樹脂材を備える。この平角線型コイルが、平角線形状を有する導体と、導体の周面に設置された絶縁突起を有する。 That is, the stator for a rotating electric machine of the present invention includes a stator core having a slot, a rectangular wire coil disposed through the slot, and a resin material filled in the slot together with the rectangular wire coil. This rectangular wire coil has a conductor having a rectangular wire shape and insulating projections provided on the peripheral surface of the conductor.
 さらに、本発明の回転電機は、回転電機用ステータと、回転電機用ロータを具備する。この回転電機用ステータが、上記本発明の回転電機用ステータであることを特徴とする。 Further, the rotating electrical machine of the present invention includes a rotating electrical machine stator and a rotating electrical machine rotor. This stator for a rotating electrical machine is the stator for a rotating electrical machine according to the present invention.
 本発明によれば、平角線形状を有する導体と導体の周面に設置された絶縁突起を有する平角線型コイルを備えたため、放熱性を向上し得る回転電機用ステータ及び回転電機を提供できる。 According to the present invention, it is possible to provide a stator for a rotating electrical machine and a rotating electrical machine that can improve heat dissipation, since it has a conductor having a rectangular wire shape and a rectangular wire coil having insulating projections installed on the peripheral surface of the conductor.
本発明の回転電機の一実施形態の主要部を示す斜視図である。1 is a perspective view showing a main part of an embodiment of a rotating electric machine of the present invention; FIG. 図1に示した回転電機に用いられるステータのスロット部分をステータの軸方向に対して垂直に切断した部分断面図である。FIG. 2 is a partial cross-sectional view of a slot portion of a stator used in the rotating electrical machine shown in FIG. 1 taken perpendicularly to the axial direction of the stator; 図1の回転電機に用いられるステータのスロット部分をステータの周方向に沿って切断した部分断面図である。FIG. 2 is a partial cross-sectional view of a slot portion of a stator used in the rotating electrical machine of FIG. 1 cut along the circumferential direction of the stator; 平角線形状を有する導体の一例を示す斜視図である。1 is a perspective view showing an example of a conductor having a rectangular wire shape; FIG. 図4に示した導体に接着材を付着させた状態を模式的に示す導体の軸線に沿って切断した断面図である。5 is a cross-sectional view cut along the axis of the conductor, schematically showing a state in which an adhesive is attached to the conductor shown in FIG. 4; FIG. 図4の導体に接着材及び絶縁粒子を付着させた状態を模式的に示す導体の軸線に沿って切断した断面図である。5 is a cross-sectional view cut along the axis of the conductor, schematically showing a state in which an adhesive and insulating particles are attached to the conductor of FIG. 4; FIG. 図6に示した平角線型コイルをステータコアのスロットに挿入した状態を模式的に示す正面図である。FIG. 7 is a front view schematically showing a state in which the rectangular wire-shaped coil shown in FIG. 6 is inserted into slots of a stator core; 図7に示した平角線型コイルが挿入されたスロット部分をステータの軸方向に対して垂直に切断した部分断面図である。FIG. 8 is a partial cross-sectional view of a slot portion into which the rectangular wire-shaped coil shown in FIG. 7 is inserted, taken perpendicularly to the axial direction of the stator; 図7の平角線型コイルの端部側を曲げる様子を模式的に示す正面図である。FIG. 8 is a front view schematically showing how the end portion side of the flat wire coil of FIG. 7 is bent; 本発明の回転電機の他の実施形態に用いられる平角線型コイルを示す断面図である。FIG. 5 is a cross-sectional view showing a rectangular wire coil used in another embodiment of the rotary electric machine of the present invention; 本発明の回転電機の更に他の実施形態に用いられる平角線型コイルを示す断面図である。FIG. 5 is a cross-sectional view showing a rectangular wire coil used in still another embodiment of the rotating electric machine of the present invention; 本発明の回転電機の更に他の実施形態に用いられる平角線型コイルを示す平面図である。FIG. 8 is a plan view showing a rectangular wire coil used in still another embodiment of the rotating electric machine of the present invention; 本発明の回転電機の更に他の実施形態に用いられる平角線型コイルを示す平面図である。FIG. 8 is a plan view showing a rectangular wire coil used in still another embodiment of the rotating electric machine of the present invention;
 以下、本発明の回転電機用ステータ及び回転電機について図面を参照しながら詳細に説明する。なお、以下で引用する図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 A stator for a rotating electrical machine and a rotating electrical machine according to the present invention will be described in detail below with reference to the drawings. Note that the dimensional ratios in the drawings quoted below are exaggerated for convenience of explanation, and may differ from the actual ratios.
(第1実施形態)
 図1に示すように、本実施形態の回転電機60は、回転電機用ステータ40と、回転電機用ロータ50を具備している。そして、図2及び図3に示すように、本実施形態の回転電機用ステータ40は、その軸と平行な方向に穿設され、軸と垂直な断面において半径方向に延在したスロット20Aを有するステータコア20と、スロット20A内に貫通配置された平角線型コイル10と、平角線型コイル10と共にスロット20A内に充填配置された樹脂材30を備えている。
(First embodiment)
As shown in FIG. 1 , the rotating electrical machine 60 of this embodiment includes a rotating electrical machine stator 40 and a rotating electrical machine rotor 50 . As shown in FIGS. 2 and 3, the rotating electric machine stator 40 of the present embodiment has slots 20A that are drilled in a direction parallel to the axis and extend radially in a cross section perpendicular to the axis. It has a stator core 20, a flat wire coil 10 penetrating through the slot 20A, and a resin material 30 filled in the slot 20A together with the flat wire coil 10. As shown in FIG.
 ここで、図示例においては、ステータコア20のスロット20Aから突出した平角線型コイル10は、樹脂材30によって鋳込まれた状態となっている。なお、図示しないが、実際には、回転電機用ステータにおいては、ステータコアの複数のスロットから突出した平角線型コイルが結線されており、回転電機用ロータにおいては、ロータシャフトや、複数の磁石などが組み付けられている。 Here, in the illustrated example, the rectangular wire coil 10 protruding from the slot 20A of the stator core 20 is cast in the resin material 30. As shown in FIG. Although not shown, in a stator for a rotating electric machine, flat wire coils projecting from a plurality of slots of a stator core are actually connected. Assembled.
 さらに、図2及び図3に示すように、本実施形態に用いられる平角線型コイル10は、平角線形状を有する導体15と、導体15の周面15Aに設置された絶縁突起16を有している。 Further, as shown in FIGS. 2 and 3, the rectangular wire coil 10 used in this embodiment has a conductor 15 having a rectangular wire shape and an insulating projection 16 provided on the peripheral surface 15A of the conductor 15. there is
 図2及び図3に示すように、本実施形態に用いられる平角線型コイル10において、絶縁突起16は、絶縁材161が接着材169で導体15の周面15Aに固定された構造を有しており、絶縁材161は球状形状を有する絶縁粒子163を構成している。 As shown in FIGS. 2 and 3, in the flat wire coil 10 used in the present embodiment, the insulating protrusion 16 has a structure in which an insulating material 161 is fixed to the peripheral surface 15A of the conductor 15 with an adhesive 169. The insulating material 161 constitutes insulating particles 163 having a spherical shape.
 本発明において、絶縁突起16は、保護機能、電気絶縁機能及び樹脂充填促進機能を発揮する。 In the present invention, the insulating protrusions 16 exhibit a protective function, an electrical insulation function, and a resin filling promotion function.
 上記保護機能とは、スロット20A内に導体15を挿入する際に、スロット20Aの内壁に絶縁突起16が導体15より先に接触することにより、スロット20Aの内壁に導体15が接触して導体15に傷が生じることを抑制ないし防止する機能を意味する。 The protection function is that when the conductor 15 is inserted into the slot 20A, the insulating projection 16 contacts the inner wall of the slot 20A before the conductor 15, so that the conductor 15 contacts the inner wall of the slot 20A and the conductor 15 It means the function to suppress or prevent the occurrence of scratches on the surface.
 また、上記電気絶縁機能とは、絶縁突起16が導体15とスロット20Aの内壁との間の電気絶縁性を確保ないしは向上する機能を意味する。なお、絶縁突起16のみによって導体15とスロット20Aの内壁との間における電気絶縁性が担保されてもよいが、絶縁突起16と上述した樹脂材30によってかかる電気絶縁性が担保されればよい。また、樹脂材30によっても絶縁性が向上できるので、絶縁突起16は平角線形状の導体に予め形成される絶縁被膜よりも簡素に形成できる。 Further, the electrical insulation function means the function of ensuring or improving the electrical insulation between the conductor 15 and the inner wall of the slot 20A by the insulating projection 16. The electrical insulation between the conductor 15 and the inner wall of the slot 20A may be ensured only by the insulating projection 16, but the electrical insulation may be ensured by the insulating projection 16 and the resin material 30 described above. In addition, since the resin material 30 can also improve the insulating properties, the insulating projections 16 can be formed more simply than the insulating coating that is previously formed on the rectangular wire-shaped conductor.
 さらに、上記樹脂充填促進機能とは、絶縁突起16が導体15とスロット20Aの内壁との間に隙間を形成し、この隙間に樹脂材30を充填し易くする機能を意味する。上述した樹脂材30は、この隙間に伝熱経路を形成すると共に導体15とスロット20Aの内壁との間の電気絶縁性に寄与する。なお、導体15とスロット20Aの内壁との間の寸法は樹脂材30を充填可能な範囲内で狭くすることができる。 Furthermore, the function of promoting resin filling means that the insulating projection 16 forms a gap between the conductor 15 and the inner wall of the slot 20A, and facilitates filling of the resin material 30 into this gap. The resin material 30 described above forms a heat transfer path in this gap and contributes to electrical insulation between the conductor 15 and the inner wall of the slot 20A. In addition, the dimension between the conductor 15 and the inner wall of the slot 20A can be narrowed within a range in which the resin material 30 can be filled.
 次に、本実施形態の利点について説明する。本実施形態の回転電機用ステータ40によれば、平角線形状を有する導体15と導体の周面15Aに設置された絶縁突起16を有する平角線型コイルを備えるので、上述した保護機能、電気絶縁機能及び樹脂充填促進機能が発揮され、放熱性を向上し得る。また、薄肉化に限界がある絶縁樹脂製ボビンを用いる必要がないため、スロット内における導体の占積率を高めることができる。さらに、樹脂材30によって電気絶縁機能を確保ないし補償することができるので、予め絶縁被膜が形成された高価な平角線型コイルを用いる必要がなく、コストを低減することが可能となる。 Next, the advantages of this embodiment will be explained. According to the rotating electrical machine stator 40 of the present embodiment, since the conductor 15 having a rectangular wire shape and the rectangular wire coil having the insulating protrusions 16 provided on the peripheral surface 15A of the conductor are provided, the protection function and the electrical insulation function described above are provided. Also, the function of promoting resin filling is exhibited, and the heat dissipation can be improved. In addition, since there is no need to use an insulating resin bobbin, which has a limit in thinning, the space factor of the conductor in the slot can be increased. Furthermore, since the resin material 30 can ensure or compensate for the electrical insulation function, there is no need to use an expensive rectangular wire coil with an insulating coating formed in advance, and the cost can be reduced.
 そして、本実施形態の回転電機60は、この回転電機用ステータ40を具備することにより、スロット内における導体の占積率を高めることができるため、例えば同じモータサイズにおいてもモータの出力性能が向上している。 Since the rotary electric machine 60 of the present embodiment includes the stator 40 for a rotary electric machine, it is possible to increase the space factor of the conductors in the slots. Therefore, even if the motor size is the same, the output performance of the motor is improved. are doing.
 また、絶縁突起16は、絶縁材161(絶縁粒子163)が接着材169で導体15の周面15Aに固定された構造を有するので、樹脂充填される隙間がある程度均質で安定したものとなり、上述した保護機能、電気絶縁機能及び樹脂充填促進機能がより安定的かつ効果的に発揮されることになる。 In addition, since the insulating protrusion 16 has a structure in which the insulating material 161 (insulating particles 163) is fixed to the peripheral surface 15A of the conductor 15 by the adhesive 169, the gap filled with the resin becomes uniform and stable to some extent, and the above-described The protective function, electrical insulation function, and resin filling promotion function thus obtained are exhibited more stably and effectively.
 なお、絶縁粒子163としては、粒径が5μm以上であることが好ましく、10μm以上であることがより好ましい。また、絶縁粒子163としては、粒径が200μm以下であることが好ましく、150μm以下であることがより好ましく、100μm以下であることが更に好ましい。モータの更なる高電圧化にも対応することができるという観点からは、粒径を10μm以上100μm以下とすることが好ましい。また、導体15の周囲に樹脂充填し易い一定サイズの隙間を形成し易いという観点からは、粒径が揃っていることが好ましい。 The insulating particles 163 preferably have a particle size of 5 μm or more, more preferably 10 μm or more. The insulating particles 163 preferably have a particle size of 200 μm or less, more preferably 150 μm or less, and even more preferably 100 μm or less. From the viewpoint of being able to cope with even higher voltage motors, it is preferable to set the particle size to 10 μm or more and 100 μm or less. Moreover, from the viewpoint of facilitating the formation of a gap of a constant size around the conductor 15 so that the resin can be easily filled, it is preferable that the particle sizes are uniform.
 ここで、絶縁粒子の粒径や後述する絶縁繊維の繊維径等は、絶縁突起を高さ方向に沿って切った断面における絶縁粒子、絶縁繊維等を走査型電子顕微鏡(SEM)などによって観察したときの絶縁粒子や絶縁繊維の輪郭線上の任意の2点間の距離のうち最大の距離と定義する。 Here, the particle size of the insulating particles and the fiber diameter of the insulating fibers to be described later are obtained by observing the insulating particles, insulating fibers, etc. in a cross section of the insulating protrusion cut along the height direction with a scanning electron microscope (SEM) or the like. It is defined as the maximum distance between any two points on the contour line of insulating particles or insulating fibers.
 また、絶縁粒子163の形状は、一定サイズの隙間を形成し易いという観点からは、立方体形状、板状形状、鱗片状形状、針状形状よりも球形形状、多面体形状、三次元星型形状であることが好ましい。この三次元星型形状の典型例としては、球状粒子の表面に突起を複数個形成してなる形状、いわゆる金平糖形状を挙げることができる。このような球形形状などの絶縁粒子163は、導体15の周面15Aに固定した場合に、接着方向にかかわらず、導体15の周囲に一定サイズの隙間を形成し易い。また、かかる絶縁粒子163は、篩い分けに適した形状であり、粒径の調整が容易で取扱い性に優れる。さらに、球形形状や金平糖形状を有する絶縁粒子163は、スロット20Aの内壁を傷つけにくい。また、表面に突起を有する多面体形状や金平糖形状を有する絶縁粒子163は、粒子同士の隙間を増加させ易いため好ましい。さらに、生産工程のより上流工程において、粒径を揃えることができるため、導体15の周囲に樹脂充填し易い一定サイズの隙間を形成し易く、かかる絶縁粒子を用いた平角線型コイル、回転電機用ステータ及び回転電機の品質を向上させ易い。 In addition, from the viewpoint that it is easy to form gaps of a certain size, the shape of the insulating particles 163 is spherical, polyhedral, or three-dimensional star-shaped rather than cubic, plate-shaped, scale-shaped, or needle-shaped. Preferably. A typical example of the three-dimensional star shape is a shape obtained by forming a plurality of protrusions on the surface of a spherical particle, that is, a so-called confetti shape. When the insulating particles 163 having such a spherical shape or the like are fixed to the peripheral surface 15A of the conductor 15, they tend to form a gap of a constant size around the conductor 15 regardless of the adhesion direction. In addition, the insulating particles 163 have a shape suitable for sieving, and the particle size can be easily adjusted, so that they are easy to handle. Furthermore, the insulating particles 163 having a spherical shape or a confetti shape are less likely to damage the inner wall of the slot 20A. Moreover, the insulating particles 163 having a polyhedral shape or a confetti shape with projections on the surface are preferable because the gaps between the particles can be easily increased. Furthermore, since the particle size can be made uniform in the upstream process of the production process, it is easy to form a gap of a fixed size around the conductor 15, which is easy to fill with resin. It is easy to improve the quality of the stator and rotating electric machine.
 さらに、本発明においては、平角線型コイル10の見掛けの表面積に対する平角線型コイル10の実表面積の比が、1.1以上3.0以下であることが好ましく、1.1以上2.0以下であることがより好ましい。この比を1.1以上3.0以下とすることにより、樹脂充填され易い隙間を形成することができ、上述した保護機能、電気絶縁機能及び樹脂充填促進機能がより効果的に発揮される。 Furthermore, in the present invention, the ratio of the actual surface area of the flat wire coil 10 to the apparent surface area of the flat wire coil 10 is preferably 1.1 or more and 3.0 or less, and more preferably 1.1 or more and 2.0 or less. It is more preferable to have By setting this ratio to 1.1 or more and 3.0 or less, it is possible to form a gap that facilitates resin filling, and the protective function, electrical insulation function, and resin filling promotion function described above can be exhibited more effectively.
 ここで、上記平角線型コイルの見掛けの表面積とは、絶縁突起16のみを考慮し、絶縁突起16間に存在する孔や溝を考慮せずに測定される平角線型コイルの外接面の面積と定義する。このような見掛けの表面積は、例えば、走査型電子顕微鏡(SEM)写真での実測によって算出することができる。 Here, the apparent surface area of the flat wire coil is defined as the area of the circumscribed surface of the flat wire coil that is measured only in consideration of the insulating protrusions 16 and without considering the holes and grooves existing between the insulating protrusions 16. do. Such an apparent surface area can be calculated, for example, by actual measurement using a scanning electron microscope (SEM) photograph.
