WO2023035818A1 - 气溶胶生成装置、控制方法以及计算机可读存储介质 - Google Patents

气溶胶生成装置、控制方法以及计算机可读存储介质 Download PDF

Info

Publication number
WO2023035818A1
WO2023035818A1 PCT/CN2022/110078 CN2022110078W WO2023035818A1 WO 2023035818 A1 WO2023035818 A1 WO 2023035818A1 CN 2022110078 W CN2022110078 W CN 2022110078W WO 2023035818 A1 WO2023035818 A1 WO 2023035818A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage unit
unit
energy
charging
Prior art date
Application number
PCT/CN2022/110078
Other languages
English (en)
French (fr)
Inventor
张幸福
林乔士
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2023035818A1 publication Critical patent/WO2023035818A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/90Arrangements or methods specially adapted for charging batteries thereof
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of electronic atomization, in particular to an aerosol generating device, a control method and a computer-readable storage medium.
  • the aerosol generating device includes a heater and a power supply assembly, the power supply assembly provides electric energy to the heater, and the heater converts the energy into heat energy so as to heat and atomize the aerosol generating substrate to form an aerosol that can be inhaled by the user.
  • the aerosol generating devices on the market are mainly divided into two types, one is an electronic atomization device that heats a liquid aerosol matrix, and the other is an electronic atomization device that heats a solid aerosol generating matrix without burning at a low temperature.
  • the power source of the aerosol generating device is a lithium-ion battery, and the lithium-ion battery will be overcharged or over-discharged during use.
  • the positive electrode of the battery When overcharging, the positive electrode of the battery will deintercalate too many lithium ions. Long-term overcharging may cause the lattice to collapse, thereby irreversibly reducing the capacity of the lithium-ion battery, and even causing the internal pressure of the battery to rise, battery deformation, and leakage. Liquid, etc.; during over-discharge, the excessively embedded lithium ions will be fixed in the crystal lattice and cannot be released, resulting in shortened battery life or even damage and deformation. Moreover, during the charging process, the energy of the lithium-ion battery cannot be accurately detected, resulting in an excessively long charging time of the lithium-ion battery.
  • lithium-ion batteries are used to power heaters, which have the disadvantages of low safety, short life, and long charging time.
  • the present application provides an aerosol generating device, a control method, and a computer-readable storage medium, which use an energy storage unit instead of a lithium battery to supply power to the heater, thereby improving the safety of power supply; and by detecting the electric energy of the energy storage unit, and then Controlling the charging unit to charge the energy storage unit reduces the charging time to a certain extent.
  • an aerosol generating device including: a heating element, used to atomize the aerosol matrix; at least one energy storage unit, used to power the heating element providing electric energy to make the heating element work; a charging unit, connected to the energy storage unit, for connecting an external power source to charge the energy storage unit; a control unit, connected to the energy storage unit and the charging unit, for The electric energy stored in the energy storage unit is detected, and the charging unit is controlled to charge the energy storage unit based on the electric energy stored in the energy storage unit.
  • control unit detects any one of the voltage, energy and capacity of the energy storage unit, and controls the charging unit to charge the energy storage unit based on the voltage, energy or capacity of the energy storage unit.
  • control unit controls the charging unit to charge the energy storage unit based on the voltage of the energy storage unit within a first preset time period
  • the control unit controls the charging unit to charge the energy storage unit based on the energy of the energy storage unit within a second preset time period;
  • the control unit controls the charging unit to charge the energy storage unit based on the capacity of the energy storage unit within a third preset time period.
  • the charging unit is configured in a constant current charging mode during the first preset time period, the second preset time period and the third preset time period, and based on the constant current charging mode is The energy storage unit is charged.
  • control unit controls the charging unit to charge the energy storage unit based on the voltage of the energy storage unit within a first preset energy interval
  • the control unit controls the charging unit to charge the energy storage unit based on the energy of the energy storage unit within a second preset energy interval;
  • the control unit controls the charging unit to charge the energy storage unit based on the capacity of the energy storage unit within a third preset energy interval.
  • control unit controls the charging unit to charge the energy storage unit based on the voltage of the energy storage unit within the first preset charge amount interval;
  • the control unit controls the charging unit to charge the energy storage unit based on the energy of the energy storage unit within the second preset charge amount interval;
  • the control unit controls the charging unit to charge the energy storage unit based on the capacity of the energy storage unit within a third preset charge amount interval.
  • the charging unit is configured in a constant current charging mode, and the control unit detects any one of the voltage, energy, and capacity of the energy storage unit, and controls the charging unit to be based on the detected voltage, energy, or capacity.
  • the energy storage unit is charged so that the voltage of the energy storage unit reaches a preset voltage value.
  • the control unit controls the charging unit to be the energy storage unit based on the detected energy or capacity charging, so that the charging current of the charging unit reaches a preset charging current.
  • the charging unit includes: an external interface of the charging unit for connecting to an external power source.
  • control unit includes: a voltage detection unit connected to the energy storage unit for detecting the voltage of the energy storage unit, so that the control unit controls the charging unit based on the voltage of the energy storage unit to be charging the energy storage unit; and/or
  • a current detection unit connected to the energy storage unit, for detecting the energy or capacity of the energy storage unit, so that the control unit controls the charging unit to store the energy based on the energy or capacity of the energy storage unit
  • the unit charges.
  • the second technical solution provided by the present application is to provide a method for controlling an aerosol generating device, the aerosol generating device includes a heating element, an energy storage unit and a charging unit, and the method includes: Detecting the electric energy stored in the energy storage unit; controlling the charging unit to charge the energy storage unit based on the electric energy stored in the energy storage unit, so that the energy storage unit provides electric energy for the heating element.
  • the step of controlling the charging unit to charge the energy storage unit based on the electric energy stored in the energy storage unit so that the energy storage unit provides electric energy for the heating element includes: detecting that the energy storage unit any one of the voltage, energy and capacity of the energy storage unit, and control the charging unit to charge the energy storage unit based on the voltage, energy or capacity of the energy storage unit.
  • the step of detecting any one of the voltage, energy and capacity of the energy storage unit, and controlling the charging unit to charge the energy storage unit based on the voltage, energy or capacity of the energy storage unit includes : controlling the charging unit to charge the energy storage unit based on the voltage of the energy storage unit within a first preset time period; or controlling the charging unit based on the energy of the energy storage unit within a second preset time period
  • the charging unit charges the energy storage unit; or controls the charging unit to charge the energy storage unit based on the capacity of the energy storage unit within a third preset time period.
  • the step of detecting any one of the voltage, energy and capacity of the energy storage unit, and controlling the charging unit to charge the energy storage unit based on the voltage, energy or capacity of the energy storage unit includes : controlling the charging unit to charge the energy storage unit based on the voltage of the energy storage unit within the first preset energy interval; or controlling the charging unit based on the energy of the energy storage unit within the second preset energy interval
  • the charging unit charges the energy storage unit; or controls the charging unit to charge the energy storage unit based on the capacity of the energy storage unit within a third preset energy interval.
  • the step of detecting any one of the voltage, energy and capacity of the energy storage unit, and controlling the charging unit to charge the energy storage unit based on the voltage, energy or capacity of the energy storage unit includes : controlling the charging unit to charge the energy storage unit based on the voltage of the energy storage unit in the first preset charge range; or controlling the energy based on the energy storage unit in the second preset charge range
  • the charging unit charges the energy storage unit; or controls the charging unit to charge the energy storage unit based on the capacity of the energy storage unit within a third preset charge range.
  • the third technical solution provided by the present application is to provide an electronic device, including: a memory and a processor, wherein the memory stores program instructions, and the processor retrieves from the memory
  • the program instructions are to execute the method according to any one of claims 11-15.
  • the fourth technical solution provided by the present application is: to provide a computer-readable storage medium storing a program file, and the program file can be executed to implement the above-mentioned method.
  • the energy storage unit replaces the lithium battery to supply power to the heater, which improves the safety of power supply;
  • the control unit detects the voltage of the energy storage unit , energy, and capacity, the charging unit is controlled to charge the energy storage unit, which reduces the charging time to a certain extent.
  • FIG. 1 is a schematic diagram of functional modules of the first embodiment of the present application
  • FIG. 2 is a schematic diagram of functional modules of a second embodiment of the present application.
  • FIG. 3 is a schematic diagram of functional modules of a third embodiment of the present application.
  • FIG. 4 is a schematic diagram of functional modules of a fourth embodiment of the present application.
  • Figure 5 is a schematic diagram of the composition and structure of the aerosol generating device of the present application.
  • Fig. 6 is a flow chart of the control method of the aerosol generating device of the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of the electronic device of the present application.
  • FIG. 8 is a schematic structural diagram of a computer-readable storage medium of the present application.
  • the aerosol generating device includes a heating element 11 , at least one energy storage unit 12 and a control unit 14 .
