WO2023033569A1 - 피크에 대한 각도를 통한 제품의 품질 검사방법 - Google Patents

피크에 대한 각도를 통한 제품의 품질 검사방법 Download PDF

Info

Publication number
WO2023033569A1
WO2023033569A1 PCT/KR2022/013121 KR2022013121W WO2023033569A1 WO 2023033569 A1 WO2023033569 A1 WO 2023033569A1 KR 2022013121 W KR2022013121 W KR 2022013121W WO 2023033569 A1 WO2023033569 A1 WO 2023033569A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection line
peak
angle
line
information
Prior art date
Application number
PCT/KR2022/013121
Other languages
English (en)
French (fr)
Inventor
이영규
Original Assignee
주식회사 아이티공간
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티공간 filed Critical 주식회사 아이티공간
Publication of WO2023033569A1 publication Critical patent/WO2023033569A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a method for inspecting the quality of a product through an angle to a peak, and more particularly, by distinguishing a waveform pattern collected in the process of manufacturing a defective product and a waveform pattern collected in the process of manufacturing a normal product in a controller learning, and based on the real-time waveform measured in the process of manufacturing the product in real time, detecting whether or not there is a defect in the product being manufactured. It relates to a method for inspecting product quality through angles for peaks that can lead to economical management and production of devices and products by preventing waste of time and manpower for unnecessary operation of expensive devices.
  • the present invention has been proposed to solve the various problems described above, and the purpose thereof is to learn by distinguishing the waveform patterns collected in the process of manufacturing defective products and the waveform patterns collected in the process of manufacturing normal products in the control unit. , Based on the real-time waveform measured in the process of manufacturing the product in real time, the presence or absence of defects in the product being manufactured is detected. It is to provide a product quality inspection method through the angle of the peak that can lead to economical management and production of equipment and products by preventing waste of time and manpower when equipment is operated unnecessarily.
  • the method for inspecting the quality of a product through the angle of the peak shows the change information of the amount of energy over time measured in a device performing a work process to manufacture a product as a graph.
  • a starting connection line connecting the starting point and the peak point of the energy waveform extracted in the extraction step (S10) in a straight line and a horizontal line formed horizontally long based on the starting point are constructed, and the angle between the constructed starting connection line and the horizontal line is collected.
  • the angle information between the start connection line and the horizontal line for the control unit divides the angle information between the start connection line and the horizontal line of the energy wave produced with a normal product and the angle information between the start connection line and the horizontal line of the energy waveform produced with a defective product.
  • Information learning step (S30) to learn by doing; and, when the work process is performed in the device to produce a real-time product, the angle between the start connection line and the horizontal line of the energy waveform for the work process is measured, and the measured start connection line Based on the angle between and the horizontal line, the control unit determines whether or not the product is defective in real time (S40); characterized in that it comprises a.
  • energy according to time measured by the device is the current consumed in driving the device, vibration or noise generated when the device is driven, the frequency of power supplied to the device, and the temperature and humidity of the device when the device is driven.
  • energy according to time measured by the device is the current consumed in driving the device, vibration or noise generated when the device is driven, the frequency of power supplied to the device, and the temperature and humidity of the device when the device is driven.
  • the end point at which the energy waveform ends along with the start point and peak point is further extracted from the energy waveform for the work process of the device
  • an end point connection line connecting the peak point and end point of the energy waveform in a straight line is further constructed to further collect angle information between the start connection line and the end point connection line and the angle between the end point connection line and the horizontal line, and the information
  • the learning step (S30) the information on the angle between the start connection line and the end point connection line and the angle between the end point connection line and the horizontal line for the energy waveform collected in the information collection step (S20) is converted to the energy waveform for which the product was normally manufactured in the control unit.
  • the angle information between the start connection line and the end connection line and the angle information between the end connection line and the horizontal line, and the angle information between the start connection line and the end connection line and the angle information between the end point connection line and the horizontal line of the energy waveform produced with defects are learned.
  • the controller based on the angle between the start connection line and the end point connection line and the angle between the end point connection line and the horizontal line of the energy waveform for the work process is characterized in that it determines whether a product is defective in real time.
  • the energy waveform for the work process of the device is divided into a peak section including a start point and a peak point, and a constant speed section for other sections, but the value of the largest energy in the constant speed section.
  • the peak point is further extracted, and in the information collection step (S20), a first peak connection line connecting the peak point and the later peak point in a straight line instead of the end point connection line connecting the peak point and the end point of the energy waveform in a straight line,
  • a second peak connection line connecting the peak point and the end point in a straight line is constructed to further build the angle between the start connection line and the first peak connection line, the angle between the first peak connection line and the second peak connection line, and the angle between the second peak connection line and the horizontal line.
  • the control unit separates the waveform patterns collected in the process of manufacturing defective products and the waveform patterns collected in the process of manufacturing normal products. learning, and based on the real-time waveform measured in the process of manufacturing the product in real time, detecting whether or not there is a defect in the product being manufactured. There is an effect of inducing economical management and production of devices and products by preventing waste of time and manpower when expensive devices are operated unnecessarily.
  • FIG. 1 is a block diagram of a method for inspecting product quality through an angle to a peak according to an embodiment of the present invention.
  • FIG. 2 to 8 are diagrams for explaining a method of inspecting product quality through an angle for the peak shown in FIG. 1 .
  • Figure 1 is a product quality inspection method through a peak angle according to an embodiment of the present invention 2 to 8 each show a block diagram of a product quality inspection method through an angle for the peak shown in FIG. 1.
  • the product quality inspection method 100 through the angle to the peak includes an extraction step (S10), an information collection step (S20), and an information learning step (S30). ) and a judgment step (S40).
  • the energy waveform information representing the change information of the amount of energy over time measured by the device performing the work process to manufacture the product as a graph is measured, and the starting point at which the energy waveform to be measured starts (S10).
  • This is a step of extracting a peak point of a value having the largest magnitude of energy from the start point and energy waveform information.
  • the energy of the device required to perform the work process is the current consumed in driving the device, and the Any one selected from vibration or noise, the frequency of power supplied to the device, and the temperature, humidity, and pressure of the device when the device is driven, or a combination of two or more may be used.
  • a device such as a welder performing a work process of welding to a base material shows the energy required to perform the work process and the current supplied to the device over time, it is shown as an energy waveform as shown in FIG. do.
  • the peak point means the largest energy value in the energy waveform
  • the starting point means the point at which the energy waveform starts.
  • the point at which the energy waveform starts is determined with a reference value having a predetermined size set.
  • a start connection line connecting the start point and the peak point of the energy waveform extracted in the extraction step (S10) in a straight line and a horizontal line formed long horizontally based on the start point are constructed, and the constructed start point
