WO2023035727A1 - 一种基于联邦增量随机配置网络的工业过程软测量方法 - Google Patents
一种基于联邦增量随机配置网络的工业过程软测量方法 Download PDFInfo
- Publication number
- WO2023035727A1 WO2023035727A1 PCT/CN2022/100744 CN2022100744W WO2023035727A1 WO 2023035727 A1 WO2023035727 A1 WO 2023035727A1 CN 2022100744 W CN2022100744 W CN 2022100744W WO 2023035727 A1 WO2023035727 A1 WO 2023035727A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hidden layer
- client
- parameters
- nodes
- central server
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 238000000691 measurement method Methods 0.000 title abstract 2
- 238000000034 method Methods 0.000 claims abstract description 32
- 230000002776 aggregation Effects 0.000 claims abstract description 17
- 238000004220 aggregation Methods 0.000 claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims description 16
- 238000012549 training Methods 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 4
- 239000013598 vector Substances 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract 1
- 238000005457 optimization Methods 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
Definitions
- the invention relates to the technical field of soft-sensing of industrial process product quality indicators, in particular to an industrial process soft-sensing method based on federated incremental random configuration network.
- Federated learning can realize a unified machine learning model trained by local data of multiple participants under the premise of protecting data privacy. Therefore, in privacy-sensitive scenarios (including financial, industrial and many other data-aware Scenario) Federated learning shows excellent application prospects.
- federated learning is mainly combined with deep learning, but the deep algorithm itself has some difficult bottleneck problems, such as easy to fall into local minimum points, strong dependence on initial parameter settings, gradient disappearance and gradient explosion, etc.
- Random configuration network is an advanced single hidden layer random weight network with infinite approximation characteristics that has emerged in recent years. A large number of regression and classification experiments have confirmed that it has obvious advantages in compactness, fast learning and generalization performance. .
- the present invention proposes an industrial process soft-sensing method based on federated incremental random configuration network, including the following steps:
- Step 1 Each factory obtains historical industrial process auxiliary data and corresponding product quality data, and initializes the parameters required for local incremental random configuration network model learning.
- Each factory is a client, and each client will satisfy the local Data-constrained hidden layer nodes are put into the candidate pool, and the best candidate node is selected from the candidate pool and uploaded to the central server;
- Step 2 the central server performs weighted aggregation or greedy selection on the uploaded best candidate nodes to obtain global parameters, and downloads the global parameters to each client as a local incremental random configuration of the hidden layer parameters of the network model;
- Step 3 each client calculates the new hidden layer output after obtaining the global parameters, and uploads the output weights to the central server for weighted aggregation, and continues to start the next round of training;
- Step 4 When the number of hidden layer nodes in the current network exceeds the given maximum number of hidden layer nodes or the residual error in the current iteration meets the expected tolerance, no new nodes are added, federated training is stopped, and a trained global model is obtained;
- Step 5 the server distributes the trained global model to each local factory as a soft sensor model.
- step 1 a total of K factories are set to participate in federated training.
- n k sets of historical industrial process auxiliary data X k and corresponding product quality data T k denoted as ⁇ X k ,T k ⁇ ;
- auxiliary industrial process data of the k-th factory and the i-th group history Contains d auxiliary process variables, the corresponding product quality data t i contains m product quality data, and the value of i is 1 ⁇ n k , then input the sample matrix
- the i-th set of z auxiliary process variables is denoted as Indicates the zth auxiliary process variable of the kth plant and the ith group.
- step 1 the K factories all implement the same industrial process; most of the same industrial processes use the same process flow and process equipment, and have similar characteristics.
- Step 1 also includes:
- the hidden layer parameters are randomly generated within the adjustable symmetric interval ⁇ and
- Node hidden layer output Superscript T is the transpose of matrix or vector
- L (1-r)/(L+1), L is the total number of hidden layer nodes of the current local incremental random configuration network model, r represents a learning parameter, and ⁇ L is a non-negative real number sequence;
- m represents the dimensionality of each training set output
- the symbols ⁇ , ⁇ > represent the inner product of vectors
- Step 1 also includes: selecting the best candidate node from the candidate pool and uploading to the central server, including weighted aggregation and greedy selection:
- Step 2 includes:
- the central server performs weighted aggregation on the uploaded best candidate nodes to obtain the global parameters of the Lth node of the model and
- n is the sum of all clients' local historical industrial process auxiliary data nk .
- step 2 the greedy selection of the uploaded best node by the central server includes:
- Parameters uploaded by the central server compare and choose the largest
- the corresponding client parameters are used as the global parameters of the Lth node of the model and
- ⁇ is the optimal parameter uploaded by each client and set of , ⁇ is collection.
- Step 3 includes:
- the advantage of the present invention is that the method adopts the federated learning mode of dynamic configuration to train the model, and establishes an industrial process product quality soft sensor model with optimal parameters with infinite approximation characteristics in the form of a construction method, No complex retraining process is required, and the accuracy of the model can be guaranteed, with good compactness and generalization performance.
- Figure 1 is a schematic diagram of a federated incremental random configuration network model.
- the present invention comprises the following steps:
- each factory selects 100 sets of historical data measured during the traditional hematite grinding process from the local database of grinding process history, that is, each set includes ball mill current c 1 , spiral classifier current c 2 , mill feed c 3 , mill inlet feed water flow c 4 and classifier overflow concentration c 5 five auxiliary process variable data, use Indicates the homogenized input data of the kth client and its corresponding product quality data, that is, the grinding particle size value t i . Represents the c5 auxiliary process variable data for the i-th sample of the k-th client.
- There are currently 10 factories participating in the training with a total of 1000 sets of historical data, of which 800 sets are used as training sets and 200 sets are used as test sets. Then the input sample is in The output sample is
- Node hidden layer output T represents the transpose operation
- L (1-r)/(L+1), L is the total number of hidden layer nodes of the current local network
- the corresponding set of hidden layer parameters is the best hidden layer parameter that satisfies the supervision mechanism
- Step two includes:
- the central server performs weighted aggregation or greedy selection on the uploaded best nodes:
- the weighted aggregation of the uploaded best nodes by the central server includes:
- the central server performs weighted aggregation on the uploaded parameters to obtain the global parameters of the Lth node and
- n is the total number of data samples of all clients
- nk is the total number of data samples of client k.
- the greedy selection of the uploaded best node by the central server includes:
- ⁇ is the optimal parameter uploaded by each client and set of , ⁇ is collection.
- Step three includes:
- the per-client gets the global parameter and After calculating the new hidden layer output and output weight and will Uploading to the server for weighted aggregation includes:
- Each client uploads the output matrix To the central server, the server will upload the Perform weighted aggregation to get ⁇ L
- Step 4 When the number of hidden layer nodes of the federated incremental random configuration network exceeds 100 or the residual error in the current iteration meets the expected tolerance of 0.05, no new nodes are added, and the modeling is completed. Otherwise, return to step 1 and continue to construct the network until the preset requirements are met.
- Each client downloads the grinding particle size soft sensor model based on the federated incremental random configuration network. Each client collects local data online and inputs it into this global soft sensor model.
- each client collects ball mill current c 1 , spiral classifier current c 2 , mill feed volume c 3 , mill inlet water flow rate c 4 and classifier overflow concentration c 5 , and inputs them into the constructed mill
- the ore particle size soft-sensing model is used to estimate the grinding particle size online, that is, in Product quality data estimated online for client k.
- the present invention provides an industrial process soft-sensing method based on a federated incremental random configuration network.
- the above description is only a preferred embodiment of the present invention.
- Those of ordinary skill in the art can also make some improvements and modifications without departing from the principle of the present invention, and these improvements and modifications should also be regarded as the protection scope of the present invention. All components that are not specified in this embodiment can be realized by existing technologies.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Automation & Control Theory (AREA)
- Computational Mathematics (AREA)
- Computer Hardware Design (AREA)
- Probability & Statistics with Applications (AREA)
- Algebra (AREA)
- Geometry (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- General Factory Administration (AREA)
Abstract
Description
Claims (8)
- 一种基于联邦增量随机配置网络的工业过程软测量方法,其特征在于,包括以下步骤:步骤1,各个工厂获取历史的工业过程辅助数据和对应的产品质量数据,并初始化本地增量随机配置网络模型学习所需要的参数,每个工厂都是一个客户端,每个客户端将满足本地数据约束的隐层节点放入候选池,从候选池中选择最佳候选节点上传至中央服务器;步骤2,中央服务器对上传的最佳候选节点进行加权聚合或者贪婪选择得到全局参数,并将全局参数下传至每个客户端作为本地增量随机配置网络模型的隐层参数;步骤3,每个客户端得到全局参数后计算新增隐层输出,并将输出权值上传至中央服务器进行加权聚合,继续开始下一轮训练;步骤4,在当前网络隐层节点数超过给定最大隐层节点数或当前迭代中的残差满足期望容差时,不再增加新节点,停止联邦训练,得到训练好的全局模型;步骤5,服务器将训练好的全局模型分发给各个本地工厂作为软测量模型。
- 根据权利要求2所述的方法,其特征在于,步骤1中,所述初始化本地增量随机配置网络学习所需要的参数,包括:最大隐层节点数L max、最大随机配置次数T max、期望容差ε、隐层参数随机配置范围Υ={λ min:Δλ:λ max}、学习参数r、激活函数g(.)、初始残差e 0=T k,其中λ min是随机参数的分配区间下限,λ max是随机参数的分配区间上限,Δλ为随机参数分配区间增量参数。
- 根据权利要求3所述的方法,其特征在于,步骤1还包括:设定μ L=(1-r)/(L+1),L为当前本地增量随机配置网络模型隐层节点总数,r表示学习参数,μ L是一个非负实数序列;找出满足以下不等式约束的隐层节点即为候选节点:式中,m表示各训练集输出的维数,符号<·,·>表示向量的内积, 代表在客户端k中当前隐层节点数为L时各训练集第q个输出对应的监督机制,计算 得到新增候选节点 j≤T max构建候选池,其中 表示第k个客户端在第L次迭代时随机配置的节点监督值, 表示第k个客户端中第L次迭代时第j次随机配置的节点监督值;
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2022343574A AU2022343574B2 (en) | 2021-09-09 | 2022-06-23 | Industrial process soft-measurement method based on federated incremental stochastic configuration network |
US18/002,274 US20240027976A1 (en) | 2021-09-09 | 2022-06-23 | Industrial Process Soft Sensor Method Based on Federated Stochastic Configuration Network |
JP2022570190A JP7404559B2 (ja) | 2021-09-09 | 2022-06-23 | 連合増分確率的構成ネットワークに基づく工業プロセスのソフト測定方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111054478.9 | 2021-09-09 | ||
CN202111054478.9A CN113761748B (zh) | 2021-09-09 | 2021-09-09 | 一种基于联邦增量随机配置网络的工业过程软测量方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023035727A1 true WO2023035727A1 (zh) | 2023-03-16 |
Family
ID=78794162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/100744 WO2023035727A1 (zh) | 2021-09-09 | 2022-06-23 | 一种基于联邦增量随机配置网络的工业过程软测量方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240027976A1 (zh) |
JP (1) | JP7404559B2 (zh) |
CN (1) | CN113761748B (zh) |
AU (1) | AU2022343574B2 (zh) |
WO (1) | WO2023035727A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116958783A (zh) * | 2023-07-24 | 2023-10-27 | 中国矿业大学 | 基于深度残差二维随机配置网络的轻量型图像识别方法 |
CN117094031A (zh) * | 2023-10-16 | 2023-11-21 | 湘江实验室 | 工业数字孪生数据隐私保护方法及相关介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113761748B (zh) * | 2021-09-09 | 2023-09-15 | 中国矿业大学 | 一种基于联邦增量随机配置网络的工业过程软测量方法 |
CN118070928B (zh) * | 2024-02-18 | 2024-09-24 | 淮阴工学院 | 一种工业过程关键性指标软测量建模方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109635337A (zh) * | 2018-11-13 | 2019-04-16 | 中国矿业大学 | 一种基于块增量随机配置网络的工业过程软测量建模方法 |
CN112507219A (zh) * | 2020-12-07 | 2021-03-16 | 中国人民大学 | 一种基于联邦学习增强隐私保护的个性化搜索系统 |
CN113191092A (zh) * | 2020-09-30 | 2021-07-30 | 中国矿业大学 | 一种基于正交增量随机配置网络的工业过程产品质量软测量方法 |
WO2021158313A1 (en) * | 2020-02-03 | 2021-08-12 | Intel Corporation | Systems and methods for distributed learning for wireless edge dynamics |
CN113761748A (zh) * | 2021-09-09 | 2021-12-07 | 中国矿业大学 | 一种基于联邦增量随机配置网络的工业过程软测量方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9038449B2 (en) * | 2010-04-16 | 2015-05-26 | Camber Ridge, Llc | Tire testing systems and methods |
WO2018017467A1 (en) | 2016-07-18 | 2018-01-25 | NantOmics, Inc. | Distributed machine learning systems, apparatus, and methods |
US10957442B2 (en) | 2018-12-31 | 2021-03-23 | GE Precision Healthcare, LLC | Facilitating artificial intelligence integration into systems using a distributed learning platform |
CN110807510B (zh) * | 2019-09-24 | 2023-05-09 | 中国矿业大学 | 面向工业大数据的并行学习软测量建模方法 |
CN111914492B (zh) * | 2020-04-28 | 2022-09-13 | 昆明理工大学 | 一种基于进化优化的半监督学习工业过程软测量建模方法 |
CN112989711B (zh) * | 2021-04-25 | 2022-05-20 | 昆明理工大学 | 基于半监督集成学习的金霉素发酵过程软测量建模方法 |
-
2021
- 2021-09-09 CN CN202111054478.9A patent/CN113761748B/zh active Active
-
2022
- 2022-06-23 AU AU2022343574A patent/AU2022343574B2/en active Active
- 2022-06-23 JP JP2022570190A patent/JP7404559B2/ja active Active
- 2022-06-23 WO PCT/CN2022/100744 patent/WO2023035727A1/zh active Application Filing
- 2022-06-23 US US18/002,274 patent/US20240027976A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109635337A (zh) * | 2018-11-13 | 2019-04-16 | 中国矿业大学 | 一种基于块增量随机配置网络的工业过程软测量建模方法 |
WO2021158313A1 (en) * | 2020-02-03 | 2021-08-12 | Intel Corporation | Systems and methods for distributed learning for wireless edge dynamics |
CN113191092A (zh) * | 2020-09-30 | 2021-07-30 | 中国矿业大学 | 一种基于正交增量随机配置网络的工业过程产品质量软测量方法 |
CN112507219A (zh) * | 2020-12-07 | 2021-03-16 | 中国人民大学 | 一种基于联邦学习增强隐私保护的个性化搜索系统 |
CN113761748A (zh) * | 2021-09-09 | 2021-12-07 | 中国矿业大学 | 一种基于联邦增量随机配置网络的工业过程软测量方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116958783A (zh) * | 2023-07-24 | 2023-10-27 | 中国矿业大学 | 基于深度残差二维随机配置网络的轻量型图像识别方法 |
CN116958783B (zh) * | 2023-07-24 | 2024-02-27 | 中国矿业大学 | 基于深度残差二维随机配置网络的轻量型图像识别方法 |
CN117094031A (zh) * | 2023-10-16 | 2023-11-21 | 湘江实验室 | 工业数字孪生数据隐私保护方法及相关介质 |
CN117094031B (zh) * | 2023-10-16 | 2024-02-06 | 湘江实验室 | 工业数字孪生数据隐私保护方法及相关介质 |
Also Published As
Publication number | Publication date |
---|---|
AU2022343574B2 (en) | 2024-06-20 |
US20240027976A1 (en) | 2024-01-25 |
CN113761748B (zh) | 2023-09-15 |
JP2023544935A (ja) | 2023-10-26 |
JP7404559B2 (ja) | 2023-12-25 |
CN113761748A (zh) | 2021-12-07 |
AU2022343574A1 (en) | 2023-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023035727A1 (zh) | 一种基于联邦增量随机配置网络的工业过程软测量方法 | |
Wang et al. | Prediction of bending force in the hot strip rolling process using artificial neural network and genetic algorithm (ANN-GA) | |
CN106570597B (zh) | 一种sdn架构下基于深度学习的内容流行度预测方法 | |
CN112966954B (zh) | 一种基于时间卷积网络的防洪调度方案优选方法 | |
CN106503867A (zh) | 一种遗传算法最小二乘风电功率预测方法 | |
CN109462520A (zh) | 基于lstm模型的网络流量资源态势预测方法 | |
CN110427654A (zh) | 一种基于敏感状态的滑坡预测模型构建方法及系统 | |
Niu et al. | Model turbine heat rate by fast learning network with tuning based on ameliorated krill herd algorithm | |
CN109543916A (zh) | 一种多晶硅还原炉内硅棒生长速率预估模型 | |
CN107463993A (zh) | 基于互信息‑核主成分分析‑Elman网络的中长期径流预报方法 | |
CN114168845B (zh) | 一种基于多任务学习的序列化推荐方法 | |
CN106371316A (zh) | 基于pso‑lssvm的水岛加药在线控制方法和装置 | |
CN110347192A (zh) | 基于注意力机制和自编码器的玻璃炉温智能预测控制方法 | |
CN113191092A (zh) | 一种基于正交增量随机配置网络的工业过程产品质量软测量方法 | |
CN111709519A (zh) | 一种深度学习并行计算架构方法及其超参数自动配置优化 | |
CN111130909B (zh) | 基于自适应储备池esn的网络流量预测方法 | |
CN109493921B (zh) | 一种基于多代理模型的常压精馏过程建模方法 | |
Vakhshouri et al. | Application of adaptive neuro-fuzzy inference system in high strength concrete | |
CN107729988A (zh) | 基于动态深度置信网络的蓝藻水华预测方法 | |
Xia et al. | A multiswarm competitive particle swarm algorithm for optimization control of an ethylene cracking furnace | |
CN112183721B (zh) | 一种基于自适应差分进化的组合水文预测模型的构建方法 | |
Chi et al. | Application of BP neural network based on genetic algorithms optimization in prediction of postgraduate entrance examination | |
Qiu et al. | Air traffic flow of genetic algorithm to optimize wavelet neural network prediction | |
Prakash et al. | Speculation of compressive strength of concrete in real-time | |
CN107025497A (zh) | 一种基于Elman神经网络的电力负荷预警方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022570190 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18002274 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22866202 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022343574 Country of ref document: AU Date of ref document: 20220623 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22866202 Country of ref document: EP Kind code of ref document: A1 |