WO2023035625A1 - 一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统 - Google Patents

一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统 Download PDF

Info

Publication number
WO2023035625A1
WO2023035625A1 PCT/CN2022/089160 CN2022089160W WO2023035625A1 WO 2023035625 A1 WO2023035625 A1 WO 2023035625A1 CN 2022089160 W CN2022089160 W CN 2022089160W WO 2023035625 A1 WO2023035625 A1 WO 2023035625A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracking
time
preset adjustment
angle
photovoltaic
Prior art date
Application number
PCT/CN2022/089160
Other languages
English (en)
French (fr)
Inventor
杨宗军
李凡
陈朋朋
陆建生
Original Assignee
阳光新能源开发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光新能源开发股份有限公司 filed Critical 阳光新能源开发股份有限公司
Priority to EP22866103.9A priority Critical patent/EP4400934A1/en
Publication of WO2023035625A1 publication Critical patent/WO2023035625A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of photovoltaic tracking, and more specifically, to a photovoltaic tracking method, device, tracking controller and photovoltaic tracking system.
  • the power generation efficiency of the photovoltaic module installed on the tracking bracket is related to the angle of the sun's rays.
  • the sun's rays irradiate the surface of the photovoltaic module vertically, the solar energy received by the photovoltaic module is the largest, and the power generation efficiency is the highest at this time.
  • the tracking controller controls the actuator to adjust the angle of the tracking bracket so that the surface of the photovoltaic module is perpendicular to the direction of the sun's rays.
  • the actuator adopts a stepping method, and the tracking controller controls the actuator to adjust the angle of the tracking bracket once according to the preset adjustment time determined every specified time. Then, between the two preset adjustment times, the photovoltaic module The surface is not always perpendicular to the direction of the sun's rays, so that the power generation of photovoltaic modules is not optimal, resulting in power loss of photovoltaic power generation.
  • the power loss can be reduced by reducing the value of the specified time to increase the number of adjustments, but this will affect the reliability of the actuator. Then, how to reduce the power loss of photovoltaic power generation while keeping the original adjustment times unchanged is a technical problem urgently needed to be solved by those skilled in the art.
  • the present invention provides a photovoltaic tracking method, device, tracking controller and photovoltaic tracking system to solve the urgent need to reduce the power loss of photovoltaic power generation while keeping the original adjustment times unchanged.
  • a photovoltaic tracking method applied to a tracking controller comprising:
  • determining an advance adjustment time between the last preset adjustment time and the next preset adjustment time includes:
  • the target time period is located at the last a time period between a preset adjustment moment and said next preset adjustment moment;
  • the advance adjustment time that maximizes the difference is determined.
  • determining an advance adjustment time between the last preset adjustment time and the next preset adjustment time includes:
  • a time between the last preset adjustment time and the next preset adjustment time is randomly selected, and the selected time is used as an advance adjustment time.
  • determining an advance adjustment time between the last preset adjustment time and the next preset adjustment time includes:
  • An intermediate time between the last preset adjustment time and the next preset adjustment time is determined as the advance adjustment time.
  • determining an advance adjustment time between the last preset adjustment time and the next preset adjustment time includes:
  • the advance adjustment time is calculated according to one of the time value of the last preset adjustment time and the time value of the next preset adjustment time, and the advance time interval.
  • determining an advance adjustment time between the last preset adjustment time and the next preset adjustment time includes:
  • the tracking mode is a normal tracking mode and the current moment is within a preset time period
  • an advance adjustment time between the last preset adjustment time and the next preset adjustment time is determined.
  • acquiring the target tracking angle of the tracking bracket at the next preset adjustment moment includes:
  • controlling the angle of the tracking bracket to be adjusted to the target tracking angle includes:
  • a photovoltaic tracking device applied to a tracking controller comprising:
  • a time determination module configured to determine an advance adjustment time between the last preset adjustment time and the next preset adjustment time
  • An angle acquisition module configured to acquire the target tracking angle of the tracking bracket at the next preset adjustment moment
  • An angle adjustment module configured to control the angle of the tracking bracket to be adjusted to the target tracking angle when the current moment is the advance adjustment moment; wherein, at the last preset adjustment moment and the next At the preset adjustment moment, the angle of the tracking bracket is not adjusted.
  • a tracking controller comprising: a memory and a processor
  • the memory is used to store programs
  • the processor invokes the program and is used to execute the above photovoltaic tracking method.
  • a photovoltaic tracking system comprising: a photovoltaic module, a photovoltaic inverter and the above-mentioned tracking controller;
  • the tracking controller is connected to at least one of the photovoltaic components through a mechanical structure, and at least one of the photovoltaic components is connected to the DC side of the photovoltaic inverter.
  • the present invention has the following beneficial effects:
  • the invention provides a photovoltaic tracking method, device, tracking controller and photovoltaic tracking system.
  • the tracking controller does not adjust the angle of the tracking bracket at the last preset adjustment time and the next preset adjustment time. adjustment, but at an advance adjustment moment between the last preset adjustment moment and the next preset adjustment moment, the angle of the tracking bracket is adjusted to the target tracking of the tracking bracket at the next preset adjustment moment Angle, so that in the time period between the previous preset adjustment time and the next preset adjustment time, the degree of sudden change in the power generation of photovoltaic modules is reduced, and the continuity of power generation changes is improved.
  • Adjusting the timing to adjust the tracking angle to make the generating power of the photovoltaic module suddenly change can increase the generating power of the photovoltaic module in the time period between the last preset adjusting moment and the next preset adjusting moment, thereby reducing the power loss of photovoltaic power generation.
  • Fig. 1 is a kind of power curve comparison chart provided by the embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a photovoltaic tracking system provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a curved power scenario provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another curve power scenario provided by an embodiment of the present invention.
  • Fig. 5 is a variation relationship between a photovoltaic module and the azimuth angle of the sun provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of another curve power scenario provided by an embodiment of the present invention.
  • Fig. 7 is a method flowchart of a photovoltaic tracking method provided by an embodiment of the present invention.
  • Fig. 8 is a method flowchart of another photovoltaic tracking method provided by an embodiment of the present invention.
  • Fig. 9 is a schematic structural diagram of a photovoltaic tracking device provided by an embodiment of the present invention.
  • the power generation efficiency of photovoltaic modules is directly related to the irradiation angle of the sun's rays.
  • the tracking controller calculates the azimuth angle of the sun by analyzing meteorological data, and obtains the angle distribution at different times, and then controls the actuator to adjust the tracking bracket (the component is installed on the tracking bracket), so that the component The surface maintains a complementary relationship with the azimuth of the sun (ie, the surface of the module is perpendicular to the direction of the sun's rays).
  • the actuator is a mechanical structure, there is also a certain accuracy error in the control, so it is impossible to achieve true stepless speed regulation. In fact, it adopts the form of stepping. Depending on the time period, it is adjusted every 5-10 minutes. It can be seen that, actually on a small time scale, the surface of the module is not always perpendicular to the direction of the sun's rays.
  • Figure 1 shows the power curve of the photovoltaic tracking system.
  • the thick line is the theoretical power curve of the photovoltaic tracking system
  • the actual tracking curve of the photovoltaic tracking system is a broken line path and is located inside the theoretical power curve. It can be seen that every time the tracking controller moves, it can only ensure that the power at a certain moment is consistent with the theoretical maximum power, and the power at other moments is reduced relative to the theoretical power (the angle deviates from the optimal position).
  • the area gap of the package is the current power loss of the tracker.
  • the actual power can be close to the theoretical power as much as possible by reducing the step size and increasing the number of adjustments.
  • this method will bring higher requirements to the photovoltaic tracking system, reduce the reliability of the current actuator, and affect the cost and mechanical reliability of the photovoltaic tracking system. Therefore, it is necessary to reduce the power generation loss caused by tracking and increase the power generation revenue without increasing the number of adjustments.
  • the inventor found through research that the adjustment angle of the component at each preset adjustment moment can be calculated according to a conventional method.
  • the tracking angle adjustment is not performed at the preset adjustment moment, but at the preset adjustment moment.
  • Angle adjustment is performed at a time ⁇ t in advance to maintain the new posture of each photovoltaic module arriving at the next time in advance, thereby reducing the power loss during the tracking process and increasing the power generation.
  • the tracking controller does not adjust the angle of the tracking bracket at the last preset adjustment time and the next preset adjustment time, but at the last preset adjustment time
  • the angle of the tracking bracket is adjusted to the target tracking angle of the tracking bracket at the next preset adjustment moment, so that at the last preset adjustment moment and the next preset
  • the degree of sudden change in the power generation of photovoltaic modules is reduced, and the continuity of power generation changes is improved.
  • the power generated by the photovoltaic module in the time period between the last preset adjustment time and the next preset adjustment time can be increased, thereby reducing the power loss of photovoltaic power generation.
  • an embodiment of the present invention provides a photovoltaic tracking method, which is applied to a tracking controller in a photovoltaic tracking system.
  • the photovoltaic tracking system includes:
  • Photovoltaic inverter (DC/AC) 12 and photovoltaic modules 13 are composed.
  • the tracking controller 11 is connected to at least one photovoltaic component 13 through a mechanical structure, and can automatically adjust the angle of the photovoltaic component 13 to change the radiation received by the surface of the photovoltaic component 13 .
  • the tracking controller 11 includes a control unit, which is used to collect and calculate the azimuth angle of the sun, and issue a tracking angle control command to the regulating mechanism of the actuator.
  • the tracking controller 11 When a plurality of photovoltaic modules 13 form a photovoltaic array, the tracking controller 11 is connected to the photovoltaic array through a mechanical structure; when there are multiple photovoltaic arrays, the plurality of photovoltaic arrays are electrically connected, and the tracking controller 11 can automatically adjust the angle, changing the radiation received by the surface of the photovoltaic modules in each photovoltaic array.
  • the DC side of the photovoltaic inverter 12 is connected to at least one photovoltaic module 13 .
  • the multiple electrically connected photovoltaic components 13 are connected in series to form a photovoltaic string, and are connected in parallel to the DC side of the photovoltaic inverter 12 .
  • the output end of the photovoltaic inverter 12 is connected to the grid Grid.
  • the photovoltaic inverter 13 operates in the MPPT state, and the tracking controller 11 automatically tracks the maximum irradiation, so that the entire photovoltaic power plant outputs at maximum power.
  • the photovoltaic tracking method in the present invention is applied to the above-mentioned tracking controller 11, and the tracking controller 11 performs angle adjustment at a time when the preset adjustment time is advanced by ⁇ t time.
  • the specific working principle as follows:
  • FIG 3 shows a detailed process example of a conventional tracking strategy.
  • the tracking controller in the photovoltaic tracking system determines that the azimuth of the sun is ⁇ 1, and according to the vertical relationship, it can be concluded that the adjustment angle of the tracking bracket is (90°- ⁇ 1), at this time the tracking controller adjusts the tracking bracket From this angle, the photovoltaic tracking system operates at power point a, and the generated power is consistent with the theoretical power, which is the largest in the current period.
  • the photovoltaic tracking system remains stationary (not adjusted), and the azimuth of the sun is still moving, so the actual power generation curve will be lower than the theoretical curve.
  • the tracking controller obtains the azimuth angle of the sun at this moment as ⁇ 2, and adjusts the angle of the tracking bracket to (90°- ⁇ 2) in the same way, and adjusts the power from point m to power point b, so that the photovoltaic tracking system enters a new transient state Maximum power generation status.
  • ⁇ 2 the azimuth angle of the sun at this moment
  • ⁇ 2 the angle of the tracking bracket
  • Pm ⁇ Pb power change process is amb. Repeating this logic can lead to a series of subsequent repeated actions, forming the diagram in Figure 1. Continuous polyline curve.
  • the photovoltaic tracking system operates at the maximum power point a.
  • the power is running at the m' position.
  • the azimuth angle ⁇ 2 at the next moment t2 is obtained, and the angle of the tracking bracket (90°- ⁇ 2) is calculated. Adjust to this position in advance. That is to say, the existing solution is to adjust the angle at t2, and now at the time t2', the angle is adjusted in advance.
  • the angle is adjusted in advance, it is equivalent to the vertical angle of the surface of the photovoltaic module exceeding the optimal vertical angle of the current theory, waiting for the arrival of the solar azimuth. Since the power is basically unchanged before and after adjustment (equivalent to moving from the left side of the vertical position of the sun to the right side of the vertical position, the left and right sides and the azimuth angle of the sun are mirror images, so the power of the photovoltaic module is basically unchanged), so the power after adjustment is still m 'near the point, but as the time moves to t2, the azimuth of the sun slowly moves to be perpendicular to the surface of the module, at this time the power is the largest, that is, the power point b. Immediately afterwards, the azimuth of the sun exceeds the current set angle, and the actual power begins to be lower than the theoretical power. If the azimuth of the sun is not tracked, it goes along bn'. And so on and on.
  • the holding time is within the [t2-t3] interval.
  • the holding time is within the [t2'-t3'] interval.
  • Figure 5 shows the variation relationship between the components and the sun azimuth.
  • the left side is the conventional mode.
  • the solar azimuth is ⁇ 1
  • the photovoltaic module is perpendicular to it.
  • the solar azimuth changes gradually to ⁇ 2
  • the photovoltaic module does not operate, and the power generation of the photovoltaic module is adjusted from Pa to Pm.
  • the power generated by the photovoltaic module becomes Pb.
  • the power in the t1-t2 time interval can be approximately calculated as the time integral of the average value of Pa and Pm.
  • the figure on the right shows the control strategy in the embodiment of the present invention.
  • the azimuth of the sun is ⁇ 1
  • the photovoltaic modules are perpendicular to it. Adjust the module angle to (90°- ⁇ 2), the photovoltaic module is ahead of the sun angle position, the power of the photovoltaic module is adjusted from Pa to Pm', when the sun passes through [t2'-t2-t3'] time period, the power of the photovoltaic module respectively experiences Pm' power, Pb power, Pn power. If mapped to the [t1-t2] interval, the power of the control strategy in this embodiment of the present invention in this interval can be approximately calculated as:
  • control strategy in the present invention increases the power generation.
  • the photovoltaic tracking method can include:
  • the aforementioned t1 and t2 are referred to as preset adjustment moments in this embodiment.
  • the preset adjustment time such as the time after t2 is advanced, is referred to as the advance adjustment time in this embodiment.
  • the advance adjustment time may be a fixed value, or may be set according to actual conditions during each adjustment.
  • the tracking controller needs to obtain the tracking mode and the current time of the photovoltaic tracking system.
  • the tracking mode is the normal tracking mode and the current time is in the preset In the case of the time period (9.00-15.00), the photovoltaic tracking method in this scheme is applicable.
  • the photovoltaic tracking method in the present invention is no longer applicable.
  • the current time in the present invention is not the above-mentioned preset adjustment time, but is between the previous preset adjustment time and the next preset adjustment time, such as between t1 and t2, the present invention can be implemented The scheme for determining the adjustment time in advance.
  • a moment between two preset adjustment moments can be selected and used as the advance adjustment moment.
  • the middle time between the two preset adjustment times can be used as the advance adjustment time, which is a special case of the first implementation method.
  • This method is relatively simple to implement, and can increase power generation and reduce power loss the goal of.
  • the formula for calculating the advance time interval may be:
  • t2 may be the time value of the next preset adjustment time
  • t1 may be the time value of the previous preset adjustment time
  • ⁇ t is the advance time interval
  • k is the adjustment coefficient, which can be set according to the actual scene.
  • ⁇ t can be calculated according to the k set by the technician, and then the time value obtained by t1+ ⁇ t can be used as the advance adjustment time, or t2- ⁇ t can be obtained The time value of is used as the advance adjustment time.
  • step S11 includes:
  • the target time period is a time period between the last preset adjustment moment and the next preset adjustment moment.
  • this step calculates the above-mentioned W2, and the specific implementation process refers to the corresponding description above. Among them, W2 contains t2'.
  • the tracking controller pre-calculates the relationship between the preset adjustment time and the tracking angle of the tracking bracket, for example, 09.00 corresponds to tracking angle 1, 09.10 corresponds to tracking angle 2, 09.20 corresponds to tracking angle 3, and so on.
  • association relationship is obtained, and the tracking angle corresponding to the next preset adjustment time is queried from the association relationship, and used as the target tracking angle.
  • the tracking controller will output an angle adjustment instruction including the target tracking angle to the actuator, and the actuator will adjust the angle of the tracking bracket to the target tracking angle.
  • the angle of the tracking bracket is not adjusted. That is to say, in the present invention, the angle of the tracking bracket is not adjusted at the above-mentioned moments t1 and t2, but the angle of the tracking bracket is adjusted at the moments t2' and t3' without changing the total number of adjustments, avoiding This reduces the cost and reliability of the photovoltaic tracking system.
  • the tracking controller does not adjust the angle of the tracking bracket at the last preset adjustment moment and the next preset adjustment moment, but at the last preset adjustment moment and the next preset adjustment moment. Adjust the angle of the tracking bracket to the target tracking angle of the tracking bracket at the next preset adjustment moment at an advance adjustment moment between the preset adjustment moments, so that the angle between the last preset adjustment moment and the next preset adjustment moment During the period of time, it reduces the degree of sudden change in the power generation of photovoltaic modules and improves the continuity of power generation changes.
  • the method of the embodiment of the present invention is simple, does not increase any data collection, only adjusts the tracking sequence, and is easy to operate.
  • the photovoltaic tracking device includes:
  • a time determination module 11 configured to determine an advance adjustment time between the last preset adjustment time and the next preset adjustment time
  • An angle acquisition module 12 configured to acquire the target tracking angle of the tracking bracket at the next preset adjustment moment
  • An angle adjustment module 13 configured to control the angle of the tracking bracket to be adjusted to the target tracking angle when the current moment is the advance adjustment moment; wherein, at the last preset adjustment moment and the next At a preset adjustment time, the angle of the tracking bracket is not adjusted.
  • the moment determination module 11 includes:
  • the first calculation submodule is used to calculate the sum of the first generated power in the target time period when the tracking angle is adjusted respectively at the last preset adjustment time and the next preset adjustment time;
  • the target The time period is the time period between the last preset adjustment moment and the next preset adjustment moment;
  • the second calculation sub-module is used to calculate the tracking angle adjustment at the previous preset adjustment time and the next preset adjustment time, and the tracking angle adjustment is performed at the advance adjustment time.
  • the third calculation submodule is used to calculate the difference between the sum of the first generated power and the sum of the second generated power
  • the time determination sub-module is used to determine the advance adjustment time that maximizes the difference.
  • moment determination module 11 is specifically used for:
  • a time between the last preset adjustment time and the next preset adjustment time is randomly selected, and the selected time is used as an advance adjustment time.
  • moment determination module 11 is specifically used for:
  • An intermediate time between the last preset adjustment time and the next preset adjustment time is determined as the advance adjustment time.
  • moment determination module 11 is specifically used for:
  • moment determination module 11 is specifically used for:
  • the tracking mode is the normal tracking mode and the current time is within the preset time period, if the current time is between the previous preset adjustment time and the next preset between the adjustment times, then determine the advance adjustment time between the last preset adjustment time and the next preset adjustment time.
  • angle acquisition module 12 is specifically used for:
  • angle adjustment module 13 is specifically used for:
  • the tracking controller does not adjust the angle of the tracking bracket at the last preset adjustment moment and the next preset adjustment moment, but at the last preset adjustment moment and the next preset adjustment moment. Adjust the angle of the tracking bracket to the target tracking angle of the tracking bracket at the next preset adjustment moment at an advance adjustment moment between the preset adjustment moments, so that the angle between the last preset adjustment moment and the next preset adjustment moment During the period of time, it reduces the degree of sudden change in the power generation of photovoltaic modules and improves the continuity of power generation changes.
  • another embodiment of the present invention provides a tracking controller, including: a memory and a processor;
  • the memory is used to store programs
  • the processor invokes the program and is used to execute the photovoltaic tracking method as described above.
  • another embodiment of the present invention provides a photovoltaic tracking system, including: photovoltaic modules, photovoltaic inverters and the aforementioned tracking controller;
  • the tracking controller is connected to at least one of the photovoltaic components through a mechanical structure, and at least one of the photovoltaic components is connected to the DC side of the photovoltaic inverter.
  • the tracking controller does not adjust the angle of the tracking bracket at the last preset adjustment moment and the next preset adjustment moment, but at the last preset adjustment moment and the next preset adjustment moment. Adjust the angle of the tracking bracket to the target tracking angle of the tracking bracket at the next preset adjustment moment at an advance adjustment moment between the preset adjustment moments, so that the angle between the last preset adjustment moment and the next preset adjustment moment During the period of time, it reduces the degree of sudden change in the power generation of photovoltaic modules and improves the continuity of power generation changes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种光伏跟踪方法、装置、跟踪控制器(11)及光伏跟踪系统,跟踪控制器(11)并未在上一预设调整时刻和下一预设调整时刻对跟踪支架的角度进行调整,而是在位于上一预设调整时刻和下一预设调整时刻之间的提前调整时刻,将跟踪支架的角度调整为下一预设调整时刻的跟踪支架的目标跟踪角度,使得在上一预设调整时刻和下一预设调整时刻之间的时间段内,降低了光伏组件发电功率的突变程度,提高发电功率变化的连续性,相比于在每一预设调整时刻调整跟踪角度使得光伏组件的发电功率突变的方式,能够提高上一预设调整时刻和下一预设调整时刻之间的时间段的光伏组件的发电功率,进而降低光伏发电的功率损失。

Description

一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统
本申请要求于2021年9月8日提交中国专利局、申请号为202111049082.5、发明名称为“一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统”的国内申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光伏跟踪领域,更具体的说,涉及一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统。
背景技术
安装在跟踪支架上的光伏组件的发电效率与太阳光线的照射角度相关,在太阳光线垂直照射光伏组件表面时,光伏组件接收的太阳能最大,此时的发电效率最高。
在实际应用中,通过跟踪控制器控制执行机构调节跟踪支架的角度,使得光伏组件表面与太阳光线方向垂直。其中,执行机构采用的是步进方式,跟踪控制器在根据每隔指定时间确定的预设调整时刻,控制执行机构调节一次跟踪支架的角度,则在两个预设调整时刻之间,光伏组件表面并不是一直垂直于太阳光线方向,使得光伏组件的发电功率不是最优,造成光伏发电的功率损失。
在这种情况下,能够通过减少指定时间的数值以增加调节次数的方式来降低功率损失,但是会对执行机构的可靠性造成影响。那么,如何在保持原有的调节次数不变的情况下,降低光伏发电的功率损失,这是本领域技术人员亟需解决的技术问题。
发明内容
有鉴于此,本发明提供一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统,以解决亟需在保持原有的调节次数不变的情况下,降低光伏发 电的功率损失的问题。
为解决上述技术问题,本发明采用了如下技术方案:
一种光伏跟踪方法,应用于跟踪控制器,所述光伏跟踪方法包括:
确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻;
获取所述下一预设调整时刻的跟踪支架的目标跟踪角度;
在当前时刻为所述提前调整时刻的情况下,控制所述跟踪支架的角度调整为所述目标跟踪角度;其中,在所述上一预设调整时刻和所述下一预设调整时刻时,所述跟踪支架的角度未被调整。
可选地,确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,包括:
计算在所述上一预设调整时刻和所述下一预设调整时刻分别进行跟踪角度调整的情况下,目标时间段的第一发电功率之和;所述目标时间段为位于所述上一预设调整时刻和所述下一预设调整时刻之间的时间段;
计算在所述上一预设调整时刻和所述下一预设调整时刻均未进行跟踪角度调整、且在所述提前调整时刻进行跟踪角度调整的情况下,所述目标时间段的第二发电功率之和;
计算所述第一发电功率之和、与所述第二发电功率之和的差值;
确定使得所述差值最大的提前调整时刻。
可选地,确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,包括:
随机选择位于所述上一预设调整时刻和所述下一预设调整时刻之间的一时刻,并将选择的所述时刻作为提前调整时刻。
可选地,确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,包括:
将所述上一预设调整时刻和所述下一预设调整时刻之间的中间时刻,确定为提前调整时刻。
可选地,确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,包括:
基于所述上一预设调整时刻的时刻值和所述下一预设调整时刻的时刻值,确定提前时间间隔;
根据所述上一预设调整时刻的时刻值和所述下一预设调整时刻的时刻值之一、以及所述提前时间间隔,计算提前调整时刻。
可选地,确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,包括:
获取光伏跟踪系统的跟踪模式,以及当前时刻;
在所述跟踪模式为正常跟踪模式且所述当前时刻位于预设时间段的情况下,
若当前时刻位于上一预设调整时刻和下一预设调整时刻之间,则确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻。
可选地,获取所述下一预设调整时刻的跟踪支架的目标跟踪角度,包括:
获取预先设定的预设调整时刻与跟踪支架的跟踪角度之间的关联关系;
从所述关联关系中,查询所述下一预设调整时刻对应的跟踪角度,并作为目标跟踪角度。
可选地,控制所述跟踪支架的角度调整为所述目标跟踪角度,包括:
输出包括所述目标跟踪角度的角度调整指令至执行机构,以使所述执行机构将所述跟踪支架的角度调整为所述目标跟踪角度。
一种光伏跟踪装置,应用于跟踪控制器,所述光伏跟踪装置包括:
时刻确定模块,用于确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻;
角度获取模块,用于获取所述下一预设调整时刻的跟踪支架的目标跟踪角度;
角度调整模块,用于在当前时刻为所述提前调整时刻的情况下,控制所述跟踪支架的角度调整为所述目标跟踪角度;其中,在所述上一预设调整时刻和所述下一预设调整时刻时,所述跟踪支架的角度未被调整。
一种跟踪控制器,包括:存储器和处理器;
其中,所述存储器用于存储程序;
处理器调用程序并用于执行上述的光伏跟踪方法。
一种光伏跟踪系统,包括:光伏组件、光伏逆变器和上述的跟踪控制器;
所述跟踪控制器与至少一个所述光伏组件通过机械结构连接,至少一个所述光伏组件连接至所述光伏逆变器的直流侧。
相较于现有技术,本发明具有以下有益效果:
本发明提供了一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统,本发明中,跟踪控制器并未在上一预设调整时刻和所述下一预设调整时刻对跟踪支架的角度进行调整,而是在位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,将跟踪支架的角度调整为下一预设调整时刻的跟踪支架的目标跟踪角度,使得在上一预设调整时刻和下一预设调整时刻之间的时间段内,降低了光伏组件发电功率的突变程度,提高发电功率变化的连续性,相比于在每一预设调整时刻调整跟踪角度使得光伏组件的发电功率突变的方式,能够提高上一预设调整时刻和下一预设调整时刻之间的时间段的光伏组件的发电功率,进而降低光伏发电的功率损失。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种功率曲线对比图;
图2为本发明实施例提供的一种光伏跟踪系统的结构示意图;
图3为本发明实施例提供的一种曲线功率场景示意图;
图4为本发明实施例提供的另一种曲线功率场景示意图;
图5为本发明实施例提供的一种光伏组件与太阳方位角之间的变化关系;
图6为本发明实施例提供的再一种曲线功率场景示意图;
图7为本发明实施例提供的一种光伏跟踪方法的方法流程图;
图8为本发明实施例提供的另一种光伏跟踪方法的方法流程图;
图9为本发明实施例提供的一种光伏跟踪装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
光伏组件的发电效率与太阳光线的照射角有直接关系,太阳光线垂直照射光伏组件表面时,光伏组件接收的太阳能最多,此时发电效果最高。例如在单轴光伏跟踪系统中,跟踪控制器通过分析气象数据,计算出太阳的方位角,得出不同时刻的角度分布,然后控制执行机构调节跟踪支架(组件安装在跟踪支架上),使得组件表面与太阳的方位角保持互余关系(即组件表面与太阳光线方向垂直)。
由于执行机构是机械结构,控制上也有一定精度误差,所以无法做到真正的无级调速,实际是采用步进的形式,根据时间段不同,大概5-10分钟才调节一次。由此可见,实际在较小的时间尺度下,组件表面并不是一直垂直于太阳光线方向的。
参照图1,图1展示了光伏跟踪系统的功率曲线。其中,粗线条为光伏跟踪系统的理论功率曲线,而由于跟踪器是步进式动作,所以光伏跟踪系统的实际跟踪曲线是一个折线路径,且位于理论功率曲线的内部。由此可见,每次跟踪控制器动作,仅能保证某一瞬间功率与理论最大功率一致,其他时刻的功率相对理论功率都是减少的(角度偏离最佳位置),此时两个 曲线之间包裹的面积空隙,即是跟踪器当前的损失功率。
为了解决上述的功率损失的问题,可以通过减小步长,增加调节次数,使得实际功率尽力逼近理论功率。但是这种方法会给光伏跟踪系统带来更高的要求,会降低目前的执行机构的可靠性,使得光伏跟踪系统的成本和机械可靠性都有影响。为此,需要在不增加调节次数的情况下,减小跟踪带来的发电损失,提高发电收益。
为此,发明人经过研究发现,能够根据常规方法计算得到组件在每个预设调整时刻的调整角度,在每次调整时,不在预设调整时刻进行跟踪角度调整,而是在预设调整时刻提前一个△t时间的时刻进行角度调节,保持每次光伏组件提前到达下一个时刻的新姿态,从而减少跟踪过程的功率损失,提高发电量。
更具体的,本发明实施例中,跟踪控制器并未在上一预设调整时刻和所述下一预设调整时刻对跟踪支架的角度进行调整,而是在位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,将跟踪支架的角度调整为下一预设调整时刻的跟踪支架的目标跟踪角度,使得在上一预设调整时刻和下一预设调整时刻之间的时间段内,降低了光伏组件发电功率的突变程度,提高发电功率变化的连续性,相比于在每一预设调整时刻调整跟踪角度使得光伏组件的发电功率突变的方式,能够提高上一预设调整时刻和下一预设调整时刻之间的时间段的光伏组件的发电功率,进而降低光伏发电的功率损失。
在上述实施例的基础上,本发明实施例提供了一种光伏跟踪方法,应用于光伏跟踪系统中的跟踪控制器。参照图2,光伏跟踪系统包括:
跟踪控制器11、光伏逆变器(DC/AC)12和光伏组件13组成。
跟踪控制器11与至少一个光伏组件13通过机械结构连接,可以自动调整光伏组件13的角度,以改变光伏组件13表面接收到的辐照。跟踪控制器11中包含了控制单元,用于采集计算太阳的方位角,并下发跟踪角度控制指令至执行机构的调节机构。
当多个光伏组件13组成光伏阵列时,跟踪控制器11与光伏阵列通过机械结构连接,当光伏阵列为多个时,多个光伏阵列通过电气连接,跟踪控 制器11可以自动调整各个光伏阵列的角度,改变每个光伏阵列中光伏组件表面接收到的辐射。
光伏逆变器12的直流侧与至少一个光伏组件13连接。当有多个光伏组件13时,多个通过电气连接的光伏组件13串联成光伏组串、且并联至光伏逆变器12的直流侧。其中,光伏逆变器12输出端连接电网Grid。
在正常情况下,光伏逆变器13运行在MPPT状态,跟踪控制器11自动跟踪最大辐照,使得整个光伏电站在最大功率下输出。
在上述光伏跟踪系统的结构的基础上,本发明中的光伏跟踪方法应用于上述的跟踪控制器11,跟踪控制器11在预设调整时刻提前一个△t时间的时刻进行角度调节,具体工作原理如下:
图3展示了常规跟踪策略的一个细节过程示例。假定在t1时刻,光伏跟踪系统中的跟踪控制器确定出太阳的方位角为θ1,根据垂直关系,可以得出跟踪支架的调节角度为(90°-θ1),此时跟踪控制器调节跟踪支架到该角度,光伏跟踪系统运行在功率a点,发电功率与理论功率一致,是当期最大的。随着时间推移,在t2时刻到来之前,光伏跟踪系统是保持不动的(不调节),而太阳的方位角还在持续移动,故实际发电曲线会低于理论曲线。到了t2时刻,跟踪控制器获得了此刻太阳的方位角为θ2,同理调节跟踪支架角度为(90°-θ2),功率从m点调整到功率b点,使光伏跟踪系统进入新的瞬态最大发电状态。需要说明的是,此刻角度从θ1→θ2的转换,引起了功率从Pm→Pb的突变,功率变化过程为amb,按照该逻辑反复下去,可以得出后续一系列重复动作,形成了图1的连续折线曲线。
在上述过程中,可以看出,光伏跟踪系统的调节一直是滞后于太阳方位角变化的,功率曲线沿着amb线路前进,在跟踪控制器保持不动的△t(t2-t1)时间内,发电量存在一定的损失,即图中曲线和折线包裹的部分。
为了减小功率损失,对原控制策略做了改进,具体参照图4。其中,太阳的方位角计算仍按照常规的方式,但是,跟踪控制器动作时间做了超前调整,并不在图3中的t1、t2、t3时刻进行调节,而是在t1和t2之间的一个时刻进行调节,也即在t2时刻之前的一个时刻t2’进行调节。在t2和t3之间的一个时刻进行调节,也即在t3时刻之前的一个时刻t3’进行调节。
具体的,假定在t1时刻,方位角为θ1时,光伏跟踪系统运行在最大功率a点。随着时间推移,到了t2’时刻,(t2’<t2),功率运行在m’位置,此时,获取下一时刻t2的方位角θ2,计算出跟踪支架的角度(90°-θ2),提前调节到该位置。也就是说,现有方案是在t2时调整角度,现在是在t2’时刻,提前调整了角度。
由于角度是超前调节的,相当于光伏组件表面的垂直角度超过了当前理论的最佳垂直角度,在等待太阳方位角的到来。由于调节前后功率基本不变(相当于从太阳垂直位置的左侧移到了垂直位置的右侧,左右和太阳方位角呈镜像结构,所以光伏组件功率基本不变),故调节后功率还在m’点附近,但是随着时间向t2时刻迁移,太阳方位角慢慢移动到垂直于组件表面,此时功率最大,即功率b点。紧接着,太阳方位角又超过了当前设定的角度,实际功率又开始低于理论功率,未跟踪上太阳方位角,则沿着bn’走去。后面如此反复。
在这个过程中,可以看出,实际计算的方位角度并没有发生变化,仍是原来的θ1、θ2……,只是提前了调节时刻,在太阳最佳垂直时刻到来之前,提前调整了新角度,使得新的实际功率曲线沿着am’b运行,而不是amb运行。从图4可见,新功率曲线与理论功率曲线包裹的功率损失面积,小于现有方法(图3)的功率损失面积,即S(am’b)<S(amb),则对应的功率损失必然更小,发电量更高。
对于现有方法,方位角为θ2时,保持时间在【t2-t3】区间内,在本发明实施例中,方位角为θ2时,保持时间在【t2’-t3’】区间内,可见,调整的时间间隔仍是不变的,则调节次数未增加,即通过本发明实施例,实现了在调节次数不变的情况下,降低功率损失的效果。
为了更清楚的说明上述过程,可以结合图5,从光伏组件的角度进一步说明调节过程与功率的变化。图5给出了组件与太阳方位角之间的变化关系。
左侧是常规模式,在t1时刻,太阳方位角为θ1,光伏组件与之垂直,当太阳方位角变化逐步移到θ2时,光伏组件未动作,光伏组件的发电功率从Pa调整到Pm,最后在t2时刻进行调节,光伏组件的发电功率变为Pb。t1- t2时间区间的功率可以近似计算为Pa与Pm的平均值在时间上的积分。
Figure PCTCN2022089160-appb-000001
右侧图为本发明实施例中的控制策略,在t1时刻,太阳方位角为θ1,光伏组件与之垂直,当太阳方位角变化到时间t2’时,即还未到达t2时刻,就开始提前调节组件角度到(90°-θ2),光伏组件相对太阳角度位置超前,光伏组件的功率从Pa调整到Pm’,在太阳经过【t2’-t2-t3’】时间段,光伏组件功率分别经历了Pm’功率,Pb功率,Pn功率。如果映射到【t1-t2】区间,本发明实施例中的控制策略在此区间的功率可以近似计算为:
Figure PCTCN2022089160-appb-000002
两者相减,
Figure PCTCN2022089160-appb-000003
由上可见,本发明中的控制策略使得发电功率提升。
上述过程分析了理论功率处于上升状态的跟踪效果,如果理论功率处于下降趋势,控制策略也是同样适用的,可以结合图6来看,具体过程不再累述。
上述实施例给出了提前进行跟踪角度调节的方式,该方式能够提高发电功率,降低功率损失。在实际应用中,提前调节的角度如何确定,是本领域技术人员亟需解决的技术手段。为了解决这一技术问题,可以参照本发明中的光伏跟踪方法,参照图3,光伏跟踪方法可以包括:
S11、确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻。
在实际应用中,上述的t1和t2称为本实施例中的预设调整时刻。将预设调整时刻,如t2提前之后的时刻称为本实施例中的提前调整时刻。本实施例中,提前调整时刻可以是固定值,也可以是每次调节时根据实际情况设定。
在确定提前调整时刻时,有一定的前提条件,本实施例中,跟踪控制器需要获取光伏跟踪系统的跟踪模式以及当前时刻,在所述跟踪模式为正常跟踪模式且所述当前时刻位于预设时间段(9.00-15.00)的情况下,适用于本方案中的光伏跟踪方法。
若是光伏跟踪系统使用逆跟踪模式,则本发明中的光伏跟踪方法不再适用。
另外,在本发明中的当前时刻不是上述的预设调整时刻,而是位于上一预设调整时刻和下一预设调整时刻之间,如在t1和t2时刻之间时,可以执行本发明中的确定提前调整时刻的方案。
本发明的另一实现方式中,给出了多种确定提前调整时刻的方案,现分别介绍如下:
1、随机选择位于所述上一预设调整时刻和所述下一预设调整时刻之间的一时刻,并将选择的所述时刻作为提前调整时刻。
本实施例中,可以任选两个预设调整时刻之间的一时刻,并将其作为提前调整时刻。
由于本方案中的提前调整时刻是早于下一预设调整时刻的,所以选择上一预设调整时刻和所述下一预设调整时刻之间的哪一时刻,均能够实现提高发电功率,降低功率损失的目的。
2、将所述上一预设调整时刻和所述下一预设调整时刻之间的中间时刻,确定为提前调整时刻。
本实施例中,可以将两个预设调整时刻的中间时刻作为提前调整时刻,即是第一种实现方式的某一特例,这种方式实现较简单,且能够达到提高发电功率,降低功率损失的目的。
3、基于所述上一预设调整时刻的时刻值和所述下一预设调整时刻的时刻值,确定提前时间间隔,根据所述上一预设调整时刻的时刻值和所述下一预设调整时刻的时刻值之一、以及所述提前时间间隔,计算提前调整时刻。
具体的,计算提前时间间隔的公式可以为:
△t=k(t2-t1)。
其中,t2可以为下一预设调整时刻的时刻值,t1可以为上一预设调整时刻的时刻值。△t为提前时间间隔,k为调整系数,可以根据实际场景设定。
本实施例中,在已知t1和t2的情况下,可以根据技术人员设定的k,计算得到△t,然后将t1+△t得到的时刻值作为提前调整时刻,或者将t2-△t得到的时刻值作为提前调整时刻。
4、参照图8,步骤S11包括:
S21、计算在所述上一预设调整时刻和所述下一预设调整时刻分别进行跟踪角度调整的情况下,目标时间段的第一发电功率之和。
所述目标时间段为位于所述上一预设调整时刻和所述下一预设调整时刻之间的时间段。
需要说明的是,本步骤计算的是上述的W1,具体实现过程参照上述相应说明。
S22、计算在所述上一预设调整时刻和所述下一预设调整时刻均未进行跟踪角度调整、且在所述提前调整时刻进行跟踪角度调整的情况下,所述目标时间段的第二发电功率之和。
需要说明的是,本步骤计算的是上述的W2,具体实现过程参照上述相应说明。其中,W2中含有t2’。
S23、计算所述第一发电功率之和、与所述第二发电功率之和的差值。
本实施例中,差值即为上述的△W,具体实现过程参照上述相应说明。
S24、确定使得所述差值最大的提前调整时刻。
具体的,计算在t2’位于t1-t2之间的任意时刻的△W,确定出最大的△W,并确定该最大的△W对应的提前调整时刻,即为本实施例中所需的提前调整时刻。
S12、获取所述下一预设调整时刻的跟踪支架的目标跟踪角度。
本实施例中,跟踪控制器预先计算得到预设调整时刻与跟踪支架的跟踪角度之间的关联关系,如09.00对应跟踪角度1,09.10对应跟踪角度2,09.20对应跟踪角度3等等。
则本实施例中,获取该关联关系,并从所述关联关系中,查询所述下 一预设调整时刻对应的跟踪角度,并作为目标跟踪角度。
S13、在当前时刻为所述提前调整时刻的情况下,控制所述跟踪支架的角度调整为所述目标跟踪角度。
在实际应用中,跟踪控制器会输出包括所述目标跟踪角度的角度调整指令至执行机构,所述执行机构将所述跟踪支架的角度调整为所述目标跟踪角度。
需要说明的是,在所述上一预设调整时刻和所述下一预设调整时刻时,所述跟踪支架的角度未被调整。也就是说,本发明中,未在上述的t1、t2时刻对跟踪支架的角度进行调整,而是在t2’、t3’时刻对跟踪支架的角度进行调整,并未改变总的调整次数,避免了光伏跟踪系统的成本增加和可靠性降低。
本实施例中,跟踪控制器并未在上一预设调整时刻和所述下一预设调整时刻对跟踪支架的角度进行调整,而是在位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,将跟踪支架的角度调整为下一预设调整时刻的跟踪支架的目标跟踪角度,使得在上一预设调整时刻和下一预设调整时刻之间的时间段内,降低了光伏组件发电功率的突变程度,提高发电功率变化的连续性,相比于在每一预设调整时刻调整跟踪角度使得光伏组件的发电功率突变的方式,能够提高上一预设调整时刻和下一预设调整时刻之间的时间段的光伏组件的发电功率,进而降低光伏发电的功率损失。
另外,本发明实施例的方法简单,不增加任何数据采集,只是调整了跟踪时序,操作简单。
可选地,在上述光伏跟踪方法的实施例的基础上,本发明的另一实施例提供了一种光伏跟踪装置,应用于跟踪控制器,参照图9,所述光伏跟踪装置包括:
时刻确定模块11,用于确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻;
角度获取模块12,用于获取所述下一预设调整时刻的跟踪支架的目标跟踪角度;
角度调整模块13,用于在当前时刻为所述提前调整时刻的情况下,控制所述跟踪支架的角度调整为所述目标跟踪角度;其中,在所述上一预设调整时刻和所述下一预设调整时刻时,所述跟踪支架的角度未被调整。
进一步,时刻确定模块11包括:
第一计算子模块,用于计算在所述上一预设调整时刻和所述下一预设调整时刻分别进行跟踪角度调整的情况下,目标时间段的第一发电功率之和;所述目标时间段为位于所述上一预设调整时刻和所述下一预设调整时刻之间的时间段;
第二计算子模块,用于计算在所述上一预设调整时刻和所述下一预设调整时刻均未进行跟踪角度调整、且在所述提前调整时刻进行跟踪角度调整的情况下,所述目标时间段的第二发电功率之和;
第三计算子模块,用于计算所述第一发电功率之和、与所述第二发电功率之和的差值;
时刻确定子模块,用于确定使得所述差值最大的提前调整时刻。
进一步,时刻确定模块11具体用于:
随机选择位于所述上一预设调整时刻和所述下一预设调整时刻之间的一时刻,并将选择的所述时刻作为提前调整时刻。
进一步,时刻确定模块11具体用于:
将所述上一预设调整时刻和所述下一预设调整时刻之间的中间时刻,确定为提前调整时刻。
进一步,时刻确定模块11具体用于:
基于所述上一预设调整时刻的时刻值和所述下一预设调整时刻的时刻值,确定提前时间间隔,根据所述上一预设调整时刻的时刻值和所述下一预设调整时刻的时刻值之一、以及所述提前时间间隔,计算提前调整时刻。
进一步,时刻确定模块11具体用于:
获取光伏跟踪系统的跟踪模式,以及当前时刻,在所述跟踪模式为正常跟踪模式且所述当前时刻位于预设时间段的情况下,若当前时刻位于上一预设调整时刻和下一预设调整时刻之间,则确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻。
进一步,角度获取模块12具体用于:
获取预先设定的预设调整时刻与跟踪支架的跟踪角度之间的关联关系;
从所述关联关系中,查询所述下一预设调整时刻对应的跟踪角度,并作为目标跟踪角度。
进一步,角度调整模块13具体用于:
输出包括所述目标跟踪角度的角度调整指令至执行机构,以使所述执行机构将所述跟踪支架的角度调整为所述目标跟踪角度。
本实施例中,跟踪控制器并未在上一预设调整时刻和所述下一预设调整时刻对跟踪支架的角度进行调整,而是在位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,将跟踪支架的角度调整为下一预设调整时刻的跟踪支架的目标跟踪角度,使得在上一预设调整时刻和下一预设调整时刻之间的时间段内,降低了光伏组件发电功率的突变程度,提高发电功率变化的连续性,相比于在每一预设调整时刻调整跟踪角度使得光伏组件的发电功率突变的方式,能够提高上一预设调整时刻和下一预设调整时刻之间的时间段的光伏组件的发电功率,进而降低光伏发电的功率损失。
需要说明的是,本实施例中的各个模块和子模块的工作过程,请参照上述实施例中的相应说明,在此不再赘述。
可选地,在上述光伏跟踪方法及装置的实施例的基础上,本发明的另一实施例提供了一种跟踪控制器,包括:存储器和处理器;
其中,所述存储器用于存储程序;
处理器调用程序并用于执行如上述的光伏跟踪方法。
可选地,在上述跟踪控制器的实施例的基础上,本发明的另一实施例提供了一种光伏跟踪系统,包括:光伏组件、光伏逆变器上述的跟踪控制器;
所述跟踪控制器与至少一个所述光伏组件通过机械结构连接,至少一个所述光伏组件连接至所述光伏逆变器的直流侧。
需要说明的是,本实施例中的光伏跟踪系统的具体结构介绍,请参照 上述实施例中的相应说明,在此不再赘述。
本实施例中,跟踪控制器并未在上一预设调整时刻和所述下一预设调整时刻对跟踪支架的角度进行调整,而是在位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,将跟踪支架的角度调整为下一预设调整时刻的跟踪支架的目标跟踪角度,使得在上一预设调整时刻和下一预设调整时刻之间的时间段内,降低了光伏组件发电功率的突变程度,提高发电功率变化的连续性,相比于在每一预设调整时刻调整跟踪角度使得光伏组件的发电功率突变的方式,能够提高上一预设调整时刻和下一预设调整时刻之间的时间段的光伏组件的发电功率,进而降低光伏发电的功率损失。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种光伏跟踪方法,其特征在于,应用于跟踪控制器,所述光伏跟踪方法包括:
    确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻;
    获取所述下一预设调整时刻的跟踪支架的目标跟踪角度;
    在当前时刻为所述提前调整时刻的情况下,控制所述跟踪支架的角度调整为所述目标跟踪角度;其中,在所述上一预设调整时刻和所述下一预设调整时刻时,所述跟踪支架的角度未被调整。
  2. 根据权利要求1所述的光伏跟踪方法,其特征在于,确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,包括:
    计算在所述上一预设调整时刻和所述下一预设调整时刻分别进行跟踪角度调整的情况下,目标时间段的第一发电功率之和;所述目标时间段为位于所述上一预设调整时刻和所述下一预设调整时刻之间的时间段;
    计算在所述上一预设调整时刻和所述下一预设调整时刻均未进行跟踪角度调整、且在所述提前调整时刻进行跟踪角度调整的情况下,所述目标时间段的第二发电功率之和;
    计算所述第一发电功率之和、与所述第二发电功率之和的差值;
    确定使得所述差值最大的提前调整时刻。
  3. 根据权利要求1所述的光伏跟踪方法,其特征在于,确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,包括:
    随机选择位于所述上一预设调整时刻和所述下一预设调整时刻之间的一时刻,并将选择的所述时刻作为提前调整时刻。
  4. 根据权利要求1所述的光伏跟踪方法,其特征在于,确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,包括:
    将所述上一预设调整时刻和所述下一预设调整时刻之间的中间时刻,确定为提前调整时刻。
  5. 根据权利要求1所述的光伏跟踪方法,其特征在于,确定位于所述 上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,包括:
    基于所述上一预设调整时刻的时刻值和所述下一预设调整时刻的时刻值,确定提前时间间隔;
    根据所述上一预设调整时刻的时刻值和所述下一预设调整时刻的时刻值之一、以及所述提前时间间隔,计算提前调整时刻。
  6. 根据权利要求1所述的光伏跟踪方法,其特征在于,确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻,包括:
    获取光伏跟踪系统的跟踪模式,以及当前时刻;
    在所述跟踪模式为正常跟踪模式且所述当前时刻位于预设时间段的情况下,
    若当前时刻位于上一预设调整时刻和下一预设调整时刻之间,则确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻。
  7. 根据权利要求1所述的光伏跟踪方法,其特征在于,获取所述下一预设调整时刻的跟踪支架的目标跟踪角度,包括:
    获取预先设定的预设调整时刻与跟踪支架的跟踪角度之间的关联关系;
    从所述关联关系中,查询所述下一预设调整时刻对应的跟踪角度,并作为目标跟踪角度。
  8. 根据权利要求1所述的光伏跟踪方法,其特征在于,控制所述跟踪支架的角度调整为所述目标跟踪角度,包括:
    输出包括所述目标跟踪角度的角度调整指令至执行机构,以使所述执行机构将所述跟踪支架的角度调整为所述目标跟踪角度。
  9. 一种光伏跟踪装置,其特征在于,应用于跟踪控制器,所述光伏跟踪装置包括:
    时刻确定模块,用于确定位于所述上一预设调整时刻和所述下一预设调整时刻之间的提前调整时刻;
    角度获取模块,用于获取所述下一预设调整时刻的跟踪支架的目标跟踪角度;
    角度调整模块,用于在当前时刻为所述提前调整时刻的情况下,控制所述跟踪支架的角度调整为所述目标跟踪角度;其中,在所述上一预设调整时刻和所述下一预设调整时刻时,所述跟踪支架的角度未被调整。
  10. 一种跟踪控制器,其特征在于,包括:存储器和处理器;
    其中,所述存储器用于存储程序;
    处理器调用程序并用于执行如权利要求1-8任一项所述的光伏跟踪方法。
  11. 一种光伏跟踪系统,其特征在于,包括:光伏组件、光伏逆变器和权利要求10所述的跟踪控制器;
    所述跟踪控制器与至少一个所述光伏组件通过机械结构连接,至少一个所述光伏组件连接至所述光伏逆变器的直流侧。
PCT/CN2022/089160 2021-09-08 2022-04-26 一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统 WO2023035625A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22866103.9A EP4400934A1 (en) 2021-09-08 2022-04-26 Photovoltaic tracking method and apparatus, tracking controller and photovoltaic tracking system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111049082.5 2021-09-08
CN202111049082.5A CN113625785B (zh) 2021-09-08 2021-09-08 一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统

Publications (1)

Publication Number Publication Date
WO2023035625A1 true WO2023035625A1 (zh) 2023-03-16

Family

ID=78389476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089160 WO2023035625A1 (zh) 2021-09-08 2022-04-26 一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统

Country Status (3)

Country Link
EP (1) EP4400934A1 (zh)
CN (1) CN113625785B (zh)
WO (1) WO2023035625A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113625785B (zh) * 2021-09-08 2024-08-20 阳光新能源开发股份有限公司 一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统
CN115237165A (zh) * 2022-08-15 2022-10-25 阳光新能源开发股份有限公司 一种光伏设备间的匹配方法、装置及光伏跟踪系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134058A1 (en) * 2010-04-26 2011-11-03 Queen's University At Kingston Maximum power point tracking for a power generator
JP2015090911A (ja) * 2013-11-06 2015-05-11 大同特殊鋼株式会社 集光型太陽光発電システム
CN107885237A (zh) * 2017-12-04 2018-04-06 上海发电设备成套设计研究院有限责任公司 一种分布式超前定时限太阳能跟踪装置
CN108563245A (zh) * 2018-05-21 2018-09-21 西北工业大学 一种自适应变时间太阳能跟踪控制方法
CN113075940A (zh) * 2021-03-24 2021-07-06 阳光电源(上海)有限公司 一种光伏组串跟踪支架控制方法及相关装置
CN113625785A (zh) * 2021-09-08 2021-11-09 阳光新能源开发有限公司 一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100440221B1 (ko) * 2003-12-12 2004-07-12 (주)엘시스텍 태양자동추적장치의 태양추적방법
JP2007103713A (ja) * 2005-10-05 2007-04-19 Sharp Corp 追尾型太陽光発電システム、その制御方法及びその制御プログラム
DE102010037776A1 (de) * 2010-09-24 2012-03-29 Torsten Michael Speck Vorrichtung und Verfahren zur leistungsaufnahmebasierten Solarmodulpositionsnachführung
CN106877803B (zh) * 2017-03-31 2024-02-09 赵守喆 主动式智能光伏支架系统
CN206620088U (zh) * 2017-03-31 2017-11-07 赵守喆 主动式智能光伏支架系统
CN207689922U (zh) * 2017-12-04 2018-08-03 上海发电设备成套设计研究院有限责任公司 分布式超前定时限太阳能跟踪装置
CN109343575A (zh) * 2018-11-06 2019-02-15 赵守喆 一种用于光伏组件双面发电的主动智能跟踪支架系统
CN110289805A (zh) * 2019-06-27 2019-09-27 赵守喆 用于光伏发电系统主动跟踪支架的智能控制系统及智能控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011134058A1 (en) * 2010-04-26 2011-11-03 Queen's University At Kingston Maximum power point tracking for a power generator
JP2015090911A (ja) * 2013-11-06 2015-05-11 大同特殊鋼株式会社 集光型太陽光発電システム
CN107885237A (zh) * 2017-12-04 2018-04-06 上海发电设备成套设计研究院有限责任公司 一种分布式超前定时限太阳能跟踪装置
CN108563245A (zh) * 2018-05-21 2018-09-21 西北工业大学 一种自适应变时间太阳能跟踪控制方法
CN113075940A (zh) * 2021-03-24 2021-07-06 阳光电源(上海)有限公司 一种光伏组串跟踪支架控制方法及相关装置
CN113625785A (zh) * 2021-09-08 2021-11-09 阳光新能源开发有限公司 一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统

Also Published As

Publication number Publication date
EP4400934A1 (en) 2024-07-17
CN113625785B (zh) 2024-08-20
CN113625785A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2023035625A1 (zh) 一种光伏跟踪方法、装置、跟踪控制器及光伏跟踪系统
US9291696B2 (en) Photovoltaic system power tracking method
US20160164456A1 (en) Photovoltaic System Power Tracking Method
CN101534074B (zh) 一种最大功率跟踪控制方法
CN102904273B (zh) 能量转换系统的最大功率点追踪控制和相关方法
CN107069829B (zh) 一种场站级虚拟同步机控制系统、方法及其应用
CN109888819B (zh) 一种光伏发电系统及其控制方法和装置
WO2010057250A1 (en) Method and apparatus for managing power output of an electrical power generation system
WO2019084454A1 (en) SYSTEMS AND METHODS BASED ON TRACKING DEVICE FOR PHOTOVOLTAIC POWER MANAGEMENT
Koutroulis et al. Combined tracking of the maximum power and maximum efficiency operating points for real-time maximization of the energy production of PV systems
KR20120004181A (ko) 태양광 발전용 반사경장치
US20220294227A1 (en) Power derating method for photovoltaic tracking system, controller, and photovoltaic tracking system
JPH08123563A (ja) 太陽光発電システムならびにその電力制御装置および方法
CN111092594A (zh) 一种适用于双面光伏组件的跟踪集成系统及方法
CN102611141A (zh) 一种基于扰动法的光伏逆变器mppt控制装置及方法
CN102355162A (zh) 一种主动均衡接收太阳辐射量的聚光光伏发电系统
CN201207627Y (zh) 追踪式太阳能发电机
CN101043187A (zh) 一种反射聚光太阳能光伏发电装置
CN106774452A (zh) 光伏设备及在该光伏设备上捕获太阳辐射和发电的方法
CN107979114B (zh) 一种稳定运行的光伏电站
CN117155281B (zh) 一种新能源发电监测系统及方法
CN114967825B (zh) 光伏发电最大功率跟踪发电控制方法、装置、设备及介质
CN113849001B (zh) 一种光伏跟踪方法、装置、中央控制器及光伏跟踪系统
KR20200092735A (ko) 태양광 발전 시스템
Eke et al. The largest double-axis sun tracking PV systems with electronic control and photosensors in Turkey

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22866103

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022866103

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022866103

Country of ref document: EP

Effective date: 20240408