 また、上記平角線型コイルの実表面積とは、絶縁突起16だけでなく、絶縁突起16間に存在する孔や溝も考慮して測定される平角線型コイルの実際の表面積と定義する。このような実表面積は、例えば、水銀圧入法や、走査型電子顕微鏡(SEM)写真での実測によって算出することができる。 Also, the actual surface area of the flat wire coil is defined as the actual surface area of the flat wire coil measured in consideration of not only the insulating protrusions 16 but also the holes and grooves existing between the insulating protrusions 16 . Such an actual surface area can be calculated by, for example, a mercury intrusion method or actual measurement using a scanning electron microscope (SEM) photograph.
 さらに、絶縁突起16の高さh(図2及び図3参照)は、5μm以上であることが好ましく、10μm以上であることがより好ましい。また、絶縁突起16の高さhは、200μm以下であることが好ましく、150μm以下であることがより好ましく、100μm以下であることが更に好ましい。樹脂充填され易い隙間を薄くすることができ、上述した保護機能、電気絶縁機能及び樹脂充填促進機能がより効果的に発揮されるという観点からは、絶縁突起16の高さhを10μm以上100μm以下とすることが好ましい。 Furthermore, the height h of the insulating protrusion 16 (see FIGS. 2 and 3) is preferably 5 μm or more, more preferably 10 μm or more. Also, the height h of the insulating protrusion 16 is preferably 200 μm or less, more preferably 150 μm or less, and even more preferably 100 μm or less. From the viewpoint that the gaps that are easily filled with resin can be made thin, and the above-described protective function, electrical insulation function, and resin filling promotion function can be more effectively exhibited, the height h of the insulating protrusions 16 is set to 10 μm or more and 100 μm or less. It is preferable to
 ここで、上記絶縁突起16の高さhは、導体15に接した部分から最も離れた突起部位までの距離と定義する。導体15に接する部分は、接着材169又は絶縁材161で形成されている。 Here, the height h of the insulating protrusion 16 is defined as the distance from the part in contact with the conductor 15 to the farthest protrusion. A portion in contact with the conductor 15 is made of an adhesive 169 or an insulating material 161 .
 さらに、平角線型コイル10の見掛けの表面積に対する絶縁突起16の投影面積の割合は、1面積%以上であることが好ましく、5面積%以上であることがより好ましく、10面積%以上であることが更に好ましい。また、この割合は、90面積%以下であることが好ましく、80面積%以下であることがより好ましく、70面積%以下であることが更に好ましい。特に、絶縁突起16が絶縁粒子や絶縁繊維から形成される場合、この割合を1面積%以上70面積%以下とすることにより、導体15の周面15Aを損傷などから物理的に保護しつつ、樹脂充填され易い隙間を形成することができ、上述した保護機能、電気絶縁機能及び樹脂充填促進機能がより効果的に発揮される。 Furthermore, the ratio of the projected area of the insulating protrusions 16 to the apparent surface area of the flat wire coil 10 is preferably 1% by area or more, more preferably 5% by area or more, and more preferably 10% by area or more. More preferred. Also, this ratio is preferably 90 area % or less, more preferably 80 area % or less, and even more preferably 70 area % or less. In particular, when the insulating projections 16 are formed of insulating particles or insulating fibers, by setting this ratio to 1 area % or more and 70 area % or less, the peripheral surface 15A of the conductor 15 is physically protected from damage and the like. A gap that is easily filled with resin can be formed, and the protective function, electrical insulation function, and resin filling promotion function described above can be exhibited more effectively.
 次に、本実施形態の回転電機における回転電機用ステータを一例として回転電機用ステータの製造方法を図面を用いて説明する。 Next, a method of manufacturing a stator for a rotating electrical machine in the rotating electrical machine of the present embodiment will be described as an example with reference to the drawings.
 型を用いた曲げ装置などによって、図4に示すように平角線形状を有する導体15をU字形状に成形する。次いで、刷毛やスプレーによって、図5に示すように導体15の直線部分に接着材169を塗装する。次いで、接着材が付着した部分に絶縁粒子を吹き付けたり、接着材が付着した部分を絶縁粒子が入った槽に埋没させたりすることによって、図6に示すように絶縁粒子163を接着材169で導体15の周面15Aに固定し、平角線形状の導体15の周面15Aに絶縁突起16を形成する。このようにして、本実施形態の回転電機用ステータに用いられる平角線型コイル10を得る。 A conductor 15 having a rectangular wire shape as shown in FIG. 4 is formed into a U shape by a bending device using a mold. Next, an adhesive 169 is applied to the straight portion of the conductor 15 as shown in FIG. 5 by brush or spray. Next, insulating particles 163 are formed with adhesive 169 as shown in FIG. It is fixed to the peripheral surface 15A of the conductor 15, and the insulating projection 16 is formed on the peripheral surface 15A of the rectangular wire-shaped conductor 15. As shown in FIG. In this manner, the rectangular wire coil 10 used in the rotating electric machine stator of the present embodiment is obtained.
 次いで、図7に示すように、得られた平角線型コイル10をステータコア20の図示しないスロット内に挿入する。図示例では平角線型コイル10の一部(4本)のみを示している。スロット20A内に挿入された平角線コイル10は、図8に示すように、周面15Aに設置された絶縁突起16により、導体15同士、導体15とスロット20Aの内壁との間に隙間を形成することができる。次いで、図9に示すように、平角線型コイル10の根元を押さえ治具201で拘束し、平角線型コイル10の先端に曲げ治具203を当て、複数の平角線型コイル10の突出した部分を矢印Zで示すように曲げる。更に、図示しないが、この曲げ加工により、平角線型コイルの先端同士が接触し、これらを溶接することで平角線型コイル10が結線された状態となる。 Next, as shown in FIG. 7, the rectangular wire coil 10 thus obtained is inserted into slots (not shown) of the stator core 20 . In the illustrated example, only a portion (four) of the rectangular wire coils 10 is shown. In the rectangular wire coil 10 inserted into the slot 20A, as shown in FIG. 8, gaps are formed between the conductors 15 and between the conductors 15 and the inner wall of the slot 20A by insulating projections 16 provided on the peripheral surface 15A. can do. Next, as shown in FIG. 9, the base of the rectangular wire-shaped coil 10 is restrained by a holding jig 201, the tip of the rectangular wire-shaped coil 10 is brought into contact with a bending jig 203, and the projecting portions of the plurality of flat wire-shaped coils 10 are shown by arrows. Bend as indicated by Z. Furthermore, although not shown, this bending causes the ends of the flat wire coils to come into contact with each other, and the flat wire coils 10 are connected by welding them together.
 しかる後、図示しない射出成型機などを用いて、樹脂材30をスロット20A内に充填配置すると共にステータコア20のスロット20Aから突出した平角線型コイル10を樹脂材30によって鋳込まれた状態とすることで、図1~図3に示す本実施形態の回転電機用ステータ40が得られる。 After that, using an injection molding machine (not shown) or the like, the resin material 30 is filled in the slots 20A and the rectangular wire coils 10 projecting from the slots 20A of the stator core 20 are cast with the resin material 30. 1 to 3 is obtained.
 なお、上述の製造方法において、平角線型コイルを得る際に、絶縁粒子を接着材原料に予め添加して均一に分散させておき、それを導体に塗装した後、表面側の接着材を溶解させて絶縁粒子が接着材から突出した状態としてもよい。この場合、絶縁粒子を導体の周面に均一に設置することができるので、上述した保護機能、電気絶縁機能及び樹脂充填促進機能がより効果的に発揮される。また、このような製造方法で得た平角線型コイルは、上述した製造方法により得られる平角線型コイルよりも、隙間を広くし易く、樹脂充填性が優れる。 In the manufacturing method described above, when obtaining the flat wire coil, insulating particles are added to the adhesive raw material in advance and dispersed uniformly, and after coating the conductor with the insulating particles, the adhesive on the surface side is dissolved. Alternatively, the insulating particles may protrude from the adhesive. In this case, the insulating particles can be evenly arranged on the peripheral surface of the conductor, so that the above-described protecting function, electrical insulating function, and resin filling promoting function can be exhibited more effectively. Further, the rectangular wire-shaped coil obtained by such a manufacturing method is easier to widen the gap and has a better resin filling property than the rectangular wire-shaped coil obtained by the above-described manufacturing method.
(第2実施形態)
 図10に示すように、本実施形態の回転電機に用いられる平角線型コイル11は、絶縁材161が金平糖形状を有する絶縁粒子163であること以外は、図2及び図3に示した平角線型コイルと同じ構造を有する。
(Second embodiment)
As shown in FIG. 10, the rectangular wire coil 11 used in the rotary electric machine of the present embodiment is similar to the rectangular wire coil shown in FIGS. has the same structure as
 本実施形態の回転電機に用いられる平角線型コイル11は、絶縁材161が金平糖形状を有する絶縁粒子163であるので、第1実施形態の利点に加えて、絶縁粒子163間に適度な隙間を形成し易く、樹脂充填され易い隙間を形成することができ、上述した保護機能、電気絶縁機能及び樹脂充填促進機能がより効果的に発揮される。 In the flat wire coil 11 used in the rotary electric machine of this embodiment, the insulating material 161 is the insulating particles 163 having a confetti shape. It is possible to form a gap that is easy to fill with resin, and the protective function, electrical insulation function, and resin filling promotion function described above can be exhibited more effectively.
(第3実施形態)
 図11に示すように、本実施形態の回転電機に用いられる平角線型コイル12においては、絶縁突起16は絶縁粒子163が接着材169で導体15の周面15Aに固定された構造を有する。また、絶縁突起16は絶縁粒子163の一部が接着材169からなる層に埋没した構造を有する。さらに、この平角線型コイル12においては、絶縁粒子163の粒子径d1に対する絶縁粒子163の埋没深さd2、d3の比が、1/4以上3/4以下である。なお、図中において、この比が1/4(=d2/d1)の場合の接着材169xを実線で示し、この比が3/4(=d3/d1)の場合の接着材169yを点線で示す。
(Third Embodiment)
As shown in FIG. 11 , in the rectangular wire coil 12 used in the rotating electrical machine of this embodiment, the insulating projections 16 have a structure in which insulating particles 163 are fixed to the peripheral surface 15A of the conductor 15 with an adhesive 169 . Also, the insulating protrusion 16 has a structure in which a part of the insulating particles 163 is embedded in a layer made of the adhesive 169 . Furthermore, in the rectangular wire coil 12, the ratio of the embedding depths d2 and d3 of the insulating particles 163 to the particle diameter d1 of the insulating particles 163 is 1/4 or more and 3/4 or less. In the figure, the solid line indicates the adhesive 169x when this ratio is 1/4 (=d2/d1), and the dotted line indicates the adhesive 169y when this ratio is 3/4 (=d3/d1). show.
 本実施形態の回転電機に用いられる平角線型コイル12は、絶縁粒子163が上述した所定量埋没しているので、第1実施形態の利点に加えて、絶縁粒子163の脱落が起きにくく樹脂充填される隙間が安定したものとなり、樹脂充填欠陥が生じにくく樹脂充填され易い隙間を形成することができる。その結果、上述した保護機能、電気絶縁機能及び樹脂充填促進機能がより効果的に発揮される。また、樹脂充填され易い隙間が形成されていることにより、樹脂充填する際の充填圧力を低く安定させることができ、樹脂充填の品質を向上させることができる。 The rectangular wire coil 12 used in the rotating electric machine of this embodiment has the insulating particles 163 embedded in the above-described predetermined amount. The gap becomes stable, and it is possible to form a gap that is less likely to cause resin filling defects and is easy to be filled with resin. As a result, the protective function, electrical insulation function, and resin filling promotion function described above are exhibited more effectively. In addition, since the gap is formed to facilitate resin filling, the filling pressure during resin filling can be stabilized at a low level, and the quality of resin filling can be improved.
(第4実施形態)
 図12に示すように、本実施形態の回転電機に用いられる平角線型コイル13においては、絶縁突起16が導体15の周面15Aに螺旋状に巻かれた状態で設置された絶縁繊維165で形成されていること以外は、図2及び図3に示した平角線型コイルと同じ構造を有する。なお、絶縁繊維165は、導体15に機械的に巻き付けられて固定されていてもよく、図示しない接着材で固定されていてもよい。
(Fourth embodiment)
As shown in FIG. 12, in the rectangular wire coil 13 used in the rotating electric machine of the present embodiment, the insulating protrusions 16 are formed of insulating fibers 165 that are spirally wound around the peripheral surface 15A of the conductor 15. It has the same structure as the rectangular wire coil shown in FIGS. The insulating fiber 165 may be mechanically wound around the conductor 15 and fixed, or may be fixed with an adhesive (not shown).
 本実施形態の回転電機に用いられる平角線型コイル13は、絶縁繊維165を導体15に機械的に巻き付けるため、巻き付けの際に螺旋のピッチを調整することにより、一定サイズの隙間を形成し易い。また、巻き付けの際に螺旋のピッチを調整することにより、実表面積や絶縁突起の投影面積を容易に調整することができ、絶縁繊維165間に適度な隙間を形成し易い。その結果、第1実施形態の利点に加えて、樹脂材の樹脂流れ抵抗を小さくでき、上述した保護機能、電気絶縁機能及び樹脂充填促進機能がより効果的に発揮されるだけでなく、上述した実施形態よりも生産効率が優れている。また、平角線型コイルの表面に高さを揃えにくい絶縁粒子による絶縁突起が存在しないため、平角線型コイルをスロット内に挿入する際の引っかかりなどの干渉を抑制でき、挿入性を向上できる。さらに、絶縁粒子を用いる場合に必要となる粉体自体や粉体が添加された液体の管理が不要となるため、生産設備や保管設備の簡素化が可能となる。 In the rectangular wire coil 13 used in the rotating electric machine of the present embodiment, the insulating fiber 165 is mechanically wound around the conductor 15. Therefore, by adjusting the pitch of the spiral during winding, it is easy to form a gap of a certain size. In addition, by adjusting the pitch of the spiral during winding, the actual surface area and the projected area of the insulating protrusions can be easily adjusted, making it easy to form appropriate gaps between the insulating fibers 165 . As a result, in addition to the advantages of the first embodiment, the resin flow resistance of the resin material can be reduced, and not only the above-described protection function, electrical insulation function, and resin filling promotion function can be exhibited more effectively, Production efficiency is superior to that of the embodiment. In addition, since there are no insulating protrusions on the surface of the flat wire coil made of insulating particles that are difficult to align in height, interference such as catching when the flat wire coil is inserted into the slot can be suppressed, and insertion efficiency can be improved. Furthermore, since it is not necessary to manage the powder itself or the liquid to which the powder is added, which is required when insulating particles are used, production equipment and storage equipment can be simplified.
 なお、絶縁繊維165としては、通常の繊維の他、織布や不織布、編物から形成された繊維を挙げることができる。さらに、絶縁繊維165としては、繊維径が5μm以上であることが好ましく、10μm以上であることがより好ましい。また、繊維径が200μm以下であることが好ましく、150μm以下であることがより好ましく、100μm以下であることが更に好ましい。モータの更なる高電圧化にも対応することができるという観点からは、繊維径を10μm以上100μm以下とすることが好ましい。 As the insulating fiber 165, in addition to ordinary fibers, fibers formed from woven fabric, non-woven fabric, and knitted fabric can be used. Furthermore, the insulating fiber 165 preferably has a fiber diameter of 5 μm or more, more preferably 10 μm or more. Also, the fiber diameter is preferably 200 μm or less, more preferably 150 μm or less, and even more preferably 100 μm or less. The fiber diameter is preferably 10 μm or more and 100 μm or less from the viewpoint of being able to cope with even higher voltages of motors.
(第5実施形態)
 図13に示すように、本実施形態の回転電機に用いられる平角線型コイル14においては、絶縁突起16が導体15の周面15Aに設置された絶縁繊維集合体167で形成されていること以外は、図2及び図3に示した平角線型コイルと同じ構造を有する。ここで、図示例では絶縁繊維集合体167は織布からなる。絶縁繊維集合体167は、導体15に機械的に巻き付けられて固定されていてもよく、図示しない接着材で固定されていてもよい。
(Fifth embodiment)
As shown in FIG. 13, in the rectangular wire coil 14 used in the rotating electric machine of the present embodiment, the insulating protrusions 16 are formed of an insulating fiber aggregate 167 provided on the peripheral surface 15A of the conductor 15. , has the same structure as the rectangular wire coil shown in FIGS. Here, in the illustrated example, the insulating fiber assembly 167 is made of woven fabric. The insulating fiber assembly 167 may be mechanically wound around the conductor 15 and fixed, or may be fixed with an adhesive (not shown).
 本実施形態の回転電機に用いられる平角線型コイル14は、絶縁繊維集合体167で導体15に覆っており、その表面に高さを揃えにくい絶縁粒子による絶縁突起が存在しないため、第1実施形態の利点に加えて、スロットに平角線型コイルを挿入する際の引っかかりなどの干渉を抑制でき、挿入性を向上できる。さらに、絶縁粒子を用いる場合に必要となる粉体自体や粉体が添加された液体の管理が不要となるため、生産設備や保管設備の簡素化が可能となる。 In the flat wire coil 14 used in the rotary electric machine of the present embodiment, the conductor 15 is covered with the insulating fiber assembly 167, and there is no insulating protrusion due to insulating particles that are difficult to align in height on the surface thereof. In addition to the advantages of , it is possible to suppress interference such as catching when inserting the flat wire coil into the slot, and improve the insertability. Furthermore, since it is not necessary to manage the powder itself or the liquid to which the powder is added, which is necessary when insulating particles are used, production equipment and storage equipment can be simplified.
 絶縁繊維集合体167としては、織布や不織布、編物からなる絶縁繊維集合体を挙げることができる。さらに、絶縁繊維集合体167としては、厚さが5μm以上であることが好ましく、10μm以上であることがより好ましい。また、厚さが200μm以下であることが好ましく、150μm以下であることがより好ましく、100μm以下であることが更に好ましい。モータの更なる高電圧化にも対応することができるという観点からは、厚さを10μm以上100μm以下とすることが好ましい。 As the insulating fiber assembly 167, an insulating fiber assembly made of woven fabric, non-woven fabric, or knitted fabric can be mentioned. Furthermore, the insulating fiber assembly 167 preferably has a thickness of 5 μm or more, more preferably 10 μm or more. Also, the thickness is preferably 200 μm or less, more preferably 150 μm or less, and even more preferably 100 μm or less. The thickness is preferably 10 μm or more and 100 μm or less from the viewpoint of being able to cope with even higher voltage motors.
 以下、上述した各実施形態の回転電機用ステータを形成する材料や部材の材質等について詳細に説明する。 In the following, the materials and the like of the members forming the rotating electric machine stator of each embodiment described above will be described in detail.
 樹脂材30の材質としては、例えば、エポキシ系樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂を挙げることができる。これらの樹脂は通常の絶縁性を有すれば十分であるが、コイルとステータコアとの優れた絶縁性の実現を望む場合には絶縁性に優れる樹脂を用いてもよい。 Examples of materials for the resin material 30 include thermosetting resins such as epoxy resins and unsaturated polyester resins. These resins are sufficient as long as they have ordinary insulating properties, but if it is desired to achieve excellent insulating properties between the coil and the stator core, resins with excellent insulating properties may be used.
 絶縁材161の材質としては、例えば、セラミック、ガラス、樹脂、セルロース(紙)を挙げることができる。スロット内での耐摩耗性や硬さを重視する観点からは、樹脂や紙よりもセラミックやガラスが好ましい。破損しにくいという観点からは、ガラスよりもセラミックが好ましい。スロットに平角線型コイルを挿入し易いという観点からは、摩擦係数が小さい絶縁材が好ましい。このような絶縁材としては、自己潤滑性を有する絶縁材や表面粗さが小さい絶縁材を挙げることができる。 Examples of materials for the insulating material 161 include ceramic, glass, resin, and cellulose (paper). Ceramics and glass are preferable to resins and papers from the viewpoint of placing importance on wear resistance and hardness in the slot. Ceramic is preferable to glass from the viewpoint of being less likely to break. From the viewpoint of facilitating the insertion of the flat wire coil into the slot, an insulating material having a small coefficient of friction is preferable. Examples of such an insulating material include an insulating material having self-lubricating properties and an insulating material having a small surface roughness.
 接着材169としては、例えば、モータの耐熱温度約180℃~250℃に耐えて絶縁材を導体に固定できることが好ましく、エポキシ系接着材、アクリル系接着材、シリコーン系接着材を挙げることができる。接着材を塗装後に接着材塗装部分の導体を曲げる場合には、追従性の観点から接着材が可撓性を有することが好ましい。なお、これらの接着材としては特に絶縁性であることを要求されないが、絶縁性を有する場合は絶縁突起16の絶縁機能を補償し得る。 As the adhesive 169, for example, it is preferable that the insulating material can be fixed to the conductor while withstanding the heat resistance temperature of about 180° C. to 250° C. of the motor. . When bending the conductor of the adhesive-applied portion after applying the adhesive, the adhesive preferably has flexibility from the viewpoint of conformability. These adhesives are not particularly required to be insulating, but if they have insulating properties, the insulating function of the insulating projections 16 can be compensated.
10,11,12,13,14 平角線型コイル
15   導体
15A  周面
16   絶縁突起
161  絶縁材
163  絶縁粒子
165  絶縁繊維
167  絶縁繊維集合体
169  接着材
20   ステータコア
20A  スロット
30   樹脂材
40   回転電機用ステータ
50   回転電機用ロータ
60   回転電機
201  押さえ治具
203  曲げ治具
h    高さ
d1   粒子径
d2,d3 埋没深さ
10, 11, 12, 13, 14 flat wire coil 15 conductor 15A peripheral surface 16 insulating protrusion 161 insulating material 163 insulating particles 165 insulating fiber 167 insulating fiber assembly 169 adhesive 20 stator core 20A slot 30 resin material 40 stator 50 for rotary electric machine Rotary electric machine rotor 60 Rotary electric machine 201 Holding jig 203 Bending jig h Height d1 Particle diameter d2, d3 Buried depth

Claims (11)

  1.  スロットを有するステータコアと、前記スロット内に貫通配置された平角線型コイルと、前記平角線型コイルと共に前記スロット内に充填配置された樹脂材を備え、
     前記平角線型コイルが、平角線形状を有する導体と、前記導体の周面に設置された絶縁突起を有する
    ことを特徴とする回転電機用ステータ。
    A stator core having a slot, a rectangular wire-shaped coil passing through the slot, and a resin material filled in the slot together with the rectangular wire-shaped coil,
    A stator for a rotating electric machine, wherein the rectangular wire coil has a conductor having a rectangular wire shape and insulating projections provided on a peripheral surface of the conductor.
  2.  前記平角線型コイルの見掛けの表面積に対する実表面積の比が、1.1以上3.0以下であることを特徴とする請求項1に記載の回転電機用ステータ。 The stator for a rotary electric machine according to claim 1, wherein the ratio of the actual surface area to the apparent surface area of the rectangular wire coil is 1.1 or more and 3.0 or less.
  3.  前記絶縁突起の高さが、5μm以上200μm以下であることを特徴とする請求項1又は2に記載の回転電機用ステータ。 The stator for a rotary electric machine according to claim 1 or 2, characterized in that the height of the insulating projections is 5 µm or more and 200 µm or less.
  4.  前記絶縁突起が絶縁材と接着材を含み、前記絶縁材が前記接着材で前記導体に固定された構造を有することを特徴とする請求項1~3のいずれか1つの項に記載の回転電機用ステータ。 The electric rotating machine according to any one of claims 1 to 3, wherein the insulating protrusion includes an insulating material and an adhesive material, and the insulating material is fixed to the conductor by the adhesive material. for stator.
  5.  前記絶縁材が、絶縁粒子、絶縁繊維及び絶縁繊維集合体からなる群より選ばれた少なくとも1種を含むことを特徴とする請求項4に記載の回転電機用ステータ。 The stator for a rotary electric machine according to claim 4, wherein the insulating material contains at least one selected from the group consisting of insulating particles, insulating fibers, and insulating fiber aggregates.
  6.  前記絶縁突起は、前記絶縁粒子の一部が前記接着材に埋没した構造を有し、
     前記絶縁粒子の粒子径に対する前記絶縁粒子の埋没深さの比が、1/4以上3/4以下である
    ことを特徴とする請求項5に記載の回転電機用ステータ。
    The insulating protrusion has a structure in which a part of the insulating particles is embedded in the adhesive,
    6. The stator for a rotary electric machine according to claim 5, wherein a ratio of the embedding depth of the insulating particles to the particle diameter of the insulating particles is 1/4 or more and 3/4 or less.
  7.  前記絶縁粒子が、球形形状、多面体形状又は三次元星型形状を有することを特徴とする請求項5又は6に記載の回転電機用ステータ。 The stator for a rotary electric machine according to claim 5 or 6, characterized in that said insulating particles have a spherical shape, a polyhedral shape, or a three-dimensional star shape.
  8.  前記絶縁突起は、前記導体の周面に螺旋状に巻かれた状態で設置された絶縁繊維で形成されていることを特徴とする請求項1~3のいずれか1つの項に記載の回転電機用ステータ。 The electric rotating machine according to any one of claims 1 to 3, wherein the insulating projection is formed of an insulating fiber wound spirally around the peripheral surface of the conductor. for stator.
  9.  前記平角線型コイルの見掛けの表面積に対する前記絶縁突起の投影面積の割合が、1面積%以上90面積%以下であることを特徴とする請求項6又は8に記載の回転電機用ステータ。 9. The stator for a rotary electric machine according to claim 6 or 8, wherein the ratio of the projected area of the insulating projections to the apparent surface area of the rectangular wire coil is 1 area % or more and 90 area % or less.
  10.  前記絶縁突起が、前記導体の周面に設置された絶縁繊維集合体で形成されていることを特徴とする請求項1~3のいずれか1つの項に記載の回転電機用ステータ。 The stator for a rotary electric machine according to any one of claims 1 to 3, characterized in that said insulating protrusions are formed of an insulating fiber assembly provided on the peripheral surface of said conductor.
  11.  請求項1~10のいずれか1つの項に記載の回転電機用ステータと、回転電機用ロータを具備したことを特徴とする回転電機。 A rotating electrical machine comprising the stator for rotating electrical machine according to any one of claims 1 to 10 and a rotor for rotating electrical machine.
PCT/JP2021/032859 2021-09-07 2021-09-07 Stator for dynamoelectric machine and dynamoelectric machine WO2023037411A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032859 WO2023037411A1 (en) 2021-09-07 2021-09-07 Stator for dynamoelectric machine and dynamoelectric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032859 WO2023037411A1 (en) 2021-09-07 2021-09-07 Stator for dynamoelectric machine and dynamoelectric machine

Publications (1)

Publication Number Publication Date
WO2023037411A1 true WO2023037411A1 (en) 2023-03-16

Family

ID=85507290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032859 WO2023037411A1 (en) 2021-09-07 2021-09-07 Stator for dynamoelectric machine and dynamoelectric machine

Country Status (1)

Country Link
WO (1) WO2023037411A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036014B1 (en) * 1970-12-26 1975-11-20
JPS57170412A (en) * 1981-04-14 1982-10-20 Showa Electric Wire & Cable Co Method of producing insulated wire
JP2008288106A (en) * 2007-05-18 2008-11-27 Furukawa Electric Co Ltd:The Insulated electric wire
JP2015005651A (en) * 2013-06-21 2015-01-08 Necトーキン株式会社 Coil and reactor
JP2015180180A (en) * 2014-02-28 2015-10-08 日東シンコー株式会社 Insulating sheet for dynamo-electric machine and method of manufacturing insulating sheet
JP2021114819A (en) * 2020-01-16 2021-08-05 株式会社デンソー Armature

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036014B1 (en) * 1970-12-26 1975-11-20
JPS57170412A (en) * 1981-04-14 1982-10-20 Showa Electric Wire & Cable Co Method of producing insulated wire
JP2008288106A (en) * 2007-05-18 2008-11-27 Furukawa Electric Co Ltd:The Insulated electric wire
JP2015005651A (en) * 2013-06-21 2015-01-08 Necトーキン株式会社 Coil and reactor
JP2015180180A (en) * 2014-02-28 2015-10-08 日東シンコー株式会社 Insulating sheet for dynamo-electric machine and method of manufacturing insulating sheet
JP2021114819A (en) * 2020-01-16 2021-08-05 株式会社デンソー Armature

Similar Documents

Publication Publication Date Title
JP5590045B2 (en) Stator structure of rotating electrical machine
CN103404003B (en) Stator for electric rotating machine
US4617725A (en) Method of making multiple-element strap winding for rotor pole
US20080007134A1 (en) Electric motor and method for producing electric motor
CN103609000A (en) Rotating electrical machine, and insulation material and slot liners for rotating electrical machine
WO2013077102A1 (en) Conductive wire and electrical rotating machine
JP5314908B2 (en) Rotating electric machine stator and rotating electric machine
JP5837213B2 (en) Armature of rotating electric machine and method for manufacturing the same
JP6866402B2 (en) Rotating machine
EP2549494B1 (en) Electromagnetic coil assemblies having tapered crimp joints and methods for the production thereof
JP4680154B2 (en) Rotating electric machine and manufacturing method thereof
WO2023037411A1 (en) Stator for dynamoelectric machine and dynamoelectric machine
US20120256511A1 (en) Stator
US20060202587A1 (en) Stepping motor
JP6680199B2 (en) Method for manufacturing stator of rotating electric machine
US20090066182A1 (en) Stator winding assembly and method
JP2011182509A (en) Stator for electric rotating machine
JP6210100B2 (en) Stator for rotating electrical machine and method for manufacturing the same
JPH07135745A (en) Core of motor
JP6093266B2 (en) Segment coil and stator
JP7254140B1 (en) Rotating electric machine
JP3771875B2 (en) Rotating electric machine stator
JP7280706B2 (en) Rotating electric machine stator and rotating electric machine using the same
TW202032586A (en) Bobbin structure of armature
JP5271991B2 (en) Rotating electric machine stator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956265

Country of ref document: EP

Kind code of ref document: A1