  • the heating element 11 is connected to the control unit 14 and the energy storage unit 12
  • the energy storage unit 12 is connected to the charging unit 13
  • the charging unit 13 is connected to the control unit 14 .
  • the energy storage unit 12 provides electric energy for the heating element 11, so that the heating element 11 atomizes the aerosol substrate
  • the control unit 14 detects the electric energy stored in the energy storage unit 12, and controls charging based on the electric energy stored in the energy storage unit 12
  • the unit 13 charges the energy storage unit 12 .
  • control unit 14 detects any one of the voltage, energy and capacity of the energy storage unit 12 , and controls the charging unit 13 to charge the energy storage unit 12 based on the voltage, energy or capacity of the energy storage unit 12 .
  • control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the voltage of the energy storage unit 12 within the first time period, and within the first preset time period, the charging unit 13 is charged It is configured as a constant current charging mode, and charges the energy storage unit 12 based on the constant current charging mode.
  • the control unit 14 detects the voltage of the energy storage unit 12, and after determining the voltage of the energy storage unit 12, the charging unit 13 is configured in a constant-current charging mode, and then the control unit 14 controls the charging unit 13 at the first time
  • the energy storage unit 12 is charged within a time period, wherein the first time period is the time required for the voltage detected by the energy storage unit 12 to reach the rated voltage of the energy storage unit 12 .
  • the energy storage unit 12 can be a hybrid capacitor, and a 250mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 to charge at a constant current of 200mA. In the case of , continue to charge the hybrid capacitor until the charging time reaches one hour, then stop charging.
  • control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the energy of the energy storage unit 12 within the second preset time period. And within the second preset time period, the charging unit 13 is configured in a constant current charging mode, and charges the energy storage unit 12 based on the constant current charging mode.
  • the control unit 14 detects the energy of the energy storage unit 12, and after determining the energy of the energy storage unit 12, the charging unit 13 is configured in a constant-current charging mode, and then the control unit 14 controls the charging unit 13 at the second time
  • the energy storage unit 12 is charged within a time period, wherein the second time period is the time required for the energy detected by the energy storage unit 12 to reach the rated energy of the energy storage unit 12 .
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 to charge at a constant current of 0Wh. In the case of 200mA, continue to charge the hybrid capacitor until the charging time reaches one hour, then stop charging.
  • control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the capacity of the energy storage unit 12 within a third preset time period. And within the third preset time period, the charging unit 13 is configured in a constant current charging mode, and charges the energy storage unit 12 based on the constant current charging mode.
  • the control unit 14 detects the capacity of the energy storage unit 12, and after determining the capacity of the energy storage unit 12, the charging unit 13 is configured in a constant-current charging mode, and then the control unit 14 controls the charging unit 13 at the third time
  • the energy storage unit 12 is charged within a period of time, wherein the third period of time is the time required for the capacity detected by the energy storage unit 12 to reach the rated capacity of the energy storage unit 12 .
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 to charge at a constant current of 0Wh. In the case of 200mA, charge the hybrid capacitor until the charging time reaches one hour, then stop charging.
  • the values of the first preset time period, the second preset time period and the third preset time period may be the same or different.
  • control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the voltage of the energy storage unit 12 within the first preset energy range.
  • the control unit 14 detects the voltage of the energy storage unit 12, and after determining the voltage of the energy storage unit 12, the control unit 14 controls the charging unit 13 within the first preset energy range according to the voltage of the energy storage unit 12
  • the energy storage unit 12 is charged until the energy of the energy storage unit 12 reaches a predetermined energy.
  • the first preset energy range is from the energy stored in the energy storage unit 12 before charging to the predetermined energy of the energy storage unit 12 .
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 at a charging current of 200mA. In the case of , charge the hybrid capacitor until the energy of the hybrid capacitor reaches 0.6Wh, then stop charging.
  • control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the energy of the energy storage unit 12 within the second preset energy interval.
  • the control unit 14 detects the energy of the energy storage unit 12, and after determining the energy of the energy storage unit 12, the control unit 14 controls the charging unit 13 within the second preset energy range according to the energy of the energy storage unit 12.
  • the energy storage unit 12 is charged until the energy of the energy storage unit 12 reaches a predetermined energy.
  • the second preset energy range is from the energy stored in the energy storage unit 12 before charging to the predetermined energy of the energy storage unit 12 .
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 to charge at a charging current of 200mA. Under normal circumstances, charge the hybrid capacitor until the energy of the hybrid capacitor reaches 0.6Wh, then stop charging.
  • control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the capacity of the energy storage unit 12 within the third preset energy interval.
  • the control unit 14 detects the capacity of the energy storage unit 12, and after determining the capacity of the energy storage unit 12, the control unit 14 controls the charging unit 13 to operate within the third preset energy range according to the capacity of the energy storage unit 12.
  • the energy storage unit 12 is charged until the energy of the energy storage unit 12 reaches a predetermined energy.
  • the third preset energy range is from the energy stored in the energy storage unit 12 before charging to the predetermined energy of the energy storage unit 12 .
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 to charge at a charging current of 200mA. Under normal circumstances, charge the hybrid capacitor until the energy of the hybrid capacitor reaches 0.6Wh, then stop charging.
  • the value intervals of the first preset energy interval, the second preset energy interval and the third preset energy interval may be the same or different.
  • control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the voltage of the energy storage unit 12 within the first preset charge range.
  • the control unit 14 detects the voltage of the energy storage unit 12, and after determining the voltage of the energy storage unit 12, the control unit 14 controls the charging unit 13 in the first preset charge interval according to the voltage of the energy storage unit 12. Charge the energy storage unit 12 until the charge amount of the energy storage unit 12 reaches a predetermined charge amount.
  • the first preset charge amount range is from the charge amount stored before the energy storage unit 12 is charged to the predetermined charge amount of the energy storage unit 12 .
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 at a charging current of 200mA. In the case of , the hybrid capacitor is charged until the charge amount of the hybrid capacitor reaches a predetermined charge amount 720C, and the charging is stopped.
  • control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the energy of the energy storage unit 12 within the second preset charge amount interval.
  • the control unit 14 detects the energy of the energy storage unit 12, and after determining the energy of the energy storage unit 12, the control unit 14 controls the charging unit 13 in the second preset charge interval according to the energy of the energy storage unit 12. Charge the energy storage unit 12 until the charge amount of the energy storage unit 12 reaches a predetermined charge amount.
  • the second preset charge amount range is from the charge amount stored before the energy storage unit 12 is charged to the predetermined charge amount of the energy storage unit 12.
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 to charge at a charging current of 200mA. In other cases, the hybrid capacitor is charged until the charge amount of the hybrid capacitor reaches a predetermined charge amount 720C, and the charging is stopped.
  • control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the capacity of the energy storage unit 12 within the third preset charge amount interval.
  • the control unit 14 detects the capacity of the energy storage unit 12, and after determining the capacity of the energy storage unit 12, the control unit 14 controls the charging unit 13 in the third preset charge interval according to the capacity of the energy storage unit 12. Charge the energy storage unit 12 until the charge amount of the energy storage unit 12 reaches a predetermined charge amount.
  • the third preset charge amount range is from the charge amount stored before the energy storage unit 12 is charged to the predetermined charge amount of the energy storage unit 12 .
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 to charge at a charging current of 200mA. In other cases, the hybrid capacitor is charged until the charge amount of the hybrid capacitor reaches a predetermined charge amount 720C, and the charging is stopped.
  • the value intervals of the first preset charge amount interval, the second preset charge amount interval and the third preset charge amount interval may be the same or different.
  • the charging unit 13 is configured in a constant current charging mode, and the control unit 14 detects any one of the voltage, energy, and capacity of the energy storage unit 12, and controls the charging unit 13 to be an energy storage unit based on the detected voltage, energy, or capacity. 12 is charged so that the voltage of the energy storage unit 12 reaches a preset voltage value.
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 based on the detected voltage, energy or capacity, and controls the charging unit 13 at a constant current.
  • the charging current is 200mA
  • the energy storage unit 12 is charged until the voltage of the hybrid capacitor reaches 4.15V, and then the charging is stopped.
  • the voltage of the energy storage unit 12 reaches a preset voltage value
  • the charging unit 13 is configured as a constant voltage charging mode
  • the control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the detected energy or capacity, so that the charging unit The charging current of 13 reaches the preset charging current.
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 based on the detected voltage, energy or capacity, and controls the charging unit 13 at a constant current.
  • the charging current is 200mA
  • charge the energy storage unit 12 until the voltage of the hybrid capacitor reaches 4.15V then continue to charge the hybrid capacitor at a constant voltage of 4.15V until the charging current of the charging unit 13 reaches 10mA, then stop Charge.
  • the aerosol generating device includes a heating element 11, a heating element control unit 15, at least one energy storage unit 12 and a control unit 14, the control unit 14 includes a minimum system working unit 143 and a voltage detection unit 141, and the voltage detection unit 141 is connected to the minimum system working unit 143.
  • the heating element 11 is connected to the heating element control unit 15, the heating element control unit 15 is connected to the minimum system working unit 143 and the energy storage unit 12, the energy storage unit 12 is connected to the charging unit 13 and the voltage detection unit 141, and the charging unit 13 is connected to the minimum system Work cell 143.
  • the energy storage unit 12 supplies power to the heating element 11 through the heating element control unit 15, so that the heating element 11 atomizes the aerosol matrix, the heating element control unit 15 controls the start and stop of the heating element 11, and the minimum system working unit 143 passes
  • the voltage detection unit 141 detects the electric energy stored in the energy storage unit 12 , and controls the charging unit 13 to charge the energy storage unit 12 based on the voltage of the energy storage unit 12 .
  • the charging unit 13 is configured in a constant current charging mode
  • the control unit 14 detects the voltage of the energy storage unit 12, and charges the energy storage unit 12 based on the detected voltage, so that the voltage of the energy storage unit 12 reaches a preset voltage value .
  • the voltage detection unit 141 of the control unit 14 detects the voltage of the energy storage unit 12, and the minimum system operating unit 143 of the control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the voltage of the energy storage unit 12 until the energy storage unit 12
  • the voltage of the energy unit 12 reaches a preset voltage value.
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected.
  • the control unit 14 controls the charging unit 13 to charge the battery under the condition of a constant charging current of 200mA based on the detected voltage of the energy storage unit 12.
  • the energy storage unit 12 charges until the voltage of the hybrid capacitor reaches 4.15V, and stops charging.
  • FIG. 3 is a schematic diagram of functional modules of a third embodiment of the present application.
  • the aerosol generating device includes a heating element 11, a heating element control unit 15, at least one energy storage unit 12 and a control unit 14, the control unit 14 includes a minimum system working unit 143 and a current detection unit 142, and the current detection unit 142 is connected to the minimum system working unit 143.
  • the heating element 11 is connected to the heating element control unit 15, the heating element control unit 15 is connected to the minimum system working unit 143 and the energy storage unit 12, the energy storage unit 12 is connected to the charging unit 13 and the current detection unit 142, and the charging unit 13 is connected to the minimum system Work cell 143.
  • the energy storage unit 12 supplies power to the heating element 11 through the heating element control unit 15, so that the heating element 11 atomizes the aerosol matrix, the heating element control unit 15 controls the start and stop of the heating element 11, and the minimum system working unit 143 passes
  • the current detection unit 142 detects the electric energy stored in the energy storage unit 12 , and controls the charging unit 13 to charge the energy storage unit 12 based on the energy or capacity of the energy storage unit 12 .
  • the charging unit 13 is configured in a constant current charging mode, the minimum system working unit 143 detects the energy in the energy storage unit 12 through the current detection unit 142, and charges the energy storage unit 12 based on the detected energy, so that the energy storage unit The energy of 12 reaches the preset value.
  • the charging unit 13 is configured in a constant current charging mode, the minimum system working unit 143 detects the capacity in the energy storage unit 12 through the current detection unit 142, and charges the energy storage unit 12 based on the detected capacity, so that the energy storage unit 12 The amount of charge reaches the preset value.
  • FIG. 4 is a schematic diagram of functional modules of a fourth embodiment of the present application.
  • the aerosol generating device includes a heating element 11, a heating element control unit 15, at least one energy storage unit 12 and a control unit 14, and the control unit 14 includes a minimum system working unit 143, a voltage detection unit 141 and a current detection unit 142, and the voltage detection unit 141 and the current detection unit 142 are respectively connected to the minimum system working unit 143 .
  • the heating element 11 is connected to the heating element control unit 15, the heating element control unit 15 is connected to the minimum system working unit 143 and the energy storage unit 12, and the energy storage unit 12 is connected to the charging unit 13, the voltage detection unit 141 and the current detection unit 142, charging Unit 13 is connected to the minimum system working unit 143 .
  • the energy storage unit 12 supplies power to the heating element 11 through the heating element control unit 15, so that the heating element 11 atomizes the aerosol matrix, the heating element control unit 15 controls the start and stop of the heating element 11, and the minimum system working unit 143 passes
  • the voltage detection unit 141 and the current detection unit 142 detect the electric energy stored in the energy storage unit 12 , and control the charging unit 13 to charge the energy storage unit 12 based on any one of the voltage, energy or capacity of the energy storage unit 12 .
  • the charging unit 13 is configured in a constant current charging mode
  • the control unit 14 detects the voltage of the energy storage unit 12 through the voltage detection unit 141, and controls the charging unit 13 to charge the energy storage unit 12 based on the detected voltage, so that the energy storage The voltage of the unit 12 reaches a preset voltage value.
  • the charging unit 13 is configured as a constant voltage charging mode, and the control unit 14 controls the charging unit 13 to charge the energy storage unit 12 based on the energy or capacity detected by the current detection unit 142, In order to make the charging current of the charging unit 13 reach the preset charging current.
  • the energy storage unit 12 can be a hybrid capacitor, and a 200mAh hybrid capacitor is selected, and the control unit 14 controls the charging unit 13 to charge the storage battery under the condition of a constant charging current of 200mA based on the detected voltage.
  • the energy unit 12 is charged until the voltage of the hybrid capacitor reaches 4.15V.
  • the control unit 14 controls the charging unit 13 to continue charging the hybrid capacitor at a constant voltage of 4.15V until the charging current of the charging unit 13 reaches 10mA. Charge.
  • FIG. 5 is a schematic diagram of the composition and structure of the aerosol generating device of the present application.
  • the aerosol generating device includes a housing cavity 16 , a heating element 11 , a heating element control unit 15 , a charging unit 13 , an energy storage unit 12 and a control unit 14 , wherein the charging unit 13 includes an external interface 131 for the charging unit.
  • the heating element 11 is arranged in the accommodation cavity 16, and the aerosol forming matrix 17 is placed in the accommodation cavity 16, the heating element 11 is connected to the heating element control unit 15, and the heating element control unit 15 is connected to the control unit 14 and the energy storage unit 12 , the energy storage unit 12 is connected to the charging unit 13 , and the charging unit 13 is connected to the control unit 14 .
  • the energy storage unit 12 supplies power to the heating element 11, and the heating element control unit 15 controls the start and stop of the heating element 11 under the control of the control unit 14.
  • the heating element 11 atomizes the aerosol matrix, and the charging unit 13. Connect the external power supply through the external interface of the charging unit 13 to charge the energy storage unit 12.
  • Control methods for aerosol generating devices include:
  • Step S11 Detect the electric energy stored in the energy storage unit 12 .
  • the aerosol generating device includes a heating element 11, an energy storage unit 12, and a charging unit 13.
  • the energy storage unit 12 provides electric energy for the heating element 11, so that the heating element 11 atomizes the aerosol matrix, and the charging unit 13 is connected to The external power source charges the energy storage unit 12 . Before charging, the energy storage unit 12 is detected to obtain the electric energy stored in the energy storage unit 12 .
  • Step S12 Control the charging unit 13 to charge the energy storage unit 12 based on the electric energy stored in the energy storage unit 12 , so that the energy storage unit 12 provides electric energy for the heating element 11 .
  • controlling the charging unit 13 to charge the energy storage unit 12 based on the electric energy stored in the energy storage unit 12, so that the energy storage unit 12 provides electric energy for the heating element 11, specifically may include detecting the voltage, energy and capacity, and control the charging unit 13 to charge the energy storage unit 12 based on the voltage, energy or capacity of the energy storage unit 12 .
  • the charging unit 13 is controlled to charge the energy storage unit 12 based on the voltage of the energy storage unit 12 within the first time period, and within the first preset time period, the charging unit 13 can be configured to Constant current charging mode, and charge the energy storage unit 12 based on the constant current charging mode.
  • the charging unit 13 is controlled to charge the energy storage unit 12 based on the energy of the energy storage unit 12 within the second preset time period. And within the second preset time period, the charging unit 13 may be configured in a constant current charging mode, and charge the energy storage unit 12 based on the constant current charging mode.
  • the charging unit 13 is controlled to charge the energy storage unit 12 based on the capacity of the energy storage unit 12 within the third preset time period. And within the third preset time period, the charging unit 13 is configured in a constant current charging mode, and charges the energy storage unit 12 based on the constant current charging mode.
  • the values of the first preset time period, the second preset time period and the third preset time period may be the same or different.
  • the charging unit 13 is controlled to charge the energy storage unit 12 based on the voltage of the energy storage unit 12 within the first preset energy range.
  • the charging unit 13 is controlled to charge the energy storage unit 12 based on the energy of the energy storage unit 12 within the second preset energy range.
  • the charging unit 13 is controlled to charge the energy storage unit 12 based on the energy of the energy storage unit 12 within the third preset energy range.
  • the value intervals of the first preset energy interval, the second preset energy interval and the third preset energy interval may be the same or different.
  • the charging unit 13 is controlled to charge the energy storage unit 12 based on the voltage of the energy storage unit 12 within the first preset charge range.
  • the charging unit 13 is controlled to charge the energy storage unit 12 based on the energy of the energy storage unit 12 within the second preset charge range.
  • the charging unit 13 is controlled to charge the energy storage unit 12 based on the capacity of the energy storage unit 12 within the third preset charge amount interval.
  • the value intervals of the first preset charge amount interval, the second preset charge amount interval and the third preset charge amount interval may be the same or different.
  • the control method of the aerosol generating device of the present application detects any one of the voltage, energy and capacity stored in the energy storage unit 12, and controls the charging unit 13 to be the energy storage unit 12 based on the voltage, energy or capacity of the energy storage unit 12. Charging can reduce the charging time of the aerosol generating device to a certain extent. Moreover, the energy storage unit 12 is used instead of the lithium-ion battery to supply power to the heating element 11, which has the advantages of high safety and long life.
  • FIG. 7 is a schematic structural diagram of an embodiment of the electronic device of the present application.
  • the electronic device includes a memory 301 and a processor 302 connected to each other.
  • the memory 301 is used to store program instructions for realizing the method of any one of the above devices.
  • the processor 302 is used to execute the program instructions stored in the memory 301 .
  • the processor 302 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 302 may be an integrated circuit chip with signal processing capabilities.
  • the processor 302 can also be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the storage 301 can be a memory stick, a TF card, etc., and can store all information in the electronic equipment of the device, including input raw data, computer programs, intermediate operation results and final operation results are all stored in the storage. It deposits and retrieves information according to the location specified by the controller.
  • memory electronic equipment has a memory function to ensure normal operation.
  • the memory of electronic equipment can be divided into main memory (internal memory) and auxiliary memory (external memory) according to the purpose, and there are also classification methods into external memory and internal memory.
  • External storage is usually magnetic media or optical discs, which can store information for a long time.
  • Memory refers to the storage unit on the motherboard, which is used to store data and programs currently being executed, but it is only used to store programs and data temporarily, and the data will be lost when the power is turned off or cut off.
  • the disclosed methods and devices may be implemented in other ways.
  • the device implementations described above are only illustrative.
  • the division of modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a system server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods in various embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a computer-readable storage medium of the present application.
  • the storage medium of the present application stores a program file 401 capable of realizing all the above-mentioned methods, wherein the program file 401 can be stored in the above-mentioned storage medium in the form of a software product, and includes several instructions to make a computer device (which can be a personal A computer, a server, or a network device, etc.) or a processor (processor) executes all or part of the steps of the methods in various embodiments of the present application.
  • the aforementioned storage devices include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), and other media that can store program codes, or computer , servers, mobile phones, tablets and other terminal devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种气溶胶生成装置、控制方法以及计算机可读存储介质。气溶胶生成装置包括:发热元件(11),用于雾化气溶胶基质(17);至少一个储能单元(12),用于为发热元件(11)提供电能以使得发热元件(11)工作;充电单元(13),连接储能单元(12),用于连接外部电源对储能单元(12)充电;控制单元(14),连接储能单元(12)以及充电单元(13),用于检测储能单元(12)内存储的电能,并基于储能单元(12)内存储的电能控制充电单元(13)为储能单元(12)充电。储能单元(12)代替锂电池对加热器进行供电,提高了供电的安全性;控制单元通过检测储能单元(12)的电压、能量、容量的任一种,控制充电单元(13)对储能单元(12)进行充电。

Description

气溶胶生成装置、控制方法以及计算机可读存储介质
相关申请的交叉引用
本申请基于2021年9月8日提交的中国专利申请202111050604.3主张其优先权,此处通过参照引入其全部记载内容。
【技术领域】
本申请涉及电子雾化技术领域,特别是涉及一种气溶胶生成装置、控制方法以及计算机可读存储介质。
【背景技术】
气溶胶生成装置包括加热器和电源组件,电源组件对加热器提供电能,加热器将能量转化为热能以便对气溶胶生成基质加热雾化形成可供用户抽吸的气溶胶。目前市场上的气溶胶生成装置主要分为两种类型,一种是加热液体气溶胶基质的电子雾化装置,另一种是低温加热不燃烧固体气溶胶生成基质的电子雾化装置。
目前气溶胶生成装置的电源都是锂离子电池,锂离子电池在使用过程中,会发生过充电或过放电。过充电时,电池正极会脱嵌过多的锂离子,长时间的过充可能会导致晶格坍塌,从而不可逆的降低锂离子电池的容量,甚至会导致电池内压升高、电池变形、漏液等;过放电时,过量嵌入的锂离子会被固定于晶格中无法再释放,导致电池寿命缩短甚至损坏变形。且在充电过程中,无法对锂电子电池的能量进行精确的检测,导致锂离子电池充电时间过长。
综上,对于气溶胶生成装置,尤其是便携式低温烘烤一体式气溶胶生成装置,采用锂离子电池为加热器供电,具有安全性低、寿命短、充电时间长的缺点。
【发明内容】
本申请提供一种气溶胶生成装置、控制方法以及计算机可读存储介质,其通过储能单元代替锂电池对加热器进行供电,提高了供电的安全 性;且通过检测储能单元的电能,进而控制充电单元对储能单元进行充电,在一定程度上减少了充电时间。
为解决上述技术问题,本申请提供的第一个技术方案为:一种气溶胶生成装置,包括:发热元件,用于雾化气溶胶基质;至少一个储能单元,用于为所述发热元件提供电能以使得所述发热元件工作;充电单元,连接所述储能单元,用于连接外部电源对所述储能单元充电;控制单元,连接所述储能单元以及所述充电单元,用于检测所述储能单元内存储的电能,并基于所述储能单元内存储的电能控制所述充电单元为所述储能单元充电。
其中,所述控制单元检测所述储能单元的电压、能量以及容量中任一种,并基于所述储能单元的电压、能量或者容量控制所述充电单元为所述储能单元充电。
其中,所述控制单元在第一预设时间段内基于所述储能单元的电压控制所述充电单元为所述储能单元充电;或者
所述控制单元在第二预设时间段内基于所述储能单元的能量控制所述充电单元为所述储能单元充电;或者
所述控制单元在第三预设时间段内基于所述储能单元的容量控制所述充电单元为所述储能单元充电。
其中,所述充电单元在所述第一预设时间段、所述第二预设时间段以及所述第三预设时间内被配置为恒流充电模式,并基于所述恒流充电模式为所述储能单元充电。
其中,所述控制单元在第一预设能量区间内基于在所述储能单元的电压控制所述充电单元为所述储能单元充电;或者
所述控制单元在第二预设能量区间内基于所述储能单元的能量控制所述充电单元为所述储能单元充电;或者
所述控制单元在第三预设能量区间内基于所述储能单元的容量控制所述充电单元为所述储能单元充电。
其中,所述控制单元在第一预设电荷量区间内基于所述储能单元的电压控制所述充电单元为所述储能单元充电;或者
所述控制单元在第二预设电荷量区间内基于所述储能单元的能量 控制所述充电单元为所述储能单元充电;或者
所述控制单元在第三预设电荷量区间内基于所述储能单元的容量控制所述充电单元为所述储能单元充电。
其中,所述充电单元被配置为恒流充电模式,所述控制单元检测所述储能单元的电压、能量、容量中任一种,并基于检测的电压、能量或容量控制所述充电单元为所述储能单元充电,以使得所述储能单元的电压达到预设电压值。
其中,所述储能单元的电压达到所述预设电压值,所述充电单元被配置为恒压充电模式,所述控制单元基于检测的能量或容量控制所述充电单元为所述储能单元充电,以使得所述充电单元的充电电流达到预设充电电流。
其中,所述充电单元包括:充电单元外接口,用于连接外部电源。
其中,所述控制单元包括:电压检测单元,连接所述储能单元,用于检测所述储能单元的电压,以使得所述控制单元基于所述储能单元的电压控制所述充电单元为所述储能单元充电;和/或
电流检测单元,连接所述储能单元,用于检测所述储能单元的能量或容量,以使得所述控制单元基于所述储能单元的能量或容量控制所述充电单元为所述储能单元充电。
为解决上述技术问题,本申请提供的第二个技术方案为:提供一种气溶胶生成装置的控制方法,所述气溶胶生成装置包括发热元件、储能单元以及充电单元,所述方法包括:检测所述储能单元内存储的电能;基于所述储能单元内存储的电能控制所述充电单元为所述储能单元充电,以使得所述储能单元为所述发热元件提供电能。
其中,所述基于所述储能单元内存储的电能控制所述充电单元为所述储能单元充电,以使得所述储能单元为所述发热元件提供电能的步骤,包括:检测所述储能单元的电压、能量以及容量中任一种,并基于所述储能单元的电压、能量或者容量控制所述充电单元为所述储能单元充电。
其中,所述检测所述储能单元的电压、能量以及容量中任一种,并基于所述储能单元的电压、能量或者容量控制所述充电单元为所述储能单元充电的步骤,包括:在第一预设时间段内基于所述储能单元的电压, 控制所述充电单元为所述储能单元充电;或者在第二预设时间段内基于所述储能单元的能量,控制所述充电单元为所述储能单元充电;或者在第三预设时间段内基于所述储能单元的容量,控制所述充电单元为所述储能单元充电。
其中,所述检测所述储能单元的电压、能量以及容量中任一种,并基于所述储能单元的电压、能量或者容量控制所述充电单元为所述储能单元充电的步骤,包括:在第一预设能量区间内基于所述储能单元的电压,控制所述充电单元为所述储能单元充电;或者在第二预设能量区间内基于所述储能单元的能量,控制所述充电单元为所述储能单元充电;或者在第三预设能量区间内基于所述储能单元的容量,控制所述充电单元为所述储能单元充电。
其中,所述检测所述储能单元的电压、能量以及容量中任一种,并基于所述储能单元的电压、能量或者容量控制所述充电单元为所述储能单元充电的步骤,包括:在第一预设电荷量区间内基于所述储能单元的电压控制所述充电单元为所述储能单元充电;或者在第二预设电荷量区间内基于所述储能单元的能量控制所述充电单元为所述储能单元充电;或者在第三预设电荷量区间内基于所述储能单元的容量控制所述充电单元为所述储能单元充电。
为解决上述技术问题,本申请提供的第三个技术方案为:提供一种电子设备,包括:存储器和处理器,其中,所述存储器存储有程序指令,所述处理器从所述存储器调取所述程序指令以执行如权利要求11-15任一项所述的方法。
为解决上述技术问题,本申请提供的第四个技术方案为:提供一种计算机可读存储介质,存储有程序文件,所述程序文件能够被执行以实现上述所述的方法。
本申请的有益效果,区别于现有技术的情况,本申请的气溶胶生成装置中储能单元代替锂电池对加热器进行供电,提高了供电的安全性;控制单元通过检测储能单元的电压、能量、容量的任一种,控制充电单元对储能单元进行充电,在一定程度上减少了充电时间。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本申请的第一实施例的功能模块示意图;
图2为本申请的第二实施例的功能模块示意图;
图3为本申请的第三实施例的功能模块示意图;
图4为本申请的第四实施例的功能模块示意图;
图5为本申请的气溶胶生成装置的组成结构示意图;
图6为本申请的气溶胶生成装置的控制方法流程图;
图7为本申请电子设备的一实施例的结构示意图;
图8为本申请计算机可读存储介质的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参见图1,为本申请的第一实施例的功能模块示意图。气溶胶生成装置包括发热元件11、至少一个储能单元12以及控制单元14。具体的,发热元件11连接控制单元14及储能单元12,储能单元12连接充电单元13,充电单元13连接控制单元14。其中,储能单元12为发热元件11提供电能,使发热元件11对气溶胶基质进行雾化,控制单元14检测储能单元12内存储的电能,并基于储能单元12内存储的电能控制充电单元13为储能单元12充电。
进一步的,控制单元14检测储能单元12的电压、能量以及容量中任一种,并基于储能单元12的电压、能量或者容量控制充电单元13为储能单元12充电。
具体的,在一实施例中,控制单元14在第一时间段内基于储能单元12的电压控制充电单元13为储能单元12充电,且在第一预设时间段内,充电单元13被配置为恒流充电模式,并基于恒流充电模式为对储能单元12充电。
可以理解为,控制单元14检测储能单元12的电压,在确定该储能单元12的电压后,充电单元13被配置为恒流充电模式,之后,控制单元14控制充电单元13在第一时间段内对储能单元12进行充电,其中,第一时间段为储能单元12检测到的电压达到储能单元12额定电压所需的时间。例如,在实际应用中,储能单元12可以为混合电容,选用一个250mAh的混合电容,控制单元14检测该混合电容的电压为2.5V后,控制单元14控制充电单元13在恒流充电电流200mA的情况下,对混合电容持续充电,直到充电时间达到一个小时,停止充电。
具体的,在一实施例中,控制单元14在第二预设时间段内基于储能单元12的能量控制充电单元13为储能单元12充电。且在第二预设时间段内,充电单元13被配置为恒流充电模式,并基于恒流充电模式为对储能单元12充电。
可以理解为,控制单元14检测储能单元12的能量,在确定该储能单元12的能量后,充电单元13被配置为恒流充电模式,之后,控制单元14控制充电单元13在第二时间段内对储能单元12进行充电,其中,第二时间段为储能单元12检测到的能量达到储能单元12的额定能量所需的时间。例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14检测到该混合电容的能量为0Wh后,控制单元14控制充电单元13在恒流充电电流为200mA的情况下,对混合电容持续充电,直到充电时间达到一个小时,停止充电。
具体的,在一实施例中,控制单元14在第三预设时间段内基于储能单元12的容量控制充电单元13为储能单元12充电。且在第三预设时间段内,充电单元13被配置为恒流充电模式,并基于恒流充电模式为对储能单元12充电。
可以理解为,控制单元14检测储能单元12的容量,在确定该储能单元12的容量后,充电单元13被配置为恒流充电模式,之后,控制单 元14控制充电单元13在第三时间段内对储能单元12进行充电,其中,第三时间段为储能单元12检测到的容量达到储能单元12额定容量所需的时间。例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14检测到该混合电容的能量为0Wh后,控制单元14控制充电单元13在恒流充电电流为200mA的情况下,对混合电容充电,直到充电时间达到一个小时,停止充电。
其中,第一预设时间段、第二预设时间段和第三预设时间段的数值可以相同,也可以不同。
具体的,在一实施例中,控制单元14在第一预设能量区间内基于储能单元12的电压控制充电单元13为储能单元12充电。
可以理解为,控制单元14检测储能单元12的电压,在确定该储能单元12的电压后,控制单元14根据该储能单元12的电压,控制充电单元13在第一预设能量区间内对储能单元12进行充电,直至储能单元12的能量达到预定能量。其中,第一预设能量区间为储能单元12充电前存储的能量至储能单元12的预定能量。例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14检测到该混合电容的电压为2.5V后,控制单元14控制充电单元13在充电电流为200mA的情况下,对混合电容充电,直至混合电容的能量达到0.6Wh,停止充电。
具体的,在一实施例中,控制单元14在第二预设能量区间内基于储能单元12的能量控制充电单元13为储能单元12充电。
可以理解为,控制单元14检测储能单元12的能量,在确定该储能单元12的能量后,控制单元14根据该储能单元12的能量,控制充电单元13在第二预设能量区间内对储能单元12进行充电,直至储能单元12的能量达到预定能量。其中,第二预设能量区间为储能单元12充电前存储的能量至储能单元12的预定能量。例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14检测到该混合电容的能量为0Wh后,控制单元14控制充电单元13在充电电流为200mA的情况下,对混合电容充电,直至混合电容的能量达到0.6Wh,停止充电。
具体的,在一实施例中,控制单元14在第三预设能量区间内基于储能单元12的容量控制充电单元13为储能单元12充电。
可以理解为,控制单元14检测储能单元12的容量,在确定该储能单元12的容量后,控制单元14根据该储能单元12的容量,控制充电单元13在第三预设能量区间内对储能单元12进行充电,直至储能单元12的能量达到预定能量。其中,第三预设能量区间为储能单元12充电前存储的能量至储能单元12的预定能量。例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14检测到该混合电容的容量为0mAh后,控制单元14控制充电单元13在充电电流为200mA的情况下,对混合电容充电,直至混合电容的能量达到0.6Wh,停止充电。
其中,第一预设能量区间、第二预设能量区间和第三预设能量区间的数值区间可以相同,也可以不同。
具体的,在一实施例中,控制单元14在第一预设电荷量区间内基于储能单元12的电压控制充电单元13为储能单元12充电。
可以理解为,控制单元14检测储能单元12的电压,在确定该储能单元12的电压后,控制单元14根据该储能单元12的电压,控制充电单元13在第一预设电荷量区间内对储能单元12进行充电,直至储能单元12的电荷量达到预定电荷量。其中,第一预设电荷量区间为储能单元12充电前存储的电荷量至储能单元12的预定电荷量。例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14检测到该混合电容的电压为2.5V后,控制单元14控制充电单元13在充电电流为200mA的情况下,对混合电容充电,直至混合电容的电荷量达到预定电荷量720C,停止充电。
具体的,在一实施例中,控制单元14在第二预设电荷量区间内基于储能单元12的能量控制充电单元13为储能单元12充电。
可以理解为,控制单元14检测储能单元12的能量,在确定该储能单元12的能量后,控制单元14根据该储能单元12的能量,控制充电单元13在第二预设电荷量区间内对储能单元12进行充电,直至储能单元12的电荷量达到预定电荷量。其中,第二预设电荷量区间为储能单 元12充电前存储的电荷量至储能单元12的预定电荷量。例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14检测到该混合电容的能量为0Wh后,控制单元14控制充电单元13在充电电流为200mA的情况下,对混合电容充电,直至混合电容的电荷量达到预定电荷量720C,停止充电。
具体的,在一实施例中,控制单元14在第三预设电荷量区间内基于储能单元12的容量控制充电单元13为储能单元12充电。
可以理解为,控制单元14检测储能单元12的容量,在确定该储能单元12的容量后,控制单元14根据该储能单元12的容量,控制充电单元13在第三预设电荷量区间内对储能单元12进行充电,直至储能单元12的电荷量达到预定电荷量。其中,第三预设电荷量区间为储能单元12充电前存储的电荷量至储能单元12的预定电荷量。例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14检测到该混合容量的能量为0mAh后,控制单元14控制充电单元13在充电电流为200mA的情况下,对混合电容充电,直至混合电容的电荷量达到预定电荷量720C,停止充电。
其中,第一预设电荷量区间、第二预设电荷量区间以及第三预设电荷量区间的数值区间可以相同,也可以不同。
进一步的,充电单元13被配置为恒流充电模式,控制单元14检测储能单元12的电压、能量、容量中任一种,并基于检测的电压、能量或容量控制充电单元13为储能单元12充电,以使得储能单元12的电压达到预设电压值。
可以理解为,例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14基于检测的电压、能量或容量控制充电单元13,控制充电单元13在恒流充电电流200mA情况下,对储能单元12进行充电,直至混合电容的电压达到4.15V,停止充电。
进一步的,储能单元12的电压达到预设电压值,充电单元13被配置为恒压充电模式,控制单元14基于检测的能量或容量控制充电单元13为储能单元12充电,以使得充电单元13的充电电流达到预设充电电流。
可以理解为,例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14基于检测的电压、能量或容量控制充电单元13,控制充电单元13在恒流充电电流200mA情况下,对储能单元12进行充电,直至混合电容的电压达到4.15V,之后在4.15V的恒压下,继续对混合电容进行充电,直到充电单元13的充电电流达到10mA,停止充电。
请参见图2,为本申请的第二实施例的功能模块示意图。气溶胶生成装置包括发热元件11、发热元件控制单元15、至少一个储能单元12以及控制单元14,控制单元14包括最小系统工作单元143和电压检测单元141,电压检测单元141连接最小系统工作单元143。
具体的,发热元件11连接发热元件控制单元15,发热元件控制单元15连接最小系统工作单元143及储能单元12,储能单元12连接充电单元13及电压检测单元141,充电单元13连接最小系统工作单元143。其中,储能单元12通过发热元件控制单元15为发热元件11供电,使发热元件11对气溶胶基质进行雾化,发热元件控制单元15控制发热元件11的启动和停止,最小系统工作单元143通过电压检测单元141检测储能单元12内存储的电能,并基于储能单元12的电压控制充电单元13为储能单元12充电。
进一步的,充电单元13被配置为恒流充电模式,控制单元14检测储能单元12的电压,并基于检测的电压为储能单元12充电,以使得储能单元12的电压达到预设电压值。
可以理解为,控制单元14的电压检测单元141检测储能单元12的电压,控制单元14的最小系统工作单元143基于储能单元12的电压,控制充电单元13对储能单元12充电,直至储能单元12的电压达到预设电压值。例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14基于检测的储能单元12的电压,控制充电单元13在恒流充电电流200mA情况下,对储能单元12进行充电,直至混合电容的电压达到4.15V,停止充电。
请参见图3,为本申请的第三实施例的功能模块示意图。气溶胶生成装置包括发热元件11、发热元件控制单元15、至少一个储能单元12 以及控制单元14,控制单元14包括最小系统工作单元143和电流检测单元142,电流检测单元142连接最小系统工作单元143。
具体的,发热元件11连接发热元件控制单元15,发热元件控制单元15连接最小系统工作单元143及储能单元12,储能单元12连接充电单元13及电流检测单元142,充电单元13连接最小系统工作单元143。其中,储能单元12通过发热元件控制单元15为发热元件11供电,使发热元件11对气溶胶基质进行雾化,发热元件控制单元15控制发热元件11的启动和停止,最小系统工作单元143通过电流检测单元142检测储能单元12内存储的电能,并基于储能单元12的能量或容量控制充电单元13为储能单元12充电。
进一步的,充电单元13被配置为恒流充电模式,最小系统工作单元143通过电流检测单元142检测储能单元12内的能量,并基于检测的能量为储能单元12充电,以使得储能单元12的能量达到预设值。
进一步的,充电单元13被配置为恒流充电模式,最小系统工作单元143通过电流检测单元142检测储能单元12内的容量,并基于检测的容量为储能单元12充电,以使得储能单元12的电荷量达到预设值。
请参见图4,为本申请的第四实施例的功能模块示意图。气溶胶生成装置包括发热元件11、发热元件控制单元15、至少一个储能单元12以及控制单元14,控制单元14包括最小系统工作单元143、电压检测单元141以及电流检测单元142,电压检测单元141、电流检测单元142分别连接最小系统工作单元143。
具体的,发热元件11连接发热元件控制单元15,发热元件控制单元15连接最小系统工作单元143及储能单元12,储能单元12连接充电单元13、电压检测单元141以及电流检测单元142,充电单元13连接最小系统工作单元143。其中,储能单元12通过发热元件控制单元15为发热元件11供电,使发热元件11对气溶胶基质进行雾化,发热元件控制单元15控制发热元件11的启动和停止,最小系统工作单元143通过电压检测单元141以及电流检测单元142检测储能单元12内存储的电能,并基于储能单元12的电压、能量或容量中任一种,控制充电单元13为储能单元12充电。
进一步的,充电单元13被配置为恒流充电模式,控制单元14通过电压检测单元141检测储能单元12的电压,并基于检测的电压控制充电单元13为储能单元12充电,以使得储能单元12的电压达到预设电压值。
进一步的,储能单元12的电压达到预设电压值,充电单元13被配置为恒压充电模式,控制单元14基于电流检测单元142检测的能量或容量控制充电单元13为储能单元12充电,以使得充电单元13的充电电流达到预设充电电流。
可以理解为,例如,在实际应用中,储能单元12可以为混合电容,选用一个200mAh的混合电容,控制单元14基于检测的电压,控制充电单元13在恒流充电电流200mA情况下,对储能单元12进行充电,直至混合电容的电压达到4.15V,之后,控制单元14控制充电单元13在4.15V的恒压下,继续对混合电容进行充电,直到充电单元13的充电电流达到10mA,停止充电。
请参见图5,为本申请的气溶胶生成装置的组成结构示意图。
气溶胶生成装置包括容纳腔16、发热元件11、发热元件控制单元15、充电单元13、储能单元12以及控制单元14,其中,充电单元13包括充电单元外接口131。
具体的,发热元件11设置于容纳腔16内,且容纳腔16内放置有气溶胶形成基质17,发热元件11连接发热元件控制单元15,发热元件控制单元15连接控制单元14及储能单元12,储能单元12连接充电单元13,充电单元13连接控制单元14。其中,储能单元12为发热元件11供电,发热元件控制单元15在控制单元14的控制下,控制发热元件11的启动和停止,在启动时发热元件11对气溶胶基质进行雾化,充电单元13通过充电单元13外接口连接外部电源为储能单元12充电。
参见图6,为本申请气溶胶生成装置的控制方法的流程图。气溶胶生成装置的控制方法包括:
步骤S11:检测储能单元12内存储的电能。
可以理解的是,气溶胶生成装置包括发热元件11、储能单元12以及充电单元13,储能单元12为发热元件11提供电能,使发热元件11 对气溶胶基质进行雾化,充电单元13连接外部电源为储能单元12充电。在充电前,对储能单元12进行检测,以获取储能单元12内存储的电能。
步骤S12:基于储能单12元内存储的电能控制充电单元13为储能单元12充电,以使得储能单元12为发热元件11提供电能。
可以理解的,基于储能单元12内存储的电能控制充电单元13为储能单元12充电,以使得储能单元12为发热元件11提供电能,具体可以包括检测储能单元12的电压、能量以及容量中任一种,并基于储能单元12的电压、能量或者容量控制充电单元13为储能单元12充电。
具体的,在一实施例中,在第一时间段内基于储能单元12的电压控制充电单元13为储能单元12充电,且在第一预设时间段内,充电单元13可以被配置为恒流充电模式,并基于恒流充电模式为对储能单元12充电。
在一实施例中,在第二预设时间段内基于储能单元12的能量控制充电单元13为储能单元12充电。且在第二预设时间段内,充电单元13可以被配置为恒流充电模式,并基于恒流充电模式为对储能单元12充电。
在另一实施例中,在第三预设时间段内基于储能单元12的容量控制充电单元13为储能单元12充电。且在第三预设时间段内,充电单元13被配置为恒流充电模式,并基于恒流充电模式为对储能单元12充电。
其中,第一预设时间段、第二预设时间段和第三预设时间段的数值可以相同,也可以不同。
进一步具体的,在一实施例中,在第一预设能量区间内基于储能单元12的电压控制充电单元13为储能单元12充电。
在一实施例中,在第二预设能量区间内基于储能单元12的能量控制充电单元13为储能单元12充电。
在另一实施例中,在第三预设能量区间内基于储能单元12的能量控制充电单元13为储能单元12充电。
其中,第一预设能量区间、第二预设能量区间和第三预设能量区间的数值区间可以相同,也可以不同。
进一步具体的,在一实施例中,在第一预设电荷量区间内基于储能 单元12的电压控制充电单元13为储能单元12充电。
在一实施例中,在第二预设电荷量区间内基于储能单元12的能量控制充电单元13为储能单元12充电。
在另一实施例中,在第三预设电荷量区间内基于储能单元12的容量控制充电单元13为储能单元12充电。
其中,第一预设电荷量区间、第二预设电荷量区间以及第三预设电荷量区间的数值区间可以相同,也可以不同。
本申请气溶胶生成装置的控制方法,通过检测储能单元12内存储的电压、能量以及容量中任一种,并基于储能单元12的电压、能量或者容量控制充电单元13为储能单元12充电,能够在一定程度上减少气溶胶生成装置的充电时间。且采用储能单元12代替锂离子电池为发热元件11供电,具有安全性较高、寿命长的优点。
请参见图7,为本申请电子设备的一实施例的结构示意图。电子设备包括相互连接的存储器301和处理器302。
存储器301用于存储实现上述任意一项的设备的方法的程序指令。
处理器302用于执行存储器301存储的程序指令。
其中,处理器302还可以称为CPU(Central Processing Unit,中央处理单元)。处理器302可能是一种集成电路芯片,具有信号的处理能力。处理器302还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器301可以为内存条、TF卡等,可以存储设备的电子设备中全部信息,包括输入的原始数据、计算机程序、中间运行结果和最终运行结果都保存在存储器中。它根据控制器指定的位置存入和取出信息。有了存储器,电子设备才有记忆功能,才能保证正常工作。电子设备的存储器按用途可分为主存储器(内存)和辅助存储器(外存),也有分为外部存储器和内部存储器的分类方法。外存通常是磁性介质或光盘等,能长期保存信息。内存指主板上的存储部件,用来存放当前正在执行的数据和程序,但仅用于暂时存放程序和数据,关闭电源或断电,数据会丢失。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,系统服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式方法的全部或部分步骤。
请参见图8,为本申请计算机可读存储介质的结构示意图。本申请的存储介质存储有能够实现上述所有方法的程序文件401,其中,该程序文件401可以以软件产品的形式存储在上述存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式方法的全部或部分步骤。而前述的存储装置包括:U盘、移动硬盘、只读存储器(ROM, Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (17)

  1. 一种气溶胶生成装置,其中于,包括:
    发热元件,用于雾化气溶胶基质;
    至少一个储能单元,用于为所述发热元件提供电能以使得所述发热元件工作;
    充电单元,连接所述储能单元,用于连接外部电源对所述储能单元充电;
    控制单元,连接所述储能单元以及所述充电单元,用于检测所述储能单元内存储的电能,并基于所述储能单元内存储的电能控制所述充电单元为所述储能单元充电。
  2. 根据权利要求1所述的气溶胶生成装置,其中于,所述控制单元检测所述储能单元的电压、能量以及容量中任一种,并基于所述储能单元的电压、能量或者容量控制所述充电单元为所述储能单元充电。
  3. 根据权利要求2所述的气溶胶生成装置,其中于,所述控制单元在第一预设时间段内基于所述储能单元的电压控制所述充电单元为所述储能单元充电;或者
    所述控制单元在第二预设时间段内基于所述储能单元的能量控制所述充电单元为所述储能单元充电;或者
    所述控制单元在第三预设时间段内基于所述储能单元的容量控制所述充电单元为所述储能单元充电。
  4. 根据权利要求3所述的气溶胶生成装置,其中于,所述充电单元在所述第一预设时间段、所述第二预设时间段以及所述第三预设时间内被配置为恒流充电模式,并基于所述恒流充电模式为所述储能单元充电。
  5. 根据权利要求3所述的气溶胶生成装置,其中于,所述控制单元在第一预设能量区间内基于所述储能单元的电压控制所述充电单元为所述储能单元充电;或者
    所述控制单元在第二预设能量区间内基于所述储能单元的能量控制所述充电单元为所述储能单元充电;或者
    所述控制单元在第三预设能量区间内基于所述储能单元的容量控制所述充电单元为所述储能单元充电。
  6. 根据权利要求5所述的气溶胶生成装置,其中于,所述控制单元在第一预设电荷量区间内基于所述储能单元的电压控制所述充电单元为所述储能单元充电;或者
    所述控制单元在第二预设电荷量区间内基于所述储能单元的能量控制所述充电单元为所述储能单元充电;或者
    所述控制单元在第三预设电荷量区间内基于所述储能单元的容量控制所述充电单元为所述储能单元充电。
  7. 根据权利要求1所述的气溶胶生成装置,其中于,所述充电单元被配置为恒流充电模式,所述控制单元检测所述储能单元的电压、能量、容量中任一种,并基于检测的电压、能量或容量控制所述充电单元为所述储能单元充电,以使得所述储能单元的电压达到预设电压值。
  8. 根据权利要求7所述的气溶胶生成装置,其中于,所述储能单元的电压达到所述预设电压值,所述充电单元被配置为恒压充电模式,所述控制单元基于检测的能量或容量控制所述充电单元为所述储能单元充电,以使得所述充电单元的充电电流达到预设充电电流。
  9. 根据权利要求8所述的气溶胶生成装置,其中于,所述充电单元包括:
    充电单元外接口,用于连接外部电源。
  10. 根据权利要求9所述的气溶胶生成装置,其中于,所述控制单元包括:
    电压检测单元,连接所述储能单元,用于检测所述储能单元的电压,以使得所述控制单元基于所述储能单元的电压控制所述充电单元为所述储能单元充电;和/或
    电流检测单元,连接所述储能单元,用于检测所述储能单元的能量或容量,以使得所述控制单元基于所述储能单元的能量或容量控制所述充电单元为所述储能单元充电。
  11. 一种气溶胶生成装置的控制方法,其中于,所述气溶胶生成装置包括发热元件、储能单元以及充电单元,所述方法包括:
    检测所述储能单元内存储的电能;
    基于所述储能单元内存储的电能控制所述充电单元为所述储能单元充电,以使得所述储能单元为所述发热元件提供电能。
  12. 根据权利要求11所述的控制方法,其中于,所述基于所述储能单元内存储的电能控制所述充电单元为所述储能单元充电,以使得所述储能单元为所述发热元件提供电能的步骤,包括:
    检测所述储能单元的电压、能量以及容量中任一种,并基于所述储能单元的电压、能量或者容量控制所述充电单元为所述储能单元充电。
  13. 根据权利要求12所述的控制方法,其中于,所述检测所述储能单元的电压、能量以及容量中任一种,并基于所述储能单元的电压、能量或者容量控制所述充电单元为所述储能单元充电的步骤,包括:
    在第一预设时间段内基于所述储能单元的电压,控制所述充电单元为所述储能单元充电;或者
    在第二预设时间段内基于所述储能单元的能量,控制所述充电单元为所述储能单元充电;或者
    在第三预设时间段内基于所述储能单元的容量,控制所述充电单元为所述储能单元充电。
  14. 根据权利要求12所述的控制方法,其中于,所述检测所述储能单元的电压、能量以及容量中任一种,并基于所述储能单元的电压、能量或者容量控制所述充电单元为所述储能单元充电的步骤,包括:
    在第一预设能量区间内基于所述储能单元的电压,控制所述充电单元为所述储能单元充电;或者
    在第二预设能量区间内基于所述储能单元的能量,控制所述充电单元为所述储能单元充电;或者
    在第三预设能量区间内基于所述储能单元的容量,控制所述充电单元为所述储能单元充电。
  15. 根据权利要求12所述的控制方法,其中于,所述检测所述储能单元的电压、能量以及容量中任一种,并基于所述储能单元的电压、能量或者容量控制所述充电单元为所述储能单元充电的步骤,包括:
    在第一预设电荷量区间内基于所述储能单元的电压控制所述充电 单元为所述储能单元充电;或者
    在第二预设电荷量区间内基于所述储能单元的能量控制所述充电单元为所述储能单元充电;或者
    在第三预设电荷量区间内基于所述储能单元的容量控制所述充电单元为所述储能单元充电。
  16. 一种电子设备,其中于,包括:存储器和处理器,其中,所述存储器存储有程序指令,所述处理器从所述存储器调取所述程序指令以执行如权利要求11-15任一项所述的方法。
  17. 一种计算机可读存储介质,其中于,存储有程序文件,所述程序文件能够被执行以实现如权利要求11-15任一项所述的方法。
PCT/CN2022/110078 2021-09-08 2022-08-03 气溶胶生成装置、控制方法以及计算机可读存储介质 WO2023035818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111050604.3A CN113966881A (zh) 2021-09-08 2021-09-08 气溶胶生成装置、控制方法以及计算机可读存储介质
CN202111050604.3 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023035818A1 true WO2023035818A1 (zh) 2023-03-16

Family

ID=79586438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110078 WO2023035818A1 (zh) 2021-09-08 2022-08-03 气溶胶生成装置、控制方法以及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113966881A (zh)
WO (1) WO2023035818A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113966881A (zh) * 2021-09-08 2022-01-25 深圳麦时科技有限公司 气溶胶生成装置、控制方法以及计算机可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140360512A1 (en) * 2013-06-05 2014-12-11 Zhiyong Xiang Charging method of electronic cigarettes and electronic cigarette box
US20150015187A1 (en) * 2013-07-10 2015-01-15 Zhiyong Xiang Control circuit and method for electronic cigarette box
CN105262171A (zh) * 2015-10-29 2016-01-20 桂林市腾瑞电子科技有限公司 一种电池充电保护控制系统及方法
CN107440157A (zh) * 2017-08-15 2017-12-08 惠州市新泓威科技有限公司 电子烟的防干烧装置及其防干烧控制方法
CN110432546A (zh) * 2019-07-31 2019-11-12 深圳瀚星翔科技有限公司 电子烟、模式切换控制方法及装置
US20200169099A1 (en) * 2018-11-28 2020-05-28 Shenzhen Innokin Technology Co., Ltd. Low voltage charging control and protection circuit for electronic cigarette and method of charging the electronic cigarette using the circuit
CN111759018A (zh) * 2020-06-30 2020-10-13 上海烟草集团有限责任公司 一种控制电路、气雾产生电路及气雾产生装置
CN112890304A (zh) * 2021-01-18 2021-06-04 河南中烟工业有限责任公司 基于铁磁化薄片的电涡流感应加热雾化方法
CN113100505A (zh) * 2021-04-02 2021-07-13 北京航天雷特机电工程有限公司 一种分体式电子加热烟具及其充电方法
CN113966881A (zh) * 2021-09-08 2022-01-25 深圳麦时科技有限公司 气溶胶生成装置、控制方法以及计算机可读存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5541112B2 (ja) * 2010-11-22 2014-07-09 ミツミ電機株式会社 電池監視装置、及び電池監視方法
CN103401292A (zh) * 2013-08-13 2013-11-20 南车株洲电力机车有限公司 一种储能电源的充电装置和充电方法
TW201800020A (zh) * 2016-06-29 2018-01-01 菲利浦莫里斯製品股份有限公司 具有可充電電源供應器之電操作式氣溶膠產生系統
CN110021792B (zh) * 2018-01-10 2021-04-27 深圳智链物联科技有限公司 充电控制方法、装置、终端设备及计算机存储介质
BR112020004791A2 (pt) * 2018-12-21 2021-06-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de controle de carregamento, aplicável por um dispositivo a ser carregado, dispositivo de controle de carregamento e aplicável por um dispositivo a ser carregado
CN110146816B (zh) * 2019-05-31 2022-02-01 蜂巢能源科技有限公司 电池剩余充电时间的确定方法、装置、设备及存储介质
CN110138049B (zh) * 2019-06-13 2023-06-02 东莞市麦斯莫科电子科技有限公司 电子烟充电控制方法、装置及可读存储介质
CN110323808B (zh) * 2019-07-30 2022-05-17 Oppo广东移动通信有限公司 充电停止方法、装置、计算机设备以及存储介质
CN110729800B (zh) * 2019-11-28 2021-06-29 Oppo广东移动通信有限公司 一种充电控制方法、装置及存储介质和终端设备
CN113285499A (zh) * 2020-02-19 2021-08-20 北京小米移动软件有限公司 充电控制方法、电子设备、控制装置及存储介质
CN111555389A (zh) * 2020-05-15 2020-08-18 歌尔智能科技有限公司 电池电量的计算方法、装置、设备及计算机可读存储介质
CN112217249A (zh) * 2020-09-04 2021-01-12 深圳传音控股股份有限公司 一种充电控制装置、方法、移动终端及可读存储介质
CN112737032B (zh) * 2020-12-29 2023-09-29 科华恒盛股份有限公司 电池充电的控制方法、控制装置及终端
CN112820961B (zh) * 2020-12-31 2022-06-21 广州奥鹏能源科技有限公司 一种储能设备的快速充电方法、装置、系统及存储介质
CN112834936A (zh) * 2021-02-03 2021-05-25 智光研究院(广州)有限公司 一种电池充放电测试方法、装置、系统和电池管理系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140360512A1 (en) * 2013-06-05 2014-12-11 Zhiyong Xiang Charging method of electronic cigarettes and electronic cigarette box
US20150015187A1 (en) * 2013-07-10 2015-01-15 Zhiyong Xiang Control circuit and method for electronic cigarette box
CN105262171A (zh) * 2015-10-29 2016-01-20 桂林市腾瑞电子科技有限公司 一种电池充电保护控制系统及方法
CN107440157A (zh) * 2017-08-15 2017-12-08 惠州市新泓威科技有限公司 电子烟的防干烧装置及其防干烧控制方法
US20200169099A1 (en) * 2018-11-28 2020-05-28 Shenzhen Innokin Technology Co., Ltd. Low voltage charging control and protection circuit for electronic cigarette and method of charging the electronic cigarette using the circuit
CN110432546A (zh) * 2019-07-31 2019-11-12 深圳瀚星翔科技有限公司 电子烟、模式切换控制方法及装置
CN111759018A (zh) * 2020-06-30 2020-10-13 上海烟草集团有限责任公司 一种控制电路、气雾产生电路及气雾产生装置
CN112890304A (zh) * 2021-01-18 2021-06-04 河南中烟工业有限责任公司 基于铁磁化薄片的电涡流感应加热雾化方法
CN113100505A (zh) * 2021-04-02 2021-07-13 北京航天雷特机电工程有限公司 一种分体式电子加热烟具及其充电方法
CN113966881A (zh) * 2021-09-08 2022-01-25 深圳麦时科技有限公司 气溶胶生成装置、控制方法以及计算机可读存储介质

Also Published As

Publication number Publication date
CN113966881A (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
CN109038701B (zh) 信息处理方法、锂离子电池组组件及信息处理设备
WO2020098533A1 (zh) 一种电池健康监测方法、装置及电子烟
CN107332208B (zh) 一种保护电路,主板保护方法及终端
US20060145659A1 (en) Battery pack system and method for waking up a charge control circuit of a mobile communication device
US10826309B2 (en) Terminal, heating apparatus and charging method for battery
CN108777331B (zh) 一种电子设备中锂离子电池的充电控制方法及装置
WO2020124521A1 (zh) 对锂电池进行充电的方法及相关装置
WO2020043128A1 (zh) 确定电池的充电状态的方法、装置、芯片、电池及飞行器
WO2023035818A1 (zh) 气溶胶生成装置、控制方法以及计算机可读存储介质
CN106981696B (zh) 一种用于电池的充电方法、电子设备及充电器
CN105978068A (zh) 一种锂电池充放电管理系统
WO2021083149A1 (zh) 充电方法和充电系统
TWI511405B (zh) 調變攜帶式裝置之電源裝置充電電流的方法以及相關的電源裝置
CN103401036A (zh) 一种移动终端充电方法及移动智能终端
WO2020063390A1 (zh) 快充电路以及电子烟
WO2021238683A1 (zh) 终端、终端的充电方法、电子设备和存储介质
TWI672843B (zh) 電池裝置及其操作方法
JPH09182308A (ja) 充電装置及びリチウムイオン電池の充放電制御方式
CN107845838B (zh) 电子设备及其电池充放电方法、具有存储功能的装置
CN207304370U (zh) 电源开关控制电路及装置
WO2018119798A1 (zh) 电池充电方法、充电系统、充电器及电池
CN112531848B (zh) 一种电池包及其控制方法
WO2014190831A1 (zh) 一种电池控制方法、装置、终端及计算机存储介质
CN110534845B (zh) 电子设备
WO2021142595A1 (zh) 充电控制方法、充电器、充电系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866292

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022866292

Country of ref document: EP

Effective date: 20240408