  • the angle between the connection line and the horizontal line is collected, but the angle information between the starting connection line and the horizontal line for the energy waveforms is collected in large quantities through a repetitive work process in the device.
  • a starting connection line and a horizontal line connecting the starting point and the peak point obtained from the energy waveform are constructed, and the angle ⁇ 1 between the starting connection line and the horizontal line is collected.
  • the angle information between the connection line and the horizontal line is an important basis for determining whether a product is defective or not by being learned by the control unit 10 in the information learning step (S30), which will be described later.
  • angle information between the start connection line and the horizontal line for the energy waveforms collected in the information collection step (S20) is converted to the start connection line and the horizontal line of the energy waveform for which the product is normally manufactured in the control unit 10. This is a step of learning by dividing into angle information between the line and the angle information between the horizontal line and the start connection line of the energy waveform in which the product was manufactured due to defects.
  • the control unit 10 controls angle information between the starting connection line and the horizontal line for the energy waveform of a normal product from the information collected in large quantities in the information collection step (S20), and energy of a defective product.
  • the control unit 10 more accurately detects whether or not there is a defect in the product being manufactured in the determination step (S40) to be described later.
  • the controller 10 learns as little as hundreds, as many as thousands, or tens of thousands of energy waveform information in a typical deep learning method. It is possible to detect the presence or absence of defects in the product to be processed with excellent accuracy, and as an example of the deep learning method of the controller 10, methods such as VGG16, VGG19, RestNet50, and Inceoption V3 can be selectively applied.
  • the large amount of energy waveforms collected in the extraction and information collection steps (S10 and S20) can be divided into energy waveforms of normal products and energy waveforms of defective products according to the result of whether or not the finished product is defective.
  • the determination step (S40) when a work process is performed in the device to manufacture a real-time product, the angle between the start connection line and the horizontal line of the energy waveform for the work process is measured, and the angle between the measured start connection line and the horizontal line is measured.
  • This is a step in which the control unit 10 determines whether a product is defective in real time based on.
  • control unit determines whether the product is defective or not through the angle ⁇ 1 between the starting connection line and the horizontal line measured in the energy waveform of the product being manufactured in real time based on the information learned in the information learning step (S30). .
  • control unit 10 determines that the product is normal through the angle ⁇ 1 between the start connection line and the horizontal line of the energy waveform for the product being manufactured in real time, the product is continuously manufactured through the device. to complete the production with
  • the controller 10 determines that the product is defective through the angle ⁇ 1 between the start connection line and the horizontal line of the energy waveform for the product being manufactured in real time, the manufacturing process of the product is stopped. To induce efficient management and production of equipment and products by preventing waste of time required to manufacture defective products, unnecessary operation of equipment and management personnel.
  • the extraction step (S10) the end point at which the energy waveform ends along with the starting point and peak point are further extracted from the energy waveform for the work process of the device,
  • an end point connection line connecting the peak point and end point of the energy waveform in a straight line is further established to further collect angle information between the start connection line and the end point connection line and the angle between the end point connection line and the horizontal line,
  • the information on the angle between the start connection line and the end point connection line and the angle between the end point connection line and the horizontal line for the energy waveform collected in the information collection step (S20) is returned to normal in the control unit 10.
  • the controller based on the angle between the start connection line and the end point connection line and the angle between the end point connection line and the horizontal line of the energy waveform for the work process (10) determines whether or not a product is defective in real time.
  • information on the angle ( ⁇ 2) between the start connection line and the end point connection line and the angle ( ⁇ 3) between the end point connection line and the horizontal line is further collected from the energy waveform in the extraction and information collection steps (S10 and S20).
  • the control unit 10 learns based on the collected angle information between the start connection line and the end point connection line and the angle information between the end point connection line and the horizontal line, and the control unit 10 in the determination step (S40) (10) determines whether or not the product is defective based on the angle between the start connection line and the end connection line and the angle between the end connection line and the horizontal line of the energy waveform for the product manufactured in real time through the device.
  • the learning method for the angle between the start connection line and the end point connection line of the energy waveform and the angle between the end point connection line and the horizontal line through the control unit 10 and the follow-up measures according to whether or not the product is defective are Since it is the same as the method of determining whether a product is defective through the angle between horizontal lines, a detailed description thereof will be omitted.
  • the energy waveform for the work process of the device is divided into a peak section including a start point and a peak point and a constant speed section, and the other section is divided into a constant speed section. Afterwards, further extract as a peak point,
  • the first peak connection line connecting the peak point and the later peak point in a straight line, and the later peak point and the end point in a straight line
  • the angle between the start connection line and the first peak connection line, the angle between the first peak connection line and the second peak connection line, and the angle between the second peak connection line and the horizontal line are further collected,
  • the angle between the start connection line and the first peak connection line for the energy waveform collected in the information collection step (S20), the angle between the first peak connection line and the second peak connection line, and the second peak connection line is the angle between the start connection line and the first peak connection line of the energy waveform for which the product was produced normally in the control unit 10, the angle between the first peak connection line and the second peak connection line, and the second peak connection line and the horizontal line.
  • the controller 10 determines whether or not the product is defective in real time.
  • the angle ( ⁇ 4) between the start connection line and the first peak connection line from the energy waveform in the extraction and information collection steps (S10 and S20), the angle between the first peak connection line and the second peak connection line ( ⁇ 5) and the angle ( ⁇ 6) information between the second peak connection line and the horizontal line are further collected, and in the information learning step (S30), the control unit 10 determines the angle between the collected start connection line and the first peak connection line, the first By learning based on information on the angle between the peak connection line and the second peak connection line and the angle between the second peak connection line and the horizontal line, in the determination step (S40), the control unit 10 determines the energy waveform for the product manufactured in real time through the device. Whether or not the product is defective is determined based on the angle between the start connection line and the first peak connection line, the angle between the first peak connection line and the second peak connection line, and the angle between the second peak connection line and the horizontal line.
  • the learning method and product for the angle between the start connection line and the first peak connection line of the energy waveform through the control unit 10 the angle between the first peak connection line and the second peak connection line, and the angle between the second peak connection line and the horizontal line
  • the follow-up measures according to the presence or absence of defects are the same as the method for determining the presence or absence of defects in the product through the angle between the start connection line of the energy waveform and the horizontal line above, so a detailed description thereof will be omitted.
  • the present invention is applicable to the product quality inspection industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

본 발명은 피크에 대한 각도를 통한 제품의 품질 검사방법에 관한 것으로, 불량 제품을 제작하는 과정에서 수집되는 파형 패턴과 정상 제품을 제작하는 과정에서 수집되는 파형 패턴을 제어부에서 구분하여 학습하고, 실시간으로 제품이 제작되는 공정에서 측정되는 실시간 파형을 기반으로 제작 중인 제품에 대한 불량 유무를 검출하여 제품이 불량으로 판단되면 제품의 제작 공정을 곧바로 중단시켜 제품을 제작하는데 소요되는 시간, 고가의 기기가 불필요하게 작동되는 시간 및 인력의 낭비를 미연에 방지하여 기기 및 제품의 경제적인 관리, 생산을 유도할 수 있는 피크에 대한 각도를 통한 제품의 품질 검사방법에 관한 것이다.

Description

피크에 대한 각도를 통한 제품의 품질 검사방법
본 발명은 피크에 대한 각도를 통한 제품의 품질 검사방법에 관한 것으로, 더욱 상세하게는 불량 제품을 제작하는 과정에서 수집되는 파형 패턴과 정상 제품을 제작하는 과정에서 수집되는 파형 패턴을 제어부에서 구분하여 학습하고, 실시간으로 제품이 제작되는 공정에서 측정되는 실시간 파형을 기반으로 제작 중인 제품에 대한 불량 유무를 검출하여 제품이 불량으로 판단되면 제품의 제작 공정을 곧바로 중단시켜 제품을 제작하는데 소요되는 시간, 고가의 기기가 불필요하게 작동되는 시간 및 인력의 낭비를 미연에 방지하여 기기 및 제품의 경제적인 관리, 생산을 유도할 수 있는 피크에 대한 각도를 통한 제품의 품질 검사방법에 관한 것이다.
일반적으로 일련의 제조과정을 통해 제품이 제작 완성되면, 그 제품을 사용 및 판매하기 앞서서 완성된 제품의 불량 유무를 판별(검출)하게 되며, 불량으로 검출된 제품은 폐기 처분된다.
이러한 제품의 불량 유무에 대한 검출은 통상적으로 제작이 완성된 제품에 대하여 수행하게 되는 특성상, 불량 제품 발생시 불량 제품을 제조하는데 불필요하게 장비가 동작하는 시간, 소요되는 재료 및 인력 등이 낭비되는 문제점이 어쩔 수 없이 발생하였다.
또한, 제품의 불량 유무를 검출하기 위해서는 기본적으로 고가의 각종 검사장비의 사용 및 운영 인력이 요구될 뿐만 아니라, 제품의 불량 유무를 검출하는데 많은 시간이 소요되는 단점이 있고, 이러한 단점은 제품의 생산 단가는 높이고 제품의 생산력은 낮추는 원인이 되었다.
본 발명은 상기한 바와 같은 제반 문제점을 해결하기 위하여 제안된 것으로, 그 목적은 불량 제품을 제작하는 과정에서 수집되는 파형 패턴과 정상 제품을 제작하는 과정에서 수집되는 파형 패턴을 제어부에서 구분하여 학습하고, 실시간으로 제품이 제작되는 공정에서 측정되는 실시간 파형을 기반으로 제작 중인 제품에 대한 불량 유무를 검출하여 제품이 불량으로 판단되면 제품의 제작 공정을 곧바로 중단시켜 제품을 제작하는데 소요되는 시간, 고가의 기기가 불필요하게 작동되는 시간 및 인력의 낭비를 미연에 방지하여 기기 및 제품의 경제적인 관리, 생산을 유도할 수 있는 피크에 대한 각도를 통한 제품의 품질 검사방법을 제공함에 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 피크에 대한 각도를 통한 제품의 품질 검사방법은 제품을 제작하기 위해 작업공정을 수행하는 기기에서 측정한 시간에 따른 에너지 크기의 변화정보를 그래프로 나타낸 에너지 파형 정보를 측정하되, 그 측정되는 에너지 파형이 시작되는 시작점(start point)과 에너지 파형 정보에서 에너지의 크기가 가장 큰 값을 피크점(peak point)을 추출하는 추출단계(S10);와, 상기 추출단계(S10)에서 추출된 에너지 파형의 시작점과 피크점을 일직선으로 연결하는 시작 연결선과 시작점을 기준으로 수평으로 길게 형성되는 수평선을 구축하고, 그 구축된 시작 연결선과 수평선 사이의 각도를 수집하되, 기기에서 반복되는 작업공정을 통해 에너지 파형들에 대한 시작 연결선과 수평선 사이의 각도 정보를 대량으로 수집하는 정보 수집단계(S20);와, 상기 정보 수집단계(S20)에서 수집되는 에너지 파형들에 대한 시작 연결선과 수평선 사이의 각도 정보를 제어부에서 정상으로 제품이 제작된 에너지 파형의 시작 연결선과 수평선 사이의 각도 정보와 불량으로 제품이 제작된 에너지 파형의 시작 연결선과 수평선 사이의 각도 정보로 구분하여 학습하는 정보 학습단계(S30);와, 실시간 제품을 제작하기 위해 기기에서 작업공정이 수행되면, 그 작업공정에 대한 에너지 파형의 시작 연결선과 수평선 사이의 각도를 측정하고, 그 측정된 시작 연결선과 수평선 사이의 각도를 기반으로 상기 제어부는 실시간으로 제품의 불량 유무를 판단하는 판단단계(S40);를 포함하는 것을 특징으로 한다.
또한, 상기 기기에서 측정되는 시간에 따른 에너지는 기기의 구동에 소모되는 전류, 상기 기기의 구동시 발생되는 진동이나 소음, 상기 기기로 공급되는 전원의 주파수 및 상기 기기의 구동시 기기의 온도, 습도, 압력 중에서 선택되는 어느 하나 또는 둘 이상을 조합하여 사용하는 것을 특징으로 한다.
또한, 상기 추출단계(S10)에서 기기의 작업공정에 대한 에너지 파형으로부터 시작점과 피크점과 함께 에너지 파형이 종료되는 끝점(end point)을 더 추출하며,
상기 정보 수집단계(S20)에서는 에너지 파형의 피크점과 끝점을 일직선으로 연결하는 끝점 연결선을 더 구축하여 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보를 더 수집하며, 상기 정보 학습단계(S30)에서는 상기 정보 수집단계(S20)에서 수집되는 에너지 파형에 대한 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보를 상기 제어부에서 정상으로 제품이 제작된 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보와 불량으로 제품이 제작된 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보로 구분하여 학습하며, 상기 판단단계(S40)에서는 실시간 제품을 제작하기 위해 기기에서 작업공정이 수행되면, 그 작업공정에 대한 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도를 기반으로 상기 제어부는 실시간으로 제품의 불량 유무를 판단하도록 하는 것을 특징으로 한다.
또한, 상기 추출단계(S10)에서 기기의 작업공정에 대한 에너지 파형을 시작점과 피크점이 포함되는 피크구간과, 그 외의 구간을 정속구간으로 구분하되, 상기 정속구간에서 에너지의 크기가 가장 큰 값을 후 피크점으로 더 추출하며, 상기 정보 수집단계(S20)에서는 에너지 파형의 피크점과 끝점을 일직선으로 연결하는 끝점 연결선을 대신하여 피크점과 후 피크점을 일직선으로 연결하는 제1피크 연결선과, 후 피크점과 끝점을 일직선으로 연결하는 제2피크 연결선을 더 구축하여 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보를 더 수집하며, 상기 정보 학습단계(S30)에서는 상기 정보 수집단계(S20)에서 수집되는 에너지 파형에 대한 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보를 상기 제어부에서 정상으로 제품이 제작된 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보와 불량으로 제품이 제작된 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보로 구분하여 학습하며, 상기 판단단계(S40)에서는 실시간 제품을 제작하기 위해 기기에서 작업공정이 수행되면, 그 작업공정에 대한 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도를 기반으로 상기 제어부는 실시간으로 제품의 불량 유무를 판단하도록 하는 것을 특징으로 한다.
이상에서와 같이 본 발명에 따른 피크에 대한 각도를 통한 제품의 품질 검사방법에 의하면, 불량 제품을 제작하는 과정에서 수집되는 파형 패턴과 정상 제품을 제작하는 과정에서 수집되는 파형 패턴을 제어부에서 구분하여 학습하고, 실시간으로 제품이 제작되는 공정에서 측정되는 실시간 파형을 기반으로 제작 중인 제품에 대한 불량 유무를 검출하여 제품이 불량으로 판단되면 제품의 제작 공정을 곧바로 중단시켜 제품을 제작하는데 소요되는 시간, 고가의 기기가 불필요하게 작동되는 시간 및 인력의 낭비를 미연에 방지하여 기기 및 제품의 경제적인 관리, 생산을 유도할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 피크에 대한 각도를 통한 제품의 품질 검사방법의 블럭도이다.
도 2 내지 도 8은 도 1에 도시된 피크에 대한 각도를 통한 제품의 품질 검사방법을 설명하기 위한 도면이다.
본 발명의 바람직한 실시예에 따른 피크에 대한 각도를 통한 제품의 품질 검사방법을 첨부된 도면에 의거하여 상세히 설명한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략한다.
도 1 내지 도 8은 본 발명의 실시예에 따른 피크에 대한 각도를 통한 제품의 품질 검사방법을 도시한 것으로, 도 1은 본 발명의 실시예에 따른 피크에 대한 각도를 통한 제품의 품질 검사방법의 블럭도를, 도 2 내지 도 8은 도 1에 도시된 피크에 대한 각도를 통한 제품의 품질 검사방법을 설명하기 위한 도면을 각각 나타낸 것이다.
상기 도면에 도시한 바와 같이, 본 발명의 실시예에 따른 피크에 대한 각도를 통한 제품의 품질 검사방법(100)은 추출단계(S10)와, 정보 수집단계(S20)와, 정보 학습단계(S30)와, 판단단계(S40)를 포함하고 있다.
상기 추출단계(S10)는 제품을 제작하기 위해 작업공정을 수행하는 기기에서 측정한 시간에 따른 에너지 크기의 변화정보를 그래프로 나타낸 에너지 파형 정보를 측정하되, 그 측정되는 에너지 파형이 시작되는 시작점(start point)과 에너지 파형 정보에서 에너지의 크기가 가장 큰 값을 피크점(peak point)을 추출하는 단계이다.
통상적으로 대형 설비에 설치되어 유기적으로 동작하는 기기는 특정 작업공정을 반복적으로 수행하게 되는데, 이때 작업공정을 수행하는데 소요되는 기기의 에너지로 기기의 구동에 소모되는 전류, 상기 기기의 구동시 발생되는 진동이나 소음, 상기 기기로 공급되는 전원의 주파수 및 상기 기기의 구동시 기기의 온도, 습도, 압력 중에서 선택되는 어느 하나 또는 둘 이상을 조합하여 사용될 수 있다.
일 예로, 모재에 용접하는 작업공정을 수행하는 용접기와 같은 기기가 작업공정을 수행하는데 소요되는 에너지로 기기로 공급되는 전류를 시간의 흐름에 따라 나타내면, 도 2에 도시된 바와 같은 에너지 파형으로 도시된다.
여기서, 상기 피크점은 에너지 파형에서 가장 큰 에너지 값을 의미하고, 상기 시작점은 에너지 파형이 시작되는 시점을 의미하는데, 통상적으로 기기에서 한 번의 작업공정이 완료되더라도 반복적인 작업공정을 수행하기 위해 완전하게 정지되지 않고 대기하는 기기에 낮은 전류가 유지되므로 기기로부터 반복되는 에너지 파형으로부터 시작점을 명확하게 획득하기 위해 소정의 크기를 갖는 기준 값을 설정한 상태에서 에너지 파형이 기준 값 이상으로 증가하는 시점을 시작점으로 하여 작업공정에 대한 에너지 파형으로부터 정확한 시작점이 획득되도록 한다.
상기 정보 수집단계(S20)는 상기 추출단계(S10)에서 추출된 에너지 파형의 시작점과 피크점을 일직선으로 연결하는 시작 연결선과 시작점을 기준으로 수평으로 길게 형성되는 수평선을 구축하고, 그 구축된 시작 연결선과 수평선 사이의 각도를 수집하되, 기기에서 반복되는 작업공정을 통해 에너지 파형들에 대한 시작 연결선과 수평선 사이의 각도 정보를 대량으로 수집하는 단계이다.
즉, 도 3에 도시된 바와 같이 에너지 파형으로부터 획득된 시작점과 피크점을 연결하는 시작 연결선과 수평선을 구축하고, 그 시작 연결선과 수평선 사이의 각도(θ1)를 수집하는데, 이렇게 반복적으로 수집되는 시작 연결선과 수평선 사이의 각도 정보들은 후설될 상기 정보 학습단계(S30)에서 제어부(10)가 학습하여 제품의 불량 유무를 판단하는 중요한 기반이 된다.
상기 정보 학습단계(S30)는 상기 정보 수집단계(S20)에서 수집되는 에너지 파형들에 대한 시작 연결선과 수평선 사이의 각도 정보를 제어부(10)에서 정상으로 제품이 제작된 에너지 파형의 시작 연결선과 수평선 사이의 각도 정보와 불량으로 제품이 제작된 에너지 파형의 시작 연결선과 수평선 사이의 각도 정보로 구분하여 학습하는 단계이다.
즉, 도 4에 도시된 바와 같이 상기 제어부(10)는 상기 정보 수집단계(S20)에서 대량으로 수집되는 정보로부터 정상 제품의 에너지 파형에 대한 시작 연결선과 수평선 사이의 각도 정보와, 불량 제품의 에너지 파형에 대한 시작 연결선과 수평선 사이의 각도 정보로 구분하여 학습함으로, 후설될 상기 판단단계(S40)에서 상기 제어부(10)는 보다 정확하게 제작되고 있는 제품에 대한 불량 유무를 검출하게 된다.
여기서, 상기 제어부(10)는 통상의 딥 러닝 방식으로 적게는 수백 많게는 수천, 수만 개의 에너지 파형 정보를 학습하게 되는데, 상기 제어부(10)는 에너지 파형 정보가 풍부할수록 상기 제어부(10)에서 실시간 제작되는 제품에 대한 불량 유무를 우수한 정확도로 검출할 수 있으며, 이러한 상기 제어부(10)의 딥 러닝 방식의 일 예로 VGG16, VGG19, RestNet50, Inceoption V3 등의 방법을 선택적으로 적용할 수 있음은 물론이다.
또한, 상기 추출 및 정보 수집단계(S10,S20)에서 수집되는 대량의 에너지 파형들은 완제품의 불량 유무 결과에 따라 정상 제품의 에너지 파형과 불량 제품의 에너지 파형으로 구분하여 제공될 수 있음은 물론이다.
상기 판단단계(S40)는 실시간 제품을 제작하기 위해 기기에서 작업공정이 수행되면, 그 작업공정에 대한 에너지 파형의 시작 연결선과 수평선 사이의 각도를 측정하고, 그 측정된 시작 연결선과 수평선 사이의 각도를 기반으로 상기 제어부(10)는 실시간으로 제품의 불량 유무를 판단하는 단계이다.
즉, 상기 제어부는 상기 정보 학습단계(S30)에서 학습한 정보를 기반으로 실시간 제작되고 있는 제품의 에너지 파형에서 측정되는 시작 연결선과 수평선 사이의 각도(θ1)를 통해 제품의 불량 유무를 판단하게 된다.
일 예로, 도 5에 도시된 바와 같이 상기 제어부(10)에서 실시간 제작되고 있는 제품에 대한 에너지 파형의 시작 연결선과 수평선 사이의 각도(θ1)를 통해 제품이 정상이라 판단되면 기기를 통해 제품을 연속적으로 제작 완성하도록 하며,
반대로, 도 6에 도시된 바와 같이 상기 제어부(10)에서 실시간 제작되고 있는 제품에 대한 에너지 파형의 시작 연결선과 수평선 사이의 각도(θ1)를 통해 제품이 불량이라 판단되면 제품의 제작과정을 중단시킴으로 불량 제품을 제작하는데 소요되는 시간, 기기의 불필요한 가동 및 관리 인력이 낭비되는 것을 미연에 방지하여 기기 및 제품의 효율적인 관리, 생산을 유도하도록 한다.
한편, 상기 추출단계(S10)에서 기기의 작업공정에 대한 에너지 파형으로부터 시작점과 피크점과 함께 에너지 파형이 종료되는 끝점(end point)을 더 추출하며,
상기 정보 수집단계(S20)에서는 에너지 파형의 피크점과 끝점을 일직선으로 연결하는 끝점 연결선을 더 구축하여 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보를 더 수집하며,
상기 정보 학습단계(S30)에서는 상기 정보 수집단계(S20)에서 수집되는 에너지 파형에 대한 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보를 상기 제어부(10)에서 정상으로 제품이 제작된 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보와 불량으로 제품이 제작된 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보로 구분하여 학습하며,
상기 판단단계(S40)에서는 실시간 제품을 제작하기 위해 기기에서 작업공정이 수행되면, 그 작업공정에 대한 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도를 기반으로 상기 제어부(10)는 실시간으로 제품의 불량 유무를 판단하도록 한다.
즉, 도 7에 도시된 바와 같이 상기 추출 및 정보 수집단계(S10,S20)에서 에너지 파형으로부터 시작 연결선과 끝점 연결선 사이의 각도(θ2) 및 끝점 연결선과 수평선 사이의 각도(θ3) 정보를 더 수집하고, 상기 정보 학습단계(S30)에서 상기 제어부(10)는 수집된 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보를 기반으로 학습함으로, 상기 판단단계(S40)에서 상기 제어부(10)는 기기를 통해 실시간 제작되는 제품에 대한 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도를 기반으로 제품의 불량 유무를 판단하게 된다.
여기서, 상기 제어부(10)를 통한 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도에 대한 학습방법 및 제품의 불량 유무에 따른 후속조치는 상기에서 에너지 파형의 시작 연결선과 수평선 사이의 각도를 통해 제품의 불량 유무를 판단하는 방법과 동일함으로, 이에 대한 상세한 설명은 생략하도록 한다.
한편, 상기 추출단계(S10)에서 기기의 작업공정에 대한 에너지 파형을 시작점과 피크점이 포함되는 피크구간과, 그 외의 구간을 정속구간으로 구분하되, 상기 정속구간에서 에너지의 크기가 가장 큰 값을 후 피크점으로 더 추출하며,
상기 정보 수집단계(S20)에서는 에너지 파형의 피크점과 끝점을 일직선으로 연결하는 끝점 연결선을 대신하여 피크점과 후 피크점을 일직선으로 연결하는 제1피크 연결선과, 후 피크점과 끝점을 일직선으로 연결하는 제2피크 연결선을 더 구축하여 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보를 더 수집하며,
상기 정보 학습단계(S30)에서는 상기 정보 수집단계(S20)에서 수집되는 에너지 파형에 대한 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보를 상기 제어부(10)에서 정상으로 제품이 제작된 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보와 불량으로 제품이 제작된 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보로 구분하여 학습하며,
상기 판단단계(S40)에서는 실시간 제품을 제작하기 위해 기기에서 작업공정이 수행되면, 그 작업공정에 대한 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도를 기반으로 상기 제어부(10)는 실시간으로 제품의 불량 유무를 판단하도록 한다.
즉, 도 8에 도시된 바와 같이 상기 추출 및 정보 수집단계(S10,S20)에서 에너지 파형으로부터 시작 연결선과 제1피크 연결선 사이의 각도(θ4), 제1피크 연결선과 제2피크 연결선의 각도(θ5) 및 제2피크 연결선과 수평선 사이의 각도(θ6) 정보를 더 수집하고, 상기 정보 학습단계(S30)에서 상기 제어부(10)는 수집된 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보를 기반으로 학습함으로, 상기 판단단계(S40)에서 상기 제어부(10)는 기기를 통해 실시간 제작되는 제품에 대한 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도를 기반으로 제품의 불량 유무를 판단하게 된다.
여기서, 상기 제어부(10)를 통한 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도에 대한 학습방법 및 제품의 불량 유무에 따른 후속조치는 상기에서 에너지 파형의 시작 연결선과 수평선 사이의 각도를 통해 제품의 불량 유무를 판단하는 방법과 동일함으로, 이에 대한 상세한 설명은 생략하도록 한다.
본 발명은 첨부된 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것으로 상술한 실시예에 한정되지 않으며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시예가 가능하다는 점을 이해할 수 있을 것이다. 또한, 본 발명의 사상을 해치지 않는 범위 내에서 당업자에 의한 변형이 가능함은 물론이다. 따라서, 본 발명에서 권리를 청구하는 범위는 상세한 설명의 범위 내로 정해지는 것이 아니라 후술되는 청구범위와 이의 기술적 사상에 의해 한정될 것이다.
본 발명은 제품의 품질 검사 산업에 적용가능하다.

Claims (4)

  1. 작업공정을 통해 제작되는 제품의 품질 검사방법에 있어서,
    제품을 제작하기 위해 작업공정을 수행하는 기기에서 측정한 시간에 따른 에너지 크기의 변화정보를 그래프로 나타낸 에너지 파형 정보를 측정하되, 그 측정되는 에너지 파형이 시작되는 시작점(start point)과 에너지 파형 정보에서 에너지의 크기가 가장 큰 값을 피크점(peak point)을 추출하는 추출단계(S10);
    상기 추출단계(S10)에서 추출된 에너지 파형의 시작점과 피크점을 일직선으로 연결하는 시작 연결선과 시작점을 기준으로 수평으로 길게 형성되는 수평선을 구축하고, 그 구축된 시작 연결선과 수평선 사이의 각도를 수집하되, 기기에서 반복되는 작업공정을 통해 에너지 파형들에 대한 시작 연결선과 수평선 사이의 각도 정보를 대량으로 수집하는 정보 수집단계(S20);
    상기 정보 수집단계(S20)에서 수집되는 에너지 파형들에 대한 시작 연결선과 수평선 사이의 각도 정보를 제어부(10)에서 정상으로 제품이 제작된 에너지 파형의 시작 연결선과 수평선 사이의 각도 정보와 불량으로 제품이 제작된 에너지 파형의 시작 연결선과 수평선 사이의 각도 정보로 구분하여 학습하는 정보 학습단계(S30); 및
    실시간 제품을 제작하기 위해 기기에서 작업공정이 수행되면, 그 작업공정에 대한 에너지 파형의 시작 연결선과 수평선 사이의 각도를 측정하고, 그 측정된 시작 연결선과 수평선 사이의 각도를 기반으로 상기 제어부(10)는 실시간으로 제품의 불량 유무를 판단하는 판단단계(S40);를 포함하는 것을 특징으로 하는 피크에 대한 각도를 통한 제품의 품질 검사방법.
  2. 제 1 항에 있어서,
    상기 기기에서 측정되는 시간에 따른 에너지는 기기의 구동에 소모되는 전류, 상기 기기의 구동시 발생되는 진동이나 소음, 상기 기기로 공급되는 전원의 주파수 및 상기 기기의 구동시 기기의 온도, 습도, 압력 중에서 선택되는 어느 하나 또는 둘 이상을 조합하여 사용하는 것을 특징으로 하는 피크에 대한 각도를 통한 제품의 품질 검사방법.
  3. 제 1 항에 있어서,
    상기 추출단계(S10)에서 기기의 작업공정에 대한 에너지 파형으로부터 시작점과 피크점과 함께 에너지 파형이 종료되는 끝점(end point)을 더 추출하며,
    상기 정보 수집단계(S20)에서는 에너지 파형의 피크점과 끝점을 일직선으로 연결하는 끝점 연결선을 더 구축하여 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보를 더 수집하며,
    상기 정보 학습단계(S30)에서는 상기 정보 수집단계(S20)에서 수집되는 에너지 파형에 대한 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보를 상기 제어부(10)에서 정상으로 제품이 제작된 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보와 불량으로 제품이 제작된 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도 정보로 구분하여 학습하며,
    상기 판단단계(S40)에서는 실시간 제품을 제작하기 위해 기기에서 작업공정이 수행되면, 그 작업공정에 대한 에너지 파형의 시작 연결선과 끝점 연결선 사이의 각도 및 끝점 연결선과 수평선 사이의 각도를 기반으로 상기 제어부(10)는 실시간으로 제품의 불량 유무를 판단하도록 하는 것을 특징으로 하는 피크에 대한 각도를 통한 제품의 품질 검사방법.
  4. 제 3 항에 있어서,
    상기 추출단계(S10)에서 기기의 작업공정에 대한 에너지 파형을 시작점과 피크점이 포함되는 피크구간과, 그 외의 구간을 정속구간으로 구분하되, 상기 정속구간에서 에너지의 크기가 가장 큰 값을 후 피크점으로 더 추출하며,
    상기 정보 수집단계(S20)에서는 에너지 파형의 피크점과 끝점을 일직선으로 연결하는 끝점 연결선을 대신하여 피크점과 후 피크점을 일직선으로 연결하는 제1피크 연결선과, 후 피크점과 끝점을 일직선으로 연결하는 제2피크 연결선을 더 구축하여 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보를 더 수집하며,
    상기 정보 학습단계(S30)에서는 상기 정보 수집단계(S20)에서 수집되는 에너지 파형에 대한 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보를 상기 제어부(10)에서 정상으로 제품이 제작된 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보와 불량으로 제품이 제작된 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도 정보로 구분하여 학습하며,
    상기 판단단계(S40)에서는 실시간 제품을 제작하기 위해 기기에서 작업공정이 수행되면, 그 작업공정에 대한 에너지 파형의 시작 연결선과 제1피크 연결선 사이의 각도, 제1피크 연결선과 제2피크 연결선의 각도 및 제2피크 연결선과 수평선 사이의 각도를 기반으로 상기 제어부(10)는 실시간으로 제품의 불량 유무를 판단하도록 하는 것을 특징으로 하는 피크에 대한 각도를 통한 제품의 품질 검사방법.
PCT/KR2022/013121 2021-09-03 2022-09-01 피크에 대한 각도를 통한 제품의 품질 검사방법 WO2023033569A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0117544 2021-09-03
KR1020210117544A KR102510104B1 (ko) 2021-09-03 2021-09-03 피크에 대한 각도를 통한 제품의 품질 검사방법

Publications (1)

Publication Number Publication Date
WO2023033569A1 true WO2023033569A1 (ko) 2023-03-09

Family

ID=85411343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013121 WO2023033569A1 (ko) 2021-09-03 2022-09-01 피크에 대한 각도를 통한 제품의 품질 검사방법

Country Status (2)

Country Link
KR (1) KR102510104B1 (ko)
WO (1) WO2023033569A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090066371A (ko) * 2007-12-20 2009-06-24 두산디에스티주식회사 구동전류 측정을 이용한 기어박스 불량위치 판별 장치 및방법
WO2017150049A1 (ja) * 2016-02-29 2017-09-08 三菱重工業株式会社 機械要素の性能劣化・診断方法およびそのシステム
KR20210000538A (ko) * 2019-06-25 2021-01-05 (주)아이티공간 제어 출력신호를 통한 기기의 건전성 지수 검출방법
KR20210044658A (ko) * 2019-10-15 2021-04-23 (주)아이티공간 분포도를 통한 기기의 건전성 지수 검출방법
KR20210070867A (ko) * 2019-12-05 2021-06-15 (주)아이티공간 인공지능을 통한 기기의 이상 부위 학습 검출방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090066371A (ko) * 2007-12-20 2009-06-24 두산디에스티주식회사 구동전류 측정을 이용한 기어박스 불량위치 판별 장치 및방법
WO2017150049A1 (ja) * 2016-02-29 2017-09-08 三菱重工業株式会社 機械要素の性能劣化・診断方法およびそのシステム
KR20210000538A (ko) * 2019-06-25 2021-01-05 (주)아이티공간 제어 출력신호를 통한 기기의 건전성 지수 검출방법
KR20210044658A (ko) * 2019-10-15 2021-04-23 (주)아이티공간 분포도를 통한 기기의 건전성 지수 검출방법
KR20210070867A (ko) * 2019-12-05 2021-06-15 (주)아이티공간 인공지능을 통한 기기의 이상 부위 학습 검출방법

Also Published As

Publication number Publication date
KR102510104B1 (ko) 2023-03-14
KR20230034600A (ko) 2023-03-10

Similar Documents

Publication Publication Date Title
CN106774229A (zh) 一种soe参数异动分析方法及装置
CN108334908B (zh) 铁路钢轨伤损检测方法及装置
CN114965924A (zh) 污水污染物浓度检测系统
CN111007365A (zh) 一种基于神经网络的超声波局部放电识别方法及系统
CN115389624A (zh) 一种加工用声波测试系统
CN110346377A (zh) 基于机器视觉的无纺布表面检测系统及其检测方法
WO2023033569A1 (ko) 피크에 대한 각도를 통한 제품의 품질 검사방법
US20220113712A1 (en) Integrity index detecting method for device by means of control output signal
CN109309022A (zh) 一种缺陷抽检方法
CN105388163A (zh) 陶瓷砖表面缺陷智能检测系统
CN105424716B (zh) 人造板生产线检选板系统
CN104360268B (zh) Dc马达性能检测自动化设备
CN117233541A (zh) 一种配电网电力线路运行状态测量方法及测量系统
US8346383B2 (en) Method for determining the machining quality of components, particularly for metal cutting by NC machines
WO2023033567A1 (ko) 피크에 대한 각도를 통한 기기의 예지 보전방법
CN110961374A (zh) 基于涡流检测的铝及铝合金薄壁管材自动分选方法
KR20220059857A (ko) 제품의 실시간 품질 검사방법
CN110068582B (zh) 一种aoi印制板检测系统
CN115564141A (zh) 一种焊点质量监测方法、装置及其介质
CN105674879B (zh) 基于光幕测量的汽车轮毂螺孔识别方法、遮盖方法及系统
CN107843643A (zh) 铝及铝合金薄壁管材涡流自动探伤设备与自动探伤方法
CN204857670U (zh) 贴片电阻中不良颗粒的检测与处理设备
EP3769860A1 (en) Dynamic collar swage conformance checking based on swage tool parameters
TW200842346A (en) Detection method of printed circuit boards and the system thereof
WO2023033568A1 (ko) 피크에 대한 각도를 통한 기기의 건전성 지수 검출방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22865071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE