WO2023033593A1 - Chiral structure having optical activity from ultraviolet to short-wave infrared region, and preparation method therefor - Google Patents

Chiral structure having optical activity from ultraviolet to short-wave infrared region, and preparation method therefor Download PDF

Info

Publication number
WO2023033593A1
WO2023033593A1 PCT/KR2022/013206 KR2022013206W WO2023033593A1 WO 2023033593 A1 WO2023033593 A1 WO 2023033593A1 KR 2022013206 W KR2022013206 W KR 2022013206W WO 2023033593 A1 WO2023033593 A1 WO 2023033593A1
Authority
WO
WIPO (PCT)
Prior art keywords
chiral
chiral structure
nanoparticles
preparing
precursor
Prior art date
Application number
PCT/KR2022/013206
Other languages
French (fr)
Korean (ko)
Inventor
염지현
박기현
권준영
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220110452A external-priority patent/KR20230034908A/en
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2023033593A1 publication Critical patent/WO2023033593A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a chiral structure having optical activity in an ultraviolet range to a short infrared range and a method for preparing the same.
  • Chiral materials have optical activity derived from the difference in the degree of absorption according to left-circularly polarized light (LCP) and right-circularly polarized light (RCP), and these properties are used in 3D display, It is applied as a promising platform in chiral sensors, spintronics, and nanomedicine.
  • LCP left-circularly polarized light
  • RCP right-circularly polarized light
  • This optical activity is derived from the structural chirality of the material, which exists on all scales from the atomic level to the macro-level.
  • light in the ultraviolet region is absorbed due to the presence of a chiral center at the atomic level, and thus, optical properties in the ultraviolet region (UV, 200 nm to 400 nm) show activity.
  • nanoparticles they show structural chirality caused by distortion of their crystal structure, and thus have optical activity in the ultraviolet-visible ray region (UV-Vis, 200 nm to 700 nm).
  • One object of the present invention is to provide a chiral structure having optical activity in a wide range from the ultraviolet to the short infrared, and a precursor composition for preparing the chiral structure.
  • Another object of the present invention is to provide a method for preparing a chiral structure having optical activity in a wide range from the ultraviolet to the short infrared.
  • Another object of the present invention is to provide a biosensor and an optical device including the chiral structure described above.
  • One embodiment of the present invention in order to solve the above-described problems, includes chiral nanoparticles, ultraviolet-visible (UV-Vis), near-infrared (NIR) and short-infrared (SWIR) optics in the region An active, chiral structure is provided.
  • UV-Vis ultraviolet-visible
  • NIR near-infrared
  • SWIR short-infrared
  • the chiral structure may be a superparticle assembly prepared by self-assembly of the chiral nanoparticles.
  • the chiral structure may have a structure in which two or more ellipsoids are stacked while rotating in a clockwise or counterclockwise direction.
  • the major diameter of the ellipsoid may be 1 ⁇ m to 10 ⁇ m.
  • the chiral nanoparticle may be a metal compound.
  • the metal may be any one selected from Group 11 transition metals.
  • the chiral nanoparticle may be prepared from a chiral ligand.
  • the chiral ligand may be an L-amino acid or a D-amino acid.
  • the chiral nanoparticles may have an average diameter of 1 nm to 10 nm.
  • Another embodiment provides a precursor composition for preparing a chiral structure, including a chiral ligand, a metal precursor, and a chalcogen precursor.
  • the chiral ligand may be an L-amino acid or a D-amino acid.
  • the chiral ligand may be L-cysteine or D-cysteine.
  • Another embodiment includes a first step of preparing chiral nanoparticles by reacting a precursor composition for preparing a chiral structure including a chiral ligand and a metal precursor; and a second step of preparing a micro-sized chiral structure by dispersing the chiral nanoparticles in a medium; It provides a method for producing a chiral structure comprising a.
  • the precursor composition for preparing the chiral structure may further include a chalcogen precursor.
  • the molar ratio of chiral ligand:metal precursor:chalcogen precursor may be 1:0.1 to 0.8:0.1 to 0.6.
  • the second step may be to prepare a micro-sized chiral structure by self-assembling the chiral nanoparticles.
  • Another embodiment provides a biosensor or optical device including the chiral structure described above.
  • the chiral structure according to the present invention has optical activity in a wide range from 200 nm to 2500 nm, which is a short infrared region in the ultraviolet region, so that it can be used in more diverse fields such as biosensors, optical devices, metamaterial development, communication, and asymmetric catalysts. can be applied
  • the chiral structure according to the present invention has the advantage that it can be more easily prepared using the self-assembly phenomenon of chiral nanoparticles.
  • 1 is a schematic diagram showing a process of synthesizing and self-assembling chiral copper sulfide nanoparticles using cysteine.
  • Example 2 is an SEM image of the structures of Example 1, Example 2 and Comparative Example 1.
  • Example 4 is a circular dichroism (CD) graph of the structures of Example 1, Example 2 and Comparative Example 1.
  • 5 is a TEM image obtained by observing the process of self-assembly of chiral nanoparticles according to aging time.
  • 6 is a CD graph showing changes in chirality according to aging time.
  • numerical ranges include lower and upper limits and all values within that range, increments logically derived from the shape and breadth of the defined range, all values defined therebetween, and the upper limit of the numerical range defined in a different form. and all possible combinations of lower bounds. Unless otherwise specifically defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
  • the major axis refers to the length of the longest major axis of the particle
  • the minor axis refers to the longest length in a direction perpendicular to the major axis (hereinafter referred to as 'minor axis direction').
  • the inventors of the present invention repeatedly studied synthesis techniques for substances having optical activity in a wide range up to the single infrared region in order to utilize chiral substances in more diverse fields, and as a result, by using materials having self-assembly characteristics, The present invention was completed by discovering that a chiral structure having optical activity in a wide range from to the single infrared range could be more easily synthesized.
  • a chiral structure according to an embodiment includes chiral nanoparticles, and is characterized in that it has optical activity in the ultraviolet-visible (UV-Vis) region, the near-infrared (NIR) region, and the short-infrared (SWIR) region.
  • UV-Vis ultraviolet-visible
  • NIR near-infrared
  • SWIR short-infrared
  • the chiral structure has chirality, which is an asymmetric property, by including chiral nanoparticles, and specifically has optical activity in a wide range from the ultraviolet region to the short infrared region, thereby enabling biosensors, optical devices, metamaterials, communication and asymmetric It can be usefully applied to various fields such as catalysts.
  • the ultraviolet-visible ray region means a wavelength range of 200 nm to 700 nm, the near infrared region 700 nm to 1700 nm, and the short infrared region 1700 nm to 2500 nm.
  • the chiral structure may be an assembly of supraparticles prepared by self-assembly of the chiral nanoparticles.
  • the superparticles refer to particles aggregated with a certain regularity by interactions between chiral nanoparticles, and aggregation continues to occur due to interactions between these superparticles, resulting in chiral properties even at the micro level of 10 0 to 10 2 ⁇ m.
  • a chiral structure having can be formed.
  • the chiral structure may have a structure in which two or more ellipsoids are stacked while rotating in a clockwise or counterclockwise direction.
  • the chiral structure according to one embodiment can have optical activity in a wide range from the ultraviolet region to the short infrared region by transferring atomic level chirality to the micro level.
  • the ellipsoid may have a major diameter of 1 ⁇ m to 10 ⁇ m, specifically 1 ⁇ m to 5 ⁇ m, and more specifically 1 ⁇ m to 3 ⁇ m, and by having a size in the above range, near-infrared rays and short rays similar to the size of the above range It may interact with light in the infrared region to have optical activity in the region.
  • the ellipsoid may have a minor diameter of 0.05 ⁇ m to 1 ⁇ m, specifically 0.1 ⁇ m to 1 ⁇ m, and more specifically 0.1 ⁇ m to 0.5 ⁇ m, and the ratio of the major axis to the minor axis may be 1 to 200, 1 to 100, or 1 to It may be 50 or 2 to 10, but is not limited thereto.
  • the ellipsoid may have a thickness of 0.01 ⁇ m to 1 ⁇ m, specifically 0.05 ⁇ m to 1 ⁇ m, and more specifically 0.05 ⁇ m to 0.5 ⁇ m, but is not limited thereto.
  • the chiral structure may have a maximum peak wavelength in the range of 800 nm to 1500 nm when measuring the circularly polarized dichroic spectrum, specifically in the range of 800 nm to 1200 nm or 900 nm to 1100 nm may appear
  • the chiral nanoparticles are particles having inherent characteristics capable of self-assembly, and may be metal compounds.
  • the metal may be any one selected from Group 11 transition metals, and more specifically, the metal may be copper.
  • the metal compound may include M 2-x A.
  • M is a metal
  • A is a chalcogen element
  • x is 0 ⁇ x ⁇ 1.
  • the metal may be any one selected from Group 11 transition metals, and more specifically, the metal may be copper.
  • the A may be any one selected from the group consisting of oxygen (O), sulfur (S), selenium (Se) and tellurium (Te), more specifically, the A may be sulfur (S) .
  • the chiral structure may have optical activity in the near-infrared and short-infrared regions.
  • the chiral nanoparticle may be prepared from a chiral ligand to impart chirality to the chiral structure.
  • Any molecule having chirality may correspond to the chiral ligand without limitation, and specifically, it may be L-saccharide, D-saccharide, L-amino acid or D-amino acid. More specifically, the chiral ligand may be L-cysteine or D-cysteine, but is not limited thereto.
  • the chiral nanoparticles may have an average diameter of 1 nm to 20 nm or 1 nm to 10 nm, but are not particularly limited thereto. These nano-sized chiral nanoparticles are aggregated through self-assembly through interactions between nanoparticles to form a micro-sized chiral structure, so that atomic-level chirality is transferred to micro-level chirality. Thus, a chiral structure having optical activity in a wide range from the ultraviolet region to the short infrared region can be formed.
  • a precursor composition for preparing a chiral structure according to an embodiment is characterized in that it includes a chiral ligand, a metal precursor, and a chalcogen precursor.
  • the chiral structure prepared therefrom is a metal chalcogen compound prepared by the metal precursor and the chalcogen precursor due to the self-assembly characteristics of the chiral ligand at the atomic level. Irality is converted to micro-sized chirality, and it can have optical activity in a wide range from ultraviolet to short infrared.
  • the description of the chiral ligand may be applied to the above description, and to the metal of the metal precursor, the above-described description of the metal of the metal compound may be applied. In addition, the above description can be applied to the chalcogen element of the chalcogen precursor.
  • the metal precursor is not limited thereto, but may be a metal compound having a form of a metal chloride, hydroxide, carbonate, nitrate, or organic metal salt.
  • the salt may be selected from the group consisting of acetates, hydroxides, nitrates, fluorides, phosphates, perchlorates, nitrates, sulfates, iodines, chlorides, and combinations thereof.
  • the chalcogen precursor may include one or more elements selected from the group consisting of oxygen (O), sulfur (S), selenium (Se), and tellurium (Te).
  • the chalcogen precursor may be a sulfur precursor containing sulfur (S)
  • the sulfur precursor may be, for example, H 2 S, C 1-10 alkylthiol, thiourea, thioacetamide ( thioacetamide) and sulfur-containing organic compounds or sulfur (S) elements, but are not limited thereto.
  • the precursor composition for preparing a chiral structure may further include an organic ligand, thereby further improving the stability of chiral nanoparticles prepared from the precursor composition for preparing a chiral structure, so that a chiral structure may be more easily formed.
  • the organic ligand is not particularly limited as long as it can improve the stability of chiral nanoparticles, but may be, for example, a ligand containing a thiol group, specifically C 4-12 alkylthiol, 2-(2-methoxy Ethoxy) ethanethiol, 3-methoxybutyl 3-mercaptopropionate, 3-methoxybutylmercaptoacetate, thioglycolic acid, 3-mercaptopropionic acid, tiopronin, 2-mercaptopropionic acid, 2- Mercaptopropionate, 2-mercaptoethanol, cysteamine, 1-thioglycerol, mercaptosuccinic acid, dihydrolipoic acid, 2-(dimethylamino)ethanethiol, 5-mercaptomethyltetrazole, 2,3 -Dimercapto-1-propanol, glutathione, m(PEG)-SH, di(C1-30)alkyldithio
  • a method for preparing a chiral structure includes a first step of preparing chiral nanoparticles by reacting a precursor composition for preparing a chiral structure including a chiral ligand and a metal precursor; and a second step of preparing a micro-sized chiral structure by dispersing the chiral nanoparticles in a medium; It is characterized in that it includes.
  • the chiral structure has a micro size of 10 0 to 10 2 ⁇ m, and is not particularly limited as long as it has a size that can have optical activity in the ultraviolet region to the short infrared region, but, for example, the major axis is 1 ⁇ m to 10 ⁇ m, 1 ⁇ m to 5 ⁇ m, or 1 ⁇ m to 3 ⁇ m.
  • the chiral structure may have optical activity in the ultraviolet-visible (UV-Vis) region, the near infrared (NIR) region, and the short infrared (SWIR) region.
  • UV-Vis ultraviolet-visible
  • NIR near infrared
  • SWIR short infrared
  • the first step is a step of preparing chiral nanoparticles by reacting a precursor composition for preparing a chiral structure including a chiral ligand and a metal precursor, which can be reacted by a known method, and for example, in an oxygen-blocked atmosphere and 30 It may be carried out by stirring in the temperature range of °C to 100 °C, but there is no particular limitation to the method.
  • the oxygen blocking method is not limited thereto, but, for example, the precursor composition for preparing a chiral structure may be purged with an inert gas such as nitrogen in an airtight container.
  • the precursor composition for preparing the chiral structure may further include a chalcogen precursor.
  • the above description can be applied to the chiral ligand, metal precursor, chalcogen precursor, and chiral nanoparticles.
  • the molar ratio of chiral ligand:metal precursor:chalcogen precursor may be 1:0.1 to 0.8:0.1 to 0.6, specifically 1:0.2 to 0.8:0.1 to 0.5, more specifically 1 : 0.3 to 0.5 : 0.1 to 0.3, but is not particularly limited thereto.
  • the second step is a step of preparing a micro-sized chiral structure by dispersing the chiral nanoparticles prepared in the first step in a medium, and the chiral nanoparticles are produced by the dispersion process in the medium.
  • Self-assembly may occur to produce micro-sized chiral structures.
  • Micro-sized chiral structures can be more easily prepared by using the self-assembly phenomenon of the chiral nanoparticles.
  • the medium is a material capable of dispersing chiral nanoparticles, and may be, for example, an aqueous phase, but is not limited thereto.
  • the second step may include a dispersing step of dispersing the chiral nanoparticles prepared in the first step in a medium and a aging step of aging the chiral nanoparticles dispersed in the medium, and the aging step is performed at 20 ° C to 40 ° C. It may be carried out at °C or 20 °C to 30 °C, but is not limited thereto.
  • One embodiment provides a biosensor including the chiral structure as described above, wherein the biosensor includes a chiral structure having optical activity in a wide range from the ultraviolet region to the short-infrared region. Since the interaction with light of the area can be used, it can be applied in various fields such as diagnosis technology, heat treatment technology, and imaging technology of cancer cells or bone tissue, for example.
  • one embodiment provides an optical device including a chiral structure as described above, wherein the optical device includes a chiral structure having optical activity in a wide range from an ultraviolet region to a short infrared region. Compared to conventional materials that have limited optical activity only in the ray domain, they can be used in a wider variety of ways.
  • Circular polarization dichroic (CD) spectrum measurement
  • Circular dichroism (CD) measurements were performed using a J-1700 circular polarization/dichroism spectrophotometer (JASCO company) operating in the wavelength range of 200 nm to 2500 nm.
  • the synthesized sample for CD measurement was redispersed in distilled water to measure the optical activity in the UV-Vis-NIR region (200 nm to 800 nm).
  • the sample was drop-casted on a quartz wafer to measure the optical activity in the UV-Vis-NIR-SWIR region (200 nm to 2500 nm).
  • Samples were prepared by drop casting 20 ⁇ l of the dispersion aged for 0, 2, and 20 hours on a silicon wafer substrate, and subjected to X-ray photoelectron spectroscopy using a K-alpha spectrometer (Thermo VG Scientific company). , XPS) analysis was performed.
  • Samples were prepared by drop casting on a silicon wafer, and scanning electron microscopy (SEM) imaging was performed using a Magellan400 (FEI Company) at a voltage of 10 kV and a current of 7 ⁇ A.
  • SEM scanning electron microscopy
  • Samples were prepared by dropping and drying on a nickel grid coated with a porous carbon film, and subjected to transmission electron microscopy (TEM) imaging using a Talos F200X (FEI Company) at a voltage of 200 kV.
  • TEM transmission electron microscopy
  • the prepared first solution and isopropanol were mixed at a volume ratio of 2:1 and centrifuged at 8500 rpm for 20 minutes to obtain chiral copper sulfide nanoparticles (or L-Cys-Cu 2 S NPs). At this time, it was confirmed that the obtained chiral copper sulfide nanoparticles had an average diameter of 4.48 nm as a result of image analysis using a high-resolution transmission electron microscope (HR-TEM). Thereafter, the nanoparticles obtained through centrifugation were redispersed in 20 ml of tertiary distilled water and aged at room temperature for 20 hours to obtain a second solution.
  • HR-TEM transmission electron microscope
  • a micro-sized chiral structure (or D-Cys-Cu 2-x S NF) was prepared in the same manner as in Example 1, except that D-cysteine was used instead of L-cysteine in Example 1.
  • a micro-sized structure (or DL-Cys-Cu 2-x S nanobowties) were prepared.
  • FIG. 1 is a schematic diagram showing a process of synthesizing and self-assembling chiral copper sulfide nanoparticles using cysteine (Cys).
  • Cys cysteine
  • the chirality of cysteine molecules is transferred to chiral copper sulfide nanoparticles to synthesize nanoparticles having optical activity in the ultraviolet-visible region.
  • the nanoparticles undergo self-assembly and the ellipsoid is rotated in a certain direction, a nanoflower-shaped structure is formed, and chirality is transferred to the micro level, resulting in a micro-sized structure having optical activity in the ultraviolet-visible-short-infrared region. is finally synthesized.
  • Example 2 is an SEM image of the structures of Example 1, Example 2, and Comparative Example 1, and referring to this, it can be seen that the final synthesized structure has a shape in which a plurality of ellipsoids are stacked.
  • Example 1 exhibits enantioselection in which ellipsoids are stacked in a counterclockwise direction using L-cysteine during synthesis and in a clockwise direction using D-cysteine in Example 2.
  • Comparative Example 1 a structure in the form of a nanobowtie having a symmetrical structure without chirality was formed by using the same amount of L-cysteine and D-cysteine.
  • FIGS. 3 and 4 are g constant graphs and circular dichroism (CD) graphs of structures of Examples 1, 2, and Comparative Example 1, respectively.
  • the structures of Example 1 and Example 2 have mirror image structures, so they are symmetrical to each other in the CD graph.
  • CD peaks appear in the ultraviolet region (249 nm, 315 nm), near infrared region (1007 nm), and short infrared region (2140 nm). It can be confirmed that a chiral structure having optical activity was successfully synthesized.
  • FIG. 5 are diagrams for explaining a series of processes in which chirality transition occurs in the self-assembly process.
  • nanoparticles synthesized through TEM images according to aging time form supraparticles after 1 hour, pearl-necklace aggregates after 2 hours, and 5 hours After that, it can be confirmed that the aggregate changes into an ellipsoid having a nanoleaf shape. After 10 hours, ellipsoids predominately exist, and after 20 hours, a structure in which ellipsoids are stacked is formed.
  • CD peaks corresponding to longer wavelength bands are generated as the aging time elapses. Through this, it can be seen that a chiral transition occurs during the self-assembly process.
  • a chiral structure using such a self-assembly process satisfies both essential elements for having a wide range of optical activity from the ultraviolet to the short-infrared region: 1) a micro-sized material and 2) a chiral center, making it easier can be manufactured.
  • FIGS. 10 and 11 are g factor graphs and CD graphs measuring the optical activity of the synthesized chiral structures, respectively.
  • the size of the chiral structure synthesized through self-assembly increased, and specifically, the size was found to be 3 ⁇ m to 6 ⁇ m.
  • a chiral structure having optical activity in a desired wavelength range can be synthesized by adjusting the ratio of organic ligand and L-cysteine during synthesis.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a chiral structure and, specifically, to a chiral structure and a preparation method therefor, the chiral structure having chirality from atomic level to micro level that is transferred using nanoparticle self-assembly in order to be applied to more various fields, and thus has optical activity in a wide range from ultraviolet to short-wave infrared region.

Description

자외선 영역 내지 단적외선 영역에서 광학 활성을 가지는 카이랄 구조체 및 이의 제조방법Chiral structure having optical activity in the ultraviolet range to short infrared range and method for preparing the same
본 발명은 자외선 영역 내지 단적외선 영역에서 광학 활성을 가지는 카이랄 구조체 및 이의 제조방법에 관한 것이다.The present invention relates to a chiral structure having optical activity in an ultraviolet range to a short infrared range and a method for preparing the same.
카이랄 물질은 좌원편광(Left-circularly polarized light, LCP)과 우원편광(Right-circularly polarized light, RCP)에 따른 흡광 정도의 차이로부터 유래되는 광학 활성을 가지며, 이러한 특성은 3D 디스플레이(display), 카이랄 센서(chiral sensor), 스핀트로닉스(spintronics), 나노의료(nanomedicine) 등에서 유망한 플랫폼(platform)으로 적용되고 있다.Chiral materials have optical activity derived from the difference in the degree of absorption according to left-circularly polarized light (LCP) and right-circularly polarized light (RCP), and these properties are used in 3D display, It is applied as a promising platform in chiral sensors, spintronics, and nanomedicine.
이러한 광학 활성은 물질의 구조적인 카이랄성(chirality)으로부터 유래되는데, 이는 원자 수준(atomic level)에서부터 매크로 수준(macro-level)까지 모든 스케일에서 존재한다. 대표적으로 유기 분자(organic molecule)의 경우, 원자 수준에서의 카이랄 센터(chiral center)의 존재로 인해 자외선 영역의 빛을 흡수하게 되고, 따라서 자외선 영역(UV, 200 ㎚ 내지 400 ㎚)에서의 광학 활성을 보인다. 나노입자의 경우는 이들의 결정 구조의 뒤틀림으로 발생하는 구조적 카이랄성을 보이고, 이에 따라 자외선-가시광선 영역(UV-Vis, 200 ㎚ 내지 700 ㎚)에서의 광학 활성을 가진다.This optical activity is derived from the structural chirality of the material, which exists on all scales from the atomic level to the macro-level. Typically, in the case of organic molecules, light in the ultraviolet region is absorbed due to the presence of a chiral center at the atomic level, and thus, optical properties in the ultraviolet region (UV, 200 nm to 400 nm) show activity. In the case of nanoparticles, they show structural chirality caused by distortion of their crystal structure, and thus have optical activity in the ultraviolet-visible ray region (UV-Vis, 200 nm to 700 nm).
또한, 자외선-가시광선 영역을 넘어 근적외선 영역(Near-Infrared, 700 ㎚ 내지 1700 ㎚)의 광학 활성을 갖는 카이랄 물질들을 합성하는 연구가 활발히 진행이 되고 있다. 물질은 그 크기에 따라 스케일이 비슷한 빛과의 상호작용이 활발해지는 경향이 있어, 근적외선 영역의 빛을 흡수하는 성질을 부여하기 위해 마이크로 크기를 갖는 물질을 합성하는 것이 핵심이다.In addition, research on synthesizing chiral materials having optical activity in the near-infrared (Near-Infrared, 700 nm to 1700 nm) region beyond the ultraviolet-visible region is being actively conducted. Materials tend to interact more actively with light of a similar scale depending on their size, so the key is to synthesize a material with a micro size in order to give it a property of absorbing light in the near-infrared region.
단적외선 영역(SWIR, 1700 ㎚ 내지 2500 ㎚)의 빛은 피부를 잘 투과하는 특성이 있어 생체분자와 상호작용했을 때 다양한 성질들을 보여주는 연구가 보고되었다. 한 예로, 신경 시스템(neural system)이 단적외선 빛을 흡수했을 때 자극을 받아 활성화(stimulation) 되는 것을 이용해 진단기술과 열 치료 기술들이 제안되었다. 뿐만 아니라 암세포(tumor)나 뼈 조직(bone tissue)의 경우에는 단적외선 빛을 잘 흡수하는 성질이 보고됨에 따라 이들을 이미징(imaging)하는 기술들 또한 개발되고 있다.Since light in the short infrared region (SWIR, 1700 nm to 2500 nm) has a property of penetrating the skin well, studies showing various properties when interacting with biomolecules have been reported. As an example, diagnostic techniques and heat treatment techniques have been proposed using the fact that the neural system is stimulated and activated when short-infrared light is absorbed. In addition, in the case of cancer cells (tumor) or bone tissue (bone tissue), as the property of absorbing short-infrared light is reported, imaging techniques are also being developed.
따라서 근적외선 영역을 넘어 단적외선 영역까지의 광학 활성을 보이는 물질을 합성한다면 바이오 시스템(bio system)에 여러가지 응용이 가능할 것이다. 이러한 물질을 합성하기 위하여 단적외선 영역의 빛의 파장과 비슷한 크기를 가지면서도 구조적 카이랄성을 가지도록 합성하는 기술이 개발되어야 한다.Therefore, if a material that exhibits optical activity beyond the near-infrared region to the short-infrared region is synthesized, various applications to bio systems will be possible. In order to synthesize such a material, a synthesis technology that has a size similar to the wavelength of light in the short-infrared region and has structural chirality must be developed.
현재까지 이를 해결하기 위해 시도된 기술로는 1) 리소그래피(lithography) 기술을 이용한 탑다운 방식의 식각법 및 2) 카이랄성을 갖는 물질을 템플릿으로 활용하는 방법이 있으나, 단적외선 영역에서의 광학 활성을 가지는 물질을 여전히 개발하지 못하고 있다. 또한, 첫번째 방법의 경우 최첨단 장비가 필요하며 가격 및 시간적 비용이 크다는 단점이 있으며, 두번째 방법은 템플릿으로 일반적으로 생체 분자인 단백질 혹은 아미노산을 사용하는데, 생체 내에는 한 가지 방향성을 갖는 분자만이 존재하기 때문에 양방향 카이랄 물질(enantiomer)을 합성하기에는 한계가 있다.Techniques that have been attempted to solve this problem so far include 1) a top-down etching method using lithography technology and 2) a method using a material having chirality as a template, but optics in the short infrared region A substance having an activity has not yet been developed. In addition, the first method requires state-of-the-art equipment, and has the disadvantage of high price and time. Therefore, there is a limit to synthesizing a bidirectional chiral enantiomer.
따라서, 상술한 단점을 해결할 수 있는 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가지는 물질에 대한 개발이 필요한 실정이다.Therefore, there is a need to develop a material having optical activity in a wide range from the ultraviolet to the short infrared, which can solve the above-mentioned disadvantages.
본 발명의 일 목적은 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가지는 카이랄 구조체 및 카이랄 구조체 제조용 전구체 조성물을 제공하는 것이다.One object of the present invention is to provide a chiral structure having optical activity in a wide range from the ultraviolet to the short infrared, and a precursor composition for preparing the chiral structure.
본 발명의 다른 일 목적은 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가지는 카이랄 구조체의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing a chiral structure having optical activity in a wide range from the ultraviolet to the short infrared.
본 발명의 또 다른 일 목적은 상술한 카이랄 구조체를 포함하는 바이오 센서 및 광학 장치를 제공하는 것이다.Another object of the present invention is to provide a biosensor and an optical device including the chiral structure described above.
본 발명의 일 구현예는 상술한 바와 같은 과제를 해결하기 위하여, 카이랄 나노입자를 포함하고, 자외선-가시광선(UV-Vis) 영역, 근적외선(NIR) 영역 및 단적외선(SWIR) 영역에서 광학 활성을 가지는, 카이랄 구조체를 제공한다.One embodiment of the present invention, in order to solve the above-described problems, includes chiral nanoparticles, ultraviolet-visible (UV-Vis), near-infrared (NIR) and short-infrared (SWIR) optics in the region An active, chiral structure is provided.
일 구현예에 있어서, 상기 카이랄 구조체는 상기 카이랄 나노입자의 자가 조립에 의해 제조된 초입자 조립체일 수 있다.In one embodiment, the chiral structure may be a superparticle assembly prepared by self-assembly of the chiral nanoparticles.
일 구현예에 있어서, 상기 카이랄 구조체는 2 이상의 타원체를 포함하고 상기 타원체가 시계 방향 또는 반시계방향으로 회전하면서 쌓인 구조를 가지는 것일 수 있다.In one embodiment, the chiral structure may have a structure in which two or more ellipsoids are stacked while rotating in a clockwise or counterclockwise direction.
일 구현예에 있어서, 상기 타원체는 장경이 1 ㎛ 내지 10 ㎛일 수 있다.In one embodiment, the major diameter of the ellipsoid may be 1 μm to 10 μm.
일 구현예에 있어서, 상기 카이랄 구조체는 원편광 이색성 스펙트럼 측정 시 최대 피크 파장은 800 ㎚ 내지 1500 ㎚ 범위에서 나타나는 것일 수 있다.In one embodiment, the chiral structure may have a maximum peak wavelength in the range of 800 nm to 1500 nm when the circular polarization = dichroism spectrum is measured.
일 구현예에 있어서, 상기 카이랄 나노입자는 금속 화합물일 수 있다.In one embodiment, the chiral nanoparticle may be a metal compound.
일 구현예에 있어서, 상기 금속은 11족 전이금속 중에서 선택되는 어느 하나일 수 있다.In one embodiment, the metal may be any one selected from Group 11 transition metals.
일 구현예에 있어서, 상기 카이랄 나노입자는 카이랄 리간드로부터 제조되는 것일 수 있다.In one embodiment, the chiral nanoparticle may be prepared from a chiral ligand.
일 구현예에 있어서, 상기 카이랄 리간드는 L-아미노산 또는 D-아미노산일 수 있다.In one embodiment, the chiral ligand may be an L-amino acid or a D-amino acid.
일 구현예에 있어서, 상기 카이랄 나노입자는 평균 직경이 1 ㎚ 내지 10 ㎚일 수 있다.In one embodiment, the chiral nanoparticles may have an average diameter of 1 nm to 10 nm.
다른 일 구현예는 카이랄 리간드, 금속 전구체 및 칼코겐 전구체를 포함하는, 카이랄 구조체 제조용 전구체 조성물을 제공한다.Another embodiment provides a precursor composition for preparing a chiral structure, including a chiral ligand, a metal precursor, and a chalcogen precursor.
일 구현예에 있어서, 상기 카이랄 리간드는 L-아미노산 또는 D-아미노산일 수 있다.In one embodiment, the chiral ligand may be an L-amino acid or a D-amino acid.
일 구현예에 있어서, 상기 카이랄 리간드는 L-시스테인 또는 D-시스테인일 수 있다.In one embodiment, the chiral ligand may be L-cysteine or D-cysteine.
또 다른 일 구현예는 카이랄 리간드 및 금속 전구체를 포함하는 카이랄 구조체 제조용 전구체 조성물을 반응시켜 카이랄 나노입자를 제조하는 제1단계; 및 상기 카이랄 나노입자를 매질에 분산시켜 마이크로 크기의 카이랄 구조체를 제조하는 제2단계; 를 포함하는, 카이랄 구조체의 제조방법을 제공한다.Another embodiment includes a first step of preparing chiral nanoparticles by reacting a precursor composition for preparing a chiral structure including a chiral ligand and a metal precursor; and a second step of preparing a micro-sized chiral structure by dispersing the chiral nanoparticles in a medium; It provides a method for producing a chiral structure comprising a.
일 구현예에 있어서, 상기 카이랄 구조체 제조용 전구체 조성물은 칼코겐 전구체를 더 포함하는 것일 수 있다.In one embodiment, the precursor composition for preparing the chiral structure may further include a chalcogen precursor.
일 구현예에 있어서, 카이랄 리간드 : 금속 전구체 : 칼코겐 전구체의 몰비는 1 : 0.1 내지 0.8 : 0.1 내지 0.6일 수 있다.In one embodiment, the molar ratio of chiral ligand:metal precursor:chalcogen precursor may be 1:0.1 to 0.8:0.1 to 0.6.
일 구현예에 있어서, 상기 제2단계는 카이랄 나노입자의 자가 조립이 일어나 마이크로 크기의 카이랄 구조체를 제조하는 것일 수 있다.In one embodiment, the second step may be to prepare a micro-sized chiral structure by self-assembling the chiral nanoparticles.
또 다른 일 구현예는 상술한 카이랄 구조체를 포함하는 바이오 센서 또는 광학 장치를 제공한다.Another embodiment provides a biosensor or optical device including the chiral structure described above.
본 발명에 따른 카이랄 구조체는 자외선 영역에서 단적외선 영역인 200 ㎚ 내지 2500 ㎚의 넓은 영역에서 광학 활성을 가짐으로써, 바이오 센서, 광학 장치, 메타 물질 개발, 통신, 비대칭 촉매 등의 보다 다양한 분야에 적용될 수 있다.The chiral structure according to the present invention has optical activity in a wide range from 200 nm to 2500 nm, which is a short infrared region in the ultraviolet region, so that it can be used in more diverse fields such as biosensors, optical devices, metamaterial development, communication, and asymmetric catalysts. can be applied
또한, 본 발명에 따른 카이랄 구조체는 카이랄 나노입자의 자가 조립 현상을 이용하여 보다 용이하게 제조될 수 있다는 장점이 있다.In addition, the chiral structure according to the present invention has the advantage that it can be more easily prepared using the self-assembly phenomenon of chiral nanoparticles.
도 1은 시스테인을 이용한 카이랄 황화구리 나노입자 합성 및 자가조립 과정을 보여주는 모식도이다.1 is a schematic diagram showing a process of synthesizing and self-assembling chiral copper sulfide nanoparticles using cysteine.
도 2는 실시예 1, 실시예 2 및 비교예 1의 구조체의 SEM 이미지이다.2 is an SEM image of the structures of Example 1, Example 2 and Comparative Example 1.
