WO2023035292A1 - 一种快速确定河流污染底泥环保疏浚深度的方法 - Google Patents

一种快速确定河流污染底泥环保疏浚深度的方法 Download PDF

Info

Publication number
WO2023035292A1
WO2023035292A1 PCT/CN2021/118389 CN2021118389W WO2023035292A1 WO 2023035292 A1 WO2023035292 A1 WO 2023035292A1 CN 2021118389 W CN2021118389 W CN 2021118389W WO 2023035292 A1 WO2023035292 A1 WO 2023035292A1
Authority
WO
WIPO (PCT)
Prior art keywords
sediment
adsorption
desorption
total phosphorus
ammonia nitrogen
Prior art date
Application number
PCT/CN2021/118389
Other languages
English (en)
French (fr)
Inventor
孟英杰
顾俊杰
胡喆
邱金伟
范洪凯
周国锋
刘红燕
黄丽珠
肖子博
Original Assignee
山东省环境保护科学研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省环境保护科学研究设计院有限公司 filed Critical 山东省环境保护科学研究设计院有限公司
Publication of WO2023035292A1 publication Critical patent/WO2023035292A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the invention belongs to the technical field of environmental protection dredging, in particular to a method for quickly determining the depth of environmental protection dredging of river polluted sediment.
  • Sediment is an important part of many water ecosystems such as rivers and lakes. It can absorb pollutants and purify water bodies. It is also a habitat and food source for benthic organisms. The rapid economic development and population growth have made the pollution of rivers and lakes worldwide increasingly serious. Pollutants discharged into water bodies are continuously absorbed into the sediment through adsorption and precipitation. In recent years, with the implementation of source control and sewage interception projects, external source pollution such as industrial wastewater and domestic sewage has gradually been effectively treated, and the sediment rich in pollutants has gradually changed from a "sink" of pollutants to a "source”. The control of endogenous pollution has become an important link in the comprehensive improvement of water environment.
  • Environmental protection dredging of sediment is an important engineering measure to improve the water environment. It can directly cut off the release of endogenous pollution from the source, has high treatment efficiency, and is more adaptable to key influencing factors such as physical and chemical properties of sediment, pollution degree, and pollutant form. Therefore, It is widely used in river and lake pollution control projects.
  • Dredging depth is one of the key indicators to determine the cost and treatment effect of dredging projects. Reasonable determination of the dredging depth of contaminated sediment can avoid high engineering costs caused by over-excavation and continuous pollution caused by under-excavation.
  • the following methods are usually used for determining the dredging depth of sediment: 1. Simple judgment methods such as sediment layer method, inflection point method and background value method. This method mainly stratifies the columnar sediment samples according to physical properties or pollutant content, or combines the background value to judge the dredging depth. This type of method is simple and intuitive, but only using the concentration of pollutants as the basis for judgment cannot better reflect the behavior of sediment in natural water bodies, and the results are not accurate enough; 2. Layered release method. The pollutant release rate is mainly obtained through the static release test of the sediment, the relationship between the pollutant release rate and the corresponding pollutant content is established, and the dredging depth of the sediment is determined according to the corresponding release risk level.
  • the present invention provides a method for quickly determining the environmental dredging depth of river polluted sediment.
  • a method for quickly determining the environmental dredging depth of river polluted sediment comprising the following steps:
  • the method of collecting the sediment columnar samples and analyzing the total nitrogen and total phosphorus content of the sediment columnar samples at equidistant points is specifically: cutting the sediment columnar samples into layers, each layer having the same thickness, and selecting several layers equidistantly The sediment column samples were freeze-dried and sieved, and then analyzed for pollutant content respectively.
  • determining the test range of the sediment columnar sample is specifically: respectively determining the inflection point of the vertical distribution of the total nitrogen and total phosphorus content, and comparing the vertical distribution of the total nitrogen and total phosphorus content.
  • the layer where the deeper position depth is located is taken as the center layer of the test range.
  • the scope of the test includes the center layer, the upper two layers of the center layer and the lower two layers of the center layer.
  • the preparation method of the water sample is as follows: collect the overlying water corresponding to the collection point of the sediment columnar sample, and dilute the overlying water with pure water until ammonia nitrogen or total phosphorus is the target concentration of environmental dredging.
  • the ammonia nitrogen adsorption and desorption test is specifically as follows: take 0.5 g of sediment samples from each layer within the test range and place them in a 100 mL conical flask, add 50 mL of water samples with ammonia nitrogen at a preset concentration A, shake and centrifuge to obtain Supernatant, after the supernatant passes through a 0.45 ⁇ m fiber filter membrane, measure the ammonia nitrogen concentration with the Nessler reagent method; the total phosphorus adsorption and desorption test is specifically: take 0.5 g of each layer of sediment samples in the test range in 100 mL capacity Add 50mL of water sample with preset concentration B of total phosphorus into the Erlenmeyer flask, shake and centrifuge to obtain the supernatant, after the supernatant is passed through a 0.45 ⁇ m fiber filter membrane, the total phosphorus concentration is determined by molybdenum antimony anti-spectrophotometry.
  • the ammonia nitrogen adsorption and desorption test shake at a speed of 250r/min for 2h at a temperature of 24-26°C, and centrifuge at a speed of 5000r/min for 10min; Shake at a speed of 250r/min for 48h at high temperature, and centrifuge at a speed of 5000r/min for 10min.
  • the ammonia nitrogen adsorption and desorption test and the total phosphorus adsorption and desorption test are carried out in parallel for several times, and the average value is taken, and the relative average deviation of the results of several parallel tests is less than 5%.
  • the determination of the environmental protection dredging depth according to the calculation results is specifically: when the unit mass sediment ammonia nitrogen and total phosphorus adsorption/desorption of the upper part of the sediment sample within the test range has a positive value, the unit mass bottom sediment sample of the lower part When the sludge ammonia nitrogen and total phosphorus adsorption/desorption are both negative, the junction of the upper part and the lower part is the environmental protection dredging depth.
  • the invention has the following beneficial effects: closely combined with the goal of water environment treatment, combining the advantages of the inflection point method and the adsorption-desorption method, by reducing the test range and targeted adsorption-desorption tests, the dredging depth of river polluted sediment can be quickly and accurately determined, Significantly improve efficiency, facilitate engineering design and engineering application, and reduce costs.
  • Fig. 1 is the schematic flow chart of the embodiment of the present invention to quickly determine the environmental protection dredging depth of river polluted sediment;
  • Fig. 2 is the vertical distribution curve of TN content in the columnar sample of bottom mud in D1 hole of the embodiment of the present invention
  • Fig. 3 is the vertical distribution curve of TP content of the bottom mud columnar sample of D1 hole of the embodiment of the present invention
  • Fig. 4 is the vertical distribution curve of the NH 4 + -N adsorption/desorption amount of the columnar sample of bottom mud in the hole D1 of the embodiment of the present invention
  • Fig. 5 is the vertical distribution curve of the TP adsorption/desorption amount of the columnar sample of bottom mud in the hole D1 of Example D1 of the present invention.
  • a method for quickly determining the environmental protection dredging depth of river polluted sediment includes the following steps:
  • the system layout method to arrange sampling points on the target river, and densely distribute points in the upstream and downstream of the national (province, city, county) control section, sluice dam, sewage outlet, tributary confluence, livestock and poultry breeding section, etc.
  • Collect 1 columnar sample Exemplarily, taking the sampling point D1 at the confluence of the tributaries as an example, the sediment columnar sample is collected at a depth of 2m, and the sediment columnar sample is cut and stratified by 10cm at the sampling site, that is, 0-0.1m, 0.1-0.2m...1.8 -1.9m, 1.9-2.0m, respectively protected from light, sealed, and frozen. At the same time, one sample of overlying water was collected at sampling point D1.
  • the overlying water was transported back to the laboratory and passed through a 0.45 ⁇ m fiber filter membrane. After filtering, 5 mL of chloroform was added per liter, and stored in cold storage for later use. After testing, the concentration of ammonia nitrogen in the overlying water was 9.75mg/L, and the concentration of total phosphorus was 0.52mg/L.
  • TN and TP Total Phosphorus
  • the vertical distribution curves of TN and TP of sediment columnar samples were drawn.
  • the inflection point of TN content is located at the 0.9-1.0m layer (0.95m).
  • the inflection point of TP content is located at 1.1-1.2m (1.15m).
  • the final inflection point position takes the maximum value, that is, 1.1-1.2m (1.15m). If there is more than one inflection point in the vertical distribution curve of total nitrogen or total phosphorus content, the position of the maximum inflection point should be finally determined by comprehensively considering the dredging feasibility, economy, and other pollutant inflection point positions.
  • the range of the sediment adsorption and desorption test is from 2 layers above the inflection point layer to 2 layers below the inflection point layer, that is, the test range of sediment adsorption and desorption is determined to be 0.9-1.4m, a total of 5 layers, and 50cm of sediment.
  • the target concentration of environmental protection dredging is determined according to the requirements of river water quality monitoring and control section, water quality improvement requirements, etc. to determine the concentration of ammonia nitrogen and total phosphorus required for water body governance goals.
  • the water quality of river monitoring and control sections is based on "Surface Water Environmental Quality Standards" "(GB3838-2002) specified in a certain type of value as the limit.
  • the water quality will be restored to Class III water after dredging, that is, the concentration of ammonia nitrogen is less than 1.0 mg/L, and the concentration of total phosphorus is less than 0.2 mg/L.
  • the collected overlying water is diluted 9.75 times with pure water to obtain the 1# test water sample, and the collected overlying water is diluted 2.6 times to obtain the 2# test water sample, and the concentration of ammonia nitrogen in the 1# test water sample (i.e. water The initial concentration of ammonia nitrogen in the sample) and the total phosphorus concentration in the 2# test water sample (that is, the initial concentration of total phosphorus in the water sample).
  • bottom mud The five layers of bottom mud of 0.9-1.0m, 1.0-1.1m, 1.1-1.2m, 1.2-1.3m, and 1.3-1.4m were tested separately, and 0.5g of each layer of bottom mud was placed in a 100mL conical flask , respectively add 50mL of 1# test water sample, shake at a constant temperature of 250r/min at 25°C for 2h, and centrifuge at 5000r/min for 10min to obtain a supernatant, which is passed through a 0.45 ⁇ m fiber filter membrane and then filtered with Nessler Reagent method measures ammonia nitrogen concentration, sets 3 parallel tests, takes the average value (being the ammonia nitrogen equilibrium concentration of adsorption-desorption test), and the relative average deviation of parallel test results is less than 5%; Every layer of sediment sample takes 0.5g and puts it in a 100mL capacity container.
  • Q (C e -C 0 )*V/W
  • Q is the adsorption/desorption amount of ammonia nitrogen or total phosphorus per unit mass of sediment, mg/kg
  • C e is the equilibrium concentration of ammonia nitrogen or total phosphorus, mg/L
  • C0 is the initial concentration of ammonia nitrogen or total phosphorus in the water sample, mg/L
  • V is the volume of the water sample, L
  • W is the mass of the sediment sample, kg.
  • the depth is recognized as the environmental protection dredging depth.
  • the ammonia nitrogen in the 1.0-1.1m layer and above the columnar sample of hole D1 is in the desorption (release) state, and below 1.1m is in the adsorption state.
  • the total phosphorus in the 1.1-1.2m layer and above of the bottom sediment columnar sample in D1 hole is in the desorption (release) state, and below 1.2m is in the adsorption state.
  • the comprehensive determination of the environmental protection dredging depth near D1 hole is 1.2m.
  • the present invention is based on the hydrological characteristics of the river, closely combined with the goal of water environment management, overcomes many problems in the prior art, and provides a method for quickly determining the environmental protection dredging depth of river polluted sediment, by reducing the scope of the test And targeted adsorption and desorption tests can quickly and accurately determine the dredging depth of river polluted sediment, which is convenient for engineering design and application and reduces costs.
  • the present invention integrates the inflection point method and the desorption adsorption method, utilizes the inflection point method to narrow the test range of the sediment adsorption and desorption test, that is, only conducts the adsorption and desorption test on the bottom mud with a total of 50 cm above and below the inflection point, and utilizes the desorption adsorption method to simulate the release of pollutants from the newborn surface sediment behavior, increasing the accuracy of results and improving efficiency.
  • the present invention dilutes the collected overlying water instead of using the solution prepared in the laboratory, so as to better simulate the actual environment.
  • only the targeted adsorption and desorption test of the target water quality is carried out for each layer of sediment, which reduces the amount of testing and analysis and greatly improves the efficiency.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Geology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Water Treatment By Sorption (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种快速确定河流污染底泥环保疏浚深度的方法,包括:采集底泥柱状样品,以等距点分析底泥柱状样品的总氮、总磷含量,获得总氮、总磷含量垂向分布;根据垂向分布的最大值拐点,确定底泥柱状样品的试验范围;取试验范围内的底泥样品,分别采用氨氮、总磷为预设浓度的水样进行氨氮吸附解吸试验和总磷吸附解吸试验;根据氨氮吸附解吸试验和总磷吸附解吸试验结果分别计算单位质量底泥氨氮和总磷吸附/解吸量;根据计算结果确定环保疏浚深度。结合了拐点法和吸附解吸法的优势,通过缩小试验测试范围和针对性的吸附解吸试验,快速准确地判定河流污染底泥的疏浚深度,显著提高效率,便于工程设计和工程应用,降低成本。

Description

一种快速确定河流污染底泥环保疏浚深度的方法 技术领域
本发明属于环保疏浚技术领域,特别涉及一种快速确定河流污染底泥环保疏浚深度的方法。
背景技术
底泥是河流湖泊等众多水体生态系统的重要组成部分,可以吸附污染物净化水体,同时也是底栖生物的栖息场所和食物来源。经济的快速发展和人口的增长使全球范围内河流、湖泊污染现象日趋严重,排入水体的污染物经吸附、沉淀等作用不断汇入底泥中。近年来,随着控源截污工程的实施,工业废水、生活污水等外源污染逐步得到有效治理,富含污染物的底泥逐渐由污染物的“汇”向“源”转变,底泥内源污染的治理成为水环境综合整治的重要环节。
底泥环保疏浚是水环境改善的重要工程措施,其可从源头直接切断内源污染释放,处理效率高,对底泥理化性质、污染程度、污染物形态等关键影响因素适应性更强,因此在河湖污染治理工程中被广泛采用。
疏浚深度是决定疏浚工程造价和治理效果的关键指标之一,合理地确定污染底泥疏浚深度,可避免超挖引起的高工程成本和欠挖引起的持续污染。
现有技术中底泥疏浚深度的确定通常采用以下方法:1、沉积层法、拐点法和背景值法等简易判断法。此类方法主要将柱状底泥样品按物理性质或污染物含量分层,或结合背景值进行疏浚深度的判断。该类方法简单直观,但仅以污染物浓度作为判断依据不能较好地体现底泥在自然水体中的行为,结果不够准确;2、分层释放法。主要是通过底泥静态释放试验获取污染物释放速率,建立污染物释放速率与相应的污染物含量的关系,并根据所划分的相应释放风险等级,确定底泥疏浚深度。该类方法在我国湖泊疏浚研究和工程中得到广泛应用,但相比于水文条件较稳定的湖泊,河流尤其是北方季节性河流水的流量、流速及水位均不稳定,汛期存在闸坝放水、暴雨冲刷等情况,相应的底泥扰动、悬浮与再沉淀等行为比湖泊更剧烈,因此该类方法中采用的释放试验并不完全适用于河流,且释放试验测试周期较长;3、吸附解吸法。该类方法相对适用于河 流环保疏浚,且疏浚深度计算比较精细,然而其试验测试数量过大,在实际工程勘察设计阶段并不适用。此外,吸附解吸试验采用的是实验室配置的标准溶液,标准溶液与自然水体成分及水质特点等差异较大,所测得的吸附解吸平衡浓度存在误差。
综上所述,针对河流污染底泥的环保疏浚,亟需发明一种便于工程设计、实施且快速准确的疏浚深度判定方法。
发明内容
针对上述问题,本发明提供一种快速确定河流污染底泥环保疏浚深度的方法。
为实现上述目的,采用以下技术方案:
一种快速确定河流污染底泥环保疏浚深度的方法,包括以下步骤:
采集底泥柱状样品,以等距点分析底泥柱状样品的总氮、总磷含量,获得总氮、总磷含量垂向分布;
根据垂向分布的最大值拐点,确定底泥柱状样品的试验范围;
取试验范围内的底泥样品,分别采用氨氮、总磷为预设浓度的水样进行氨氮吸附解吸试验和总磷吸附解吸试验;
根据氨氮吸附解吸试验和总磷吸附解吸试验结果分别计算单位质量底泥氨氮和总磷吸附/解吸量;
根据计算结果确定环保疏浚深度。
优选地,所述采集底泥柱状样品,以等距点分析底泥柱状样品的总氮、总磷含量具体为:将底泥柱状样品切割分层,每层厚度相同,等距选取其中若干层的底泥柱状样品经冷冻干燥和过筛处理,随后分别进行污染物含量分析。
优选地,所述根据垂向分布的最大值拐点,确定底泥柱状样品的试验范围具体为:分别确定总氮、总磷含量垂向分布的拐点,比较总氮、总磷含量垂向分布的拐点对应的位置深度,取较深的位置深度所在分层作为试验范围的中心层。试验范围包括中心层、中心层的上两层和中心层的下两层。
优选地,所述水样的制备方法如下:采集所述底泥柱状样品对应采集点的上覆水,使用纯净水稀释上覆水至氨氮或总磷为环保疏浚目标浓度。
优选地,所述氨氮吸附解吸试验具体为:分别取试验范围内各层底泥样品 0.5g于100mL容量的锥形瓶中,分别加入氨氮为预设浓度A的水样50mL,振荡、离心得到上清液,上清液过0.45μm纤维滤膜后,用纳氏试剂法测定氨氮浓度;所述总磷吸附解吸试验具体为:分别取试验范围内各层底泥样品0.5g于100mL容量的锥形瓶中,分别加入总磷为预设浓度B的水样50mL,振荡、离心得到上清液,上清液过0.45μm纤维滤膜后,用钼锑抗分光光度法测定总磷浓度。
优选地,所述氨氮吸附解吸试验中,于24-26℃温度下以250r/min的转速振荡2h,以5000r/min的转速离心10min;所述总磷吸附解吸试验中,于24-26℃温度下以250r/min的转速振荡48h,以5000r/min的转速离心10min。
优选地,氨氮吸附解吸试验和总磷吸附解吸试验分别进行若干次平行试验,取平均值,若干次平行试验结果的相对平均偏差小于5%。
优选地,单位质量底泥氨氮或总磷吸附/解吸量的计算公式如下:Q=(C e-C 0)*V/W,其中,Q为单位质量底泥氨氮或总磷吸附/解吸量,mg/kg;C e为氨氮或总磷的平衡浓度,mg/L;C 0为水样中氨氮或总磷的初始浓度,mg/L;V为水样体积,L;W为底泥样品质量,kg。
优选地,所述根据计算结果确定环保疏浚深度具体为:当试验范围内上部分底泥样品的单位质量底泥氨氮和总磷吸附/解吸量存在正值,下部位底泥样品的单位质量底泥氨氮和总磷吸附/解吸量均为负值时,上部分和下部分的交界处为所述环保疏浚深度。
本发明具有以下有益效果:紧密结合水环境治理目标,结合了拐点法和吸附解吸法的优势,通过缩小试验测试范围和针对性的吸附解吸试验,快速准确地判定河流污染底泥的疏浚深度,显著提高效率,便于工程设计和工程应用,降低成本。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图来实现和获得。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图是本发 明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例快速确定河流污染底泥环保疏浚深度的流程示意图;
图2为本发明实施例D1孔底泥柱状样品TN含量垂向分布曲线;
图3为本发明实施例D1孔底泥柱状样品TP含量垂向分布曲线;
图4为本发明实施例D1孔底泥柱状样品NH 4 +-N吸附/解吸量垂向分布曲线;
图5为本发明实施例D1孔底泥柱状样品TP吸附/解吸量垂向分布曲线。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
我国北方某季节性河流,河道底泥淤积严重,水质常为V类,甚至劣五类。该河流采用环保疏浚的工艺方法,预期疏浚治理后水质恢复III类水,即氨氮浓度小于1.0mg/L,总磷浓度小于0.2mg/L。基于此,一种快速确定河流污染底泥环保疏浚深度的方法,如图1所示,包括以下步骤:
(1)样品采集
采用系统布点法在目标河流上布置采样点,并在国(省、市、县)控断面、闸坝、排污口、支流汇入口、畜禽养殖段等位置的上下游加密布点,各点位采集柱状样品1根。示例性地,以支流汇入口处采样点D1为例,采集底泥柱状样品深度2m,采样现场对底泥柱状样品按10cm进行切割分层,即0-0.1m、0.1-0.2m……1.8-1.9m、1.9-2.0m,分别避光、密封、冷冻保存。同时在采样点D1采集上覆水样品1个,上覆水运回实验室后过0.45μm的纤维滤膜,过滤后每升加入5mL氯仿,冷藏保存备用。经检测,上覆水氨氮浓度为9.75mg/L,总磷浓度为0.52mg/L。
(2)底泥吸附解吸试验范围判断
对上述底泥柱状样品进行冷冻干燥、过筛处理。对分层位于双数层(即位 于0.1-0.2m、0.3-0.4m……1.7-1.8m、1.9-2.0m的分层)的底泥柱状样品进行TN(总氮)和TP(总磷)含量的测试,根据检测结果,加密测试0.8-0.9m和1.0-1.1m底泥柱状样品的TN含量,以及1.0-1.1m底泥柱状样品的TP含量。绘制底泥柱状样品TN和TP的垂向分布曲线。由图2所示,TN含量拐点位于0.9-1.0m层(0.95m)处。由图3所示,TP含量拐点位于1.1-1.2m(1.15m)处。最终拐点位置取最大值,即1.1-1.2m(1.15m)。若总氮或总磷的含量垂向分布曲线出现1个以上的拐点,则综合考虑疏浚可行性、经济性、其他污染物拐点位置等来最终确定最大值拐点位置。
根据上述拐点位置,底泥吸附解吸试验的范围为拐点层向上2层至向下2层,即底泥吸附解吸的试验范围确定为0.9-1.4m,共5层,50cm底泥。
(3)试验水样制备
使用纯净水稀释上覆水至氨氮或总磷为环保疏浚目标浓度。为了紧密结合水环境治理目标,环保疏浚目标浓度依据河流水质监测控制断面要求、水质提升要求等确定水体治理目标要求的氨氮、总磷浓度,通常,河流监测控制断面水质以《地表水环境质量标准》(GB3838-2002)中规定的某类数值作为限值。本实施例中,根据河流水质提升要求,预期疏浚治理后水质恢复III类水,即氨氮浓度小于1.0mg/L,总磷浓度小于0.2mg/L。
因此,将采集的上覆水用纯净水稀释9.75倍,得到1#试验水样,将采集的上覆水稀释2.6倍得到2#试验水样,并分别检验1#试验水样中氨氮浓度(即水样中氨氮的初始浓度)和2#试验水样中的总磷浓度(即水样中总磷的初始浓度)。
(4)吸附解吸试验
对0.9-1.0m、1.0-1.1m、1.1-1.2m、1.2-1.3m、1.3-1.4m五层底泥分别进行试验,每层底泥样品取0.5g置于100mL容量的锥形瓶中,分别加入1#试验水样50mL,25℃条件下以250r/min转速恒温振荡2h,以5000r/min转速离心10min,得到上清液,上清液过0.45μm纤维滤膜后,用纳氏试剂法测定氨氮浓度,设置3个平行试验,取平均值(即吸附解吸试验的氨氮平衡浓度),平行试验结果的相对平均偏差小于5%;每层底泥样品取0.5g置于100mL容量的锥形瓶中,分别加入2#试验水样50mL,25℃条件下以250r/min转速恒温振荡 48h,以5000r/min转速离心10min,得到上清液,上清液过0.45μm纤维滤膜后,用钼锑抗分光光度法测定总磷浓度,设置3个平行试验,取平均值(即吸附解吸试验的总磷平衡浓度),平行试验结果的相对平均偏差小于5%。
根据公式Q=(C e-C 0)*V/W计算单位质量底泥氨氮和总磷的吸附/解吸量,并分别绘制氨氮、总磷的吸附/解吸量垂向分布曲线,其中,Q为单位质量底泥氨氮或总磷吸附/解吸量,mg/kg;C e为氨氮或总磷的平衡浓度,mg/L;C 0为水样中氨氮或总磷的初始浓度,mg/L;V为水样体积,L;W为底泥样品质量,kg。若Q为正值,则底泥为解吸(释放)状态,若Q为负值,则底泥为吸附状态。
(5)环保疏浚深度确定
若某一深度以上底泥某污染物为解吸(释放)状态,以下各层底泥中各污染物均为吸附状态时,则将该深度认定为环保疏浚深度。如图4所示,D1孔底泥柱状样品1.0-1.1m层及以上氨氮为解吸(释放)状态,1.1m以下为吸附状态。如图5所示,D1孔底泥柱状样品1.1-1.2m层及以上总磷为解吸(释放)状态,1.2m以下为吸附状态,综合确定D1孔附近环保疏浚深度为1.2m。
综上所述,本发明基于河流水文特性,紧密结合水环境治理目标,克服了现有技术中的诸多问题,提供了一种快速确定河流污染底泥环保疏浚深度的方法,通过缩小试验测试范围和针对性的吸附解吸试验,快速准确判定河流污染底泥的疏浚深度,便于工程设计和工程应用,降低成本。本发明综合拐点法和解吸吸附法,利用拐点法缩小底泥吸附解吸试验的测试范围,即只对拐点上下共计50cm的底泥进行吸附解吸试验,利用解吸吸附法模拟新生表层底泥污染物释放行为,增加结果的准确性并提高效率。本发明根据水体治理目标要求,将采集的上覆水进行稀释而非使用实验室配置的溶液,可以更好地模拟实际环境。此外,每层底泥仅进行目标水质的针对性吸附解吸试验,测试分析量降低,效率大大提升。
尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

  1. 一种快速确定河流污染底泥环保疏浚深度的方法,其特征在于,包括以下步骤:
    采集底泥柱状样品,以等距点分析底泥柱状样品的总氮、总磷含量,获得总氮、总磷含量垂向分布;
    根据垂向分布的最大值拐点,确定底泥柱状样品的试验范围;
    取试验范围内的底泥样品,分别采用氨氮、总磷为预设浓度的水样进行氨氮吸附解吸试验和总磷吸附解吸试验;
    根据氨氮吸附解吸试验和总磷吸附解吸试验结果分别计算单位质量底泥氨氮和总磷吸附/解吸量;
    根据计算结果确定环保疏浚深度。
  2. 根据权利要求1所述的快速确定河流污染底泥环保疏浚深度的方法,其特征在于,所述采集底泥柱状样品,以等距点分析底泥柱状样品的总氮、总磷含量具体为:将底泥柱状样品切割分层,每层厚度相同,等距选取其中若干层的底泥柱状样品经冷冻干燥和过筛处理,随后分别进行污染物含量分析。
  3. 根据权利要求2所述的快速确定河流污染底泥环保疏浚深度的方法,其特征在于,所述根据垂向分布的最大值拐点,确定底泥柱状样品的试验范围具体为:分别确定总氮、总磷含量垂向分布的拐点,比较总氮、总磷含量垂向分布的拐点对应的位置深度,取较深的位置深度所在分层作为试验范围的中心层。
  4. 根据权利要求1所述的快速确定河流污染底泥环保疏浚深度的方法,其特征在于,所述水样的制备方法如下:采集所述底泥柱状样品对应采集点的上覆水,使用纯净水稀释上覆水至氨氮或总磷为环保疏浚目标浓度。
  5. 根据权利要求3所述的快速确定河流污染底泥环保疏浚深度的方法,其特征在于,所述氨氮吸附解吸试验具体为:分别取试验范围内各层底泥样品0.5g于100mL容量的锥形瓶中,分别加入氨氮为预设浓度A的水样50mL,振荡、离心得到上清液,上清液过0.45μm纤维滤膜后,用纳氏试剂法测定氨氮浓度;所述总磷吸附解吸试验具体为:分别取试验范围内各层底泥样品0.5g于100mL容量的锥形瓶中,分别加入总磷为预设浓度B的水样50mL,振荡、离心得到上清液,上清液过0.45μm纤维滤膜后,用钼锑抗分光光度法测定总磷浓度。
  6. 根据权利要求5所述的快速确定河流污染底泥环保疏浚深度的方法,其特征在于,所述氨氮吸附解吸试验中,于24-26℃温度下以250r/min的转速振荡2h,以5000r/min的转速离心10min;所述总磷吸附解吸试验中,于24-26℃温度下以250r/min的转速振荡48h,以5000r/min的转速离心10min。
  7. 根据权利要求5所述的快速确定河流污染底泥环保疏浚深度的方法,其特征在于,氨氮吸附解吸试验和总磷吸附解吸试验分别进行若干次平行试验,取平均值,若干次平行试验结果的相对平均偏差小于5%。
  8. 根据权利要求1所述的快速确定河流污染底泥环保疏浚深度的方法,其特征在于,单位质量底泥氨氮或总磷吸附/解吸量的计算公式如下:Q=(C e-C 0)*V/W,其中,Q为单位质量底泥氨氮或总磷吸附/解吸量,mg/kg;C e为氨氮或总磷的平衡浓度,mg/L;C 0为水样中氨氮或总磷的初始浓度,mg/L;V为水样体积,L;W为底泥样品质量,kg。
  9. 根据权利要求1-9任一所述的快速确定河流污染底泥环保疏浚深度的方法,其特征在于,所述根据计算结果确定环保疏浚深度具体为:当试验范围内上部分底泥样品的单位质量底泥氨氮和总磷吸附/解吸量存在正值,下部位底泥样品的单位质量底泥氨氮和总磷吸附/解吸量均为负值时,上部分和下部分的交界处为所述环保疏浚深度。
PCT/CN2021/118389 2021-09-07 2021-09-15 一种快速确定河流污染底泥环保疏浚深度的方法 WO2023035292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111046025.1A CN113790998A (zh) 2021-09-07 2021-09-07 一种快速确定河流污染底泥环保疏浚深度的方法
CN202111046025.1 2021-09-07

Publications (1)

Publication Number Publication Date
WO2023035292A1 true WO2023035292A1 (zh) 2023-03-16

Family

ID=79182635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118389 WO2023035292A1 (zh) 2021-09-07 2021-09-15 一种快速确定河流污染底泥环保疏浚深度的方法

Country Status (2)

Country Link
CN (1) CN113790998A (zh)
WO (1) WO2023035292A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115182293A (zh) * 2022-06-01 2022-10-14 中交(天津)生态环保设计研究院有限公司 一种河道内源治理方法
CN116124678B (zh) * 2023-04-20 2023-06-23 中交(天津)生态环保设计研究院有限公司 江河湖库疏浚底泥相变式脱水干化监控方法及监控系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283511A (ja) * 2004-03-30 2005-10-13 Port & Airport Research Institute 水底浮泥採取装置、及び水底浮泥採取方法
CN101266235A (zh) * 2008-04-03 2008-09-17 中国科学院南京地理与湖泊研究所 污染水体底泥环保疏浚深度的确定方法
CN102628862A (zh) * 2012-04-19 2012-08-08 金丹越 一种环境疏浚工程中确定污染底泥疏挖深度的实用方法
CN102831328A (zh) * 2012-09-13 2012-12-19 中国环境科学研究院 基于水体污染底泥鉴别评估的环保疏浚范围的确定方法
CN111044705A (zh) * 2019-12-11 2020-04-21 湖南省建筑设计院有限公司 氮磷污染底泥环保疏浚深度的判定方法
CN111254870A (zh) * 2020-02-24 2020-06-09 中交 (天津) 生态环保设计研究院有限公司 一种利用氮磷吸附解吸法确定河湖底泥疏浚深度的方法
CN113218894A (zh) * 2021-03-15 2021-08-06 中国地质大学(武汉) 一种浅剖快速识别浅水湖泊沉积物污染分层信息方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6357149B1 (en) * 2000-03-24 2002-03-19 Caterpillar Inc. Method and apparatus for determining the depth of acceptable sediment removal from a body of water
CN103941913B (zh) * 2014-03-28 2016-10-05 上海天马微电子有限公司 电感触摸屏及其驱动检测方法、坐标输入装置
JP6896537B2 (ja) * 2017-07-10 2021-06-30 岩夫 松原 浚渫構造体
CN110118916A (zh) * 2019-06-25 2019-08-13 武汉伏佳安达电气技术有限公司 一种高压电力电缆护层电流故障检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283511A (ja) * 2004-03-30 2005-10-13 Port & Airport Research Institute 水底浮泥採取装置、及び水底浮泥採取方法
CN101266235A (zh) * 2008-04-03 2008-09-17 中国科学院南京地理与湖泊研究所 污染水体底泥环保疏浚深度的确定方法
CN102628862A (zh) * 2012-04-19 2012-08-08 金丹越 一种环境疏浚工程中确定污染底泥疏挖深度的实用方法
CN102831328A (zh) * 2012-09-13 2012-12-19 中国环境科学研究院 基于水体污染底泥鉴别评估的环保疏浚范围的确定方法
CN111044705A (zh) * 2019-12-11 2020-04-21 湖南省建筑设计院有限公司 氮磷污染底泥环保疏浚深度的判定方法
CN111254870A (zh) * 2020-02-24 2020-06-09 中交 (天津) 生态环保设计研究院有限公司 一种利用氮磷吸附解吸法确定河湖底泥疏浚深度的方法
CN113218894A (zh) * 2021-03-15 2021-08-06 中国地质大学(武汉) 一种浅剖快速识别浅水湖泊沉积物污染分层信息方法

Also Published As

Publication number Publication date
CN113790998A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2023035292A1 (zh) 一种快速确定河流污染底泥环保疏浚深度的方法
Tian et al. Study on the Self-purification of Juma River
Li et al. Modeling the effects of parameter optimization on three bioretention tanks using the HYDRUS-1D model
Tang et al. Hot spot of CH4 production and diffusive flux in rivers with high urbanization
Zhao et al. Characterization of mixing processes in the confluence zone between the Three Gorges Reservoir mainstream and the Daning River using stable isotope analysis
CN111310327A (zh) 一种基于削减量模型的水环境达标定量化设计方法
WO2023284229A1 (zh) 河流交汇、分汊及弯曲微生物群落河工模型试验系统及试验方法
Wang et al. Methane and nitrous oxide concentrations and fluxes from heavily polluted urban streams: Comprehensive influence of pollution and restoration
Zheng et al. Dominant contribution of a lake’s internal pollution to eutrophication during rapid urbanization
Li et al. Watershed urbanization dominated the spatiotemporal pattern of riverine methane emissions: Evidence from montanic streams that drain different landscapes in Southwest China
Zhang et al. Intense methane diffusive emissions in eutrophic urban lakes, Central China
Lu et al. Vertical distribution rules and factors influencing phytoplankton in front of a drinking water reservoir outlet
Wang et al. Hydrodynamic controls on nitrogen distribution and removal in aquatic ecosystems
Luo et al. Contribution of the reservoir backflow to the eutrophication of its tributary: a case study of the Xiangxi River, China
Hu et al. Comprehensive study of the occurrence and characteristics of organic matter, nitrogen, and phosphorus in sediments and riparian soils of a large drinking water reservoir
Li et al. Study on phosphorus releasing and releasing kinetics of sediments in Dongping Lake
Feng et al. Quantifying cumulative changes in water quality caused by small floodgates in Taihu Lake Basin—A case in Wuxi
Li et al. Seasonal variation of nitrogen and phosphorus in Xiaojiang River—a tributary of the Three Gorges Reservoir
Qin et al. The characteristics and influencing factors of dissolved methane concentrations in Chongqing’s central urban area in the Three Gorges Reservoir, China
Zhu et al. Eutrophication in the newly built Laohutan Reservoir during the initial impoundment period: the role of nutrient loading
CN114331787A (zh) 以提升下游河流水质为目标的水库生态放流量的核算方法
Wang et al. Relationships between characteristics of macrobenthic assemblages and environmental variables in the Heihe River Basin, China
CN109580514B (zh) 一种测量非生物颗粒态磷和生物颗粒态磷含量的方法
Xue-min et al. Water Quality Analysis and Pollution Evaluation of Drainage Ditches into Wuliangsuhai Lake
Wu et al. Investigation and evaluation of water quality of Qingshitan reservoir surrounding agricultural wetland

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE