WO2023035194A1 - Moisture curable polyurethane hot-melt adhesive having heat and humidity resistance - Google Patents

Moisture curable polyurethane hot-melt adhesive having heat and humidity resistance Download PDF

Info

Publication number
WO2023035194A1
WO2023035194A1 PCT/CN2021/117493 CN2021117493W WO2023035194A1 WO 2023035194 A1 WO2023035194 A1 WO 2023035194A1 CN 2021117493 W CN2021117493 W CN 2021117493W WO 2023035194 A1 WO2023035194 A1 WO 2023035194A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive composition
composition according
mol
polyol
hydroxyl
Prior art date
Application number
PCT/CN2021/117493
Other languages
French (fr)
Inventor
Peng TONG
Elyes Jendoubi
Hongliang GONG
Weiming Zhang
Original Assignee
Sika Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sika Technology Ag filed Critical Sika Technology Ag
Priority to CN202180101151.4A priority Critical patent/CN117794971A/en
Priority to PCT/CN2021/117493 priority patent/WO2023035194A1/en
Publication of WO2023035194A1 publication Critical patent/WO2023035194A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1833Catalysts containing secondary or tertiary amines or salts thereof having ether, acetal, or orthoester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2081Heterocyclic amines; Salts thereof containing at least two non-condensed heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4063Mixtures of compounds of group C08G18/62 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6204Polymers of olefins
    • C08G18/6208Hydrogenated polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • C08G2170/20Compositions for hot melt adhesives

Definitions

  • the invention relates to reactive polyurethane hot-melt adhesives having improved heat and humidity resistance and to use of the adhesives for bonding of substrates in production of white goods, automotive vehicles, and electronic devices.
  • Hot-melt adhesives are solvent free adhesives, which are solid at room temperature and which are applied to the substrate to be bonded in form of a melt. After cooling the adhesive solidifies and forms an adhesive bond with the substrate through physically occurring bonding.
  • Conventional hot-melt adhesives are non-reactive adhesives, which soften again upon heating and are, therefore, not suitable to be used at elevated temperatures.
  • Reactive hot-melt adhesives contain polymers with reactive groups that enable chemical curing of the adhesive, for example, by crosslinking of the polymer chains. Due to the chemically cured polymer matrix reactive hot-melt adhesives do not soften upon heating and these adhesives are, therefore, suitable for use also at elevated temperatures.
  • the chemical curing of the polymers can be initiated, for example, by heating or exposing the adhesive composition to water, such as atmospheric moisture.
  • Moisture curing hot-melt adhesives typically contain polymers functionalized with isocyanate or silane groups, which enables crosslinking of the polymer chains upon contact with atmospheric moisture.
  • Moisture curing polyurethane hot-melt adhesives consist mainly of isocyanate-functional polyurethane polymers, which have been obtained by reacting suitable polyols, typically polyester and/or polyether polyols, with polyisocyanates, where the reaction is conducted at a molar excess of isocyanate (NCO) groups over hydroxyl (OH) groups.
  • the adhesive composition is cured by reaction of the residual isocyanate groups with water, which results in various chain extension and/or crosslinking reactions of the polymers.
  • a fully cured polyurethane hot-melt adhesive comprises urea and/or urethane bonds and, depending on the starting materials used for providing the isocyanate-functional polymer, ester and/or ether bonds.
  • a crosslinked hot-melt adhesive does not remelt when subjected to heating. However, the ester bonds will undergo hydrolysis reaction to produce respective acids and alcohols under high temperature and humidity conditions, such as at 85 °C and 85 %relative humidity. The acids formed in the hydrolysis reactions will further accelerate the decomposition of ester bonds.
  • Conventional polyurethane hot-melt adhesives have been found out to begin to decompose after 200 hours of artificial aging tests conducted at 85 °C and 85 %relative humidity.
  • the object of the present invention is to provide an adhesive composition, which overcomes or at least mitigates the disadvantages of the prior art moisture curable polyurethane hot-melt adhesives as discussed above.
  • the cured adhesive composition should preferably also have excellent mechanical properties, particular a high tensile strength and elongation at break, and high adhesive bonding strength measured as lap shear strength.
  • the core of the present invention is a novel type of moisture curable polyurethane hot-melt adhesive composition
  • a polyol composition obtained by reacting a polyol composition with polyisocyanate (s) , where the polyol composition comprises a solid polyester polyol, a liquid polyester polyol, and a polycarbonate diol and/or a hydroxyl-terminated polybutadiene.
  • the subject of the present invention is an adhesive composition comprising at least one isocyanate-functional polyurethane polymer P obtained by reacting:
  • At least one first at 25 °C liquid polyester polyol PO2 At least one first at 25 °C liquid polyester polyol PO2,
  • At least one polyisocyanate PI At least one polyisocyanate PI
  • proportion of component a4) in the polyol composition a) is 5 –50 wt. -%, preferably 10 –40 wt. -%, more preferably 15 –30 wt. -%, based on the total weight of the polyol composition a) .
  • poly in substance designations such as “polyol” or “polyisocyanate” refers to substances which in formal terms contain two or more per molecule of the functional group that occurs in their designation.
  • a polyol for example, is a compound having two or more hydroxyl groups
  • a polyisocyanate is a compound having two or more isocyanate groups.
  • polymer designates a collective of chemically uniform macromolecules produced by a polyreaction (polymerization, polyaddition, polycondensation) where the macromolecules differ with respect to their degree of polymerization, molecular weight and chain length.
  • the term also comprises derivatives of said collective of macromolecules resulting from polyreactions, that is, compounds which are obtained by reactions such as, for example, additions or substitutions, of functional groups in predetermined macromolecules and which may be chemically uniform or chemically non-uniform.
  • the term “functionalized polymer” designates polymers which are chemically modified to contain a functional group on the polymer backbone.
  • the term “non-functionalized polymer” designates polymers which are not chemically modified to contain functional groups such as epoxy, silane, sulfonate, amide, or anhydride group on the polymer backbone.
  • polyurethane polymer designates polymers prepared by the so called diisocyanate polyaddition process. These also include those polymers which are virtually or entirely free from urethane groups. Examples of polyurethane polymers are polyether-polyurethanes, polyester-polyurethanes, polyether-polyureas, polyureas, polyester-polyureas, polyisocyanurates and polycarbodiimides.
  • isocyanate-functional polyurethane polymer designates polyurethane polymers comprising one or more unreacted isocyanate groups.
  • the polyurethane prepolymers can be obtained by reacting excess of polyisocyanates with polyols and they are polyisocyanates themselves.
  • the terms “isocyanate-functional polyurethane polymer” and “polyurethane prepolymer” are used interchangeably.
  • molecular weight refers to the molar mass (g/mol) of a molecule or a part of a molecule, also referred to as “moiety” .
  • average molecular weight refers to number average molecular weight (M n ) or to weight average molecular weight (M w ) of an oligomeric or polymeric mixture of molecules or moieties.
  • the molecular weight may be determined by gel permeation chromatography (GPC) using polystyrene as standard, styrene-divinylbenzene gel with porosity of 100 Angstrom, 1000 Angstrom and 10000 Angstrom as the column and, depending on the molecule, tetrahydrofurane as a solvent, at 35°C, or 1, 2, 4 ⁇ trichlorobenzene as a solvent, at 160 °C.
  • GPC gel permeation chromatography
  • average OH-functionality designates the average number of hydroxyl (OH) groups per molecule.
  • the average OH-functionality of a compound can be calculated based on the number average molecular weight (M n ) and the hydroxyl number of the compound.
  • M n number average molecular weight
  • the hydroxyl number of a compound can be determined by using method as defined in DIN 53 240-2 standard.
  • open time designates the length of a time period during which an adhesive applied to a surface of a substrate is still able to form an adhesive bond after being contacted with another substrate.
  • the “amount of at least one component X” in a composition for example “the amount of the at least one polyol” refers in the present document to the sum of the individual amounts of all polyols contained in the composition.
  • the at least one polyol is a polyester polyol and the composition comprises 20 wt. -%of at least one polyol
  • the sum of the amounts of all polyester polyols contained in the composition equals 20 wt. -%.
  • room temperature refers to a temperature of ca. 23 °C.
  • the adhesive composition comprises at least one isocyanate-functional polyurethane polymer P obtained by reacting a polyol composition with at least one polyisocyanate PI.
  • the “polyol composition” is understood to comprise all polyols that are used for obtaining the at least one isocyanate-functional polyurethane polymer P.
  • the adhesive composition is preferably a hot-melt adhesive, more preferably a one-component hot-melt adhesive.
  • the term “one-component composition” refers in context of the present invention to a composition in which all constituents of the composition are stored in a mixture in the same container or compartment.
  • the polyol composition comprises at least one at 25 °C solid polyester polyol PO1, at least one first at 25 °C liquid polyester polyol PO2, and optionally at least one second at 25 °C liquid polyester polyol PO3 different from the at least one first at 25 °C liquid polyester polyol PO2.
  • Suitable polyester polyols for use as the at least one polyester polyol PO1, PO2, and PO3 include crystalline, partially crystalline, amorphous, and liquid polyester polyols. These can be obtained by reacting dihydric and trihydric, preferably dihydric, alcohols, for example, 1, 2-ethanediol, diethylene glycol, triethylene glycol, 1, 2-propanediol, 1, 3-propanediol, dipropylene glycol, 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, 1, 8-octanediol, 1, 10-decanediol, 1, 12-dodecanediol, dimer fatty alcohol, neopentyl glycol, glycerol, 1, 1, 1-trimethylolpropane or mixtures of the aforesaid alcohols, with organic dicarboxylic acids or tricarboxylic acids, preferably dicar
  • polyester polyols include those obtained by reacting adipic acid, sebacic acid or dodecanedicarboxylic acid as dicarboxylic acid and hexanediol or neopentyl glycol as dihydric alcohol. Further examples of suitable polyester polyols include polyester polyols of oleochemical origin.
  • Polyester polyols of this type may be prepared, for example, by complete ring opening of epoxidized triglycerides of a fat mixture comprising at least partially olefinically unsaturated fatty acids, with one or more alcohols having 1-12 carbon atoms, and by subsequent partial transesterification of the triglyceride derivatives to give alkyl ester polyols having 1-12 carbon atoms in the alkyl radical.
  • Particularly suitable crystalline and partially crystalline polyester polyols include adipic acid/hexanediol polyester and dodecanedicarboxylic acid/hexanediol polyesters.
  • the at least one at 25 °C solid polyester polyol PO1 has a number average molecular weight (M n ) of 500 –10000 g/mol, preferably 1000 –5000 g/mol and/or a hydroxyl number determined according to ISO 4629-2 standard of 10 –75 mg KOH/g, preferably 15 –50 mg KOH/g and/or a melting point (T m ) determined with DSC of 30 –100 °C, preferably 40 –70 °C, more preferably 45 –65 °C.
  • M n number average molecular weight
  • T m melting point
  • Suitable at 25 °C solid partially crystalline and crystalline polyester polyols are commercially available, for example, under the trade name 7300-series (from Evonik Industries) .
  • the at least one at 25 °C solid polyester polyol PO1 comprises at least 2.5 wt. -%, preferably at least 5 wt. -%, more preferably at least 10 wt. -%, of the total weight of the polyol composition a) .
  • the at least one at 25 °C solid polyester polyol PO1 comprises 10 –50 wt. -%, preferably 15 –40 wt. -%, more preferably 20 –35 wt. -%, of the total weight of the polyol composition a) .
  • the at least one first at 25 °C liquid polyester polyol PO2 has a number average molecular weight (M n ) of 500–10000 g/mol, preferably 2500 –7500 g/mol and/or a hydroxyl number determined according to ISO 4629-2 standard of 5 –50 mg KOH/g, preferably 10 –35 mg KOH/g and/or a glass transition temperature determined with DSC at or below -5 °C, preferably at or below -15 °C, more preferably at or below -35 °C.
  • M n number average molecular weight
  • Suitable at 25 °C liquid polyester polyols are commercially available, for example, under the trade name 7200-series (from Evonik Industries) .
  • the polyol composition a) comprises, in addition to the at least one first at 25 °C liquid polyester polyol PO2, at least one second at 25 °C liquid polyester polyol PO3 different from the at least one first at 25 °C liquid polyester polyol PO2.
  • the at least one second at 25 °C liquid polyester polyol PO3 has a number average molecular weight (M n ) of 500–5000 g/mol, preferably 1000 –3500 g/mol and/or a hydroxyl-number determined according to ISO 4629-2 standard of 25-150 mg KOH/g, preferably 35-100 mg KOH/g.
  • M n number average molecular weight
  • the at least one at 25 °C liquid polyester polyol PO3 is an aromatic polyester polyol, preferably a phthalic anhydride diethylene glycol polyester polyol.
  • the at least one second at 25 °C liquid polyester polyol PO3 comprises 10 –50 wt. -%, preferably 15 –40 wt. -%, more preferably 20 –35 wt. -%, of the total weight of the polyol composition a) .
  • the polyol composition a) further comprises at least one polycarbonate diol PO4 and/or at least one hydroxyl-terminated polybutadiene PO5.
  • Suitable polycarbonate diols are obtainable by reacting, for example, the above mentioned dihydric or trihydric alcohols suitable for synthesizing the polyester polyols, with dialkyl carbonates, diaryl carbonates or phosgene.
  • Suitable polycarbonate diols are commercially available, for example,
  • C112 and Oxymer both from Perstorp
  • C2100, C2200, XP2613, 3100 XP, 3200 XP, XP 2716, C1100, and C1200 all from Covestro
  • the at least one polycarbonate diol PO4 has a number average molecular weight (M n ) of 300-10000 g/mol, preferably 500-5000 g/mol and/or a hydroxyl-number determined according to ISO 4629-2 standard of 25-200 mg KOH/g, preferably 35-100 mg KOH/g.
  • M n number average molecular weight
  • the at least one polycarbonate diol PO4 is obtained by a transesterification reaction of a first diol selected from 1, 6-hexanediol and 2-methyl-1, 3-propanediol and a second C 3 -C 20 diol with a carbonate ester.
  • the first diol is 1, 6-hexanediol and the second C 3 -C 20 diol is selected from a group consisting of 1, 3-propanediol, 2-methyl-1, 3-propane diol, 1, 4-butanediol, 1, 5-pentanediol, 3-methyl-1, 5-pentanediol, neopentyl glycol, and trimethyl-1, 6-hexanediol.
  • the first diol is 2-methyl-1, 3-propanediol and the second C 3 -C 20 diol is selected from a group consisting of 1, 3-propanediol, 1, 4-butanediol, 1, 5-pentanediol, 3-methyl-1, 5-pentanediol, neopentyl glycol, and trimethyl-1, 6-hexanediol.
  • the first diol is 1, 6-hexanediol and the second C 3 -C 20 diol is selected from 1, 4-butanediol and neopentyl glycol.
  • the proportion of the first diol is 20 –80 mol. -%and the proportion of the second C 3 -C 20 diol is 20 –80 mol. -%, with respect to the total amount of diols used for preparing the at least one polycarbonate diol PO4.
  • the reaction between the first and second diols and the carbonate ester may optionally be conducted in the presence of a small amount of a polyol.
  • Suitable polyols for this purpose include, for example, trimethylolethane, trimethylolpropane, hexanetriol, and pentaerythritol.
  • the proportion of the polyol, if used, is 0.1 –5 mol. -%, more preferably 0.1 –2 mol. -%, with respect to the total amount of diols used for preparing the at least one polycarbonate diol PO4.
  • Suitable carbonate esters include alkylene carbonates, dialkyl carbonates, and diaryl carbonates.
  • the carbonate ester is selected from the group consisting of ethylene carbonate, trimethylene carbonate, 1, 2-propylene carbonate, 5-methyl-1, 3-dioxane-2-one, 1, 2-butylene carbonate, 1, 3-butylene carbonate, 1, 2-pentylene carbonate, dimethyl carbonate, diethyl carbonate, di-n-butyl carbonate, and diphenyl carbonate, preferably from the group consisting of ethylene carbonate, dimethyl carbonate, diethyl carbonate, and di-n-butyl carbonate.
  • the carbonate ester is selected from dimethyl carbonate and diethyl carbonate.
  • the at least one polycarbonate diol PO4 is a at 25 °C liquid polycarbonate diol.
  • the polyol composition a) can comprise, instead or in addition to the at least one polycarbonate diol PO4, at least one hydroxyl-terminated polybutadiene PO5.
  • polybutadiene refers to an oligomer or a polymer of butadiene.
  • Hydroxyl-terminated polybutadienes are polybutadienes having primary hydroxyl groups. Suitable hydroxyl-terminated polybutadienes are obtainable by polymerization of 1, 3-butadienes and allyl alcohol or by oxidation of suitable polybutadienes.
  • Suitable hydroxyl-terminated polybutadienes are commercially available, for example, under the trade name of Poly and (from Cray Valley) , such as LBH-P 2000, LBH-P 3000, HLBH P 2000, HLBH P 2000 CF, and Poly R45V; under the trade name of (from Evonik Industries) , such as HT; and under the trade name of (from Emerald Materials) , such as 2800X95 HTB.
  • the at least one hydroxyl-terminated polybutadiene PO5 has a number average molecular weight (M n ) of 500 –10000 g/mol, preferably 1000 –5000 g/mol and/or an average hydroxyl functionality of 1.3 –2.9, preferably 1.5 –2.2 and/or a glass transition temperature determined with DSC at or below -5 °C, preferably at or below -15 °C.
  • M n number average molecular weight
  • the at least one hydroxyl-terminated polybutadiene PO5 is a at 25 °C liquid hydroxyl-terminated polybutadiene, preferably a at 25 °C liquid hydrogenated hydroxyl-terminated polybutadiene.
  • the total amount of at 25 °C liquid polyols in the polyol composition a) is 35 –95 wt. -%, preferably 45 –90 wt. -%, more preferably 50 –85 wt. -%, based on the total weight of the polyol composition a) .
  • Suitable polyisocyanates to be used as the at least one polyisocyanate PI include, for example, aliphatic, cyclo-aliphatic, and aromatic polyisocyanates, especially diisocyanates, particularly monomeric diisocyanates.
  • Non-monomeric diisocyanates such as oligomeric and polymeric products of monomeric diisocyanates, for example adducts of monomeric diisocyanates are also suitable but the use of monomeric diisocyanates is preferred.
  • the term “monomer” designates a molecule having at least one polymerizable group.
  • a monomeric di-or polyisocyanate contains particularly no urethane groups.
  • oligomers or polymer products of diisocyanate monomers such as adducts of monomeric diisocyanates are not monomeric diisocyanates.
  • An isocyanate is called “aliphatic” when its isocyanate group is directly bound to an aliphatic, cycloaliphatic or arylaliphatic moiety. The corresponding functional group is therefore called an aliphatic isocyanate group.
  • An isocyanate is called “aromatic” when its isocyanate group is directly bound to an aromatic moiety. The corresponding functional group is therefore called an aromatic isocyanate group.
  • the at least one polyisocyanate PI is a diisocyanate, preferably a monomeric diisocyanate, more preferably a monomeric diisocyanate having a number average molecular weight (M n ) of not more than 1000 g/mol, preferably not more than 500 g/mol, more preferably not more than 400 g/mol.
  • M n number average molecular weight
  • the monomeric diisocyanate is selected from the group consisting of 4, 4‘-, 2, 4'-, and 2, 2'-diphenylmethane diisocyanate and mixtures of these isomers (MDI) , 2, 4-and 2, 6-tolylene diisocyanate and mixtures of these isomers (TDI) , 1, 6-hexamethylene diisocyanate (HDI) , and 1-isocyanato-3, 3, 5-trimethyl-5-isocyanatomethylcyclohexane (IPDI) .
  • MDI 4, 4‘-, 2, 4'-, and 2, 2'-diphenylmethane diisocyanate and mixtures of these isomers
  • TDI 2, 4-and 2, 6-tolylene diisocyanate and mixtures of these isomers
  • HDI 1, 6-hexamethylene diisocyanate
  • IPDI 1-isocyanato-3, 3, 5-trimethyl-5-isocyanatomethylcyclohexane
  • the monomeric diisocyanate is selected from the group consisting of MDI and IPDI.
  • Suitable monomeric diisocyanates are commercially available, for example, under the trade name of (from BASF) and Desmodur (from Covestro) .
  • the at least one isocyanate-functional polyurethane polymer P has an average isocyanate functionality of not more than 3.5, preferably not more than 3.0.
  • the term “average NCO-functionality” designates in the present disclosure the average number of isocyanate (NCO) groups per molecule.
  • the average NCO functionality of a compound can be determined by using the method as defined in ISO 14896-2006 standard method A.
  • the at least one isocyanate-functional polyurethane polymer P comprises at least 50 wt. -%, more preferably at least 65 wt. -%, even more preferably at least 75 wt. -%, still more preferably at least 85 wt. -%, of the total weight of the adhesive composition.
  • the at least one isocyanate-functional polyurethane polymer P comprises 50 –95 wt. -%, preferably 60 –90 wt. -%, more preferably 65 –85 wt. -%, even more preferably 70 –85 wt. -%, of the total weight of the adhesive composition.
  • the adhesive composition further comprises at least one poly (meth) acrylate AC.
  • (meth) acrylate designates in the context of the present invention methacrylate or acrylate.
  • poly (meth) acrylate refers to homopolymers, copolymers, and higher interpolymers of an (meth) acrylate monomer with one or more further (meth) acrylate monomers and/or with one or more further monomers.
  • the (meth) acrylate monomers do not contain further functional groups such as hydroxyl-and/or carboxyl groups.
  • (meth) acrylate monomers containing further functional groups, particularly hydroxyl-groups, can be used in combination with (meth) acrylate monomers without further functional groups.
  • Suitable (meth) acrylate monomers include, for example, alkyl (meth) acrylates, such as methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, n-butyl methacrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate, n-octyl methacrylate, n-nonyl acrylate, lauryl acrylate, stearyl acrylate, behenyl acrylate, and their branched isomers, as for example isobutyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isooctyl acrylate, isooctyl methacrylate, and also cyclohexyl methacrylate, isobornyl
  • Suitable (meth) acrylate monomers with further functional groups include, for example, hydroxyl group containing (meth) acrylate monomers, such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl butyl (meth) acrylate, 2-hydroxy-hexyl (meth) acrylate, 6-hydroxy hexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate.
  • hydroxyl group containing (meth) acrylate monomers such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxy
  • Suitable comonomers for the synthesis of the at least one poly (meth) acrylate AC include vinyl compounds, such as ethylenically unsaturated hydrocarbons with functional groups, vinyl esters, vinyl halides, vinylidene halides, nitriles of ethylenically unsaturated hydrocarbons, phosphoric acid esters, and zinc salts of (meth) acrylic acid.
  • vinyl compounds such as ethylenically unsaturated hydrocarbons with functional groups, vinyl esters, vinyl halides, vinylidene halides, nitriles of ethylenically unsaturated hydrocarbons, phosphoric acid esters, and zinc salts of (meth) acrylic acid.
  • Suitable comonomers include, for example, maleic anhydride, styrene, styrenic compounds, acrylonitriles, vinyl acetate, vinyl propionate, vinyl chloride, (meth) acrylic acid, beta-acryloyloxypropionic acid, vinylacetic acid, fumaric acid, crotonic acid, aconitic acid, trichloroacrylic acid, itaconic acid, and maleic acid, and amides thereof.
  • maleic anhydride styrene, styrenic compounds, acrylonitriles, vinyl acetate, vinyl propionate, vinyl chloride, (meth) acrylic acid, beta-acryloyloxypropionic acid, vinylacetic acid, fumaric acid, crotonic acid, aconitic acid, trichloroacrylic acid, itaconic acid, and maleic acid, and amides thereof.
  • Especially suitable poly (meth) acrylates include, for example, homopolymers and copolymers obtained by free radical polymerization of one or more (meth) acrylate monomers optionally in combination with one or more hydroxyl-functional (meth) acrylate monomer and/or at least one further comonomer.
  • Suitable poly (meth) acrylates are commercially available, for example, under the trade name of AC, such as AC 1420, AC 1520, AC 1631, AC 1620, AC 1630, AC 1632, AC 1750, AC 1920, AC 4830, and AC 2740 (all from Evonik Industries) .
  • AC such as AC 1420, AC 1520, AC 1631, AC 1620, AC 1630, AC 1632, AC 1750, AC 1920, AC 4830, and AC 2740 (all from Evonik Industries) .
  • the at least one poly (meth) acrylate AC has a weight average molecular weight (M w ) of 15000 –100000 g/mol, preferably 25000 –65000 g/mol and/or a glass transition temperature determined according to ISO 11357-1 standard of at or above 0 °C, preferably at or above 35 °C and/or a softening point determined by Ring and Ball method according to ISO 4625 standard of 75 –200 °C, preferably 125 –185 °C and/or an acid number determined according to EN ISO 2114 standard of not more than 25 mg KOH/g, preferably not more than 10 mg KOH/g.
  • M w weight average molecular weight
  • the at least one poly (meth) acrylate AC comprises 0.5 –35 wt. -%, preferably 1.5 –25 wt. -%, more preferably 2.5 –15 wt. -%, of the total weight of the adhesive composition.
  • the adhesive composition further comprises at least one catalyst CA that catalyzes the reactions of isocyanate groups with water.
  • Suitable catalysts include metal-based catalysts such as dialkyltin complexes, particularly dibutyltin (IV) or dioctyltin (IV) carboxylates or acetoacetonates, such as dibutyltindilaurate (DBTDL) , dibutyltindiacetylacetonate, dioctyltindilaurate (DOTDL) , further bismuth (III) complexes such as bismuthoctoate or bismuthneodecanoate, zinc (II) complexes, such as zincoctoate or zincneodecanoate, and zirconium (IV) com-plexes, such as zirconiumoctoate or zirconiumneodecanoate.
  • metal-based catalysts such as dialkyltin complexes, particularly dibutyltin (IV) or dioctyltin (IV) carboxylates or acetoacetonates, such as dibuty
  • Suitable catalysts include compounds containing amine groups such as, dimorpholinodialkylethers and/or dimorpholino substituted polyalkylene glycols, for example 2, 2'-dimorpholinodiethyl ether and 1, 4-diazabicyclo [2.2.2] -octane. Combinations of two or more catalysts may also be used, preferred combinations including of one or more metal-catalysts with one or more morpholine amine compounds.
  • the at least one catalyst CA comprises 0.005 –2.00 wt. -%, preferably 0.05 –1.00 wt. -%, of the total weight of the adhesive composition.
  • the adhesive composition can further comprise auxiliary substances and additives, for example, those selected from the group consisting of fillers, plasticizers, adhesion promoters, UV absorption agents, UV and heat stabilizers, optical brighteners, pigments, dyes, and desiccants.
  • auxiliary substances and additives for example, those selected from the group consisting of fillers, plasticizers, adhesion promoters, UV absorption agents, UV and heat stabilizers, optical brighteners, pigments, dyes, and desiccants.
  • Suitable fillers include inorganic and organic fillers, especially natural, ground or precipitated calcium carbonates, optionally coated with fatty acids or fatty acid esters, especially stearic acid, baryte (heavy spar) , talcs, quartz flours, quartz sand, dolomites, wollastonites, kaolins, calcined kaolins, mica (potassium aluminum silicate) , molecular sieves, aluminum oxides, aluminum hydroxides, magnesium hydroxide, silicas including finely divided silicas from pyrolysis processes, industrially produced carbon blacks, graphite, metal powders such as aluminum, copper, iron, silver, steel, polyvinylchloride powder, and hollow spheres.
  • fatty acids or fatty acid esters especially stearic acid, baryte (heavy spar) , talcs, quartz flours, quartz sand, dolomites, wollastonites, kaolins, calcined kaolins, mica (pot
  • the total amount of such auxiliary substances and additives is preferably not more than 15 wt. -%, more preferably not more than 10 wt. -%, based on the total weight of the adhesive composition.
  • the adhesive composition is obtained by a method comprising steps of:
  • step B) Adding to the mixture obtained from step A) the at least one isocyanate PI and conducting reaction, optionally in the presence of one or more catalysts, wherein the molar ratio between isocyanate groups and hydroxyl groups is at least 1.1, preferably at least 1.3, to obtain a reaction mixture comprising the at least one isocyanate-functional polyurethane polymer P.
  • step C) Optionally adding to the reaction mixture obtained from step B) the at least one catalyst CA.
  • the NCO/OH ratio in step B) of the method is not greater than 3.5, preferably not greater than 3.0, more preferably not greater than 2.75, particularly 1.3 –2.5, preferably 1.5 –2.2.
  • step B) will convert substantially all the hydroxyl groups of the polyol composition, for example at least 95 %, preferably at least 99 %, of the hydroxyl groups of the polyol composition.
  • the starting mixture provided in step A) is dehydrated under vacuum at a temperature of at or above 120 °C before conducting step B) .
  • the reaction in step B) may be carried out according conventional methods used for preparation of isocyanate-functional polyurethane polymers.
  • the reaction may, for example, be carried out at temperatures in the range of 50 –160 °C, preferably 60 –120 °C, optionally in the presence of a catalyst.
  • the reaction time depends on the temperature employed, but may, for example, be in the range of from 30 minutes to 6 hours, particularly from 30 minutes to 3 hours, preferably from 30 minutes to 1.5 hours.
  • Suitable catalysts used in the reaction of step B) include, for example, metal catalysts, such as (from Vertellus Performance Materials Inc. ) , and tin catalysts.
  • the adhesive composition of the present invention is a moisture-curing adhesive composition, i.e. the adhesive composition can be cured by contacting the composition with water, especially with atmospheric moisture.
  • the adhesive composition of the present invention has good workability under typical application conditions of hot-melt adhesives, particularly at temperatures in the range of 85 –200 °C, meaning that at the application temperature the adhesive has sufficiently low viscosity to enable application to a substrate in a molten state.
  • the adhesive composition also develops a high initial strength immediately after the application to a substrate upon cooling even before the initiation of the crosslinking reaction with water, particularly with atmospheric moisture.
  • the adhesive composition has a viscosity at a temperature of 110 °C of not more than 25000 mPa ⁇ s, preferably not more than 15000 mPa ⁇ s, more preferably not more than 10000 mPa ⁇ s, even more preferably not more than 7500 mPa ⁇ s.
  • the viscosity at temperature of 110 °C can be measured using a conventional viscometer at 5 revolutions per minute, for example by using a Brookfield DV-2 viscometer with a spindle No. 27, preferably with a Thermosel System for temperature control.
  • the adhesive composition has a softening point measured by Ring and Ball method according to ISO 4625 standard in the range of 40 –150 °C, preferably 45 –135 °C, more preferably 50 –100 °C.
  • the at 25 °Csolid polyester polyol PO1 the first at 25 °C liquid polyester polyol PO2, the second at 25 °C liquid polyester polyol PO3, the at least one polycarbonate diol PO4, the at least one hydroxyl-terminated polybutadiene PO5, the at least one polyisocyanate PI, the at least one poly (meth) acylate AC, and the at least one catalyst CA apply equally to all subjects of the present invention unless stated otherwise.
  • Another subject of the present invention is use of the adhesive composition of the present invention for bonding of substrates in production of white goods, automotive vehicles, and electronic devices.
  • Suitable electronic devices in include, for example, displays, cellphones, smart watches, and audio devices.
  • Another subject of the present invention is a method for adhesively bonding a first substrate to a second substrate, the method comprising steps of:
  • the first and second substrates can be sheet-like articles having first and second major surfaces defined by peripheral edges and defining a thickness there between or three-dimensional shaped articles.
  • the adhesive composition is heated to a temperature above the softening point of the adhesive composition and applied to the surface of the first substrate in molten state using any conventional technique, for example, by using slot die coating, roller coating, extrusion coating, calender coating, or spray coating.
  • the adhesive composition can be applied to the surface of the first substrate with a coating weight of, for example, 25 –750 g/m 2 , preferably 35 –650 g/m 2 , more preferably 45 –550 g/m 2 , even more preferably 50 –500 g/m 2 .
  • the adhesive composition develops a certain initial adhesive strength by physical curing, i.e. upon cooling.
  • the chemical curing reactions may begin already during the application of the adhesive composition on the surface of the first substrate.
  • majority of the chemical curing occurs after the application of adhesive, particularly, after the applied adhesive film has been contacted with the surface of the second substrate.
  • the first and second substrates can be composed of any conventional material including polymeric material, metal, painted metal, glass, wood, wood derived materials such as natural fiber polypropylene (NFPP) , and fiber materials.
  • Suitable polymeric materials include, for example, polyethylene (PE) , in particular high density polyethylene (HDPE) , polypropylene (PP) , glass-fiber reinforced polypropylene (GFPP) , polyvinyl chloride (PVC) , polyethylene terephthalate (PET) , polystyrene (PS) , polycarbonate (PC) , polymethylmethacrylate (PMMA) , acrylonitrile butadiene styrene (ABS) , polyamide (PA) , and combinations thereof.
  • PE polyethylene
  • HDPE high density polyethylene
  • PP polypropylene
  • GFPP glass-fiber reinforced polypropylene
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • PS polystyrene
  • the first and second substrates can be composed of a single layer or of multiple layers of different types of materials.
  • the layer (s) composed of polymeric materials can further contain additives such as fillers, plasticizers, flame retardants, thermal stabilizers, antioxidants, pigments, dyes, and biocides.
  • Still another subject of the present invention is a composite element obtainable by using the method for adhesively bonding a first substrate to a second substrate of the present invention.
  • Solid polyester polyol (PO1) Solid polyester polyol (PO1) , liquid polyester polyols (PO2 and PO3) , poly (meth) acrylate (AC) and polycarbonate diol (PO4) or hydroxyl-terminated polybutadiene (PO5) were charged into a stainless-steel reactor.
  • the mixture was kept under vacuum with stirring at 140 °C for 120 minutes to dewater the components and to obtain a homogeneously mixed mixture.
  • the temperature of the mixture was lowered to 120 °C and polyisocyanate was added to the mixture under a nitrogen blanket.
  • the thus obtained starting mixture was reacted with stirring for 45 minutes under vacuum at a temperature of 120 °C to obtain a reaction product containing the isocyanate-functional polyurethane polymer.
  • the catalyst (CA) was then added to the reaction product under nitrogen blanket. After mixing for 45 minutes under vacuum, the obtained adhesive composition was stored at room temperature under exclusion of moisture.
  • the adhesive compositions were characterized using the following measurement methods.
  • the sample adhesive composition provided in a sealed tube was preheated in an oven at a temperature of 110 °C for a time period of 20 minutes. After the heating, a sample of 12.3 g of the adhesive composition was weighted and placed in a disposable sleeve to a viscometer. The viscosity was measured at temperature of 110 °C at 5 revolutions per minute using a Brookfield DV-2 viscometer with a spindle No. 27 equipped with a Thermosel system. The values obtained with 20 minutes of tempering at the measurement temperature and five minutes of measurement were recorded as representative viscosities.
  • the sample adhesive composition provided in a sealed tube was first preheated in an oven to at temperature of 110 °C for a time period of 30 minutes. After the heating, a sample of 20 g of the molten adhesive was applied with a doctor blade to surface of a silicone paper strip (B700 white, Laufenberg &Sohn KG) placed on a heating plate.
  • the silicone paper strip had dimensions of 30 cm x 10 cm and the adhesive was applied as a film having a thickness of 500 ⁇ m and dimensions of 30 cm x 6 cm.
  • the silicone paper strip and the doctor blade were heated to a temperature of 110 °C with the heating plate.
  • the silicone paper strip was removed from the heating plate and placed (with the adhesive film facing upwards) on a sheet of plywood at room temperature (23 °C) and the time was recorded as the starting point of the measurement. Every 10 seconds a short strip of silicone coated paper having dimensions of 10 cm x 1 cm and formed in a roll (non-siliconized surface facing outwards) was placed on the adhesive film and then slowly removed to separate the strip from the adhesive film. The procedure was repeated until the paper strip could not be removed from the adhesive film without damaging the paper strip or the adhesive film. The time interval between the starting point of the measurement and the last sampling point was recorded as the open time (in seconds) of the adhesive composition
  • the adhesive composition provided in a sealed tube was preheated in an oven to at temperature of 110 °C for a time period of 30 minutes. After the heating, a sample of 40 g of the molten adhesive was applied with a doctor blade to surface of a silicone paper strip (B700 white, Laufenberg &Sohn KG) placed on a heating plate.
  • the silicone paper had dimensions of 60 cm x 10 cm and the adhesive was applied as a film having a thickness of 500 ⁇ m and dimensions of 60 cm x 6 cm.
  • the silicone paper strip was removed from the heating plate and stored at standard climatic conditions (23 °C, 55 %relative humidity) for a period of 7 days.
  • the measurements were conducted using a method based on DIN 53504 standard.
  • Five rectangular test specimens having dimensions of 2.0 cm x 8.0 cm were cut from a cured adhesive film having a thickness of 500 ⁇ m (cured for 14 days at 23 °C/50%relative humidity) .
  • the test specimens were clamped into the tensile testing machine (Zwick Z 020) and pulled apart with a speed of 100 mm/min (test conditions 23°C, 50%relative humidity) .
  • the tensile strength and elongation at break were determined based on the measured maximum tensile stress.
  • the adhesive composition provided in a sealed tube was preheated in an oven to at a temperature of 110 °C for a time period of 30 minutes. After the heating, a sample of the molten adhesive was applied on the surface of a polycarbonate (PC) substrate having dimensions of 9 cm x 2 cm x 5 mm. The adhesive was applied as a film having dimensions of 2.5 cm x 1 cm and a thickness of 1 mm.
  • PC polycarbonate
  • a second PC substrate having same dimensions as the first PC specimen was positioned over the first PC substrate along the edge of the adhesive film to form a test composite element.
  • the second PC substrate was pressed firmly against the first PC specimen to remove air from adhesive bond.
  • a weigh of 150 g was placed on the top surface of the second PC substrate. Any adhesive squeezed out from the joint was trimmed off with a knife.
  • the test composite element was stored at standard climatic conditions (23 °C, 55%relative humidity) for a period of 7 days before measuring of the lap shear strengths.
  • Lap shear strengths were measured according to EN 1465 standard using a material testing apparatus (Zwick Z 020) and a test speed 10 mm/min.
  • the lap shear strengths obtained after subjecting the test composite element to an artificial aging treatment 500 h, at 65 °C and 85 °C were also measured to determine the heat and humidity stability of the tested adhesive composition.

Abstract

The invention relates to a moisture curable hot-melt adhesive composition comprising at least one isocyanate-functional polyurethane polymer P obtained by reacting: a) A polyol composition comprising a1) At least one at 25 ℃ solid polyester polyol PO1, a2) At least one first at 25 ℃ liquid polyester polyol PO2, a3) Optionally at least one second at 25 ℃ liquid polyester polyol PO3 different from the at least one first at 25 ℃ liquid polyester polyol PO2, and a4) At least one polycarbonate diol PO4 and/or at least one hydroxyl-terminated polybutadiene PO5, and b) At least one polyisocyanate PI. The invention is also related to use of the adhesive composition for bonding of substrates in production of white goods, automotive vehicles, and electronic devices.

Description

Moisture curable polyurethane hot-melt adhesive having improved heat and humidity resistance Technical field
The invention relates to reactive polyurethane hot-melt adhesives having improved heat and humidity resistance and to use of the adhesives for bonding of substrates in production of white goods, automotive vehicles, and electronic devices.
Background of the invention
Hot-melt adhesives are solvent free adhesives, which are solid at room temperature and which are applied to the substrate to be bonded in form of a melt. After cooling the adhesive solidifies and forms an adhesive bond with the substrate through physically occurring bonding. Conventional hot-melt adhesives are non-reactive adhesives, which soften again upon heating and are, therefore, not suitable to be used at elevated temperatures. Reactive hot-melt adhesives contain polymers with reactive groups that enable chemical curing of the adhesive, for example, by crosslinking of the polymer chains. Due to the chemically cured polymer matrix reactive hot-melt adhesives do not soften upon heating and these adhesives are, therefore, suitable for use also at elevated temperatures. The chemical curing of the polymers can be initiated, for example, by heating or exposing the adhesive composition to water, such as atmospheric moisture. Moisture curing hot-melt adhesives typically contain polymers functionalized with isocyanate or silane groups, which enables crosslinking of the polymer chains upon contact with atmospheric moisture.
Moisture curing polyurethane hot-melt adhesives (PUR-RHM) consist mainly of isocyanate-functional polyurethane polymers, which have been obtained by  reacting suitable polyols, typically polyester and/or polyether polyols, with polyisocyanates, where the reaction is conducted at a molar excess of isocyanate (NCO) groups over hydroxyl (OH) groups. The adhesive composition is cured by reaction of the residual isocyanate groups with water, which results in various chain extension and/or crosslinking reactions of the polymers. A fully cured polyurethane hot-melt adhesive comprises urea and/or urethane bonds and, depending on the starting materials used for providing the isocyanate-functional polymer, ester and/or ether bonds. A crosslinked hot-melt adhesive does not remelt when subjected to heating. However, the ester bonds will undergo hydrolysis reaction to produce respective acids and alcohols under high temperature and humidity conditions, such as at 85 ℃ and 85 %relative humidity. The acids formed in the hydrolysis reactions will further accelerate the decomposition of ester bonds. Conventional polyurethane hot-melt adhesives have been found out to begin to decompose after 200 hours of artificial aging tests conducted at 85 ℃ and 85 %relative humidity.
There is thus a need for a novel type of moisture curable polyurethane hot-melt adhesive having improved heat and humidity resistance. Such adhesives are especially suitable for use in bonding of substrates in production of white goods, automotive vehicles, and electronic devices.
Summary of the invention
The object of the present invention is to provide an adhesive composition, which overcomes or at least mitigates the disadvantages of the prior art moisture curable polyurethane hot-melt adhesives as discussed above.
Particularly, it is an object of the present invention to provide a moisture curable polyurethane hot-melt adhesive composition having improved heat and humidity resistance. The cured adhesive composition should preferably also have excellent mechanical properties, particular a high tensile strength and  elongation at break, and high adhesive bonding strength measured as lap shear strength.
It was surprisingly found out that the objects can be achieved with the features of claim 1.
The core of the present invention is a novel type of moisture curable polyurethane hot-melt adhesive composition comprising at least one isocyanate-functional polyurethane polymer obtained by reacting a polyol composition with polyisocyanate (s) , where the polyol composition comprises a solid polyester polyol, a liquid polyester polyol, and a polycarbonate diol and/or a hydroxyl-terminated polybutadiene.
It was surprisingly found out that the addition of a polycarbonate diol and/or a hydroxyl-terminated polybutadiene to the polyol composition used for obtaining at least one isocyanate-functional polyurethane polymer not only improves the heat and humidity stability of the cured adhesive but it has a positive impact to the mechanical properties and adhesive bond strength.
Other subjects of the present invention are presented in other independent claims. Preferred aspects of the invention are presented in the dependent claims.
Detailed description of the invention
The subject of the present invention is an adhesive composition comprising at least one isocyanate-functional polyurethane polymer P obtained by reacting:
a) A polyol composition comprising
a1) At least one at 25 ℃ solid polyester polyol PO1,
a2) At least one first at 25 ℃ liquid polyester polyol PO2,
a3) Optionally at least one second at 25 ℃ liquid polyester polyol PO3 different from the at least one first at 25 ℃ liquid polyester polyol PO2, and
a4) At least one polycarbonate diol PO4 and/or at least one hydroxyl-terminated polybutadiene PO5, and
b) At least one polyisocyanate PI,
wherein the proportion of component a4) in the polyol composition a) is 5 –50 wt. -%, preferably 10 –40 wt. -%, more preferably 15 –30 wt. -%, based on the total weight of the polyol composition a) .
The prefix “poly” in substance designations such as “polyol” or “polyisocyanate” refers to substances which in formal terms contain two or more per molecule of the functional group that occurs in their designation. A polyol, for example, is a compound having two or more hydroxyl groups, and a polyisocyanate is a compound having two or more isocyanate groups.
The term “polymer” designates a collective of chemically uniform macromolecules produced by a polyreaction (polymerization, polyaddition, polycondensation) where the macromolecules differ with respect to their degree of polymerization, molecular weight and chain length. The term also comprises derivatives of said collective of macromolecules resulting from polyreactions, that is, compounds which are obtained by reactions such as, for example, additions or substitutions, of functional groups in predetermined macromolecules and which may be chemically uniform or chemically non-uniform.
The term "functionalized polymer" designates polymers which are chemically modified to contain a functional group on the polymer backbone. In contrast, the term "non-functionalized polymer" designates polymers which are not chemically modified to contain functional groups such as epoxy, silane, sulfonate, amide, or anhydride group on the polymer backbone.
The term “polyurethane polymer” designates polymers prepared by the so called diisocyanate polyaddition process. These also include those polymers which are virtually or entirely free from urethane groups. Examples of polyurethane polymers are polyether-polyurethanes, polyester-polyurethanes, polyether-polyureas, polyureas, polyester-polyureas, polyisocyanurates and polycarbodiimides.
The term “isocyanate-functional polyurethane polymer” designates polyurethane polymers comprising one or more unreacted isocyanate groups. The polyurethane prepolymers can be obtained by reacting excess of polyisocyanates with polyols and they are polyisocyanates themselves. The terms “isocyanate-functional polyurethane polymer” and “polyurethane prepolymer” are used interchangeably.
The term “molecular weight” refers to the molar mass (g/mol) of a molecule or a part of a molecule, also referred to as “moiety” . The term “average molecular weight” refers to number average molecular weight (M n) or to weight average molecular weight (M w) of an oligomeric or polymeric mixture of molecules or moieties. The molecular weight may be determined by gel permeation chromatography (GPC) using polystyrene as standard, styrene-divinylbenzene gel with porosity of 100 Angstrom, 1000 Angstrom and 10000 Angstrom as the column and, depending on the molecule, tetrahydrofurane as a solvent, at 35℃, or 1, 2, 4‐trichlorobenzene as a solvent, at 160 ℃.
The term “average OH-functionality” designates the average number of hydroxyl (OH) groups per molecule. The average OH-functionality of a compound can be calculated based on the number average molecular weight (M n) and the hydroxyl number of the compound. The hydroxyl number of a compound can be determined by using method as defined in DIN 53 240-2 standard.
The term “open time” designates the length of a time period during which an adhesive applied to a surface of a substrate is still able to form an adhesive bond after being contacted with another substrate.
The “amount of at least one component X” in a composition, for example “the amount of the at least one polyol” refers in the present document to the sum of the individual amounts of all polyols contained in the composition. For example, in case the at least one polyol is a polyester polyol and the composition comprises 20 wt. -%of at least one polyol, the sum of the amounts of all polyester polyols contained in the composition equals 20 wt. -%.
The term “room temperature “refers to a temperature of ca. 23 ℃.
The adhesive composition comprises at least one isocyanate-functional polyurethane polymer P obtained by reacting a polyol composition with at least one polyisocyanate PI. The “polyol composition” is understood to comprise all polyols that are used for obtaining the at least one isocyanate-functional polyurethane polymer P.
The adhesive composition is preferably a hot-melt adhesive, more preferably a one-component hot-melt adhesive. The term “one-component composition” refers in context of the present invention to a composition in which all constituents of the composition are stored in a mixture in the same container or compartment.
The polyol composition comprises at least one at 25 ℃ solid polyester polyol PO1, at least one first at 25 ℃ liquid polyester polyol PO2, and optionally at least one second at 25 ℃ liquid polyester polyol PO3 different from the at least one first at 25 ℃ liquid polyester polyol PO2.
Suitable polyester polyols for use as the at least one polyester polyol PO1, PO2, and PO3 include crystalline, partially crystalline, amorphous, and liquid polyester polyols. These can be obtained by reacting dihydric and trihydric,  preferably dihydric, alcohols, for example, 1, 2-ethanediol, diethylene glycol, triethylene glycol, 1, 2-propanediol, 1, 3-propanediol, dipropylene glycol, 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, 1, 8-octanediol, 1, 10-decanediol, 1, 12-dodecanediol, dimer fatty alcohol, neopentyl glycol, glycerol, 1, 1, 1-trimethylolpropane or mixtures of the aforesaid alcohols, with organic dicarboxylic acids or tricarboxylic acids, preferably dicarboxylic acids, or their anhydrides or esters, such as succinic acid, glutaric acid, 3, 3-dimethylglutaric acid, adipic acid, suberic acid, sebacic acid, undecanedioic acid, dodecanedicarboxylic acid, azelaic acid, maleic acid, fumaric acid, phthalic acid, dimer fatty acid, isophthalic acid, terephthalic acid, and hexahydrophthalic acid, or mixtures of the aforesaid acids. Polyester polyols made from lactones such as from ε-caprolactone, also known as polycaprolactones, are also suitable.
Preferred polyester polyols include those obtained by reacting adipic acid, sebacic acid or dodecanedicarboxylic acid as dicarboxylic acid and hexanediol or neopentyl glycol as dihydric alcohol. Further examples of suitable polyester polyols include polyester polyols of oleochemical origin. Polyester polyols of this type may be prepared, for example, by complete ring opening of epoxidized triglycerides of a fat mixture comprising at least partially olefinically unsaturated fatty acids, with one or more alcohols having 1-12 carbon atoms, and by subsequent partial transesterification of the triglyceride derivatives to give alkyl ester polyols having 1-12 carbon atoms in the alkyl radical. Particularly suitable crystalline and partially crystalline polyester polyols include adipic acid/hexanediol polyester and dodecanedicarboxylic acid/hexanediol polyesters.
According to one or more embodiments, the at least one at 25 ℃ solid polyester polyol PO1 has a number average molecular weight (M n) of 500 –10000 g/mol, preferably 1000 –5000 g/mol and/or a hydroxyl number determined according to ISO 4629-2 standard of 10 –75 mg KOH/g, preferably 15 –50 mg KOH/g and/or a melting point (T m) determined with DSC of 30 –100 ℃, preferably 40 –70 ℃, more preferably 45 –65 ℃.
Suitable at 25 ℃ solid partially crystalline and crystalline polyester polyols are commercially available, for example, under the trade name
Figure PCTCN2021117493-appb-000001
7300-series (from Evonik Industries) .
Preferably, the at least one at 25 ℃ solid polyester polyol PO1 comprises at least 2.5 wt. -%, preferably at least 5 wt. -%, more preferably at least 10 wt. -%, of the total weight of the polyol composition a) .
According to one or more embodiments, the at least one at 25 ℃ solid polyester polyol PO1 comprises 10 –50 wt. -%, preferably 15 –40 wt. -%, more preferably 20 –35 wt. -%, of the total weight of the polyol composition a) .
According to one or more embodiments, the at least one first at 25 ℃ liquid polyester polyol PO2 has a number average molecular weight (M n) of 500–10000 g/mol, preferably 2500 –7500 g/mol and/or a hydroxyl number determined according to ISO 4629-2 standard of 5 –50 mg KOH/g, preferably 10 –35 mg KOH/g and/or a glass transition temperature determined with DSC at or below -5 ℃, preferably at or below -15 ℃, more preferably at or below -35 ℃.
Suitable at 25 ℃ liquid polyester polyols are commercially available, for example, under the trade name
Figure PCTCN2021117493-appb-000002
7200-series (from Evonik Industries) .
According to one or more embodiments, the polyol composition a) comprises, in addition to the at least one first at 25 ℃ liquid polyester polyol PO2, at least one second at 25 ℃ liquid polyester polyol PO3 different from the at least one first at 25 ℃ liquid polyester polyol PO2.
According to one or more embodiments, the at least one second at 25 ℃ liquid polyester polyol PO3 has a number average molecular weight (M n) of 500–5000 g/mol, preferably 1000 –3500 g/mol and/or a hydroxyl-number  determined according to ISO 4629-2 standard of 25-150 mg KOH/g, preferably 35-100 mg KOH/g.
According to one or more embodiments, the at least one at 25 ℃ liquid polyester polyol PO3 is an aromatic polyester polyol, preferably a phthalic anhydride diethylene glycol polyester polyol.
According to one or more embodiments, the at least one second at 25 ℃ liquid polyester polyol PO3 comprises 10 –50 wt. -%, preferably 15 –40 wt. -%, more preferably 20 –35 wt. -%, of the total weight of the polyol composition a) .
The polyol composition a) further comprises at least one polycarbonate diol PO4 and/or at least one hydroxyl-terminated polybutadiene PO5.
Suitable polycarbonate diols are obtainable by reacting, for example, the above mentioned dihydric or trihydric alcohols suitable for synthesizing the polyester polyols, with dialkyl carbonates, diaryl carbonates or phosgene.
Suitable polycarbonate diols are commercially available, for example,
under the trade name of
Figure PCTCN2021117493-appb-000003
such as
Figure PCTCN2021117493-appb-000004
UM, 
Figure PCTCN2021117493-appb-000005
UH, 
Figure PCTCN2021117493-appb-000006
PH, 
Figure PCTCN2021117493-appb-000007
UHC, 
Figure PCTCN2021117493-appb-000008
UC, and
Figure PCTCN2021117493-appb-000009
UT series (all from Ube Industries Ltd. ) ;
under the trade name of
Figure PCTCN2021117493-appb-000010
C112 and Oxymer
Figure PCTCN2021117493-appb-000011
 (both from Perstorp) ;under the trade name of
Figure PCTCN2021117493-appb-000012
such as
Figure PCTCN2021117493-appb-000013
C2100, 
Figure PCTCN2021117493-appb-000014
C2200, 
Figure PCTCN2021117493-appb-000015
XP2613, 
Figure PCTCN2021117493-appb-000016
3100 XP, 
Figure PCTCN2021117493-appb-000017
3200 XP, 
Figure PCTCN2021117493-appb-000018
XP 2716, 
Figure PCTCN2021117493-appb-000019
C1100, and 
Figure PCTCN2021117493-appb-000020
C1200 (all from Covestro) ;
under the trade name of
Figure PCTCN2021117493-appb-000021
such as 
Figure PCTCN2021117493-appb-000022
T5652, 
Figure PCTCN2021117493-appb-000023
T5651, 
Figure PCTCN2021117493-appb-000024
G4672, 
Figure PCTCN2021117493-appb-000025
T4671, 
Figure PCTCN2021117493-appb-000026
T5652, 
Figure PCTCN2021117493-appb-000027
T5651, 
Figure PCTCN2021117493-appb-000028
T5650J, 
Figure PCTCN2021117493-appb-000029
T4692, 
Figure PCTCN2021117493-appb-000030
T4691, 
Figure PCTCN2021117493-appb-000031
T5650E, 
Figure PCTCN2021117493-appb-000032
G3452; and 
Figure PCTCN2021117493-appb-000033
G3450J (all from Asahi Kasei Chemicals) ; and under the trade name of
Figure PCTCN2021117493-appb-000034
102, 
Figure PCTCN2021117493-appb-000035
106, and
Figure PCTCN2021117493-appb-000036
107 (all from Caffaro Industrie SPA) .
According to one or more embodiments, the at least one polycarbonate diol PO4 has a number average molecular weight (M n) of 300-10000 g/mol, preferably 500-5000 g/mol and/or a hydroxyl-number determined according to ISO 4629-2 standard of 25-200 mg KOH/g, preferably 35-100 mg KOH/g.
According to one or more preferred embodiments, the at least one polycarbonate diol PO4 is obtained by a transesterification reaction of a first diol selected from 1, 6-hexanediol and 2-methyl-1, 3-propanediol and a second C 3-C 20 diol with a carbonate ester.
According to one or more embodiments, the first diol is 1, 6-hexanediol and the second C 3-C 20 diol is selected from a group consisting of 1, 3-propanediol, 2-methyl-1, 3-propane diol, 1, 4-butanediol, 1, 5-pentanediol, 3-methyl-1, 5-pentanediol, neopentyl glycol, and trimethyl-1, 6-hexanediol.
According to one or more further embodiments, the first diol is 2-methyl-1, 3-propanediol and the second C 3-C 20 diol is selected from a group consisting of 1, 3-propanediol, 1, 4-butanediol, 1, 5-pentanediol, 3-methyl-1, 5-pentanediol, neopentyl glycol, and trimethyl-1, 6-hexanediol.
According to one or more preferred embodiments, the first diol is 1, 6-hexanediol and the second C 3-C 20 diol is selected from 1, 4-butanediol and neopentyl glycol.
According to one or more embodiments, the proportion of the first diol is 20 –80 mol. -%and the proportion of the second C 3-C 20 diol is 20 –80 mol. -%, with respect to the total amount of diols used for preparing the at least one polycarbonate diol PO4.
The reaction between the first and second diols and the carbonate ester may optionally be conducted in the presence of a small amount of a polyol. Suitable polyols for this purpose include, for example, trimethylolethane, trimethylolpropane, hexanetriol, and pentaerythritol. Preferably, the proportion of the polyol, if used, is 0.1 –5 mol. -%, more preferably 0.1 –2 mol. -%, with respect to the total amount of diols used for preparing the at least one polycarbonate diol PO4.
Suitable carbonate esters include alkylene carbonates, dialkyl carbonates, and diaryl carbonates.
According to one or more embodiments, the carbonate ester is selected from the group consisting of ethylene carbonate, trimethylene carbonate, 1, 2-propylene carbonate, 5-methyl-1, 3-dioxane-2-one, 1, 2-butylene carbonate, 1, 3-butylene carbonate, 1, 2-pentylene carbonate, dimethyl carbonate, diethyl carbonate, di-n-butyl carbonate, and diphenyl carbonate, preferably from the group consisting of ethylene carbonate, dimethyl carbonate, diethyl carbonate, and di-n-butyl carbonate.
According to one or more preferred embodiments, the carbonate ester is selected from dimethyl carbonate and diethyl carbonate.
Preferably, the at least one polycarbonate diol PO4 is a at 25 ℃ liquid polycarbonate diol.
The polyol composition a) can comprise, instead or in addition to the at least one polycarbonate diol PO4, at least one hydroxyl-terminated polybutadiene PO5.
The term “polybutadiene” refers to an oligomer or a polymer of butadiene. Hydroxyl-terminated polybutadienes are polybutadienes having primary hydroxyl groups. Suitable hydroxyl-terminated polybutadienes are obtainable  by polymerization of 1, 3-butadienes and allyl alcohol or by oxidation of suitable polybutadienes.
Suitable hydroxyl-terminated polybutadienes are commercially available, for example, under the trade name of Poly
Figure PCTCN2021117493-appb-000037
and
Figure PCTCN2021117493-appb-000038
 (from Cray Valley) , such as
Figure PCTCN2021117493-appb-000039
LBH-P 2000, 
Figure PCTCN2021117493-appb-000040
LBH-P 3000, 
Figure PCTCN2021117493-appb-000041
HLBH P 2000, 
Figure PCTCN2021117493-appb-000042
HLBH P 2000 CF, and Poly
Figure PCTCN2021117493-appb-000043
R45V; under the trade name of 
Figure PCTCN2021117493-appb-000044
(from Evonik Industries) , such as
Figure PCTCN2021117493-appb-000045
HT; and under the trade name of
Figure PCTCN2021117493-appb-000046
 (from Emerald Materials) , such as
Figure PCTCN2021117493-appb-000047
2800X95 HTB.
According to one or more embodiments, the at least one hydroxyl-terminated polybutadiene PO5 has a number average molecular weight (M n) of 500 –10000 g/mol, preferably 1000 –5000 g/mol and/or an average hydroxyl functionality of 1.3 –2.9, preferably 1.5 –2.2 and/or a glass transition temperature determined with DSC at or below -5 ℃, preferably at or below -15 ℃.
According to one or more preferred embodiments, the at least one hydroxyl-terminated polybutadiene PO5 is a at 25 ℃ liquid hydroxyl-terminated polybutadiene, preferably a at 25 ℃ liquid hydrogenated hydroxyl-terminated polybutadiene.
According to one or more embodiments, the total amount of at 25 ℃ liquid polyols in the polyol composition a) is 35 –95 wt. -%, preferably 45 –90 wt. -%, more preferably 50 –85 wt. -%, based on the total weight of the polyol composition a) .
Suitable polyisocyanates to be used as the at least one polyisocyanate PI include, for example, aliphatic, cyclo-aliphatic, and aromatic polyisocyanates, especially diisocyanates, particularly monomeric diisocyanates. Non-monomeric diisocyanates such as oligomeric and polymeric products of monomeric diisocyanates, for example adducts of monomeric diisocyanates are also suitable but the use of monomeric diisocyanates is preferred.
The term “monomer” designates a molecule having at least one polymerizable group. A monomeric di-or polyisocyanate contains particularly no urethane groups. In the context of the present invention, oligomers or polymer products of diisocyanate monomers such as adducts of monomeric diisocyanates are not monomeric diisocyanates.
An isocyanate is called “aliphatic” when its isocyanate group is directly bound to an aliphatic, cycloaliphatic or arylaliphatic moiety. The corresponding functional group is therefore called an aliphatic isocyanate group. An isocyanate is called “aromatic” when its isocyanate group is directly bound to an aromatic moiety. The corresponding functional group is therefore called an aromatic isocyanate group.
According to one or more embodiments, the at least one polyisocyanate PI is a diisocyanate, preferably a monomeric diisocyanate, more preferably a monomeric diisocyanate having a number average molecular weight (M n) of not more than 1000 g/mol, preferably not more than 500 g/mol, more preferably not more than 400 g/mol.
Examples of suitable monomeric diisocyanates include, for example, 1, 6-hexamethylene diisocyanate (HDI) , 2-methylpentamethylene 1, 5-diisocyanate, 2, 2, 4-and 2, 4, 4-trimethyl-1, 6-hexamethylene diisocyanate (TMDI) and mixtures of these isomers, 1, 10 decamethylene diisocyanate, 1, 12-dodecamethylene diisocyanate, lysine diisocyanate, lysine ester diisocyanate, cyclohexane 1, 3-diisocyanate and cyclohexane 1, 4-diisocyanate and mixtures of these isomers, 1-methyl-2, 4-and -2, 6-diisocyanatocyclohexane and mixtures of these isomers (HTDI or H6TDI) , 1-isocyanato-3, 3, 5-trimethyl-5-isocyanatomethylcyclohexane (= isophoronediisocyanate or IPDI) , perhydro-2, 4'-and -4, 4'-diphenylmethane diisocyanate (HMDI or H12MDI) and mixtures of these isomers, 1, 4-diisocyanato-2, 2, 6-trimethylcyclohexane (TMCDI) , 1, 3-and 1, 4-bis (isocyanato-methyl) cyclohexane, m-and p-xylylene diisocyanate (m-and p-XDI) and mixtures of these isomers, m-and p-tetramethyl-1, 3-and  1, 4-xylylene diisocyanate (m-and p-TMXDI) and mixtures of these isomers, bis (1-isocyanato-1-methylethyl) naphthalene, 2, 4-and 2, 6-tolylene diisocyanate and mixtures of these isomers (TDI) , 4, 4'-, 2, 4'-and 2, 2'-diphenylmethane diisocyanate and mixtures of these isomers (MDI) , 1, 3-and 1, 4-phenylene diisocyanate and mixtures of these isomers, 2, 3, 5, 6-tetramethyl-1, 4-diisocyanatobenzene, naphthalene 1, 5-diisocyanate (NDI) , 3, 3'-dimethyl-4, 4'-diisocyanatobiphenyl (TODI) , and dianisidine diisocyanate (DADI) .
According to one or more embodiments, the monomeric diisocyanate is selected from the group consisting of 4, 4‘-, 2, 4'-, and 2, 2'-diphenylmethane diisocyanate and mixtures of these isomers (MDI) , 2, 4-and 2, 6-tolylene diisocyanate and mixtures of these isomers (TDI) , 1, 6-hexamethylene diisocyanate (HDI) , and 1-isocyanato-3, 3, 5-trimethyl-5-isocyanatomethylcyclohexane (IPDI) . Furthermore, a person skilled in the art knows that the technical grade products of diisocyanates may frequently contain isomer mixtures or other isomers as impurities. According to one or more embodiments, the monomeric diisocyanate is selected from the group consisting of MDI and IPDI. Suitable monomeric diisocyanates are commercially available, for example, under the trade name of
Figure PCTCN2021117493-appb-000048
 (from BASF) and Desmodur (from Covestro) .
According to one or more embodiments, the at least one isocyanate-functional polyurethane polymer P has an average isocyanate functionality of not more than 3.5, preferably not more than 3.0. The term “average NCO-functionality” designates in the present disclosure the average number of isocyanate (NCO) groups per molecule. The average NCO functionality of a compound can be determined by using the method as defined in ISO 14896-2006 standard method A.
Preferably, the at least one isocyanate-functional polyurethane polymer P comprises at least 50 wt. -%, more preferably at least 65 wt. -%, even more preferably at least 75 wt. -%, still more preferably at least 85 wt. -%, of the total weight of the adhesive composition.
According to one or more embodiments, the at least one isocyanate-functional polyurethane polymer P comprises 50 –95 wt. -%, preferably 60 –90 wt. -%, more preferably 65 –85 wt. -%, even more preferably 70 –85 wt. -%, of the total weight of the adhesive composition.
According to one or more embodiments, the adhesive composition further comprises at least one poly (meth) acrylate AC. The term “ (meth) acrylate” designates in the context of the present invention methacrylate or acrylate.
The term “poly (meth) acrylate” refers to homopolymers, copolymers, and higher interpolymers of an (meth) acrylate monomer with one or more further (meth) acrylate monomers and/or with one or more further monomers.
It may be preferred that the (meth) acrylate monomers do not contain further functional groups such as hydroxyl-and/or carboxyl groups. However, (meth) acrylate monomers containing further functional groups, particularly hydroxyl-groups, can be used in combination with (meth) acrylate monomers without further functional groups.
Suitable (meth) acrylate monomers include, for example, alkyl (meth) acrylates, such as methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, n-butyl methacrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate, n-octyl methacrylate, n-nonyl acrylate, lauryl acrylate, stearyl acrylate, behenyl acrylate, and their branched isomers, as for example isobutyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isooctyl acrylate, isooctyl methacrylate, and also cyclohexyl methacrylate, isobornyl acrylate, isobornyl methacrylate or 3, 5-dimethyladamantyl acrylate.
Suitable (meth) acrylate monomers with further functional groups include, for example, hydroxyl group containing (meth) acrylate monomers, such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl  butyl (meth) acrylate, 2-hydroxy-hexyl (meth) acrylate, 6-hydroxy hexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate.
Further suitable comonomers for the synthesis of the at least one poly (meth) acrylate AC include vinyl compounds, such as ethylenically unsaturated hydrocarbons with functional groups, vinyl esters, vinyl halides, vinylidene halides, nitriles of ethylenically unsaturated hydrocarbons, phosphoric acid esters, and zinc salts of (meth) acrylic acid. Examples of further suitable comonomers include, for example, maleic anhydride, styrene, styrenic compounds, acrylonitriles, vinyl acetate, vinyl propionate, vinyl chloride, (meth) acrylic acid, beta-acryloyloxypropionic acid, vinylacetic acid, fumaric acid, crotonic acid, aconitic acid, trichloroacrylic acid, itaconic acid, and maleic acid, and amides thereof.
Especially suitable poly (meth) acrylates include, for example, homopolymers and copolymers obtained by free radical polymerization of one or more (meth) acrylate monomers optionally in combination with one or more hydroxyl-functional (meth) acrylate monomer and/or at least one further comonomer.
Suitable poly (meth) acrylates are commercially available, for example, under the trade name of
Figure PCTCN2021117493-appb-000049
AC, such as
Figure PCTCN2021117493-appb-000050
AC 1420, 
Figure PCTCN2021117493-appb-000051
AC 1520, 
Figure PCTCN2021117493-appb-000052
AC 1631, 
Figure PCTCN2021117493-appb-000053
AC 1620, 
Figure PCTCN2021117493-appb-000054
AC 1630, 
Figure PCTCN2021117493-appb-000055
AC 1632, 
Figure PCTCN2021117493-appb-000056
AC 1750, 
Figure PCTCN2021117493-appb-000057
AC 1920, 
Figure PCTCN2021117493-appb-000058
AC 4830, and
Figure PCTCN2021117493-appb-000059
AC 2740 (all from Evonik Industries) .
According to one or more embodiments, the at least one poly (meth) acrylate AC has a weight average molecular weight (M w) of 15000 –100000 g/mol, preferably 25000 –65000 g/mol and/or a glass transition temperature determined according to ISO 11357-1 standard of at or above 0 ℃, preferably at or above 35 ℃ and/or a softening point determined by Ring and Ball method according to ISO 4625 standard of 75 –200 ℃, preferably 125 –185 ℃ and/or  an acid number determined according to EN ISO 2114 standard of not more than 25 mg KOH/g, preferably not more than 10 mg KOH/g.
According to one or more embodiments, the at least one poly (meth) acrylate AC comprises 0.5 –35 wt. -%, preferably 1.5 –25 wt. -%, more preferably 2.5 –15 wt. -%, of the total weight of the adhesive composition.
According to one or more embodiments, the adhesive composition further comprises at least one catalyst CA that catalyzes the reactions of isocyanate groups with water.
Examples of suitable catalysts include metal-based catalysts such as dialkyltin complexes, particularly dibutyltin (IV) or dioctyltin (IV) carboxylates or acetoacetonates, such as dibutyltindilaurate (DBTDL) , dibutyltindiacetylacetonate, dioctyltindilaurate (DOTDL) , further bismuth (III) complexes such as bismuthoctoate or bismuthneodecanoate, zinc (II) complexes, such as zincoctoate or zincneodecanoate, and zirconium (IV) com-plexes, such as zirconiumoctoate or zirconiumneodecanoate.
Further examples of suitable catalysts include compounds containing amine groups such as, dimorpholinodialkylethers and/or dimorpholino substituted polyalkylene glycols, for example 2, 2'-dimorpholinodiethyl ether and 1, 4-diazabicyclo [2.2.2] -octane. Combinations of two or more catalysts may also be used, preferred combinations including of one or more metal-catalysts with one or more morpholine amine compounds.
According to one or more embodiments, the at least one catalyst CA comprises 0.005 –2.00 wt. -%, preferably 0.05 –1.00 wt. -%, of the total weight of the adhesive composition.
The adhesive composition can further comprise auxiliary substances and additives, for example, those selected from the group consisting of fillers,  plasticizers, adhesion promoters, UV absorption agents, UV and heat stabilizers, optical brighteners, pigments, dyes, and desiccants.
Examples of suitable UV stabilizers that can be added to the adhesive composition include, for example, sterically hindered phenols, and suitable UV-absorbers include, for example, hydroxybenzophenones, hydroxybenzotriazoles, triazines, anilides, benzoates, cyanoacrylates, phenylformamidines, and mixtures thereof.
Suitable fillers include inorganic and organic fillers, especially natural, ground or precipitated calcium carbonates, optionally coated with fatty acids or fatty acid esters, especially stearic acid, baryte (heavy spar) , talcs, quartz flours, quartz sand, dolomites, wollastonites, kaolins, calcined kaolins, mica (potassium aluminum silicate) , molecular sieves, aluminum oxides, aluminum hydroxides, magnesium hydroxide, silicas including finely divided silicas from pyrolysis processes, industrially produced carbon blacks, graphite, metal powders such as aluminum, copper, iron, silver, steel, polyvinylchloride powder, and hollow spheres.
The total amount of such auxiliary substances and additives is preferably not more than 15 wt. -%, more preferably not more than 10 wt. -%, based on the total weight of the adhesive composition.
According to one or more embodiments, the adhesive composition is obtained by a method comprising steps of:
A) Providing the polyol composition and optionally the at least one poly (meth) acrylate AC in a reactor,
B) Adding to the mixture obtained from step A) the at least one isocyanate PI and conducting reaction, optionally in the presence of one or more catalysts, wherein the molar ratio between isocyanate groups and hydroxyl groups is at  least 1.1, preferably at least 1.3, to obtain a reaction mixture comprising the at least one isocyanate-functional polyurethane polymer P.
C) Optionally adding to the reaction mixture obtained from step B) the at least one catalyst CA.
According to one or more embodiments, the NCO/OH ratio in step B) of the method is not greater than 3.5, preferably not greater than 3.0, more preferably not greater than 2.75, particularly 1.3 –2.5, preferably 1.5 –2.2.
The reaction conducted in step B) will convert substantially all the hydroxyl groups of the polyol composition, for example at least 95 %, preferably at least 99 %, of the hydroxyl groups of the polyol composition.
Preferably, the starting mixture provided in step A) is dehydrated under vacuum at a temperature of at or above 120 ℃ before conducting step B) .
The reaction in step B) may be carried out according conventional methods used for preparation of isocyanate-functional polyurethane polymers. The reaction may, for example, be carried out at temperatures in the range of 50 –160 ℃, preferably 60 –120 ℃, optionally in the presence of a catalyst. The reaction time depends on the temperature employed, but may, for example, be in the range of from 30 minutes to 6 hours, particularly from 30 minutes to 3 hours, preferably from 30 minutes to 1.5 hours. Suitable catalysts used in the reaction of step B) include, for example, metal catalysts, such as
Figure PCTCN2021117493-appb-000060
(from Vertellus Performance Materials Inc. ) , and tin catalysts.
The adhesive composition of the present invention is a moisture-curing adhesive composition, i.e. the adhesive composition can be cured by contacting the composition with water, especially with atmospheric moisture.
Furthermore, the adhesive composition of the present invention has good workability under typical application conditions of hot-melt adhesives,  particularly at temperatures in the range of 85 –200 ℃, meaning that at the application temperature the adhesive has sufficiently low viscosity to enable application to a substrate in a molten state. The adhesive composition also develops a high initial strength immediately after the application to a substrate upon cooling even before the initiation of the crosslinking reaction with water, particularly with atmospheric moisture.
According to one or more embodiments, the adhesive composition has a viscosity at a temperature of 110 ℃ of not more than 25000 mPa·s, preferably not more than 15000 mPa·s, more preferably not more than 10000 mPa·s, even more preferably not more than 7500 mPa·s. The viscosity at temperature of 110 ℃ can be measured using a conventional viscometer at 5 revolutions per minute, for example by using a Brookfield DV-2 viscometer with a spindle No. 27, preferably with a Thermosel System for temperature control.
According to one or more embodiments, the adhesive composition has a softening point measured by Ring and Ball method according to ISO 4625 standard in the range of 40 –150 ℃, preferably 45 –135 ℃, more preferably 50 –100 ℃.
The preferences given above for the polyurethane polymer P, the at 25 ℃solid polyester polyol PO1, the first at 25 ℃ liquid polyester polyol PO2, the second at 25 ℃ liquid polyester polyol PO3, the at least one polycarbonate diol PO4, the at least one hydroxyl-terminated polybutadiene PO5, the at least one polyisocyanate PI, the at least one poly (meth) acylate AC, and the at least one catalyst CA apply equally to all subjects of the present invention unless stated otherwise.
Another subject of the present invention is use of the adhesive composition of the present invention for bonding of substrates in production of white goods, automotive vehicles, and electronic devices. Suitable electronic devices in include, for example, displays, cellphones, smart watches, and audio devices.
Another subject of the present invention is a method for adhesively bonding a first substrate to a second substrate, the method comprising steps of:
I) Heating an adhesive composition according to the present invention to provide a melted adhesive composition,
II) Applying the melted adhesive composition to a surface of the first substrate to form an adhesive film,
III) Contacting the adhesive film with a surface of the second substrate, and
IV) Chemically curing the adhesive film with water, preferably with atmospheric moisture.
The first and second substrates can be sheet-like articles having first and second major surfaces defined by peripheral edges and defining a thickness there between or three-dimensional shaped articles.
In the method for adhesively bonding a first substrate to a second substrate, the adhesive composition is heated to a temperature above the softening point of the adhesive composition and applied to the surface of the first substrate in molten state using any conventional technique, for example, by using slot die coating, roller coating, extrusion coating, calender coating, or spray coating. The adhesive composition can be applied to the surface of the first substrate with a coating weight of, for example, 25 –750 g/m 2, preferably 35 –650 g/m 2, more preferably 45 –550 g/m 2, even more preferably 50 –500 g/m 2.
After the adhesive film has been contacted with the surface of the second substrate, the adhesive composition develops a certain initial adhesive strength by physical curing, i.e. upon cooling. Depending on the application temperature and on the embodiment of the adhesive composition, particularly on the reactivity of the adhesive, the chemical curing reactions may begin already during the application of the adhesive composition on the surface of the first  substrate. Typically, however, majority of the chemical curing occurs after the application of adhesive, particularly, after the applied adhesive film has been contacted with the surface of the second substrate.
The first and second substrates can be composed of any conventional material including polymeric material, metal, painted metal, glass, wood, wood derived materials such as natural fiber polypropylene (NFPP) , and fiber materials. Suitable polymeric materials include, for example, polyethylene (PE) , in particular high density polyethylene (HDPE) , polypropylene (PP) , glass-fiber reinforced polypropylene (GFPP) , polyvinyl chloride (PVC) , polyethylene terephthalate (PET) , polystyrene (PS) , polycarbonate (PC) , polymethylmethacrylate (PMMA) , acrylonitrile butadiene styrene (ABS) , polyamide (PA) , and combinations thereof. The first and second substrates can be composed of a single layer or of multiple layers of different types of materials. The layer (s) composed of polymeric materials can further contain additives such as fillers, plasticizers, flame retardants, thermal stabilizers, antioxidants, pigments, dyes, and biocides.
Still another subject of the present invention is a composite element obtainable by using the method for adhesively bonding a first substrate to a second substrate of the present invention.
Examples
The followings compounds and products shown in Table 1 were used in the examples.
Table 1
Figure PCTCN2021117493-appb-000061
Figure PCTCN2021117493-appb-000062
The adhesive compositions presented in Tables 2-4 were prepared according to the procedures as presented below.
Preparation of adhesive compositions
Solid polyester polyol (PO1) , liquid polyester polyols (PO2 and PO3) , poly (meth) acrylate (AC) and polycarbonate diol (PO4) or hydroxyl-terminated polybutadiene (PO5) were charged into a stainless-steel reactor.
The mixture was kept under vacuum with stirring at 140 ℃ for 120 minutes to dewater the components and to obtain a homogeneously mixed mixture. The temperature of the mixture was lowered to 120 ℃ and polyisocyanate was added to the mixture under a nitrogen blanket. The thus obtained starting mixture was reacted with stirring for 45 minutes under vacuum at a temperature of 120 ℃ to obtain a reaction product containing the isocyanate-functional polyurethane polymer. The catalyst (CA) was then added to the reaction product under nitrogen blanket. After mixing for 45 minutes under  vacuum, the obtained adhesive composition was stored at room temperature under exclusion of moisture.
Measurement methods
The adhesive compositions were characterized using the following measurement methods.
Viscosity at 110 ℃
The sample adhesive composition provided in a sealed tube was preheated in an oven at a temperature of 110 ℃ for a time period of 20 minutes. After the heating, a sample of 12.3 g of the adhesive composition was weighted and placed in a disposable sleeve to a viscometer. The viscosity was measured at temperature of 110 ℃ at 5 revolutions per minute using a Brookfield DV-2 viscometer with a spindle No. 27 equipped with a Thermosel system. The values obtained with 20 minutes of tempering at the measurement temperature and five minutes of measurement were recorded as representative viscosities.
Open time
The sample adhesive composition provided in a sealed tube was first preheated in an oven to at temperature of 110 ℃ for a time period of 30 minutes. After the heating, a sample of 20 g of the molten adhesive was applied with a doctor blade to surface of a silicone paper strip (B700 white, Laufenberg &Sohn KG) placed on a heating plate. The silicone paper strip had dimensions of 30 cm x 10 cm and the adhesive was applied as a film having a thickness of 500 μm and dimensions of 30 cm x 6 cm. Before applying the adhesive film, the silicone paper strip and the doctor blade were heated to a temperature of 110 ℃ with the heating plate.
Immediately after application of the adhesive, the silicone paper strip was removed from the heating plate and placed (with the adhesive film facing  upwards) on a sheet of plywood at room temperature (23 ℃) and the time was recorded as the starting point of the measurement. Every 10 seconds a short strip of silicone coated paper having dimensions of 10 cm x 1 cm and formed in a roll (non-siliconized surface facing outwards) was placed on the adhesive film and then slowly removed to separate the strip from the adhesive film. The procedure was repeated until the paper strip could not be removed from the adhesive film without damaging the paper strip or the adhesive film. The time interval between the starting point of the measurement and the last sampling point was recorded as the open time (in seconds) of the adhesive composition
The values of open time presented in Tables 2-4 have been obtained as an average of three measurements conducted with the same adhesive composition.
Tensile strength and elongation at break
The adhesive composition provided in a sealed tube was preheated in an oven to at temperature of 110 ℃ for a time period of 30 minutes. After the heating, a sample of 40 g of the molten adhesive was applied with a doctor blade to surface of a silicone paper strip (B700 white, Laufenberg &Sohn KG) placed on a heating plate. The silicone paper had dimensions of 60 cm x 10 cm and the adhesive was applied as a film having a thickness of 500 μm and dimensions of 60 cm x 6 cm. Immediately after the application of the adhesive, the silicone paper strip was removed from the heating plate and stored at standard climatic conditions (23 ℃, 55 %relative humidity) for a period of 7 days.
The measurements were conducted using a method based on DIN 53504 standard. Five rectangular test specimens having dimensions of 2.0 cm x 8.0 cm were cut from a cured adhesive film having a thickness of 500 μm (cured for 14 days at 23 ℃/50%relative humidity) . The test specimens were clamped into the tensile testing machine (Zwick Z 020) and pulled apart with a speed of 100 mm/min (test conditions 23℃, 50%relative humidity) . The tensile strength  and elongation at break were determined based on the measured maximum tensile stress.
The values of tensile strength and elongation at break presented in Tables 2-4 have been obtained as an average of five measurements conducted with the same adhesive composition.
Tensile lap-shear strength (LSS)
The adhesive composition provided in a sealed tube was preheated in an oven to at a temperature of 110 ℃ for a time period of 30 minutes. After the heating, a sample of the molten adhesive was applied on the surface of a polycarbonate (PC) substrate having dimensions of 9 cm x 2 cm x 5 mm. The adhesive was applied as a film having dimensions of 2.5 cm x 1 cm and a thickness of 1 mm.
Immediately after the application of the adhesive a second PC substrate having same dimensions as the first PC specimen was positioned over the first PC substrate along the edge of the adhesive film to form a test composite element. The second PC substrate was pressed firmly against the first PC specimen to remove air from adhesive bond. A weigh of 150 g was placed on the top surface of the second PC substrate. Any adhesive squeezed out from the joint was trimmed off with a knife. The test composite element was stored at standard climatic conditions (23 ℃, 55%relative humidity) for a period of 7 days before measuring of the lap shear strengths.
Lap shear strengths were measured according to EN 1465 standard using a material testing apparatus (Zwick Z 020) and a test speed 10 mm/min. The lap shear strengths obtained after subjecting the test composite element to an artificial aging treatment (500 h, at 65 ℃ and 85 ℃) were also measured to determine the heat and humidity stability of the tested adhesive composition.
The lap shear strength values for each adhesive composition presented in Tables 2-4 have been obtained as an average of three measurements  conducted with identical test composite elements prepared by using the same adhesive composition.
Table 2
Figure PCTCN2021117493-appb-000063
Table 3
Figure PCTCN2021117493-appb-000064
Table 4
Figure PCTCN2021117493-appb-000065

Claims (17)

  1. An adhesive composition comprising at least one isocyanate- functional polyurethane polymer P obtained by reacting: a) A polyol composition comprising a1) At least one at 25 ℃ solid polyester polyol PO1, a2) At least one first at 25 ℃ liquid polyester polyol PO2, a3) Optionally at least one second at 25 ℃ liquid polyester polyol PO3 different from the at least one first at 25 ℃ liquid polyester polyol PO2, and a4) At least one polycarbonate diol PO4 and/or at least one hydroxyl-terminated polybutadiene PO5, and b) At least one polyisocyanate PI, wherein the proportion of component a4) in the polyol composition a) is 5-50 wt. -%, preferably 10 –40 wt. -%, based on the total weight of the polyol composition.
  2.  The adhesive composition according to claim 1, wherein the at least one at 25 ℃ solid polyester polyol PO1 has a number average molecular weight (M n) of 500 –10000 g/mol, preferably 1000 –5000 g/mol and/or a hydroxyl number determined according to ISO 4629-2 standard of 10 –75 mg KOH/g, preferably 15 –50 mg KOH/g and/or a melting point (T m) determined with DSC of 30 –100 ℃, preferably 40 –70 ℃.
  3.  The adhesive composition according to claim 1 or 2, wherein the at least one at 25 ℃ solid polyester polyol PO1 comprises 10-50 wt. -%, preferably 15 –40 wt. -%, of the total weight of the polyol composition a) .
  4. The adhesive composition according to any one of previous claims, wherein the at least one first at 25 ℃ liquid polyester polyol PO2 has a number average molecular weight (M n) of 500–10000 g/mol, preferably 2500 –7500 g/mol and/or a hydroxyl number determined according to ISO 4629-2 standard of 5 –50 mg KOH/g, preferably 10 –35 mg KOH/g and/or a glass transition temperature determined with DSC at or below -5 ℃, preferably at or below -15 ℃.
  5. The adhesive composition according to any one of previous claims, wherein the at least one polycarbonate diol PO4 has a number average molecular weight (M n) of 300-10000 g/mol, preferably 500-5000 g/mol and/or a hydroxyl-number determined according to ISO 4629-2 standard of 25-200 mg KOH/g, preferably 35-100 mg KOH/g.
  6. The adhesive composition according to any one of previous claims, wherein the at least one polycarbonate diol PO4 is obtainable by a transesterification reaction of a first diol selected from 1, 6-hexanediol and 2-methyl-1, 3-propanediol and a second C 3-C 20 diol with a carbonate ester.
  7. The adhesive composition according to claim 6, wherein the first diol is 1, 6-hexanediol and the second C 3-C 20 diol is selected from a group consisting of 1, 3-propanediol, 2-methyl-1, 3-propane diol, 1, 4-butanediol, 1, 5-pentanediol, 3-methyl-1, 5-pentanediol, neopentyl glycol, and trimethyl-1, 6-hexanediol.
  8. The adhesive composition according to claim 6 or 7, wherein the carbonate ester is selected from the group consisting of ethylene carbonate, dimethyl carbonate, diethyl carbonate, and di-n-butyl carbonate.
  9. The adhesive composition according to any one of previous claims, wherein the at least one hydroxyl-terminated polybutadiene PO5 has a number average molecular weight (M n) of 500 –10000 g/mol,  preferably 1000 –5000 g/mol and/or an average hydroxyl functionality of 1.3 –2.9, preferably 1.5 –2.2 and/or a glass transition temperature determined with DSC at or below -5 ℃, preferably at or below -15 ℃.
  10. The adhesive composition according to any one of previous claims, wherein the at least one hydroxyl-terminated polybutadiene PO5 is a at 25 ℃ liquid hydroxyl-terminated polybutadiene.
  11. The adhesive composition according to any one of previous claims, wherein the total amount of at 25 ℃ liquid polyols in the polyol composition a) is 35 –95 wt. -%, preferably 45 –90 wt. -%, more preferably 50 –85 wt. -%, based on the total weight of the polyol composition a) .
  12. The adhesive composition according to any one of previous claims, wherein the at least one polyisocyanate PI is a diisocyanate, preferably a monomeric diisocyanate, preferably having a number average molecular weight (M n) of not more than 1000 g/mol, preferably not more than 500 g/mol.
  13. The adhesive composition according to any one of previous claims, wherein the at least one isocyanate-functional polyurethane polymer P comprises at least 50 wt. -%, preferably at least 65 wt. -%, more preferably at least 75 wt. -%, of the total weight of the adhesive composition.
  14. The adhesive composition according to any one of previous claims further comprising at least one poly (meth) acrylate AC.
  15. The adhesive composition according to any one of previous claims further comprising at least one catalyst CA that catalyzes the reactions of isocyanate groups with water.
  16. Use of the adhesive composition according to any one of claims 1-15 for bonding of substrates in production of white goods, automotive vehicles, and electronic devices.
  17. A method for adhesively bonding a first substrate to a second substrate, the method comprising steps of:
    I) Heating an adhesive composition according to any one of claims 1-15 to provide a melted adhesive composition,
    II) Applying the melted adhesive composition to a surface of the first substrate to form an adhesive film,
    III) Contacting the adhesive film with a surface of the second substrate, and
    IV) Chemically curing the adhesive film with water, preferably with atmospheric moisture.
PCT/CN2021/117493 2021-09-09 2021-09-09 Moisture curable polyurethane hot-melt adhesive having heat and humidity resistance WO2023035194A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180101151.4A CN117794971A (en) 2021-09-09 2021-09-09 Moisture curable polyurethane hot melt adhesive with heat and moisture resistance
PCT/CN2021/117493 WO2023035194A1 (en) 2021-09-09 2021-09-09 Moisture curable polyurethane hot-melt adhesive having heat and humidity resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/117493 WO2023035194A1 (en) 2021-09-09 2021-09-09 Moisture curable polyurethane hot-melt adhesive having heat and humidity resistance

Publications (1)

Publication Number Publication Date
WO2023035194A1 true WO2023035194A1 (en) 2023-03-16

Family

ID=78077962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117493 WO2023035194A1 (en) 2021-09-09 2021-09-09 Moisture curable polyurethane hot-melt adhesive having heat and humidity resistance

Country Status (2)

Country Link
CN (1) CN117794971A (en)
WO (1) WO2023035194A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315528A1 (en) * 2016-11-01 2018-05-02 Sika Technology AG Method for reducing rest tackiness of moisture curing polyurethane hot-melt adhesives
US20190264078A1 (en) * 2016-11-10 2019-08-29 Henkel Ag & Co. Kgaa Reactive hot melt adhesive composition and use thereof
WO2020099624A1 (en) * 2018-11-16 2020-05-22 Henkel Ag & Co. Kgaa Thermoplastic polyurethane
JP2021098775A (en) * 2019-12-20 2021-07-01 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition, and laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315528A1 (en) * 2016-11-01 2018-05-02 Sika Technology AG Method for reducing rest tackiness of moisture curing polyurethane hot-melt adhesives
US20190264078A1 (en) * 2016-11-10 2019-08-29 Henkel Ag & Co. Kgaa Reactive hot melt adhesive composition and use thereof
WO2020099624A1 (en) * 2018-11-16 2020-05-22 Henkel Ag & Co. Kgaa Thermoplastic polyurethane
JP2021098775A (en) * 2019-12-20 2021-07-01 Dic株式会社 Moisture-curable polyurethane hot-melt resin composition, and laminate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 202105, Derwent World Patents Index; AN 2021-74257X, XP002805339 *

Also Published As

Publication number Publication date
CN117794971A (en) 2024-03-29

Similar Documents

Publication Publication Date Title
CN107532058B (en) Two-step process for producing polyurethane hotmelt adhesives with low monomeric diisocyanate content and high initial strength
EP2944661B1 (en) Thermoplastic polyurethane hot melt adhesive
EP2944662B1 (en) Thermoplastic polyurethane hot melt adhesive
EP2621981B1 (en) Polyurethane hot-melt adhesive produced from polyacrylates and polyesters
CN106062116B (en) Moisture-curable hot melt adhesive for lighting appliances
EP3394135A1 (en) Polyurethane hot melt adhesive based on polyacrylates with high heat resistance
US8324299B2 (en) Moisture-curable hot melt adhesive
EP2621980A1 (en) Polyurethanene hot-melt adhesive with reduced viscosity
WO2012026486A1 (en) Moisture-curable hot-melt adhesive agent
WO2015173337A1 (en) Thermoplastic polyurethane
US9676977B2 (en) UV-curing hot melt adhesive containing low content of oligomers
WO2023035194A1 (en) Moisture curable polyurethane hot-melt adhesive having heat and humidity resistance
WO2023044665A1 (en) Moisture curable polyurethane hot-melt adhesive having improved heat stability
WO2023168622A1 (en) Moisture curable polyurethane hot-melt adhesive having improved initial strength
WO2023139067A1 (en) Moisture curable polyurethane hot-melt adhesive having improved heat stability
WO2024008530A1 (en) Reactive hot-melt adhesive having low content of monomeric diisocyanates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21769043

Country of ref document: EP

Kind code of ref document: A1