도 3은 실시예 1, 실시예 2 및 비교예 1의 구조체의 g 상수(anisotropic g factor) 그래프이다.3 is a graph of the anisotropic g factor of structures of Examples 1, 2, and Comparative Example 1;
도 4는 실시예 1, 실시예 2 및 비교예 1의 구조체의 원편광 이색성 (Circular Dichroism, CD) 그래프이다.4 is a circular dichroism (CD) graph of the structures of Example 1, Example 2 and Comparative Example 1.
도 5는 카이랄 나노입자가 자가조립되는 과정을 숙성(aging) 시간별로 관측한 TEM 이미지이다.5 is a TEM image obtained by observing the process of self-assembly of chiral nanoparticles according to aging time.
도 6은 숙성 시간에 따른 카이랄성의 변화를 보여주는 CD 그래프이다.6 is a CD graph showing changes in chirality according to aging time.
도 7은 숙성 시간에 따른 카이랄성의 변화를 보여주는 흡광 그래프이다.7 is an absorbance graph showing changes in chirality according to aging time.
도 8은 실시예 1 및 2의 시스테인 분자, 카이랄 나노입자 및 카이랄 구조체의 CD 그래프이다.8 is a CD graph of cysteine molecules, chiral nanoparticles, and chiral structures of Examples 1 and 2;
도 9, 도 10 및 도 11은 각각 유기 리간드와 시스테인의 사용비율에 따라 제조된 카이랄 구조체들의 SEM 이미지, g factor 그래프 및 이들의 CD 그래프이다.9, 10 and 11 are SEM images, g factor graphs, and CD graphs of chiral structures prepared according to the organic ligand and cysteine usage ratio, respectively.
본 명세서에 기재된 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 일 구현예에 따른 기술이 이하 설명하는 실시형태로 한정되는 것은 아니다. 또한 일 구현예의 실시 형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 개시를 더욱 완전하게 설명하기 위해서 제공되는 것이다.The embodiments described in this specification may be modified in many different forms, and a technology according to an embodiment is not limited to the embodiment described below. In addition, embodiments of one embodiment are provided to more completely explain the present disclosure to those skilled in the art.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.Also, the singular forms used in the specification and appended claims may be intended to include the plural forms as well, unless the context dictates otherwise.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.Further, as used herein, numerical ranges include lower and upper limits and all values within that range, increments logically derived from the shape and breadth of the defined range, all values defined therebetween, and the upper limit of the numerical range defined in a different form. and all possible combinations of lower bounds. Unless otherwise specifically defined in the specification of the present invention, values outside the numerical range that may occur due to experimental errors or rounding of values are also included in the defined numerical range.
나아가, 명세서 전체에서 어떤 구성요소를 "포함"한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.Furthermore, "include" a certain component throughout the specification means that other components may be further included without excluding other components unless otherwise stated.
본 명세서에서, 장경은 입자의 가장 긴 장축 방향의 길이를 의미하며, 단경은 상기 장경에 직교하는 방향(이하 '단축방향'이라 칭함)의 가장 긴 길이를 의미한다.In this specification, the major axis refers to the length of the longest major axis of the particle, and the minor axis refers to the longest length in a direction perpendicular to the major axis (hereinafter referred to as 'minor axis direction').
물질은 그 크기에 따라 스케일이 비슷한 빛과의 상호작용이 활발해지는 경향이 있으며, 특히 단적외선 영역의 빛은 생체분자와의 상호작용이 활발하여 광학 장치 및 통신 분야뿐만 아니라 바이오 분야 등으로의 응용을 위하여 자외선 영역에서 단적외선 영역까지의 광학 활성을 가지는 카이랄 물질의 개발이 필수적이다. 그러나 종래의 카이랄 물질 합성 기술은 단적외선 영역의 광학 활성을 가지는 물질을 합성하지 못하고 자외선 및 가시광선 영역에서만 제한적으로 광학 활성을 갖고 있어 바이오 및 통신 등을 포함한 다양한 분야에서의 응용에 한계가 있었다.Materials tend to interact more actively with light of a similar scale depending on their size. In particular, light in the short-infrared region interacts actively with biomolecules, making it applicable not only to optical devices and communications, but also to the biofield. For this, it is essential to develop a chiral material having optical activity from the ultraviolet to the short infrared. However, the conventional chiral material synthesis technology cannot synthesize a material having optical activity in the short-infrared region, and has limited optical activity only in the ultraviolet and visible light regions, and thus has limitations in application in various fields including bio and communication. .
이에, 본 발명자는 카이랄 물질을 보다 다양한 분야에 활용하기 위하여 단적외선 영역까지 넓은 범위에서 광학 활성을 가지는 물질의 합성 기술을 거듭하여 연구한 결과, 자가 조립 특성을 가지는 물질을 이용함으로써, 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가지는 카이랄 구조체를 보다 용이하게 합성할 수 있음을 발견하여 본 발명을 완성하였다.Accordingly, the inventors of the present invention repeatedly studied synthesis techniques for substances having optical activity in a wide range up to the single infrared region in order to utilize chiral substances in more diverse fields, and as a result, by using materials having self-assembly characteristics, The present invention was completed by discovering that a chiral structure having optical activity in a wide range from to the single infrared range could be more easily synthesized.
일 구현예에 따른 카이랄 구조체는 카이랄 나노입자를 포함하고, 자외선-가시광선(UV-Vis) 영역, 근적외선(NIR) 영역 및 단적외선(SWIR) 영역에서 광학 활성을 가지는 것을 특징으로 한다.A chiral structure according to an embodiment includes chiral nanoparticles, and is characterized in that it has optical activity in the ultraviolet-visible (UV-Vis) region, the near-infrared (NIR) region, and the short-infrared (SWIR) region.
상기 카이랄 구조체는 카이랄 나노입자를 포함함으로써 비대칭 속성인 카이랄성을 가지며, 구체적으로 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가짐으로써 바이오 센서, 광학 장치, 메타 물질, 통신 및 비대칭 촉매 등의 다양한 분야에 유용하게 적용될 수 있다. 이때, 자외선-가시광선 영역은 200 ㎚ 내지 700 ㎚, 근적외선 영역은 700 ㎚ 내지 1700 ㎚, 단적외선 영역은 1700 ㎚ 내지 2500 ㎚의 파장 범위를 의미한다.The chiral structure has chirality, which is an asymmetric property, by including chiral nanoparticles, and specifically has optical activity in a wide range from the ultraviolet region to the short infrared region, thereby enabling biosensors, optical devices, metamaterials, communication and asymmetric It can be usefully applied to various fields such as catalysts. In this case, the ultraviolet-visible ray region means a wavelength range of 200 nm to 700 nm, the near infrared region 700 nm to 1700 nm, and the short infrared region 1700 nm to 2500 nm.
상기 카이랄 구조체는 상기 카이랄 나노입자의 자가 조립에 의해 제조된 초입자(supraparticle)의 조립체일 수 있다. 상기 초입자는 카이랄 나노입자간의 상호작용에 의해 일정한 규칙성을 가지고 응집된 입자를 의미하며, 이러한 초입자간의 상호작용에 의해 응집이 계속하여 일어나 100 내지 102 ㎛의 마이크로 수준에서도 카이랄 특성을 가지는 카이랄 구조체가 형성될 수 있다. 이와 같은 자가조립 특성을 가진 카이랄 나노입자를 이용함으로써, 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가지는 카이랄 구조체를 보다 용이하게 제조될 수 있다.The chiral structure may be an assembly of supraparticles prepared by self-assembly of the chiral nanoparticles. The superparticles refer to particles aggregated with a certain regularity by interactions between chiral nanoparticles, and aggregation continues to occur due to interactions between these superparticles, resulting in chiral properties even at the micro level of 10 0 to 10 2 μm. A chiral structure having can be formed. By using such chiral nanoparticles having self-assembly characteristics, a chiral structure having optical activity in a wide range from an ultraviolet region to a short infrared region can be more easily prepared.
일 구현예에 있어서, 상기 카이랄 구조체는 2 이상의 타원체를 포함하고 상기 타원체가 시계 방향 또는 반시계방향으로 회전하면서 쌓인 구조를 가지는 것일 수 있다. 상기 구조를 가짐으로써 일 구현예에 따른 카이랄 구조체는 원자 수준의 카이랄성을 마이크로 수준으로 전이시켜 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가질 수 있다.In one embodiment, the chiral structure may have a structure in which two or more ellipsoids are stacked while rotating in a clockwise or counterclockwise direction. By having the above structure, the chiral structure according to one embodiment can have optical activity in a wide range from the ultraviolet region to the short infrared region by transferring atomic level chirality to the micro level.
상기 타원체는 장경이 1 ㎛ 내지 10 ㎛, 구체적으로는 1 ㎛ 내지 5 ㎛, 보다 구체적으로는 1 ㎛ 내지 3 ㎛일 수 있으며, 상기 범위의 크기를 가짐으로써, 상기 범위의 크기와 비슷한 근적외선 및 단적외선 영역의 빛과 상호작용하여 상기 영역에서 광학 활성을 가질 수 있다.The ellipsoid may have a major diameter of 1 μm to 10 μm, specifically 1 μm to 5 μm, and more specifically 1 μm to 3 μm, and by having a size in the above range, near-infrared rays and short rays similar to the size of the above range It may interact with light in the infrared region to have optical activity in the region.
상기 타원체는 단경이 0.05 ㎛ 내지 1 ㎛, 구체적으로는 0.1 ㎛ 내지 1 ㎛, 보다 구체적으로는 0.1 ㎛ 내지 0.5 ㎛일 수 있으며, 단경에 대한 장경의 비는 1 내지 200, 1 내지 100, 1 내지 50 또는 2 내지 10일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 타원체는 두께가 0.01 ㎛ 내지 1 ㎛, 구체적으로는 0.05 ㎛ 내지 1 ㎛, 보다 구체적으로는 0.05 ㎛ 내지 0.5 ㎛일 수 있으나, 이에 제한되는 것은 아니다.The ellipsoid may have a minor diameter of 0.05 μm to 1 μm, specifically 0.1 μm to 1 μm, and more specifically 0.1 μm to 0.5 μm, and the ratio of the major axis to the minor axis may be 1 to 200, 1 to 100, or 1 to It may be 50 or 2 to 10, but is not limited thereto. In addition, the ellipsoid may have a thickness of 0.01 μm to 1 μm, specifically 0.05 μm to 1 μm, and more specifically 0.05 μm to 0.5 μm, but is not limited thereto.
일 구현예에 있어서, 상기 카이랄 구조체는 원편광 이색성 스펙트럼 측정 시 최대 피크 파장은 800 ㎚ 내지 1500 ㎚ 범위에서 나타나는 것일 수 있으며, 구체적으로는 800 ㎚ 내지 1200 ㎚ 또는 900 ㎚ 내지 1100 ㎚ 범위에서 나타나는 것일 수 있다.In one embodiment, the chiral structure may have a maximum peak wavelength in the range of 800 nm to 1500 nm when measuring the circularly polarized dichroic spectrum, specifically in the range of 800 nm to 1200 nm or 900 nm to 1100 nm may appear
일 구현예에 있어서, 상기 카이랄 나노입자는 자가 조립을 할 수 있는 고유의 특성을 가지는 입자로서, 금속 화합물일 수 있다. 구체적으로는, 상기 금속은 11족 전이금속 중에서 선택되는 어느 하나일 수 있으며, 보다 구체적으로는, 상기 금속은 구리일 수 있다.In one embodiment, the chiral nanoparticles are particles having inherent characteristics capable of self-assembly, and may be metal compounds. Specifically, the metal may be any one selected from Group 11 transition metals, and more specifically, the metal may be copper.
일 구현예에 있어서, 상기 금속 화합물은 M2-xA을 포함할 수 있다. 이때, 상기 M은 금속이고, 상기 A는 칼코겐 원소이며, 상기 x는 0 < x ≤ 1이다. 구체적으로는, 상기 금속은 11족 전이금속 중에서 선택되는 어느 하나일 수 있으며, 보다 구체적으로는, 상기 금속은 구리일 수 있다. 상기 A는 산소(O), 황(S), 셀레늄(Se) 및 텔루륨(Te)으로 이루어진 군에서 선택되는 어느 하나일 수 있으며, 보다 구체적으로는, 상기 A는 황(S)일 수 있다. 일 구현예에 따른 카이랄 구조체는 M2-xA을 포함함으로써, 근적외선 및 단적외선 영역에서의 광학 활성을 가질 수 있다.In one embodiment, the metal compound may include M 2-x A. In this case, M is a metal, A is a chalcogen element, and x is 0 < x ≤ 1. Specifically, the metal may be any one selected from Group 11 transition metals, and more specifically, the metal may be copper. The A may be any one selected from the group consisting of oxygen (O), sulfur (S), selenium (Se) and tellurium (Te), more specifically, the A may be sulfur (S) . By including M 2-x A, the chiral structure according to one embodiment may have optical activity in the near-infrared and short-infrared regions.
일 구현예에 있어서, 상기 카이랄 나노입자는 카이랄 구조체에 카이랄성을 부여하기 위하여 카이랄 리간드로부터 제조되는 것일 수 있다. 상기 카이랄 리간드는 카이랄성을 가지는 분자라면 제한없이 이에 해당될 수 있으며, 구체적으로는, L-당류, D-당류, L-아미노산 또는 D-아미노산일 수 있다. 보다 구체적으로는 상기 카이랄 리간드는 L-시스테인 또는 D-시스테인일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment, the chiral nanoparticle may be prepared from a chiral ligand to impart chirality to the chiral structure. Any molecule having chirality may correspond to the chiral ligand without limitation, and specifically, it may be L-saccharide, D-saccharide, L-amino acid or D-amino acid. More specifically, the chiral ligand may be L-cysteine or D-cysteine, but is not limited thereto.
상기 카이랄 나노입자는 평균 직경이 1 ㎚ 내지 20 ㎚ 또는 1 ㎚ 내지 10 ㎚일 수 있으나, 특별히 이에 제한되는 것은 아니다. 이러한 나노 크기의 카이랄 나노입자가 나노입자간의 상호작용에 의하여 자가조립 현상을 통해 응집되면서 마이크로 크기의 카이랄 구조체를 형성함으로써, 원자 수준의 카이랄성이 마이크로 수준의 카이랄성으로까지 전이가 되어 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가지는 카이랄 구조체가 형성될 수 있다.The chiral nanoparticles may have an average diameter of 1 nm to 20 nm or 1 nm to 10 nm, but are not particularly limited thereto. These nano-sized chiral nanoparticles are aggregated through self-assembly through interactions between nanoparticles to form a micro-sized chiral structure, so that atomic-level chirality is transferred to micro-level chirality. Thus, a chiral structure having optical activity in a wide range from the ultraviolet region to the short infrared region can be formed.
일 구현예에 따른 카이랄 구조체 제조용 전구체 조성물은 카이랄 리간드, 금속 전구체 및 칼코겐 전구체를 포함하는 것을 특징으로 한다.A precursor composition for preparing a chiral structure according to an embodiment is characterized in that it includes a chiral ligand, a metal precursor, and a chalcogen precursor.
카이랄 리간드, 금속 전구체 및 칼코겐 전구체를 포함함으로써, 이로부터 제조되는 카이랄 구조체는 금속 전구체 및 칼코겐 전구체에 의해 제조되는 금속 칼코겐 화합물의 자가조립 특성에 의하여 카이랄 리간드의 원자 수준의 카이랄성이 마이크로 크기의 카이랄성으로 전이되어 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가질 수 있다.By including a chiral ligand, a metal precursor, and a chalcogen precursor, the chiral structure prepared therefrom is a metal chalcogen compound prepared by the metal precursor and the chalcogen precursor due to the self-assembly characteristics of the chiral ligand at the atomic level. Irality is converted to micro-sized chirality, and it can have optical activity in a wide range from ultraviolet to short infrared.
상기 카이랄 리간드에 관한 설명은 상술한 바를 적용할 수 있으며, 금속 전구체의 금속에 관하여는 상술한 금속 화합물의 금속에 관한 사항을 적용할 수 있다. 또한, 칼코겐 전구체의 칼코겐 원소에 관하여는 상술한 바를 적용할 수 있다.The description of the chiral ligand may be applied to the above description, and to the metal of the metal precursor, the above-described description of the metal of the metal compound may be applied. In addition, the above description can be applied to the chalcogen element of the chalcogen precursor.
상기 금속 전구체는 이에 제한되지 않으나, 금속의 염화물, 수산화물, 탄산화물, 질산화물 또는 유기 금속염인 형태를 갖는 금속 화합물일 수 있다. 예를 들어, 상기 염은 아세테이트, 수산화물, 나이트레이트, 플로라이드, 인산염, 과염소산염, 질산염, 황산염, 요오드염, 염화염, 및 이들의 조합들로 이루어진 군에서 선택된 것일 수 있다.The metal precursor is not limited thereto, but may be a metal compound having a form of a metal chloride, hydroxide, carbonate, nitrate, or organic metal salt. For example, the salt may be selected from the group consisting of acetates, hydroxides, nitrates, fluorides, phosphates, perchlorates, nitrates, sulfates, iodines, chlorides, and combinations thereof.
상기 칼코겐 전구체는 산소(O), 황(S), 셀레늄(Se) 및 텔루륨(Te)으로 이루어진 군에서 선택되는 어느 하나 이상의 원소를 포함하는 것일 수 있다. 구체적으로는 상기 칼코겐 전구체는 황(S)을 포함하는 황 전구체일 수 있으며, 상기 황 전구체는 예를 들면, H2S, C1-10알킬티올, 티오유레아(thiourea), 티오아세트아미드(thioacetamide) 등의 황 함유 유기 화합물 또는 황(S) 원소를 들 수 있으나, 이에 한정되는 것은 아니다.The chalcogen precursor may include one or more elements selected from the group consisting of oxygen (O), sulfur (S), selenium (Se), and tellurium (Te). Specifically, the chalcogen precursor may be a sulfur precursor containing sulfur (S), and the sulfur precursor may be, for example, H 2 S, C 1-10 alkylthiol, thiourea, thioacetamide ( thioacetamide) and sulfur-containing organic compounds or sulfur (S) elements, but are not limited thereto.
상기 카이랄 구조체 제조용 전구체 조성물은 유기 리간드를 더 포함할 수 있으며, 이로써 카이랄 구조체 제조용 전구체 조성물로부터 제조되는 카이랄 나노입자의 안정성을 보다 향상시켜 카이랄 구조체가 보다 용이하게 형성될 수 있다.The precursor composition for preparing a chiral structure may further include an organic ligand, thereby further improving the stability of chiral nanoparticles prepared from the precursor composition for preparing a chiral structure, so that a chiral structure may be more easily formed.
상기 유기 리간드는 카이랄 나노입자의 안정성을 향상시킬 수 있는 리간드이면 크게 제한되지 않으나, 일례로 티올기를 포함하는 리간드일 수 있으며, 구체적으로는 C4-12알킬티올, 2-(2-메톡시에톡시)에탄티올, 3-메톡시부틸 3-머캅토프로피오네이트, 3-메톡시부틸머캅토아세테이트, 티오글리콜산, 3-머캅토프로피온산, 티오프로닌, 2-머캅토프로피온산, 2-머캅토프로피오네이트, 2-머캅토에탄올, 시스테아민, 1-티오글리세롤, 머캅토숙신산, 디히드로리포익산, 2-(디메틸아미노)에탄티올, 5-머캅토메틸테트라졸, 2,3-디머캅토-1-프로판올, 글루타티온, m(PEG)-SH, 디(C1-30)알킬디티오카바믹산, 디(C1-30)알킬디티오카바메이트, 또는 이들의 조합일 수 있다. 보다 구체적으로는 티오글리콜산일 수 있다.The organic ligand is not particularly limited as long as it can improve the stability of chiral nanoparticles, but may be, for example, a ligand containing a thiol group, specifically C 4-12 alkylthiol, 2-(2-methoxy Ethoxy) ethanethiol, 3-methoxybutyl 3-mercaptopropionate, 3-methoxybutylmercaptoacetate, thioglycolic acid, 3-mercaptopropionic acid, tiopronin, 2-mercaptopropionic acid, 2- Mercaptopropionate, 2-mercaptoethanol, cysteamine, 1-thioglycerol, mercaptosuccinic acid, dihydrolipoic acid, 2-(dimethylamino)ethanethiol, 5-mercaptomethyltetrazole, 2,3 -Dimercapto-1-propanol, glutathione, m(PEG)-SH, di(C1-30)alkyldithiocarbamic acid, di(C1-30)alkyldithiocarbamate, or a combination thereof. More specifically, it may be thioglycolic acid.
일 구현예에 따른 카이랄 구조체의 제조방법은 카이랄 리간드 및 금속 전구체를 포함하는 카이랄 구조체 제조용 전구체 조성물을 반응시켜 카이랄 나노입자를 제조하는 제1단계; 및 상기 카이랄 나노입자를 매질에 분산시켜 마이크로 크기의 카이랄 구조체를 제조하는 제2단계; 를 포함하는 것을 특징으로 한다.A method for preparing a chiral structure according to an embodiment includes a first step of preparing chiral nanoparticles by reacting a precursor composition for preparing a chiral structure including a chiral ligand and a metal precursor; and a second step of preparing a micro-sized chiral structure by dispersing the chiral nanoparticles in a medium; It is characterized in that it includes.
일 구현예에 있어서, 상기 카이랄 구조체는 100 내지 102 ㎛의 마이크로 크기를 가지며, 자외선 영역부터 단적외선 영역에서의 광학 활성을 가질 수 있는 크기를 가지면 특별히 제한되지 않으나, 일례로 장경이 1 ㎛ 내지 10 ㎛, 1 ㎛ 내지 5 ㎛, 또는 1 ㎛ 내지 3 ㎛일 수 있다.In one embodiment, the chiral structure has a micro size of 10 0 to 10 2 μm, and is not particularly limited as long as it has a size that can have optical activity in the ultraviolet region to the short infrared region, but, for example, the major axis is 1 μm to 10 μm, 1 μm to 5 μm, or 1 μm to 3 μm.
일 구현예에 있어서, 상기 카이랄 구조체는 자외선-가시광선(UV-Vis) 영역, 근적외선(NIR) 영역 및 단적외선(SWIR) 영역에서 광학 활성을 가질 수 있다.In one embodiment, the chiral structure may have optical activity in the ultraviolet-visible (UV-Vis) region, the near infrared (NIR) region, and the short infrared (SWIR) region.
상기 제1단계는 카이랄 리간드 및 금속 전구체를 포함하는 카이랄 구조체 제조용 전구체 조성물을 반응시켜 카이랄 나노입자를 제조하는 단계로서, 공지된 방식에 의하여 반응시킬 수 있으며 일례로 산소 차단된 분위기 및 30 ℃ 내지 100 ℃ 온도 범위에서 교반에 의해 수행될 수 있으나, 그 방식에 특별한 제한이 있는 것은 아니다. 산소 차단 방식으로는 이에 제한되는 것은 아니나, 일례로, 카이랄 구조체 제조용 전구체 조성물을 밀폐 용기에서 질소와 같은 불활성 기체로 퍼징하여 수행될 수 있다.The first step is a step of preparing chiral nanoparticles by reacting a precursor composition for preparing a chiral structure including a chiral ligand and a metal precursor, which can be reacted by a known method, and for example, in an oxygen-blocked atmosphere and 30 It may be carried out by stirring in the temperature range of ℃ to 100 ℃, but there is no particular limitation to the method. The oxygen blocking method is not limited thereto, but, for example, the precursor composition for preparing a chiral structure may be purged with an inert gas such as nitrogen in an airtight container.
일 구현예에 있어서, 상기 카이랄 구조체 제조용 전구체 조성물은 칼코겐 전구체를 더 포함할 수 있다.In one embodiment, the precursor composition for preparing the chiral structure may further include a chalcogen precursor.
상기 제1단계에서, 상기 카이랄 리간드, 금속 전구체, 칼코겐 전구체 및 카이랄 나노입자에 관하여는 상술한 바를 적용할 수 있다.In the first step, the above description can be applied to the chiral ligand, metal precursor, chalcogen precursor, and chiral nanoparticles.
일 구현예에 있어서, 카이랄 리간드 : 금속 전구체 : 칼코겐 전구체의 몰비는 1 : 0.1 내지 0.8 : 0.1 내지 0.6일 수 있으며, 구체적으로는 1 : 0.2 내지 0.8 : 0.1 내지 0.5, 보다 구체적으로는 1 : 0.3 내지 0.5 : 0.1 내지 0.3 일 수 있으나, 이에 특별히 한정되는 것은 아니다.In one embodiment, the molar ratio of chiral ligand:metal precursor:chalcogen precursor may be 1:0.1 to 0.8:0.1 to 0.6, specifically 1:0.2 to 0.8:0.1 to 0.5, more specifically 1 : 0.3 to 0.5 : 0.1 to 0.3, but is not particularly limited thereto.
일 구현예에 있어서, 상기 제2단계는 제1단계에서 제조된 카이랄 나노입자를 매질에 분산시켜 마이크로 크기의 카이랄 구조체를 제조하는 단계로서, 매질에의 분산 과정에 의해 카이랄 나노입자의 자가 조립이 일어나 마이크로 크기의 카이랄 구조체를 제조하는 것일 수 있다. 상기 카이랄 나노입자의 자가 조립 현상을 이용하여 보다 용이하게 마이크로 크기의 카이랄 구조체가 제조될 수 있다.In one embodiment, the second step is a step of preparing a micro-sized chiral structure by dispersing the chiral nanoparticles prepared in the first step in a medium, and the chiral nanoparticles are produced by the dispersion process in the medium. Self-assembly may occur to produce micro-sized chiral structures. Micro-sized chiral structures can be more easily prepared by using the self-assembly phenomenon of the chiral nanoparticles.
상기 매질은 카이랄 나노입자를 분산시킬 수 있는 물질로서, 일례로 수상(aqueous phase)일 수 있으나, 이에 제한되는 것은 아니다.The medium is a material capable of dispersing chiral nanoparticles, and may be, for example, an aqueous phase, but is not limited thereto.
상기 제2단계는 제1단계에서 제조된 카이랄 나노입자를 매질에 분산시키는 분산 단계 및 매질에 분산된 카이랄 나노입자를 숙성시키는 숙성 단계를 포함할 수 있으며, 상기 숙성 단계는 20 ℃ 내지 40 ℃ 또는 20 ℃ 내지 30 ℃에서 수행될 수 있으나, 이에 제한되는 것은 아니다.The second step may include a dispersing step of dispersing the chiral nanoparticles prepared in the first step in a medium and a aging step of aging the chiral nanoparticles dispersed in the medium, and the aging step is performed at 20 ° C to 40 ° C. It may be carried out at ℃ or 20 ℃ to 30 ℃, but is not limited thereto.
일 구현예는 상술한 바와 같은 카이랄 구조체를 포함하는 바이오 센서를 제공하며, 상기 바이오 센서는 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가지는 카이랄 구조체를 포함함으로써, 생체분자의 단적외선 영역의 빛과의 상호작용을 이용할 수 있어 일례로 진단기술, 열치료 기술, 암세포나 뼈조직 등의 이미징 기술 등의 분야에 다양하게 적용될 수 있다.One embodiment provides a biosensor including the chiral structure as described above, wherein the biosensor includes a chiral structure having optical activity in a wide range from the ultraviolet region to the short-infrared region. Since the interaction with light of the area can be used, it can be applied in various fields such as diagnosis technology, heat treatment technology, and imaging technology of cancer cells or bone tissue, for example.
또한, 일 구현예는 상술한 바와 같은 카이랄 구조체를 포함하는 광학 장치를 제공하며, 상기 광학 장치는 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가지는 카이랄 구조체를 포함함으로써, 자외선 및 가시광선 영역에서만 제한적으로 광학 활성을 가진 종래의 물질에 비해 보다 다양하게 활용할 수 있다.In addition, one embodiment provides an optical device including a chiral structure as described above, wherein the optical device includes a chiral structure having optical activity in a wide range from an ultraviolet region to a short infrared region. Compared to conventional materials that have limited optical activity only in the ray domain, they can be used in a wider variety of ways.
이하, 본 발명의 실시예 및 실험예를 하기에 구체적으로 예시하여 설명한다. 다만, 후술하는 실시예 및 실험예는 본 발명의 일부를 예시하는 것일 뿐, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, examples and experimental examples of the present invention will be specifically illustrated and described. However, Examples and Experimental Examples to be described later are merely illustrative of a part of the present invention, and the present invention is not limited thereto.
[물성 평가방법][Physical property evaluation method]
1. 원편광 이색성(CD) 스펙트럼 측정1. Circular polarization = dichroic (CD) spectrum measurement
200 ㎚ 내지 2500 ㎚의 파장 범위에서 작동하는 J-1700 원편광 이색성 분광 광도계(JASCO company)를 사용하여 원편광 이색성(Circular dichroism, CD) 측정을 수행하였다. CD 측정을 위해 합성된 샘플을 증류수에 재분산하여 UV-Vis-NIR 영역(200 ㎚ 내지 800 ㎚)의 광학 활성을 측정했다. 또한, 샘플을 석영 웨이퍼에 드롭 캐스팅하여 UV-Vis-NIR-SWIR 영역(200 ㎚ 내지 2500 ㎚)의 광학 활성을 측정했다.Circular dichroism (CD) measurements were performed using a J-1700 circular polarization/dichroism spectrophotometer (JASCO company) operating in the wavelength range of 200 nm to 2500 nm. The synthesized sample for CD measurement was redispersed in distilled water to measure the optical activity in the UV-Vis-NIR region (200 nm to 800 nm). In addition, the sample was drop-casted on a quartz wafer to measure the optical activity in the UV-Vis-NIR-SWIR region (200 nm to 2500 nm).
2. X선 광전자 분광법(XPS) 분석2. X-ray photoelectron spectroscopy (XPS) analysis
샘플은 실리콘 웨이퍼 기판에서 0시간, 2시간 및 20시간 동안 노화된 분산액 20 ㎕를 드롭 캐스팅하여 준비하고, K-알파 분광계(Thermo VG Scientific company)를 사용하여 X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS) 분석을 수행하였다.Samples were prepared by drop casting 20 μl of the dispersion aged for 0, 2, and 20 hours on a silicon wafer substrate, and subjected to X-ray photoelectron spectroscopy using a K-alpha spectrometer (Thermo VG Scientific company). , XPS) analysis was performed.
3. 주사 전자 현미경(SEM) 이미징3. Scanning Electron Microscopy (SEM) Imaging
샘플을 실리콘 웨이퍼에 드롭 캐스팅하여 준비하고, 10 kV 전압 및 7 μA 전류로 Magellan400(FEI Company)을 사용하여 주사 전자 현미경(scanning electron microscopy, SEM) 이미징을 수행하였다. Samples were prepared by drop casting on a silicon wafer, and scanning electron microscopy (SEM) imaging was performed using a Magellan400 (FEI Company) at a voltage of 10 kV and a current of 7 μA.
4. 투과 전자 현미경(TEM) 이미징4. Transmission electron microscopy (TEM) imaging
샘플은 구멍이 있는 탄소 필름으로 코팅된 니켈 그리드에 떨어뜨리고 건조하여 준비하고, 전압 200kV로 Talos F200X(FEI Company)를 이용하여 투과 전자 현미경(Transmission Electron Microscopy, TEM) 이미징을 수행하였다.Samples were prepared by dropping and drying on a nickel grid coated with a porous carbon film, and subjected to transmission electron microscopy (TEM) imaging using a Talos F200X (FEI Company) at a voltage of 200 kV.
<실시예 1> L-Cys-Cu2-xS NF의 제조<Example 1> Preparation of L-Cys-Cu 2-x S NF
먼저 3구 플라스크에 20 ㎖의 증류수를 넣고 30분간의 질소 퍼징 과정을 거쳐 용존 산소를 제거해준다. 산소가 차단된 상태에서 70 ℃까지 온도를 올려준 후 Thioglycolic acid(TGA) 0.033 ㎖(0.45 mmol)와 L-시스테인 2 ㎖(0.55 mmol)를 첨가하고 30분간 질소 퍼징을 교반과 함께 진행하였다. 상기 플라스크에 Copper(I) chloride 0.02475 g(0.25 mmol)을 첨가해주고 1시간의 질소 퍼징을 하였다. 그 후, NaCl을 이용해 플라스크에 담긴 용액의 pH를 9로 맞춰준 후 Thioacetamide(TAA) 1 ㎖(0.125 mmol)를 첨가하고 4시간 동안 반응을 시켜 갈색을 띄는 카이랄 황화구리 나노입자(또는 L-Cys-Cu2S NP)를 포함하는 제1용액을 제조하였다.First, 20 ml of distilled water was put into a three-necked flask, and dissolved oxygen was removed through a nitrogen purging process for 30 minutes. After raising the temperature to 70 ° C. in an oxygen-blocking state, 0.033 ml (0.45 mmol) of Thioglycolic acid (TGA) and 2 ml (0.55 mmol) of L-cysteine were added, followed by nitrogen purging for 30 minutes with stirring. 0.02475 g (0.25 mmol) of Copper(I) chloride was added to the flask and nitrogen purging was performed for 1 hour. Then, after adjusting the pH of the solution in the flask to 9 using NaCl, 1 ml (0.125 mmol) of Thioacetamide (TAA) was added and reacted for 4 hours to obtain brownish chiral copper sulfide nanoparticles (or L- A first solution containing Cys-Cu 2 S NP) was prepared.
상기 제조한 제1용액과 이소프로판올을 2:1의 부피비로 혼합하고 8500 rpm에서 20분 동안 원심분리를 하여 카이랄 황화구리 나노입자(또는 L-Cys-Cu2S NP)를 얻었다. 이때, 얻은 카이랄 황화구리 나노입자의 크기는 고해상도 투과전자현미경(HR-TEM)에 의한 이미지 분석 결과 4.48 ㎚의 평균 직경인 것을 확인하였다. 그 후 원심분리를 통해 얻은 나노입자를 20 ㎖의 3차 증류수에 재분산시키고 실온에서 20시간 동안 숙성시켜 제2용액을 얻었다. 그 후, 제2용액과 이소프로판올을 1:1의 부피비로 혼합하고 6000 rpm에서 10분 동안 2회 원심분리하여 마이크로 크기의 카이랄 구조체(또는 L-Cys-Cu2-xS NF)를 제조하였다.The prepared first solution and isopropanol were mixed at a volume ratio of 2:1 and centrifuged at 8500 rpm for 20 minutes to obtain chiral copper sulfide nanoparticles (or L-Cys-Cu 2 S NPs). At this time, it was confirmed that the obtained chiral copper sulfide nanoparticles had an average diameter of 4.48 nm as a result of image analysis using a high-resolution transmission electron microscope (HR-TEM). Thereafter, the nanoparticles obtained through centrifugation were redispersed in 20 ml of tertiary distilled water and aged at room temperature for 20 hours to obtain a second solution. Then, the second solution and isopropanol were mixed at a volume ratio of 1:1 and centrifuged twice at 6000 rpm for 10 minutes to prepare a micro-sized chiral structure (or L-Cys-Cu 2-x S NF). .
<실시예 2> D-Cys-Cu2-xS NF의 제조<Example 2> Preparation of D-Cys-Cu 2-x S NF
실시예 1에서 L-시스테인 대신 D-시스테인을 사용한 것을 제외하고는 실시예 1과 동일한 방식으로 마이크로 크기의 카이랄 구조체(또는 D-Cys-Cu2-xS NF)를 제조하였다.A micro-sized chiral structure (or D-Cys-Cu 2-x S NF) was prepared in the same manner as in Example 1, except that D-cysteine was used instead of L-cysteine in Example 1.
<비교예 1><Comparative Example 1>
실시예 1에서 L-시스테인 대신 L-시스테인 및 D-시스테인이 1:1의 몰비로 이루어진 DL-시스테인을 사용한 것을 제외하고는 실시예 1과 동일한 방식으로 마이크로 크기의 구조체(또는 DL-Cys-Cu2-xS nanobowties)를 제조하였다.A micro-sized structure (or DL-Cys-Cu 2-x S nanobowties) were prepared.
<실험예 1> 자외선-단적외선 광범위 카이랄성<Experimental Example 1> UV-Short Infrared Broad Range Chirality
도 1은 시스테인(Cys)을 이용한 카이랄 황화구리 나노입자 합성 및 자가조립 과정을 보여주는 모식도이다. 도 1을 참조하면, 시스테인 분자의 카이랄성이 카이랄 황화구리 나노입자로 전이되어 자외선-가시광선 영역의 광학 활성을 갖는 나노입자가 합성된다. 상기 나노입자들이 자가조립을 거쳐 타원체가 일정한 방향으로 회전하여 만들어진 나노꽃 형태의 구조체가 형성되면서 마이크로 수준까지 카이랄성이 전이되어 자외선-가시광선-단적외선 영역의 광학 활성을 갖는 마이크로 크기의 구조체가 최종적으로 합성된다.1 is a schematic diagram showing a process of synthesizing and self-assembling chiral copper sulfide nanoparticles using cysteine (Cys). Referring to FIG. 1 , the chirality of cysteine molecules is transferred to chiral copper sulfide nanoparticles to synthesize nanoparticles having optical activity in the ultraviolet-visible region. As the nanoparticles undergo self-assembly and the ellipsoid is rotated in a certain direction, a nanoflower-shaped structure is formed, and chirality is transferred to the micro level, resulting in a micro-sized structure having optical activity in the ultraviolet-visible-short-infrared region. is finally synthesized.
도 2는 실시예 1, 실시예 2 및 비교예 1의 구조체의 SEM 이미지이며, 이를 참조하면, 최종 합성된 구조체가 복수의 타원체가 쌓여있는 형태임을 알 수 있다. 실시예 1의 경우 합성 시 L-시스테인을 사용하여 타원체들이 반시계 방향으로, 실시예 2의 경우 D-시스테인을 사용하여 시계방향으로 쌓이는 방향 선택성 (enantioselection)을 나타낸다. 이에 반해, 비교예 1의 경우 L-시스테인과 D-시스테인을 같은 양을 사용하여 카이랄성이 없는 대칭적인 구조를 갖는 나노넥타이(nanobowtie) 형태의 구조체가 형성된다.2 is an SEM image of the structures of Example 1, Example 2, and Comparative Example 1, and referring to this, it can be seen that the final synthesized structure has a shape in which a plurality of ellipsoids are stacked. Example 1 exhibits enantioselection in which ellipsoids are stacked in a counterclockwise direction using L-cysteine during synthesis and in a clockwise direction using D-cysteine in Example 2. On the other hand, in the case of Comparative Example 1, a structure in the form of a nanobowtie having a symmetrical structure without chirality was formed by using the same amount of L-cysteine and D-cysteine.
도 3 및 도 4는 각각 실시예 1, 실시예 2 및 비교예 1의 구조체의 g 상수 그래프 및 원편광 이색성(CD) 그래프이다. 도 3 및 도 4를 참조하면, 실시예 1 및 실시예 2의 구조체는 서로 거울상 구조를 가지므로 CD 그래프에서 서로 대칭적인 형태를 띈다. 특히 CD 측정 결과를 참조하면, 자외선 영역(249 ㎚, 315 ㎚), 근적외선 영역(1007 ㎚), 단적외선 영역(2140 ㎚)에서 CD 피크가 나타나, 이를 통해 자외선 영역에서 단적외선 영역까지 넓은 영역에서 광학 활성을 가지는 카이랄 구조체가 성공적으로 합성되었음을 확인할 수 있다.3 and 4 are g constant graphs and circular dichroism (CD) graphs of structures of Examples 1, 2, and Comparative Example 1, respectively. Referring to FIGS. 3 and 4 , the structures of Example 1 and Example 2 have mirror image structures, so they are symmetrical to each other in the CD graph. In particular, referring to the CD measurement results, CD peaks appear in the ultraviolet region (249 nm, 315 nm), near infrared region (1007 nm), and short infrared region (2140 nm). It can be confirmed that a chiral structure having optical activity was successfully synthesized.
<실험예 2> 카이랄성의 전이 확인<Experimental Example 2> Confirmation of chirality transition
도 5, 도 6 및 도 7는 자가조립 과정에서 카이랄성 전이가 일어나는 일련의 과정을 설명하기 위한 도면들이다. 도 5를 참조하면, 숙성 시간에 따른 TEM 이미지를 통해 합성된 나노입자가 1시간 후에는 초입자(supraparticle), 2시간 후에는 진주목걸이 형태의 응집체(Pearl-necklace aggregates)가 형성되며, 5시간 후에는 해당 응집체가 나노잎의 형태를 가진 타원체로 변화하는 것을 확인할 수 있다. 10시간이 지나고 나면 타원체가 우세하게 존재하게 되고, 20시간이 지난 후에는 타원체들이 쌓인 구조체가 형성된다.5, 6 and 7 are diagrams for explaining a series of processes in which chirality transition occurs in the self-assembly process. Referring to FIG. 5, nanoparticles synthesized through TEM images according to aging time form supraparticles after 1 hour, pearl-necklace aggregates after 2 hours, and 5 hours After that, it can be confirmed that the aggregate changes into an ellipsoid having a nanoleaf shape. After 10 hours, ellipsoids predominately exist, and after 20 hours, a structure in which ellipsoids are stacked is formed.
도 6 및 도 7을 참조하면, 숙성 시간의 경과에 따라 더 긴 파장대에 해당하는 CD 피크들이 생겨나는 것을 확인할 수 있다. 이를 통해 자가조립 과정에서 카이랄성 전이가 일어남을 알 수 있다.Referring to FIGS. 6 and 7 , it can be seen that CD peaks corresponding to longer wavelength bands are generated as the aging time elapses. Through this, it can be seen that a chiral transition occurs during the self-assembly process.
도 8은 실시예 1 및 2의 시스테인 분자, 카이랄 나노입자 및 카이랄 구조체의 CD 그래프이며, 이를 통해 원자 수준의 카이랄성이 카이랄 나노입자에 전이되어 나노 수준의 카이랄성을 띄고, 나노 수준의 카이랄성이 마이크로 크기의 카이랄 구조체에 전이되어 마이크로 수준의 카이랄성을 띄는 것을 알 수 있다. 이와 같은 자가조립 과정을 이용한 카이랄 구조체는 자외선 영역부터 단적외선 영역까지 광범위한 광학 활성을 갖기 위해 필수적인 요소인 1) 마이크로 크기를 갖는 물질과 2) 카이랄 센터를 가져야 한다는 점을 모두 만족함으로써 보다 용이하게 제조될 수 있다.8 is a CD graph of the cysteine molecules, chiral nanoparticles, and chiral structures of Examples 1 and 2, through which chirality at the atomic level is transferred to the chiral nanoparticles, resulting in nano-level chirality, It can be seen that the nano-level chirality is transferred to the micro-sized chiral structure, and thus the micro-level chirality is obtained. A chiral structure using such a self-assembly process satisfies both essential elements for having a wide range of optical activity from the ultraviolet to the short-infrared region: 1) a micro-sized material and 2) a chiral center, making it easier can be manufactured.
<실험예 3> 유기리간드와 시스테인의 사용비율에 따른 광학 활성 제어<Experimental Example 3> Optical activity control according to the use ratio of organic ligand and cysteine
도 9는 실시예 1에서 유기리간드인 TGA와 L-시스테인의 몰비를 4.5 : 5.5로 사용한 것과 다른 비율인 4:6, 3:7, 2:8, 0:10로 사용하였을 때 합성되는 카이랄 구조체들의 SEM 이미지이고, 도 10 및 도 11은 각각 이와 같이 합성된 카이랄 구조체들의 광학 활성을 측정한 g factor 그래프 및 CD 그래프이다. 그 결과, L-시스테인의 사용 비율이 높아질수록 자가조립을 통해 합성된 카이랄 구조체의 크기가 커졌으며, 구체적으로 그 크기는 3 ㎛ 내지 6 ㎛로 나타났다.9 is chiral synthesized when the molar ratio of TGA and L-cysteine, which are organic ligands, was used in Example 1 at 4:6, 3:7, 2:8, and 0:10, which are different from the molar ratio of 4.5:5.5. SEM images of the structures, and FIGS. 10 and 11 are g factor graphs and CD graphs measuring the optical activity of the synthesized chiral structures, respectively. As a result, as the use ratio of L-cysteine increased, the size of the chiral structure synthesized through self-assembly increased, and specifically, the size was found to be 3 μm to 6 μm.
물질의 크기와 유사한 파장의 빛과 상호작용하는 경향에 따라, L-시스테인의 사용 비율이 높아질수록 카이랄 구조체의 크기가 커지면서 CD 피크들이 전체적으로 레드 시프트(red shift)하는 것을 확인할 수 있다. 따라서 합성 시 유기리간드와 L-시스테인의 비율을 조절함으로써 원하는 파장대의 광학 활성을 갖는 카이랄 구조체를 합성할 수 있음을 알 수 있다.According to the tendency to interact with light of a wavelength similar to the size of the material, as the use ratio of L-cysteine increases, the size of the chiral structure increases, and it can be seen that the CD peaks are red-shifted as a whole. Therefore, it can be seen that a chiral structure having optical activity in a desired wavelength range can be synthesized by adjusting the ratio of organic ligand and L-cysteine during synthesis.
이상과 같이 본 명세서에서는 특정된 사항들과 한정된 실시예에 의해 본 개시가 설명되었으나 이는 본 개시의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 개시는 상기의 실시예에 한정되는 것은 아니며, 본 개시가 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. As described above, the present disclosure has been described by specific details and limited embodiments in this specification, but this is only provided to help a more general understanding of the present disclosure, the present disclosure is not limited to the above embodiments, and the present disclosure Those skilled in the art can make various modifications and variations from these descriptions.
따라서, 본 명세서에 기재된 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 명세서에 기재된 사상의 범주에 속한다고 할 것이다.Therefore, the ideas described in this specification should not be limited to the described embodiments and should not be determined, and all things equivalent or equivalent to the claims as well as the following claims fall within the scope of the ideas described in this specification. will do it

Claims (19)

  1. 카이랄 나노입자를 포함하고,Including chiral nanoparticles,
    자외선-가시광선(UV-Vis) 영역, 근적외선(NIR) 영역 및 단적외선(SWIR) 영역에서 광학 활성을 가지는, 카이랄 구조체.A chiral structure having optical activity in the ultraviolet-visible (UV-Vis) region, the near infrared (NIR) region, and the short infrared (SWIR) region.
  2. 제1항에 있어서,According to claim 1,
    상기 카이랄 구조체는 상기 카이랄 나노입자의 자가 조립에 의해 제조된 초입자 조립체인, 카이랄 구조체.The chiral structure is a superparticle assembly prepared by self-assembly of the chiral nanoparticles.
  3. 제1항에 있어서,According to claim 1,
    상기 카이랄 구조체는 2 이상의 타원체를 포함하고 상기 타원체가 시계 방향 또는 반시계방향으로 회전하면서 쌓인 구조를 가지는, 카이랄 구조체.The chiral structure includes two or more ellipsoids and has a structure in which the ellipsoids are stacked while rotating clockwise or counterclockwise.
  4. 제3항에 있어서,According to claim 3,
    상기 타원체는 장경이 1 ㎛ 내지 10 ㎛인, 카이랄 구조체.The ellipsoid has a major diameter of 1 μm to 10 μm, a chiral structure.
  5. 제1항에 있어서,According to claim 1,
    원편광 이색성 스펙트럼 측정 시 최대 피크 파장은 800 ㎚ 내지 1500 ㎚ 범위에서 나타나는, 카이랄 구조체.A chiral structure in which the maximum peak wavelength appears in the range of 800 nm to 1500 nm when circularly polarized light = dichroic spectrum is measured.
  6. 제1항에 있어서,According to claim 1,
    상기 카이랄 나노입자는 금속 화합물인, 카이랄 구조체.The chiral nanoparticle is a metal compound, a chiral structure.
  7. 제6항에 있어서,According to claim 6,
    상기 금속은 11족 전이금속 중에서 선택되는 어느 하나인, 카이랄 구조체.The metal is any one selected from group 11 transition metals, chiral structure.
  8. 제1항에 있어서,According to claim 1,
    상기 카이랄 나노입자는 카이랄 리간드로부터 제조되는, 카이랄 구조체.The chiral nanoparticle is prepared from a chiral ligand, a chiral structure.
  9. 제8항에 있어서,According to claim 8,
    상기 카이랄 리간드는 L-아미노산 또는 D-아미노산인, 카이랄 구조체.The chiral ligand is an L-amino acid or a D-amino acid.
  10. 제1항에 있어서,According to claim 1,
    상기 카이랄 나노입자는 평균 직경이 1 ㎚ 내지 10 ㎚인, 카이랄 구조체.The chiral nanoparticles have an average diameter of 1 nm to 10 nm, a chiral structure.
  11. 카이랄 리간드, 금속 전구체 및 칼코겐 전구체를 포함하는, 카이랄 구조체 제조용 전구체 조성물.A precursor composition for preparing a chiral structure comprising a chiral ligand, a metal precursor and a chalcogen precursor.
  12. 제11항에 있어서,According to claim 11,
    상기 카이랄 리간드는 L-아미노산 또는 D-아미노산인, 카이랄 구조체 제조용 전구체 조성물.The chiral ligand is an L-amino acid or a D-amino acid, a precursor composition for preparing a chiral structure.
  13. 제12항에 있어서,According to claim 12,
    상기 카이랄 리간드는 L-시스테인 또는 D-시스테인인, 카이랄 구조체 제조용 전구체 조성물.The chiral ligand is L-cysteine or D-cysteine, a precursor composition for preparing a chiral structure.
  14. 카이랄 리간드 및 금속 전구체를 포함하는 카이랄 구조체 제조용 전구체 조성물을 반응시켜 카이랄 나노입자를 제조하는 제1단계; 및A first step of preparing chiral nanoparticles by reacting a precursor composition for preparing a chiral structure including a chiral ligand and a metal precursor; and
    상기 카이랄 나노입자를 매질에 분산시켜 마이크로 크기의 카이랄 구조체를 제조하는 제2단계; 를 포함하는, 카이랄 구조체의 제조방법.a second step of preparing a micro-sized chiral structure by dispersing the chiral nanoparticles in a medium; A method for producing a chiral structure comprising a.
  15. 제14항에 있어서,According to claim 14,
    상기 카이랄 구조체 제조용 전구체 조성물은 칼코겐 전구체를 더 포함하는, 카이랄 구조체의 제조방법.The precursor composition for preparing the chiral structure further comprises a chalcogen precursor.
  16. 제15항에 있어서,According to claim 15,
    카이랄 리간드 : 금속 전구체 : 칼코겐 전구체의 몰비는 1 : 0.1 내지 0.8 : 0.1 내지 0.6인, 카이랄 구조체의 제조방법.The molar ratio of chiral ligand: metal precursor: chalcogen precursor is 1: 0.1 to 0.8: 0.1 to 0.6, a method for producing a chiral structure.
  17. 제14항에 있어서,According to claim 14,
    상기 제2단계는 카이랄 나노입자의 자가 조립이 일어나 마이크로 크기의 카이랄 구조체를 제조하는 것인, 카이랄 구조체의 제조방법.In the second step, the chiral nanoparticles are self-assembled to produce a micro-sized chiral structure.
  18. 제1항 내지 제10항 중 어느 한 항에 따른 카이랄 구조체를 포함하는 바이오 센서.A biosensor comprising the chiral structure according to any one of claims 1 to 10.
  19. 제1항 내지 제10항 중 어느 한 항에 따른 카이랄 구조체를 포함하는 광학 장치.An optical device comprising the chiral structure according to any one of claims 1 to 10.
PCT/KR2022/013206 2021-09-03 2022-09-02 Chiral structure having optical activity from ultraviolet to short-wave infrared region, and preparation method therefor WO2023033593A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0117583 2021-09-03
KR20210117583 2021-09-03
KR1020220110452A KR20230034908A (en) 2021-09-03 2022-09-01 Chiral structure having optical activity in UV-SWIR region and manufacturing method thereof
KR10-2022-0110452 2022-09-01

Publications (1)

Publication Number Publication Date
WO2023033593A1 true WO2023033593A1 (en) 2023-03-09

Family

ID=85411452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013206 WO2023033593A1 (en) 2021-09-03 2022-09-02 Chiral structure having optical activity from ultraviolet to short-wave infrared region, and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2023033593A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160167136A1 (en) * 2014-11-14 2016-06-16 The Regents Of The University Of Michigan Synthesis of chiral nanoparticles using circularly polarized light
KR20190117370A (en) * 2018-04-06 2019-10-16 서울대학교산학협력단 Three dimensional chiral nanostructures
KR20210057673A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Chiral nanostructure and it's use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160167136A1 (en) * 2014-11-14 2016-06-16 The Regents Of The University Of Michigan Synthesis of chiral nanoparticles using circularly polarized light
KR20190117370A (en) * 2018-04-06 2019-10-16 서울대학교산학협력단 Three dimensional chiral nanostructures
KR20210057673A (en) * 2019-11-12 2021-05-21 충남대학교산학협력단 Chiral nanostructure and it's use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IQBAL SHAHID, BAHADUR ALI, ANWER SHOAIB, ALI SHAHID, SAEED AAMER, MUHAMMAD IRFAN RANA, LI HAO, JAVED MOHSIN, RAHEEL MUHAMMAD, SHOA: "Shape and phase-controlled synthesis of specially designed 2D morphologies of l-cysteine surface capped covellite (CuS) and chalcocite (Cu2S) with excellent photocatalytic properties in the visible spectrum", APPLIED SURFACE SCIENCE, vol. 526, 1 October 2020 (2020-10-01), Amsterdam , NL , pages 1 - 13, XP093042473, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2020.146691 *
PARK KI HYUN, KWON JUNYOUNG, JEONG UICHANG, KIM JI-YOUNG, KOTOV NICHOLAS A., YEOM JIHYEON: "Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale", ACS NANO, vol. 15, no. 9, 28 September 2021 (2021-09-28), US , pages 15229 - 15237, XP093042475, ISSN: 1936-0851, DOI: 10.1021/acsnano.1c05888 *
WANG YUE, XIA YUNSHENG: "Near-infrared optically active Cu 2−x S nanocrystals: sacrificial template-ligand exchange integration fabrication and chirality dependent autophagy effects", JOURNAL OF MATERIALS CHEMISTRY. B, vol. 8, no. 35, 1 January 2020 (2020-01-01), GB , pages 7921 - 7930, XP093042468, ISSN: 2050-750X, DOI: 10.1039/D0TB01223H *

Similar Documents

Publication Publication Date Title
Rogach et al. Colloidally prepared HgTe nanocrystals with strong room‐temperature infrared luminescence
Kovalska et al. Non-aqueous solution-processed phosphorene by controlled low-potential electrochemical exfoliation and thin film preparation
Fu et al. Quantum confinement effects on charge-transfer between PbS quantum dots and 4-mercaptopyridine
JP5710255B2 (en) Functionalized nanoparticles and methods
Kundu et al. Photochemical synthesis of electrically conductive CdS nanowires on DNA scaffolds
Penmatsa et al. Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis
US20060275196A1 (en) Synthesis of nanostructured materials using liquid crystalline templates
KR101836973B1 (en) Method for manufacturing large-area metal calcogenide thin film and method for manufacturing electronic device comprising said metal calcogenide thin film
KR20100024473A (en) Preparation method of fullerene prepared by dehydrohalogenation of the organic chemicals which have the number ratio 1 : 1 of hydrogen and halogen with base and its fullerene
Naz et al. A simple low cost method for synthesis of SnO 2 nanoparticles and its characterization
Saifullah et al. Sub‐10 nm high‐aspect‐ratio patterning of ZnO using an electron beam
Zu et al. In situ synergistic crystallization-induced synthesis of novel Au nanostar-encrusted ZnO mesocrystals with high-quality heterojunctions for high-performance gas sensors
Kenane et al. Synthesis and characterization of conducting aniline and o-anisidine nanocomposites based on montmorillonite modified clay
WO2023033593A1 (en) Chiral structure having optical activity from ultraviolet to short-wave infrared region, and preparation method therefor
Zhu et al. Green preparation of silver nanofilms as SERS-active substrates for Rhodamine 6G detection
More et al. Investigating the effect of solvent vapours on crystallinity, phase, and optical, morphological and structural properties of organolead halide perovskite films
Botella et al. Analytical applications of retinoid—cyclodextrin inclusion complexes: 1. Characterization of a retinal—β—cyclodextrin complex
Huang et al. Preparation of soluble polyimide–silver nanocomposites by a convenient ultraviolet irradiation technique
Vakalopoulou et al. Honeycomb-structured copper indium sulfide thin films obtained via a nanosphere colloidal lithography method
Banerjee et al. Low dimensional fabrication of giant dielectric CaCu3Ti4O12 through soft e-beam lithography
Qin et al. Polyhedral oligomeric silsesquioxane-coated nanodiamonds for multifunctional applications
Zhang et al. Mesoscale organization of Cu7S4 nanowires: formation of novel sheath-like nanotube array
KR20230034908A (en) Chiral structure having optical activity in UV-SWIR region and manufacturing method thereof
Anbarasan et al. Synthesis, characterization and ring opening activity of barium mercaptoacetate towards ε-caprolactone
WO2019004755A1 (en) Method for preparing nickel oxide nanoparticle and nickel oxide nanoparticle prepared using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22865095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE