WO2023036056A1 - 电子墨水显示面板及其制备方法、电子设备 - Google Patents

电子墨水显示面板及其制备方法、电子设备 Download PDF

Info

Publication number
WO2023036056A1
WO2023036056A1 PCT/CN2022/116714 CN2022116714W WO2023036056A1 WO 2023036056 A1 WO2023036056 A1 WO 2023036056A1 CN 2022116714 W CN2022116714 W CN 2022116714W WO 2023036056 A1 WO2023036056 A1 WO 2023036056A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
pixel
color
particles
electronic ink
Prior art date
Application number
PCT/CN2022/116714
Other languages
English (en)
French (fr)
Inventor
蔡佩芝
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22866519.6A priority Critical patent/EP4261607A1/en
Publication of WO2023036056A1 publication Critical patent/WO2023036056A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • G02F1/1681Gaskets; Spacers; Sealing of cells; Filling or closing of cells having two or more microcells partitioned by walls, e.g. of microcup type

Definitions

  • the present application relates to the field of display technology, in particular to an electronic ink display panel, a preparation method thereof, and electronic equipment.
  • E-ink screens are more and more used in fields such as electronic labels and e-books due to their advantages of eye protection and low power consumption.
  • Traditional E-ink screen technology can only display black and white.
  • the screen has a more vivid display effect.
  • Color electronic paper technology has begun to appear, and the electronic ink screen can be used to achieve color display.
  • the current electronic ink screen has a low resolution for color display.
  • An electronic ink display panel, its preparation method, and electronic equipment can realize color display with relatively high resolution under limited process precision.
  • an electronic ink display panel including: an electronic ink base layer, the light emitting surface of the electronic ink base layer has a plurality of pixel wells, and the plurality of pixel wells include a plurality of first pixel wells and a plurality of second pixel wells, each The depth of each first pixel well is less than the depth of each second pixel well; a first color part is arranged in each pixel well of the plurality of first pixel wells and the plurality of second pixel wells, and the first color part includes the first ink and a first encapsulation layer, the first encapsulation layer is located on the side of the first ink away from the bottom of the pixel well, and in each first pixel well, the first color part fills the first pixel well; each of the plurality of second pixel wells A second color part is also provided in the pixel well, the second color part is located on the side of the first color part away from the bottom of the pixel well, the second color part includes a
  • multiple types of pixel wells with different well depths are set on the electronic ink base layer, and one type of ink is filled in the pixel wells each time and packaged.
  • the pixel wells of different depths The uppermost layer has different types of inks, and since different types of inks contain particles of different colors, different pixel wells can display different colors, thereby realizing color display.
  • the present application can realize higher-resolution color display because: when the solution of the present application is filled with the mixed liquid, there is no need to make specific selections for different pixel positions (corresponding to different types of pixel wells in this case), This eliminates the need to locate the positions of different pixels and pour the mixed liquid at fixed points, that is, it does not need to use a high-precision ink filling process, so that a higher-resolution color display can be achieved.
  • the plurality of pixel wells further includes a plurality of third pixel wells, and the depth of each second pixel well is smaller than the depth of each third pixel well; in each second pixel well, the first The color portion and the second color portion fill the second pixel well; each third pixel well is provided with a first color portion, a second color portion and a third color portion, and in each third pixel well, the second color portion is located at The first color part is located on the side away from the bottom of the pixel well, the third color part is located on the side of the second color part away from the bottom of the pixel well, the third color part includes the third ink and the third encapsulation layer, and the third encapsulation layer is located on the third The side of the ink away from the bottom of the pixel well; any two of the first ink, the second ink and the third ink include particles of different colors.
  • the first ink includes particles of a first color and a black filling liquid
  • the second ink includes particles of a second color and a black filling liquid
  • the third ink includes particles of a third color and a black filling liquid.
  • the first ink includes first color particles, black particles and transparent filling liquid
  • the second ink includes second color particles, black particles and transparent filling liquid
  • the third ink includes third color particles, Black particles and transparent fill fluid.
  • one of the first color particle, the second color particle and the third color particle is a red particle, the other is a green particle, and the third is a blue particle.
  • a hydrophobic layer is provided on the side wall of each pixel well and/or on the surface of the light-emitting surface of the electronic ink base layer, so that the ink filled in the previous time is not easy to hang on the pixel well. On the inner wall, it will have an adverse effect on the ink filled in the next time.
  • the electronic ink base layer is embossed glue.
  • the material of the embossing glue is a resin material.
  • the electronic ink display panel further includes: a first electrode substrate and a second electrode substrate, the electronic ink base layer is located between the first electrode substrate and the second electrode substrate; the second electrode substrate is located close to the electronic ink On one side of the light-emitting surface of the base layer, the second electrode substrate includes a transparent electrode layer; the first electrode substrate is located on the side away from the light-emitting surface of the electronic ink base layer, and the first electrode substrate includes a pixel electrode corresponding to each pixel well and a driving circuit .
  • an electronic device including the above-mentioned electronic ink display panel.
  • a method for preparing an electronic ink display panel including: forming an electronic ink base layer, making a plurality of pixel wells on the surface of one side of the electronic ink base layer to form an electronic ink base layer, and the plurality of pixel wells include a plurality of first A pixel well and a plurality of second pixel wells, the depth of each first pixel well is less than the depth of each second pixel well; each pixel well of the electronic ink base layer is filled with a first mixed liquid, and the first mixed liquid includes the first mixed liquid An encapsulation liquid and the first ink, the first mixed liquid fills each first pixel well, and the first mixed liquid fills a part of each second pixel well; when the first encapsulation liquid floats on the first ink away from the pixel well After the surface on the bottom side, the first encapsulation liquid is solidified to form the first encapsulation layer, and the first encapsulation layer and the first ink form the first color part;
  • the electronic ink base layer has different types of inks. Since different types of inks contain particles of different colors, different pixel wells can display different colors, thereby achieving color display. Different types of pixels can be controlled only by the depth of the pixel wells.
  • the uppermost layer of the wells has the corresponding type of ink, and there is no need to select based on the pixel wells during the ink filling process, that is, a higher-resolution color display can be realized without using a higher-precision ink filling process.
  • the plurality of pixel wells further includes a plurality of third pixel wells, and the depth of each second pixel well is smaller than the depth of each third pixel well;
  • the preparation method of the electronic ink display panel further includes: After forming the second color part, in each second pixel well, the first color part and the second color part fill the second pixel well, and the first color part and the second color part fill a part of the third pixel well;
  • the part other than the first color part and the second color part in each third pixel well is filled with the third mixed liquid, and the third mixed liquid includes the third encapsulation liquid and the third ink; when the third encapsulation liquid floats on the third ink After the surface away from the bottom side of the third pixel well, the third encapsulation liquid is solidified to form a third encapsulation layer, and the third encapsulation layer and the third ink form a third color part; the first ink, the second ink and the third ink Any two of s that contain particles of
  • the process of forming the electronic ink base layer and making a plurality of pixel wells on the surface of the electronic ink base layer includes: coating embossing glue, using a nanoimprinting process, Imprinting results in multiple pixel wells.
  • each pixel well of the electronic ink base layer is filled with the first mixed liquid, further comprising: on the side wall of each pixel well and/or on the light exit surface of the electronic ink base layer A hydrophobic layer forms on the surface.
  • the first ink includes particles of a first color and a black filling liquid
  • the second ink includes particles of a second color and a black filling liquid
  • the third ink includes particles of a third color and a black filling liquid.
  • the first ink includes first color particles, black particles and transparent filling liquid
  • the second ink includes second color particles, black particles and transparent filling liquid
  • the third ink includes third color particles, Black particles and transparent fill fluid.
  • one of the first color particle, the second color particle and the third color particle is a red particle, the other is a green particle, and the third is a blue particle.
  • FIG. 1 is a top view of an electronic ink display panel in an embodiment of the present application
  • Fig. 2 is a schematic diagram of a cross-sectional structure of AA' direction in Fig. 1;
  • FIG. 3 is a schematic flow chart of a method for preparing an electronic ink display panel in an embodiment of the present application
  • Fig. 4 is a top view of another electronic ink display panel in the embodiment of the present application.
  • Fig. 5 is a kind of sectional structure schematic diagram of BB' direction in Fig. 4;
  • FIG. 6 is a schematic flow chart of another method for preparing an electronic ink display panel in the embodiment of the present application.
  • Fig. 7 is a top view of an electronic ink base layer in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a cross-sectional structure of BB' in Fig. 7;
  • Fig. 9 is a top view of an electronic ink base layer including a first color portion in an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a cross-sectional structure of BB' direction in Fig. 9;
  • Fig. 11 is a top view of an electronic ink base layer including a second color portion in an embodiment of the present application
  • Fig. 12 is a schematic diagram of a cross-sectional structure of BB' in Fig. 11;
  • Fig. 13 is a schematic diagram of a state of a first color part in the embodiment of the present application.
  • Fig. 14 is a schematic diagram of another state of the first color part in Fig. 13;
  • FIG. 15 is a timing diagram of pixel electrode voltages corresponding to different pixel wells in the embodiment of the present application.
  • Fig. 16 is a schematic diagram of a state of another first color part in the embodiment of the present application.
  • Fig. 17 is a schematic diagram of another state of the first color part in Fig. 16;
  • Fig. 18 is another kind of sectional structure schematic diagram of BB' direction in Fig. 4;
  • FIG. 19 is a schematic structural view of a first electrode substrate in an embodiment of the present application.
  • FIG. 20 is a top view of another electronic ink display panel in the embodiment of the present application.
  • the traditional electronic ink screen includes microcapsules, which include negatively charged white particles and positively charged black particles, which are suspended in the liquid and controlled by the voltage at both ends of the microcapsules. , so that the black particles or white particles move to the top of the microcapsule to reflect the light of the corresponding color.
  • the black particle is on the top of the microcapsule and the white particle is on the bottom of the microcapsule, it can See the black color of the microcapsules; on the contrary, when the white particles are on the top of the microcapsules and the black particles are at the bottom of the microcapsules, you can see the white color of the microcapsules when viewed from the top side of the microcapsules.
  • the black particles or white particles can be driven to a certain position between the top and bottom of the microcapsules by driving different voltages. position, when the black particles are closer to the top and the white particles are farther from the top, the gray displayed by the microcapsules will be darker, otherwise the gray will be lighter.
  • the maximum gray scale that can be achieved by voltage driving is from 0 to 15 There are 16 levels in total, level 0 is for displaying white, level 15 is for displaying black, and there are 14 levels of gray display effect with different shades in the middle.
  • a color filter film can be added on the top side of the microcapsule, and the corresponding red filter material, green filter material and blue filter material can be respectively set on the top of the adjacent three capsule pixels. materials, so that the original three pixels form one color pixel, which reduces the display resolution to one-third of the original, and the addition of a color filter film will lead to an increase in the thickness of the screen and due to the filtering effect The light transmittance of the screen is reduced.
  • another way to achieve color display is to set particles of multiple colors in each microcapsule, and control the particles of different colors through voltage so that the microcapsules can display different colors.
  • an embodiment of the present application provides an electronic ink display panel, including: a first electrode substrate 1 , a second electrode substrate 2 , and an electrode between the first electrode substrate 1 and the second electrode substrate 2 Electronic ink base layer 3; the light exit surface 300 of the electronic ink base layer 3 has a plurality of pixel wells 30, the plurality of pixel wells 30 includes a plurality of first pixel wells 31 and a plurality of second pixel wells 32, each of the first pixel wells 31 The depth h1 is less than the depth h2 of each second pixel well 32; each pixel well in the plurality of first pixel wells 31 and the plurality of second pixel wells 32 is provided with a first color portion 41, and the first color portion 41 includes a second pixel well.
  • An ink 411 and a first encapsulation layer 412 is located on the side of the first ink 411 away from the bottom of the pixel well, in each first pixel well 31, the first color part 41 fills the first pixel well 31
  • a second color part 42 is also provided in each pixel well of the plurality of second pixel wells 32 and the plurality of third pixel wells 33, and the second color part 42 is located on the side of the first color part 41 away from the bottom of the pixel well,
  • the second color portion 42 includes a second ink 421 and a second encapsulation layer 422, the second encapsulation layer 422 is located on the side of the second ink 421 away from the bottom of the pixel well; the first ink 411 and the second ink 421 include particles of different colors .
  • the electronic ink base layer 3 , the first color portion 41 and the second color portion 42 form an electronic ink layer.
  • the depth ratio of different types of pixel wells can be adjusted, but it is necessary to ensure that h1 ⁇ h2.
  • the embodiment of the present application does not limit the specific structure of the pixel well 30.
  • the pixel The shape of the well 30 may be rectangular, circular, or the like.
  • the first electrode substrate 1 and the second electrode substrate 2 are used to generate a corresponding electric field in each pixel well 30 , so as to control the color displayed by the ink in the pixel well 30 .
  • the electronic ink display panel is described below in conjunction with the preparation method of the electronic ink display panel. As shown in FIG. 3 , the embodiment of the present application also provides a preparation method of the electronic ink display panel, including:
  • Step 101 forming the electronic ink base layer, making a plurality of pixel wells 30 on the surface of the electronic ink base layer side, the plurality of pixel wells 30 including a plurality of first pixel wells 31 and a plurality of second pixel wells 32, each first pixel
  • Step 102 filling each pixel well 30 of the electronic ink base layer 3 with a first mixed liquid
  • the first mixed liquid includes the first packaging liquid and the first ink 411
  • the first mixed liquid fills each first pixel well 31
  • the first mixed liquid is filled in a part of each second pixel well 32, for example, the first mixed liquid is filled to half of the depth h2 of the second pixel well 32, wherein it is not necessary to control the filling position of the first mixed liquid, that is,
  • the first mixed liquid is filled into each pixel well 30, and the filling of the first mixed liquid in each pixel well 30 can be realized by printing, spraying, coating, etc., without high-precision process control. It can be completed.
  • a hydrophobic layer can be provided on the surface of the light-emitting surface 300 of the electronic ink base layer 3 to minimize this residue;
  • Step 103 after the first encapsulating liquid floats on the surface of the first ink 411 away from the bottom of the pixel well, solidify the first encapsulating liquid to form the first encapsulating layer 412, and the first encapsulating layer 412 and the first ink 411 form the first encapsulating layer 412 In a color part 41, the density of the first encapsulating liquid is less than that of the first ink 411. Therefore, after the first mixed liquid is filled into the pixel well 30, the first encapsulating liquid will float on the surface of the first ink 411 due to its lower density.
  • the first encapsulation liquid can be cured by ultraviolet irradiation or heating to form the first encapsulation layer 412 to realize the encapsulation of the first ink 411.
  • the electronic ink can be The surface of the base layer 3 is cleaned to remove ink residues that may exist on the surface of the light emitting surface 300 of the electronic ink base layer 3 other than the pixel wells 30;
  • Step 104 Fill the part of each second pixel well 32 other than the first color part 41 with the second mixed liquid, the second mixed liquid includes the second packaging liquid and the second ink 421, and fill the part of the second mixed liquid
  • the process can be the same as the process of filling the first mixed liquid, wherein, since the first pixel well 31 has been filled by the first color part 41, the second mixed liquid will not be filled in, and the second mixed liquid will be filled into the still There is a second pixel well 32 with space.
  • the control accuracy requirements for filling the second mixed liquid are relatively low.
  • Step 105 after the second encapsulation liquid floats on the surface of the second ink 421 away from the bottom of the pixel well, solidify the second encapsulation liquid to form the second encapsulation layer 422, the second encapsulation layer 422 and the second ink 421 form the second encapsulation layer 421
  • the second color part 42 at this time, if viewed from the light emitting surface 300 side of the electronic ink base layer 3, the first ink 411 in all the first pixel wells 31 can be seen, and the ink 411 in all the second pixel wells 32 can be seen.
  • the second ink 421 in each second pixel well 32 , the first ink 411 is blocked by the upper layer of the second ink 421 , and the first ink 411 and the second ink 421 include particles of different colors.
  • the first ink 411 and the second ink 421 include particles of different colors, that is, the first ink 411 and the second ink 421 can respectively display different colors under voltage control, for example, the first ink 411 can display red
  • the second ink 421 can display green.
  • the red color displayed by the first ink 411 when viewed from one side of the light-emitting surface 300, the red color displayed by the first ink 411 can be seen through the first pixel well 31, and the red color displayed by the first ink 411 can be seen through the second pixel well.
  • the green color displayed by the second ink 421 the setting of sub-pixels of red and green colors is realized, and then color display is realized, that is, different pixel wells display different colors through the well depth design of different pixel wells.
  • various types of pixel wells with different well depths are provided on the electronic ink base layer, and one type of ink is filled in the pixel wells each time and packaged.
  • the process of different types of inks makes the uppermost layer of pixel wells with different depths have different types of inks. Since different types of inks contain particles of different colors, different pixel wells can display different colors, thereby realizing color display.
  • the present application can realize higher-resolution color display because: when the solution of the present application is filled with the mixed liquid, there is no need to make specific selections for different pixel positions (corresponding to different types of pixel wells in this case), This eliminates the need to locate the positions of different pixels and pour the mixed liquid at fixed points, that is, it does not need to use a high-precision ink filling process, so that a higher-resolution color display can be achieved.
  • color display can be realized without adding a color filter film, so the increase of the color filter film will not cause a decrease in light transmittance and an increase in thickness, and, for the increase of the color filter film
  • a higher-precision color filter film manufacturing process is required to be able to set corresponding color filter films for sub-pixels of different colors, and in the embodiment of the present application , for different types of inks, high process accuracy is not required, it is possible to selectively make the first pixel well display one type of ink color, and the second pixel well display another type of ink color, so higher resolution color display; on the other hand, color display can be realized by setting particles of different colors in different color parts.
  • the plurality of pixel wells 30 further include a plurality of third pixel wells 33, and the depth h2 of each second pixel well 32 is smaller than that of each third pixel well.
  • the third color part 43 includes a third ink 431 and a third encapsulation layer 432, and the third encapsulation layer 432 is located on the side of the third ink 431 away from the bottom of the pixel well; the first ink 411, Any two of the second ink 421 and the third ink 431 include particles of different colors.
  • the electronic ink base layer 3 , the first color portion 41 , the second color portion 42 and the third color portion 43 constitute an electronic ink layer.
  • the embodiment of the present application also provides a preparation method of the electronic ink display panel, including:
  • Step 201 form an electronic ink base layer 3 on the first electrode substrate 1, and make a plurality of pixel wells 30 on the surface of the electronic ink base layer 3 away from the first electrode substrate 1, and a plurality of pixels
  • the well 30 includes a plurality of first pixel wells 31, a plurality of second pixel wells 32 and a plurality of third pixel wells 33, and the depth h1 of each first pixel well 31 is less than the depth h2 of each second pixel well 32 and is less than each
  • Step 202 fill each pixel well 30 of the electronic ink base layer 3 with a first mixed liquid
  • the first mixed liquid includes the first packaging liquid and the first ink 411, the first mixed liquid
  • Each first pixel well 31 is filled, and the first mixed liquid is filled in a part of each second pixel well 32, for example, the first mixed liquid is filled to half of the depth h2 of the second pixel well 32, and the first mixed liquid is filled in A part of each third pixel well 33, for example, the first mixed liquid is filled to one-third of the depth h3 of the third pixel well 33, wherein filling the first mixed liquid in the pixel well 30 can be done by printing, spraying, or coating.
  • Coating and other processes are realized without selecting the pixel well 30, and the control accuracy requirements for filling the first mixed solution are relatively low, so that each pixel well 30 can be filled with an equal amount of the first mixed solution, and there is no need to High-precision process control can be completed.
  • the light-emitting surface 300 of the electronic ink base layer 3 will not have residual mixed liquid, even if there is a small amount of residual liquid. It will also not cause adverse effects on the subsequent process or display.
  • a hydrophobic layer can be provided on the surface of the light-emitting surface 300 of the electronic ink base layer 3 to minimize this residue;
  • Step 203 after the first encapsulating liquid floats on the surface of the first ink 411 away from the bottom of the pixel well, solidify the first encapsulating liquid to form the first encapsulating layer 412, the first encapsulating layer 412 and the first ink 411 form the first encapsulating layer 411 In a color part 41, the density of the first encapsulating liquid is less than that of the first ink 411. Therefore, after the first mixed liquid is filled into the pixel well 30, the first encapsulating liquid will float on the surface of the first ink 411 due to its lower density.
  • the first encapsulation liquid can be solidified by ultraviolet irradiation or heating to form the first encapsulation layer 412, so as to realize the encapsulation of the first ink 411.
  • the first ink 411 in all the pixel wells 30 can be seen.
  • the surface of the electronic ink base layer 3 can be cleaned to remove the light emitting surface 300 of the electronic ink base layer 3 Ink residue that may exist on the part of the surface other than the pixel well 30;
  • Step 204 fill the second mixed liquid in each second pixel well 32 and in each third pixel well 33 except for the first color portion 41, and the second mixed liquid Including the second packaging liquid and the second ink 421, in each second pixel well 32, the second mixed liquid and the first color part 41 fill each second pixel well 32, and in each third pixel well 33 , the second mixed liquid and the first color part 41 are filled in a part of the pixel well, the process of filling the second mixed liquid can be the same as the process of filling the first mixed liquid, wherein, since the first pixel well 31 has been filled by the first The color portion 41 is filled, so the second mixed liquid will not be filled in, and the second mixed liquid will fill the second pixel well 32 and the third pixel well 33 that still have space, wherein the second mixed liquid and the first color portion 41 will fill the second pixel well 32, and the second mixed liquid and the first color part 41 will be filled to two-thirds of the depth of the third pixel well 33, where
  • the second mixed liquid can be filled into the second pixel well 32 and the third pixel well.
  • Well 33 similarly, after filling the second mixed liquid, except for the position of pixel well 30, there will be no mixed liquid residue on the light-emitting surface 300 of the electronic ink base layer 3, even if there is a trace amount of residue, it will not Cause adverse effects on the subsequent process or display;
  • Step 205 after the second encapsulation liquid floats on the surface of the second ink 421 away from the bottom of the pixel well, solidify the second encapsulation liquid to form the second encapsulation layer 422, the second encapsulation layer 422 and the second ink 421 form the second encapsulation layer 421
  • the second color part 42 at this time, if viewed from the light emitting surface 300 side of the electronic ink base layer 3, the first ink 411 in all the first pixel wells 31 can be seen, and all the second pixel wells 32 and the second pixel wells can be seen.
  • Step 206 fill the part of each third pixel well 33 other than the first color part 41 and the second color part 42 with a third mixed liquid
  • the third mixed liquid includes the third The encapsulating liquid and the third ink 431, any two of the first ink 411, the second ink 421 and the third ink 431 include particles of different colors, wherein, for the process of filling the third mixed liquid, there is no need to modify the pixel well 30
  • the control accuracy requirements for filling the third mixed liquid are relatively low, and by controlling the depth of different pixel wells 30, the third mixed liquid can be filled into the third pixel well 33;
  • Step 207 as shown in FIG. 4 and FIG. 5, after the third encapsulating liquid floats on the surface of the third ink 431 away from the bottom of the third pixel well 33, solidify the third encapsulating liquid to form a third encapsulating layer 432, The third encapsulation layer 432 and the third ink 431 form the third color part 43.
  • the first ink 411 in all the first pixel wells 31 can be seen, You can see the second ink 421 in all the second pixel wells 32, in each second pixel well 32, the first ink 411 is blocked by the upper second ink 421, you can see all the third pixel wells 33 in the third ink 431, in each third pixel well 33, the first ink 411 and the second ink 421 are blocked by the third ink 431 of the upper layer;
  • Step 208 as shown in FIG. 4 and FIG. 5, a second electrode is provided on the side of the electronic ink base layer 3 provided with the first color part 41, the second color part 42, and the third color part 43 away from the first electrode substrate 1 Substrate 2.
  • any two of the first ink 411, the second ink 421, and the third ink 431 contain particles of different colors, that is, the first ink 411, the second ink 421, and the third ink 431 can be respectively Display different colors, for example, the first ink 411 can display red, the second ink 421 can display green, and the third ink 431 can display blue.
  • the first pixel well 31 sees the red color displayed by the first ink 411, the green color displayed by the second ink 421 can be seen through the second pixel well 32, and the third ink 431 can be seen through the third pixel well 33.
  • the displayed blue color realizes the setting of three color sub-pixels of red, green and blue, and then realizes color display, that is, through the design of the well depth of different pixel wells, different pixel wells display different colors.
  • various types of pixel wells with different well depths are provided on the electronic ink base layer, and one type of ink is filled in the pixel wells each time and packaged.
  • the process of different types of inks makes the uppermost layer of pixel wells with different depths have different types of inks. Since different types of inks contain particles of different colors, different pixel wells can display different colors, thereby realizing color display.
  • the present application can realize higher-resolution color display because: when the solution of the present application is filled with the mixed liquid, there is no need to make specific selections for different pixel positions (corresponding to different types of pixel wells in this case), This eliminates the need to locate the positions of different pixels and pour the mixed liquid at fixed points, that is, it does not need to use a high-precision ink filling process, so that a higher-resolution color display can be achieved.
  • color display can be realized without adding a color filter film, so the increase of the color filter film will not cause a decrease in light transmittance and an increase in thickness, and, for the increase of the color filter film
  • a higher-precision color filter film manufacturing process is required to be able to set different color filter films for sub-pixels of different colors, and the embodiment of the present application Among them, for different types of inks, high process precision is not required, and the first pixel well can be selectively displayed with one type of ink color, and the second pixel can be displayed with another type of ink color, so a higher High-resolution color display; on the other hand, by setting particles of different colors in different color parts to achieve color display, the color types of particles in the same color part do not need to be set more, and in the same color part During the driving process of particles, the particles in the same color part will not interfere with each other due to the large number of colors, and the particles
  • the first ink 411 includes first color particles 401 and black filling liquid 402
  • the second ink includes second color particles and black filling liquid
  • the third ink Includes tertiary color particles and black fill fluid.
  • the first color particles 401 are red particles
  • the red particles are positively charged
  • the positively charged particles are repelled, so that the first color particles 401 gather in the black
  • the first color particles 401 reflect red
  • the first color part 41 in it displays red
  • the first color part 41 in it displays red
  • the first color portion 41 displays black.
  • the display principle is the same, and will not be repeated here.
  • the black filling liquid can also block other color parts in the lower part of the same pixel well, so as to prevent particles of other colors from reflecting light and causing crosstalk between different colors .
  • the electrodes on the second electrode substrate are grounded, and the first electrode substrate includes pixel electrodes corresponding to each pixel well.
  • the corresponding pixel electrode voltage is a positive voltage to drive the first pixel well to display red
  • the pixel electrode voltage corresponding to the second pixel well and the pixel electrode voltage corresponding to the third pixel well are negative voltages to drive the second pixel well and the third pixel well. If the pixel well displays black, it will display a red picture.
  • no voltage can be applied to each pixel electrode, and the ink particles in each color part will maintain the position they had in the last response, even if the pixel well still maintains the display In red, power consumption can be reduced through the bistable feature.
  • the first ink 411 includes first color particles 501, black particles 502 and transparent filling liquid 503, and the second ink includes second color particles, black particles and The transparent filling liquid, the third ink includes third color particles, black particles and transparent filling liquid.
  • the first color particle 501 is a red particle
  • the red particle is positively charged
  • the black particle 502 is negatively charged
  • Negatively charged particles make the first color particles 401 gather on the upper surface of the transparent filling liquid 503, and the black particles 502 gather at the bottom of the transparent filling liquid 503.
  • the first color part 41 in it displays red; when a negative voltage is applied to the electrode below the first color part 41, positively charged particles are attracted and negatively charged particles are repelled, so that The first color particles 501 gather at the bottom of the transparent filling liquid 503, and the black particles 502 gather on the upper surface of the transparent filling liquid 503.
  • the first pixel well 31 therein A color portion 41 displays black.
  • the ink composed of red particles, black particles and transparent filling liquid in addition to realizing red display and black display through the above two states, it can also be controlled by different voltage values provided by the first electrode substrate. , so that the red particles or black particles move to a certain position in the middle of the transparent filling liquid. When the red particles are closer to the top of the transparent filling liquid, and the black particles are farther away from the top of the transparent filling liquid, it is viewed from the light-emitting surface side of the electronic ink base layer.
  • the redder the color displayed by the first color part 41 is, on the contrary, when the red particles are farther away from the top of the transparent filling liquid, and the closer the black particles are to the top of the transparent filling liquid, the color from the electronic ink base layer
  • the voltage driving can realize, for example, 16 different display effects from 0 to 15, and 0 is the display effect.
  • Red, level 15 is black, and there are 14 levels in the middle that gradually transition from red to black, that is, more colors can be displayed on the basis of color display.
  • the display principle is the same, and will not be repeated here.
  • color display can be realized, and the color depth level of the pixel well can be controlled to achieve more color display, and the ink of the same color part only has particles of two colors, no Due to the mutual interference between more types of color particles, the driving speed is faster, that is, the screen refresh speed is faster.
  • one of the first color particle, the second color particle and the third color particle is a red particle, the other is a green particle, and the third is a blue particle, even if the first color
  • the first ink 411 in the part 41 can display red
  • the second ink 421 in the second color part 42 can display green
  • the third ink 431 in the third color part 43 can realize blue.
  • Three adjacent pixel wells are combined as sub-pixels to realize the display of color pixels.
  • the size of different types of pixel wells can be adjusted as required, and the sizes of different types of pixel wells can be the same or different, for example, the opening edge of the first pixel well 31 used to display red
  • the length can be 100 ⁇ m
  • the opening side length of the second pixel well 32 used to display green can be 105 ⁇ m.
  • the openings of different sizes can control the light intensity, and the reflectivity of different colors of particles for light may be different, such as the reflection of red particles rate is greater than the reflectivity of the green particles, then the opening area of the second pixel well 32 can be set larger than the opening area of the first pixel well 31, so that when the reflectance of different color particles is different, the emitted The light intensity is consistent to achieve a more uniform display effect.
  • a hydrophobic layer is provided on the side wall of each pixel well and/or on the surface of the light emitting surface 300 of the electronic ink base layer 3, for the second pixel well 32 and the third pixel well 33 , each pixel well will be filled with different inks multiple times, so a hydrophobic layer can be set on the side wall of the pixel well, so that the ink filled in the previous time is not easy to hang on the inner wall of the pixel well Ink can cause adverse effects.
  • the residue of the mixed liquid on the surface outside the pixel well 30 of the electronic ink base layer 3 can be minimized to prevent residue
  • the mixed solution will adversely affect the subsequent process or display effect.
  • the electronic ink base layer 3 is embossed glue, based on the embossed glue, the pixel well 30 can be formed in conjunction with the nanoimprint process.
  • the nanoimprint process has higher precision and can achieve higher resolution.
  • the pixel well 30 is manufactured, and the depth control precision of the pixel well 30 is relatively high.
  • the material of the embossing glue is a resin material.
  • the second electrode substrate 2 is located on the side close to the light-emitting surface 300 of the electronic ink base layer 3 , and the second electrode substrate 2 includes a first glass substrate 21 and a transparent
  • the electrode layer 22, the transparent electrode layer 22 can cover all the pixel wells 30, and connect a fixed potential, such as grounding, to provide the voltage above all the pixel wells
  • the transparent electrode layer 22 can be indium tin oxide (Indium tin oxide, ITO) material
  • the first glass substrate 21 can be replaced by a substrate of polyethylene terephthalate (PET) material; Comprising a pixel electrode 11 and a driving circuit 12 corresponding to each pixel well, the pixel electrode 11 and the driving circuit 12 are fabricated on a second glass substrate 13, and a plurality of pixel electrodes 11 are independent, so as to provide different corresponding to each pixel well.
  • PET polyethylene terephthalate
  • the drive circuit 12 includes a thin film transistor (Thin Film Transistor, TFT) electrically connected to each pixel electrode 11, and the TFT includes a semiconductor layer 121, a gate 122, a source 123 and a drain 124, and the first electrode substrate 1 It also includes a data line D corresponding to each column of pixel electrodes 11 and a gate line S corresponding to each row of pixel electrodes 11.
  • the source of the TFT corresponding to each pixel electrode 11 is electrically connected to the corresponding data line D, and the drain is electrically connected to the corresponding data line D.
  • the gate is electrically connected to the corresponding gate line S.
  • the corresponding TFT When the active level is provided on the gate line S, the corresponding TFT can be controlled to be turned on, so that the voltage on the data line D is transmitted through the turned-on TFT.
  • the control of the pixel well can realize the display of the screen.
  • the embodiment of the present application only provides an example of a driving circuit. In other feasible implementation manners, the driving of the color part in the pixel well can be realized through other types of driving circuits.
  • the embodiment of the present application is for driving
  • the specific structure of the circuit is not limited.
  • the embodiment of the present application does not limit the shape of the opening of the pixel well 30.
  • only the rectangular opening of the pixel well 30 is used as an example for illustration.
  • the shape of the opening of the pixel well 30 can be any shape such as a circle or other polygons.
  • An embodiment of the present application further provides an electronic device, including the electronic ink display panel in any of the foregoing embodiments.
  • the electronic device can be, for example, any product or component with a display function such as a mobile phone, a tablet computer, an electronic reader, a smart watch, an electronic tag, a navigator, a watch, and a bracelet.
  • step 101 forming an electronic ink base layer on the first electrode substrate, and fabricating a plurality of pixels on the surface of the electronic ink base layer away from the first electrode substrate Wells.
  • the process of making pixel wells includes: coating the first electrode substrate with embossing glue, and adopting a nano-imprint process to emboss multiple pixel wells on the embossing glue.
  • the material of the electronic ink base layer is embossing glue.
  • the embossing glue is coated as the electronic ink base layer to be formed with pixel wells, and then a plurality of pixel wells are formed on the surface of the electronic ink base layer using a nanoimprint process to form a pixel well.
  • E-ink base layer The nanoimprinting process has high precision, can realize the manufacture of pixel wells 30 with high resolution, and has high control precision for the depth of the pixel wells 30 .
  • step 102 before filling each pixel well of the electronic ink base layer with the first mixed liquid, further includes: A hydrophobic layer is formed on the surface.
  • the first ink is composed of particles of the first color and black filling liquid
  • the second ink is composed of particles of the second color and black filling liquid
  • the third ink is composed of particles of the third color and black filling liquid .
  • the first ink is composed of particles of the first color, black particles and transparent filling liquid
  • the second ink is composed of particles of the second color, black particles and transparent filling liquid
  • the third ink is composed of particles of the third color Composition of particles, black particles and transparent fill fluid.
  • one of the first color particle, the second color particle and the third color particle is a red particle, the other is a green particle, and the third is a blue particle.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a Solid State Disk).
  • "at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three kinds of relationships, for example, A and/or B may indicate that A exists alone, A and B exist simultaneously, or B exists alone. Among them, A and B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b, and c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, wherein a, b, and c may be single or multiple.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电子墨水显示面板及其制备方法、电子设备,涉及显示技术领域,在有限的工艺精度下,实现较高分辨率的彩色显示。电子墨水显示面板包括电子墨水基层(3),电子墨水基层(3)具有多个像素井(30),每个第一像素井(31)的深度小于每个第二像素井(32)的深度;多个第一像素井(31)和多个第二像素井(32)中的每个像素井(30)中设置有第一颜色部(41),第一颜色部(41)包括第一墨水(411)和第一封装层(412),第一封装层(412)位于第一墨水(411)远离像素井(30)底部的一侧,在每个第一像素井(30)中,第一颜色部(411)填充满第一像素井(31);多个第二像素井(32)中的每个像素井(30)中还设置有第二颜色部(42),第二颜色部(42)包括第二墨水(421)和第二封装层(422),第二封装层(422)位于第二墨水(421)远离像素井(30)底部的一侧;第一墨水(411)和第二墨水(421)中包括不同颜色的粒子。

Description

电子墨水显示面板及其制备方法、电子设备
本申请要求于2021年9月8日提交中国专利局、申请号为202111047546.9、申请名称为“电子墨水显示面板及其制备方法、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别涉及一种电子墨水显示面板及其制备方法、电子设备。
背景技术
电子墨水屏以其护眼、低功耗等优点具有越来越多的应用于电子标签、电子书等领域,传统的电子墨水屏技术通常仅可以实现黑白两种颜色的显示,为了使电子墨水屏具有更生动的显示效果,开始出现彩色电子纸技术,可以利用电子墨水屏实现彩色显示,然而,目前的电子墨水屏由于工艺精度的限制,实现彩色显示的分辨率较低。
发明内容
一种电子墨水显示面板及其制备方法、电子设备,可以在有限的工艺精度下,实现较高分辨率的彩色显示。
第一方面,提供一种电子墨水显示面板,包括:电子墨水基层,电子墨水基层的出光面具有多个像素井,多个像素井包括多个第一像素井和多个第二像素井,每个第一像素井的深度小于每个第二像素井的深度;多个第一像素井和多个第二像素井中的每个像素井中设置有第一颜色部,第一颜色部包括第一墨水和第一封装层,第一封装层位于第一墨水远离像素井底部的一侧,在每个第一像素井中,第一颜色部填充满第一像素井;多个第二像素井中的每个像素井中还设置有第二颜色部,第二颜色部位于第一颜色部远离像素井底部的一侧,第二颜色部包括第二墨水和第二封装层,第二封装层位于第二墨水远离像素井底部的一侧;第一墨水和第二墨水中包括不同颜色的粒子。
其中,设置电子墨水基层具有不同井深的多种类型的像素井,每次在像素井中填入一种类型的墨水并封装,通过多次填入不同类型墨水的过程,使不同深度的像素井的最上层具有不同类型的墨水,由于不同类型的墨水中包括不同颜色的粒子,即可以使不同像素井显示不同的颜色,从而实现彩色显示。本申请相对现有技术而言能够实现更高分辨率的彩色显示,原因在于:本申请方案在填充混合液时,无需对不同的像素位置(对应本案中不同类型的像素井)进行具体选择,这就无需对不同像素的位置进行定位并定点灌注混合液,即无需使用较高精度的填入墨水工艺,即可以实现较高分辨率的彩色显示。
在一种可能的实施方式中,多个像素井还包括多个第三像素井,每个第二像素井的深度小于每个第三像素井的深度;在每个第二像素井中,第一颜色部和第二颜色部填充满第二像素井;每个第三像素井中设置有第一颜色部、第二颜色部和第三颜色部,在每个第三 像素井中,第二颜色部位于第一颜色部远离像素井底部的一侧,第三颜色部位于第二颜色部远离像素井底部的一侧,第三颜色部包括第三墨水和第三封装层,第三封装层位于第三墨水远离像素井底部的一侧;第一墨水、第二墨水和第三墨水的任意两者中包括不同颜色的粒子。
在一种可能的实施方式中,第一墨水包括第一颜色粒子和黑色填充液,第二墨水包括第二颜色粒子和黑色填充液,第三墨水包括第三颜色粒子和黑色填充液。通过使不同像素井显示不同的颜色,可以实现彩色显示,且同一个颜色部的墨水中仅具有一种颜色的粒子,不会由于较多种类颜色粒子之间的相互干扰,驱动速度较快,即画面刷新速度较快。
在一种可能的实施方式中,第一墨水包括第一颜色粒子、黑色粒子和透明填充液,第二墨水包括第二颜色粒子、黑色粒子和透明填充液,第三墨水包括第三颜色粒子、黑色粒子和透明填充液。通过使不同像素井显示不同的颜色,可以实现彩色显示,以及控制像素井的颜色深度级别,以实现更多颜色的显示,且同一个颜色部的墨水中仅具有两种颜色的粒子,不会由于较多种类颜色粒子之间的相互干扰,驱动速度较快,即画面刷新速度较快。
在一种可能的实施方式中,第一颜色粒子、第二颜色粒子和第三颜色粒子中的一者为红色粒子,另一者为绿色粒子,第三者为蓝色粒子。
在一种可能的实施方式中,每个像素井的侧壁上和/或在所述电子墨水基层的出光面表面上设置有疏水层,以使前一次填入的墨水不容易挂在像素井内壁上而对后一次填入的墨水造成不良影响。
在一种可能的实施方式中,电子墨水基层为压印胶。
在一种可能的实施方式中,压印胶的材料为树脂材料。
在一种可能的实施方式中,电子墨水显示面板还包括:第一电极基板和第二电极基板,电子墨水基层位于第一电极基板和第二电极基板之间;第二电极基板位于靠近电子墨水基层的出光面的一侧,第二电极基板包括透明电极层;第一电极基板位于背离电子墨水基层的出光面的一侧,第一电极基板包括与每个像素井对应的像素电极和驱动电路。
第二方面,提供一种电子设备,包括上述的电子墨水显示面板。
第三方面,提供一种电子墨水显示面板的制备方法,包括:形成电子墨水基层,在电子墨水基层一侧的表面制作多个像素井,形成电子墨水基层,多个像素井包括多个第一像素井和多个第二像素井,每个第一像素井的深度小于每个第二像素井的深度;在电子墨水基层的每个像素井中填入第一混合液,第一混合液包括第一封装液和第一墨水,第一混合液填充满每个第一像素井,第一混合液填充于每个第二像素井的一部分;待第一封装液浮于第一墨水远离像素井的底部一侧的表面之后,使第一封装液固化形成第一封装层,第一封装层和第一墨水组成第一颜色部;在每个第二像素井中第一颜色部之外的部分填入第二混合液,第二混合液包括第二封装液和第二墨水;待第二封装液浮于第二墨水远离像素井的底部一侧的表面之后,使第二封装液固化形成第二封装层,第二封装层和第二墨水组成第二颜色部;第一墨水和第二墨水中包括不同颜色的粒子。
其中,设置电子墨水基层具有不同井深的多种类型的像素井,每次在像素井中填入一种类型的墨水并封装,通过多次填入不同类型墨水的过程,使不同深度的像素井的最上层具有不同类型的墨水,由于不同类型的墨水中包括不同颜色的粒子,即可以使不同像素井显示不同的颜色,从而实现彩色显示,只需要通过像素井的深度即可以控制不同类型的像 素井的最上层具有所对应类型的墨水,无需在填入墨水的过程中基于像素井进行选择,即无需使用较高精度的填入墨水工艺,即可以实现较高分辨率的彩色显示。
在一种可能的实施方式中,多个像素井还包括多个第三像素井,每个第二像素井的深度小于每个第三像素井的深度;电子墨水显示面板的制备方法还包括:形成第二颜色部之后,在每个第二像素井中,第一颜色部和第二颜色部填充满第二像素井,第一颜色部和第二颜色部填充于第三像素井的一部分;在每个第三像素井中第一颜色部以及第二颜色部之外的部分填入第三混合液,第三混合液包括第三封装液和第三墨水;待第三封装液浮于第三墨水远离第三像素井的底部一侧的表面之后,使第三封装液固化形成第三封装层,第三封装层和第三墨水组成第三颜色部;第一墨水、第二墨水和第三墨水的任意两者中包括不同颜色的粒子。
在一种可能的实施方式中,形成电子墨水基层,在电子墨水基层一侧的表面制作多个像素井的过程包括:涂覆压印胶,采用纳米压印工艺,在所述压印胶上压印得到多个像素井。
在一种可能的实施方式中,在电子墨水基层的每个像素井中填入第一混合液之前,还包括:在每个像素井的侧壁上和/或在所述电子墨水基层的出光面表面上形成疏水层。
在一种可能的实施方式中,第一墨水包括第一颜色粒子和黑色填充液,第二墨水包括第二颜色粒子和黑色填充液,第三墨水包括第三颜色粒子和黑色填充液。
在一种可能的实施方式中,第一墨水包括第一颜色粒子、黑色粒子和透明填充液,第二墨水包括第二颜色粒子、黑色粒子和透明填充液,第三墨水包括第三颜色粒子、黑色粒子和透明填充液。
在一种可能的实施方式中,第一颜色粒子、第二颜色粒子和第三颜色粒子中的一者为红色粒子,另一者为绿色粒子,第三者为蓝色粒子。
附图说明
图1为本申请实施例中一种电子墨水显示面板的俯视图;
图2为图1中AA’向的一种剖面结构示意图;
图3为本申请实施例中一种电子墨水显示面板的制备方法流程示意图;
图4为本申请实施例中另一种电子墨水显示面板的俯视图;
图5为图4中BB’向的一种剖面结构示意图;
图6为本申请实施例中另一种电子墨水显示面板的制备方法流程示意图;
图7为本申请实施例中一种电子墨水基层的俯视图;
图8为图7中BB’向的一种剖面结构示意图;
图9为本申请实施例中一种包括第一颜色部的电子墨水基层的俯视图;
图10为图9中BB’向的一种剖面结构示意图;
图11为本申请实施例中一种包括第二颜色部的电子墨水基层的俯视图;
图12为图11中BB’向的一种剖面结构示意图;
图13为本申请实施例中一种第一颜色部的一种状态示意图;
图14为图13中第一颜色部的另一种状态示意图;
图15为本申请实施例中一种不同像素井对应的像素电极电压时序图;
图16为本申请实施例中另一种第一颜色部的一种状态示意图;
图17为图16中第一颜色部的另一种状态示意图;
图18为图4中BB’向的另一种剖面结构示意图;
图19为本申请实施例中一种第一电极基板的具体结构示意图;
图20为本申请实施例中另一种电子墨水显示面板的俯视图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
首先对相关技术及其技术问题进行说明,传统的电子墨水屏包括微胶囊,微胶囊中包括带负电荷的白色粒子以及带正电荷的黑色粒子,悬浮于液体中,利用微胶囊两端的电压控制,使黑色粒子或白色粒子移动至微胶囊的顶部,以反射对应颜色的光线,当黑色粒子位于微胶囊的顶部,白色粒子位于微胶囊的底部时,从微胶囊顶部的一侧观看,既可以看到微胶囊所显示的黑色;反之,当白色粒子位于微胶囊的顶部,黑色粒子位于微胶囊的底部时,从微胶囊顶部的一侧观看,即可以看到微胶囊所显示的白色。在上述显示黑白两种颜色的基础上,为了进一步显示深灰、浅灰等不同的灰度效果,可以通过不同的电压驱动使黑色粒子或白色粒子移动到微胶囊顶部和底部之间的某个位置,当黑色粒子距离顶部越近、白色粒子距离顶部越远,则微胶囊所显示的灰色越深、反之灰色越浅,相关技术中通过电压驱动可实现的最大灰阶为从0级至15级共16级,0级为显示白色,15级为显示黑色,中间有14级不同深浅的灰色显示效果。为了进一步实现彩色的显示,可以在微胶囊的顶部一侧增加彩色滤光膜,将原本相邻的三个胶囊像素的顶端分别设置对应的红色滤光材料、绿色滤光材料和蓝色滤光材料,使原本的三个像素组成一个彩色像素,这就导致了显示分辨率降低为原本的三分之一,并且,增加彩色滤光膜会导致屏幕的厚度增大以及会由于滤光作用而导致屏幕的透光率降低。除了增加彩色滤光膜之外,另一种实现彩色显示的方法是在每个微胶囊中设置多种颜色的粒子,通过电压对不同颜色粒子的控制使微胶囊可以显示不同的颜色,然而,由于同一个微胶囊中设置有多种不同颜色的粒子,而不同颜色种类的粒子之间在被电压驱动而移动的过程中,可能会互相干扰,从而导致显示刷新速度较慢,另外由于对于同一微胶囊所需要驱动的粒子种类增加,导致无法一次性完成对所有种类粒子的驱动,驱动多次驱动才能得到最终的颜色显示效果,从而导致显示刷新速度较慢。
以下对本申请实施例进行说明。
如图1和图2所示,本申请实施例提供一种电子墨水显示面板,包括:第一电极基板1、第二电极基板2以及位于第一电极基板1和第二电极基板2之间的电子墨水基层3;电子墨水基层3的出光面300具有多个像素井30,多个像素井30包括多个第一像素井31和多个第二像素井32,每个第一像素井31的深度h1小于每个第二像素井32的深度h2;多个第一像素井31和多个第二像素井32中的每个像素井中设置有第一颜色部41,第一颜色部41包括第一墨水411和第一封装层412,第一封装层412位于第一墨水411远离像素井底部的一侧,在每个第一像素井31中,第一颜色部41填充满第一像素井31;多个第二像素井32和多个第三像素井33中的每个像素井中还设置有第二颜色部42,第二颜色部42 位于第一颜色部41远离像素井底部的一侧,第二颜色部42包括第二墨水421和第二封装层422,第二封装层422位于第二墨水421远离像素井底部的一侧;第一墨水411和第二墨水421中包括不同颜色的粒子。电子墨水基层3、第一颜色部41以及第二颜色部42组成电子墨水层。
具体地,对于第一像素井31和第二像素井32,不同种类像素井的深度不同,例如,h1:h2=1:2,可以理解地,在其他可实现的实施方式中,根据工艺需求,不同种类像素井的深度比例可以调整,但是需要保证h1<h2,另外,本申请实施例对于像素井30的具体结构不做限定,例如在平行于显示面板所在平面的像素井截面上,像素井30的形状可以为矩形或圆形等。第一电极基板1和第二电极基板2用于在每个像素井30中产生对应的电场,以实现对像素井30中墨水所显示的颜色进行控制。
以下结合电子墨水显示面板的制备方法对电子墨水显示面板进行说明,如图3所示,本申请实施例还提供一种电子墨水显示面板的制备方法,包括:
步骤101、形成电子墨水基层,在电子墨水基层一侧的表面制作多个像素井30,多个像素井30包括多个第一像素井31和多个第二像素井32,每个第一像素井31的深度h1小于每个第二像素井32的深度h2,例如h1:h2=1:2,像素井30所朝向的一侧即为电子墨水基层3的出光面300一侧;
步骤102、在电子墨水基层3的每个像素井30中填入第一混合液,第一混合液包括第一封装液和第一墨水411,第一混合液填充满每个第一像素井31,第一混合液填充于每个第二像素井32的一部分,例如第一混合液填充至第二像素井32的深度h2的一半,其中,不需要控制第一混合液的填充位置,即可以使第一混合液填入每个像素井30中,在每个像素井30中填入第一混合液具体可以采用印刷、喷涂、涂覆(coating)等工艺实现,无需高精度的工艺控制即可完成,在完成第一混合液的填入之后,除像素井30位置之外,电子墨水基层3的出光面300不会有混合液的残留,即便有微量的残留,也不会对后续的工艺或显示造成不良影响,另外在一种可能的实施方式中,可以在电子墨水基层3的出光面300表面设置疏水层,以尽量减少这种残留;
步骤103、待第一封装液浮于第一墨水411远离像素井的底部一侧的表面之后,使第一封装液固化形成第一封装层412,第一封装层412和第一墨水411组成第一颜色部41,第一封装液的密度小于第一墨水411的密度,因此,在第一混合液填入像素井30之后,第一封装液会由于密度较小而浮于第一墨水411的表面,此时,可以通过紫外线照射或者加热等工艺使第一封装液固化形成第一封装层412,以实现对第一墨水411的封装,在第一封装层412固化完成之后,可以对电子墨水基层3的表面进行清洗,以清洗掉电子墨水基层3的出光面300表面像素井30之外部分可能会存在的墨水残留;
步骤104、在每个第二像素井32中第一颜色部41之外的部分填入第二混合液,第二混合液包括第二封装液和第二墨水421,填入第二混合液的过程可以与填入第一混合液的过程相同,其中,由于第一像素井31已经被第一颜色部41填满,因此不会再填入第二混合液,第二混合液会填入仍有空间的第二像素井32,对于填入第二混合液的过程,无需对像素井30进行选择,对于填入第二混合液的控制精度要求较低,通过对不同像素井30的深度控制,即可以使第二混合液被填入第二像素井32;
步骤105、待第二封装液浮于第二墨水421远离像素井的底部一侧的表面之后,使第 二封装液固化形成第二封装层422,第二封装层422和第二墨水421组成第二颜色部42,此时,如果从电子墨水基层3的出光面300一侧观看,可以看到所有第一像素井31中的第一墨水411,可以看到所有中第二像素井32中的第二墨水421,在每个第二像素井32中,第一墨水411均被上层的第二墨水421所遮挡,第一墨水411和第二墨水421中包括不同颜色的粒子。
具体地,由于第一墨水411和第二墨水421中包括不同颜色的粒子,即第一墨水411、第二墨水421可以在电压控制下分别显示不同的颜色,例如第一墨水411可以显示红色、第二墨水421可以显示绿色,对于电子墨水基层3来说,从出光面300的一侧观看,可以通过第一像素井31看到其中第一墨水411所显示的红色,可以通过第二像素井32看到其中第二墨水421所显示的绿色,即实现了红绿三种颜色子像素的设置,进而实现彩色显示,即通过对不同像素井的井深设计实现了不同像素井显示不同颜色。
本申请实施例中的电子墨水显示面板及其制备方法,设置电子墨水基层具有不同井深的多种类型的像素井,每次在像素井中填入一种类型的墨水并封装,通过多次填入不同类型墨水的过程,使不同深度的像素井的最上层具有不同类型的墨水,由于不同类型的墨水中包括不同颜色的粒子,即可以使不同像素井显示不同的颜色,从而实现彩色显示。本申请相对现有技术而言能够实现更高分辨率的彩色显示,原因在于:本申请方案在填充混合液时,无需对不同的像素位置(对应本案中不同类型的像素井)进行具体选择,这就无需对不同像素的位置进行定位并定点灌注混合液,即无需使用较高精度的填入墨水工艺,即可以实现较高分辨率的彩色显示。与相关技术相比,一方面无需增加彩色滤光膜即可以实现彩色显示,因此不会由于彩色滤光膜的增加而导致透光率降低以及厚度的增加,并且,对于增加彩色滤光膜的技术来说,如果要实现较高分辨率的显示,需要较高精度的彩色滤光膜制作工艺,才能够实现分别针对不同颜色的子像素设置对应的彩色滤光膜,而本申请实施例中,对于不同类型的墨水,不需要较高的工艺精度,既可以选择性地使第一像素井显示一种类型的墨水颜色,第二像素显示另一种类型的墨水颜色,因此可以实现较高分辨率的彩色显示;另一方面,通过在不同的颜色部中设置不同颜色的粒子来实现彩色显示,同一个颜色部中粒子的颜色种类无需设置的较多,在对同一个颜色部中粒子的驱动过程中,同一个颜色部中的粒子不会由于颜色种类较多而相互干扰,且同一个颜色部中的粒子可以通过较少次数的驱动移动至所需要的位置,因此画面刷新速度较快。
在一种可能的实施方式中,如图4和图5所示,多个像素井30还包括多个第三像素井33,每个第二像素井32的深度h2小于每个第三像素井33的深度h3;在每个第二像素井32中,第一颜色部41和第二颜色部42填充满第二像素井32;每个第三像素井33中设置有第一颜色部41、第二颜色部42和第三颜色部43,在每个第三像素井33中,第二颜色部42位于第一颜色部41远离像素井底部的一侧,第三颜色部43位于第二颜色部42远离像素井底部的一侧,第三颜色部43包括第三墨水431和第三封装层432,第三封装层432位于第三墨水431远离像素井底部的一侧;第一墨水411、第二墨水421和第三墨水431的任意两者中包括不同颜色的粒子。电子墨水基层3、第一颜色部41、第二颜色部42和第三颜色部43组成电子墨水层。
以下结合电子墨水显示面板的制备方法对电子墨水显示面板进行说明,如图6所示,本申请实施例还提供一种电子墨水显示面板的制备方法,包括:
步骤201、如图7和图8所示,在第一电极基板1上形成电子墨水基层3,在电子墨水基层3远离第一电极基板1一侧的表面制作多个像素井30,多个像素井30包括多个第一像素井31、多个第二像素井32和多个第三像素井33,每个第一像素井31的深度h1小于每个第二像素井32的深度h2小于每个第三像素井33的深度h3,以下以h1:h2:h3=1:2:3为例进行说明;
步骤202、如图9和图10所示,在电子墨水基层3的每个像素井30中填入第一混合液,第一混合液包括第一封装液和第一墨水411,第一混合液填充满每个第一像素井31,第一混合液填充于每个第二像素井32的一部分,例如第一混合液填充至第二像素井32的深度h2的一半,第一混合液填充于每个第三像素井33的一部分,例如第一混合液填充至第三像素井33的深度h3的三分之一,其中,在像素井30填入第一混合液可以采用印刷、喷涂、涂覆(coating)等工艺实现,无需对像素井30进行选择,对于填入第一混合液的控制精度要求较低,使每个像素井30中填入等量的第一混合液即可,无需高精度的工艺控制即可完成,在完成第一混合液的填入之后,除像素井30位置之外,电子墨水基层3的出光面300不会有混合液的残留,即便有微量的残留,也不会对后续的工艺或显示造成不良影响,另外在一种可能的实施方式中,可以在电子墨水基层3的出光面300表面设置疏水层,以尽量减少这种残留;
步骤203、待第一封装液浮于第一墨水411远离像素井的底部一侧的表面之后,使第一封装液固化形成第一封装层412,第一封装层412和第一墨水411组成第一颜色部41,第一封装液的密度小于第一墨水411的密度,因此,在第一混合液填入像素井30之后,第一封装液会由于密度较小而浮于第一墨水411的表面,此时,可以通过紫外线照射或者加热等工艺使第一封装液固化形成第一封装层412,以实现对第一墨水411的封装,此时,如果从电子墨水基层3的出光面300一侧观看,可以看到所有的像素井30中的第一墨水411,在第一封装层412固化完成之后,可以对电子墨水基层3的表面进行清洗,以清洗掉电子墨水基层3的出光面300表面像素井30之外部分可能会存在的墨水残留;
步骤204、如图11和图12所示,在每个第二像素井32以及在每个第三像素井33中第一颜色部41之外的部分填入第二混合液,第二混合液包括第二封装液和第二墨水421,在每个第二像素井32中,第二混合液和第一颜色部41填充满每个第二像素井32,在每个第三像素井33中,第二混合液和第一颜色部41填充于像素井的一部分,填入第二混合液的过程可以与填入第一混合液的过程相同,其中,由于第一像素井31已经被第一颜色部41填满,因此不会再填入第二混合液,第二混合液会填入仍有空间的第二像素井32和第三像素井33,其中第二混合液和第一颜色部41会将第二像素井32填充满,第二混合液和第一颜色部41会填充至第三像素井33的深度的三分之二,其中,对于填入第二混合液的过程,无需对像素井30进行选择,对于填入第二混合液的控制精度要求较低,通过对不同像素井30的深度控制,即可以使第二混合液被填入第二像素井32和第三像素井33,类似地,在完成第二混合液的填入之后,除像素井30位置之外,电子墨水基层3的出光面300不会有混合液的残留,即便有微量的残留,也不会对后续的工艺或显示造成不良影响;
步骤205、待第二封装液浮于第二墨水421远离像素井的底部一侧的表面之后,使第二封装液固化形成第二封装层422,第二封装层422和第二墨水421组成第二颜色部42,此时,如果从电子墨水基层3的出光面300一侧观看,可以看到所有第一像素井31中的 第一墨水411,可以看到所有中第二像素井32以及第三像素井33中的第二墨水421,在每个第二像素井32和第三像素井33中,第一墨水411均被上层的第二墨水421所遮挡,在第二封装层422固化完成之后,可以对电子墨水基层3的表面进行清洗,以清洗掉电子墨水基层3的出光面300表面像素井30之外部分可能会存在的墨水残留;
步骤206、如图4和图5所示,在每个第三像素井33中第一颜色部41以及第二颜色部42之外的部分填入第三混合液,第三混合液包括第三封装液和第三墨水431,第一墨水411、第二墨水421和第三墨水431的任意两者中包括不同颜色的粒子,其中,对于填入第三混合液的过程,无需对像素井30进行选择,对于填入第三混合液的控制精度要求较低,通过对不同像素井30的深度控制,即可以使第三混合液被填入第三像素井33;
步骤207、如图4和图5所示,待第三封装液浮于第三墨水431远离第三像素井33的底部一侧的表面之后,使第三封装液固化形成第三封装层432,第三封装层432和第三墨水431组成第三颜色部43,此时,如果从电子墨水基层3的出光面300一侧观看,可以看到所有第一像素井31中的第一墨水411,可以看到所有中第二像素井32中的第二墨水421,在每个第二像素井32中,第一墨水411均被上层的第二墨水421所遮挡,可以看到所有第三像素井33中的第三墨水431,在每个第三像素井33中,第一墨水411和第二墨水421均被上层的第三墨水431所遮挡;
步骤208、如图4和图5所示,在设置有第一颜色部41、第二颜色部42、第三颜色部43的电子墨水基层3远离第一电极基板1的一侧设置第二电极基板2。
具体地,由于第一墨水411、第二墨水421和第三墨水431的任意两者中包括不同颜色的粒子,即第一墨水411、第二墨水421和第三墨水431可以在电压控制下分别显示不同的颜色,例如第一墨水411可以显示红色、第二墨水421可以显示绿色、第三墨水431可以显示蓝色,对于电子墨水基层3来说,从出光面300的一侧观看,可以通过第一像素井31看到其中第一墨水411所显示的红色,可以通过第二像素井32看到其中第二墨水421所显示的绿色,可以通过第三像素井33看到其中第三墨水431所显示的蓝色,即实现了红绿蓝三种颜色子像素的设置,进而实现彩色显示,即通过对不同像素井的井深设计实现了不同像素井显示不同颜色。
本申请实施例中的电子墨水显示面板及其制备方法,设置电子墨水基层具有不同井深的多种类型的像素井,每次在像素井中填入一种类型的墨水并封装,通过多次填入不同类型墨水的过程,使不同深度的像素井的最上层具有不同类型的墨水,由于不同类型的墨水中包括不同颜色的粒子,即可以使不同像素井显示不同的颜色,从而实现彩色显示。本申请相对现有技术而言能够实现更高分辨率的彩色显示,原因在于:本申请方案在填充混合液时,无需对不同的像素位置(对应本案中不同类型的像素井)进行具体选择,这就无需对不同像素的位置进行定位并定点灌注混合液,即无需使用较高精度的填入墨水工艺,即可以实现较高分辨率的彩色显示。与相关技术相比,一方面无需增加彩色滤光膜即可以实现彩色显示,因此不会由于彩色滤光膜的增加而导致透光率降低以及厚度的增加,并且,对于增加彩色滤光膜的技术来说,如果要实现较高分辨率的显示,需要较高精度的彩色滤光膜制作工艺,才能够实现分别针对不同颜色的子像素设置对应不同颜色的滤光膜,而本申请实施例中,对于不同类型的墨水,不需要较高的工艺精度,既可以选择性地使第一像素井显示一种类型的墨水颜色,第二像素显示另一种类型的墨水颜色,因此可以实现较高 分辨率的彩色显示;另一方面,通过在不同的颜色部中设置不同颜色的粒子来实现彩色显示,同一个颜色部中粒子的颜色种类无需设置的较多,在对同一个颜色部中粒子的驱动过程中,同一个颜色部中的粒子不会由于颜色种类较多而相互干扰,且同一个颜色部中的粒子可以通过较少次数的驱动移动至所需要的位置,因此画面刷新速度较快。
在一种可能的实施方式中,如图13和图14所示,第一墨水411包括第一颜色粒子401和黑色填充液402,第二墨水包括第二颜色粒子和黑色填充液,第三墨水包括第三颜色粒子和黑色填充液。
具体地,假设第一颜色粒子401为红色粒子,假设红色粒子带正电荷,当第一颜色部41下方的电极施加正电压时,排斥带正电荷的粒子,使第一颜色粒子401聚集在黑色填充液402的上表面,由于第一颜色粒子401反射红色,因此,此时从电子墨水基层的出光面一侧观看第一像素井31时,其中的第一颜色部41显示红色;当第一颜色部41下方的电极施加负电压时,吸引正电荷粒子,使第一颜色粒子401聚集在黑色填充液402的底部,此时从电子墨水基层的出光面一侧观看第一像素井31时,其中的第一颜色部41显示黑色。对于不同类型的墨水,显示原理相同,在此不再赘述。通过使不同像素井显示不同的颜色,可以实现彩色显示,且同一个颜色部的墨水中仅具有一种颜色的粒子,不会由于较多种类颜色粒子之间的相互干扰,驱动速度较快,即画面刷新速度较快。另外,在第二颜色部42或第三颜色部43中,黑色填充液还可以对同一个像素井中下方的其他颜色部进行阻挡,以防止其他颜色的粒子反射光线,导致不同颜色之间的串扰。如图15所示,例如,以显示红色画面为例,第二电极基板上的电极接地,第一电极基板包括与每个像素井对应的像素电极,在响应区时间段内,第一像素井对应的像素电极电压为正电压,以驱动第一像素井显示红色,第二像素井对应的像素电极电压和第三像素井对应的像素电极电压为负电压,以驱动第二像素井和第三像素井显示黑色,即会显示红色画面,在保持区时段内,各像素电极可以不施加电压,每个颜色部中墨水的粒子会保持上一次响应时所具有的位置,即使像素井仍保持显示红色,通过双稳态特性可以降低功耗。
在一种可能的实施方式中,如图16和图17所示,第一墨水411包括第一颜色粒子501、黑色粒子502和透明填充液503,第二墨水包括第二颜色粒子、黑色粒子和透明填充液,第三墨水包括第三颜色粒子、黑色粒子和透明填充液。
具体地,假设第一颜色粒子501为红色粒子,假设红色粒子带正电荷,假设黑色粒子502带负电荷,当第一颜色部41下方的电极施加正电压时,排斥带正电荷的粒子、吸引带负电荷的粒子,使第一颜色粒子401聚集在透明填充液503的上表面,黑色粒子502聚集在透明填充液503的底部,由于第一颜色粒子501反射红色,因此,此时从电子墨水基层的出光面300一侧观看第一像素井31时,其中的第一颜色部41显示红色;当第一颜色部41下方的电极施加负电压时,吸引正电荷粒、排斥负电荷粒子,使第一颜色粒子501聚集在透明填充液503的底部,黑色粒子502聚集在透明填充液503的上表面,此时从电子墨水基层的出光面300一侧观看第一像素井31时,其中的第一颜色部41显示黑色。另外,以红色粒子、黑色粒子和透明填充液所组成的墨水为例,除了可以通过上述两种状态实现红色显示和黑色显示之外,还可以通过第一电极基板所提供的不同电压值的控制,使红色粒子或黑色粒子移动至透明填充液中间的某个位置,当红色粒子距离透明填充液顶部越近、黑色粒子距离透明填充液顶部越远,则从电子墨水基层的出光面一侧观看第一像素井31时, 其中的第一颜色部41显示的颜色越偏红,反之,当红色粒子距离透明填充液顶部越远、黑色粒子距离透明填充液顶部越近,则从电子墨水基层的出光面一侧观看第一像素井31时,其中的第一颜色部41显示的颜色越偏黑,通过电压驱动可实现例如从0级至15级共16级不同的显示效果,0级为显示红色,15级为显示黑色,中间有14级从红色逐渐过渡至黑色的显示效果,即可以在显示彩色的基础上实现更多颜色的显示。对于不同类型的墨水,显示原理相同,在此不再赘述。通过使不同像素井显示不同的颜色,可以实现彩色显示,以及控制像素井的颜色深度级别,以实现更多颜色的显示,且同一个颜色部的墨水中仅具有两种颜色的粒子,不会由于较多种类颜色粒子之间的相互干扰,驱动速度较快,即画面刷新速度较快。
在一种可能的实施方式中,第一颜色粒子、第二颜色粒子和第三颜色粒子中的一者为红色粒子,另一者为绿色粒子,第三者为蓝色粒子,即使第一颜色部41中的第一墨水411可以显示红色,第二颜色部42中的第二墨水421可以显示绿色,第三颜色部43中的第三墨水431可以实现蓝色,利用分别显示红绿蓝的三个相邻像素井作为子像素组合,可以实现彩色像素的显示。以像素井30的形状为正方形为例,对于不同种类像素井的尺寸可以根据需要进行调整,且不同类型像素井的尺寸可以相同或不同,例如用于显示红色的第一像素井31的开口边长可以为100μm,用于显示绿色的第二像素井32的开口边长可以为105μm,不同尺寸的开口可以控制出光强度,不同颜色的粒子对于光线的反射率可能会不同,例如红色粒子的反射率大于绿色粒子的反射率,那么就可以设置第二像素井32的开口面积大于第一像素井31的开口面积,以使在不同颜色粒子的反射率具有差异的情况下,尽量使出射后的光线强度一致,以达到更均匀的显示效果。
在一种可能的实施方式中,每个像素井的侧壁上和/或在电子墨水基层3的出光面300表面上设置有疏水层,对于第二像素井32和第三像素井33来说,每个像素井内会多次填入不同的墨水,因此可以在像素井的侧壁上设置疏水层,以使前一次填入的墨水不容易挂在像素井内壁上而对后一次填入的墨水造成不良影响。对于电子墨水基层3的出光面300表面上设置的疏水层,可以使混合液填入像素井30的过程中,尽量减少混合液在电子墨水基层3像素井30之外的表面残留,以防止残留混合液对后续工艺或显示效果造成不良影响。
在一种可能的实施方式中,电子墨水基层3为压印胶,基于压印胶,可以配合纳米压印工艺形成像素井30,纳米压印工艺具有较高的精度,可以实现较高分辨率的像素井30制作,且对于像素井30的井深控制精度较高。
在一种可能的实施方式中,压印胶的材料为树脂材料。
在一种可能的实施方式中,如图18和图19所示,第二电极基板2位于靠近电子墨水基层3的出光面300的一侧,第二电极基板2包括第一玻璃基板21和透明电极层22,透明电极层22可以覆盖所有的像素井30,并连接固定电位,例如接地,以提供所有像素井上方的电压,透明电极层22可以为氧化铟锡(Indium tin oxide,ITO)材料,另外第一玻璃基板21可以替换为聚对苯二甲酸乙二醇酯(PET)材料的基板;第一电极基板1位于背离电子墨水基层3的出光面300的一侧,第一电极基板1包括与每个像素井对应的像素电极11和驱动电路12,像素电极11和驱动电路12制作做在第二玻璃基板13上,多个像素电极11各自独立,以提供对应每个像素井不同的像素电压,驱动电路12包括与每个像素 电极11对应电连接的薄膜晶体管(Thin Film Transistor,TFT),TFT包括半导体层121、栅极122、源极123和漏极124,第一电极基板1还包括与每列像素电极11对应的数据线D以及与每行像素电极11对应的栅线S,每个像素电极11对应的TFT的源极电连接于对应的数据线D、漏极电连接于对应的像素电极11,栅极电连接于对应的栅线S,当栅线S上提供有效电平时,可以控制对应的TFT导通,从而使数据线D上的电压通过导通的TFT传输至对应的像素电极11,以提供像素井下方的电压,从而基于像素井上下两侧的电压形成电场,控制像素井中电子墨水的粒子移动,以控制一个像素井所显示的颜色,通过对多个像素井的控制,即可以实现画面的显示。需要说明的是,本申请实施例仅提供了一种驱动电路的例子,在其他可实现的实施方式中,可以通过其他类型的驱动电路实现对像素井中颜色部的驱动,本申请实施例对于驱动电路的具体结构不做限定。
另外需要说明的是,本申请实施例对于像素井30的开口形状不做限定,在上述实施例中,仅以矩形的像素井30开口为例进行说明,在其他可能的实施方式中,如图20所示,像素井30的开口形状可以为例如圆形或其他多边形等任意形状。
本申请实施例还提供一种电子设备,包括上述任意实施例中的电子墨水显示面板。其中,电子墨水显示面板的具体结构和原理与上述实施例相同,在此不再赘述。电子设备例如可以为手机、平板电脑、电子阅读器、智能手表、电子标签、导航仪、手表、手环等任何具有显示功能的产品或部件。
对于上述电子墨水显示面板的制备方法,在一种可能的实施方式中,步骤101、在第一电极基板上形成电子墨水基层,在电子墨水基层远离第一电极基板一侧的表面制作多个像素井,制作像素井的过程包括:在第一电极基板上涂覆压印胶,采用纳米压印工艺,在压印胶上压印得到多个像素井。其中,电子墨水基层的材料为压印胶,首先涂覆压印胶作为待形成像素井的电子墨水基层,然后在电子墨水基层的表面采用纳米压印工艺形成多个像素井,形成具有像素井的电子墨水基层。纳米压印工艺具有较高的精度,可以实现较高分辨率的像素井30制作,且对于像素井30的井深控制精度较高。
在一种可能的实施方式中,步骤102、在电子墨水基层的每个像素井中填入第一混合液之前,还包括:在每个像素井的侧壁上和/或在电子墨水基层的出光面表面上形成疏水层。
在一种可能的实施方式中,第一墨水由第一颜色粒子和黑色填充液组成,第二墨水由第二颜色粒子和黑色填充液组成,第三墨水由第三颜色粒子和黑色填充液组成。
在一种可能的实施方式中,第一墨水由第一颜色粒子、黑色粒子和透明填充液组成,第二墨水由第二颜色粒子、黑色粒子和透明填充液组成,第三墨水由第三颜色粒子、黑色粒子和透明填充液组成。
在一种可能的实施方式中,第一颜色粒子、第二颜色粒子和第三颜色粒子中的一者为红色粒子,另一者为绿色粒子,第三者为蓝色粒子。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令 可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种电子墨水显示面板,其特征在于,包括:
    电子墨水基层,所述电子墨水基层的出光面具有多个像素井,所述多个像素井包括多个第一像素井和多个第二像素井,每个所述第一像素井的深度小于每个所述第二像素井的深度;
    所述多个第一像素井和所述多个第二像素井中的每个所述像素井中设置有第一颜色部,所述第一颜色部包括第一墨水和第一封装层,所述第一封装层位于所述第一墨水远离所述像素井底部的一侧,在每个所述第一像素井中,所述第一颜色部填充满所述第一像素井;
    所述多个第二像素井中的每个所述像素井中还设置有第二颜色部,所述第二颜色部位于所述第一颜色部远离所述像素井底部的一侧,所述第二颜色部包括第二墨水和第二封装层,所述第二封装层位于所述第二墨水远离所述像素井底部的一侧;
    所述第一墨水和所述第二墨水中包括不同颜色的粒子。
  2. 根据权利要求1所述的电子墨水显示面板,其特征在于,
    所述多个像素井还包括多个第三像素井,每个所述第二像素井的深度小于每个所述第三像素井的深度;
    在每个所述第二像素井中,所述第一颜色部和所述第二颜色部填充满所述第二像素井;
    每个所述第三像素井中设置有所述第一颜色部、所述第二颜色部和第三颜色部,在每个所述第三像素井中,所述第二颜色部位于所述第一颜色部远离所述像素井底部的一侧,所述第三颜色部位于所述第二颜色部远离所述像素井底部的一侧,所述第三颜色部包括第三墨水和第三封装层,所述第三封装层位于所述第三墨水远离所述像素井底部的一侧;
    所述第一墨水、所述第二墨水和所述第三墨水的任意两者中包括不同颜色的粒子。
  3. 根据权利要求2所述的电子墨水显示面板,其特征在于,
    所述第一墨水包括第一颜色粒子和黑色填充液,所述第二墨水包括第二颜色粒子和黑色填充液,所述第三墨水包括第三颜色粒子和黑色填充液。
  4. 根据权利要求2所述的电子墨水显示面板,其特征在于,
    所述第一墨水包括第一颜色粒子、黑色粒子和透明填充液,所述第二墨水包括第二颜色粒子、黑色粒子和透明填充液,所述第三墨水包括第三颜色粒子、黑色粒子和透明填充液。
  5. 根据权利要求3或4所述的电子墨水显示面板,其特征在于,
    所述第一颜色粒子、所述第二颜色粒子和所述第三颜色粒子中的一者为红色粒子,另一者为绿色粒子,第三者为蓝色粒子。
  6. 根据权利要求1至5中任意一项所述的电子墨水显示面板,其特征在于,
    每个所述像素井的侧壁上和/或在所述电子墨水基层的出光面表面上设置有疏水层。
  7. 根据权利要求1至6中任意一项所述的电子墨水显示面板,其特征在于,
    所述电子墨水基层为压印胶。
  8. 根据权利要求7所述的电子墨水显示面板,其特征在于,
    所述压印胶的材料为树脂材料。
  9. 根据权利要求1至8中任意一项所述的电子墨水显示面板,其特征在于,还包括:
    第一电极基板和第二电极基板,所述电子墨水基层位于所述第一电极基板和所述第二电极基板之间;
    所述第二电极基板位于靠近所述电子墨水基层的出光面的一侧,所述第二电极基板包括透明电极层;
    所述第一电极基板位于背离所述电子墨水基层的出光面的一侧,所述第一电极基板包括与每个所述像素井对应的像素电极和驱动电路。
  10. 一种电子设备,其特征在于,包括如权利要求1至9中任意一项所述的电子墨水显示面板。
  11. 一种电子墨水显示面板的制备方法,其特征在于,包括:
    形成电子墨水基层,在所述电子墨水基层一侧的表面制作多个像素井,所述多个像素井包括多个第一像素井和多个第二像素井,每个所述第一像素井的深度小于每个所述第二像素井的深度;
    在所述电子墨水基层的每个所述像素井中填入第一混合液,所述第一混合液包括第一封装液和第一墨水,所述第一混合液填充满每个所述第一像素井,所述第一混合液填充于每个所述第二像素井的一部分;
    待所述第一封装液浮于所述第一墨水远离所述像素井的底部一侧的表面之后,使所述第一封装液固化形成第一封装层,所述第一封装层和所述第一墨水组成第一颜色部;
    在每个所述第二像素井中所述第一颜色部之外的部分填入第二混合液,所述第二混合液包括第二封装液和第二墨水;
    待所述第二封装液浮于所述第二墨水远离所述像素井的底部一侧的表面之后,使所述第二封装液固化形成第二封装层,所述第二封装层和所述第二墨水组成第二颜色部;
    所述第一墨水和所述第二墨水中包括不同颜色的粒子。
  12. 根据权利要求11所述的电子墨水显示面板的制备方法,其特征在于,
    所述多个像素井还包括多个第三像素井,每个所述第二像素井的深度小于每个所述第三像素井的深度;
    所述电子墨水显示面板的制备方法还包括:
    形成所述第二颜色部之后,在每个所述第二像素井中,所述第一颜色部和所述第二颜色部填充满所述第二像素井,所述第一颜色部和所述第二颜色部填充于所述第三像素井的一部分;
    在每个所述第三像素井中所述第一颜色部以及所述第二颜色部之外的部分填入第三混合液,所述第三混合液包括第三封装液和第三墨水;
    待所述第三封装液浮于所述第三墨水远离所述第三像素井的底部一侧的表面之后,使所述第三封装液固化形成第三封装层,所述第三封装层和所述第三墨水组成第三颜色部;
    所述第一墨水、所述第二墨水和所述第三墨水的任意两者中包括不同颜色的粒子。
  13. 根据权利要求11或12所述的电子墨水显示面板的制备方法,其特征在于,
    所述形成电子墨水基层,在所述电子墨水基层一侧的表面制作多个像素井的过程包括:
    涂覆压印胶,采用纳米压印工艺,在所述压印胶上压印得到所述多个像素井。
  14. 根据权利要求11至13中任意一项所述的电子墨水显示面板的制备方法,其特征在于,
    在所述电子墨水基层的每个所述像素井中填入第一混合液之前,还包括:
    在每个所述像素井的侧壁上和/或在所述电子墨水基层的出光面表面上形成疏水层。
  15. 根据权利要求12所述的电子墨水显示面板的制备方法,其特征在于,
    所述第一墨水包括第一颜色粒子和黑色填充液,所述第二墨水包括第二颜色粒子和黑色填充液,所述第三墨水包括第三颜色粒子和黑色填充液。
  16. 根据权利要求12所述的电子墨水显示面板的制备方法,其特征在于,
    所述第一墨水包括第一颜色粒子、黑色粒子和透明填充液,所述第二墨水包括第二颜色粒子、黑色粒子和透明填充液,所述第三墨水包括第三颜色粒子、黑色粒子和透明填充液。
  17. 根据权利要求15或16所述的电子墨水显示面板的制备方法,其特征在于,
    所述第一颜色粒子、所述第二颜色粒子和所述第三颜色粒子中的一者为红色粒子,另一者为绿色粒子,第三者为蓝色粒子。
PCT/CN2022/116714 2021-09-08 2022-09-02 电子墨水显示面板及其制备方法、电子设备 WO2023036056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22866519.6A EP4261607A1 (en) 2021-09-08 2022-09-02 Electronic ink display panel and manufacturing method therefor, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111047546.9 2021-09-08
CN202111047546.9A CN115774361B (zh) 2021-09-08 2021-09-08 电子墨水显示面板及其制备方法、电子设备

Publications (1)

Publication Number Publication Date
WO2023036056A1 true WO2023036056A1 (zh) 2023-03-16

Family

ID=85387904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116714 WO2023036056A1 (zh) 2021-09-08 2022-09-02 电子墨水显示面板及其制备方法、电子设备

Country Status (3)

Country Link
EP (1) EP4261607A1 (zh)
CN (1) CN115774361B (zh)
WO (1) WO2023036056A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576403A (zh) * 2012-08-03 2014-02-12 余志刚 可显示三种颜色的电子墨水纸
KR20150055927A (ko) * 2013-11-14 2015-05-22 한국전자통신연구원 컬러 전자종이 디스플레이 및 그 색 구현 방법
CN105652552A (zh) * 2015-12-30 2016-06-08 联想(北京)有限公司 一种电子墨水屏和电子设备
CN111290189A (zh) * 2020-04-08 2020-06-16 成都捷翼电子科技有限公司 一种彩色显示模组及其制作方法
CN111381413A (zh) * 2020-03-13 2020-07-07 纳晶科技股份有限公司 微胶囊、电子墨水、电子墨水屏、显示方法以及显示装置
CN112987441A (zh) * 2019-12-18 2021-06-18 京东方科技集团股份有限公司 显示面板、电子设备及控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120057682A (ko) * 2010-08-06 2012-06-07 삼성모바일디스플레이주식회사 전기 영동 표시 장치 및 그 구동 방법
CN103926777B (zh) * 2014-03-31 2016-08-31 京东方科技集团股份有限公司 一种电子纸显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103576403A (zh) * 2012-08-03 2014-02-12 余志刚 可显示三种颜色的电子墨水纸
KR20150055927A (ko) * 2013-11-14 2015-05-22 한국전자통신연구원 컬러 전자종이 디스플레이 및 그 색 구현 방법
CN105652552A (zh) * 2015-12-30 2016-06-08 联想(北京)有限公司 一种电子墨水屏和电子设备
CN112987441A (zh) * 2019-12-18 2021-06-18 京东方科技集团股份有限公司 显示面板、电子设备及控制方法
CN111381413A (zh) * 2020-03-13 2020-07-07 纳晶科技股份有限公司 微胶囊、电子墨水、电子墨水屏、显示方法以及显示装置
CN111290189A (zh) * 2020-04-08 2020-06-16 成都捷翼电子科技有限公司 一种彩色显示模组及其制作方法

Also Published As

Publication number Publication date
EP4261607A1 (en) 2023-10-18
CN115774361B (zh) 2023-09-22
CN115774361A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
US9620048B2 (en) Methods for driving electro-optic displays
JP4816245B2 (ja) 電気泳動表示装置
US8902153B2 (en) Electro-optic displays, and processes for their production
JP5383733B2 (ja) 電子光学式ディスプレイにおけるエッジ効果を低減する方法
TWI667524B (zh) 可寫顯示介質、可寫系統及用於切換電泳顯示器之狀態的方法
JP6818915B2 (ja) カラー電気泳動ディスプレイのためのdc平衡リフレッシュシーケンスを提供するドライバ
KR20130045258A (ko) 전기광학 디스플레이의 구동 방법
KR102531228B1 (ko) 전기 광학 디스플레이들을 구동하기 위한 방법들
CN107111990A (zh) 用于电光显示器的字体控制以及相关设备和方法
JP2008281985A (ja) 電子ペーパーディスプレイ及びその製造方法
JP2021530739A (ja) 電気光学ディスプレイおよび駆動方法
WO2009119156A1 (ja) 表示パネル、該表示パネルを備えた表示装置、および、該表示パネルに用いられる帯電粒子の製造方法
TW201841147A (zh) 電光顯示器及驅動方法
WO2023036056A1 (zh) 电子墨水显示面板及其制备方法、电子设备
US20230120212A1 (en) Color electrophoretic displays incorporating methods for reducing image artifacts during partial updates
TWI823426B (zh) 用於驅動電光顯示器的方法及設備
US11450262B2 (en) Electro-optic displays, and methods for driving same
TW201940952A (zh) 在t線與像素電極之間具有減少的電容耦合之用於窄邊框電光顯示器背板的介層配置
KR20230051256A (ko) 진보된 컬러 전기영동 디스플레이를 위한 개선된 구동 전압 및 개선된 구동 전압에 의한 디스플레이
US11657772B2 (en) Methods for driving electro-optic displays
TWI832152B (zh) 驅動電泳介質之方法、顯示器系統及判定用於驅動電泳介質的連續波形之方法
JP2023545278A (ja) カラー電気泳動ディスプレイから以前の状態情報を除去するための駆動シーケンス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022866519

Country of ref document: EP

Effective date: 20230711

NENP Non-entry into the national phase

Ref country code: DE